4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache
*discard_entry_slab
;
29 static struct kmem_cache
*bio_entry_slab
;
30 static struct kmem_cache
*sit_entry_set_slab
;
31 static struct kmem_cache
*inmem_entry_slab
;
33 static unsigned long __reverse_ulong(unsigned char *str
)
35 unsigned long tmp
= 0;
36 int shift
= 24, idx
= 0;
38 #if BITS_PER_LONG == 64
42 tmp
|= (unsigned long)str
[idx
++] << shift
;
43 shift
-= BITS_PER_BYTE
;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word
)
56 #if BITS_PER_LONG == 64
57 if ((word
& 0xffffffff00000000UL
) == 0)
62 if ((word
& 0xffff0000) == 0)
67 if ((word
& 0xff00) == 0)
72 if ((word
& 0xf0) == 0)
77 if ((word
& 0xc) == 0)
82 if ((word
& 0x2) == 0)
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
97 unsigned long size
, unsigned long offset
)
99 const unsigned long *p
= addr
+ BIT_WORD(offset
);
100 unsigned long result
= size
;
106 size
-= (offset
& ~(BITS_PER_LONG
- 1));
107 offset
%= BITS_PER_LONG
;
113 tmp
= __reverse_ulong((unsigned char *)p
);
115 tmp
&= ~0UL >> offset
;
116 if (size
< BITS_PER_LONG
)
117 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
121 if (size
<= BITS_PER_LONG
)
123 size
-= BITS_PER_LONG
;
129 return result
- size
+ __reverse_ffs(tmp
);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
133 unsigned long size
, unsigned long offset
)
135 const unsigned long *p
= addr
+ BIT_WORD(offset
);
136 unsigned long result
= size
;
142 size
-= (offset
& ~(BITS_PER_LONG
- 1));
143 offset
%= BITS_PER_LONG
;
149 tmp
= __reverse_ulong((unsigned char *)p
);
152 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
153 if (size
< BITS_PER_LONG
)
158 if (size
<= BITS_PER_LONG
)
160 size
-= BITS_PER_LONG
;
166 return result
- size
+ __reverse_ffz(tmp
);
169 void register_inmem_page(struct inode
*inode
, struct page
*page
)
171 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
172 struct inmem_pages
*new;
174 f2fs_trace_pid(page
);
176 set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
177 SetPagePrivate(page
);
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
181 /* add atomic page indices to the list */
183 INIT_LIST_HEAD(&new->list
);
185 /* increase reference count with clean state */
186 mutex_lock(&fi
->inmem_lock
);
188 list_add_tail(&new->list
, &fi
->inmem_pages
);
189 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
190 mutex_unlock(&fi
->inmem_lock
);
192 trace_f2fs_register_inmem_page(page
, INMEM
);
195 static int __revoke_inmem_pages(struct inode
*inode
,
196 struct list_head
*head
, bool drop
, bool recover
)
198 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
199 struct inmem_pages
*cur
, *tmp
;
202 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
203 struct page
*page
= cur
->page
;
206 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
211 struct dnode_of_data dn
;
214 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
216 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
217 if (get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
)) {
221 get_node_info(sbi
, dn
.nid
, &ni
);
222 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
223 cur
->old_addr
, ni
.version
, true, true);
227 /* we don't need to invalidate this in the sccessful status */
229 ClearPageUptodate(page
);
230 set_page_private(page
, 0);
231 ClearPagePrivate(page
);
232 f2fs_put_page(page
, 1);
234 list_del(&cur
->list
);
235 kmem_cache_free(inmem_entry_slab
, cur
);
236 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
241 void drop_inmem_pages(struct inode
*inode
)
243 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
245 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
247 mutex_lock(&fi
->inmem_lock
);
248 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
249 mutex_unlock(&fi
->inmem_lock
);
252 static int __commit_inmem_pages(struct inode
*inode
,
253 struct list_head
*revoke_list
)
255 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
256 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
257 struct inmem_pages
*cur
, *tmp
;
258 struct f2fs_io_info fio
= {
262 .op_flags
= WRITE_SYNC
| REQ_PRIO
,
263 .encrypted_page
= NULL
,
265 bool submit_bio
= false;
268 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
269 struct page
*page
= cur
->page
;
272 if (page
->mapping
== inode
->i_mapping
) {
273 trace_f2fs_commit_inmem_page(page
, INMEM
);
275 set_page_dirty(page
);
276 f2fs_wait_on_page_writeback(page
, DATA
, true);
277 if (clear_page_dirty_for_io(page
))
278 inode_dec_dirty_pages(inode
);
281 err
= do_write_data_page(&fio
);
287 /* record old blkaddr for revoking */
288 cur
->old_addr
= fio
.old_blkaddr
;
290 clear_cold_data(page
);
294 list_move_tail(&cur
->list
, revoke_list
);
298 f2fs_submit_merged_bio_cond(sbi
, inode
, NULL
, 0, DATA
, WRITE
);
301 __revoke_inmem_pages(inode
, revoke_list
, false, false);
306 int commit_inmem_pages(struct inode
*inode
)
308 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
309 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
310 struct list_head revoke_list
;
313 INIT_LIST_HEAD(&revoke_list
);
314 f2fs_balance_fs(sbi
, true);
317 mutex_lock(&fi
->inmem_lock
);
318 err
= __commit_inmem_pages(inode
, &revoke_list
);
322 * try to revoke all committed pages, but still we could fail
323 * due to no memory or other reason, if that happened, EAGAIN
324 * will be returned, which means in such case, transaction is
325 * already not integrity, caller should use journal to do the
326 * recovery or rewrite & commit last transaction. For other
327 * error number, revoking was done by filesystem itself.
329 ret
= __revoke_inmem_pages(inode
, &revoke_list
, false, true);
333 /* drop all uncommitted pages */
334 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
336 mutex_unlock(&fi
->inmem_lock
);
343 * This function balances dirty node and dentry pages.
344 * In addition, it controls garbage collection.
346 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
348 #ifdef CONFIG_F2FS_FAULT_INJECTION
349 if (time_to_inject(sbi
, FAULT_CHECKPOINT
))
350 f2fs_stop_checkpoint(sbi
, false);
356 /* balance_fs_bg is able to be pending */
357 if (excess_cached_nats(sbi
))
358 f2fs_balance_fs_bg(sbi
);
361 * We should do GC or end up with checkpoint, if there are so many dirty
362 * dir/node pages without enough free segments.
