i2c: brcmstb: Fix START and STOP conditions
[linux/fpc-iii.git] / fs / dcache.c
blob4485a48f40912db08bda0de50fe4ac1e409fb7ed
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
43 #include "internal.h"
44 #include "mount.h"
47 * Usage:
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
56 * d_lock protects:
57 * - d_flags
58 * - d_name
59 * - d_lru
60 * - d_count
61 * - d_unhashed()
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
66 * Ordering:
67 * dentry->d_inode->i_lock
68 * dentry->d_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
71 * s_anon lock
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
75 * ...
76 * dentry->d_parent->d_lock
77 * dentry->d_lock
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
81 * dentry1->d_lock
82 * dentry2->d_lock
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
89 EXPORT_SYMBOL(rename_lock);
91 static struct kmem_cache *dentry_cache __read_mostly;
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
107 static inline struct hlist_bl_head *d_hash(unsigned int hash)
109 return dentry_hashtable + (hash >> (32 - d_hash_shift));
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
115 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
116 unsigned int hash)
118 hash += (unsigned long) parent / L1_CACHE_BYTES;
119 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat = {
125 .age_limit = 45,
128 static DEFINE_PER_CPU(long, nr_dentry);
129 static DEFINE_PER_CPU(long, nr_dentry_unused);
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
145 static long get_nr_dentry(void)
147 int i;
148 long sum = 0;
149 for_each_possible_cpu(i)
150 sum += per_cpu(nr_dentry, i);
151 return sum < 0 ? 0 : sum;
154 static long get_nr_dentry_unused(void)
156 int i;
157 long sum = 0;
158 for_each_possible_cpu(i)
159 sum += per_cpu(nr_dentry_unused, i);
160 return sum < 0 ? 0 : sum;
163 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
164 size_t *lenp, loff_t *ppos)
166 dentry_stat.nr_dentry = get_nr_dentry();
167 dentry_stat.nr_unused = get_nr_dentry_unused();
168 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
170 #endif
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
178 #include <asm/word-at-a-time.h>
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
188 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
190 unsigned long a,b,mask;
192 for (;;) {
193 a = *(unsigned long *)cs;
194 b = load_unaligned_zeropad(ct);
195 if (tcount < sizeof(unsigned long))
196 break;
197 if (unlikely(a != b))
198 return 1;
199 cs += sizeof(unsigned long);
200 ct += sizeof(unsigned long);
201 tcount -= sizeof(unsigned long);
202 if (!tcount)
203 return 0;
205 mask = bytemask_from_count(tcount);
206 return unlikely(!!((a ^ b) & mask));
209 #else
211 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
213 do {
214 if (*cs != *ct)
215 return 1;
216 cs++;
217 ct++;
218 tcount--;
219 } while (tcount);
220 return 0;
223 #endif
225 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
228 * Be careful about RCU walk racing with rename:
229 * use 'lockless_dereference' to fetch the name pointer.
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
243 const unsigned char *cs = lockless_dereference(dentry->d_name.name);
245 return dentry_string_cmp(cs, ct, tcount);
248 struct external_name {
249 union {
250 atomic_t count;
251 struct rcu_head head;
252 } u;
253 unsigned char name[];
256 static inline struct external_name *external_name(struct dentry *dentry)
258 return container_of(dentry->d_name.name, struct external_name, name[0]);
261 static void __d_free(struct rcu_head *head)
263 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
265 kmem_cache_free(dentry_cache, dentry);
268 static void __d_free_external(struct rcu_head *head)
270 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
271 kfree(external_name(dentry));
272 kmem_cache_free(dentry_cache, dentry);
275 static inline int dname_external(const struct dentry *dentry)
277 return dentry->d_name.name != dentry->d_iname;
280 static inline void __d_set_inode_and_type(struct dentry *dentry,
281 struct inode *inode,
282 unsigned type_flags)
284 unsigned flags;
286 dentry->d_inode = inode;
287 flags = READ_ONCE(dentry->d_flags);
288 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
289 flags |= type_flags;
290 WRITE_ONCE(dentry->d_flags, flags);
293 static inline void __d_clear_type_and_inode(struct dentry *dentry)
295 unsigned flags = READ_ONCE(dentry->d_flags);
297 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
298 WRITE_ONCE(dentry->d_flags, flags);
299 dentry->d_inode = NULL;
302 static void dentry_free(struct dentry *dentry)
304 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
305 if (unlikely(dname_external(dentry))) {
306 struct external_name *p = external_name(dentry);
307 if (likely(atomic_dec_and_test(&p->u.count))) {
308 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
309 return;
312 /* if dentry was never visible to RCU, immediate free is OK */
313 if (!(dentry->d_flags & DCACHE_RCUACCESS))
314 __d_free(&dentry->d_u.d_rcu);
315 else
316 call_rcu(&dentry->d_u.d_rcu, __d_free);
320 * Release the dentry's inode, using the filesystem
321 * d_iput() operation if defined.
323 static void dentry_unlink_inode(struct dentry * dentry)
324 __releases(dentry->d_lock)
325 __releases(dentry->d_inode->i_lock)
327 struct inode *inode = dentry->d_inode;
328 bool hashed = !d_unhashed(dentry);
330 if (hashed)
331 raw_write_seqcount_begin(&dentry->d_seq);
332 __d_clear_type_and_inode(dentry);
333 hlist_del_init(&dentry->d_u.d_alias);
334 if (hashed)
335 raw_write_seqcount_end(&dentry->d_seq);
336 spin_unlock(&dentry->d_lock);
337 spin_unlock(&inode->i_lock);
338 if (!inode->i_nlink)
339 fsnotify_inoderemove(inode);
340 if (dentry->d_op && dentry->d_op->d_iput)
341 dentry->d_op->d_iput(dentry, inode);
342 else
343 iput(inode);
347 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
348 * is in use - which includes both the "real" per-superblock
349 * LRU list _and_ the DCACHE_SHRINK_LIST use.
351 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
352 * on the shrink list (ie not on the superblock LRU list).
354 * The per-cpu "nr_dentry_unused" counters are updated with
355 * the DCACHE_LRU_LIST bit.
357 * These helper functions make sure we always follow the
358 * rules. d_lock must be held by the caller.
360 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
361 static void d_lru_add(struct dentry *dentry)
363 D_FLAG_VERIFY(dentry, 0);
364 dentry->d_flags |= DCACHE_LRU_LIST;
365 this_cpu_inc(nr_dentry_unused);
366 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
369 static void d_lru_del(struct dentry *dentry)
371 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
372 dentry->d_flags &= ~DCACHE_LRU_LIST;
373 this_cpu_dec(nr_dentry_unused);
374 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
377 static void d_shrink_del(struct dentry *dentry)
379 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
380 list_del_init(&dentry->d_lru);
381 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
382 this_cpu_dec(nr_dentry_unused);
385 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
387 D_FLAG_VERIFY(dentry, 0);
388 list_add(&dentry->d_lru, list);
389 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
390 this_cpu_inc(nr_dentry_unused);
394 * These can only be called under the global LRU lock, ie during the
395 * callback for freeing the LRU list. "isolate" removes it from the
396 * LRU lists entirely, while shrink_move moves it to the indicated
397 * private list.
399 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 dentry->d_flags &= ~DCACHE_LRU_LIST;
403 this_cpu_dec(nr_dentry_unused);
404 list_lru_isolate(lru, &dentry->d_lru);
407 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
408 struct list_head *list)
410 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
411 dentry->d_flags |= DCACHE_SHRINK_LIST;
412 list_lru_isolate_move(lru, &dentry->d_lru, list);
416 * dentry_lru_(add|del)_list) must be called with d_lock held.
418 static void dentry_lru_add(struct dentry *dentry)
420 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
421 d_lru_add(dentry);
425 * d_drop - drop a dentry
426 * @dentry: dentry to drop
428 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
429 * be found through a VFS lookup any more. Note that this is different from
430 * deleting the dentry - d_delete will try to mark the dentry negative if
431 * possible, giving a successful _negative_ lookup, while d_drop will
432 * just make the cache lookup fail.
434 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
435 * reason (NFS timeouts or autofs deletes).
437 * __d_drop requires dentry->d_lock.
439 void __d_drop(struct dentry *dentry)
441 if (!d_unhashed(dentry)) {
442 struct hlist_bl_head *b;
444 * Hashed dentries are normally on the dentry hashtable,
445 * with the exception of those newly allocated by
446 * d_obtain_alias, which are always IS_ROOT:
448 if (unlikely(IS_ROOT(dentry)))
449 b = &dentry->d_sb->s_anon;
450 else
451 b = d_hash(dentry->d_name.hash);
453 hlist_bl_lock(b);
454 __hlist_bl_del(&dentry->d_hash);
455 dentry->d_hash.pprev = NULL;
456 hlist_bl_unlock(b);
457 /* After this call, in-progress rcu-walk path lookup will fail. */
458 write_seqcount_invalidate(&dentry->d_seq);
461 EXPORT_SYMBOL(__d_drop);
463 void d_drop(struct dentry *dentry)
465 spin_lock(&dentry->d_lock);
466 __d_drop(dentry);
467 spin_unlock(&dentry->d_lock);
469 EXPORT_SYMBOL(d_drop);
471 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
473 struct dentry *next;
475 * Inform d_walk() and shrink_dentry_list() that we are no longer
476 * attached to the dentry tree
478 dentry->d_flags |= DCACHE_DENTRY_KILLED;
479 if (unlikely(list_empty(&dentry->d_child)))
480 return;
481 __list_del_entry(&dentry->d_child);
483 * Cursors can move around the list of children. While we'd been
484 * a normal list member, it didn't matter - ->d_child.next would've
485 * been updated. However, from now on it won't be and for the
486 * things like d_walk() it might end up with a nasty surprise.
487 * Normally d_walk() doesn't care about cursors moving around -
488 * ->d_lock on parent prevents that and since a cursor has no children
489 * of its own, we get through it without ever unlocking the parent.
490 * There is one exception, though - if we ascend from a child that
491 * gets killed as soon as we unlock it, the next sibling is found
492 * using the value left in its ->d_child.next. And if _that_
493 * pointed to a cursor, and cursor got moved (e.g. by lseek())
494 * before d_walk() regains parent->d_lock, we'll end up skipping
495 * everything the cursor had been moved past.
497 * Solution: make sure that the pointer left behind in ->d_child.next
498 * points to something that won't be moving around. I.e. skip the
499 * cursors.
501 while (dentry->d_child.next != &parent->d_subdirs) {
502 next = list_entry(dentry->d_child.next, struct dentry, d_child);
503 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
504 break;
505 dentry->d_child.next = next->d_child.next;
509 static void __dentry_kill(struct dentry *dentry)
511 struct dentry *parent = NULL;
512 bool can_free = true;
513 if (!IS_ROOT(dentry))
514 parent = dentry->d_parent;
517 * The dentry is now unrecoverably dead to the world.
519 lockref_mark_dead(&dentry->d_lockref);
522 * inform the fs via d_prune that this dentry is about to be
523 * unhashed and destroyed.
525 if (dentry->d_flags & DCACHE_OP_PRUNE)
526 dentry->d_op->d_prune(dentry);
528 if (dentry->d_flags & DCACHE_LRU_LIST) {
529 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
530 d_lru_del(dentry);
532 /* if it was on the hash then remove it */
533 __d_drop(dentry);
534 dentry_unlist(dentry, parent);
535 if (parent)
536 spin_unlock(&parent->d_lock);
537 if (dentry->d_inode)
538 dentry_unlink_inode(dentry);
539 else
540 spin_unlock(&dentry->d_lock);
541 this_cpu_dec(nr_dentry);
542 if (dentry->d_op && dentry->d_op->d_release)
543 dentry->d_op->d_release(dentry);
545 spin_lock(&dentry->d_lock);
546 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
547 dentry->d_flags |= DCACHE_MAY_FREE;
548 can_free = false;
550 spin_unlock(&dentry->d_lock);
551 if (likely(can_free))
552 dentry_free(dentry);
556 * Finish off a dentry we've decided to kill.
557 * dentry->d_lock must be held, returns with it unlocked.
558 * If ref is non-zero, then decrement the refcount too.
559 * Returns dentry requiring refcount drop, or NULL if we're done.
