i2c: brcmstb: Fix START and STOP conditions
[linux/fpc-iii.git] / fs / namespace.c
blob5e35057f07ac8a3e6ecce09120dbf9944496e6f0
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 /* Maximum number of mounts in a mount namespace */
31 unsigned int sysctl_mount_max __read_mostly = 100000;
33 static unsigned int m_hash_mask __read_mostly;
34 static unsigned int m_hash_shift __read_mostly;
35 static unsigned int mp_hash_mask __read_mostly;
36 static unsigned int mp_hash_shift __read_mostly;
38 static __initdata unsigned long mhash_entries;
39 static int __init set_mhash_entries(char *str)
41 if (!str)
42 return 0;
43 mhash_entries = simple_strtoul(str, &str, 0);
44 return 1;
46 __setup("mhash_entries=", set_mhash_entries);
48 static __initdata unsigned long mphash_entries;
49 static int __init set_mphash_entries(char *str)
51 if (!str)
52 return 0;
53 mphash_entries = simple_strtoul(str, &str, 0);
54 return 1;
56 __setup("mphash_entries=", set_mphash_entries);
58 static u64 event;
59 static DEFINE_IDA(mnt_id_ida);
60 static DEFINE_IDA(mnt_group_ida);
61 static DEFINE_SPINLOCK(mnt_id_lock);
62 static int mnt_id_start = 0;
63 static int mnt_group_start = 1;
65 static struct hlist_head *mount_hashtable __read_mostly;
66 static struct hlist_head *mountpoint_hashtable __read_mostly;
67 static struct kmem_cache *mnt_cache __read_mostly;
68 static DECLARE_RWSEM(namespace_sem);
70 /* /sys/fs */
71 struct kobject *fs_kobj;
72 EXPORT_SYMBOL_GPL(fs_kobj);
75 * vfsmount lock may be taken for read to prevent changes to the
76 * vfsmount hash, ie. during mountpoint lookups or walking back
77 * up the tree.
79 * It should be taken for write in all cases where the vfsmount
80 * tree or hash is modified or when a vfsmount structure is modified.
82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
84 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
86 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
87 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
88 tmp = tmp + (tmp >> m_hash_shift);
89 return &mount_hashtable[tmp & m_hash_mask];
92 static inline struct hlist_head *mp_hash(struct dentry *dentry)
94 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
95 tmp = tmp + (tmp >> mp_hash_shift);
96 return &mountpoint_hashtable[tmp & mp_hash_mask];
100 * allocation is serialized by namespace_sem, but we need the spinlock to
101 * serialize with freeing.
103 static int mnt_alloc_id(struct mount *mnt)
105 int res;
107 retry:
108 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
109 spin_lock(&mnt_id_lock);
110 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
111 if (!res)
112 mnt_id_start = mnt->mnt_id + 1;
113 spin_unlock(&mnt_id_lock);
114 if (res == -EAGAIN)
115 goto retry;
117 return res;
120 static void mnt_free_id(struct mount *mnt)
122 int id = mnt->mnt_id;
123 spin_lock(&mnt_id_lock);
124 ida_remove(&mnt_id_ida, id);
125 if (mnt_id_start > id)
126 mnt_id_start = id;
127 spin_unlock(&mnt_id_lock);
131 * Allocate a new peer group ID
133 * mnt_group_ida is protected by namespace_sem
135 static int mnt_alloc_group_id(struct mount *mnt)
137 int res;
139 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
140 return -ENOMEM;
142 res = ida_get_new_above(&mnt_group_ida,
143 mnt_group_start,
144 &mnt->mnt_group_id);
145 if (!res)
146 mnt_group_start = mnt->mnt_group_id + 1;
148 return res;
152 * Release a peer group ID
154 void mnt_release_group_id(struct mount *mnt)
156 int id = mnt->mnt_group_id;
157 ida_remove(&mnt_group_ida, id);
158 if (mnt_group_start > id)
159 mnt_group_start = id;
160 mnt->mnt_group_id = 0;
164 * vfsmount lock must be held for read
166 static inline void mnt_add_count(struct mount *mnt, int n)
168 #ifdef CONFIG_SMP
169 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
170 #else
171 preempt_disable();
172 mnt->mnt_count += n;
173 preempt_enable();
174 #endif
178 * vfsmount lock must be held for write
180 unsigned int mnt_get_count(struct mount *mnt)
182 #ifdef CONFIG_SMP
183 unsigned int count = 0;
184 int cpu;
186 for_each_possible_cpu(cpu) {
187 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
190 return count;
191 #else
192 return mnt->mnt_count;
193 #endif
196 static void drop_mountpoint(struct fs_pin *p)
198 struct mount *m = container_of(p, struct mount, mnt_umount);
199 dput(m->mnt_ex_mountpoint);
200 pin_remove(p);
201 mntput(&m->mnt);
204 static struct mount *alloc_vfsmnt(const char *name)
206 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
207 if (mnt) {
208 int err;
210 err = mnt_alloc_id(mnt);
211 if (err)
212 goto out_free_cache;
214 if (name) {
215 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
216 if (!mnt->mnt_devname)
217 goto out_free_id;
220 #ifdef CONFIG_SMP
221 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
222 if (!mnt->mnt_pcp)
223 goto out_free_devname;
225 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
226 #else
227 mnt->mnt_count = 1;
228 mnt->mnt_writers = 0;
229 #endif
231 INIT_HLIST_NODE(&mnt->mnt_hash);
232 INIT_LIST_HEAD(&mnt->mnt_child);
233 INIT_LIST_HEAD(&mnt->mnt_mounts);
234 INIT_LIST_HEAD(&mnt->mnt_list);
235 INIT_LIST_HEAD(&mnt->mnt_expire);
236 INIT_LIST_HEAD(&mnt->mnt_share);
237 INIT_LIST_HEAD(&mnt->mnt_slave_list);
238 INIT_LIST_HEAD(&mnt->mnt_slave);
239 INIT_HLIST_NODE(&mnt->mnt_mp_list);
240 #ifdef CONFIG_FSNOTIFY
241 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
242 #endif
243 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
245 return mnt;
247 #ifdef CONFIG_SMP
248 out_free_devname:
249 kfree_const(mnt->mnt_devname);
250 #endif
251 out_free_id:
252 mnt_free_id(mnt);
253 out_free_cache:
254 kmem_cache_free(mnt_cache, mnt);
255 return NULL;
259 * Most r/o checks on a fs are for operations that take
260 * discrete amounts of time, like a write() or unlink().