364 if (has_not_enough_free_secs(sbi
, 0, 0)) {
365 mutex_lock(&sbi
->gc_mutex
);
370 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
372 /* try to shrink extent cache when there is no enough memory */
373 if (!available_free_memory(sbi
, EXTENT_CACHE
))
374 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
376 /* check the # of cached NAT entries */
377 if (!available_free_memory(sbi
, NAT_ENTRIES
))
378 try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
380 if (!available_free_memory(sbi
, FREE_NIDS
))
381 try_to_free_nids(sbi
, MAX_FREE_NIDS
);
383 build_free_nids(sbi
);
385 /* checkpoint is the only way to shrink partial cached entries */
386 if (!available_free_memory(sbi
, NAT_ENTRIES
) ||
387 !available_free_memory(sbi
, INO_ENTRIES
) ||
388 excess_prefree_segs(sbi
) ||
389 excess_dirty_nats(sbi
) ||
390 (is_idle(sbi
) && f2fs_time_over(sbi
, CP_TIME
))) {
391 if (test_opt(sbi
, DATA_FLUSH
)) {
392 struct blk_plug plug
;
394 blk_start_plug(&plug
);
395 sync_dirty_inodes(sbi
, FILE_INODE
);
396 blk_finish_plug(&plug
);
398 f2fs_sync_fs(sbi
->sb
, true);
399 stat_inc_bg_cp_count(sbi
->stat_info
);
403 static int issue_flush_thread(void *data
)
405 struct f2fs_sb_info
*sbi
= data
;
406 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
407 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
409 if (kthread_should_stop())
412 if (!llist_empty(&fcc
->issue_list
)) {
414 struct flush_cmd
*cmd
, *next
;
417 bio
= f2fs_bio_alloc(0);
419 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
420 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
422 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
423 bio_set_op_attrs(bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
424 ret
= submit_bio_wait(bio
);
426 llist_for_each_entry_safe(cmd
, next
,
427 fcc
->dispatch_list
, llnode
) {
429 complete(&cmd
->wait
);
432 fcc
->dispatch_list
= NULL
;
435 wait_event_interruptible(*q
,
436 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
440 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
)
442 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
443 struct flush_cmd cmd
;
445 trace_f2fs_issue_flush(sbi
->sb
, test_opt(sbi
, NOBARRIER
),
446 test_opt(sbi
, FLUSH_MERGE
));
448 if (test_opt(sbi
, NOBARRIER
))
451 if (!test_opt(sbi
, FLUSH_MERGE
) || !atomic_read(&fcc
->submit_flush
)) {
452 struct bio
*bio
= f2fs_bio_alloc(0);
455 atomic_inc(&fcc
->submit_flush
);
456 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
457 bio_set_op_attrs(bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
458 ret
= submit_bio_wait(bio
);
459 atomic_dec(&fcc
->submit_flush
);
464 init_completion(&cmd
.wait
);
466 atomic_inc(&fcc
->submit_flush
);
467 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
469 if (!fcc
->dispatch_list
)
470 wake_up(&fcc
->flush_wait_queue
);
472 wait_for_completion(&cmd
.wait
);
473 atomic_dec(&fcc
->submit_flush
);
478 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
480 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
481 struct flush_cmd_control
*fcc
;
484 fcc
= kzalloc(sizeof(struct flush_cmd_control
), GFP_KERNEL
);
487 atomic_set(&fcc
->submit_flush
, 0);
488 init_waitqueue_head(&fcc
->flush_wait_queue
);
489 init_llist_head(&fcc
->issue_list
);
490 SM_I(sbi
)->cmd_control_info
= fcc
;
491 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
492 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
493 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
494 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
496 SM_I(sbi
)->cmd_control_info
= NULL
;
503 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
)
505 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
507 if (fcc
&& fcc
->f2fs_issue_flush
)
508 kthread_stop(fcc
->f2fs_issue_flush
);
510 SM_I(sbi
)->cmd_control_info
= NULL
;
513 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
514 enum dirty_type dirty_type
)
516 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
518 /* need not be added */
519 if (IS_CURSEG(sbi
, segno
))
522 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
523 dirty_i
->nr_dirty
[dirty_type
]++;
525 if (dirty_type
== DIRTY
) {
526 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
527 enum dirty_type t
= sentry
->type
;
529 if (unlikely(t
>= DIRTY
)) {
533 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
534 dirty_i
->nr_dirty
[t
]++;
538 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
539 enum dirty_type dirty_type
)
541 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
543 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
544 dirty_i
->nr_dirty
[dirty_type
]--;
546 if (dirty_type
== DIRTY
) {
547 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
548 enum dirty_type t
= sentry
->type
;
550 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
551 dirty_i
->nr_dirty
[t
]--;
553 if (get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
) == 0)
554 clear_bit(GET_SECNO(sbi
, segno
),
555 dirty_i
->victim_secmap
);
560 * Should not occur error such as -ENOMEM.
561 * Adding dirty entry into seglist is not critical operation.
562 * If a given segment is one of current working segments, it won't be added.
564 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
566 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
567 unsigned short valid_blocks
;
569 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
572 mutex_lock(&dirty_i
->seglist_lock
);
574 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
576 if (valid_blocks
== 0) {
577 __locate_dirty_segment(sbi
, segno
, PRE
);
578 __remove_dirty_segment(sbi
, segno
, DIRTY
);
579 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
580 __locate_dirty_segment(sbi
, segno
, DIRTY
);
582 /* Recovery routine with SSR needs this */
583 __remove_dirty_segment(sbi
, segno
, DIRTY
);
586 mutex_unlock(&dirty_i
->seglist_lock
);
589 static struct bio_entry
*__add_bio_entry(struct f2fs_sb_info
*sbi
,
592 struct list_head
*wait_list
= &(SM_I(sbi
)->wait_list
);
593 struct bio_entry
*be
= f2fs_kmem_cache_alloc(bio_entry_slab
, GFP_NOFS
);
595 INIT_LIST_HEAD(&be
->list
);
597 init_completion(&be
->event
);
598 list_add_tail(&be
->list
, wait_list
);
603 void f2fs_wait_all_discard_bio(struct f2fs_sb_info
*sbi
)
605 struct list_head
*wait_list
= &(SM_I(sbi
)->wait_list
);
606 struct bio_entry
*be
, *tmp
;
608 list_for_each_entry_safe(be
, tmp
, wait_list
, list
) {
609 struct bio
*bio
= be
->bio
;
612 wait_for_completion_io(&be
->event
);
614 if (err
== -EOPNOTSUPP
)
618 f2fs_msg(sbi
->sb
, KERN_INFO
,
619 "Issue discard failed, ret: %d", err
);
623 kmem_cache_free(bio_entry_slab
, be
);
627 static void f2fs_submit_bio_wait_endio(struct bio
*bio
)
629 struct bio_entry
*be
= (struct bio_entry
*)bio
->bi_private
;
631 be
->error
= bio
->bi_error
;
632 complete(&be
->event
);
635 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
636 int __f2fs_issue_discard_async(struct f2fs_sb_info
*sbi
, sector_t sector
,
637 sector_t nr_sects
, gfp_t gfp_mask
, unsigned long flags
)
639 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
640 struct bio
*bio
= NULL
;
643 err
= __blkdev_issue_discard(bdev
, sector
, nr_sects
, gfp_mask
, flags
,
646 struct bio_entry
*be
= __add_bio_entry(sbi
, bio
);
648 bio
->bi_private
= be
;
649 bio
->bi_end_io
= f2fs_submit_bio_wait_endio
;
650 bio
->bi_opf
|= REQ_SYNC
;
657 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
658 block_t blkstart
, block_t blklen
)
660 sector_t start
= SECTOR_FROM_BLOCK(blkstart
);
661 sector_t len
= SECTOR_FROM_BLOCK(blklen
);
662 struct seg_entry
*se
;
666 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++) {
667 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
668 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
670 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
673 trace_f2fs_issue_discard(sbi
->sb
, blkstart
, blklen
);
674 return __f2fs_issue_discard_async(sbi
, start
, len
, GFP_NOFS
, 0);
677 static void __add_discard_entry(struct f2fs_sb_info
*sbi
,
678 struct cp_control
*cpc
, struct seg_entry
*se
,
679 unsigned int start
, unsigned int end
)
681 struct list_head
*head
= &SM_I(sbi
)->discard_list
;
682 struct discard_entry
*new, *last
;
684 if (!list_empty(head
)) {
685 last
= list_last_entry(head
, struct discard_entry
, list
);
686 if (START_BLOCK(sbi
, cpc
->trim_start
) + start
==
687 last
->blkaddr
+ last
->len
) {
688 last
->len
+= end
- start
;
693 new = f2fs_kmem_cache_alloc(discard_entry_slab
, GFP_NOFS
);
694 INIT_LIST_HEAD(&new->list
);
695 new->blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
) + start
;
696 new->len
= end
- start
;
697 list_add_tail(&new->list
, head
);
699 SM_I(sbi
)->nr_discards
+= end
- start
;
702 static void add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
704 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
705 int max_blocks
= sbi
->blocks_per_seg
;
706 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
707 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
708 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
709 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
710 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
711 unsigned int start
= 0, end
= -1;
712 bool force
= (cpc
->reason
== CP_DISCARD
);
715 if (se
->valid_blocks
== max_blocks
|| !f2fs_discard_en(sbi
))
719 if (!test_opt(sbi
, DISCARD
) || !se
->valid_blocks
||
720 SM_I(sbi
)->nr_discards
>= SM_I(sbi
)->max_discards
)
724 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
725 for (i
= 0; i
< entries
; i
++)
726 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
727 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
729 while (force
|| SM_I(sbi
)->nr_discards
<= SM_I(sbi
)->max_discards
) {
730 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
731 if (start
>= max_blocks
)
734 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
735 if (force
&& start
&& end
!= max_blocks
736 && (end
- start
) < cpc
->trim_minlen
)
739 __add_discard_entry(sbi
, cpc
, se
, start
, end
);
743 void release_discard_addrs(struct f2fs_sb_info
*sbi
)
745 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
746 struct discard_entry
*entry
, *this;
749 list_for_each_entry_safe(entry
, this, head
, list
) {
750 list_del(&entry
->list
);
751 kmem_cache_free(discard_entry_slab
, entry
);
756 * Should call clear_prefree_segments after checkpoint is done.