561 static struct dentry *dentry_kill(struct dentry *dentry)
562 __releases(dentry->d_lock)
564 struct inode *inode = dentry->d_inode;
565 struct dentry *parent = NULL;
567 if (inode && unlikely(!spin_trylock(&inode->i_lock)))
568 goto failed;
570 if (!IS_ROOT(dentry)) {
571 parent = dentry->d_parent;
572 if (unlikely(!spin_trylock(&parent->d_lock))) {
573 if (inode)
574 spin_unlock(&inode->i_lock);
575 goto failed;
579 __dentry_kill(dentry);
580 return parent;
582 failed:
583 spin_unlock(&dentry->d_lock);
584 return dentry; /* try again with same dentry */
587 static inline struct dentry *lock_parent(struct dentry *dentry)
589 struct dentry *parent = dentry->d_parent;
590 if (IS_ROOT(dentry))
591 return NULL;
592 if (unlikely(dentry->d_lockref.count < 0))
593 return NULL;
594 if (likely(spin_trylock(&parent->d_lock)))
595 return parent;
596 rcu_read_lock();
597 spin_unlock(&dentry->d_lock);
598 again:
599 parent = ACCESS_ONCE(dentry->d_parent);
600 spin_lock(&parent->d_lock);
602 * We can't blindly lock dentry until we are sure
603 * that we won't violate the locking order.
604 * Any changes of dentry->d_parent must have
605 * been done with parent->d_lock held, so
606 * spin_lock() above is enough of a barrier
607 * for checking if it's still our child.
609 if (unlikely(parent != dentry->d_parent)) {
610 spin_unlock(&parent->d_lock);
611 goto again;
613 rcu_read_unlock();
614 if (parent != dentry)
615 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
616 else
617 parent = NULL;
618 return parent;
622 * Try to do a lockless dput(), and return whether that was successful.
624 * If unsuccessful, we return false, having already taken the dentry lock.
626 * The caller needs to hold the RCU read lock, so that the dentry is
627 * guaranteed to stay around even if the refcount goes down to zero!
629 static inline bool fast_dput(struct dentry *dentry)
631 int ret;
632 unsigned int d_flags;
635 * If we have a d_op->d_delete() operation, we sould not
636 * let the dentry count go to zero, so use "put_or_lock".
638 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
639 return lockref_put_or_lock(&dentry->d_lockref);
642 * .. otherwise, we can try to just decrement the
643 * lockref optimistically.
645 ret = lockref_put_return(&dentry->d_lockref);
648 * If the lockref_put_return() failed due to the lock being held
649 * by somebody else, the fast path has failed. We will need to
650 * get the lock, and then check the count again.
652 if (unlikely(ret < 0)) {
653 spin_lock(&dentry->d_lock);
654 if (dentry->d_lockref.count > 1) {
655 dentry->d_lockref.count--;
656 spin_unlock(&dentry->d_lock);
657 return 1;
659 return 0;
663 * If we weren't the last ref, we're done.
665 if (ret)
666 return 1;
669 * Careful, careful. The reference count went down
670 * to zero, but we don't hold the dentry lock, so
671 * somebody else could get it again, and do another
672 * dput(), and we need to not race with that.
674 * However, there is a very special and common case
675 * where we don't care, because there is nothing to
676 * do: the dentry is still hashed, it does not have
677 * a 'delete' op, and it's referenced and already on
678 * the LRU list.
680 * NOTE! Since we aren't locked, these values are
681 * not "stable". However, it is sufficient that at
682 * some point after we dropped the reference the
683 * dentry was hashed and the flags had the proper
684 * value. Other dentry users may have re-gotten
685 * a reference to the dentry and change that, but
686 * our work is done - we can leave the dentry
687 * around with a zero refcount.
689 smp_rmb();
690 d_flags = ACCESS_ONCE(dentry->d_flags);
691 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
693 /* Nothing to do? Dropping the reference was all we needed? */
694 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
695 return 1;
698 * Not the fast normal case? Get the lock. We've already decremented
699 * the refcount, but we'll need to re-check the situation after
700 * getting the lock.
702 spin_lock(&dentry->d_lock);
705 * Did somebody else grab a reference to it in the meantime, and
706 * we're no longer the last user after all? Alternatively, somebody
707 * else could have killed it and marked it dead. Either way, we
708 * don't need to do anything else.
710 if (dentry->d_lockref.count) {
711 spin_unlock(&dentry->d_lock);
712 return 1;
716 * Re-get the reference we optimistically dropped. We hold the
717 * lock, and we just tested that it was zero, so we can just
718 * set it to 1.
720 dentry->d_lockref.count = 1;
721 return 0;
726 * This is dput
728 * This is complicated by the fact that we do not want to put
729 * dentries that are no longer on any hash chain on the unused
730 * list: we'd much rather just get rid of them immediately.
732 * However, that implies that we have to traverse the dentry
733 * tree upwards to the parents which might _also_ now be
734 * scheduled for deletion (it may have been only waiting for
735 * its last child to go away).
737 * This tail recursion is done by hand as we don't want to depend
738 * on the compiler to always get this right (gcc generally doesn't).
739 * Real recursion would eat up our stack space.
743 * dput - release a dentry
744 * @dentry: dentry to release
746 * Release a dentry. This will drop the usage count and if appropriate
747 * call the dentry unlink method as well as removing it from the queues and
748 * releasing its resources. If the parent dentries were scheduled for release
749 * they too may now get deleted.
751 void dput(struct dentry *dentry)
753 if (unlikely(!dentry))
754 return;
756 repeat:
757 might_sleep();
759 rcu_read_lock();
760 if (likely(fast_dput(dentry))) {
761 rcu_read_unlock();
762 return;
765 /* Slow case: now with the dentry lock held */
766 rcu_read_unlock();
768 WARN_ON(d_in_lookup(dentry));
770 /* Unreachable? Get rid of it */
771 if (unlikely(d_unhashed(dentry)))
772 goto kill_it;
774 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
775 goto kill_it;
777 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
778 if (dentry->d_op->d_delete(dentry))
779 goto kill_it;
782 if (!(dentry->d_flags & DCACHE_REFERENCED))
783 dentry->d_flags |= DCACHE_REFERENCED;
784 dentry_lru_add(dentry);
786 dentry->d_lockref.count--;
787 spin_unlock(&dentry->d_lock);
788 return;
790 kill_it:
791 dentry = dentry_kill(dentry);
792 if (dentry) {
793 cond_resched();
794 goto repeat;
797 EXPORT_SYMBOL(dput);
800 /* This must be called with d_lock held */
801 static inline void __dget_dlock(struct dentry *dentry)
803 dentry->d_lockref.count++;
806 static inline void __dget(struct dentry *dentry)
808 lockref_get(&dentry->d_lockref);
811 struct dentry *dget_parent(struct dentry *dentry)
813 int gotref;
814 struct dentry *ret;
817 * Do optimistic parent lookup without any
818 * locking.
820 rcu_read_lock();
821 ret = ACCESS_ONCE(dentry->d_parent);
822 gotref = lockref_get_not_zero(&ret->d_lockref);
823 rcu_read_unlock();
824 if (likely(gotref)) {
825 if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
826 return ret;
827 dput(ret);
830 repeat:
832 * Don't need rcu_dereference because we re-check it was correct under
833 * the lock.
835 rcu_read_lock();
836 ret = dentry->d_parent;
837 spin_lock(&ret->d_lock);
838 if (unlikely(ret != dentry->d_parent)) {
839 spin_unlock(&ret->d_lock);
840 rcu_read_unlock();
841 goto repeat;
843 rcu_read_unlock();
844 BUG_ON(!ret->d_lockref.count);
845 ret->d_lockref.count++;
846 spin_unlock(&ret->d_lock);
847 return ret;
849 EXPORT_SYMBOL(dget_parent);
852 * d_find_alias - grab a hashed alias of inode
853 * @inode: inode in question
855 * If inode has a hashed alias, or is a directory and has any alias,
856 * acquire the reference to alias and return it. Otherwise return NULL.
857 * Notice that if inode is a directory there can be only one alias and
858 * it can be unhashed only if it has no children, or if it is the root
859 * of a filesystem, or if the directory was renamed and d_revalidate
860 * was the first vfs operation to notice.
862 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
863 * any other hashed alias over that one.
865 static struct dentry *__d_find_alias(struct inode *inode)
867 struct dentry *alias, *discon_alias;
869 again:
870 discon_alias = NULL;
871 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
872 spin_lock(&alias->d_lock);
873 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
874 if (IS_ROOT(alias) &&
875 (alias->d_flags & DCACHE_DISCONNECTED)) {
876 discon_alias = alias;
877 } else {
878 __dget_dlock(alias);
879 spin_unlock(&alias->d_lock);
880 return alias;
883 spin_unlock(&alias->d_lock);
885 if (discon_alias) {
886 alias = discon_alias;
887 spin_lock(&alias->d_lock);
888 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
889 __dget_dlock(alias);
890 spin_unlock(&alias->d_lock);
891 return alias;
893 spin_unlock(&alias->d_lock);
894 goto again;
896 return NULL;
899 struct dentry *d_find_alias(struct inode *inode)
901 struct dentry *de = NULL;
903 if (!hlist_empty(&inode->i_dentry)) {
904 spin_lock(&inode->i_lock);
905 de = __d_find_alias(inode);
906 spin_unlock(&inode->i_lock);
908 return de;
910 EXPORT_SYMBOL(d_find_alias);
913 * Try to kill dentries associated with this inode.
914 * WARNING: you must own a reference to inode.
916 void d_prune_aliases(struct inode *inode)
918 struct dentry *dentry;
919 restart:
920 spin_lock(&inode->i_lock);
921 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
922 spin_lock(&dentry->d_lock);
923 if (!dentry->d_lockref.count) {
924 struct dentry *parent = lock_parent(dentry);
925 if (likely(!dentry->d_lockref.count)) {
926 __dentry_kill(dentry);
927 dput(parent);
928 goto restart;
930 if (parent)
931 spin_unlock(&parent->d_lock);
933 spin_unlock(&dentry->d_lock);
935 spin_unlock(&inode->i_lock);
937 EXPORT_SYMBOL(d_prune_aliases);
939 static void shrink_dentry_list(struct list_head *list)
941 struct dentry *dentry, *parent;
943 while (!list_empty(list)) {
944 struct inode *inode;
945 dentry = list_entry(list->prev, struct dentry, d_lru);
946 spin_lock(&dentry->d_lock);
947 parent = lock_parent(dentry);
950 * The dispose list is isolated and dentries are not accounted
951 * to the LRU here, so we can simply remove it from the list
952 * here regardless of whether it is referenced or not.
954 d_shrink_del(dentry);
957 * We found an inuse dentry which was not removed from
958 * the LRU because of laziness during lookup. Do not free it.
960 if (dentry->d_lockref.count > 0) {
961 spin_unlock(&dentry->d_lock);
962 if (parent)
963 spin_unlock(&parent->d_lock);
964 continue;
968 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
969 bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
970 spin_unlock(&dentry->d_lock);
971 if (parent)
972 spin_unlock(&parent->d_lock);
973 if (can_free)
974 dentry_free(dentry);
975 continue;
978 inode = dentry->d_inode;
979 if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
980 d_shrink_add(dentry, list);
981 spin_unlock(&dentry->d_lock);
982 if (parent)
983 spin_unlock(&parent->d_lock);
984 continue;
987 __dentry_kill(dentry);
990 * We need to prune ancestors too. This is necessary to prevent
991 * quadratic behavior of shrink_dcache_parent(), but is also
992 * expected to be beneficial in reducing dentry cache
993 * fragmentation.
995 dentry = parent;
996 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
997 parent = lock_parent(dentry);
998 if (dentry->d_lockref.count != 1) {
999 dentry->d_lockref.count--;
1000 spin_unlock(&dentry->d_lock);
1001 if (parent)
1002 spin_unlock(&parent->d_lock);
1003 break;
1005 inode = dentry->d_inode; /* can't be NULL */
1006 if (unlikely(!spin_trylock(&inode->i_lock))) {
1007 spin_unlock(&dentry->d_lock);
1008 if (parent)
1009 spin_unlock(&parent->d_lock);
1010 cpu_relax();
1011 continue;
1013 __dentry_kill(dentry);
1014 dentry = parent;
1019 static enum lru_status dentry_lru_isolate(struct list_head *item,
1020 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1022 struct list_head *freeable = arg;
1023 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1027 * we are inverting the lru lock/dentry->d_lock here,
1028 * so use a trylock. If we fail to get the lock, just skip
1029 * it
1031 if (!spin_trylock(&dentry->d_lock))
1032 return LRU_SKIP;
1035 * Referenced dentries are still in use. If they have active
1036 * counts, just remove them from the LRU. Otherwise give them
1037 * another pass through the LRU.