261 * We must keep track of when those operations start
262 * (for permission checks) and when they end, so that
263 * we can determine when writes are able to occur to
264 * a filesystem.
267 * __mnt_is_readonly: check whether a mount is read-only
268 * @mnt: the mount to check for its write status
270 * This shouldn't be used directly ouside of the VFS.
271 * It does not guarantee that the filesystem will stay
272 * r/w, just that it is right *now*. This can not and
273 * should not be used in place of IS_RDONLY(inode).
274 * mnt_want/drop_write() will _keep_ the filesystem
275 * r/w.
277 int __mnt_is_readonly(struct vfsmount *mnt)
279 if (mnt->mnt_flags & MNT_READONLY)
280 return 1;
281 if (mnt->mnt_sb->s_flags & MS_RDONLY)
282 return 1;
283 return 0;
285 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
287 static inline void mnt_inc_writers(struct mount *mnt)
289 #ifdef CONFIG_SMP
290 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
291 #else
292 mnt->mnt_writers++;
293 #endif
296 static inline void mnt_dec_writers(struct mount *mnt)
298 #ifdef CONFIG_SMP
299 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
300 #else
301 mnt->mnt_writers--;
302 #endif
305 static unsigned int mnt_get_writers(struct mount *mnt)
307 #ifdef CONFIG_SMP
308 unsigned int count = 0;
309 int cpu;
311 for_each_possible_cpu(cpu) {
312 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
315 return count;
316 #else
317 return mnt->mnt_writers;
318 #endif
321 static int mnt_is_readonly(struct vfsmount *mnt)
323 if (mnt->mnt_sb->s_readonly_remount)
324 return 1;
325 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
326 smp_rmb();
327 return __mnt_is_readonly(mnt);
331 * Most r/o & frozen checks on a fs are for operations that take discrete
332 * amounts of time, like a write() or unlink(). We must keep track of when
333 * those operations start (for permission checks) and when they end, so that we
334 * can determine when writes are able to occur to a filesystem.
337 * __mnt_want_write - get write access to a mount without freeze protection
338 * @m: the mount on which to take a write
340 * This tells the low-level filesystem that a write is about to be performed to
341 * it, and makes sure that writes are allowed (mnt it read-write) before
342 * returning success. This operation does not protect against filesystem being
343 * frozen. When the write operation is finished, __mnt_drop_write() must be
344 * called. This is effectively a refcount.
346 int __mnt_want_write(struct vfsmount *m)
348 struct mount *mnt = real_mount(m);
349 int ret = 0;
351 preempt_disable();
352 mnt_inc_writers(mnt);
354 * The store to mnt_inc_writers must be visible before we pass
355 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
356 * incremented count after it has set MNT_WRITE_HOLD.
358 smp_mb();
359 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
360 cpu_relax();
362 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
363 * be set to match its requirements. So we must not load that until
364 * MNT_WRITE_HOLD is cleared.
366 smp_rmb();
367 if (mnt_is_readonly(m)) {
368 mnt_dec_writers(mnt);
369 ret = -EROFS;
371 preempt_enable();
373 return ret;
377 * mnt_want_write - get write access to a mount
378 * @m: the mount on which to take a write
380 * This tells the low-level filesystem that a write is about to be performed to
381 * it, and makes sure that writes are allowed (mount is read-write, filesystem
382 * is not frozen) before returning success. When the write operation is
383 * finished, mnt_drop_write() must be called. This is effectively a refcount.
385 int mnt_want_write(struct vfsmount *m)
387 int ret;
389 sb_start_write(m->mnt_sb);
390 ret = __mnt_want_write(m);
391 if (ret)
392 sb_end_write(m->mnt_sb);
393 return ret;
395 EXPORT_SYMBOL_GPL(mnt_want_write);
398 * mnt_clone_write - get write access to a mount
399 * @mnt: the mount on which to take a write
401 * This is effectively like mnt_want_write, except
402 * it must only be used to take an extra write reference
403 * on a mountpoint that we already know has a write reference
404 * on it. This allows some optimisation.
406 * After finished, mnt_drop_write must be called as usual to
407 * drop the reference.
409 int mnt_clone_write(struct vfsmount *mnt)
411 /* superblock may be r/o */
412 if (__mnt_is_readonly(mnt))
413 return -EROFS;
414 preempt_disable();
415 mnt_inc_writers(real_mount(mnt));
416 preempt_enable();
417 return 0;
419 EXPORT_SYMBOL_GPL(mnt_clone_write);
422 * __mnt_want_write_file - get write access to a file's mount
423 * @file: the file who's mount on which to take a write
425 * This is like __mnt_want_write, but it takes a file and can
426 * do some optimisations if the file is open for write already
428 int __mnt_want_write_file(struct file *file)
430 if (!(file->f_mode & FMODE_WRITER))
431 return __mnt_want_write(file->f_path.mnt);
432 else
433 return mnt_clone_write(file->f_path.mnt);
437 * mnt_want_write_file - get write access to a file's mount
438 * @file: the file who's mount on which to take a write
440 * This is like mnt_want_write, but it takes a file and can
441 * do some optimisations if the file is open for write already
443 int mnt_want_write_file(struct file *file)
445 int ret;
447 sb_start_write(file->f_path.mnt->mnt_sb);
448 ret = __mnt_want_write_file(file);
449 if (ret)
450 sb_end_write(file->f_path.mnt->mnt_sb);
451 return ret;
453 EXPORT_SYMBOL_GPL(mnt_want_write_file);
456 * __mnt_drop_write - give up write access to a mount
457 * @mnt: the mount on which to give up write access
459 * Tells the low-level filesystem that we are done
460 * performing writes to it. Must be matched with
461 * __mnt_want_write() call above.
463 void __mnt_drop_write(struct vfsmount *mnt)
465 preempt_disable();
466 mnt_dec_writers(real_mount(mnt));
467 preempt_enable();
471 * mnt_drop_write - give up write access to a mount
472 * @mnt: the mount on which to give up write access
474 * Tells the low-level filesystem that we are done performing writes to it and
475 * also allows filesystem to be frozen again. Must be matched with
476 * mnt_want_write() call above.