758 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
760 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
763 mutex_lock(&dirty_i
->seglist_lock
);
764 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
765 __set_test_and_free(sbi
, segno
);
766 mutex_unlock(&dirty_i
->seglist_lock
);
769 void clear_prefree_segments(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
771 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
772 struct discard_entry
*entry
, *this;
773 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
774 struct blk_plug plug
;
775 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
776 unsigned int start
= 0, end
= -1;
777 unsigned int secno
, start_segno
;
778 bool force
= (cpc
->reason
== CP_DISCARD
);
780 blk_start_plug(&plug
);
782 mutex_lock(&dirty_i
->seglist_lock
);
786 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
787 if (start
>= MAIN_SEGS(sbi
))
789 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
792 for (i
= start
; i
< end
; i
++)
793 clear_bit(i
, prefree_map
);
795 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
797 if (force
|| !test_opt(sbi
, DISCARD
))
800 if (!test_opt(sbi
, LFS
) || sbi
->segs_per_sec
== 1) {
801 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
802 (end
- start
) << sbi
->log_blocks_per_seg
);
806 secno
= GET_SECNO(sbi
, start
);
807 start_segno
= secno
* sbi
->segs_per_sec
;
808 if (!IS_CURSEC(sbi
, secno
) &&
809 !get_valid_blocks(sbi
, start
, sbi
->segs_per_sec
))
810 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start_segno
),
811 sbi
->segs_per_sec
<< sbi
->log_blocks_per_seg
);
813 start
= start_segno
+ sbi
->segs_per_sec
;
819 mutex_unlock(&dirty_i
->seglist_lock
);
821 /* send small discards */
822 list_for_each_entry_safe(entry
, this, head
, list
) {
823 if (force
&& entry
->len
< cpc
->trim_minlen
)
825 f2fs_issue_discard(sbi
, entry
->blkaddr
, entry
->len
);
826 cpc
->trimmed
+= entry
->len
;
828 list_del(&entry
->list
);
829 SM_I(sbi
)->nr_discards
-= entry
->len
;
830 kmem_cache_free(discard_entry_slab
, entry
);
833 blk_finish_plug(&plug
);
836 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
838 struct sit_info
*sit_i
= SIT_I(sbi
);
840 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
841 sit_i
->dirty_sentries
++;
848 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
849 unsigned int segno
, int modified
)
851 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
854 __mark_sit_entry_dirty(sbi
, segno
);
857 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
859 struct seg_entry
*se
;
860 unsigned int segno
, offset
;
861 long int new_vblocks
;
863 segno
= GET_SEGNO(sbi
, blkaddr
);
865 se
= get_seg_entry(sbi
, segno
);
866 new_vblocks
= se
->valid_blocks
+ del
;
867 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
869 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
870 (new_vblocks
> sbi
->blocks_per_seg
)));
872 se
->valid_blocks
= new_vblocks
;
873 se
->mtime
= get_mtime(sbi
);
874 SIT_I(sbi
)->max_mtime
= se
->mtime
;
876 /* Update valid block bitmap */
878 if (f2fs_test_and_set_bit(offset
, se
->cur_valid_map
))
880 if (f2fs_discard_en(sbi
) &&
881 !f2fs_test_and_set_bit(offset
, se
->discard_map
))
884 if (!f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
))
886 if (f2fs_discard_en(sbi
) &&
887 f2fs_test_and_clear_bit(offset
, se
->discard_map
))
890 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
891 se
->ckpt_valid_blocks
+= del
;
893 __mark_sit_entry_dirty(sbi
, segno
);
895 /* update total number of valid blocks to be written in ckpt area */
896 SIT_I(sbi
)->written_valid_blocks
+= del
;
898 if (sbi
->segs_per_sec
> 1)
899 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
902 void refresh_sit_entry(struct f2fs_sb_info
*sbi
, block_t old
, block_t
new)
904 update_sit_entry(sbi
, new, 1);
905 if (GET_SEGNO(sbi
, old
) != NULL_SEGNO
)
906 update_sit_entry(sbi
, old
, -1);
908 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old
));
909 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new));
912 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
914 unsigned int segno
= GET_SEGNO(sbi
, addr
);
915 struct sit_info
*sit_i
= SIT_I(sbi
);
917 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
918 if (addr
== NEW_ADDR
)
921 /* add it into sit main buffer */
922 mutex_lock(&sit_i
->sentry_lock
);
924 update_sit_entry(sbi
, addr
, -1);
926 /* add it into dirty seglist */
927 locate_dirty_segment(sbi
, segno
);
929 mutex_unlock(&sit_i
->sentry_lock
);
932 bool is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
934 struct sit_info
*sit_i
= SIT_I(sbi
);
935 unsigned int segno
, offset
;
936 struct seg_entry
*se
;
939 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
942 mutex_lock(&sit_i
->sentry_lock
);
944 segno
= GET_SEGNO(sbi
, blkaddr
);
945 se
= get_seg_entry(sbi
, segno
);
946 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
948 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
951 mutex_unlock(&sit_i
->sentry_lock
);
957 * This function should be resided under the curseg_mutex lock
959 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
960 struct f2fs_summary
*sum
)
962 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
963 void *addr
= curseg
->sum_blk
;
964 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
965 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
969 * Calculate the number of current summary pages for writing
971 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
973 int valid_sum_count
= 0;
976 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
977 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
978 valid_sum_count
+= sbi
->blocks_per_seg
;
981 valid_sum_count
+= le16_to_cpu(
982 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
984 valid_sum_count
+= curseg_blkoff(sbi
, i
);
988 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
989 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
990 if (valid_sum_count
<= sum_in_page
)
992 else if ((valid_sum_count
- sum_in_page
) <=
993 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
999 * Caller should put this summary page
1001 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
1003 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
1006 void update_meta_page(struct f2fs_sb_info
*sbi
, void *src
, block_t blk_addr
)
1008 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
1009 void *dst
= page_address(page
);
1012 memcpy(dst
, src
, PAGE_SIZE
);
1014 memset(dst
, 0, PAGE_SIZE
);
1015 set_page_dirty(page
);
1016 f2fs_put_page(page
, 1);
1019 static void write_sum_page(struct f2fs_sb_info
*sbi
,
1020 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
1022 update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
1025 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
1026 int type
, block_t blk_addr
)
1028 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1029 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
1030 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
1031 struct f2fs_summary_block
*dst
;
1033 dst
= (struct f2fs_summary_block
*)page_address(page
);
1035 mutex_lock(&curseg
->curseg_mutex
);
1037 down_read(&curseg
->journal_rwsem
);
1038 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
1039 up_read(&curseg
->journal_rwsem
);
1041 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
1042 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
1044 mutex_unlock(&curseg
->curseg_mutex
);
1046 set_page_dirty(page
);
1047 f2fs_put_page(page
, 1);
1050 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
1052 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1053 unsigned int segno
= curseg
->segno
+ 1;
1054 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1056 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
1057 return !test_bit(segno
, free_i
->free_segmap
);
1062 * Find a new segment from the free segments bitmap to right order
1063 * This function should be returned with success, otherwise BUG
1065 static void get_new_segment(struct f2fs_sb_info
*sbi
,
1066 unsigned int *newseg
, bool new_sec
, int dir
)
1068 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1069 unsigned int segno
, secno
, zoneno
;
1070 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
1071 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
1072 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
1073 unsigned int left_start
= hint
;
1078 spin_lock(&free_i
->segmap_lock
);
1080 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
1081 segno
= find_next_zero_bit(free_i
->free_segmap
,
1082 (hint
+ 1) * sbi
->segs_per_sec
, *newseg
+ 1);
1083 if (segno
< (hint
+ 1) * sbi
->segs_per_sec
)
1087 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
1088 if (secno
>= MAIN_SECS(sbi
)) {
1089 if (dir
== ALLOC_RIGHT
) {
1090 secno
= find_next_zero_bit(free_i
->free_secmap
,
1092 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
1095 left_start
= hint
- 1;
1101 while (test_bit(left_start
, free_i
->free_secmap
)) {
1102 if (left_start
> 0) {
1106 left_start
= find_next_zero_bit(free_i
->free_secmap
,
1108 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
1114 segno
= secno
* sbi
->segs_per_sec
;
1115 zoneno
= secno
/ sbi
->secs_per_zone
;
1117 /* give up on finding another zone */
1120 if (sbi
->secs_per_zone
== 1)
1122 if (zoneno
== old_zoneno
)
1124 if (dir
== ALLOC_LEFT
) {
1125 if (!go_left
&& zoneno
+ 1 >= total_zones
)
1127 if (go_left
&& zoneno
== 0)
1130 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
1131 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
1134 if (i
< NR_CURSEG_TYPE
) {
1135 /* zone is in user, try another */
1137 hint
= zoneno
* sbi
->secs_per_zone
- 1;
1138 else if (zoneno
+ 1 >= total_zones
)
1141 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
1143 goto find_other_zone
;
1146 /* set it as dirty segment in free segmap */
1147 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
1148 __set_inuse(sbi
, segno
);
1150 spin_unlock(&free_i
->segmap_lock
);
1153 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
1155 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1156 struct summary_footer
*sum_footer
;
1158 curseg
->segno
= curseg
->next_segno
;
1159 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
1160 curseg
->next_blkoff
= 0;
1161 curseg
->next_segno
= NULL_SEGNO
;
1163 sum_footer
= &(curseg
->sum_blk
->footer
);
1164 memset(sum_footer
, 0, sizeof(struct summary_footer
));
1165 if (IS_DATASEG(type
))
1166 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
1167 if (IS_NODESEG(type
))
1168 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
1169 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
1173 * Allocate a current working segment.