1039 if (dentry->d_lockref.count) {
1040 d_lru_isolate(lru, dentry);
1041 spin_unlock(&dentry->d_lock);
1042 return LRU_REMOVED;
1045 if (dentry->d_flags & DCACHE_REFERENCED) {
1046 dentry->d_flags &= ~DCACHE_REFERENCED;
1047 spin_unlock(&dentry->d_lock);
1050 * The list move itself will be made by the common LRU code. At
1051 * this point, we've dropped the dentry->d_lock but keep the
1052 * lru lock. This is safe to do, since every list movement is
1053 * protected by the lru lock even if both locks are held.
1055 * This is guaranteed by the fact that all LRU management
1056 * functions are intermediated by the LRU API calls like
1057 * list_lru_add and list_lru_del. List movement in this file
1058 * only ever occur through this functions or through callbacks
1059 * like this one, that are called from the LRU API.
1061 * The only exceptions to this are functions like
1062 * shrink_dentry_list, and code that first checks for the
1063 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1064 * operating only with stack provided lists after they are
1065 * properly isolated from the main list. It is thus, always a
1066 * local access.
1068 return LRU_ROTATE;
1071 d_lru_shrink_move(lru, dentry, freeable);
1072 spin_unlock(&dentry->d_lock);
1074 return LRU_REMOVED;
1078 * prune_dcache_sb - shrink the dcache
1079 * @sb: superblock
1080 * @sc: shrink control, passed to list_lru_shrink_walk()
1082 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1083 * is done when we need more memory and called from the superblock shrinker
1084 * function.
1086 * This function may fail to free any resources if all the dentries are in
1087 * use.
1089 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1091 LIST_HEAD(dispose);
1092 long freed;
1094 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1095 dentry_lru_isolate, &dispose);
1096 shrink_dentry_list(&dispose);
1097 return freed;
1100 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1101 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1103 struct list_head *freeable = arg;
1104 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1107 * we are inverting the lru lock/dentry->d_lock here,
1108 * so use a trylock. If we fail to get the lock, just skip
1109 * it
1111 if (!spin_trylock(&dentry->d_lock))
1112 return LRU_SKIP;
1114 d_lru_shrink_move(lru, dentry, freeable);
1115 spin_unlock(&dentry->d_lock);
1117 return LRU_REMOVED;
1122 * shrink_dcache_sb - shrink dcache for a superblock
1123 * @sb: superblock
1125 * Shrink the dcache for the specified super block. This is used to free
1126 * the dcache before unmounting a file system.
1128 void shrink_dcache_sb(struct super_block *sb)
1130 long freed;
1132 do {
1133 LIST_HEAD(dispose);
1135 freed = list_lru_walk(&sb->s_dentry_lru,
1136 dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1138 this_cpu_sub(nr_dentry_unused, freed);
1139 shrink_dentry_list(&dispose);
1140 } while (freed > 0);
1142 EXPORT_SYMBOL(shrink_dcache_sb);
1145 * enum d_walk_ret - action to talke during tree walk
1146 * @D_WALK_CONTINUE: contrinue walk
1147 * @D_WALK_QUIT: quit walk
1148 * @D_WALK_NORETRY: quit when retry is needed
1149 * @D_WALK_SKIP: skip this dentry and its children
1151 enum d_walk_ret {
1152 D_WALK_CONTINUE,
1153 D_WALK_QUIT,
1154 D_WALK_NORETRY,
1155 D_WALK_SKIP,
1159 * d_walk - walk the dentry tree
1160 * @parent: start of walk
1161 * @data: data passed to @enter() and @finish()
1162 * @enter: callback when first entering the dentry
1163 * @finish: callback when successfully finished the walk
1165 * The @enter() and @finish() callbacks are called with d_lock held.
1167 static void d_walk(struct dentry *parent, void *data,
1168 enum d_walk_ret (*enter)(void *, struct dentry *),
1169 void (*finish)(void *))
1171 struct dentry *this_parent;
1172 struct list_head *next;
1173 unsigned seq = 0;
1174 enum d_walk_ret ret;
1175 bool retry = true;
1177 again:
1178 read_seqbegin_or_lock(&rename_lock, &seq);
1179 this_parent = parent;
1180 spin_lock(&this_parent->d_lock);
1182 ret = enter(data, this_parent);
1183 switch (ret) {
1184 case D_WALK_CONTINUE:
1185 break;
1186 case D_WALK_QUIT:
1187 case D_WALK_SKIP:
1188 goto out_unlock;
1189 case D_WALK_NORETRY:
1190 retry = false;
1191 break;
1193 repeat:
1194 next = this_parent->d_subdirs.next;
1195 resume:
1196 while (next != &this_parent->d_subdirs) {
1197 struct list_head *tmp = next;
1198 struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1199 next = tmp->next;
1201 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1202 continue;
1204 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1206 ret = enter(data, dentry);
1207 switch (ret) {
1208 case D_WALK_CONTINUE:
1209 break;
1210 case D_WALK_QUIT:
1211 spin_unlock(&dentry->d_lock);
1212 goto out_unlock;
1213 case D_WALK_NORETRY:
1214 retry = false;
1215 break;
1216 case D_WALK_SKIP:
1217 spin_unlock(&dentry->d_lock);
1218 continue;
1221 if (!list_empty(&dentry->d_subdirs)) {
1222 spin_unlock(&this_parent->d_lock);
1223 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1224 this_parent = dentry;
1225 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1226 goto repeat;
1228 spin_unlock(&dentry->d_lock);
1231 * All done at this level ... ascend and resume the search.
1233 rcu_read_lock();
1234 ascend:
1235 if (this_parent != parent) {
1236 struct dentry *child = this_parent;
1237 this_parent = child->d_parent;
1239 spin_unlock(&child->d_lock);
1240 spin_lock(&this_parent->d_lock);
1242 /* might go back up the wrong parent if we have had a rename. */
1243 if (need_seqretry(&rename_lock, seq))
1244 goto rename_retry;
1245 /* go into the first sibling still alive */
1246 do {
1247 next = child->d_child.next;
1248 if (next == &this_parent->d_subdirs)
1249 goto ascend;
1250 child = list_entry(next, struct dentry, d_child);
1251 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1252 rcu_read_unlock();
1253 goto resume;
1255 if (need_seqretry(&rename_lock, seq))
1256 goto rename_retry;
1257 rcu_read_unlock();
1258 if (finish)
1259 finish(data);
1261 out_unlock:
1262 spin_unlock(&this_parent->d_lock);
1263 done_seqretry(&rename_lock, seq);
1264 return;
1266 rename_retry:
1267 spin_unlock(&this_parent->d_lock);
1268 rcu_read_unlock();
1269 BUG_ON(seq & 1);
1270 if (!retry)
1271 return;
1272 seq = 1;
1273 goto again;
1277 * Search for at least 1 mount point in the dentry's subdirs.
1278 * We descend to the next level whenever the d_subdirs
1279 * list is non-empty and continue searching.
1282 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1284 int *ret = data;
1285 if (d_mountpoint(dentry)) {
1286 *ret = 1;
1287 return D_WALK_QUIT;
1289 return D_WALK_CONTINUE;
1293 * have_submounts - check for mounts over a dentry
1294 * @parent: dentry to check.
1296 * Return true if the parent or its subdirectories contain
1297 * a mount point
1299 int have_submounts(struct dentry *parent)
1301 int ret = 0;
1303 d_walk(parent, &ret, check_mount, NULL);
1305 return ret;
1307 EXPORT_SYMBOL(have_submounts);
1310 * Called by mount code to set a mountpoint and check if the mountpoint is
1311 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1312 * subtree can become unreachable).
1314 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1315 * this reason take rename_lock and d_lock on dentry and ancestors.
1317 int d_set_mounted(struct dentry *dentry)
1319 struct dentry *p;
1320 int ret = -ENOENT;
1321 write_seqlock(&rename_lock);
1322 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1323 /* Need exclusion wrt. d_invalidate() */
1324 spin_lock(&p->d_lock);
1325 if (unlikely(d_unhashed(p))) {
1326 spin_unlock(&p->d_lock);
1327 goto out;
1329 spin_unlock(&p->d_lock);
1331 spin_lock(&dentry->d_lock);
1332 if (!d_unlinked(dentry)) {
1333 ret = -EBUSY;
1334 if (!d_mountpoint(dentry)) {
1335 dentry->d_flags |= DCACHE_MOUNTED;
1336 ret = 0;
1339 spin_unlock(&dentry->d_lock);
1340 out:
1341 write_sequnlock(&rename_lock);
1342 return ret;
1346 * Search the dentry child list of the specified parent,
1347 * and move any unused dentries to the end of the unused
1348 * list for prune_dcache(). We descend to the next level
1349 * whenever the d_subdirs list is non-empty and continue
1350 * searching.
1352 * It returns zero iff there are no unused children,
1353 * otherwise it returns the number of children moved to
1354 * the end of the unused list. This may not be the total
1355 * number of unused children, because select_parent can
1356 * drop the lock and return early due to latency
1357 * constraints.
1360 struct select_data {
1361 struct dentry *start;
1362 struct list_head dispose;
1363 int found;
1366 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1368 struct select_data *data = _data;
1369 enum d_walk_ret ret = D_WALK_CONTINUE;
1371 if (data->start == dentry)
1372 goto out;
1374 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1375 data->found++;
1376 } else {
1377 if (dentry->d_flags & DCACHE_LRU_LIST)
1378 d_lru_del(dentry);
1379 if (!dentry->d_lockref.count) {
1380 d_shrink_add(dentry, &data->dispose);
1381 data->found++;
1385 * We can return to the caller if we have found some (this
1386 * ensures forward progress). We'll be coming back to find
1387 * the rest.
1389 if (!list_empty(&data->dispose))
1390 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1391 out:
1392 return ret;
1396 * shrink_dcache_parent - prune dcache
1397 * @parent: parent of entries to prune
1399 * Prune the dcache to remove unused children of the parent dentry.
1401 void shrink_dcache_parent(struct dentry *parent)
1403 for (;;) {
1404 struct select_data data;
1406 INIT_LIST_HEAD(&data.dispose);
1407 data.start = parent;
1408 data.found = 0;
1410 d_walk(parent, &data, select_collect, NULL);
1411 if (!data.found)
1412 break;
1414 shrink_dentry_list(&data.dispose);
1415 cond_resched();
1418 EXPORT_SYMBOL(shrink_dcache_parent);
1420 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1422 /* it has busy descendents; complain about those instead */
1423 if (!list_empty(&dentry->d_subdirs))
1424 return D_WALK_CONTINUE;
1426 /* root with refcount 1 is fine */
1427 if (dentry == _data && dentry->d_lockref.count == 1)
1428 return D_WALK_CONTINUE;
1430 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1431 " still in use (%d) [unmount of %s %s]\n",
1432 dentry,
1433 dentry->d_inode ?
1434 dentry->d_inode->i_ino : 0UL,
1435 dentry,
1436 dentry->d_lockref.count,
1437 dentry->d_sb->s_type->name,
1438 dentry->d_sb->s_id);
1439 WARN_ON(1);
1440 return D_WALK_CONTINUE;
1443 static void do_one_tree(struct dentry *dentry)
1445 shrink_dcache_parent(dentry);
1446 d_walk(dentry, dentry, umount_check, NULL);
1447 d_drop(dentry);
1448 dput(dentry);
1452 * destroy the dentries attached to a superblock on unmounting
1454 void shrink_dcache_for_umount(struct super_block *sb)
1456 struct dentry *dentry;
1458 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1460 dentry = sb->s_root;
1461 sb->s_root = NULL;
1462 do_one_tree(dentry);
1464 while (!hlist_bl_empty(&sb->s_anon)) {
1465 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1466 do_one_tree(dentry);
1470 struct detach_data {
1471 struct select_data select;
1472 struct dentry *mountpoint;
1474 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1476 struct detach_data *data = _data;
1478 if (d_mountpoint(dentry)) {
1479 __dget_dlock(dentry);
1480 data->mountpoint = dentry;
1481 return D_WALK_QUIT;
1484 return select_collect(&data->select, dentry);
1487 static void check_and_drop(void *_data)
1489 struct detach_data *data = _data;
1491 if (!data->mountpoint && !data->select.found)
1492 __d_drop(data->select.start);
1496 * d_invalidate - detach submounts, prune dcache, and drop
1497 * @dentry: dentry to invalidate (aka detach, prune and drop)
1499 * no dcache lock.
