4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
65 #include <trace/events/task.h>
68 #include <trace/events/sched.h>
70 int suid_dumpable
= 0;
72 static LIST_HEAD(formats
);
73 static DEFINE_RWLOCK(binfmt_lock
);
75 void __register_binfmt(struct linux_binfmt
* fmt
, int insert
)
78 if (WARN_ON(!fmt
->load_binary
))
80 write_lock(&binfmt_lock
);
81 insert
? list_add(&fmt
->lh
, &formats
) :
82 list_add_tail(&fmt
->lh
, &formats
);
83 write_unlock(&binfmt_lock
);
86 EXPORT_SYMBOL(__register_binfmt
);
88 void unregister_binfmt(struct linux_binfmt
* fmt
)
90 write_lock(&binfmt_lock
);
92 write_unlock(&binfmt_lock
);
95 EXPORT_SYMBOL(unregister_binfmt
);
97 static inline void put_binfmt(struct linux_binfmt
* fmt
)
99 module_put(fmt
->module
);
102 bool path_noexec(const struct path
*path
)
104 return (path
->mnt
->mnt_flags
& MNT_NOEXEC
) ||
105 (path
->mnt
->mnt_sb
->s_iflags
& SB_I_NOEXEC
);
110 * Note that a shared library must be both readable and executable due to
113 * Also note that we take the address to load from from the file itself.
115 SYSCALL_DEFINE1(uselib
, const char __user
*, library
)
117 struct linux_binfmt
*fmt
;
119 struct filename
*tmp
= getname(library
);
120 int error
= PTR_ERR(tmp
);
121 static const struct open_flags uselib_flags
= {
122 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
123 .acc_mode
= MAY_READ
| MAY_EXEC
,
124 .intent
= LOOKUP_OPEN
,
125 .lookup_flags
= LOOKUP_FOLLOW
,
131 file
= do_filp_open(AT_FDCWD
, tmp
, &uselib_flags
);
133 error
= PTR_ERR(file
);
138 if (!S_ISREG(file_inode(file
)->i_mode
))
142 if (path_noexec(&file
->f_path
))
149 read_lock(&binfmt_lock
);
150 list_for_each_entry(fmt
, &formats
, lh
) {
151 if (!fmt
->load_shlib
)
153 if (!try_module_get(fmt
->module
))
155 read_unlock(&binfmt_lock
);
156 error
= fmt
->load_shlib(file
);
157 read_lock(&binfmt_lock
);
159 if (error
!= -ENOEXEC
)
162 read_unlock(&binfmt_lock
);
168 #endif /* #ifdef CONFIG_USELIB */
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
177 static void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
179 struct mm_struct
*mm
= current
->mm
;
180 long diff
= (long)(pages
- bprm
->vma_pages
);
185 bprm
->vma_pages
= pages
;
186 add_mm_counter(mm
, MM_ANONPAGES
, diff
);
189 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
194 unsigned int gup_flags
= FOLL_FORCE
;
196 #ifdef CONFIG_STACK_GROWSUP
198 ret
= expand_downwards(bprm
->vma
, pos
);
205 gup_flags
|= FOLL_WRITE
;
208 * We are doing an exec(). 'current' is the process
209 * doing the exec and bprm->mm is the new process's mm.
211 ret
= get_user_pages_remote(current
, bprm
->mm
, pos
, 1, gup_flags
,
217 unsigned long size
= bprm
->vma
->vm_end
- bprm
->vma
->vm_start
;
218 unsigned long ptr_size
;
222 * Since the stack will hold pointers to the strings, we
223 * must account for them as well.
225 * The size calculation is the entire vma while each arg page is
226 * built, so each time we get here it's calculating how far it
227 * is currently (rather than each call being just the newly
228 * added size from the arg page). As a result, we need to
229 * always add the entire size of the pointers, so that on the
230 * last call to get_arg_page() we'll actually have the entire
233 ptr_size
= (bprm
->argc
+ bprm
->envc
) * sizeof(void *);
234 if (ptr_size
> ULONG_MAX
- size
)
238 acct_arg_size(bprm
, size
/ PAGE_SIZE
);
241 * We've historically supported up to 32 pages (ARG_MAX)
242 * of argument strings even with small stacks
248 * Limit to 1/4-th the stack size for the argv+env strings.
250 * - the remaining binfmt code will not run out of stack space,
251 * - the program will have a reasonable amount of stack left
254 rlim
= current
->signal
->rlim
;
255 if (size
> READ_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
) / 4)
266 static void put_arg_page(struct page
*page
)
271 static void free_arg_pages(struct linux_binprm
*bprm
)
275 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
278 flush_cache_page(bprm
->vma
, pos
, page_to_pfn(page
));
281 static int __bprm_mm_init(struct linux_binprm
*bprm
)
284 struct vm_area_struct
*vma
= NULL
;
285 struct mm_struct
*mm
= bprm
->mm
;
287 bprm
->vma
= vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
291 if (down_write_killable(&mm
->mmap_sem
)) {
298 * Place the stack at the largest stack address the architecture
299 * supports. Later, we'll move this to an appropriate place. We don't
300 * use STACK_TOP because that can depend on attributes which aren't
303 BUILD_BUG_ON(VM_STACK_FLAGS
& VM_STACK_INCOMPLETE_SETUP
);
304 vma
->vm_end
= STACK_TOP_MAX
;
305 vma
->vm_start
= vma
->vm_end
- PAGE_SIZE
;
306 vma
->vm_flags
= VM_SOFTDIRTY
| VM_STACK_FLAGS
| VM_STACK_INCOMPLETE_SETUP
;
307 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
308 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
310 err
= insert_vm_struct(mm
, vma
);
314 mm
->stack_vm
= mm
->total_vm
= 1;
315 arch_bprm_mm_init(mm
, vma
);
316 up_write(&mm
->mmap_sem
);
317 bprm
->p
= vma
->vm_end
- sizeof(void *);
320 up_write(&mm
->mmap_sem
);
323 kmem_cache_free(vm_area_cachep
, vma
);
327 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
329 return len
<= MAX_ARG_STRLEN
;
334 static inline void acct_arg_size(struct linux_binprm
*bprm
, unsigned long pages
)
338 static struct page
*get_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
343 page
= bprm
->page
[pos
/ PAGE_SIZE
];
344 if (!page
&& write
) {
345 page
= alloc_page(GFP_HIGHUSER
|__GFP_ZERO
);
348 bprm
->page
[pos
/ PAGE_SIZE
] = page
;
354 static void put_arg_page(struct page
*page
)
358 static void free_arg_page(struct linux_binprm
*bprm
, int i
)
361 __free_page(bprm
->page
[i
]);
362 bprm
->page
[i
] = NULL
;
366 static void free_arg_pages(struct linux_binprm
*bprm
)
370 for (i
= 0; i
< MAX_ARG_PAGES
; i
++)
371 free_arg_page(bprm
, i
);
374 static void flush_arg_page(struct linux_binprm
*bprm
, unsigned long pos
,
379 static int __bprm_mm_init(struct linux_binprm
*bprm
)
381 bprm
->p
= PAGE_SIZE
* MAX_ARG_PAGES
- sizeof(void *);
385 static bool valid_arg_len(struct linux_binprm
*bprm
, long len
)
387 return len
<= bprm
->p
;
390 #endif /* CONFIG_MMU */
393 * Create a new mm_struct and populate it with a temporary stack
394 * vm_area_struct. We don't have enough context at this point to set the stack
395 * flags, permissions, and offset, so we use temporary values. We'll update
396 * them later in setup_arg_pages().