1174 * This function always allocates a free segment in LFS manner.
1176 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
1178 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1179 unsigned int segno
= curseg
->segno
;
1180 int dir
= ALLOC_LEFT
;
1182 write_sum_page(sbi
, curseg
->sum_blk
,
1183 GET_SUM_BLOCK(sbi
, segno
));
1184 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
1187 if (test_opt(sbi
, NOHEAP
))
1190 get_new_segment(sbi
, &segno
, new_sec
, dir
);
1191 curseg
->next_segno
= segno
;
1192 reset_curseg(sbi
, type
, 1);
1193 curseg
->alloc_type
= LFS
;
1196 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
1197 struct curseg_info
*seg
, block_t start
)
1199 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
1200 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1201 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
1202 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1203 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1206 for (i
= 0; i
< entries
; i
++)
1207 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
1209 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
1211 seg
->next_blkoff
= pos
;
1215 * If a segment is written by LFS manner, next block offset is just obtained
1216 * by increasing the current block offset. However, if a segment is written by
1217 * SSR manner, next block offset obtained by calling __next_free_blkoff
1219 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
1220 struct curseg_info
*seg
)
1222 if (seg
->alloc_type
== SSR
)
1223 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
1229 * This function always allocates a used segment(from dirty seglist) by SSR
1230 * manner, so it should recover the existing segment information of valid blocks
1232 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
1234 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1235 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1236 unsigned int new_segno
= curseg
->next_segno
;
1237 struct f2fs_summary_block
*sum_node
;
1238 struct page
*sum_page
;
1240 write_sum_page(sbi
, curseg
->sum_blk
,
1241 GET_SUM_BLOCK(sbi
, curseg
->segno
));
1242 __set_test_and_inuse(sbi
, new_segno
);
1244 mutex_lock(&dirty_i
->seglist_lock
);
1245 __remove_dirty_segment(sbi
, new_segno
, PRE
);
1246 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
1247 mutex_unlock(&dirty_i
->seglist_lock
);
1249 reset_curseg(sbi
, type
, 1);
1250 curseg
->alloc_type
= SSR
;
1251 __next_free_blkoff(sbi
, curseg
, 0);
1254 sum_page
= get_sum_page(sbi
, new_segno
);
1255 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
1256 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
1257 f2fs_put_page(sum_page
, 1);
1261 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
1263 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1264 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
1266 if (IS_NODESEG(type
) || !has_not_enough_free_secs(sbi
, 0, 0))
1267 return v_ops
->get_victim(sbi
,
1268 &(curseg
)->next_segno
, BG_GC
, type
, SSR
);
1270 /* For data segments, let's do SSR more intensively */
1271 for (; type
>= CURSEG_HOT_DATA
; type
--)
1272 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
,
1279 * flush out current segment and replace it with new segment
1280 * This function should be returned with success, otherwise BUG
1282 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
1283 int type
, bool force
)
1285 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1288 new_curseg(sbi
, type
, true);
1289 else if (type
== CURSEG_WARM_NODE
)
1290 new_curseg(sbi
, type
, false);
1291 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
1292 new_curseg(sbi
, type
, false);
1293 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
1294 change_curseg(sbi
, type
, true);
1296 new_curseg(sbi
, type
, false);
1298 stat_inc_seg_type(sbi
, curseg
);
1301 static void __allocate_new_segments(struct f2fs_sb_info
*sbi
, int type
)
1303 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1304 unsigned int old_segno
;
1306 old_segno
= curseg
->segno
;
1307 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, type
, true);
1308 locate_dirty_segment(sbi
, old_segno
);
1311 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
1315 if (test_opt(sbi
, LFS
))
1318 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++)
1319 __allocate_new_segments(sbi
, i
);
1322 static const struct segment_allocation default_salloc_ops
= {
1323 .allocate_segment
= allocate_segment_by_default
,
1326 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
1328 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
1329 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
1330 unsigned int start_segno
, end_segno
;
1331 struct cp_control cpc
;
1334 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
1338 if (end
<= MAIN_BLKADDR(sbi
))
1341 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
1342 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1343 "Found FS corruption, run fsck to fix.");
1347 /* start/end segment number in main_area */
1348 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
1349 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
1350 GET_SEGNO(sbi
, end
);
1351 cpc
.reason
= CP_DISCARD
;
1352 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
1354 /* do checkpoint to issue discard commands safely */
1355 for (; start_segno
<= end_segno
; start_segno
= cpc
.trim_end
+ 1) {
1356 cpc
.trim_start
= start_segno
;
1358 if (sbi
->discard_blks
== 0)
1360 else if (sbi
->discard_blks
< BATCHED_TRIM_BLOCKS(sbi
))
1361 cpc
.trim_end
= end_segno
;
1363 cpc
.trim_end
= min_t(unsigned int,
1364 rounddown(start_segno
+
1365 BATCHED_TRIM_SEGMENTS(sbi
),
1366 sbi
->segs_per_sec
) - 1, end_segno
);
1368 mutex_lock(&sbi
->gc_mutex
);
1369 err
= write_checkpoint(sbi
, &cpc
);
1370 mutex_unlock(&sbi
->gc_mutex
);
1377 range
->len
= F2FS_BLK_TO_BYTES(cpc
.trimmed
);
1381 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
1383 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1384 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
1389 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
1392 return CURSEG_HOT_DATA
;
1394 return CURSEG_HOT_NODE
;
1397 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
1399 if (p_type
== DATA
) {
1400 struct inode
*inode
= page
->mapping
->host
;
1402 if (S_ISDIR(inode
->i_mode
))
1403 return CURSEG_HOT_DATA
;
1405 return CURSEG_COLD_DATA
;
1407 if (IS_DNODE(page
) && is_cold_node(page
))
1408 return CURSEG_WARM_NODE
;
1410 return CURSEG_COLD_NODE
;
1414 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
1416 if (p_type
== DATA
) {
1417 struct inode
*inode
= page
->mapping
->host
;
1419 if (S_ISDIR(inode
->i_mode
))
1420 return CURSEG_HOT_DATA
;
1421 else if (is_cold_data(page
) || file_is_cold(inode
))
1422 return CURSEG_COLD_DATA
;
1424 return CURSEG_WARM_DATA
;
1427 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
1430 return CURSEG_COLD_NODE
;
1434 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
1436 switch (F2FS_P_SB(page
)->active_logs
) {
1438 return __get_segment_type_2(page
, p_type
);
1440 return __get_segment_type_4(page
, p_type
);
1442 /* NR_CURSEG_TYPE(6) logs by default */
1443 f2fs_bug_on(F2FS_P_SB(page
),
1444 F2FS_P_SB(page
)->active_logs
!= NR_CURSEG_TYPE
);
1445 return __get_segment_type_6(page
, p_type
);
1448 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
1449 block_t old_blkaddr
, block_t
*new_blkaddr
,
1450 struct f2fs_summary
*sum
, int type
)
1452 struct sit_info
*sit_i
= SIT_I(sbi
);
1453 struct curseg_info
*curseg
;
1454 bool direct_io
= (type
== CURSEG_DIRECT_IO
);
1456 type
= direct_io
? CURSEG_WARM_DATA
: type
;
1458 curseg
= CURSEG_I(sbi
, type
);
1460 mutex_lock(&curseg
->curseg_mutex
);
1461 mutex_lock(&sit_i
->sentry_lock
);
1463 /* direct_io'ed data is aligned to the segment for better performance */
1464 if (direct_io
&& curseg
->next_blkoff
&&
1465 !has_not_enough_free_secs(sbi
, 0, 0))
1466 __allocate_new_segments(sbi
, type
);
1468 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
1471 * __add_sum_entry should be resided under the curseg_mutex
1472 * because, this function updates a summary entry in the
1473 * current summary block.