1501 * The final d_drop is done as an atomic operation relative to
1502 * rename_lock ensuring there are no races with d_set_mounted. This
1503 * ensures there are no unhashed dentries on the path to a mountpoint.
1505 void d_invalidate(struct dentry *dentry)
1508 * If it's already been dropped, return OK.
1510 spin_lock(&dentry->d_lock);
1511 if (d_unhashed(dentry)) {
1512 spin_unlock(&dentry->d_lock);
1513 return;
1515 spin_unlock(&dentry->d_lock);
1517 /* Negative dentries can be dropped without further checks */
1518 if (!dentry->d_inode) {
1519 d_drop(dentry);
1520 return;
1523 for (;;) {
1524 struct detach_data data;
1526 data.mountpoint = NULL;
1527 INIT_LIST_HEAD(&data.select.dispose);
1528 data.select.start = dentry;
1529 data.select.found = 0;
1531 d_walk(dentry, &data, detach_and_collect, check_and_drop);
1533 if (data.select.found)
1534 shrink_dentry_list(&data.select.dispose);
1536 if (data.mountpoint) {
1537 detach_mounts(data.mountpoint);
1538 dput(data.mountpoint);
1541 if (!data.mountpoint && !data.select.found)
1542 break;
1544 cond_resched();
1547 EXPORT_SYMBOL(d_invalidate);
1550 * __d_alloc - allocate a dcache entry
1551 * @sb: filesystem it will belong to
1552 * @name: qstr of the name
1554 * Allocates a dentry. It returns %NULL if there is insufficient memory
1555 * available. On a success the dentry is returned. The name passed in is
1556 * copied and the copy passed in may be reused after this call.
1559 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1561 struct dentry *dentry;
1562 char *dname;
1563 int err;
1565 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1566 if (!dentry)
1567 return NULL;
1570 * We guarantee that the inline name is always NUL-terminated.
1571 * This way the memcpy() done by the name switching in rename
1572 * will still always have a NUL at the end, even if we might
1573 * be overwriting an internal NUL character
1575 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1576 if (unlikely(!name)) {
1577 static const struct qstr anon = QSTR_INIT("/", 1);
1578 name = &anon;
1579 dname = dentry->d_iname;
1580 } else if (name->len > DNAME_INLINE_LEN-1) {
1581 size_t size = offsetof(struct external_name, name[1]);
1582 struct external_name *p = kmalloc(size + name->len,
1583 GFP_KERNEL_ACCOUNT);
1584 if (!p) {
1585 kmem_cache_free(dentry_cache, dentry);
1586 return NULL;
1588 atomic_set(&p->u.count, 1);
1589 dname = p->name;
1590 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1591 kasan_unpoison_shadow(dname,
1592 round_up(name->len + 1, sizeof(unsigned long)));
1593 } else {
1594 dname = dentry->d_iname;
1597 dentry->d_name.len = name->len;
1598 dentry->d_name.hash = name->hash;
1599 memcpy(dname, name->name, name->len);
1600 dname[name->len] = 0;
1602 /* Make sure we always see the terminating NUL character */
1603 smp_wmb();
1604 dentry->d_name.name = dname;
1606 dentry->d_lockref.count = 1;
1607 dentry->d_flags = 0;
1608 spin_lock_init(&dentry->d_lock);
1609 seqcount_init(&dentry->d_seq);
1610 dentry->d_inode = NULL;
1611 dentry->d_parent = dentry;
1612 dentry->d_sb = sb;
1613 dentry->d_op = NULL;
1614 dentry->d_fsdata = NULL;
1615 INIT_HLIST_BL_NODE(&dentry->d_hash);
1616 INIT_LIST_HEAD(&dentry->d_lru);
1617 INIT_LIST_HEAD(&dentry->d_subdirs);
1618 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1619 INIT_LIST_HEAD(&dentry->d_child);
1620 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1622 if (dentry->d_op && dentry->d_op->d_init) {
1623 err = dentry->d_op->d_init(dentry);
1624 if (err) {
1625 if (dname_external(dentry))
1626 kfree(external_name(dentry));
1627 kmem_cache_free(dentry_cache, dentry);
1628 return NULL;
1632 this_cpu_inc(nr_dentry);
1634 return dentry;
1638 * d_alloc - allocate a dcache entry
1639 * @parent: parent of entry to allocate
1640 * @name: qstr of the name
1642 * Allocates a dentry. It returns %NULL if there is insufficient memory
1643 * available. On a success the dentry is returned. The name passed in is
1644 * copied and the copy passed in may be reused after this call.
1646 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1648 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1649 if (!dentry)
1650 return NULL;
1651 dentry->d_flags |= DCACHE_RCUACCESS;
1652 spin_lock(&parent->d_lock);
1654 * don't need child lock because it is not subject
1655 * to concurrency here
1657 __dget_dlock(parent);
1658 dentry->d_parent = parent;
1659 list_add(&dentry->d_child, &parent->d_subdirs);
1660 spin_unlock(&parent->d_lock);
1662 return dentry;
1664 EXPORT_SYMBOL(d_alloc);
1666 struct dentry *d_alloc_cursor(struct dentry * parent)
1668 struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1669 if (dentry) {
1670 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1671 dentry->d_parent = dget(parent);
1673 return dentry;
1677 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1678 * @sb: the superblock
1679 * @name: qstr of the name
1681 * For a filesystem that just pins its dentries in memory and never
1682 * performs lookups at all, return an unhashed IS_ROOT dentry.
1684 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1686 return __d_alloc(sb, name);
1688 EXPORT_SYMBOL(d_alloc_pseudo);
1690 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1692 struct qstr q;
1694 q.name = name;
1695 q.hash_len = hashlen_string(parent, name);
1696 return d_alloc(parent, &q);
1698 EXPORT_SYMBOL(d_alloc_name);
1700 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1702 WARN_ON_ONCE(dentry->d_op);
1703 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1704 DCACHE_OP_COMPARE |
1705 DCACHE_OP_REVALIDATE |
1706 DCACHE_OP_WEAK_REVALIDATE |
1707 DCACHE_OP_DELETE |
1708 DCACHE_OP_REAL));
1709 dentry->d_op = op;
1710 if (!op)
1711 return;
1712 if (op->d_hash)
1713 dentry->d_flags |= DCACHE_OP_HASH;
1714 if (op->d_compare)
1715 dentry->d_flags |= DCACHE_OP_COMPARE;
1716 if (op->d_revalidate)
1717 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1718 if (op->d_weak_revalidate)
1719 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1720 if (op->d_delete)
1721 dentry->d_flags |= DCACHE_OP_DELETE;
1722 if (op->d_prune)
1723 dentry->d_flags |= DCACHE_OP_PRUNE;
1724 if (op->d_real)
1725 dentry->d_flags |= DCACHE_OP_REAL;
1728 EXPORT_SYMBOL(d_set_d_op);
1732 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1733 * @dentry - The dentry to mark
1735 * Mark a dentry as falling through to the lower layer (as set with
1736 * d_pin_lower()). This flag may be recorded on the medium.
1738 void d_set_fallthru(struct dentry *dentry)
1740 spin_lock(&dentry->d_lock);
1741 dentry->d_flags |= DCACHE_FALLTHRU;
1742 spin_unlock(&dentry->d_lock);
1744 EXPORT_SYMBOL(d_set_fallthru);
1746 static unsigned d_flags_for_inode(struct inode *inode)
1748 unsigned add_flags = DCACHE_REGULAR_TYPE;
1750 if (!inode)
1751 return DCACHE_MISS_TYPE;
1753 if (S_ISDIR(inode->i_mode)) {
1754 add_flags = DCACHE_DIRECTORY_TYPE;
1755 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1756 if (unlikely(!inode->i_op->lookup))
1757 add_flags = DCACHE_AUTODIR_TYPE;
1758 else
1759 inode->i_opflags |= IOP_LOOKUP;
1761 goto type_determined;
1764 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1765 if (unlikely(inode->i_op->get_link)) {
1766 add_flags = DCACHE_SYMLINK_TYPE;
1767 goto type_determined;
1769 inode->i_opflags |= IOP_NOFOLLOW;
1772 if (unlikely(!S_ISREG(inode->i_mode)))
1773 add_flags = DCACHE_SPECIAL_TYPE;
1775 type_determined:
1776 if (unlikely(IS_AUTOMOUNT(inode)))
1777 add_flags |= DCACHE_NEED_AUTOMOUNT;
1778 return add_flags;
1781 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1783 unsigned add_flags = d_flags_for_inode(inode);
1784 WARN_ON(d_in_lookup(dentry));
1786 spin_lock(&dentry->d_lock);
1787 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1788 raw_write_seqcount_begin(&dentry->d_seq);
1789 __d_set_inode_and_type(dentry, inode, add_flags);
1790 raw_write_seqcount_end(&dentry->d_seq);
1791 fsnotify_update_flags(dentry);
1792 spin_unlock(&dentry->d_lock);
1796 * d_instantiate - fill in inode information for a dentry
1797 * @entry: dentry to complete
1798 * @inode: inode to attach to this dentry
1800 * Fill in inode information in the entry.
1802 * This turns negative dentries into productive full members
1803 * of society.
1805 * NOTE! This assumes that the inode count has been incremented
1806 * (or otherwise set) by the caller to indicate that it is now
1807 * in use by the dcache.
1810 void d_instantiate(struct dentry *entry, struct inode * inode)
1812 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1813 if (inode) {
1814 security_d_instantiate(entry, inode);
1815 spin_lock(&inode->i_lock);
1816 __d_instantiate(entry, inode);
1817 spin_unlock(&inode->i_lock);
1820 EXPORT_SYMBOL(d_instantiate);
1823 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1824 * @entry: dentry to complete
1825 * @inode: inode to attach to this dentry
1827 * Fill in inode information in the entry. If a directory alias is found, then
1828 * return an error (and drop inode). Together with d_materialise_unique() this
1829 * guarantees that a directory inode may never have more than one alias.
1831 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1833 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1835 security_d_instantiate(entry, inode);
1836 spin_lock(&inode->i_lock);
1837 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1838 spin_unlock(&inode->i_lock);
1839 iput(inode);
1840 return -EBUSY;
1842 __d_instantiate(entry, inode);
1843 spin_unlock(&inode->i_lock);
1845 return 0;
1847 EXPORT_SYMBOL(d_instantiate_no_diralias);
1849 struct dentry *d_make_root(struct inode *root_inode)
1851 struct dentry *res = NULL;
1853 if (root_inode) {
1854 res = __d_alloc(root_inode->i_sb, NULL);
1855 if (res)
1856 d_instantiate(res, root_inode);
1857 else
1858 iput(root_inode);
1860 return res;
1862 EXPORT_SYMBOL(d_make_root);
1864 static struct dentry * __d_find_any_alias(struct inode *inode)
1866 struct dentry *alias;
1868 if (hlist_empty(&inode->i_dentry))
1869 return NULL;
1870 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1871 __dget(alias);
1872 return alias;
1876 * d_find_any_alias - find any alias for a given inode
1877 * @inode: inode to find an alias for
1879 * If any aliases exist for the given inode, take and return a
1880 * reference for one of them. If no aliases exist, return %NULL.
