i2c: brcmstb: Fix START and STOP conditions
[linux/fpc-iii.git] / fs / exec.c
blob91441402d706025971657e088c8ea3d937270431
1 /*
2 * linux/fs/exec.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * #!-checking implemented by tytso.
9 */
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/pagemap.h>
36 #include <linux/perf_event.h>
37 #include <linux/highmem.h>
38 #include <linux/spinlock.h>
39 #include <linux/key.h>
40 #include <linux/personality.h>
41 #include <linux/binfmts.h>
42 #include <linux/utsname.h>
43 #include <linux/pid_namespace.h>
44 #include <linux/module.h>
45 #include <linux/namei.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/tsacct_kern.h>
50 #include <linux/cn_proc.h>
51 #include <linux/audit.h>
52 #include <linux/tracehook.h>
53 #include <linux/kmod.h>
54 #include <linux/fsnotify.h>
55 #include <linux/fs_struct.h>
56 #include <linux/pipe_fs_i.h>
57 #include <linux/oom.h>
58 #include <linux/compat.h>
59 #include <linux/vmalloc.h>
61 #include <asm/uaccess.h>
62 #include <asm/mmu_context.h>
63 #include <asm/tlb.h>
65 #include <trace/events/task.h>
66 #include "internal.h"
68 #include <trace/events/sched.h>
70 int suid_dumpable = 0;
72 static LIST_HEAD(formats);
73 static DEFINE_RWLOCK(binfmt_lock);
75 void __register_binfmt(struct linux_binfmt * fmt, int insert)
77 BUG_ON(!fmt);
78 if (WARN_ON(!fmt->load_binary))
79 return;
80 write_lock(&binfmt_lock);
81 insert ? list_add(&fmt->lh, &formats) :
82 list_add_tail(&fmt->lh, &formats);
83 write_unlock(&binfmt_lock);
86 EXPORT_SYMBOL(__register_binfmt);
88 void unregister_binfmt(struct linux_binfmt * fmt)
90 write_lock(&binfmt_lock);
91 list_del(&fmt->lh);
92 write_unlock(&binfmt_lock);
95 EXPORT_SYMBOL(unregister_binfmt);
97 static inline void put_binfmt(struct linux_binfmt * fmt)
99 module_put(fmt->module);
102 bool path_noexec(const struct path *path)
104 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
105 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
108 #ifdef CONFIG_USELIB
110 * Note that a shared library must be both readable and executable due to
111 * security reasons.
113 * Also note that we take the address to load from from the file itself.
115 SYSCALL_DEFINE1(uselib, const char __user *, library)
117 struct linux_binfmt *fmt;
118 struct file *file;
119 struct filename *tmp = getname(library);
120 int error = PTR_ERR(tmp);
121 static const struct open_flags uselib_flags = {
122 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
123 .acc_mode = MAY_READ | MAY_EXEC,
124 .intent = LOOKUP_OPEN,
125 .lookup_flags = LOOKUP_FOLLOW,
128 if (IS_ERR(tmp))
129 goto out;
131 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
132 putname(tmp);
133 error = PTR_ERR(file);
134 if (IS_ERR(file))
135 goto out;
137 error = -EINVAL;
138 if (!S_ISREG(file_inode(file)->i_mode))
139 goto exit;
141 error = -EACCES;
142 if (path_noexec(&file->f_path))
143 goto exit;
145 fsnotify_open(file);
147 error = -ENOEXEC;
149 read_lock(&binfmt_lock);
150 list_for_each_entry(fmt, &formats, lh) {
151 if (!fmt->load_shlib)
152 continue;
153 if (!try_module_get(fmt->module))
154 continue;
155 read_unlock(&binfmt_lock);
156 error = fmt->load_shlib(file);
157 read_lock(&binfmt_lock);
158 put_binfmt(fmt);
159 if (error != -ENOEXEC)
160 break;
162 read_unlock(&binfmt_lock);
163 exit:
164 fput(file);
165 out:
166 return error;
168 #endif /* #ifdef CONFIG_USELIB */
170 #ifdef CONFIG_MMU
172 * The nascent bprm->mm is not visible until exec_mmap() but it can
173 * use a lot of memory, account these pages in current->mm temporary
174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
175 * change the counter back via acct_arg_size(0).
177 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
179 struct mm_struct *mm = current->mm;
180 long diff = (long)(pages - bprm->vma_pages);
182 if (!mm || !diff)
183 return;
185 bprm->vma_pages = pages;
186 add_mm_counter(mm, MM_ANONPAGES, diff);
189 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
190 int write)
192 struct page *page;
193 int ret;
194 unsigned int gup_flags = FOLL_FORCE;
196 #ifdef CONFIG_STACK_GROWSUP
197 if (write) {
198 ret = expand_downwards(bprm->vma, pos);
199 if (ret < 0)
200 return NULL;
202 #endif
204 if (write)
205 gup_flags |= FOLL_WRITE;
208 * We are doing an exec(). 'current' is the process
209 * doing the exec and bprm->mm is the new process's mm.
211 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
212 &page, NULL);
213 if (ret <= 0)
214 return NULL;
216 if (write) {
217 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
218 unsigned long ptr_size;
219 struct rlimit *rlim;
222 * Since the stack will hold pointers to the strings, we
223 * must account for them as well.
225 * The size calculation is the entire vma while each arg page is
226 * built, so each time we get here it's calculating how far it
227 * is currently (rather than each call being just the newly
228 * added size from the arg page). As a result, we need to
229 * always add the entire size of the pointers, so that on the
230 * last call to get_arg_page() we'll actually have the entire
231 * correct size.
233 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
234 if (ptr_size > ULONG_MAX - size)
235 goto fail;
236 size += ptr_size;
238 acct_arg_size(bprm, size / PAGE_SIZE);
241 * We've historically supported up to 32 pages (ARG_MAX)
242 * of argument strings even with small stacks
244 if (size <= ARG_MAX)
245 return page;
248 * Limit to 1/4-th the stack size for the argv+env strings.
249 * This ensures that:
250 * - the remaining binfmt code will not run out of stack space,
251 * - the program will have a reasonable amount of stack left
252 * to work from.