398 static int bprm_mm_init(struct linux_binprm
*bprm
)
401 struct mm_struct
*mm
= NULL
;
403 bprm
->mm
= mm
= mm_alloc();
408 err
= __bprm_mm_init(bprm
);
423 struct user_arg_ptr
{
428 const char __user
*const __user
*native
;
430 const compat_uptr_t __user
*compat
;
435 static const char __user
*get_user_arg_ptr(struct user_arg_ptr argv
, int nr
)
437 const char __user
*native
;
440 if (unlikely(argv
.is_compat
)) {
441 compat_uptr_t compat
;
443 if (get_user(compat
, argv
.ptr
.compat
+ nr
))
444 return ERR_PTR(-EFAULT
);
446 return compat_ptr(compat
);
450 if (get_user(native
, argv
.ptr
.native
+ nr
))
451 return ERR_PTR(-EFAULT
);
457 * count() counts the number of strings in array ARGV.
459 static int count(struct user_arg_ptr argv
, int max
)
463 if (argv
.ptr
.native
!= NULL
) {
465 const char __user
*p
= get_user_arg_ptr(argv
, i
);
477 if (fatal_signal_pending(current
))
478 return -ERESTARTNOHAND
;
486 * 'copy_strings()' copies argument/environment strings from the old
487 * processes's memory to the new process's stack. The call to get_user_pages()
488 * ensures the destination page is created and not swapped out.
490 static int copy_strings(int argc
, struct user_arg_ptr argv
,
491 struct linux_binprm
*bprm
)
493 struct page
*kmapped_page
= NULL
;
495 unsigned long kpos
= 0;
499 const char __user
*str
;
504 str
= get_user_arg_ptr(argv
, argc
);
508 len
= strnlen_user(str
, MAX_ARG_STRLEN
);
513 if (!valid_arg_len(bprm
, len
))
516 /* We're going to work our way backwords. */
522 int offset
, bytes_to_copy
;
524 if (fatal_signal_pending(current
)) {
525 ret
= -ERESTARTNOHAND
;
530 offset
= pos
% PAGE_SIZE
;
534 bytes_to_copy
= offset
;
535 if (bytes_to_copy
> len
)
538 offset
-= bytes_to_copy
;
539 pos
-= bytes_to_copy
;
540 str
-= bytes_to_copy
;
541 len
-= bytes_to_copy
;
543 if (!kmapped_page
|| kpos
!= (pos
& PAGE_MASK
)) {
546 page
= get_arg_page(bprm
, pos
, 1);
553 flush_kernel_dcache_page(kmapped_page
);
554 kunmap(kmapped_page
);
555 put_arg_page(kmapped_page
);
558 kaddr
= kmap(kmapped_page
);
559 kpos
= pos
& PAGE_MASK
;
560 flush_arg_page(bprm
, kpos
, kmapped_page
);
562 if (copy_from_user(kaddr
+offset
, str
, bytes_to_copy
)) {
571 flush_kernel_dcache_page(kmapped_page
);
572 kunmap(kmapped_page
);
573 put_arg_page(kmapped_page
);
579 * Like copy_strings, but get argv and its values from kernel memory.
581 int copy_strings_kernel(int argc
, const char *const *__argv
,
582 struct linux_binprm
*bprm
)
585 mm_segment_t oldfs
= get_fs();
586 struct user_arg_ptr argv
= {
587 .ptr
.native
= (const char __user
*const __user
*)__argv
,
591 r
= copy_strings(argc
, argv
, bprm
);
596 EXPORT_SYMBOL(copy_strings_kernel
);
601 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
602 * the binfmt code determines where the new stack should reside, we shift it to
603 * its final location. The process proceeds as follows:
605 * 1) Use shift to calculate the new vma endpoints.
606 * 2) Extend vma to cover both the old and new ranges. This ensures the
607 * arguments passed to subsequent functions are consistent.
608 * 3) Move vma's page tables to the new range.
609 * 4) Free up any cleared pgd range.
610 * 5) Shrink the vma to cover only the new range.
612 static int shift_arg_pages(struct vm_area_struct
*vma
, unsigned long shift
)
614 struct mm_struct
*mm
= vma
->vm_mm
;
615 unsigned long old_start
= vma
->vm_start
;
616 unsigned long old_end
= vma
->vm_end
;
617 unsigned long length
= old_end
- old_start
;
618 unsigned long new_start
= old_start
- shift
;
619 unsigned long new_end
= old_end
- shift
;
620 struct mmu_gather tlb
;
622 BUG_ON(new_start
> new_end
);
625 * ensure there are no vmas between where we want to go
628 if (vma
!= find_vma(mm
, new_start
))
632 * cover the whole range: [new_start, old_end)
634 if (vma_adjust(vma
, new_start
, old_end
, vma
->vm_pgoff
, NULL
))
638 * move the page tables downwards, on failure we rely on
639 * process cleanup to remove whatever mess we made.