1882 struct dentry *d_find_any_alias(struct inode *inode)
1884 struct dentry *de;
1886 spin_lock(&inode->i_lock);
1887 de = __d_find_any_alias(inode);
1888 spin_unlock(&inode->i_lock);
1889 return de;
1891 EXPORT_SYMBOL(d_find_any_alias);
1893 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1895 struct dentry *tmp;
1896 struct dentry *res;
1897 unsigned add_flags;
1899 if (!inode)
1900 return ERR_PTR(-ESTALE);
1901 if (IS_ERR(inode))
1902 return ERR_CAST(inode);
1904 res = d_find_any_alias(inode);
1905 if (res)
1906 goto out_iput;
1908 tmp = __d_alloc(inode->i_sb, NULL);
1909 if (!tmp) {
1910 res = ERR_PTR(-ENOMEM);
1911 goto out_iput;
1914 security_d_instantiate(tmp, inode);
1915 spin_lock(&inode->i_lock);
1916 res = __d_find_any_alias(inode);
1917 if (res) {
1918 spin_unlock(&inode->i_lock);
1919 dput(tmp);
1920 goto out_iput;
1923 /* attach a disconnected dentry */
1924 add_flags = d_flags_for_inode(inode);
1926 if (disconnected)
1927 add_flags |= DCACHE_DISCONNECTED;
1929 spin_lock(&tmp->d_lock);
1930 __d_set_inode_and_type(tmp, inode, add_flags);
1931 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1932 hlist_bl_lock(&tmp->d_sb->s_anon);
1933 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1934 hlist_bl_unlock(&tmp->d_sb->s_anon);
1935 spin_unlock(&tmp->d_lock);
1936 spin_unlock(&inode->i_lock);
1938 return tmp;
1940 out_iput:
1941 iput(inode);
1942 return res;
1946 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1947 * @inode: inode to allocate the dentry for
1949 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1950 * similar open by handle operations. The returned dentry may be anonymous,
1951 * or may have a full name (if the inode was already in the cache).
1953 * When called on a directory inode, we must ensure that the inode only ever
1954 * has one dentry. If a dentry is found, that is returned instead of
1955 * allocating a new one.
1957 * On successful return, the reference to the inode has been transferred
1958 * to the dentry. In case of an error the reference on the inode is released.
1959 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1960 * be passed in and the error will be propagated to the return value,
1961 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1963 struct dentry *d_obtain_alias(struct inode *inode)
1965 return __d_obtain_alias(inode, 1);
1967 EXPORT_SYMBOL(d_obtain_alias);
1970 * d_obtain_root - find or allocate a dentry for a given inode
1971 * @inode: inode to allocate the dentry for
1973 * Obtain an IS_ROOT dentry for the root of a filesystem.
1975 * We must ensure that directory inodes only ever have one dentry. If a
1976 * dentry is found, that is returned instead of allocating a new one.
1978 * On successful return, the reference to the inode has been transferred
1979 * to the dentry. In case of an error the reference on the inode is
1980 * released. A %NULL or IS_ERR inode may be passed in and will be the
1981 * error will be propagate to the return value, with a %NULL @inode
1982 * replaced by ERR_PTR(-ESTALE).
1984 struct dentry *d_obtain_root(struct inode *inode)
1986 return __d_obtain_alias(inode, 0);
1988 EXPORT_SYMBOL(d_obtain_root);
1991 * d_add_ci - lookup or allocate new dentry with case-exact name
1992 * @inode: the inode case-insensitive lookup has found
1993 * @dentry: the negative dentry that was passed to the parent's lookup func
1994 * @name: the case-exact name to be associated with the returned dentry
1996 * This is to avoid filling the dcache with case-insensitive names to the
1997 * same inode, only the actual correct case is stored in the dcache for
1998 * case-insensitive filesystems.
2000 * For a case-insensitive lookup match and if the the case-exact dentry
2001 * already exists in in the dcache, use it and return it.
2003 * If no entry exists with the exact case name, allocate new dentry with
2004 * the exact case, and return the spliced entry.
2006 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2007 struct qstr *name)
2009 struct dentry *found, *res;
2012 * First check if a dentry matching the name already exists,
2013 * if not go ahead and create it now.
2015 found = d_hash_and_lookup(dentry->d_parent, name);
2016 if (found) {
2017 iput(inode);
2018 return found;
2020 if (d_in_lookup(dentry)) {
2021 found = d_alloc_parallel(dentry->d_parent, name,
2022 dentry->d_wait);
2023 if (IS_ERR(found) || !d_in_lookup(found)) {
2024 iput(inode);
2025 return found;
2027 } else {
2028 found = d_alloc(dentry->d_parent, name);
2029 if (!found) {
2030 iput(inode);
2031 return ERR_PTR(-ENOMEM);
2034 res = d_splice_alias(inode, found);
2035 if (res) {
2036 dput(found);
2037 return res;
2039 return found;
2041 EXPORT_SYMBOL(d_add_ci);
2044 static inline bool d_same_name(const struct dentry *dentry,
2045 const struct dentry *parent,
2046 const struct qstr *name)
2048 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2049 if (dentry->d_name.len != name->len)
2050 return false;
2051 return dentry_cmp(dentry, name->name, name->len) == 0;
2053 return parent->d_op->d_compare(dentry,
2054 dentry->d_name.len, dentry->d_name.name,
2055 name) == 0;
2059 * __d_lookup_rcu - search for a dentry (racy, store-free)
2060 * @parent: parent dentry
2061 * @name: qstr of name we wish to find
2062 * @seqp: returns d_seq value at the point where the dentry was found
2063 * Returns: dentry, or NULL
2065 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2066 * resolution (store-free path walking) design described in
2067 * Documentation/filesystems/path-lookup.txt.
2069 * This is not to be used outside core vfs.
2071 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2072 * held, and rcu_read_lock held. The returned dentry must not be stored into
2073 * without taking d_lock and checking d_seq sequence count against @seq
2074 * returned here.
2076 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2077 * function.
2079 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2080 * the returned dentry, so long as its parent's seqlock is checked after the
2081 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2082 * is formed, giving integrity down the path walk.
2084 * NOTE! The caller *has* to check the resulting dentry against the sequence
2085 * number we've returned before using any of the resulting dentry state!
2087 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2088 const struct qstr *name,
2089 unsigned *seqp)
2091 u64 hashlen = name->hash_len;
2092 const unsigned char *str = name->name;
2093 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2094 struct hlist_bl_node *node;
2095 struct dentry *dentry;
2098 * Note: There is significant duplication with __d_lookup_rcu which is
2099 * required to prevent single threaded performance regressions
2100 * especially on architectures where smp_rmb (in seqcounts) are costly.
2101 * Keep the two functions in sync.
2105 * The hash list is protected using RCU.
2107 * Carefully use d_seq when comparing a candidate dentry, to avoid
2108 * races with d_move().
2110 * It is possible that concurrent renames can mess up our list
2111 * walk here and result in missing our dentry, resulting in the
2112 * false-negative result. d_lookup() protects against concurrent
2113 * renames using rename_lock seqlock.
2115 * See Documentation/filesystems/path-lookup.txt for more details.
2117 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2118 unsigned seq;
2120 seqretry:
2122 * The dentry sequence count protects us from concurrent
2123 * renames, and thus protects parent and name fields.
2125 * The caller must perform a seqcount check in order
2126 * to do anything useful with the returned dentry.
2128 * NOTE! We do a "raw" seqcount_begin here. That means that
2129 * we don't wait for the sequence count to stabilize if it
2130 * is in the middle of a sequence change. If we do the slow
2131 * dentry compare, we will do seqretries until it is stable,
2132 * and if we end up with a successful lookup, we actually
2133 * want to exit RCU lookup anyway.
2135 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2136 * we are still guaranteed NUL-termination of ->d_name.name.
2138 seq = raw_seqcount_begin(&dentry->d_seq);
2139 if (dentry->d_parent != parent)
2140 continue;
2141 if (d_unhashed(dentry))
2142 continue;
2144 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2145 int tlen;
2146 const char *tname;
2147 if (dentry->d_name.hash != hashlen_hash(hashlen))
2148 continue;
2149 tlen = dentry->d_name.len;
2150 tname = dentry->d_name.name;
2151 /* we want a consistent (name,len) pair */
2152 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2153 cpu_relax();
2154 goto seqretry;
2156 if (parent->d_op->d_compare(dentry,
2157 tlen, tname, name) != 0)
2158 continue;
2159 } else {
2160 if (dentry->d_name.hash_len != hashlen)
2161 continue;
2162 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2163 continue;
2165 *seqp = seq;
2166 return dentry;
2168 return NULL;
2172 * d_lookup - search for a dentry
2173 * @parent: parent dentry
2174 * @name: qstr of name we wish to find
2175 * Returns: dentry, or NULL
2177 * d_lookup searches the children of the parent dentry for the name in
2178 * question. If the dentry is found its reference count is incremented and the
2179 * dentry is returned. The caller must use dput to free the entry when it has
2180 * finished using it. %NULL is returned if the dentry does not exist.
2182 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2184 struct dentry *dentry;
2185 unsigned seq;
2187 do {
2188 seq = read_seqbegin(&rename_lock);
2189 dentry = __d_lookup(parent, name);
2190 if (dentry)
2191 break;
2192 } while (read_seqretry(&rename_lock, seq));
2193 return dentry;
2195 EXPORT_SYMBOL(d_lookup);
2198 * __d_lookup - search for a dentry (racy)
2199 * @parent: parent dentry
2200 * @name: qstr of name we wish to find
2201 * Returns: dentry, or NULL
2203 * __d_lookup is like d_lookup, however it may (rarely) return a
2204 * false-negative result due to unrelated rename activity.
2206 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2207 * however it must be used carefully, eg. with a following d_lookup in
2208 * the case of failure.
2210 * __d_lookup callers must be commented.
2212 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2214 unsigned int hash = name->hash;
2215 struct hlist_bl_head *b = d_hash(hash);
2216 struct hlist_bl_node *node;
2217 struct dentry *found = NULL;
2218 struct dentry *dentry;
2221 * Note: There is significant duplication with __d_lookup_rcu which is
2222 * required to prevent single threaded performance regressions
2223 * especially on architectures where smp_rmb (in seqcounts) are costly.
2224 * Keep the two functions in sync.
2228 * The hash list is protected using RCU.
2230 * Take d_lock when comparing a candidate dentry, to avoid races
2231 * with d_move().
2233 * It is possible that concurrent renames can mess up our list
2234 * walk here and result in missing our dentry, resulting in the
2235 * false-negative result. d_lookup() protects against concurrent
2236 * renames using rename_lock seqlock.
2238 * See Documentation/filesystems/path-lookup.txt for more details.
2240 rcu_read_lock();
2242 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2244 if (dentry->d_name.hash != hash)
2245 continue;
2247 spin_lock(&dentry->d_lock);
2248 if (dentry->d_parent != parent)
2249 goto next;
2250 if (d_unhashed(dentry))
2251 goto next;
2253 if (!d_same_name(dentry, parent, name))
2254 goto next;
2256 dentry->d_lockref.count++;
2257 found = dentry;
2258 spin_unlock(&dentry->d_lock);
2259 break;
2260 next:
2261 spin_unlock(&dentry->d_lock);
2263 rcu_read_unlock();
2265 return found;
2269 * d_hash_and_lookup - hash the qstr then search for a dentry
2270 * @dir: Directory to search in
2271 * @name: qstr of name we wish to find
2273 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2275 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2278 * Check for a fs-specific hash function. Note that we must
2279 * calculate the standard hash first, as the d_op->d_hash()
2280 * routine may choose to leave the hash value unchanged.
2282 name->hash = full_name_hash(dir, name->name, name->len);
2283 if (dir->d_flags & DCACHE_OP_HASH) {
2284 int err = dir->d_op->d_hash(dir, name);
2285 if (unlikely(err < 0))
2286 return ERR_PTR(err);
2288 return d_lookup(dir, name);
2290 EXPORT_SYMBOL(d_hash_and_lookup);
2293 * When a file is deleted, we have two options:
2294 * - turn this dentry into a negative dentry
2295 * - unhash this dentry and free it.
2297 * Usually, we want to just turn this into
2298 * a negative dentry, but if anybody else is
2299 * currently using the dentry or the inode
2300 * we can't do that and we fall back on removing
2301 * it from the hash queues and waiting for
2302 * it to be deleted later when it has no users
2306 * d_delete - delete a dentry
2307 * @dentry: The dentry to delete
2309 * Turn the dentry into a negative dentry if possible, otherwise
2310 * remove it from the hash queues so it can be deleted later
2313 void d_delete(struct dentry * dentry)
2315 struct inode *inode;
2316 int isdir = 0;
2318 * Are we the only user?