478 void mnt_drop_write(struct vfsmount *mnt)
480 __mnt_drop_write(mnt);
481 sb_end_write(mnt->mnt_sb);
483 EXPORT_SYMBOL_GPL(mnt_drop_write);
485 void __mnt_drop_write_file(struct file *file)
487 __mnt_drop_write(file->f_path.mnt);
490 void mnt_drop_write_file(struct file *file)
492 mnt_drop_write(file->f_path.mnt);
494 EXPORT_SYMBOL(mnt_drop_write_file);
496 static int mnt_make_readonly(struct mount *mnt)
498 int ret = 0;
500 lock_mount_hash();
501 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
503 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
504 * should be visible before we do.
506 smp_mb();
509 * With writers on hold, if this value is zero, then there are
510 * definitely no active writers (although held writers may subsequently
511 * increment the count, they'll have to wait, and decrement it after
512 * seeing MNT_READONLY).
514 * It is OK to have counter incremented on one CPU and decremented on
515 * another: the sum will add up correctly. The danger would be when we
516 * sum up each counter, if we read a counter before it is incremented,
517 * but then read another CPU's count which it has been subsequently
518 * decremented from -- we would see more decrements than we should.
519 * MNT_WRITE_HOLD protects against this scenario, because
520 * mnt_want_write first increments count, then smp_mb, then spins on
521 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
522 * we're counting up here.
524 if (mnt_get_writers(mnt) > 0)
525 ret = -EBUSY;
526 else
527 mnt->mnt.mnt_flags |= MNT_READONLY;
529 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
530 * that become unheld will see MNT_READONLY.
532 smp_wmb();
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 unlock_mount_hash();
535 return ret;
538 static void __mnt_unmake_readonly(struct mount *mnt)
540 lock_mount_hash();
541 mnt->mnt.mnt_flags &= ~MNT_READONLY;
542 unlock_mount_hash();
545 int sb_prepare_remount_readonly(struct super_block *sb)
547 struct mount *mnt;
548 int err = 0;
550 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
551 if (atomic_long_read(&sb->s_remove_count))
552 return -EBUSY;
554 lock_mount_hash();
555 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
556 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
557 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
558 smp_mb();
559 if (mnt_get_writers(mnt) > 0) {
560 err = -EBUSY;
561 break;
565 if (!err && atomic_long_read(&sb->s_remove_count))
566 err = -EBUSY;
568 if (!err) {
569 sb->s_readonly_remount = 1;
570 smp_wmb();
572 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
573 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
574 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
576 unlock_mount_hash();
578 return err;
581 static void free_vfsmnt(struct mount *mnt)
583 kfree_const(mnt->mnt_devname);
584 #ifdef CONFIG_SMP
585 free_percpu(mnt->mnt_pcp);
586 #endif
587 kmem_cache_free(mnt_cache, mnt);
590 static void delayed_free_vfsmnt(struct rcu_head *head)
592 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
595 /* call under rcu_read_lock */
596 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
598 struct mount *mnt;
599 if (read_seqretry(&mount_lock, seq))
600 return 1;
601 if (bastard == NULL)
602 return 0;
603 mnt = real_mount(bastard);
604 mnt_add_count(mnt, 1);
605 if (likely(!read_seqretry(&mount_lock, seq)))
606 return 0;
607 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
608 mnt_add_count(mnt, -1);
609 return 1;
611 return -1;
614 /* call under rcu_read_lock */
615 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
617 int res = __legitimize_mnt(bastard, seq);
618 if (likely(!res))
619 return true;
620 if (unlikely(res < 0)) {
621 rcu_read_unlock();
622 mntput(bastard);
623 rcu_read_lock();
625 return false;
629 * find the first mount at @dentry on vfsmount @mnt.
630 * call under rcu_read_lock()
632 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
634 struct hlist_head *head = m_hash(mnt, dentry);
635 struct mount *p;
637 hlist_for_each_entry_rcu(p, head, mnt_hash)
638 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
639 return p;
640 return NULL;
644 * lookup_mnt - Return the first child mount mounted at path
646 * "First" means first mounted chronologically. If you create the
647 * following mounts:
649 * mount /dev/sda1 /mnt
650 * mount /dev/sda2 /mnt
651 * mount /dev/sda3 /mnt
653 * Then lookup_mnt() on the base /mnt dentry in the root mount will
654 * return successively the root dentry and vfsmount of /dev/sda1, then
655 * /dev/sda2, then /dev/sda3, then NULL.
657 * lookup_mnt takes a reference to the found vfsmount.
659 struct vfsmount *lookup_mnt(struct path *path)
661 struct mount *child_mnt;
662 struct vfsmount *m;
663 unsigned seq;
665 rcu_read_lock();
666 do {
667 seq = read_seqbegin(&mount_lock);
668 child_mnt = __lookup_mnt(path->mnt, path->dentry);
669 m = child_mnt ? &child_mnt->mnt : NULL;
670 } while (!legitimize_mnt(m, seq));
671 rcu_read_unlock();
672 return m;
676 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
677 * current mount namespace.
679 * The common case is dentries are not mountpoints at all and that
680 * test is handled inline. For the slow case when we are actually
681 * dealing with a mountpoint of some kind, walk through all of the
682 * mounts in the current mount namespace and test to see if the dentry
683 * is a mountpoint.
685 * The mount_hashtable is not usable in the context because we
686 * need to identify all mounts that may be in the current mount
687 * namespace not just a mount that happens to have some specified
688 * parent mount.