641 if (length
!= move_page_tables(vma
, old_start
,
642 vma
, new_start
, length
, false))
646 tlb_gather_mmu(&tlb
, mm
, old_start
, old_end
);
647 if (new_end
> old_start
) {
649 * when the old and new regions overlap clear from new_end.
651 free_pgd_range(&tlb
, new_end
, old_end
, new_end
,
652 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
655 * otherwise, clean from old_start; this is done to not touch
656 * the address space in [new_end, old_start) some architectures
657 * have constraints on va-space that make this illegal (IA64) -
658 * for the others its just a little faster.
660 free_pgd_range(&tlb
, old_start
, old_end
, new_end
,
661 vma
->vm_next
? vma
->vm_next
->vm_start
: USER_PGTABLES_CEILING
);
663 tlb_finish_mmu(&tlb
, old_start
, old_end
);
666 * Shrink the vma to just the new range. Always succeeds.
668 vma_adjust(vma
, new_start
, new_end
, vma
->vm_pgoff
, NULL
);
674 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
675 * the stack is optionally relocated, and some extra space is added.
677 int setup_arg_pages(struct linux_binprm
*bprm
,
678 unsigned long stack_top
,
679 int executable_stack
)
682 unsigned long stack_shift
;
683 struct mm_struct
*mm
= current
->mm
;
684 struct vm_area_struct
*vma
= bprm
->vma
;
685 struct vm_area_struct
*prev
= NULL
;
686 unsigned long vm_flags
;
687 unsigned long stack_base
;
688 unsigned long stack_size
;
689 unsigned long stack_expand
;
690 unsigned long rlim_stack
;
692 #ifdef CONFIG_STACK_GROWSUP
693 /* Limit stack size */
694 stack_base
= rlimit_max(RLIMIT_STACK
);
695 if (stack_base
> STACK_SIZE_MAX
)
696 stack_base
= STACK_SIZE_MAX
;
698 /* Add space for stack randomization. */
699 stack_base
+= (STACK_RND_MASK
<< PAGE_SHIFT
);
701 /* Make sure we didn't let the argument array grow too large. */
702 if (vma
->vm_end
- vma
->vm_start
> stack_base
)
705 stack_base
= PAGE_ALIGN(stack_top
- stack_base
);
707 stack_shift
= vma
->vm_start
- stack_base
;
708 mm
->arg_start
= bprm
->p
- stack_shift
;
709 bprm
->p
= vma
->vm_end
- stack_shift
;
711 stack_top
= arch_align_stack(stack_top
);
712 stack_top
= PAGE_ALIGN(stack_top
);
714 if (unlikely(stack_top
< mmap_min_addr
) ||
715 unlikely(vma
->vm_end
- vma
->vm_start
>= stack_top
- mmap_min_addr
))
718 stack_shift
= vma
->vm_end
- stack_top
;
720 bprm
->p
-= stack_shift
;
721 mm
->arg_start
= bprm
->p
;
725 bprm
->loader
-= stack_shift
;
726 bprm
->exec
-= stack_shift
;
728 if (down_write_killable(&mm
->mmap_sem
))
731 vm_flags
= VM_STACK_FLAGS
;
734 * Adjust stack execute permissions; explicitly enable for
735 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
736 * (arch default) otherwise.
738 if (unlikely(executable_stack
== EXSTACK_ENABLE_X
))
740 else if (executable_stack
== EXSTACK_DISABLE_X
)
741 vm_flags
&= ~VM_EXEC
;
742 vm_flags
|= mm
->def_flags
;
743 vm_flags
|= VM_STACK_INCOMPLETE_SETUP
;
745 ret
= mprotect_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
,
751 /* Move stack pages down in memory. */
753 ret
= shift_arg_pages(vma
, stack_shift
);
758 /* mprotect_fixup is overkill to remove the temporary stack flags */
759 vma
->vm_flags
&= ~VM_STACK_INCOMPLETE_SETUP
;
761 stack_expand
= 131072UL; /* randomly 32*4k (or 2*64k) pages */
762 stack_size
= vma
->vm_end
- vma
->vm_start
;
764 * Align this down to a page boundary as expand_stack
767 rlim_stack
= rlimit(RLIMIT_STACK
) & PAGE_MASK
;
768 #ifdef CONFIG_STACK_GROWSUP
769 if (stack_size
+ stack_expand
> rlim_stack
)
770 stack_base
= vma
->vm_start
+ rlim_stack
;
772 stack_base
= vma
->vm_end
+ stack_expand
;
774 if (stack_size
+ stack_expand
> rlim_stack
)
775 stack_base
= vma
->vm_end
- rlim_stack
;
777 stack_base
= vma
->vm_start
- stack_expand
;
779 current
->mm
->start_stack
= bprm
->p
;
780 ret
= expand_stack(vma
, stack_base
);
785 up_write(&mm
->mmap_sem
);
788 EXPORT_SYMBOL(setup_arg_pages
);
793 * Transfer the program arguments and environment from the holding pages
794 * onto the stack. The provided stack pointer is adjusted accordingly.