2320 again:
2321 spin_lock(&dentry->d_lock);
2322 inode = dentry->d_inode;
2323 isdir = S_ISDIR(inode->i_mode);
2324 if (dentry->d_lockref.count == 1) {
2325 if (!spin_trylock(&inode->i_lock)) {
2326 spin_unlock(&dentry->d_lock);
2327 cpu_relax();
2328 goto again;
2330 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2331 dentry_unlink_inode(dentry);
2332 fsnotify_nameremove(dentry, isdir);
2333 return;
2336 if (!d_unhashed(dentry))
2337 __d_drop(dentry);
2339 spin_unlock(&dentry->d_lock);
2341 fsnotify_nameremove(dentry, isdir);
2343 EXPORT_SYMBOL(d_delete);
2345 static void __d_rehash(struct dentry *entry)
2347 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2348 BUG_ON(!d_unhashed(entry));
2349 hlist_bl_lock(b);
2350 hlist_bl_add_head_rcu(&entry->d_hash, b);
2351 hlist_bl_unlock(b);
2355 * d_rehash - add an entry back to the hash
2356 * @entry: dentry to add to the hash
2358 * Adds a dentry to the hash according to its name.
2361 void d_rehash(struct dentry * entry)
2363 spin_lock(&entry->d_lock);
2364 __d_rehash(entry);
2365 spin_unlock(&entry->d_lock);
2367 EXPORT_SYMBOL(d_rehash);
2369 static inline unsigned start_dir_add(struct inode *dir)
2372 for (;;) {
2373 unsigned n = dir->i_dir_seq;
2374 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2375 return n;
2376 cpu_relax();
2380 static inline void end_dir_add(struct inode *dir, unsigned n)
2382 smp_store_release(&dir->i_dir_seq, n + 2);
2385 static void d_wait_lookup(struct dentry *dentry)
2387 if (d_in_lookup(dentry)) {
2388 DECLARE_WAITQUEUE(wait, current);
2389 add_wait_queue(dentry->d_wait, &wait);
2390 do {
2391 set_current_state(TASK_UNINTERRUPTIBLE);
2392 spin_unlock(&dentry->d_lock);
2393 schedule();
2394 spin_lock(&dentry->d_lock);
2395 } while (d_in_lookup(dentry));
2399 struct dentry *d_alloc_parallel(struct dentry *parent,
2400 const struct qstr *name,
2401 wait_queue_head_t *wq)
2403 unsigned int hash = name->hash;
2404 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2405 struct hlist_bl_node *node;
2406 struct dentry *new = d_alloc(parent, name);
2407 struct dentry *dentry;
2408 unsigned seq, r_seq, d_seq;
2410 if (unlikely(!new))
2411 return ERR_PTR(-ENOMEM);
2413 retry:
2414 rcu_read_lock();
2415 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2416 r_seq = read_seqbegin(&rename_lock);
2417 dentry = __d_lookup_rcu(parent, name, &d_seq);
2418 if (unlikely(dentry)) {
2419 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2420 rcu_read_unlock();
2421 goto retry;
2423 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2424 rcu_read_unlock();
2425 dput(dentry);
2426 goto retry;
2428 rcu_read_unlock();
2429 dput(new);
2430 return dentry;
2432 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2433 rcu_read_unlock();
2434 goto retry;
2436 hlist_bl_lock(b);
2437 if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2438 hlist_bl_unlock(b);
2439 rcu_read_unlock();
2440 goto retry;
2443 * No changes for the parent since the beginning of d_lookup().
2444 * Since all removals from the chain happen with hlist_bl_lock(),
2445 * any potential in-lookup matches are going to stay here until
2446 * we unlock the chain. All fields are stable in everything
2447 * we encounter.
2449 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2450 if (dentry->d_name.hash != hash)
2451 continue;
2452 if (dentry->d_parent != parent)
2453 continue;
2454 if (!d_same_name(dentry, parent, name))
2455 continue;
2456 hlist_bl_unlock(b);
2457 /* now we can try to grab a reference */
2458 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2459 rcu_read_unlock();
2460 goto retry;
2463 rcu_read_unlock();
2465 * somebody is likely to be still doing lookup for it;
2466 * wait for them to finish
2468 spin_lock(&dentry->d_lock);
2469 d_wait_lookup(dentry);
2471 * it's not in-lookup anymore; in principle we should repeat
2472 * everything from dcache lookup, but it's likely to be what
2473 * d_lookup() would've found anyway. If it is, just return it;
2474 * otherwise we really have to repeat the whole thing.
2476 if (unlikely(dentry->d_name.hash != hash))
2477 goto mismatch;
2478 if (unlikely(dentry->d_parent != parent))
2479 goto mismatch;
2480 if (unlikely(d_unhashed(dentry)))
2481 goto mismatch;
2482 if (unlikely(!d_same_name(dentry, parent, name)))
2483 goto mismatch;
2484 /* OK, it *is* a hashed match; return it */
2485 spin_unlock(&dentry->d_lock);
2486 dput(new);
2487 return dentry;
2489 rcu_read_unlock();
2490 /* we can't take ->d_lock here; it's OK, though. */
2491 new->d_flags |= DCACHE_PAR_LOOKUP;
2492 new->d_wait = wq;
2493 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2494 hlist_bl_unlock(b);
2495 return new;
2496 mismatch:
2497 spin_unlock(&dentry->d_lock);
2498 dput(dentry);
2499 goto retry;
2501 EXPORT_SYMBOL(d_alloc_parallel);
2503 void __d_lookup_done(struct dentry *dentry)
2505 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2506 dentry->d_name.hash);
2507 hlist_bl_lock(b);
2508 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2509 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2510 wake_up_all(dentry->d_wait);
2511 dentry->d_wait = NULL;
2512 hlist_bl_unlock(b);
2513 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2514 INIT_LIST_HEAD(&dentry->d_lru);
2516 EXPORT_SYMBOL(__d_lookup_done);
2518 /* inode->i_lock held if inode is non-NULL */
2520 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2522 struct inode *dir = NULL;
2523 unsigned n;
2524 spin_lock(&dentry->d_lock);
2525 if (unlikely(d_in_lookup(dentry))) {
2526 dir = dentry->d_parent->d_inode;
2527 n = start_dir_add(dir);
2528 __d_lookup_done(dentry);
2530 if (inode) {
2531 unsigned add_flags = d_flags_for_inode(inode);
2532 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2533 raw_write_seqcount_begin(&dentry->d_seq);
2534 __d_set_inode_and_type(dentry, inode, add_flags);
2535 raw_write_seqcount_end(&dentry->d_seq);
2536 fsnotify_update_flags(dentry);
2538 __d_rehash(dentry);
2539 if (dir)
2540 end_dir_add(dir, n);
2541 spin_unlock(&dentry->d_lock);
2542 if (inode)
2543 spin_unlock(&inode->i_lock);
2547 * d_add - add dentry to hash queues
2548 * @entry: dentry to add
2549 * @inode: The inode to attach to this dentry
2551 * This adds the entry to the hash queues and initializes @inode.
2552 * The entry was actually filled in earlier during d_alloc().
2555 void d_add(struct dentry *entry, struct inode *inode)
2557 if (inode) {
2558 security_d_instantiate(entry, inode);
2559 spin_lock(&inode->i_lock);
2561 __d_add(entry, inode);
2563 EXPORT_SYMBOL(d_add);
2566 * d_exact_alias - find and hash an exact unhashed alias
2567 * @entry: dentry to add
2568 * @inode: The inode to go with this dentry
2570 * If an unhashed dentry with the same name/parent and desired
2571 * inode already exists, hash and return it. Otherwise, return
2572 * NULL.
2574 * Parent directory should be locked.
2576 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2578 struct dentry *alias;
2579 unsigned int hash = entry->d_name.hash;
2581 spin_lock(&inode->i_lock);
2582 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2584 * Don't need alias->d_lock here, because aliases with
2585 * d_parent == entry->d_parent are not subject to name or
2586 * parent changes, because the parent inode i_mutex is held.
2588 if (alias->d_name.hash != hash)
2589 continue;
2590 if (alias->d_parent != entry->d_parent)
2591 continue;
2592 if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2593 continue;
2594 spin_lock(&alias->d_lock);
2595 if (!d_unhashed(alias)) {
2596 spin_unlock(&alias->d_lock);
2597 alias = NULL;
2598 } else {
2599 __dget_dlock(alias);
2600 __d_rehash(alias);
2601 spin_unlock(&alias->d_lock);
2603 spin_unlock(&inode->i_lock);
2604 return alias;
2606 spin_unlock(&inode->i_lock);
2607 return NULL;
2609 EXPORT_SYMBOL(d_exact_alias);
2612 * dentry_update_name_case - update case insensitive dentry with a new name
2613 * @dentry: dentry to be updated
2614 * @name: new name
2616 * Update a case insensitive dentry with new case of name.
2618 * dentry must have been returned by d_lookup with name @name. Old and new
2619 * name lengths must match (ie. no d_compare which allows mismatched name
2620 * lengths).
2622 * Parent inode i_mutex must be held over d_lookup and into this call (to
2623 * keep renames and concurrent inserts, and readdir(2) away).
2625 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2627 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2628 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2630 spin_lock(&dentry->d_lock);
2631 write_seqcount_begin(&dentry->d_seq);
2632 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2633 write_seqcount_end(&dentry->d_seq);
2634 spin_unlock(&dentry->d_lock);
2636 EXPORT_SYMBOL(dentry_update_name_case);
2638 static void swap_names(struct dentry *dentry, struct dentry *target)
2640 if (unlikely(dname_external(target))) {
2641 if (unlikely(dname_external(dentry))) {
2643 * Both external: swap the pointers
2645 swap(target->d_name.name, dentry->d_name.name);
2646 } else {
2648 * dentry:internal, target:external. Steal target's
2649 * storage and make target internal.
2651 memcpy(target->d_iname, dentry->d_name.name,
2652 dentry->d_name.len + 1);
2653 dentry->d_name.name = target->d_name.name;
2654 target->d_name.name = target->d_iname;
2656 } else {
2657 if (unlikely(dname_external(dentry))) {
2659 * dentry:external, target:internal. Give dentry's
2660 * storage to target and make dentry internal
2662 memcpy(dentry->d_iname, target->d_name.name,
2663 target->d_name.len + 1);
2664 target->d_name.name = dentry->d_name.name;
2665 dentry->d_name.name = dentry->d_iname;
2666 } else {
2668 * Both are internal.
2670 unsigned int i;
2671 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2672 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2673 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2674 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2675 swap(((long *) &dentry->d_iname)[i],
2676 ((long *) &target->d_iname)[i]);
2680 swap(dentry->d_name.hash_len, target->d_name.hash_len);
2683 static void copy_name(struct dentry *dentry, struct dentry *target)
2685 struct external_name *old_name = NULL;
2686 if (unlikely(dname_external(dentry)))
2687 old_name = external_name(dentry);
2688 if (unlikely(dname_external(target))) {
2689 atomic_inc(&external_name(target)->u.count);
2690 dentry->d_name = target->d_name;
2691 } else {
2692 memcpy(dentry->d_iname, target->d_name.name,
2693 target->d_name.len + 1);
2694 dentry->d_name.name = dentry->d_iname;
2695 dentry->d_name.hash_len = target->d_name.hash_len;
2697 if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2698 kfree_rcu(old_name, u.head);
2701 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2704 * XXXX: do we really need to take target->d_lock?
2706 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2707 spin_lock(&target->d_parent->d_lock);
2708 else {
2709 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2710 spin_lock(&dentry->d_parent->d_lock);
2711 spin_lock_nested(&target->d_parent->d_lock,
2712 DENTRY_D_LOCK_NESTED);
2713 } else {
2714 spin_lock(&target->d_parent->d_lock);
2715 spin_lock_nested(&dentry->d_parent->d_lock,
2716 DENTRY_D_LOCK_NESTED);
2719 if (target < dentry) {
2720 spin_lock_nested(&target->d_lock, 2);
2721 spin_lock_nested(&dentry->d_lock, 3);
2722 } else {
2723 spin_lock_nested(&dentry->d_lock, 2);
2724 spin_lock_nested(&target->d_lock, 3);
2728 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2730 if (target->d_parent != dentry->d_parent)
2731 spin_unlock(&dentry->d_parent->d_lock);
2732 if (target->d_parent != target)
2733 spin_unlock(&target->d_parent->d_lock);
2734 spin_unlock(&target->d_lock);
2735 spin_unlock(&dentry->d_lock);
2739 * When switching names, the actual string doesn't strictly have to
2740 * be preserved in the target - because we're dropping the target
2741 * anyway. As such, we can just do a simple memcpy() to copy over
2742 * the new name before we switch, unless we are going to rehash
2743 * it. Note that if we *do* unhash the target, we are not allowed
2744 * to rehash it without giving it a new name/hash key - whether
2745 * we swap or overwrite the names here, resulting name won't match
2746 * the reality in filesystem; it's only there for d_path() purposes.