254 rlim = current->signal->rlim;
255 if (size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4)
256 goto fail;
259 return page;
261 fail:
262 put_page(page);
263 return NULL;
266 static void put_arg_page(struct page *page)
268 put_page(page);
271 static void free_arg_pages(struct linux_binprm *bprm)
275 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
276 struct page *page)
278 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
281 static int __bprm_mm_init(struct linux_binprm *bprm)
283 int err;
284 struct vm_area_struct *vma = NULL;
285 struct mm_struct *mm = bprm->mm;
287 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
288 if (!vma)
289 return -ENOMEM;
291 if (down_write_killable(&mm->mmap_sem)) {
292 err = -EINTR;
293 goto err_free;
295 vma->vm_mm = mm;
298 * Place the stack at the largest stack address the architecture
299 * supports. Later, we'll move this to an appropriate place. We don't
300 * use STACK_TOP because that can depend on attributes which aren't
301 * configured yet.
303 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
304 vma->vm_end = STACK_TOP_MAX;
305 vma->vm_start = vma->vm_end - PAGE_SIZE;
306 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
307 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
308 INIT_LIST_HEAD(&vma->anon_vma_chain);
310 err = insert_vm_struct(mm, vma);
311 if (err)
312 goto err;
314 mm->stack_vm = mm->total_vm = 1;
315 arch_bprm_mm_init(mm, vma);
316 up_write(&mm->mmap_sem);
317 bprm->p = vma->vm_end - sizeof(void *);
318 return 0;
319 err:
320 up_write(&mm->mmap_sem);
321 err_free:
322 bprm->vma = NULL;
323 kmem_cache_free(vm_area_cachep, vma);
324 return err;
327 static bool valid_arg_len(struct linux_binprm *bprm, long len)
329 return len <= MAX_ARG_STRLEN;
332 #else
334 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
338 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
339 int write)
341 struct page *page;
343 page = bprm->page[pos / PAGE_SIZE];
344 if (!page && write) {
345 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
346 if (!page)
347 return NULL;
348 bprm->page[pos / PAGE_SIZE] = page;
351 return page;
354 static void put_arg_page(struct page *page)
358 static void free_arg_page(struct linux_binprm *bprm, int i)
360 if (bprm->page[i]) {
361 __free_page(bprm->page[i]);
362 bprm->page[i] = NULL;
366 static void free_arg_pages(struct linux_binprm *bprm)
368 int i;
370 for (i = 0; i < MAX_ARG_PAGES; i++)
371 free_arg_page(bprm, i);
374 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
375 struct page *page)
379 static int __bprm_mm_init(struct linux_binprm *bprm)
381 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
382 return 0;
385 static bool valid_arg_len(struct linux_binprm *bprm, long len)
387 return len <= bprm->p;
390 #endif /* CONFIG_MMU */
393 * Create a new mm_struct and populate it with a temporary stack
394 * vm_area_struct. We don't have enough context at this point to set the stack
395 * flags, permissions, and offset, so we use temporary values. We'll update
396 * them later in setup_arg_pages().
398 static int bprm_mm_init(struct linux_binprm *bprm)
400 int err;
401 struct mm_struct *mm = NULL;
403 bprm->mm = mm = mm_alloc();
404 err = -ENOMEM;
405 if (!mm)
406 goto err;
408 err = __bprm_mm_init(bprm);
409 if (err)
410 goto err;
412 return 0;
414 err:
415 if (mm) {
416 bprm->mm = NULL;
417 mmdrop(mm);
420 return err;
423 struct user_arg_ptr {
424 #ifdef CONFIG_COMPAT
425 bool is_compat;
426 #endif
427 union {
428 const char __user *const __user *native;
429 #ifdef CONFIG_COMPAT
430 const compat_uptr_t __user *compat;
431 #endif
432 } ptr;
435 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
437 const char __user *native;
439 #ifdef CONFIG_COMPAT
440 if (unlikely(argv.is_compat)) {
441 compat_uptr_t compat;
443 if (get_user(compat, argv.ptr.compat + nr))
444 return ERR_PTR(-EFAULT);
446 return compat_ptr(compat);
448 #endif
450 if (get_user(native, argv.ptr.native + nr))
451 return ERR_PTR(-EFAULT);
453 return native;
457 * count() counts the number of strings in array ARGV.
459 static int count(struct user_arg_ptr argv, int max)
461 int i = 0;
463 if (argv.ptr.native != NULL) {
464 for (;;) {
465 const char __user *p = get_user_arg_ptr(argv, i);
467 if (!p)
468 break;
470 if (IS_ERR(p))
471 return -EFAULT;
473 if (i >= max)
474 return -E2BIG;
475 ++i;
477 if (fatal_signal_pending(current))
478 return -ERESTARTNOHAND;
479 cond_resched();
482 return i;
486 * 'copy_strings()' copies argument/environment strings from the old
487 * processes's memory to the new process's stack. The call to get_user_pages()
488 * ensures the destination page is created and not swapped out.
490 static int copy_strings(int argc, struct user_arg_ptr argv,
491 struct linux_binprm *bprm)
493 struct page *kmapped_page = NULL;
494 char *kaddr = NULL;
495 unsigned long kpos = 0;
496 int ret;
498 while (argc-- > 0) {
499 const char __user *str;
500 int len;
501 unsigned long pos;
503 ret = -EFAULT;
504 str = get_user_arg_ptr(argv, argc);
505 if (IS_ERR(str))
506 goto out;
508 len = strnlen_user(str, MAX_ARG_STRLEN);
509 if (!len)
510 goto out;
512 ret = -E2BIG;
513 if (!valid_arg_len(bprm, len))
514 goto out;
516 /* We're going to work our way backwords. */
517 pos = bprm->p;
518 str += len;
519 bprm->p -= len;
521 while (len > 0) {
522 int offset, bytes_to_copy;
524 if (fatal_signal_pending(current)) {
525 ret = -ERESTARTNOHAND;
526 goto out;
528 cond_resched();
530 offset = pos % PAGE_SIZE;
531 if (offset == 0)
532 offset = PAGE_SIZE;
534 bytes_to_copy = offset;
535 if (bytes_to_copy > len)
536 bytes_to_copy = len;
538 offset -= bytes_to_copy;
539 pos -= bytes_to_copy;
540 str -= bytes_to_copy;
541 len -= bytes_to_copy;
543 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
544 struct page *page;
546 page = get_arg_page(bprm, pos, 1);
547 if (!page) {
548 ret = -E2BIG;
549 goto out;
552 if (kmapped_page) {
553 flush_kernel_dcache_page(kmapped_page);
554 kunmap(kmapped_page);
555 put_arg_page(kmapped_page);
557 kmapped_page = page;
558 kaddr = kmap(kmapped_page);
559 kpos = pos & PAGE_MASK;
560 flush_arg_page(bprm, kpos, kmapped_page);
562 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
563 ret = -EFAULT;
564 goto out;
568 ret = 0;
569 out:
570 if (kmapped_page) {
571 flush_kernel_dcache_page(kmapped_page);
572 kunmap(kmapped_page);
573 put_arg_page(kmapped_page);
575 return ret;
579 * Like copy_strings, but get argv and its values from kernel memory.