796 int transfer_args_to_stack(struct linux_binprm
*bprm
,
797 unsigned long *sp_location
)
799 unsigned long index
, stop
, sp
;
802 stop
= bprm
->p
>> PAGE_SHIFT
;
805 for (index
= MAX_ARG_PAGES
- 1; index
>= stop
; index
--) {
806 unsigned int offset
= index
== stop
? bprm
->p
& ~PAGE_MASK
: 0;
807 char *src
= kmap(bprm
->page
[index
]) + offset
;
808 sp
-= PAGE_SIZE
- offset
;
809 if (copy_to_user((void *) sp
, src
, PAGE_SIZE
- offset
) != 0)
811 kunmap(bprm
->page
[index
]);
821 EXPORT_SYMBOL(transfer_args_to_stack
);
823 #endif /* CONFIG_MMU */
825 static struct file
*do_open_execat(int fd
, struct filename
*name
, int flags
)
829 struct open_flags open_exec_flags
= {
830 .open_flag
= O_LARGEFILE
| O_RDONLY
| __FMODE_EXEC
,
831 .acc_mode
= MAY_EXEC
,
832 .intent
= LOOKUP_OPEN
,
833 .lookup_flags
= LOOKUP_FOLLOW
,
836 if ((flags
& ~(AT_SYMLINK_NOFOLLOW
| AT_EMPTY_PATH
)) != 0)
837 return ERR_PTR(-EINVAL
);
838 if (flags
& AT_SYMLINK_NOFOLLOW
)
839 open_exec_flags
.lookup_flags
&= ~LOOKUP_FOLLOW
;
840 if (flags
& AT_EMPTY_PATH
)
841 open_exec_flags
.lookup_flags
|= LOOKUP_EMPTY
;
843 file
= do_filp_open(fd
, name
, &open_exec_flags
);
848 if (!S_ISREG(file_inode(file
)->i_mode
))
851 if (path_noexec(&file
->f_path
))
854 err
= deny_write_access(file
);
858 if (name
->name
[0] != '\0')
869 struct file
*open_exec(const char *name
)
871 struct filename
*filename
= getname_kernel(name
);
872 struct file
*f
= ERR_CAST(filename
);
874 if (!IS_ERR(filename
)) {
875 f
= do_open_execat(AT_FDCWD
, filename
, 0);
880 EXPORT_SYMBOL(open_exec
);
882 int kernel_read(struct file
*file
, loff_t offset
,
883 char *addr
, unsigned long count
)
891 /* The cast to a user pointer is valid due to the set_fs() */
892 result
= vfs_read(file
, (void __user
*)addr
, count
, &pos
);
897 EXPORT_SYMBOL(kernel_read
);
899 int kernel_read_file(struct file
*file
, void **buf
, loff_t
*size
,
900 loff_t max_size
, enum kernel_read_file_id id
)
906 if (!S_ISREG(file_inode(file
)->i_mode
) || max_size
< 0)
909 ret
= security_kernel_read_file(file
, id
);
913 ret
= deny_write_access(file
);
917 i_size
= i_size_read(file_inode(file
));
918 if (max_size
> 0 && i_size
> max_size
) {
927 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
)
928 *buf
= vmalloc(i_size
);
935 while (pos
< i_size
) {
936 bytes
= kernel_read(file
, pos
, (char *)(*buf
) + pos
,
953 ret
= security_kernel_post_read_file(file
, *buf
, i_size
, id
);
959 if (id
!= READING_FIRMWARE_PREALLOC_BUFFER
) {
966 allow_write_access(file
);
969 EXPORT_SYMBOL_GPL(kernel_read_file
);
971 int kernel_read_file_from_path(char *path
, void **buf
, loff_t
*size
,
972 loff_t max_size
, enum kernel_read_file_id id
)
980 file
= filp_open(path
, O_RDONLY
, 0);
982 return PTR_ERR(file
);
984 ret
= kernel_read_file(file
, buf
, size
, max_size
, id
);
988 EXPORT_SYMBOL_GPL(kernel_read_file_from_path
);
990 int kernel_read_file_from_fd(int fd
, void **buf
, loff_t
*size
, loff_t max_size
,
991 enum kernel_read_file_id id
)
993 struct fd f
= fdget(fd
);
999 ret
= kernel_read_file(f
.file
, buf
, size
, max_size
, id
);
1004 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd
);
1006 ssize_t
read_code(struct file
*file
, unsigned long addr
, loff_t pos
, size_t len
)
1008 ssize_t res
= vfs_read(file
, (void __user
*)addr
, len
, &pos
);
1010 flush_icache_range(addr
, addr
+ len
);
1013 EXPORT_SYMBOL(read_code
);
1015 static int exec_mmap(struct mm_struct
*mm
)
1017 struct task_struct
*tsk
;
1018 struct mm_struct
*old_mm
, *active_mm
;
1020 /* Notify parent that we're no longer interested in the old VM */
1022 old_mm
= current
->mm
;
1023 mm_release(tsk
, old_mm
);
1026 sync_mm_rss(old_mm
);
1028 * Make sure that if there is a core dump in progress
1029 * for the old mm, we get out and die instead of going
1030 * through with the exec. We must hold mmap_sem around
1031 * checking core_state and changing tsk->mm.
1033 down_read(&old_mm
->mmap_sem
);
1034 if (unlikely(old_mm
->core_state
)) {
1035 up_read(&old_mm
->mmap_sem
);
1040 active_mm
= tsk
->active_mm
;
1042 tsk
->active_mm
= mm
;
1043 activate_mm(active_mm
, mm
);
1044 tsk
->mm
->vmacache_seqnum
= 0;
1045 vmacache_flush(tsk
);
1048 up_read(&old_mm
->mmap_sem
);
1049 BUG_ON(active_mm
!= old_mm
);
1050 setmax_mm_hiwater_rss(&tsk
->signal
->maxrss
, old_mm
);
1051 mm_update_next_owner(old_mm
);
1060 * This function makes sure the current process has its own signal table,
1061 * so that flush_signal_handlers can later reset the handlers without
1062 * disturbing other processes. (Other processes might share the signal
1063 * table via the CLONE_SIGHAND option to clone().)
1065 static int de_thread(struct task_struct
*tsk
)
1067 struct signal_struct
*sig
= tsk
->signal
;
1068 struct sighand_struct
*oldsighand
= tsk
->sighand
;
1069 spinlock_t
*lock
= &oldsighand
->siglock
;
1071 if (thread_group_empty(tsk
))
1072 goto no_thread_group
;
1075 * Kill all other threads in the thread group.
1077 spin_lock_irq(lock
);
1078 if (signal_group_exit(sig
)) {
1080 * Another group action in progress, just
1081 * return so that the signal is processed.