690 bool __is_local_mountpoint(struct dentry *dentry)
692 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
693 struct mount *mnt;
694 bool is_covered = false;
696 if (!d_mountpoint(dentry))
697 goto out;
699 down_read(&namespace_sem);
700 list_for_each_entry(mnt, &ns->list, mnt_list) {
701 is_covered = (mnt->mnt_mountpoint == dentry);
702 if (is_covered)
703 break;
705 up_read(&namespace_sem);
706 out:
707 return is_covered;
710 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
712 struct hlist_head *chain = mp_hash(dentry);
713 struct mountpoint *mp;
715 hlist_for_each_entry(mp, chain, m_hash) {
716 if (mp->m_dentry == dentry) {
717 /* might be worth a WARN_ON() */
718 if (d_unlinked(dentry))
719 return ERR_PTR(-ENOENT);
720 mp->m_count++;
721 return mp;
724 return NULL;
727 static struct mountpoint *get_mountpoint(struct dentry *dentry)
729 struct mountpoint *mp, *new = NULL;
730 int ret;
732 if (d_mountpoint(dentry)) {
733 mountpoint:
734 read_seqlock_excl(&mount_lock);
735 mp = lookup_mountpoint(dentry);
736 read_sequnlock_excl(&mount_lock);
737 if (mp)
738 goto done;
741 if (!new)
742 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
743 if (!new)
744 return ERR_PTR(-ENOMEM);
747 /* Exactly one processes may set d_mounted */
748 ret = d_set_mounted(dentry);
750 /* Someone else set d_mounted? */
751 if (ret == -EBUSY)
752 goto mountpoint;
754 /* The dentry is not available as a mountpoint? */
755 mp = ERR_PTR(ret);
756 if (ret)
757 goto done;
759 /* Add the new mountpoint to the hash table */
760 read_seqlock_excl(&mount_lock);
761 new->m_dentry = dentry;
762 new->m_count = 1;
763 hlist_add_head(&new->m_hash, mp_hash(dentry));
764 INIT_HLIST_HEAD(&new->m_list);
765 read_sequnlock_excl(&mount_lock);
767 mp = new;
768 new = NULL;
769 done:
770 kfree(new);
771 return mp;
774 static void put_mountpoint(struct mountpoint *mp)
776 if (!--mp->m_count) {
777 struct dentry *dentry = mp->m_dentry;
778 BUG_ON(!hlist_empty(&mp->m_list));
779 spin_lock(&dentry->d_lock);
780 dentry->d_flags &= ~DCACHE_MOUNTED;
781 spin_unlock(&dentry->d_lock);
782 hlist_del(&mp->m_hash);
783 kfree(mp);
787 static inline int check_mnt(struct mount *mnt)
789 return mnt->mnt_ns == current->nsproxy->mnt_ns;
793 * vfsmount lock must be held for write
795 static void touch_mnt_namespace(struct mnt_namespace *ns)
797 if (ns) {
798 ns->event = ++event;
799 wake_up_interruptible(&ns->poll);
804 * vfsmount lock must be held for write
806 static void __touch_mnt_namespace(struct mnt_namespace *ns)
808 if (ns && ns->event != event) {
809 ns->event = event;
810 wake_up_interruptible(&ns->poll);
815 * vfsmount lock must be held for write
817 static void unhash_mnt(struct mount *mnt)
819 mnt->mnt_parent = mnt;
820 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
821 list_del_init(&mnt->mnt_child);
822 hlist_del_init_rcu(&mnt->mnt_hash);
823 hlist_del_init(&mnt->mnt_mp_list);
824 put_mountpoint(mnt->mnt_mp);
825 mnt->mnt_mp = NULL;
829 * vfsmount lock must be held for write
831 static void detach_mnt(struct mount *mnt, struct path *old_path)
833 old_path->dentry = mnt->mnt_mountpoint;
834 old_path->mnt = &mnt->mnt_parent->mnt;
835 unhash_mnt(mnt);
839 * vfsmount lock must be held for write
841 static void umount_mnt(struct mount *mnt)
843 /* old mountpoint will be dropped when we can do that */
844 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
845 unhash_mnt(mnt);
849 * vfsmount lock must be held for write
851 void mnt_set_mountpoint(struct mount *mnt,
852 struct mountpoint *mp,
853 struct mount *child_mnt)
855 mp->m_count++;
856 mnt_add_count(mnt, 1); /* essentially, that's mntget */
857 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
858 child_mnt->mnt_parent = mnt;
859 child_mnt->mnt_mp = mp;
860 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
863 static void __attach_mnt(struct mount *mnt, struct mount *parent)
865 hlist_add_head_rcu(&mnt->mnt_hash,
866 m_hash(&parent->mnt, mnt->mnt_mountpoint));
867 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
871 * vfsmount lock must be held for write
873 static void attach_mnt(struct mount *mnt,
874 struct mount *parent,
875 struct mountpoint *mp)
877 mnt_set_mountpoint(parent, mp, mnt);
878 __attach_mnt(mnt, parent);
881 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
883 struct mountpoint *old_mp = mnt->mnt_mp;
884 struct dentry *old_mountpoint = mnt->mnt_mountpoint;
885 struct mount *old_parent = mnt->mnt_parent;
887 list_del_init(&mnt->mnt_child);
888 hlist_del_init(&mnt->mnt_mp_list);
889 hlist_del_init_rcu(&mnt->mnt_hash);
891 attach_mnt(mnt, parent, mp);
893 put_mountpoint(old_mp);
896 * Safely avoid even the suggestion this code might sleep or
897 * lock the mount hash by taking advantage of the knowledge that
898 * mnt_change_mountpoint will not release the final reference
899 * to a mountpoint.
901 * During mounting, the mount passed in as the parent mount will
902 * continue to use the old mountpoint and during unmounting, the
903 * old mountpoint will continue to exist until namespace_unlock,
904 * which happens well after mnt_change_mountpoint.
906 spin_lock(&old_mountpoint->d_lock);
907 old_mountpoint->d_lockref.count--;
908 spin_unlock(&old_mountpoint->d_lock);
910 mnt_add_count(old_parent, -1);
914 * vfsmount lock must be held for write
916 static void commit_tree(struct mount *mnt)
918 struct mount *parent = mnt->mnt_parent;
919 struct mount *m;
920 LIST_HEAD(head);
921 struct mnt_namespace *n = parent->mnt_ns;
923 BUG_ON(parent == mnt);
925 list_add_tail(&head, &mnt->mnt_list);
926 list_for_each_entry(m, &head, mnt_list)
927 m->mnt_ns = n;
929 list_splice(&head, n->list.prev);
931 n->mounts += n->pending_mounts;
932 n->pending_mounts = 0;
934 __attach_mnt(mnt, parent);
935 touch_mnt_namespace(n);
938 static struct mount *next_mnt(struct mount *p, struct mount *root)
940 struct list_head *next = p->mnt_mounts.next;
941 if (next == &p->mnt_mounts) {
942 while (1) {
943 if (p == root)
944 return NULL;
945 next = p->mnt_child.next;
946 if (next != &p->mnt_parent->mnt_mounts)
947 break;
948 p = p->mnt_parent;
951 return list_entry(next, struct mount, mnt_child);
954 static struct mount *skip_mnt_tree(struct mount *p)
956 struct list_head *prev = p->mnt_mounts.prev;
957 while (prev != &p->mnt_mounts) {
958 p = list_entry(prev, struct mount, mnt_child);
959 prev = p->mnt_mounts.prev;
961 return p;
964 struct vfsmount *
965 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
967 struct mount *mnt;
968 struct dentry *root;
970 if (!type)
971 return ERR_PTR(-ENODEV);
973 mnt = alloc_vfsmnt(name);
974 if (!mnt)
975 return ERR_PTR(-ENOMEM);
977 if (flags & MS_KERNMOUNT)
978 mnt->mnt.mnt_flags = MNT_INTERNAL;
980 root = mount_fs(type, flags, name, data);
981 if (IS_ERR(root)) {
982 mnt_free_id(mnt);
983 free_vfsmnt(mnt);
984 return ERR_CAST(root);
987 mnt->mnt.mnt_root = root;
988 mnt->mnt.mnt_sb = root->d_sb;
989 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
990 mnt->mnt_parent = mnt;
991 lock_mount_hash();
992 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
993 unlock_mount_hash();
994 return &mnt->mnt;
996 EXPORT_SYMBOL_GPL(vfs_kern_mount);
998 struct vfsmount *
999 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1000 const char *name, void *data)
1002 /* Until it is worked out how to pass the user namespace
1003 * through from the parent mount to the submount don't support
1004 * unprivileged mounts with submounts.