1475 __add_sum_entry(sbi
, type
, sum
);
1477 __refresh_next_blkoff(sbi
, curseg
);
1479 stat_inc_block_count(sbi
, curseg
);
1481 if (!__has_curseg_space(sbi
, type
))
1482 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
1484 * SIT information should be updated before segment allocation,
1485 * since SSR needs latest valid block information.
1487 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
1489 mutex_unlock(&sit_i
->sentry_lock
);
1491 if (page
&& IS_NODESEG(type
))
1492 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
1494 mutex_unlock(&curseg
->curseg_mutex
);
1497 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
1499 int type
= __get_segment_type(fio
->page
, fio
->type
);
1501 if (fio
->type
== NODE
|| fio
->type
== DATA
)
1502 mutex_lock(&fio
->sbi
->wio_mutex
[fio
->type
]);
1504 allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
1505 &fio
->new_blkaddr
, sum
, type
);
1507 /* writeout dirty page into bdev */
1508 f2fs_submit_page_mbio(fio
);
1510 if (fio
->type
== NODE
|| fio
->type
== DATA
)
1511 mutex_unlock(&fio
->sbi
->wio_mutex
[fio
->type
]);
1514 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1516 struct f2fs_io_info fio
= {
1520 .op_flags
= WRITE_SYNC
| REQ_META
| REQ_PRIO
,
1521 .old_blkaddr
= page
->index
,
1522 .new_blkaddr
= page
->index
,
1524 .encrypted_page
= NULL
,
1527 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
1528 fio
.op_flags
&= ~REQ_META
;
1530 set_page_writeback(page
);
1531 f2fs_submit_page_mbio(&fio
);
1534 void write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
1536 struct f2fs_summary sum
;
1538 set_summary(&sum
, nid
, 0, 0);
1539 do_write_page(&sum
, fio
);
1542 void write_data_page(struct dnode_of_data
*dn
, struct f2fs_io_info
*fio
)
1544 struct f2fs_sb_info
*sbi
= fio
->sbi
;
1545 struct f2fs_summary sum
;
1546 struct node_info ni
;
1548 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
1549 get_node_info(sbi
, dn
->nid
, &ni
);
1550 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1551 do_write_page(&sum
, fio
);
1552 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
1555 void rewrite_data_page(struct f2fs_io_info
*fio
)
1557 fio
->new_blkaddr
= fio
->old_blkaddr
;
1558 stat_inc_inplace_blocks(fio
->sbi
);
1559 f2fs_submit_page_mbio(fio
);
1562 void __f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
1563 block_t old_blkaddr
, block_t new_blkaddr
,
1564 bool recover_curseg
, bool recover_newaddr
)
1566 struct sit_info
*sit_i
= SIT_I(sbi
);
1567 struct curseg_info
*curseg
;
1568 unsigned int segno
, old_cursegno
;
1569 struct seg_entry
*se
;
1571 unsigned short old_blkoff
;
1573 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1574 se
= get_seg_entry(sbi
, segno
);
1577 if (!recover_curseg
) {
1578 /* for recovery flow */
1579 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
1580 if (old_blkaddr
== NULL_ADDR
)
1581 type
= CURSEG_COLD_DATA
;
1583 type
= CURSEG_WARM_DATA
;
1586 if (!IS_CURSEG(sbi
, segno
))
1587 type
= CURSEG_WARM_DATA
;
1590 curseg
= CURSEG_I(sbi
, type
);
1592 mutex_lock(&curseg
->curseg_mutex
);
1593 mutex_lock(&sit_i
->sentry_lock
);
1595 old_cursegno
= curseg
->segno
;
1596 old_blkoff
= curseg
->next_blkoff
;
1598 /* change the current segment */
1599 if (segno
!= curseg
->segno
) {
1600 curseg
->next_segno
= segno
;
1601 change_curseg(sbi
, type
, true);
1604 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1605 __add_sum_entry(sbi
, type
, sum
);
1607 if (!recover_curseg
|| recover_newaddr
)
1608 update_sit_entry(sbi
, new_blkaddr
, 1);
1609 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
1610 update_sit_entry(sbi
, old_blkaddr
, -1);
1612 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
1613 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
1615 locate_dirty_segment(sbi
, old_cursegno
);
1617 if (recover_curseg
) {
1618 if (old_cursegno
!= curseg
->segno
) {
1619 curseg
->next_segno
= old_cursegno
;
1620 change_curseg(sbi
, type
, true);
1622 curseg
->next_blkoff
= old_blkoff
;
1625 mutex_unlock(&sit_i
->sentry_lock
);
1626 mutex_unlock(&curseg
->curseg_mutex
);
1629 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
1630 block_t old_addr
, block_t new_addr
,
1631 unsigned char version
, bool recover_curseg
,
1632 bool recover_newaddr
)
1634 struct f2fs_summary sum
;
1636 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
1638 __f2fs_replace_block(sbi
, &sum
, old_addr
, new_addr
,
1639 recover_curseg
, recover_newaddr
);
1641 f2fs_update_data_blkaddr(dn
, new_addr
);
1644 void f2fs_wait_on_page_writeback(struct page
*page
,
1645 enum page_type type
, bool ordered
)
1647 if (PageWriteback(page
)) {
1648 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1650 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, type
, WRITE
);
1652 wait_on_page_writeback(page
);
1654 wait_for_stable_page(page
);
1658 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info
*sbi
,
1663 if (blkaddr
== NEW_ADDR
|| blkaddr
== NULL_ADDR
)
1666 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
1668 f2fs_wait_on_page_writeback(cpage
, DATA
, true);
1669 f2fs_put_page(cpage
, 1);
1673 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
1675 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1676 struct curseg_info
*seg_i
;
1677 unsigned char *kaddr
;
1682 start
= start_sum_block(sbi
);
1684 page
= get_meta_page(sbi
, start
++);
1685 kaddr
= (unsigned char *)page_address(page
);
1687 /* Step 1: restore nat cache */
1688 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1689 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
1691 /* Step 2: restore sit cache */
1692 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1693 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
1694 offset
= 2 * SUM_JOURNAL_SIZE
;
1696 /* Step 3: restore summary entries */
1697 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1698 unsigned short blk_off
;
1701 seg_i
= CURSEG_I(sbi
, i
);
1702 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
1703 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
1704 seg_i
->next_segno
= segno
;
1705 reset_curseg(sbi
, i
, 0);
1706 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
1707 seg_i
->next_blkoff
= blk_off
;
1709 if (seg_i
->alloc_type
== SSR
)
1710 blk_off
= sbi
->blocks_per_seg
;
1712 for (j
= 0; j
< blk_off
; j
++) {
1713 struct f2fs_summary
*s
;
1714 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
1715 seg_i
->sum_blk
->entries
[j
] = *s
;
1716 offset
+= SUMMARY_SIZE
;
1717 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
1721 f2fs_put_page(page
, 1);
1724 page
= get_meta_page(sbi
, start
++);
1725 kaddr
= (unsigned char *)page_address(page
);
1729 f2fs_put_page(page
, 1);
1733 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
1735 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1736 struct f2fs_summary_block
*sum
;
1737 struct curseg_info
*curseg
;
1739 unsigned short blk_off
;
1740 unsigned int segno
= 0;
1741 block_t blk_addr
= 0;
1743 /* get segment number and block addr */
1744 if (IS_DATASEG(type
)) {
1745 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
1746 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
1748 if (__exist_node_summaries(sbi
))
1749 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
1751 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
1753 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
1755 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