1083 spin_unlock_irq(lock
);
1087 sig
->group_exit_task
= tsk
;
1088 sig
->notify_count
= zap_other_threads(tsk
);
1089 if (!thread_group_leader(tsk
))
1090 sig
->notify_count
--;
1092 while (sig
->notify_count
) {
1093 __set_current_state(TASK_KILLABLE
);
1094 spin_unlock_irq(lock
);
1096 if (unlikely(__fatal_signal_pending(tsk
)))
1098 spin_lock_irq(lock
);
1100 spin_unlock_irq(lock
);
1103 * At this point all other threads have exited, all we have to
1104 * do is to wait for the thread group leader to become inactive,
1105 * and to assume its PID:
1107 if (!thread_group_leader(tsk
)) {
1108 struct task_struct
*leader
= tsk
->group_leader
;
1111 threadgroup_change_begin(tsk
);
1112 write_lock_irq(&tasklist_lock
);
1114 * Do this under tasklist_lock to ensure that
1115 * exit_notify() can't miss ->group_exit_task
1117 sig
->notify_count
= -1;
1118 if (likely(leader
->exit_state
))
1120 __set_current_state(TASK_KILLABLE
);
1121 write_unlock_irq(&tasklist_lock
);
1122 threadgroup_change_end(tsk
);
1124 if (unlikely(__fatal_signal_pending(tsk
)))
1129 * The only record we have of the real-time age of a
1130 * process, regardless of execs it's done, is start_time.
1131 * All the past CPU time is accumulated in signal_struct
1132 * from sister threads now dead. But in this non-leader
1133 * exec, nothing survives from the original leader thread,
1134 * whose birth marks the true age of this process now.
1135 * When we take on its identity by switching to its PID, we
1136 * also take its birthdate (always earlier than our own).
1138 tsk
->start_time
= leader
->start_time
;
1139 tsk
->real_start_time
= leader
->real_start_time
;
1141 BUG_ON(!same_thread_group(leader
, tsk
));
1142 BUG_ON(has_group_leader_pid(tsk
));
1144 * An exec() starts a new thread group with the
1145 * TGID of the previous thread group. Rehash the
1146 * two threads with a switched PID, and release
1147 * the former thread group leader:
1150 /* Become a process group leader with the old leader's pid.
1151 * The old leader becomes a thread of the this thread group.
1152 * Note: The old leader also uses this pid until release_task
1153 * is called. Odd but simple and correct.
1155 tsk
->pid
= leader
->pid
;
1156 change_pid(tsk
, PIDTYPE_PID
, task_pid(leader
));
1157 transfer_pid(leader
, tsk
, PIDTYPE_PGID
);
1158 transfer_pid(leader
, tsk
, PIDTYPE_SID
);
1160 list_replace_rcu(&leader
->tasks
, &tsk
->tasks
);
1161 list_replace_init(&leader
->sibling
, &tsk
->sibling
);
1163 tsk
->group_leader
= tsk
;
1164 leader
->group_leader
= tsk
;
1166 tsk
->exit_signal
= SIGCHLD
;
1167 leader
->exit_signal
= -1;
1169 BUG_ON(leader
->exit_state
!= EXIT_ZOMBIE
);
1170 leader
->exit_state
= EXIT_DEAD
;
1173 * We are going to release_task()->ptrace_unlink() silently,
1174 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1175 * the tracer wont't block again waiting for this thread.
1177 if (unlikely(leader
->ptrace
))
1178 __wake_up_parent(leader
, leader
->parent
);
1179 write_unlock_irq(&tasklist_lock
);
1180 threadgroup_change_end(tsk
);
1182 release_task(leader
);
1185 sig
->group_exit_task
= NULL
;
1186 sig
->notify_count
= 0;
1189 /* we have changed execution domain */
1190 tsk
->exit_signal
= SIGCHLD
;
1193 flush_itimer_signals();
1195 if (atomic_read(&oldsighand
->count
) != 1) {
1196 struct sighand_struct
*newsighand
;
1198 * This ->sighand is shared with the CLONE_SIGHAND
1199 * but not CLONE_THREAD task, switch to the new one.
1201 newsighand
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1205 atomic_set(&newsighand
->count
, 1);
1206 memcpy(newsighand
->action
, oldsighand
->action
,
1207 sizeof(newsighand
->action
));
1209 write_lock_irq(&tasklist_lock
);
1210 spin_lock(&oldsighand
->siglock
);
1211 rcu_assign_pointer(tsk
->sighand
, newsighand
);
1212 spin_unlock(&oldsighand
->siglock
);
1213 write_unlock_irq(&tasklist_lock
);
1215 __cleanup_sighand(oldsighand
);
1218 BUG_ON(!thread_group_leader(tsk
));
1222 /* protects against exit_notify() and __exit_signal() */
1223 read_lock(&tasklist_lock
);
1224 sig
->group_exit_task
= NULL
;
1225 sig
->notify_count
= 0;
1226 read_unlock(&tasklist_lock
);
1230 char *get_task_comm(char *buf
, struct task_struct
*tsk
)
1232 /* buf must be at least sizeof(tsk->comm) in size */
1234 strncpy(buf
, tsk
->comm
, sizeof(tsk
->comm
));
1238 EXPORT_SYMBOL_GPL(get_task_comm
);
1241 * These functions flushes out all traces of the currently running executable
1242 * so that a new one can be started
1245 void __set_task_comm(struct task_struct
*tsk
, const char *buf
, bool exec
)
1248 trace_task_rename(tsk
, buf
);
1249 strlcpy(tsk
->comm
, buf
, sizeof(tsk
->comm
));
1251 perf_event_comm(tsk
, exec
);
1254 int flush_old_exec(struct linux_binprm
* bprm
)
1259 * Make sure we have a private signal table and that
1260 * we are unassociated from the previous thread group.