1006 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1007 return ERR_PTR(-EPERM);
1009 return vfs_kern_mount(type, MS_SUBMOUNT, name, data);
1011 EXPORT_SYMBOL_GPL(vfs_submount);
1013 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1014 int flag)
1016 struct super_block *sb = old->mnt.mnt_sb;
1017 struct mount *mnt;
1018 int err;
1020 mnt = alloc_vfsmnt(old->mnt_devname);
1021 if (!mnt)
1022 return ERR_PTR(-ENOMEM);
1024 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1025 mnt->mnt_group_id = 0; /* not a peer of original */
1026 else
1027 mnt->mnt_group_id = old->mnt_group_id;
1029 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1030 err = mnt_alloc_group_id(mnt);
1031 if (err)
1032 goto out_free;
1035 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
1036 /* Don't allow unprivileged users to change mount flags */
1037 if (flag & CL_UNPRIVILEGED) {
1038 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
1040 if (mnt->mnt.mnt_flags & MNT_READONLY)
1041 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
1043 if (mnt->mnt.mnt_flags & MNT_NODEV)
1044 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
1046 if (mnt->mnt.mnt_flags & MNT_NOSUID)
1047 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
1049 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
1050 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
1053 /* Don't allow unprivileged users to reveal what is under a mount */
1054 if ((flag & CL_UNPRIVILEGED) &&
1055 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
1056 mnt->mnt.mnt_flags |= MNT_LOCKED;
1058 atomic_inc(&sb->s_active);
1059 mnt->mnt.mnt_sb = sb;
1060 mnt->mnt.mnt_root = dget(root);
1061 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1062 mnt->mnt_parent = mnt;
1063 lock_mount_hash();
1064 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1065 unlock_mount_hash();
1067 if ((flag & CL_SLAVE) ||
1068 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1069 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1070 mnt->mnt_master = old;
1071 CLEAR_MNT_SHARED(mnt);
1072 } else if (!(flag & CL_PRIVATE)) {
1073 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1074 list_add(&mnt->mnt_share, &old->mnt_share);
1075 if (IS_MNT_SLAVE(old))
1076 list_add(&mnt->mnt_slave, &old->mnt_slave);
1077 mnt->mnt_master = old->mnt_master;
1079 if (flag & CL_MAKE_SHARED)
1080 set_mnt_shared(mnt);
1082 /* stick the duplicate mount on the same expiry list
1083 * as the original if that was on one */
1084 if (flag & CL_EXPIRE) {
1085 if (!list_empty(&old->mnt_expire))
1086 list_add(&mnt->mnt_expire, &old->mnt_expire);
1089 return mnt;
1091 out_free:
1092 mnt_free_id(mnt);
1093 free_vfsmnt(mnt);
1094 return ERR_PTR(err);
1097 static void cleanup_mnt(struct mount *mnt)
1100 * This probably indicates that somebody messed
1101 * up a mnt_want/drop_write() pair. If this
1102 * happens, the filesystem was probably unable
1103 * to make r/w->r/o transitions.
1106 * The locking used to deal with mnt_count decrement provides barriers,
1107 * so mnt_get_writers() below is safe.
1109 WARN_ON(mnt_get_writers(mnt));
1110 if (unlikely(mnt->mnt_pins.first))
1111 mnt_pin_kill(mnt);
1112 fsnotify_vfsmount_delete(&mnt->mnt);
1113 dput(mnt->mnt.mnt_root);
1114 deactivate_super(mnt->mnt.mnt_sb);
1115 mnt_free_id(mnt);
1116 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1119 static void __cleanup_mnt(struct rcu_head *head)
1121 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1124 static LLIST_HEAD(delayed_mntput_list);
1125 static void delayed_mntput(struct work_struct *unused)
1127 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1128 struct llist_node *next;
1130 for (; node; node = next) {
1131 next = llist_next(node);
1132 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1135 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1137 static void mntput_no_expire(struct mount *mnt)
1139 rcu_read_lock();
1140 mnt_add_count(mnt, -1);
1141 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1142 rcu_read_unlock();
1143 return;
1145 lock_mount_hash();
1146 if (mnt_get_count(mnt)) {
1147 rcu_read_unlock();
1148 unlock_mount_hash();
1149 return;
1151 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1152 rcu_read_unlock();
1153 unlock_mount_hash();
1154 return;
1156 mnt->mnt.mnt_flags |= MNT_DOOMED;
1157 rcu_read_unlock();
1159 list_del(&mnt->mnt_instance);
1161 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1162 struct mount *p, *tmp;
1163 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1164 umount_mnt(p);
1167 unlock_mount_hash();
1169 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1170 struct task_struct *task = current;
1171 if (likely(!(task->flags & PF_KTHREAD))) {
1172 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1173 if (!task_work_add(task, &mnt->mnt_rcu, true))
1174 return;
1176 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1177 schedule_delayed_work(&delayed_mntput_work, 1);
1178 return;
1180 cleanup_mnt(mnt);
1183 void mntput(struct vfsmount *mnt)
1185 if (mnt) {
1186 struct mount *m = real_mount(mnt);
1187 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1188 if (unlikely(m->mnt_expiry_mark))
1189 m->mnt_expiry_mark = 0;
1190 mntput_no_expire(m);
1193 EXPORT_SYMBOL(mntput);
1195 struct vfsmount *mntget(struct vfsmount *mnt)
1197 if (mnt)
1198 mnt_add_count(real_mount(mnt), 1);
1199 return mnt;
1201 EXPORT_SYMBOL(mntget);
1203 struct vfsmount *mnt_clone_internal(struct path *path)
1205 struct mount *p;
1206 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1207 if (IS_ERR(p))
1208 return ERR_CAST(p);
1209 p->mnt.mnt_flags |= MNT_INTERNAL;
1210 return &p->mnt;
1213 static inline void mangle(struct seq_file *m, const char *s)
1215 seq_escape(m, s, " \t\n\\");
1219 * Simple .show_options callback for filesystems which don't want to
1220 * implement more complex mount option showing.