2747 * Note that all of this is happening under rename_lock, so the
2748 * any hash lookup seeing it in the middle of manipulations will
2749 * be discarded anyway. So we do not care what happens to the hash
2750 * key in that case.
2753 * __d_move - move a dentry
2754 * @dentry: entry to move
2755 * @target: new dentry
2756 * @exchange: exchange the two dentries
2758 * Update the dcache to reflect the move of a file name. Negative
2759 * dcache entries should not be moved in this way. Caller must hold
2760 * rename_lock, the i_mutex of the source and target directories,
2761 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2763 static void __d_move(struct dentry *dentry, struct dentry *target,
2764 bool exchange)
2766 struct inode *dir = NULL;
2767 unsigned n;
2768 if (!dentry->d_inode)
2769 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2771 BUG_ON(d_ancestor(dentry, target));
2772 BUG_ON(d_ancestor(target, dentry));
2774 dentry_lock_for_move(dentry, target);
2775 if (unlikely(d_in_lookup(target))) {
2776 dir = target->d_parent->d_inode;
2777 n = start_dir_add(dir);
2778 __d_lookup_done(target);
2781 write_seqcount_begin(&dentry->d_seq);
2782 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2784 /* unhash both */
2785 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2786 __d_drop(dentry);
2787 __d_drop(target);
2789 /* Switch the names.. */
2790 if (exchange)
2791 swap_names(dentry, target);
2792 else
2793 copy_name(dentry, target);
2795 /* rehash in new place(s) */
2796 __d_rehash(dentry);
2797 if (exchange)
2798 __d_rehash(target);
2800 /* ... and switch them in the tree */
2801 if (IS_ROOT(dentry)) {
2802 /* splicing a tree */
2803 dentry->d_flags |= DCACHE_RCUACCESS;
2804 dentry->d_parent = target->d_parent;
2805 target->d_parent = target;
2806 list_del_init(&target->d_child);
2807 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2808 } else {
2809 /* swapping two dentries */
2810 swap(dentry->d_parent, target->d_parent);
2811 list_move(&target->d_child, &target->d_parent->d_subdirs);
2812 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2813 if (exchange)
2814 fsnotify_update_flags(target);
2815 fsnotify_update_flags(dentry);
2818 write_seqcount_end(&target->d_seq);
2819 write_seqcount_end(&dentry->d_seq);
2821 if (dir)
2822 end_dir_add(dir, n);
2823 dentry_unlock_for_move(dentry, target);
2827 * d_move - move a dentry
2828 * @dentry: entry to move
2829 * @target: new dentry
2831 * Update the dcache to reflect the move of a file name. Negative
2832 * dcache entries should not be moved in this way. See the locking
2833 * requirements for __d_move.
2835 void d_move(struct dentry *dentry, struct dentry *target)
2837 write_seqlock(&rename_lock);
2838 __d_move(dentry, target, false);
2839 write_sequnlock(&rename_lock);
2841 EXPORT_SYMBOL(d_move);
2844 * d_exchange - exchange two dentries
2845 * @dentry1: first dentry
2846 * @dentry2: second dentry
2848 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2850 write_seqlock(&rename_lock);
2852 WARN_ON(!dentry1->d_inode);
2853 WARN_ON(!dentry2->d_inode);
2854 WARN_ON(IS_ROOT(dentry1));
2855 WARN_ON(IS_ROOT(dentry2));
2857 __d_move(dentry1, dentry2, true);
2859 write_sequnlock(&rename_lock);
2863 * d_ancestor - search for an ancestor
2864 * @p1: ancestor dentry
2865 * @p2: child dentry
2867 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2868 * an ancestor of p2, else NULL.
2870 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2872 struct dentry *p;
2874 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2875 if (p->d_parent == p1)
2876 return p;
2878 return NULL;
2882 * This helper attempts to cope with remotely renamed directories
2884 * It assumes that the caller is already holding
2885 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2887 * Note: If ever the locking in lock_rename() changes, then please
2888 * remember to update this too...
2890 static int __d_unalias(struct inode *inode,
2891 struct dentry *dentry, struct dentry *alias)
2893 struct mutex *m1 = NULL;
2894 struct rw_semaphore *m2 = NULL;
2895 int ret = -ESTALE;
2897 /* If alias and dentry share a parent, then no extra locks required */
2898 if (alias->d_parent == dentry->d_parent)
2899 goto out_unalias;
2901 /* See lock_rename() */
2902 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2903 goto out_err;
2904 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2905 if (!inode_trylock_shared(alias->d_parent->d_inode))
2906 goto out_err;
2907 m2 = &alias->d_parent->d_inode->i_rwsem;
2908 out_unalias:
2909 __d_move(alias, dentry, false);
2910 ret = 0;
2911 out_err:
2912 if (m2)
2913 up_read(m2);
2914 if (m1)
2915 mutex_unlock(m1);
2916 return ret;
2920 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2921 * @inode: the inode which may have a disconnected dentry
2922 * @dentry: a negative dentry which we want to point to the inode.
2924 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2925 * place of the given dentry and return it, else simply d_add the inode
2926 * to the dentry and return NULL.
2928 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2929 * we should error out: directories can't have multiple aliases.
2931 * This is needed in the lookup routine of any filesystem that is exportable
2932 * (via knfsd) so that we can build dcache paths to directories effectively.
2934 * If a dentry was found and moved, then it is returned. Otherwise NULL
2935 * is returned. This matches the expected return value of ->lookup.
2937 * Cluster filesystems may call this function with a negative, hashed dentry.
2938 * In that case, we know that the inode will be a regular file, and also this
2939 * will only occur during atomic_open. So we need to check for the dentry
2940 * being already hashed only in the final case.
2942 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2944 if (IS_ERR(inode))
2945 return ERR_CAST(inode);
2947 BUG_ON(!d_unhashed(dentry));
2949 if (!inode)
2950 goto out;
2952 security_d_instantiate(dentry, inode);
2953 spin_lock(&inode->i_lock);
2954 if (S_ISDIR(inode->i_mode)) {
2955 struct dentry *new = __d_find_any_alias(inode);
2956 if (unlikely(new)) {
2957 /* The reference to new ensures it remains an alias */
2958 spin_unlock(&inode->i_lock);
2959 write_seqlock(&rename_lock);
2960 if (unlikely(d_ancestor(new, dentry))) {
2961 write_sequnlock(&rename_lock);
2962 dput(new);
2963 new = ERR_PTR(-ELOOP);
2964 pr_warn_ratelimited(
2965 "VFS: Lookup of '%s' in %s %s"
2966 " would have caused loop\n",
2967 dentry->d_name.name,
2968 inode->i_sb->s_type->name,
2969 inode->i_sb->s_id);
2970 } else if (!IS_ROOT(new)) {
2971 int err = __d_unalias(inode, dentry, new);
2972 write_sequnlock(&rename_lock);
2973 if (err) {
2974 dput(new);
2975 new = ERR_PTR(err);
2977 } else {
2978 __d_move(new, dentry, false);
2979 write_sequnlock(&rename_lock);
2981 iput(inode);
2982 return new;
2985 out:
2986 __d_add(dentry, inode);
2987 return NULL;
2989 EXPORT_SYMBOL(d_splice_alias);
2991 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2993 *buflen -= namelen;
2994 if (*buflen < 0)
2995 return -ENAMETOOLONG;
2996 *buffer -= namelen;
2997 memcpy(*buffer, str, namelen);
2998 return 0;
3002 * prepend_name - prepend a pathname in front of current buffer pointer
3003 * @buffer: buffer pointer
3004 * @buflen: allocated length of the buffer
3005 * @name: name string and length qstr structure
3007 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3008 * make sure that either the old or the new name pointer and length are
3009 * fetched. However, there may be mismatch between length and pointer.
3010 * The length cannot be trusted, we need to copy it byte-by-byte until
3011 * the length is reached or a null byte is found. It also prepends "/" at
3012 * the beginning of the name. The sequence number check at the caller will
3013 * retry it again when a d_move() does happen. So any garbage in the buffer
3014 * due to mismatched pointer and length will be discarded.
3016 * Data dependency barrier is needed to make sure that we see that terminating
3017 * NUL. Alpha strikes again, film at 11...
3019 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3021 const char *dname = ACCESS_ONCE(name->name);
3022 u32 dlen = ACCESS_ONCE(name->len);
3023 char *p;
3025 smp_read_barrier_depends();
3027 *buflen -= dlen + 1;
3028 if (*buflen < 0)
3029 return -ENAMETOOLONG;
3030 p = *buffer -= dlen + 1;
3031 *p++ = '/';
3032 while (dlen--) {
3033 char c = *dname++;
3034 if (!c)
3035 break;
3036 *p++ = c;
3038 return 0;
3042 * prepend_path - Prepend path string to a buffer
3043 * @path: the dentry/vfsmount to report
3044 * @root: root vfsmnt/dentry
3045 * @buffer: pointer to the end of the buffer
3046 * @buflen: pointer to buffer length
3048 * The function will first try to write out the pathname without taking any
3049 * lock other than the RCU read lock to make sure that dentries won't go away.
3050 * It only checks the sequence number of the global rename_lock as any change
3051 * in the dentry's d_seq will be preceded by changes in the rename_lock
3052 * sequence number. If the sequence number had been changed, it will restart
3053 * the whole pathname back-tracing sequence again by taking the rename_lock.
3054 * In this case, there is no need to take the RCU read lock as the recursive
3055 * parent pointer references will keep the dentry chain alive as long as no
3056 * rename operation is performed.
3058 static int prepend_path(const struct path *path,
3059 const struct path *root,
3060 char **buffer, int *buflen)
3062 struct dentry *dentry;
3063 struct vfsmount *vfsmnt;
3064 struct mount *mnt;
3065 int error = 0;
3066 unsigned seq, m_seq = 0;
3067 char *bptr;
3068 int blen;
3070 rcu_read_lock();
3071 restart_mnt:
3072 read_seqbegin_or_lock(&mount_lock, &m_seq);
3073 seq = 0;
3074 rcu_read_lock();
3075 restart:
3076 bptr = *buffer;
3077 blen = *buflen;
3078 error = 0;
3079 dentry = path->dentry;
3080 vfsmnt = path->mnt;
3081 mnt = real_mount(vfsmnt);
3082 read_seqbegin_or_lock(&rename_lock, &seq);
3083 while (dentry != root->dentry || vfsmnt != root->mnt) {
3084 struct dentry * parent;
3086 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3087 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3088 /* Escaped? */
3089 if (dentry != vfsmnt->mnt_root) {
3090 bptr = *buffer;
3091 blen = *buflen;
3092 error = 3;
3093 break;
3095 /* Global root? */
3096 if (mnt != parent) {
3097 dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3098 mnt = parent;
3099 vfsmnt = &mnt->mnt;
3100 continue;
3102 if (!error)
3103 error = is_mounted(vfsmnt) ? 1 : 2;
3104 break;
3106 parent = dentry->d_parent;
3107 prefetch(parent);
3108 error = prepend_name(&bptr, &blen, &dentry->d_name);
3109 if (error)
3110 break;
3112 dentry = parent;
3114 if (!(seq & 1))
3115 rcu_read_unlock();
3116 if (need_seqretry(&rename_lock, seq)) {
3117 seq = 1;
3118 goto restart;
3120 done_seqretry(&rename_lock, seq);
3122 if (!(m_seq & 1))
3123 rcu_read_unlock();
3124 if (need_seqretry(&mount_lock, m_seq)) {
3125 m_seq = 1;
3126 goto restart_mnt;
3128 done_seqretry(&mount_lock, m_seq);
3130 if (error >= 0 && bptr == *buffer) {
3131 if (--blen < 0)
3132 error = -ENAMETOOLONG;
3133 else
3134 *--bptr = '/';
3136 *buffer = bptr;
3137 *buflen = blen;
3138 return error;
3142 * __d_path - return the path of a dentry
3143 * @path: the dentry/vfsmount to report
3144 * @root: root vfsmnt/dentry
3145 * @buf: buffer to return value in
3146 * @buflen: buffer length
3148 * Convert a dentry into an ASCII path name.