1262 retval
= de_thread(current
);
1267 * Must be called _before_ exec_mmap() as bprm->mm is
1268 * not visibile until then. This also enables the update
1271 set_mm_exe_file(bprm
->mm
, bprm
->file
);
1274 * Release all of the old mmap stuff
1276 acct_arg_size(bprm
, 0);
1277 retval
= exec_mmap(bprm
->mm
);
1281 bprm
->mm
= NULL
; /* We're using it now */
1284 current
->flags
&= ~(PF_RANDOMIZE
| PF_FORKNOEXEC
| PF_KTHREAD
|
1285 PF_NOFREEZE
| PF_NO_SETAFFINITY
);
1287 current
->personality
&= ~bprm
->per_clear
;
1290 * We have to apply CLOEXEC before we change whether the process is
1291 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1292 * trying to access the should-be-closed file descriptors of a process
1293 * undergoing exec(2).
1295 do_close_on_exec(current
->files
);
1301 EXPORT_SYMBOL(flush_old_exec
);
1303 void would_dump(struct linux_binprm
*bprm
, struct file
*file
)
1305 struct inode
*inode
= file_inode(file
);
1306 if (inode_permission(inode
, MAY_READ
) < 0) {
1307 struct user_namespace
*old
, *user_ns
;
1308 bprm
->interp_flags
|= BINPRM_FLAGS_ENFORCE_NONDUMP
;
1310 /* Ensure mm->user_ns contains the executable */
1311 user_ns
= old
= bprm
->mm
->user_ns
;
1312 while ((user_ns
!= &init_user_ns
) &&
1313 !privileged_wrt_inode_uidgid(user_ns
, inode
))
1314 user_ns
= user_ns
->parent
;
1316 if (old
!= user_ns
) {
1317 bprm
->mm
->user_ns
= get_user_ns(user_ns
);
1322 EXPORT_SYMBOL(would_dump
);
1324 void setup_new_exec(struct linux_binprm
* bprm
)
1326 arch_pick_mmap_layout(current
->mm
);
1328 /* This is the point of no return */
1329 current
->sas_ss_sp
= current
->sas_ss_size
= 0;
1331 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1332 set_dumpable(current
->mm
, SUID_DUMP_USER
);
1334 set_dumpable(current
->mm
, suid_dumpable
);
1337 __set_task_comm(current
, kbasename(bprm
->filename
), true);
1339 /* Set the new mm task size. We have to do that late because it may
1340 * depend on TIF_32BIT which is only updated in flush_thread() on
1341 * some architectures like powerpc
1343 current
->mm
->task_size
= TASK_SIZE
;
1345 /* install the new credentials */
1346 if (!uid_eq(bprm
->cred
->uid
, current_euid()) ||
1347 !gid_eq(bprm
->cred
->gid
, current_egid())) {
1348 current
->pdeath_signal
= 0;
1350 if (bprm
->interp_flags
& BINPRM_FLAGS_ENFORCE_NONDUMP
)
1351 set_dumpable(current
->mm
, suid_dumpable
);
1354 /* An exec changes our domain. We are no longer part of the thread
1356 current
->self_exec_id
++;
1357 flush_signal_handlers(current
, 0);
1359 EXPORT_SYMBOL(setup_new_exec
);
1362 * Prepare credentials and lock ->cred_guard_mutex.
1363 * install_exec_creds() commits the new creds and drops the lock.
1364 * Or, if exec fails before, free_bprm() should release ->cred and
1367 int prepare_bprm_creds(struct linux_binprm
*bprm
)
1369 if (mutex_lock_interruptible(¤t
->signal
->cred_guard_mutex
))
1370 return -ERESTARTNOINTR
;
1372 bprm
->cred
= prepare_exec_creds();
1373 if (likely(bprm
->cred
))
1376 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1380 static void free_bprm(struct linux_binprm
*bprm
)
1382 free_arg_pages(bprm
);
1384 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1385 abort_creds(bprm
->cred
);
1388 allow_write_access(bprm
->file
);
1391 /* If a binfmt changed the interp, free it. */
1392 if (bprm
->interp
!= bprm
->filename
)
1393 kfree(bprm
->interp
);
1397 int bprm_change_interp(char *interp
, struct linux_binprm
*bprm
)
1399 /* If a binfmt changed the interp, free it first. */
1400 if (bprm
->interp
!= bprm
->filename
)
1401 kfree(bprm
->interp
);
1402 bprm
->interp
= kstrdup(interp
, GFP_KERNEL
);
1407 EXPORT_SYMBOL(bprm_change_interp
);
1410 * install the new credentials for this executable
1412 void install_exec_creds(struct linux_binprm
*bprm
)
1414 security_bprm_committing_creds(bprm
);
1416 commit_creds(bprm
->cred
);
1420 * Disable monitoring for regular users
1421 * when executing setuid binaries. Must
1422 * wait until new credentials are committed
1423 * by commit_creds() above
1425 if (get_dumpable(current
->mm
) != SUID_DUMP_USER
)
1426 perf_event_exit_task(current
);
1428 * cred_guard_mutex must be held at least to this point to prevent
1429 * ptrace_attach() from altering our determination of the task's
1430 * credentials; any time after this it may be unlocked.
1432 security_bprm_committed_creds(bprm
);
1433 mutex_unlock(¤t
->signal
->cred_guard_mutex
);
1435 EXPORT_SYMBOL(install_exec_creds
);
1438 * determine how safe it is to execute the proposed program
1439 * - the caller must hold ->cred_guard_mutex to protect against
1440 * PTRACE_ATTACH or seccomp thread-sync
1442 static void check_unsafe_exec(struct linux_binprm
*bprm
)
1444 struct task_struct
*p
= current
, *t
;
1448 if (ptracer_capable(p
, current_user_ns()))
1449 bprm
->unsafe
|= LSM_UNSAFE_PTRACE_CAP
;
1451 bprm
->unsafe
|= LSM_UNSAFE_PTRACE
;
1455 * This isn't strictly necessary, but it makes it harder for LSMs to
1458 if (task_no_new_privs(current
))
1459 bprm
->unsafe
|= LSM_UNSAFE_NO_NEW_PRIVS
;
1463 spin_lock(&p
->fs
->lock
);
1465 while_each_thread(p
, t
) {
1471 if (p
->fs
->users
> n_fs
)
1472 bprm
->unsafe
|= LSM_UNSAFE_SHARE
;
1475 spin_unlock(&p
->fs
->lock
);
1478 static void bprm_fill_uid(struct linux_binprm
*bprm
)
1480 struct inode
*inode
;
1486 * Since this can be called multiple times (via prepare_binprm),
1487 * we must clear any previous work done when setting set[ug]id
1488 * bits from any earlier bprm->file uses (for example when run
1489 * first for a setuid script then again for its interpreter).