1222 * See also save_mount_options().
1224 int generic_show_options(struct seq_file *m, struct dentry *root)
1226 const char *options;
1228 rcu_read_lock();
1229 options = rcu_dereference(root->d_sb->s_options);
1231 if (options != NULL && options[0]) {
1232 seq_putc(m, ',');
1233 mangle(m, options);
1235 rcu_read_unlock();
1237 return 0;
1239 EXPORT_SYMBOL(generic_show_options);
1242 * If filesystem uses generic_show_options(), this function should be
1243 * called from the fill_super() callback.
1245 * The .remount_fs callback usually needs to be handled in a special
1246 * way, to make sure, that previous options are not overwritten if the
1247 * remount fails.
1249 * Also note, that if the filesystem's .remount_fs function doesn't
1250 * reset all options to their default value, but changes only newly
1251 * given options, then the displayed options will not reflect reality
1252 * any more.
1254 void save_mount_options(struct super_block *sb, char *options)
1256 BUG_ON(sb->s_options);
1257 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1259 EXPORT_SYMBOL(save_mount_options);
1261 void replace_mount_options(struct super_block *sb, char *options)
1263 char *old = sb->s_options;
1264 rcu_assign_pointer(sb->s_options, options);
1265 if (old) {
1266 synchronize_rcu();
1267 kfree(old);
1270 EXPORT_SYMBOL(replace_mount_options);
1272 #ifdef CONFIG_PROC_FS
1273 /* iterator; we want it to have access to namespace_sem, thus here... */
1274 static void *m_start(struct seq_file *m, loff_t *pos)
1276 struct proc_mounts *p = m->private;
1278 down_read(&namespace_sem);
1279 if (p->cached_event == p->ns->event) {
1280 void *v = p->cached_mount;
1281 if (*pos == p->cached_index)
1282 return v;
1283 if (*pos == p->cached_index + 1) {
1284 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1285 return p->cached_mount = v;
1289 p->cached_event = p->ns->event;
1290 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1291 p->cached_index = *pos;
1292 return p->cached_mount;
1295 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1297 struct proc_mounts *p = m->private;
1299 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1300 p->cached_index = *pos;
1301 return p->cached_mount;
1304 static void m_stop(struct seq_file *m, void *v)
1306 up_read(&namespace_sem);
1309 static int m_show(struct seq_file *m, void *v)
1311 struct proc_mounts *p = m->private;
1312 struct mount *r = list_entry(v, struct mount, mnt_list);
1313 return p->show(m, &r->mnt);
1316 const struct seq_operations mounts_op = {
1317 .start = m_start,
1318 .next = m_next,
1319 .stop = m_stop,
1320 .show = m_show,
1322 #endif /* CONFIG_PROC_FS */
1325 * may_umount_tree - check if a mount tree is busy
1326 * @mnt: root of mount tree
1328 * This is called to check if a tree of mounts has any
1329 * open files, pwds, chroots or sub mounts that are
1330 * busy.
1332 int may_umount_tree(struct vfsmount *m)
1334 struct mount *mnt = real_mount(m);
1335 int actual_refs = 0;
1336 int minimum_refs = 0;
1337 struct mount *p;
1338 BUG_ON(!m);
1340 /* write lock needed for mnt_get_count */
1341 lock_mount_hash();
1342 for (p = mnt; p; p = next_mnt(p, mnt)) {
1343 actual_refs += mnt_get_count(p);
1344 minimum_refs += 2;
1346 unlock_mount_hash();
1348 if (actual_refs > minimum_refs)
1349 return 0;
1351 return 1;
1354 EXPORT_SYMBOL(may_umount_tree);
1357 * may_umount - check if a mount point is busy
1358 * @mnt: root of mount
1360 * This is called to check if a mount point has any
1361 * open files, pwds, chroots or sub mounts. If the
1362 * mount has sub mounts this will return busy
1363 * regardless of whether the sub mounts are busy.
1365 * Doesn't take quota and stuff into account. IOW, in some cases it will
1366 * give false negatives. The main reason why it's here is that we need
1367 * a non-destructive way to look for easily umountable filesystems.
1369 int may_umount(struct vfsmount *mnt)
1371 int ret = 1;
1372 down_read(&namespace_sem);
1373 lock_mount_hash();
1374 if (propagate_mount_busy(real_mount(mnt), 2))
1375 ret = 0;
1376 unlock_mount_hash();
1377 up_read(&namespace_sem);
1378 return ret;
1381 EXPORT_SYMBOL(may_umount);
1383 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1385 static void namespace_unlock(void)
1387 struct hlist_head head;
1389 hlist_move_list(&unmounted, &head);
1391 up_write(&namespace_sem);
1393 if (likely(hlist_empty(&head)))
1394 return;
1396 synchronize_rcu();
1398 group_pin_kill(&head);
1401 static inline void namespace_lock(void)
1403 down_write(&namespace_sem);
1406 enum umount_tree_flags {
1407 UMOUNT_SYNC = 1,
1408 UMOUNT_PROPAGATE = 2,
1409 UMOUNT_CONNECTED = 4,
1412 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1414 /* Leaving mounts connected is only valid for lazy umounts */
1415 if (how & UMOUNT_SYNC)
1416 return true;
1418 /* A mount without a parent has nothing to be connected to */
1419 if (!mnt_has_parent(mnt))
1420 return true;
1422 /* Because the reference counting rules change when mounts are
1423 * unmounted and connected, umounted mounts may not be
1424 * connected to mounted mounts.