581 int copy_strings_kernel(int argc, const char *const *__argv,
582 struct linux_binprm *bprm)
584 int r;
585 mm_segment_t oldfs = get_fs();
586 struct user_arg_ptr argv = {
587 .ptr.native = (const char __user *const __user *)__argv,
590 set_fs(KERNEL_DS);
591 r = copy_strings(argc, argv, bprm);
592 set_fs(oldfs);
594 return r;
596 EXPORT_SYMBOL(copy_strings_kernel);
598 #ifdef CONFIG_MMU
601 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
602 * the binfmt code determines where the new stack should reside, we shift it to
603 * its final location. The process proceeds as follows:
605 * 1) Use shift to calculate the new vma endpoints.
606 * 2) Extend vma to cover both the old and new ranges. This ensures the
607 * arguments passed to subsequent functions are consistent.
608 * 3) Move vma's page tables to the new range.
609 * 4) Free up any cleared pgd range.
610 * 5) Shrink the vma to cover only the new range.
612 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
614 struct mm_struct *mm = vma->vm_mm;
615 unsigned long old_start = vma->vm_start;
616 unsigned long old_end = vma->vm_end;
617 unsigned long length = old_end - old_start;
618 unsigned long new_start = old_start - shift;
619 unsigned long new_end = old_end - shift;
620 struct mmu_gather tlb;
622 BUG_ON(new_start > new_end);
625 * ensure there are no vmas between where we want to go
626 * and where we are
628 if (vma != find_vma(mm, new_start))
629 return -EFAULT;
632 * cover the whole range: [new_start, old_end)
634 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
635 return -ENOMEM;
638 * move the page tables downwards, on failure we rely on
639 * process cleanup to remove whatever mess we made.
641 if (length != move_page_tables(vma, old_start,
642 vma, new_start, length, false))
643 return -ENOMEM;
645 lru_add_drain();
646 tlb_gather_mmu(&tlb, mm, old_start, old_end);
647 if (new_end > old_start) {
649 * when the old and new regions overlap clear from new_end.
651 free_pgd_range(&tlb, new_end, old_end, new_end,
652 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
653 } else {
655 * otherwise, clean from old_start; this is done to not touch
656 * the address space in [new_end, old_start) some architectures
657 * have constraints on va-space that make this illegal (IA64) -
658 * for the others its just a little faster.
660 free_pgd_range(&tlb, old_start, old_end, new_end,
661 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
663 tlb_finish_mmu(&tlb, old_start, old_end);
666 * Shrink the vma to just the new range. Always succeeds.
668 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
670 return 0;
674 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
675 * the stack is optionally relocated, and some extra space is added.
677 int setup_arg_pages(struct linux_binprm *bprm,
678 unsigned long stack_top,
679 int executable_stack)
681 unsigned long ret;
682 unsigned long stack_shift;
683 struct mm_struct *mm = current->mm;
684 struct vm_area_struct *vma = bprm->vma;
685 struct vm_area_struct *prev = NULL;
686 unsigned long vm_flags;
687 unsigned long stack_base;
688 unsigned long stack_size;
689 unsigned long stack_expand;
690 unsigned long rlim_stack;
692 #ifdef CONFIG_STACK_GROWSUP
693 /* Limit stack size */
694 stack_base = rlimit_max(RLIMIT_STACK);
695 if (stack_base > STACK_SIZE_MAX)
696 stack_base = STACK_SIZE_MAX;
698 /* Add space for stack randomization. */
699 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
701 /* Make sure we didn't let the argument array grow too large. */
702 if (vma->vm_end - vma->vm_start > stack_base)
703 return -ENOMEM;
705 stack_base = PAGE_ALIGN(stack_top - stack_base);
707 stack_shift = vma->vm_start - stack_base;
708 mm->arg_start = bprm->p - stack_shift;
709 bprm->p = vma->vm_end - stack_shift;
710 #else
711 stack_top = arch_align_stack(stack_top);
712 stack_top = PAGE_ALIGN(stack_top);
714 if (unlikely(stack_top < mmap_min_addr) ||
715 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
716 return -ENOMEM;
718 stack_shift = vma->vm_end - stack_top;
720 bprm->p -= stack_shift;
721 mm->arg_start = bprm->p;
722 #endif
724 if (bprm->loader)
725 bprm->loader -= stack_shift;
726 bprm->exec -= stack_shift;
728 if (down_write_killable(&mm->mmap_sem))
729 return -EINTR;
731 vm_flags = VM_STACK_FLAGS;
734 * Adjust stack execute permissions; explicitly enable for
735 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
736 * (arch default) otherwise.
738 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
739 vm_flags |= VM_EXEC;
740 else if (executable_stack == EXSTACK_DISABLE_X)
741 vm_flags &= ~VM_EXEC;
742 vm_flags |= mm->def_flags;
743 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
745 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
746 vm_flags);
747 if (ret)
748 goto out_unlock;
749 BUG_ON(prev != vma);
751 /* Move stack pages down in memory. */
752 if (stack_shift) {
753 ret = shift_arg_pages(vma, stack_shift);
754 if (ret)
755 goto out_unlock;
758 /* mprotect_fixup is overkill to remove the temporary stack flags */
759 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
761 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
762 stack_size = vma->vm_end - vma->vm_start;
764 * Align this down to a page boundary as expand_stack
765 * will align it up.
767 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
768 #ifdef CONFIG_STACK_GROWSUP
769 if (stack_size + stack_expand > rlim_stack)
770 stack_base = vma->vm_start + rlim_stack;
771 else
772 stack_base = vma->vm_end + stack_expand;
773 #else
774 if (stack_size + stack_expand > rlim_stack)
775 stack_base = vma->vm_end - rlim_stack;
776 else
777 stack_base = vma->vm_start - stack_expand;
778 #endif
779 current->mm->start_stack = bprm->p;
780 ret = expand_stack(vma, stack_base);
781 if (ret)
782 ret = -EFAULT;
784 out_unlock:
785 up_write(&mm->mmap_sem);
786 return ret;
788 EXPORT_SYMBOL(setup_arg_pages);
790 #else
793 * Transfer the program arguments and environment from the holding pages
794 * onto the stack. The provided stack pointer is adjusted accordingly.