1757 if (__exist_node_summaries(sbi
))
1758 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
1759 type
- CURSEG_HOT_NODE
);
1761 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
1764 new = get_meta_page(sbi
, blk_addr
);
1765 sum
= (struct f2fs_summary_block
*)page_address(new);
1767 if (IS_NODESEG(type
)) {
1768 if (__exist_node_summaries(sbi
)) {
1769 struct f2fs_summary
*ns
= &sum
->entries
[0];
1771 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
1773 ns
->ofs_in_node
= 0;
1778 err
= restore_node_summary(sbi
, segno
, sum
);
1780 f2fs_put_page(new, 1);
1786 /* set uncompleted segment to curseg */
1787 curseg
= CURSEG_I(sbi
, type
);
1788 mutex_lock(&curseg
->curseg_mutex
);
1790 /* update journal info */
1791 down_write(&curseg
->journal_rwsem
);
1792 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
1793 up_write(&curseg
->journal_rwsem
);
1795 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
1796 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
1797 curseg
->next_segno
= segno
;
1798 reset_curseg(sbi
, type
, 0);
1799 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
1800 curseg
->next_blkoff
= blk_off
;
1801 mutex_unlock(&curseg
->curseg_mutex
);
1802 f2fs_put_page(new, 1);
1806 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
1808 int type
= CURSEG_HOT_DATA
;
1811 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
)) {
1812 int npages
= npages_for_summary_flush(sbi
, true);
1815 ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
1818 /* restore for compacted data summary */
1819 if (read_compacted_summaries(sbi
))
1821 type
= CURSEG_HOT_NODE
;
1824 if (__exist_node_summaries(sbi
))
1825 ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
1826 NR_CURSEG_TYPE
- type
, META_CP
, true);
1828 for (; type
<= CURSEG_COLD_NODE
; type
++) {
1829 err
= read_normal_summaries(sbi
, type
);
1837 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1840 unsigned char *kaddr
;
1841 struct f2fs_summary
*summary
;
1842 struct curseg_info
*seg_i
;
1843 int written_size
= 0;
1846 page
= grab_meta_page(sbi
, blkaddr
++);
1847 kaddr
= (unsigned char *)page_address(page
);
1849 /* Step 1: write nat cache */
1850 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1851 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
1852 written_size
+= SUM_JOURNAL_SIZE
;
1854 /* Step 2: write sit cache */
1855 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1856 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
1857 written_size
+= SUM_JOURNAL_SIZE
;
1859 /* Step 3: write summary entries */
1860 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1861 unsigned short blkoff
;
1862 seg_i
= CURSEG_I(sbi
, i
);
1863 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1864 blkoff
= sbi
->blocks_per_seg
;
1866 blkoff
= curseg_blkoff(sbi
, i
);
1868 for (j
= 0; j
< blkoff
; j
++) {
1870 page
= grab_meta_page(sbi
, blkaddr
++);
1871 kaddr
= (unsigned char *)page_address(page
);
1874 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
1875 *summary
= seg_i
->sum_blk
->entries
[j
];
1876 written_size
+= SUMMARY_SIZE
;
1878 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
1882 set_page_dirty(page
);
1883 f2fs_put_page(page
, 1);
1888 set_page_dirty(page
);
1889 f2fs_put_page(page
, 1);
1893 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
1894 block_t blkaddr
, int type
)
1897 if (IS_DATASEG(type
))
1898 end
= type
+ NR_CURSEG_DATA_TYPE
;
1900 end
= type
+ NR_CURSEG_NODE_TYPE
;
1902 for (i
= type
; i
< end
; i
++)
1903 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
1906 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1908 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
))
1909 write_compacted_summaries(sbi
, start_blk
);
1911 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
1914 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1916 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
1919 int lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
1920 unsigned int val
, int alloc
)
1924 if (type
== NAT_JOURNAL
) {
1925 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1926 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
1929 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
1930 return update_nats_in_cursum(journal
, 1);
1931 } else if (type
== SIT_JOURNAL
) {
1932 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
1933 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
1935 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
1936 return update_sits_in_cursum(journal
, 1);
1941 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
1944 return get_meta_page(sbi
, current_sit_addr(sbi
, segno
));
1947 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
1950 struct sit_info
*sit_i
= SIT_I(sbi
);
1951 struct page
*src_page
, *dst_page
;
1952 pgoff_t src_off
, dst_off
;
1953 void *src_addr
, *dst_addr
;
1955 src_off
= current_sit_addr(sbi
, start
);
1956 dst_off
= next_sit_addr(sbi
, src_off
);
1958 /* get current sit block page without lock */
1959 src_page
= get_meta_page(sbi
, src_off
);
1960 dst_page
= grab_meta_page(sbi
, dst_off
);
1961 f2fs_bug_on(sbi
, PageDirty(src_page
));
1963 src_addr
= page_address(src_page
);
1964 dst_addr
= page_address(dst_page
);
1965 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
1967 set_page_dirty(dst_page
);
1968 f2fs_put_page(src_page
, 1);
1970 set_to_next_sit(sit_i
, start
);
1975 static struct sit_entry_set
*grab_sit_entry_set(void)
1977 struct sit_entry_set
*ses
=
1978 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
1981 INIT_LIST_HEAD(&ses
->set_list
);
1985 static void release_sit_entry_set(struct sit_entry_set
*ses
)
1987 list_del(&ses
->set_list
);
1988 kmem_cache_free(sit_entry_set_slab
, ses
);
1991 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
1992 struct list_head
*head
)
1994 struct sit_entry_set
*next
= ses
;
1996 if (list_is_last(&ses
->set_list
, head
))
1999 list_for_each_entry_continue(next
, head
, set_list
)
2000 if (ses
->entry_cnt
<= next
->entry_cnt
)
2003 list_move_tail(&ses
->set_list
, &next
->set_list
);
2006 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
2008 struct sit_entry_set
*ses
;
2009 unsigned int start_segno
= START_SEGNO(segno
);
2011 list_for_each_entry(ses
, head
, set_list
) {
2012 if (ses
->start_segno
== start_segno
) {
2014 adjust_sit_entry_set(ses
, head
);
2019 ses
= grab_sit_entry_set();
2021 ses
->start_segno
= start_segno
;
2023 list_add(&ses
->set_list
, head
);
2026 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
2028 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2029 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
2030 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
2033 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
2034 add_sit_entry(segno
, set_list
);
2037 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
2039 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2040 struct f2fs_journal
*journal
= curseg
->journal
;
2043 down_write(&curseg
->journal_rwsem
);
2044 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
2048 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
2049 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
2052 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
2054 update_sits_in_cursum(journal
, -i
);
2055 up_write(&curseg
->journal_rwsem
);
2059 * CP calls this function, which flushes SIT entries including sit_journal,
2060 * and moves prefree segs to free segs.