1491 bprm
->cred
->euid
= current_euid();
1492 bprm
->cred
->egid
= current_egid();
1494 if (!mnt_may_suid(bprm
->file
->f_path
.mnt
))
1497 if (task_no_new_privs(current
))
1500 inode
= file_inode(bprm
->file
);
1501 mode
= READ_ONCE(inode
->i_mode
);
1502 if (!(mode
& (S_ISUID
|S_ISGID
)))
1505 /* Be careful if suid/sgid is set */
1508 /* reload atomically mode/uid/gid now that lock held */
1509 mode
= inode
->i_mode
;
1512 inode_unlock(inode
);
1514 /* We ignore suid/sgid if there are no mappings for them in the ns */
1515 if (!kuid_has_mapping(bprm
->cred
->user_ns
, uid
) ||
1516 !kgid_has_mapping(bprm
->cred
->user_ns
, gid
))
1519 if (mode
& S_ISUID
) {
1520 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1521 bprm
->cred
->euid
= uid
;
1524 if ((mode
& (S_ISGID
| S_IXGRP
)) == (S_ISGID
| S_IXGRP
)) {
1525 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
1526 bprm
->cred
->egid
= gid
;
1531 * Fill the binprm structure from the inode.
1532 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1534 * This may be called multiple times for binary chains (scripts for example).
1536 int prepare_binprm(struct linux_binprm
*bprm
)
1540 bprm_fill_uid(bprm
);
1542 /* fill in binprm security blob */
1543 retval
= security_bprm_set_creds(bprm
);
1546 bprm
->cred_prepared
= 1;
1548 memset(bprm
->buf
, 0, BINPRM_BUF_SIZE
);
1549 return kernel_read(bprm
->file
, 0, bprm
->buf
, BINPRM_BUF_SIZE
);
1552 EXPORT_SYMBOL(prepare_binprm
);
1555 * Arguments are '\0' separated strings found at the location bprm->p
1556 * points to; chop off the first by relocating brpm->p to right after
1557 * the first '\0' encountered.
1559 int remove_arg_zero(struct linux_binprm
*bprm
)
1562 unsigned long offset
;
1570 offset
= bprm
->p
& ~PAGE_MASK
;
1571 page
= get_arg_page(bprm
, bprm
->p
, 0);
1576 kaddr
= kmap_atomic(page
);
1578 for (; offset
< PAGE_SIZE
&& kaddr
[offset
];
1579 offset
++, bprm
->p
++)
1582 kunmap_atomic(kaddr
);
1584 } while (offset
== PAGE_SIZE
);
1593 EXPORT_SYMBOL(remove_arg_zero
);
1595 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1597 * cycle the list of binary formats handler, until one recognizes the image
1599 int search_binary_handler(struct linux_binprm
*bprm
)
1601 bool need_retry
= IS_ENABLED(CONFIG_MODULES
);
1602 struct linux_binfmt
*fmt
;
1605 /* This allows 4 levels of binfmt rewrites before failing hard. */
1606 if (bprm
->recursion_depth
> 5)
1609 retval
= security_bprm_check(bprm
);
1615 read_lock(&binfmt_lock
);
1616 list_for_each_entry(fmt
, &formats
, lh
) {
1617 if (!try_module_get(fmt
->module
))
1619 read_unlock(&binfmt_lock
);
1620 bprm
->recursion_depth
++;
1621 retval
= fmt
->load_binary(bprm
);
1622 read_lock(&binfmt_lock
);
1624 bprm
->recursion_depth
--;
1625 if (retval
< 0 && !bprm
->mm
) {
1626 /* we got to flush_old_exec() and failed after it */
1627 read_unlock(&binfmt_lock
);
1628 force_sigsegv(SIGSEGV
, current
);
1631 if (retval
!= -ENOEXEC
|| !bprm
->file
) {
1632 read_unlock(&binfmt_lock
);
1636 read_unlock(&binfmt_lock
);
1639 if (printable(bprm
->buf
[0]) && printable(bprm
->buf
[1]) &&
1640 printable(bprm
->buf
[2]) && printable(bprm
->buf
[3]))
1642 if (request_module("binfmt-%04x", *(ushort
*)(bprm
->buf
+ 2)) < 0)
1650 EXPORT_SYMBOL(search_binary_handler
);
1652 static int exec_binprm(struct linux_binprm
*bprm
)
1654 pid_t old_pid
, old_vpid
;
1657 /* Need to fetch pid before load_binary changes it */
1658 old_pid
= current
->pid
;
1660 old_vpid
= task_pid_nr_ns(current
, task_active_pid_ns(current
->parent
));
1663 ret
= search_binary_handler(bprm
);
1666 trace_sched_process_exec(current
, old_pid
, bprm
);
1667 ptrace_event(PTRACE_EVENT_EXEC
, old_vpid
);
1668 proc_exec_connector(current
);
1675 * sys_execve() executes a new program.
1677 static int do_execveat_common(int fd
, struct filename
*filename
,
1678 struct user_arg_ptr argv
,
1679 struct user_arg_ptr envp
,
1682 char *pathbuf
= NULL
;
1683 struct linux_binprm
*bprm
;
1685 struct files_struct
*displaced
;
1688 if (IS_ERR(filename
))
1689 return PTR_ERR(filename
);
1692 * We move the actual failure in case of RLIMIT_NPROC excess from
1693 * set*uid() to execve() because too many poorly written programs
1694 * don't check setuid() return code. Here we additionally recheck
1695 * whether NPROC limit is still exceeded.