796 int transfer_args_to_stack(struct linux_binprm *bprm,
797 unsigned long *sp_location)
799 unsigned long index, stop, sp;
800 int ret = 0;
802 stop = bprm->p >> PAGE_SHIFT;
803 sp = *sp_location;
805 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
806 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
807 char *src = kmap(bprm->page[index]) + offset;
808 sp -= PAGE_SIZE - offset;
809 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
810 ret = -EFAULT;
811 kunmap(bprm->page[index]);
812 if (ret)
813 goto out;
816 *sp_location = sp;
818 out:
819 return ret;
821 EXPORT_SYMBOL(transfer_args_to_stack);
823 #endif /* CONFIG_MMU */
825 static struct file *do_open_execat(int fd, struct filename *name, int flags)
827 struct file *file;
828 int err;
829 struct open_flags open_exec_flags = {
830 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
831 .acc_mode = MAY_EXEC,
832 .intent = LOOKUP_OPEN,
833 .lookup_flags = LOOKUP_FOLLOW,
836 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
837 return ERR_PTR(-EINVAL);
838 if (flags & AT_SYMLINK_NOFOLLOW)
839 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
840 if (flags & AT_EMPTY_PATH)
841 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
843 file = do_filp_open(fd, name, &open_exec_flags);
844 if (IS_ERR(file))
845 goto out;
847 err = -EACCES;
848 if (!S_ISREG(file_inode(file)->i_mode))
849 goto exit;
851 if (path_noexec(&file->f_path))
852 goto exit;
854 err = deny_write_access(file);
855 if (err)
856 goto exit;
858 if (name->name[0] != '\0')
859 fsnotify_open(file);
861 out:
862 return file;
864 exit:
865 fput(file);
866 return ERR_PTR(err);
869 struct file *open_exec(const char *name)
871 struct filename *filename = getname_kernel(name);
872 struct file *f = ERR_CAST(filename);
874 if (!IS_ERR(filename)) {
875 f = do_open_execat(AT_FDCWD, filename, 0);
876 putname(filename);
878 return f;
880 EXPORT_SYMBOL(open_exec);
882 int kernel_read(struct file *file, loff_t offset,
883 char *addr, unsigned long count)
885 mm_segment_t old_fs;
886 loff_t pos = offset;
887 int result;
889 old_fs = get_fs();
890 set_fs(get_ds());
891 /* The cast to a user pointer is valid due to the set_fs() */
892 result = vfs_read(file, (void __user *)addr, count, &pos);
893 set_fs(old_fs);
894 return result;
897 EXPORT_SYMBOL(kernel_read);
899 int kernel_read_file(struct file *file, void **buf, loff_t *size,
900 loff_t max_size, enum kernel_read_file_id id)
902 loff_t i_size, pos;
903 ssize_t bytes = 0;
904 int ret;
906 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
907 return -EINVAL;
909 ret = security_kernel_read_file(file, id);
910 if (ret)
911 return ret;
913 ret = deny_write_access(file);
914 if (ret)
915 return ret;
917 i_size = i_size_read(file_inode(file));
918 if (max_size > 0 && i_size > max_size) {
919 ret = -EFBIG;
920 goto out;
922 if (i_size <= 0) {
923 ret = -EINVAL;
924 goto out;
927 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
928 *buf = vmalloc(i_size);
929 if (!*buf) {
930 ret = -ENOMEM;
931 goto out;
934 pos = 0;
935 while (pos < i_size) {
936 bytes = kernel_read(file, pos, (char *)(*buf) + pos,
937 i_size - pos);
938 if (bytes < 0) {
939 ret = bytes;
940 goto out;
943 if (bytes == 0)
944 break;
945 pos += bytes;
948 if (pos != i_size) {
949 ret = -EIO;
950 goto out_free;
953 ret = security_kernel_post_read_file(file, *buf, i_size, id);
954 if (!ret)
955 *size = pos;
957 out_free:
958 if (ret < 0) {
959 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
960 vfree(*buf);
961 *buf = NULL;
965 out:
966 allow_write_access(file);
967 return ret;
969 EXPORT_SYMBOL_GPL(kernel_read_file);
971 int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
972 loff_t max_size, enum kernel_read_file_id id)
974 struct file *file;
975 int ret;
977 if (!path || !*path)
978 return -EINVAL;
980 file = filp_open(path, O_RDONLY, 0);
981 if (IS_ERR(file))
982 return PTR_ERR(file);
984 ret = kernel_read_file(file, buf, size, max_size, id);
985 fput(file);
986 return ret;
988 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
990 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
991 enum kernel_read_file_id id)
993 struct fd f = fdget(fd);
994 int ret = -EBADF;
996 if (!f.file)
997 goto out;
999 ret = kernel_read_file(f.file, buf, size, max_size, id);
1000 out:
1001 fdput(f);
1002 return ret;
1004 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
1006 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
1008 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1009 if (res > 0)
1010 flush_icache_range(addr, addr + len);
1011 return res;
1013 EXPORT_SYMBOL(read_code);
1015 static int exec_mmap(struct mm_struct *mm)
1017 struct task_struct *tsk;
1018 struct mm_struct *old_mm, *active_mm;
1020 /* Notify parent that we're no longer interested in the old VM */
1021 tsk = current;
1022 old_mm = current->mm;
1023 mm_release(tsk, old_mm);
1025 if (old_mm) {
1026 sync_mm_rss(old_mm);
1028 * Make sure that if there is a core dump in progress
1029 * for the old mm, we get out and die instead of going
1030 * through with the exec. We must hold mmap_sem around
1031 * checking core_state and changing tsk->mm.
1033 down_read(&old_mm->mmap_sem);
1034 if (unlikely(old_mm->core_state)) {
1035 up_read(&old_mm->mmap_sem);
1036 return -EINTR;
1039 task_lock(tsk);
1040 active_mm = tsk->active_mm;
1041 tsk->mm = mm;
1042 tsk->active_mm = mm;
1043 activate_mm(active_mm, mm);
1044 tsk->mm->vmacache_seqnum = 0;
1045 vmacache_flush(tsk);
1046 task_unlock(tsk);
1047 if (old_mm) {
1048 up_read(&old_mm->mmap_sem);
1049 BUG_ON(active_mm != old_mm);
1050 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1051 mm_update_next_owner(old_mm);
1052 mmput(old_mm);
1053 return 0;
1055 mmdrop(active_mm);
1056 return 0;
1060 * This function makes sure the current process has its own signal table,
1061 * so that flush_signal_handlers can later reset the handlers without
1062 * disturbing other processes. (Other processes might share the signal
1063 * table via the CLONE_SIGHAND option to clone().)