2062 void flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2064 struct sit_info
*sit_i
= SIT_I(sbi
);
2065 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
2066 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2067 struct f2fs_journal
*journal
= curseg
->journal
;
2068 struct sit_entry_set
*ses
, *tmp
;
2069 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
2070 bool to_journal
= true;
2071 struct seg_entry
*se
;
2073 mutex_lock(&sit_i
->sentry_lock
);
2075 if (!sit_i
->dirty_sentries
)
2079 * add and account sit entries of dirty bitmap in sit entry
2082 add_sits_in_set(sbi
);
2085 * if there are no enough space in journal to store dirty sit
2086 * entries, remove all entries from journal and add and account
2087 * them in sit entry set.
2089 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
))
2090 remove_sits_in_journal(sbi
);
2093 * there are two steps to flush sit entries:
2094 * #1, flush sit entries to journal in current cold data summary block.
2095 * #2, flush sit entries to sit page.
2097 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
2098 struct page
*page
= NULL
;
2099 struct f2fs_sit_block
*raw_sit
= NULL
;
2100 unsigned int start_segno
= ses
->start_segno
;
2101 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
2102 (unsigned long)MAIN_SEGS(sbi
));
2103 unsigned int segno
= start_segno
;
2106 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
2110 down_write(&curseg
->journal_rwsem
);
2112 page
= get_next_sit_page(sbi
, start_segno
);
2113 raw_sit
= page_address(page
);
2116 /* flush dirty sit entries in region of current sit set */
2117 for_each_set_bit_from(segno
, bitmap
, end
) {
2118 int offset
, sit_offset
;
2120 se
= get_seg_entry(sbi
, segno
);
2122 /* add discard candidates */
2123 if (cpc
->reason
!= CP_DISCARD
) {
2124 cpc
->trim_start
= segno
;
2125 add_discard_addrs(sbi
, cpc
);
2129 offset
= lookup_journal_in_cursum(journal
,
2130 SIT_JOURNAL
, segno
, 1);
2131 f2fs_bug_on(sbi
, offset
< 0);
2132 segno_in_journal(journal
, offset
) =
2134 seg_info_to_raw_sit(se
,
2135 &sit_in_journal(journal
, offset
));
2137 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
2138 seg_info_to_raw_sit(se
,
2139 &raw_sit
->entries
[sit_offset
]);
2142 __clear_bit(segno
, bitmap
);
2143 sit_i
->dirty_sentries
--;
2148 up_write(&curseg
->journal_rwsem
);
2150 f2fs_put_page(page
, 1);
2152 f2fs_bug_on(sbi
, ses
->entry_cnt
);
2153 release_sit_entry_set(ses
);
2156 f2fs_bug_on(sbi
, !list_empty(head
));
2157 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
2159 if (cpc
->reason
== CP_DISCARD
) {
2160 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
2161 add_discard_addrs(sbi
, cpc
);
2163 mutex_unlock(&sit_i
->sentry_lock
);
2165 set_prefree_as_free_segments(sbi
);
2168 static int build_sit_info(struct f2fs_sb_info
*sbi
)
2170 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2171 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2172 struct sit_info
*sit_i
;
2173 unsigned int sit_segs
, start
;
2174 char *src_bitmap
, *dst_bitmap
;
2175 unsigned int bitmap_size
;
2177 /* allocate memory for SIT information */
2178 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
2182 SM_I(sbi
)->sit_info
= sit_i
;
2184 sit_i
->sentries
= f2fs_kvzalloc(MAIN_SEGS(sbi
) *
2185 sizeof(struct seg_entry
), GFP_KERNEL
);
2186 if (!sit_i
->sentries
)
2189 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2190 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2191 if (!sit_i
->dirty_sentries_bitmap
)
2194 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2195 sit_i
->sentries
[start
].cur_valid_map
2196 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2197 sit_i
->sentries
[start
].ckpt_valid_map
2198 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2199 if (!sit_i
->sentries
[start
].cur_valid_map
||
2200 !sit_i
->sentries
[start
].ckpt_valid_map
)
2203 if (f2fs_discard_en(sbi
)) {
2204 sit_i
->sentries
[start
].discard_map
2205 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2206 if (!sit_i
->sentries
[start
].discard_map
)
2211 sit_i
->tmp_map
= kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2212 if (!sit_i
->tmp_map
)
2215 if (sbi
->segs_per_sec
> 1) {
2216 sit_i
->sec_entries
= f2fs_kvzalloc(MAIN_SECS(sbi
) *
2217 sizeof(struct sec_entry
), GFP_KERNEL
);
2218 if (!sit_i
->sec_entries
)
2222 /* get information related with SIT */
2223 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
2225 /* setup SIT bitmap from ckeckpoint pack */
2226 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
2227 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
2229 dst_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
2233 /* init SIT information */
2234 sit_i
->s_ops
= &default_salloc_ops
;
2236 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
2237 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
2238 sit_i
->written_valid_blocks
= le64_to_cpu(ckpt
->valid_block_count
);
2239 sit_i
->sit_bitmap
= dst_bitmap
;
2240 sit_i
->bitmap_size
= bitmap_size
;
2241 sit_i
->dirty_sentries
= 0;
2242 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
2243 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
2244 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
2245 mutex_init(&sit_i
->sentry_lock
);
2249 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
2251 struct free_segmap_info
*free_i
;
2252 unsigned int bitmap_size
, sec_bitmap_size
;
2254 /* allocate memory for free segmap information */
2255 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
2259 SM_I(sbi
)->free_info
= free_i
;
2261 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2262 free_i
->free_segmap
= f2fs_kvmalloc(bitmap_size
, GFP_KERNEL
);
2263 if (!free_i
->free_segmap
)
2266 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2267 free_i
->free_secmap
= f2fs_kvmalloc(sec_bitmap_size
, GFP_KERNEL
);
2268 if (!free_i
->free_secmap
)
2271 /* set all segments as dirty temporarily */
2272 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
2273 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
2275 /* init free segmap information */
2276 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
2277 free_i
->free_segments
= 0;
2278 free_i
->free_sections
= 0;
2279 spin_lock_init(&free_i
->segmap_lock
);
2283 static int build_curseg(struct f2fs_sb_info
*sbi
)
2285 struct curseg_info
*array
;
2288 array
= kcalloc(NR_CURSEG_TYPE
, sizeof(*array
), GFP_KERNEL
);
2292 SM_I(sbi
)->curseg_array
= array
;
2294 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2295 mutex_init(&array
[i
].curseg_mutex
);
2296 array
[i
].sum_blk
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
2297 if (!array
[i
].sum_blk
)
2299 init_rwsem(&array
[i
].journal_rwsem
);
2300 array
[i
].journal
= kzalloc(sizeof(struct f2fs_journal
),
2302 if (!array
[i
].journal
)
2304 array
[i
].segno
= NULL_SEGNO
;
2305 array
[i
].next_blkoff
= 0;
2307 return restore_curseg_summaries(sbi
);
2310 static void build_sit_entries(struct f2fs_sb_info
*sbi
)
2312 struct sit_info
*sit_i
= SIT_I(sbi
);
2313 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2314 struct f2fs_journal
*journal
= curseg
->journal
;
2315 struct seg_entry
*se
;
2316 struct f2fs_sit_entry sit
;
2317 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
2318 unsigned int i
, start
, end
;
2319 unsigned int readed
, start_blk
= 0;
2320 int nrpages
= MAX_BIO_BLOCKS(sbi
) * 8;
2323 readed
= ra_meta_pages(sbi
, start_blk
, nrpages
, META_SIT
, true);
2325 start
= start_blk
* sit_i
->sents_per_block
;
2326 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
2328 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
2329 struct f2fs_sit_block
*sit_blk
;
2332 se
= &sit_i
->sentries
[start
];
2333 page
= get_current_sit_page(sbi
, start
);
2334 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
2335 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
2336 f2fs_put_page(page
, 1);
2338 check_block_count(sbi
, start
, &sit
);
2339 seg_info_from_raw_sit(se
, &sit
);
2341 /* build discard map only one time */
2342 if (f2fs_discard_en(sbi
)) {
2343 memcpy(se
->discard_map
, se
->cur_valid_map
,
2344 SIT_VBLOCK_MAP_SIZE
);
2345 sbi
->discard_blks
+= sbi
->blocks_per_seg
-
2349 if (sbi
->segs_per_sec
> 1)
2350 get_sec_entry(sbi
, start
)->valid_blocks
+=
2353 start_blk
+= readed
;
2354 } while (start_blk
< sit_blk_cnt
);
2356 down_read(&curseg
->journal_rwsem
);
2357 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
2358 unsigned int old_valid_blocks