1426 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1427 return true;
1429 /* Has it been requested that the mount remain connected? */
1430 if (how & UMOUNT_CONNECTED)
1431 return false;
1433 /* Is the mount locked such that it needs to remain connected? */
1434 if (IS_MNT_LOCKED(mnt))
1435 return false;
1437 /* By default disconnect the mount */
1438 return true;
1442 * mount_lock must be held
1443 * namespace_sem must be held for write
1445 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1447 LIST_HEAD(tmp_list);
1448 struct mount *p;
1450 if (how & UMOUNT_PROPAGATE)
1451 propagate_mount_unlock(mnt);
1453 /* Gather the mounts to umount */
1454 for (p = mnt; p; p = next_mnt(p, mnt)) {
1455 p->mnt.mnt_flags |= MNT_UMOUNT;
1456 list_move(&p->mnt_list, &tmp_list);
1459 /* Hide the mounts from mnt_mounts */
1460 list_for_each_entry(p, &tmp_list, mnt_list) {
1461 list_del_init(&p->mnt_child);
1464 /* Add propogated mounts to the tmp_list */
1465 if (how & UMOUNT_PROPAGATE)
1466 propagate_umount(&tmp_list);
1468 while (!list_empty(&tmp_list)) {
1469 struct mnt_namespace *ns;
1470 bool disconnect;
1471 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1472 list_del_init(&p->mnt_expire);
1473 list_del_init(&p->mnt_list);
1474 ns = p->mnt_ns;
1475 if (ns) {
1476 ns->mounts--;
1477 __touch_mnt_namespace(ns);
1479 p->mnt_ns = NULL;
1480 if (how & UMOUNT_SYNC)
1481 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1483 disconnect = disconnect_mount(p, how);
1485 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1486 disconnect ? &unmounted : NULL);
1487 if (mnt_has_parent(p)) {
1488 mnt_add_count(p->mnt_parent, -1);
1489 if (!disconnect) {
1490 /* Don't forget about p */
1491 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1492 } else {
1493 umount_mnt(p);
1496 change_mnt_propagation(p, MS_PRIVATE);
1500 static void shrink_submounts(struct mount *mnt);
1502 static int do_umount(struct mount *mnt, int flags)
1504 struct super_block *sb = mnt->mnt.mnt_sb;
1505 int retval;
1507 retval = security_sb_umount(&mnt->mnt, flags);
1508 if (retval)
1509 return retval;
1512 * Allow userspace to request a mountpoint be expired rather than
1513 * unmounting unconditionally. Unmount only happens if:
1514 * (1) the mark is already set (the mark is cleared by mntput())
1515 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1517 if (flags & MNT_EXPIRE) {
1518 if (&mnt->mnt == current->fs->root.mnt ||
1519 flags & (MNT_FORCE | MNT_DETACH))
1520 return -EINVAL;
1523 * probably don't strictly need the lock here if we examined
1524 * all race cases, but it's a slowpath.
1526 lock_mount_hash();
1527 if (mnt_get_count(mnt) != 2) {
1528 unlock_mount_hash();
1529 return -EBUSY;
1531 unlock_mount_hash();
1533 if (!xchg(&mnt->mnt_expiry_mark, 1))
1534 return -EAGAIN;
1538 * If we may have to abort operations to get out of this
1539 * mount, and they will themselves hold resources we must
1540 * allow the fs to do things. In the Unix tradition of
1541 * 'Gee thats tricky lets do it in userspace' the umount_begin
1542 * might fail to complete on the first run through as other tasks
1543 * must return, and the like. Thats for the mount program to worry
1544 * about for the moment.
1547 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1548 sb->s_op->umount_begin(sb);
1552 * No sense to grab the lock for this test, but test itself looks
1553 * somewhat bogus. Suggestions for better replacement?
1554 * Ho-hum... In principle, we might treat that as umount + switch
1555 * to rootfs. GC would eventually take care of the old vfsmount.
1556 * Actually it makes sense, especially if rootfs would contain a
1557 * /reboot - static binary that would close all descriptors and
1558 * call reboot(9). Then init(8) could umount root and exec /reboot.
1560 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1562 * Special case for "unmounting" root ...
1563 * we just try to remount it readonly.
1565 if (!capable(CAP_SYS_ADMIN))
1566 return -EPERM;
1567 down_write(&sb->s_umount);
1568 if (!(sb->s_flags & MS_RDONLY))
1569 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1570 up_write(&sb->s_umount);
1571 return retval;
1574 namespace_lock();
1575 lock_mount_hash();
1576 event++;
1578 if (flags & MNT_DETACH) {
1579 if (!list_empty(&mnt->mnt_list))
1580 umount_tree(mnt, UMOUNT_PROPAGATE);
1581 retval = 0;
1582 } else {
1583 shrink_submounts(mnt);
1584 retval = -EBUSY;
1585 if (!propagate_mount_busy(mnt, 2)) {
1586 if (!list_empty(&mnt->mnt_list))
1587 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1588 retval = 0;
1591 unlock_mount_hash();
1592 namespace_unlock();
1593 return retval;
1597 * __detach_mounts - lazily unmount all mounts on the specified dentry
1599 * During unlink, rmdir, and d_drop it is possible to loose the path
1600 * to an existing mountpoint, and wind up leaking the mount.
1601 * detach_mounts allows lazily unmounting those mounts instead of
1602 * leaking them.
1604 * The caller may hold dentry->d_inode->i_mutex.
1606 void __detach_mounts(struct dentry *dentry)
1608 struct mountpoint *mp;
1609 struct mount *mnt;
1611 namespace_lock();
1612 lock_mount_hash();
1613 mp = lookup_mountpoint(dentry);
1614 if (IS_ERR_OR_NULL(mp))
1615 goto out_unlock;
1617 event++;
1618 while (!hlist_empty(&mp->m_list)) {
1619 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1620 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1621 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1622 umount_mnt(mnt);
1624 else umount_tree(mnt, UMOUNT_CONNECTED);
1626 put_mountpoint(mp);
1627 out_unlock:
1628 unlock_mount_hash();
1629 namespace_unlock();
1633 * Is the caller allowed to modify his namespace?
1635 static inline bool may_mount(void)
1637 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1640 static inline bool may_mandlock(void)
1642 #ifndef CONFIG_MANDATORY_FILE_LOCKING
1643 return false;
1644 #endif
1645 return capable(CAP_SYS_ADMIN);
1649 * Now umount can handle mount points as well as block devices.
1650 * This is important for filesystems which use unnamed block devices.
1652 * We now support a flag for forced unmount like the other 'big iron'
1653 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1656 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1658 struct path path;
1659 struct mount *mnt;
1660 int retval;
1661 int lookup_flags = 0;
1663 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1664 return -EINVAL;
1666 if (!may_mount())
1667 return -EPERM;
1669 if (!(flags & UMOUNT_NOFOLLOW))
1670 lookup_flags |= LOOKUP_FOLLOW;
1672 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1673 if (retval)
1674 goto out;
1675 mnt = real_mount(path.mnt);
1676 retval = -EINVAL;
1677 if (path.dentry != path.mnt->mnt_root)
1678 goto dput_and_out;
1679 if (!check_mnt(mnt))
1680 goto dput_and_out;
1681 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1682 goto dput_and_out;
1683 retval = -EPERM;
1684 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1685 goto dput_and_out;
1687 retval = do_umount(mnt, flags);
1688 dput_and_out:
1689 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1690 dput(path.dentry);
1691 mntput_no_expire(mnt);
1692 out:
1693 return retval;
1696 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1699 * The 2.0 compatible umount. No flags.