1065 static int de_thread(struct task_struct *tsk)
1067 struct signal_struct *sig = tsk->signal;
1068 struct sighand_struct *oldsighand = tsk->sighand;
1069 spinlock_t *lock = &oldsighand->siglock;
1071 if (thread_group_empty(tsk))
1072 goto no_thread_group;
1075 * Kill all other threads in the thread group.
1077 spin_lock_irq(lock);
1078 if (signal_group_exit(sig)) {
1080 * Another group action in progress, just
1081 * return so that the signal is processed.
1083 spin_unlock_irq(lock);
1084 return -EAGAIN;
1087 sig->group_exit_task = tsk;
1088 sig->notify_count = zap_other_threads(tsk);
1089 if (!thread_group_leader(tsk))
1090 sig->notify_count--;
1092 while (sig->notify_count) {
1093 __set_current_state(TASK_KILLABLE);
1094 spin_unlock_irq(lock);
1095 schedule();
1096 if (unlikely(__fatal_signal_pending(tsk)))
1097 goto killed;
1098 spin_lock_irq(lock);
1100 spin_unlock_irq(lock);
1103 * At this point all other threads have exited, all we have to
1104 * do is to wait for the thread group leader to become inactive,
1105 * and to assume its PID:
1107 if (!thread_group_leader(tsk)) {
1108 struct task_struct *leader = tsk->group_leader;
1110 for (;;) {
1111 threadgroup_change_begin(tsk);
1112 write_lock_irq(&tasklist_lock);
1114 * Do this under tasklist_lock to ensure that
1115 * exit_notify() can't miss ->group_exit_task
1117 sig->notify_count = -1;
1118 if (likely(leader->exit_state))
1119 break;
1120 __set_current_state(TASK_KILLABLE);
1121 write_unlock_irq(&tasklist_lock);
1122 threadgroup_change_end(tsk);
1123 schedule();
1124 if (unlikely(__fatal_signal_pending(tsk)))
1125 goto killed;
1129 * The only record we have of the real-time age of a
1130 * process, regardless of execs it's done, is start_time.
1131 * All the past CPU time is accumulated in signal_struct
1132 * from sister threads now dead. But in this non-leader
1133 * exec, nothing survives from the original leader thread,
1134 * whose birth marks the true age of this process now.
1135 * When we take on its identity by switching to its PID, we
1136 * also take its birthdate (always earlier than our own).
1138 tsk->start_time = leader->start_time;
1139 tsk->real_start_time = leader->real_start_time;
1141 BUG_ON(!same_thread_group(leader, tsk));
1142 BUG_ON(has_group_leader_pid(tsk));
1144 * An exec() starts a new thread group with the
1145 * TGID of the previous thread group. Rehash the
1146 * two threads with a switched PID, and release
1147 * the former thread group leader:
1150 /* Become a process group leader with the old leader's pid.
1151 * The old leader becomes a thread of the this thread group.
1152 * Note: The old leader also uses this pid until release_task
1153 * is called. Odd but simple and correct.
1155 tsk->pid = leader->pid;
1156 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1157 transfer_pid(leader, tsk, PIDTYPE_PGID);
1158 transfer_pid(leader, tsk, PIDTYPE_SID);
1160 list_replace_rcu(&leader->tasks, &tsk->tasks);
1161 list_replace_init(&leader->sibling, &tsk->sibling);
1163 tsk->group_leader = tsk;
1164 leader->group_leader = tsk;
1166 tsk->exit_signal = SIGCHLD;
1167 leader->exit_signal = -1;
1169 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1170 leader->exit_state = EXIT_DEAD;
1173 * We are going to release_task()->ptrace_unlink() silently,
1174 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1175 * the tracer wont't block again waiting for this thread.
1177 if (unlikely(leader->ptrace))
1178 __wake_up_parent(leader, leader->parent);
1179 write_unlock_irq(&tasklist_lock);
1180 threadgroup_change_end(tsk);
1182 release_task(leader);
1185 sig->group_exit_task = NULL;
1186 sig->notify_count = 0;
1188 no_thread_group:
1189 /* we have changed execution domain */
1190 tsk->exit_signal = SIGCHLD;
1192 exit_itimers(sig);
1193 flush_itimer_signals();
1195 if (atomic_read(&oldsighand->count) != 1) {
1196 struct sighand_struct *newsighand;
1198 * This ->sighand is shared with the CLONE_SIGHAND
1199 * but not CLONE_THREAD task, switch to the new one.
1201 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1202 if (!newsighand)
1203 return -ENOMEM;
1205 atomic_set(&newsighand->count, 1);
1206 memcpy(newsighand->action, oldsighand->action,
1207 sizeof(newsighand->action));
1209 write_lock_irq(&tasklist_lock);
1210 spin_lock(&oldsighand->siglock);
1211 rcu_assign_pointer(tsk->sighand, newsighand);
1212 spin_unlock(&oldsighand->siglock);
1213 write_unlock_irq(&tasklist_lock);
1215 __cleanup_sighand(oldsighand);
1218 BUG_ON(!thread_group_leader(tsk));
1219 return 0;
1221 killed:
1222 /* protects against exit_notify() and __exit_signal() */
1223 read_lock(&tasklist_lock);
1224 sig->group_exit_task = NULL;
1225 sig->notify_count = 0;
1226 read_unlock(&tasklist_lock);
1227 return -EAGAIN;
1230 char *get_task_comm(char *buf, struct task_struct *tsk)
1232 /* buf must be at least sizeof(tsk->comm) in size */
1233 task_lock(tsk);
1234 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1235 task_unlock(tsk);
1236 return buf;
1238 EXPORT_SYMBOL_GPL(get_task_comm);
1241 * These functions flushes out all traces of the currently running executable
1242 * so that a new one can be started
1245 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1247 task_lock(tsk);
1248 trace_task_rename(tsk, buf);
1249 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1250 task_unlock(tsk);
1251 perf_event_comm(tsk, exec);
1254 int flush_old_exec(struct linux_binprm * bprm)
1256 int retval;
1259 * Make sure we have a private signal table and that
1260 * we are unassociated from the previous thread group.