1697 if ((current
->flags
& PF_NPROC_EXCEEDED
) &&
1698 atomic_read(¤t_user()->processes
) > rlimit(RLIMIT_NPROC
)) {
1703 /* We're below the limit (still or again), so we don't want to make
1704 * further execve() calls fail. */
1705 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1707 retval
= unshare_files(&displaced
);
1712 bprm
= kzalloc(sizeof(*bprm
), GFP_KERNEL
);
1716 retval
= prepare_bprm_creds(bprm
);
1720 check_unsafe_exec(bprm
);
1721 current
->in_execve
= 1;
1723 file
= do_open_execat(fd
, filename
, flags
);
1724 retval
= PTR_ERR(file
);
1731 if (fd
== AT_FDCWD
|| filename
->name
[0] == '/') {
1732 bprm
->filename
= filename
->name
;
1734 if (filename
->name
[0] == '\0')
1735 pathbuf
= kasprintf(GFP_TEMPORARY
, "/dev/fd/%d", fd
);
1737 pathbuf
= kasprintf(GFP_TEMPORARY
, "/dev/fd/%d/%s",
1738 fd
, filename
->name
);
1744 * Record that a name derived from an O_CLOEXEC fd will be
1745 * inaccessible after exec. Relies on having exclusive access to
1746 * current->files (due to unshare_files above).
1748 if (close_on_exec(fd
, rcu_dereference_raw(current
->files
->fdt
)))
1749 bprm
->interp_flags
|= BINPRM_FLAGS_PATH_INACCESSIBLE
;
1750 bprm
->filename
= pathbuf
;
1752 bprm
->interp
= bprm
->filename
;
1754 retval
= bprm_mm_init(bprm
);
1758 bprm
->argc
= count(argv
, MAX_ARG_STRINGS
);
1759 if ((retval
= bprm
->argc
) < 0)
1762 bprm
->envc
= count(envp
, MAX_ARG_STRINGS
);
1763 if ((retval
= bprm
->envc
) < 0)
1766 retval
= prepare_binprm(bprm
);
1770 retval
= copy_strings_kernel(1, &bprm
->filename
, bprm
);
1774 bprm
->exec
= bprm
->p
;
1775 retval
= copy_strings(bprm
->envc
, envp
, bprm
);
1779 retval
= copy_strings(bprm
->argc
, argv
, bprm
);
1783 would_dump(bprm
, bprm
->file
);
1785 retval
= exec_binprm(bprm
);
1789 /* execve succeeded */
1790 current
->fs
->in_exec
= 0;
1791 current
->in_execve
= 0;
1792 acct_update_integrals(current
);
1793 task_numa_free(current
);
1798 put_files_struct(displaced
);
1803 acct_arg_size(bprm
, 0);
1808 current
->fs
->in_exec
= 0;
1809 current
->in_execve
= 0;
1817 reset_files_struct(displaced
);
1823 int do_execve(struct filename
*filename
,
1824 const char __user
*const __user
*__argv
,
1825 const char __user
*const __user
*__envp
)
1827 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1828 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1829 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1832 int do_execveat(int fd
, struct filename
*filename
,
1833 const char __user
*const __user
*__argv
,
1834 const char __user
*const __user
*__envp
,
1837 struct user_arg_ptr argv
= { .ptr
.native
= __argv
};
1838 struct user_arg_ptr envp
= { .ptr
.native
= __envp
};
1840 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1843 #ifdef CONFIG_COMPAT
1844 static int compat_do_execve(struct filename
*filename
,
1845 const compat_uptr_t __user
*__argv
,
1846 const compat_uptr_t __user
*__envp
)
1848 struct user_arg_ptr argv
= {
1850 .ptr
.compat
= __argv
,
1852 struct user_arg_ptr envp
= {
1854 .ptr
.compat
= __envp
,
1856 return do_execveat_common(AT_FDCWD
, filename
, argv
, envp
, 0);
1859 static int compat_do_execveat(int fd
, struct filename
*filename
,
1860 const compat_uptr_t __user
*__argv
,
1861 const compat_uptr_t __user
*__envp
,
1864 struct user_arg_ptr argv
= {
1866 .ptr
.compat
= __argv
,
1868 struct user_arg_ptr envp
= {
1870 .ptr
.compat
= __envp
,
1872 return do_execveat_common(fd
, filename
, argv
, envp
, flags
);
1876 void set_binfmt(struct linux_binfmt
*new)
1878 struct mm_struct
*mm
= current
->mm
;
1881 module_put(mm
->binfmt
->module
);
1885 __module_get(new->module
);
1887 EXPORT_SYMBOL(set_binfmt
);
1890 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1892 void set_dumpable(struct mm_struct
*mm
, int value
)
1894 unsigned long old
, new;
1896 if (WARN_ON((unsigned)value
> SUID_DUMP_ROOT
))
1900 old
= ACCESS_ONCE(mm
->flags
);
1901 new = (old
& ~MMF_DUMPABLE_MASK
) | value
;
1902 } while (cmpxchg(&mm
->flags
, old
, new) != old
);
1905 SYSCALL_DEFINE3(execve
,
1906 const char __user
*, filename
,
1907 const char __user
*const __user
*, argv
,
1908 const char __user
*const __user
*, envp
)
1910 return do_execve(getname(filename
), argv
, envp
);
1913 SYSCALL_DEFINE5(execveat
,
1914 int, fd
, const char __user
*, filename
,
1915 const char __user
*const __user
*, argv
,
1916 const char __user
*const __user
*, envp
,
1919 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1921 return do_execveat(fd
,
1922 getname_flags(filename
, lookup_flags
, NULL
),
1926 #ifdef CONFIG_COMPAT
1927 COMPAT_SYSCALL_DEFINE3(execve
, const char __user
*, filename
,
1928 const compat_uptr_t __user
*, argv
,
1929 const compat_uptr_t __user
*, envp
)
1931 return compat_do_execve(getname(filename
), argv
, envp
);
1934 COMPAT_SYSCALL_DEFINE5(execveat
, int, fd
,
1935 const char __user
*, filename
,
1936 const compat_uptr_t __user
*, argv
,
1937 const compat_uptr_t __user
*, envp
,
1940 int lookup_flags
= (flags
& AT_EMPTY_PATH
) ? LOOKUP_EMPTY
: 0;
1942 return compat_do_execveat(fd
,
1943 getname_flags(filename
, lookup_flags
, NULL
),