;
2360 start
= le32_to_cpu(segno_in_journal(journal
, i
));
2361 se
= &sit_i
->sentries
[start
];
2362 sit
= sit_in_journal(journal
, i
);
2364 old_valid_blocks
= se
->valid_blocks
;
2366 check_block_count(sbi
, start
, &sit
);
2367 seg_info_from_raw_sit(se
, &sit
);
2369 if (f2fs_discard_en(sbi
)) {
2370 memcpy(se
->discard_map
, se
->cur_valid_map
,
2371 SIT_VBLOCK_MAP_SIZE
);
2372 sbi
->discard_blks
+= old_valid_blocks
-
2376 if (sbi
->segs_per_sec
> 1)
2377 get_sec_entry(sbi
, start
)->valid_blocks
+=
2378 se
->valid_blocks
- old_valid_blocks
;
2380 up_read(&curseg
->journal_rwsem
);
2383 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
2388 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2389 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
2390 if (!sentry
->valid_blocks
)
2391 __set_free(sbi
, start
);
2394 /* set use the current segments */
2395 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
2396 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
2397 __set_test_and_inuse(sbi
, curseg_t
->segno
);
2401 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
2403 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2404 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2405 unsigned int segno
= 0, offset
= 0;
2406 unsigned short valid_blocks
;
2409 /* find dirty segment based on free segmap */
2410 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
2411 if (segno
>= MAIN_SEGS(sbi
))
2414 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
2415 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
2417 if (valid_blocks
> sbi
->blocks_per_seg
) {
2418 f2fs_bug_on(sbi
, 1);
2421 mutex_lock(&dirty_i
->seglist_lock
);
2422 __locate_dirty_segment(sbi
, segno
, DIRTY
);
2423 mutex_unlock(&dirty_i
->seglist_lock
);
2427 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
2429 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2430 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2432 dirty_i
->victim_secmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2433 if (!dirty_i
->victim_secmap
)
2438 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
2440 struct dirty_seglist_info
*dirty_i
;
2441 unsigned int bitmap_size
, i
;
2443 /* allocate memory for dirty segments list information */
2444 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
2448 SM_I(sbi
)->dirty_info
= dirty_i
;
2449 mutex_init(&dirty_i
->seglist_lock
);
2451 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2453 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
2454 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2455 if (!dirty_i
->dirty_segmap
[i
])
2459 init_dirty_segmap(sbi
);
2460 return init_victim_secmap(sbi
);
2464 * Update min, max modified time for cost-benefit GC algorithm
2466 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
2468 struct sit_info
*sit_i
= SIT_I(sbi
);
2471 mutex_lock(&sit_i
->sentry_lock
);
2473 sit_i
->min_mtime
= LLONG_MAX
;
2475 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
2477 unsigned long long mtime
= 0;
2479 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
2480 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
2482 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
2484 if (sit_i
->min_mtime
> mtime
)
2485 sit_i
->min_mtime
= mtime
;
2487 sit_i
->max_mtime
= get_mtime(sbi
);
2488 mutex_unlock(&sit_i
->sentry_lock
);
2491 int build_segment_manager(struct f2fs_sb_info
*sbi
)
2493 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2494 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2495 struct f2fs_sm_info
*sm_info
;
2498 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
2503 sbi
->sm_info
= sm_info
;
2504 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
2505 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
2506 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
2507 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
2508 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
2509 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
2510 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
2511 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
2512 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
2513 if (sm_info
->rec_prefree_segments
> DEF_MAX_RECLAIM_PREFREE_SEGMENTS
)
2514 sm_info
->rec_prefree_segments
= DEF_MAX_RECLAIM_PREFREE_SEGMENTS
;
2516 if (!test_opt(sbi
, LFS
))
2517 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
2518 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
2519 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
2521 INIT_LIST_HEAD(&sm_info
->discard_list
);
2522 INIT_LIST_HEAD(&sm_info
->wait_list
);
2523 sm_info
->nr_discards
= 0;
2524 sm_info
->max_discards
= 0;
2526 sm_info
->trim_sections
= DEF_BATCHED_TRIM_SECTIONS
;
2528 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
2530 if (test_opt(sbi
, FLUSH_MERGE
) && !f2fs_readonly(sbi
->sb
)) {
2531 err
= create_flush_cmd_control(sbi
);
2536 err
= build_sit_info(sbi
);
2539 err
= build_free_segmap(sbi
);
2542 err
= build_curseg(sbi
);
2546 /* reinit free segmap based on SIT */
2547 build_sit_entries(sbi
);
2549 init_free_segmap(sbi
);
2550 err
= build_dirty_segmap(sbi
);
2554 init_min_max_mtime(sbi
);
2558 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
2559 enum dirty_type dirty_type
)
2561 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2563 mutex_lock(&dirty_i
->seglist_lock
);
2564 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
2565 dirty_i
->nr_dirty
[dirty_type
] = 0;
2566 mutex_unlock(&dirty_i
->seglist_lock
);
2569 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
2571 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2572 kvfree(dirty_i
->victim_secmap
);
2575 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
2577 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2583 /* discard pre-free/dirty segments list */
2584 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
2585 discard_dirty_segmap(sbi
, i
);
2587 destroy_victim_secmap(sbi
);
2588 SM_I(sbi
)->dirty_info
= NULL
;
2592 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
2594 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
2599 SM_I(sbi
)->curseg_array
= NULL
;
2600 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2601 kfree(array
[i
].sum_blk
);
2602 kfree(array
[i
].journal
);
2607 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
2609 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
2612 SM_I(sbi
)->free_info
= NULL
;
2613 kvfree(free_i
->free_segmap
);
2614 kvfree(free_i
->free_secmap
);
2618 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
2620 struct sit_info
*sit_i
= SIT_I(sbi
);
2626 if (sit_i
->sentries
) {
2627 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2628 kfree(sit_i
->sentries
[start
].cur_valid_map
);
2629 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
2630 kfree(sit_i
->sentries
[start
].discard_map
);
2633 kfree(sit_i
->tmp_map
);
2635 kvfree(sit_i
->sentries
);
2636 kvfree(sit_i
->sec_entries
);
2637 kvfree(sit_i
->dirty_sentries_bitmap
);
2639 SM_I(sbi
)->sit_info
= NULL
;
2640 kfree(sit_i
->sit_bitmap
);
2644 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
2646 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2650 destroy_flush_cmd_control(sbi
);
2651 destroy_dirty_segmap(sbi
);
2652 destroy_curseg(sbi
);
2653 destroy_free_segmap(sbi
);
2654 destroy_sit_info(sbi
);
2655 sbi
->sm_info
= NULL
;
2659 int __init
create_segment_manager_caches(void)
2661 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
2662 sizeof(struct discard_entry
));
2663 if (!discard_entry_slab
)
2666 bio_entry_slab
= f2fs_kmem_cache_create("bio_entry",
2667 sizeof(struct bio_entry
));
2668 if (!bio_entry_slab
)
2669 goto destroy_discard_entry
;
2671 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
2672 sizeof(struct sit_entry_set
));
2673 if (!sit_entry_set_slab
)
2674 goto destroy_bio_entry
;
2676 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
2677 sizeof(struct inmem_pages
));
2678 if (!inmem_entry_slab
)
2679 goto destroy_sit_entry_set
;
2682 destroy_sit_entry_set
:
2683 kmem_cache_destroy(sit_entry_set_slab
);
2685 kmem_cache_destroy(bio_entry_slab
);
2686 destroy_discard_entry
:
2687 kmem_cache_destroy(discard_entry_slab
);
2692 void destroy_segment_manager_caches(void)
2694 kmem_cache_destroy(sit_entry_set_slab
);
2695 kmem_cache_destroy(bio_entry_slab
);
2696 kmem_cache_destroy(discard_entry_slab
);
2697 kmem_cache_destroy(inmem_entry_slab
);