1262 retval = de_thread(current);
1263 if (retval)
1264 goto out;
1267 * Must be called _before_ exec_mmap() as bprm->mm is
1268 * not visibile until then. This also enables the update
1269 * to be lockless.
1271 set_mm_exe_file(bprm->mm, bprm->file);
1274 * Release all of the old mmap stuff
1276 acct_arg_size(bprm, 0);
1277 retval = exec_mmap(bprm->mm);
1278 if (retval)
1279 goto out;
1281 bprm->mm = NULL; /* We're using it now */
1283 set_fs(USER_DS);
1284 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1285 PF_NOFREEZE | PF_NO_SETAFFINITY);
1286 flush_thread();
1287 current->personality &= ~bprm->per_clear;
1290 * We have to apply CLOEXEC before we change whether the process is
1291 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1292 * trying to access the should-be-closed file descriptors of a process
1293 * undergoing exec(2).
1295 do_close_on_exec(current->files);
1296 return 0;
1298 out:
1299 return retval;
1301 EXPORT_SYMBOL(flush_old_exec);
1303 void would_dump(struct linux_binprm *bprm, struct file *file)
1305 struct inode *inode = file_inode(file);
1306 if (inode_permission(inode, MAY_READ) < 0) {
1307 struct user_namespace *old, *user_ns;
1308 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1310 /* Ensure mm->user_ns contains the executable */
1311 user_ns = old = bprm->mm->user_ns;
1312 while ((user_ns != &init_user_ns) &&
1313 !privileged_wrt_inode_uidgid(user_ns, inode))
1314 user_ns = user_ns->parent;
1316 if (old != user_ns) {
1317 bprm->mm->user_ns = get_user_ns(user_ns);
1318 put_user_ns(old);
1322 EXPORT_SYMBOL(would_dump);
1324 void setup_new_exec(struct linux_binprm * bprm)
1326 arch_pick_mmap_layout(current->mm);
1328 /* This is the point of no return */
1329 current->sas_ss_sp = current->sas_ss_size = 0;
1331 if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1332 set_dumpable(current->mm, SUID_DUMP_USER);
1333 else
1334 set_dumpable(current->mm, suid_dumpable);
1336 perf_event_exec();
1337 __set_task_comm(current, kbasename(bprm->filename), true);
1339 /* Set the new mm task size. We have to do that late because it may
1340 * depend on TIF_32BIT which is only updated in flush_thread() on
1341 * some architectures like powerpc
1343 current->mm->task_size = TASK_SIZE;
1345 /* install the new credentials */
1346 if (!uid_eq(bprm->cred->uid, current_euid()) ||
1347 !gid_eq(bprm->cred->gid, current_egid())) {
1348 current->pdeath_signal = 0;
1349 } else {
1350 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1351 set_dumpable(current->mm, suid_dumpable);
1354 /* An exec changes our domain. We are no longer part of the thread
1355 group */
1356 current->self_exec_id++;
1357 flush_signal_handlers(current, 0);
1359 EXPORT_SYMBOL(setup_new_exec);
1362 * Prepare credentials and lock ->cred_guard_mutex.
1363 * install_exec_creds() commits the new creds and drops the lock.
1364 * Or, if exec fails before, free_bprm() should release ->cred and
1365 * and unlock.
1367 int prepare_bprm_creds(struct linux_binprm *bprm)
1369 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1370 return -ERESTARTNOINTR;
1372 bprm->cred = prepare_exec_creds();
1373 if (likely(bprm->cred))
1374 return 0;
1376 mutex_unlock(&current->signal->cred_guard_mutex);
1377 return -ENOMEM;
1380 static void free_bprm(struct linux_binprm *bprm)
1382 free_arg_pages(bprm);
1383 if (bprm->cred) {
1384 mutex_unlock(&current->signal->cred_guard_mutex);
1385 abort_creds(bprm->cred);
1387 if (bprm->file) {
1388 allow_write_access(bprm->file);
1389 fput(bprm->file);
1391 /* If a binfmt changed the interp, free it. */
1392 if (bprm->interp != bprm->filename)
1393 kfree(bprm->interp);
1394 kfree(bprm);
1397 int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1399 /* If a binfmt changed the interp, free it first. */
1400 if (bprm->interp != bprm->filename)
1401 kfree(bprm->interp);
1402 bprm->interp = kstrdup(interp, GFP_KERNEL);
1403 if (!bprm->interp)
1404 return -ENOMEM;
1405 return 0;
1407 EXPORT_SYMBOL(bprm_change_interp);
1410 * install the new credentials for this executable
1412 void install_exec_creds(struct linux_binprm *bprm)
1414 security_bprm_committing_creds(bprm);
1416 commit_creds(bprm->cred);
1417 bprm->cred = NULL;
1420 * Disable monitoring for regular users
1421 * when executing setuid binaries. Must
1422 * wait until new credentials are committed
1423 * by commit_creds() above
1425 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1426 perf_event_exit_task(current);
1428 * cred_guard_mutex must be held at least to this point to prevent
1429 * ptrace_attach() from altering our determination of the task's
1430 * credentials; any time after this it may be unlocked.
1432 security_bprm_committed_creds(bprm);
1433 mutex_unlock(&current->signal->cred_guard_mutex);
1435 EXPORT_SYMBOL(install_exec_creds);
1438 * determine how safe it is to execute the proposed program
1439 * - the caller must hold ->cred_guard_mutex to protect against
1440 * PTRACE_ATTACH or seccomp thread-sync
1442 static void check_unsafe_exec(struct linux_binprm *bprm)
1444 struct task_struct *p = current, *t;
1445 unsigned n_fs;
1447 if (p->ptrace) {
1448 if (ptracer_capable(p, current_user_ns()))
1449 bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1450 else
1451 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1455 * This isn't strictly necessary, but it makes it harder for LSMs to
1456 * mess up.