3150 * Returns a pointer into the buffer or an error code if the
3151 * path was too long.
3153 * "buflen" should be positive.
3155 * If the path is not reachable from the supplied root, return %NULL.
3157 char *__d_path(const struct path *path,
3158 const struct path *root,
3159 char *buf, int buflen)
3161 char *res = buf + buflen;
3162 int error;
3164 prepend(&res, &buflen, "\0", 1);
3165 error = prepend_path(path, root, &res, &buflen);
3167 if (error < 0)
3168 return ERR_PTR(error);
3169 if (error > 0)
3170 return NULL;
3171 return res;
3174 char *d_absolute_path(const struct path *path,
3175 char *buf, int buflen)
3177 struct path root = {};
3178 char *res = buf + buflen;
3179 int error;
3181 prepend(&res, &buflen, "\0", 1);
3182 error = prepend_path(path, &root, &res, &buflen);
3184 if (error > 1)
3185 error = -EINVAL;
3186 if (error < 0)
3187 return ERR_PTR(error);
3188 return res;
3192 * same as __d_path but appends "(deleted)" for unlinked files.
3194 static int path_with_deleted(const struct path *path,
3195 const struct path *root,
3196 char **buf, int *buflen)
3198 prepend(buf, buflen, "\0", 1);
3199 if (d_unlinked(path->dentry)) {
3200 int error = prepend(buf, buflen, " (deleted)", 10);
3201 if (error)
3202 return error;
3205 return prepend_path(path, root, buf, buflen);
3208 static int prepend_unreachable(char **buffer, int *buflen)
3210 return prepend(buffer, buflen, "(unreachable)", 13);
3213 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3215 unsigned seq;
3217 do {
3218 seq = read_seqcount_begin(&fs->seq);
3219 *root = fs->root;
3220 } while (read_seqcount_retry(&fs->seq, seq));
3224 * d_path - return the path of a dentry
3225 * @path: path to report
3226 * @buf: buffer to return value in
3227 * @buflen: buffer length
3229 * Convert a dentry into an ASCII path name. If the entry has been deleted
3230 * the string " (deleted)" is appended. Note that this is ambiguous.
3232 * Returns a pointer into the buffer or an error code if the path was
3233 * too long. Note: Callers should use the returned pointer, not the passed
3234 * in buffer, to use the name! The implementation often starts at an offset
3235 * into the buffer, and may leave 0 bytes at the start.
3237 * "buflen" should be positive.
3239 char *d_path(const struct path *path, char *buf, int buflen)
3241 char *res = buf + buflen;
3242 struct path root;
3243 int error;
3246 * We have various synthetic filesystems that never get mounted. On
3247 * these filesystems dentries are never used for lookup purposes, and
3248 * thus don't need to be hashed. They also don't need a name until a
3249 * user wants to identify the object in /proc/pid/fd/. The little hack
3250 * below allows us to generate a name for these objects on demand:
3252 * Some pseudo inodes are mountable. When they are mounted
3253 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3254 * and instead have d_path return the mounted path.
3256 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3257 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3258 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3260 rcu_read_lock();
3261 get_fs_root_rcu(current->fs, &root);
3262 error = path_with_deleted(path, &root, &res, &buflen);
3263 rcu_read_unlock();
3265 if (error < 0)
3266 res = ERR_PTR(error);
3267 return res;
3269 EXPORT_SYMBOL(d_path);
3272 * Helper function for dentry_operations.d_dname() members
3274 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3275 const char *fmt, ...)
3277 va_list args;
3278 char temp[64];
3279 int sz;
3281 va_start(args, fmt);
3282 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3283 va_end(args);
3285 if (sz > sizeof(temp) || sz > buflen)
3286 return ERR_PTR(-ENAMETOOLONG);
3288 buffer += buflen - sz;
3289 return memcpy(buffer, temp, sz);
3292 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3294 char *end = buffer + buflen;
3295 /* these dentries are never renamed, so d_lock is not needed */
3296 if (prepend(&end, &buflen, " (deleted)", 11) ||
3297 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3298 prepend(&end, &buflen, "/", 1))
3299 end = ERR_PTR(-ENAMETOOLONG);
3300 return end;
3302 EXPORT_SYMBOL(simple_dname);
3305 * Write full pathname from the root of the filesystem into the buffer.
3307 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3309 struct dentry *dentry;
3310 char *end, *retval;
3311 int len, seq = 0;
3312 int error = 0;
3314 if (buflen < 2)
3315 goto Elong;
3317 rcu_read_lock();
3318 restart:
3319 dentry = d;
3320 end = buf + buflen;
3321 len = buflen;
3322 prepend(&end, &len, "\0", 1);
3323 /* Get '/' right */
3324 retval = end-1;
3325 *retval = '/';
3326 read_seqbegin_or_lock(&rename_lock, &seq);
3327 while (!IS_ROOT(dentry)) {
3328 struct dentry *parent = dentry->d_parent;
3330 prefetch(parent);
3331 error = prepend_name(&end, &len, &dentry->d_name);
3332 if (error)
3333 break;
3335 retval = end;
3336 dentry = parent;
3338 if (!(seq & 1))
3339 rcu_read_unlock();
3340 if (need_seqretry(&rename_lock, seq)) {
3341 seq = 1;
3342 goto restart;
3344 done_seqretry(&rename_lock, seq);
3345 if (error)
3346 goto Elong;
3347 return retval;
3348 Elong:
3349 return ERR_PTR(-ENAMETOOLONG);
3352 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3354 return __dentry_path(dentry, buf, buflen);
3356 EXPORT_SYMBOL(dentry_path_raw);
3358 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3360 char *p = NULL;
3361 char *retval;
3363 if (d_unlinked(dentry)) {
3364 p = buf + buflen;
3365 if (prepend(&p, &buflen, "//deleted", 10) != 0)
3366 goto Elong;
3367 buflen++;
3369 retval = __dentry_path(dentry, buf, buflen);
3370 if (!IS_ERR(retval) && p)
3371 *p = '/'; /* restore '/' overriden with '\0' */
3372 return retval;
3373 Elong:
3374 return ERR_PTR(-ENAMETOOLONG);
3377 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3378 struct path *pwd)
3380 unsigned seq;
3382 do {
3383 seq = read_seqcount_begin(&fs->seq);
3384 *root = fs->root;
3385 *pwd = fs->pwd;
3386 } while (read_seqcount_retry(&fs->seq, seq));
3390 * NOTE! The user-level library version returns a
3391 * character pointer. The kernel system call just
3392 * returns the length of the buffer filled (which
3393 * includes the ending '\0' character), or a negative
3394 * error value. So libc would do something like
3396 * char *getcwd(char * buf, size_t size)
3398 * int retval;
3400 * retval = sys_getcwd(buf, size);
3401 * if (retval >= 0)
3402 * return buf;
3403 * errno = -retval;
3404 * return NULL;
3407 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3409 int error;
3410 struct path pwd, root;
3411 char *page = __getname();
3413 if (!page)
3414 return -ENOMEM;
3416 rcu_read_lock();
3417 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3419 error = -ENOENT;
3420 if (!d_unlinked(pwd.dentry)) {
3421 unsigned long len;
3422 char *cwd = page + PATH_MAX;
3423 int buflen = PATH_MAX;
3425 prepend(&cwd, &buflen, "\0", 1);
3426 error = prepend_path(&pwd, &root, &cwd, &buflen);
3427 rcu_read_unlock();
3429 if (error < 0)
3430 goto out;
3432 /* Unreachable from current root */
3433 if (error > 0) {
3434 error = prepend_unreachable(&cwd, &buflen);
3435 if (error)
3436 goto out;
3439 error = -ERANGE;
3440 len = PATH_MAX + page - cwd;
3441 if (len <= size) {
3442 error = len;
3443 if (copy_to_user(buf, cwd, len))
3444 error = -EFAULT;
3446 } else {
3447 rcu_read_unlock();
3450 out:
3451 __putname(page);
3452 return error;
3456 * Test whether new_dentry is a subdirectory of old_dentry.
3458 * Trivially implemented using the dcache structure
3462 * is_subdir - is new dentry a subdirectory of old_dentry
3463 * @new_dentry: new dentry
3464 * @old_dentry: old dentry
3466 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3467 * Returns false otherwise.
3468 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3471 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3473 bool result;
3474 unsigned seq;
3476 if (new_dentry == old_dentry)
3477 return true;
3479 do {
3480 /* for restarting inner loop in case of seq retry */
3481 seq = read_seqbegin(&rename_lock);
3483 * Need rcu_readlock to protect against the d_parent trashing
3484 * due to d_move
3486 rcu_read_lock();
3487 if (d_ancestor(old_dentry, new_dentry))
3488 result = true;
3489 else
3490 result = false;
3491 rcu_read_unlock();
3492 } while (read_seqretry(&rename_lock, seq));
3494 return result;
3497 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3499 struct dentry *root = data;
3500 if (dentry != root) {
3501 if (d_unhashed(dentry) || !dentry->d_inode)
3502 return D_WALK_SKIP;
3504 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3505 dentry->d_flags |= DCACHE_GENOCIDE;
3506 dentry->d_lockref.count--;
3509 return D_WALK_CONTINUE;
3512 void d_genocide(struct dentry *parent)
3514 d_walk(parent, parent, d_genocide_kill, NULL);
3517 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3519 inode_dec_link_count(inode);
3520 BUG_ON(dentry->d_name.name != dentry->d_iname ||
3521 !hlist_unhashed(&dentry->d_u.d_alias) ||
3522 !d_unlinked(dentry));
3523 spin_lock(&dentry->d_parent->d_lock);
3524 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3525 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3526 (unsigned long long)inode->i_ino);
3527 spin_unlock(&dentry->d_lock);
3528 spin_unlock(&dentry->d_parent->d_lock);
3529 d_instantiate(dentry, inode);
3531 EXPORT_SYMBOL(d_tmpfile);
3533 static __initdata unsigned long dhash_entries;
3534 static int __init set_dhash_entries(char *str)
3536 if (!str)
3537 return 0;
3538 dhash_entries = simple_strtoul(str, &str, 0);
3539 return 1;
3541 __setup("dhash_entries=", set_dhash_entries);
3543 static void __init dcache_init_early(void)
3545 unsigned int loop;
3547 /* If hashes are distributed across NUMA nodes, defer
3548 * hash allocation until vmalloc space is available.
3550 if (hashdist)
3551 return;
3553 dentry_hashtable =
3554 alloc_large_system_hash("Dentry cache",
3555 sizeof(struct hlist_bl_head),
3556 dhash_entries,
3558 HASH_EARLY,
3559 &d_hash_shift,
3560 &d_hash_mask,
3564 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3565 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3568 static void __init dcache_init(void)
3570 unsigned int loop;
3573 * A constructor could be added for stable state like the lists,
3574 * but it is probably not worth it because of the cache nature
3575 * of the dcache.
3577 dentry_cache = KMEM_CACHE(dentry,
3578 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3580 /* Hash may have been set up in dcache_init_early */
3581 if (!hashdist)
3582 return;
3584 dentry_hashtable =
3585 alloc_large_system_hash("Dentry cache",
3586 sizeof(struct hlist_bl_head),
3587 dhash_entries,
3590 &d_hash_shift,
3591 &d_hash_mask,
3595 for (loop = 0; loop < (1U << d_hash_shift); loop++)
3596 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3599 /* SLAB cache for __getname() consumers */
3600 struct kmem_cache *names_cachep __read_mostly;
3601 EXPORT_SYMBOL(names_cachep);
3603 EXPORT_SYMBOL(d_genocide);
3605 void __init vfs_caches_init_early(void)
3607 dcache_init_early();
3608 inode_init_early();
3611 void __init vfs_caches_init(void)
3613 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3614 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3616 dcache_init();
3617 inode_init();
3618 files_init();
3619 files_maxfiles_init();
3620 mnt_init();
3621 bdev_cache_init();
3622 chrdev_init();