1458 if (task_no_new_privs(current))
1459 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1461 t = p;
1462 n_fs = 1;
1463 spin_lock(&p->fs->lock);
1464 rcu_read_lock();
1465 while_each_thread(p, t) {
1466 if (t->fs == p->fs)
1467 n_fs++;
1469 rcu_read_unlock();
1471 if (p->fs->users > n_fs)
1472 bprm->unsafe |= LSM_UNSAFE_SHARE;
1473 else
1474 p->fs->in_exec = 1;
1475 spin_unlock(&p->fs->lock);
1478 static void bprm_fill_uid(struct linux_binprm *bprm)
1480 struct inode *inode;
1481 unsigned int mode;
1482 kuid_t uid;
1483 kgid_t gid;
1486 * Since this can be called multiple times (via prepare_binprm),
1487 * we must clear any previous work done when setting set[ug]id
1488 * bits from any earlier bprm->file uses (for example when run
1489 * first for a setuid script then again for its interpreter).
1491 bprm->cred->euid = current_euid();
1492 bprm->cred->egid = current_egid();
1494 if (!mnt_may_suid(bprm->file->f_path.mnt))
1495 return;
1497 if (task_no_new_privs(current))
1498 return;
1500 inode = file_inode(bprm->file);
1501 mode = READ_ONCE(inode->i_mode);
1502 if (!(mode & (S_ISUID|S_ISGID)))
1503 return;
1505 /* Be careful if suid/sgid is set */
1506 inode_lock(inode);
1508 /* reload atomically mode/uid/gid now that lock held */
1509 mode = inode->i_mode;
1510 uid = inode->i_uid;
1511 gid = inode->i_gid;
1512 inode_unlock(inode);
1514 /* We ignore suid/sgid if there are no mappings for them in the ns */
1515 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1516 !kgid_has_mapping(bprm->cred->user_ns, gid))
1517 return;
1519 if (mode & S_ISUID) {
1520 bprm->per_clear |= PER_CLEAR_ON_SETID;
1521 bprm->cred->euid = uid;
1524 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1525 bprm->per_clear |= PER_CLEAR_ON_SETID;
1526 bprm->cred->egid = gid;
1531 * Fill the binprm structure from the inode.
1532 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1534 * This may be called multiple times for binary chains (scripts for example).
1536 int prepare_binprm(struct linux_binprm *bprm)
1538 int retval;
1540 bprm_fill_uid(bprm);
1542 /* fill in binprm security blob */
1543 retval = security_bprm_set_creds(bprm);
1544 if (retval)
1545 return retval;
1546 bprm->cred_prepared = 1;
1548 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1549 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1552 EXPORT_SYMBOL(prepare_binprm);
1555 * Arguments are '\0' separated strings found at the location bprm->p
1556 * points to; chop off the first by relocating brpm->p to right after
1557 * the first '\0' encountered.
1559 int remove_arg_zero(struct linux_binprm *bprm)
1561 int ret = 0;
1562 unsigned long offset;
1563 char *kaddr;
1564 struct page *page;
1566 if (!bprm->argc)
1567 return 0;
1569 do {
1570 offset = bprm->p & ~PAGE_MASK;
1571 page = get_arg_page(bprm, bprm->p, 0);
1572 if (!page) {
1573 ret = -EFAULT;
1574 goto out;
1576 kaddr = kmap_atomic(page);
1578 for (; offset < PAGE_SIZE && kaddr[offset];
1579 offset++, bprm->p++)
1582 kunmap_atomic(kaddr);
1583 put_arg_page(page);
1584 } while (offset == PAGE_SIZE);
1586 bprm->p++;
1587 bprm->argc--;
1588 ret = 0;
1590 out:
1591 return ret;
1593 EXPORT_SYMBOL(remove_arg_zero);
1595 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1597 * cycle the list of binary formats handler, until one recognizes the image
1599 int search_binary_handler(struct linux_binprm *bprm)
1601 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1602 struct linux_binfmt *fmt;
1603 int retval;
1605 /* This allows 4 levels of binfmt rewrites before failing hard. */
1606 if (bprm->recursion_depth > 5)
1607 return -ELOOP;
1609 retval = security_bprm_check(bprm);
1610 if (retval)
1611 return retval;
1613 retval = -ENOENT;
1614 retry:
1615 read_lock(&binfmt_lock);
1616 list_for_each_entry(fmt, &formats, lh) {
1617 if (!try_module_get(fmt->module))
1618 continue;
1619 read_unlock(&binfmt_lock);
1620 bprm->recursion_depth++;
1621 retval = fmt->load_binary(bprm);
1622 read_lock(&binfmt_lock);
1623 put_binfmt(fmt);
1624 bprm->recursion_depth--;
1625 if (retval < 0 && !bprm->mm) {
1626 /* we got to flush_old_exec() and failed after it */
1627 read_unlock(&binfmt_lock);
1628 force_sigsegv(SIGSEGV, current);
1629 return retval;
1631 if (retval != -ENOEXEC || !bprm->file) {
1632 read_unlock(&binfmt_lock);
1633 return retval;
1636 read_unlock(&binfmt_lock);
1638 if (need_retry) {
1639 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1640 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1641 return retval;
1642 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1643 return retval;
1644 need_retry = false;
1645 goto retry;
1648 return retval;
1650 EXPORT_SYMBOL(search_binary_handler);
1652 static int exec_binprm(struct linux_binprm *bprm)
1654 pid_t old_pid, old_vpid;
1655 int ret;
1657 /* Need to fetch pid before load_binary changes it */
1658 old_pid = current->pid;
1659 rcu_read_lock();
1660 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1661 rcu_read_unlock();
1663 ret = search_binary_handler(bprm);
1664 if (ret >= 0) {
1665 audit_bprm(bprm);
1666 trace_sched_process_exec(current, old_pid, bprm);
1667 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1668 proc_exec_connector(current);
1671 return ret;
1675 * sys_execve() executes a new program.
1677 static int do_execveat_common(int fd, struct filename *filename,
1678 struct user_arg_ptr argv,
1679 struct user_arg_ptr envp,
1680 int flags)
1682 char *pathbuf = NULL;
1683 struct linux_binprm *bprm;
1684 struct file *file;
1685 struct files_struct *displaced;
1686 int retval;
1688 if (IS_ERR(filename))
1689 return PTR_ERR(filename);
1692 * We move the actual failure in case of RLIMIT_NPROC excess from
1693 * set*uid() to execve() because too many poorly written programs
1694 * don't check setuid() return code. Here we additionally recheck
1695 * whether NPROC limit is still exceeded.
1697 if ((current->flags & PF_NPROC_EXCEEDED) &&
1698 atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1699 retval = -EAGAIN;
1700 goto out_ret;
1703 /* We're below the limit (still or again), so we don't want to make
1704 * further execve() calls fail. */
1705 current->flags &= ~PF_NPROC_EXCEEDED;
1707 retval = unshare_files(&displaced);
1708 if (retval)
1709 goto out_ret;
1711 retval = -ENOMEM;
1712 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1713 if (!bprm)
1714 goto out_files;
1716 retval = prepare_bprm_creds(bprm);
1717 if (retval)
1718 goto out_free;
1720 check_unsafe_exec(bprm);
1721 current->in_execve = 1;
1723 file = do_open_execat(fd, filename, flags);
1724 retval = PTR_ERR(file);
1725 if (IS_ERR(file))
1726 goto out_unmark;
1728 sched_exec();
1730 bprm->file = file;
1731 if (fd == AT_FDCWD || filename->name[0] == '/') {
1732 bprm->filename = filename->name;
1733 } else {
1734 if (filename->name[0] == '\0')
1735 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1736 else
1737 pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1738 fd, filename->name);
1739 if (!pathbuf) {
1740 retval = -ENOMEM;
1741 goto out_unmark;
1744 * Record that a name derived from an O_CLOEXEC fd will be
1745 * inaccessible after exec. Relies on having exclusive access to
1746 * current->files (due to unshare_files above).
1748 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1749 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1750 bprm->filename = pathbuf;
1752 bprm->interp = bprm->filename;
1754 retval = bprm_mm_init(bprm);
1755 if (retval)
1756 goto out_unmark;
1758 bprm->argc = count(argv, MAX_ARG_STRINGS);
1759 if ((retval = bprm->argc) < 0)
1760 goto out;
1762 bprm->envc = count(envp, MAX_ARG_STRINGS);
1763 if ((retval = bprm->envc) < 0)
1764 goto out;
1766 retval = prepare_binprm(bprm);
1767 if (retval < 0)
1768 goto out;
1770 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1771 if (retval < 0)
1772 goto out;
1774 bprm->exec = bprm->p;
1775 retval = copy_strings(bprm->envc, envp, bprm);
1776 if (retval < 0)
1777 goto out;
1779 retval = copy_strings(bprm->argc, argv, bprm);
1780 if (retval < 0)
1781 goto out;
1783 would_dump(bprm, bprm->file);
1785 retval = exec_binprm(bprm);
1786 if (retval < 0)
1787 goto out;
1789 /* execve succeeded */
1790 current->fs->in_exec = 0;
1791 current->in_execve = 0;
1792 acct_update_integrals(current);
1793 task_numa_free(current);
1794 free_bprm(bprm);
1795 kfree(pathbuf);
1796 putname(filename);
1797 if (displaced)
1798 put_files_struct(displaced);
1799 return retval;
1801 out:
1802 if (bprm->mm) {
1803 acct_arg_size(bprm, 0);
1804 mmput(bprm->mm);
1807 out_unmark:
1808 current->fs->in_exec = 0;
1809 current->in_execve = 0;
1811 out_free:
1812 free_bprm(bprm);
1813 kfree(pathbuf);
1815 out_files:
1816 if (displaced)
1817 reset_files_struct(displaced);
1818 out_ret:
1819 putname(filename);
1820 return retval;
1823 int do_execve(struct filename *filename,
1824 const char __user *const __user *__argv,
1825 const char __user *const __user *__envp)
1827 struct user_arg_ptr argv = { .ptr.native = __argv };
1828 struct user_arg_ptr envp = { .ptr.native = __envp };
1829 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1832 int do_execveat(int fd, struct filename *filename,
1833 const char __user *const __user *__argv,
1834 const char __user *const __user *__envp,
1835 int flags)
1837 struct user_arg_ptr argv = { .ptr.native = __argv };
1838 struct user_arg_ptr envp = { .ptr.native = __envp };
1840 return do_execveat_common(fd, filename, argv, envp, flags);
1843 #ifdef CONFIG_COMPAT
1844 static int compat_do_execve(struct filename *filename,
1845 const compat_uptr_t __user *__argv,
1846 const compat_uptr_t __user *__envp)
1848 struct user_arg_ptr argv = {
1849 .is_compat = true,
1850 .ptr.compat = __argv,
1852 struct user_arg_ptr envp = {
1853 .is_compat = true,
1854 .ptr.compat = __envp,
1856 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1859 static int compat_do_execveat(int fd, struct filename *filename,
1860 const compat_uptr_t __user *__argv,
1861 const compat_uptr_t __user *__envp,
1862 int flags)
1864 struct user_arg_ptr argv = {
1865 .is_compat = true,
1866 .ptr.compat = __argv,
1868 struct user_arg_ptr envp = {
1869 .is_compat = true,
1870 .ptr.compat = __envp,
1872 return do_execveat_common(fd, filename, argv, envp, flags);
1874 #endif
1876 void set_binfmt(struct linux_binfmt *new)
1878 struct mm_struct *mm = current->mm;
1880 if (mm->binfmt)
1881 module_put(mm->binfmt->module);
1883 mm->binfmt = new;
1884 if (new)
1885 __module_get(new->module);
1887 EXPORT_SYMBOL(set_binfmt);
1890 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1892 void set_dumpable(struct mm_struct *mm, int value)
1894 unsigned long old, new;
1896 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1897 return;
1899 do {
1900 old = ACCESS_ONCE(mm->flags);
1901 new = (old & ~MMF_DUMPABLE_MASK) | value;
1902 } while (cmpxchg(&mm->flags, old, new) != old);
1905 SYSCALL_DEFINE3(execve,
1906 const char __user *, filename,
1907 const char __user *const __user *, argv,
1908 const char __user *const __user *, envp)
1910 return do_execve(getname(filename), argv, envp);
1913 SYSCALL_DEFINE5(execveat,
1914 int, fd, const char __user *, filename,
1915 const char __user *const __user *, argv,
1916 const char __user *const __user *, envp,
1917 int, flags)
1919 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1921 return do_execveat(fd,
1922 getname_flags(filename, lookup_flags, NULL),
1923 argv, envp, flags);
1926 #ifdef CONFIG_COMPAT
1927 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1928 const compat_uptr_t __user *, argv,
1929 const compat_uptr_t __user *, envp)
1931 return compat_do_execve(getname(filename), argv, envp);
1934 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1935 const char __user *, filename,
1936 const compat_uptr_t __user *, argv,
1937 const compat_uptr_t __user *, envp,
1938 int, flags)
1940 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1942 return compat_do_execveat(fd,
1943 getname_flags(filename, lookup_flags, NULL),
1944 argv, envp, flags);
1946 #endif