1701 SYSCALL_DEFINE1(oldumount, char __user *, name)
1703 return sys_umount(name, 0);
1706 #endif
1708 static bool is_mnt_ns_file(struct dentry *dentry)
1710 /* Is this a proxy for a mount namespace? */
1711 return dentry->d_op == &ns_dentry_operations &&
1712 dentry->d_fsdata == &mntns_operations;
1715 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1717 return container_of(ns, struct mnt_namespace, ns);
1720 static bool mnt_ns_loop(struct dentry *dentry)
1722 /* Could bind mounting the mount namespace inode cause a
1723 * mount namespace loop?
1725 struct mnt_namespace *mnt_ns;
1726 if (!is_mnt_ns_file(dentry))
1727 return false;
1729 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1730 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1733 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1734 int flag)
1736 struct mount *res, *p, *q, *r, *parent;
1738 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1739 return ERR_PTR(-EINVAL);
1741 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1742 return ERR_PTR(-EINVAL);
1744 res = q = clone_mnt(mnt, dentry, flag);
1745 if (IS_ERR(q))
1746 return q;
1748 q->mnt_mountpoint = mnt->mnt_mountpoint;
1750 p = mnt;
1751 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1752 struct mount *s;
1753 if (!is_subdir(r->mnt_mountpoint, dentry))
1754 continue;
1756 for (s = r; s; s = next_mnt(s, r)) {
1757 if (!(flag & CL_COPY_UNBINDABLE) &&
1758 IS_MNT_UNBINDABLE(s)) {
1759 s = skip_mnt_tree(s);
1760 continue;
1762 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1763 is_mnt_ns_file(s->mnt.mnt_root)) {
1764 s = skip_mnt_tree(s);
1765 continue;
1767 while (p != s->mnt_parent) {
1768 p = p->mnt_parent;
1769 q = q->mnt_parent;
1771 p = s;
1772 parent = q;
1773 q = clone_mnt(p, p->mnt.mnt_root, flag);
1774 if (IS_ERR(q))
1775 goto out;
1776 lock_mount_hash();
1777 list_add_tail(&q->mnt_list, &res->mnt_list);
1778 attach_mnt(q, parent, p->mnt_mp);
1779 unlock_mount_hash();
1782 return res;
1783 out:
1784 if (res) {
1785 lock_mount_hash();
1786 umount_tree(res, UMOUNT_SYNC);
1787 unlock_mount_hash();
1789 return q;
1792 /* Caller should check returned pointer for errors */
1794 struct vfsmount *collect_mounts(struct path *path)
1796 struct mount *tree;
1797 namespace_lock();
1798 if (!check_mnt(real_mount(path->mnt)))
1799 tree = ERR_PTR(-EINVAL);
1800 else
1801 tree = copy_tree(real_mount(path->mnt), path->dentry,
1802 CL_COPY_ALL | CL_PRIVATE);
1803 namespace_unlock();
1804 if (IS_ERR(tree))
1805 return ERR_CAST(tree);
1806 return &tree->mnt;
1809 void drop_collected_mounts(struct vfsmount *mnt)
1811 namespace_lock();
1812 lock_mount_hash();
1813 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1814 unlock_mount_hash();
1815 namespace_unlock();
1819 * clone_private_mount - create a private clone of a path
1821 * This creates a new vfsmount, which will be the clone of @path. The new will
1822 * not be attached anywhere in the namespace and will be private (i.e. changes
1823 * to the originating mount won't be propagated into this).
1825 * Release with mntput().
1827 struct vfsmount *clone_private_mount(struct path *path)
1829 struct mount *old_mnt = real_mount(path->mnt);
1830 struct mount *new_mnt;
1832 if (IS_MNT_UNBINDABLE(old_mnt))
1833 return ERR_PTR(-EINVAL);
1835 down_read(&namespace_sem);
1836 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1837 up_read(&namespace_sem);
1838 if (IS_ERR(new_mnt))
1839 return ERR_CAST(new_mnt);
1841 return &new_mnt->mnt;
1843 EXPORT_SYMBOL_GPL(clone_private_mount);
1845 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1846 struct vfsmount *root)
1848 struct mount *mnt;
1849 int res = f(root, arg);
1850 if (res)
1851 return res;
1852 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1853 res = f(&mnt->mnt, arg);
1854 if (res)
1855 return res;
1857 return 0;
1860 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1862 struct mount *p;
1864 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1865 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1866 mnt_release_group_id(p);
1870 static int invent_group_ids(struct mount *mnt, bool recurse)
1872 struct mount *p;
1874 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1875 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1876 int err = mnt_alloc_group_id(p);
1877 if (err) {
1878 cleanup_group_ids(mnt, p);
1879 return err;
1884 return 0;
1887 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
1889 unsigned int max = READ_ONCE(sysctl_mount_max);
1890 unsigned int mounts = 0, old, pending, sum;
1891 struct mount *p;
1893 for (p = mnt; p; p = next_mnt(p, mnt))
1894 mounts++;
1896 old = ns->mounts;
1897 pending = ns->pending_mounts;
1898 sum = old + pending;
1899 if ((old > sum) ||
1900 (pending > sum) ||
1901 (max < sum) ||
1902 (mounts > (max - sum)))
1903 return -ENOSPC;
1905 ns->pending_mounts = pending + mounts;
1906 return 0;
1910 * @source_mnt : mount tree to be attached
1911 * @nd : place the mount tree @source_mnt is attached
1912 * @parent_nd : if non-null, detach the source_mnt from its parent and
1913 * store the parent mount and mountpoint dentry.
1914 * (done when source_mnt is moved)
1916 * NOTE: in the table below explains the semantics when a source mount
1917 * of a given type is attached to a destination mount of a given type.
1918 * ---------------------------------------------------------------------------
1919 * | BIND MOUNT OPERATION |
1920 * |**************************************************************************
1921 * | source-->| shared | private | slave | unbindable |
1922 * | dest | | | | |
1923 * | | | | | | |
1924 * | v | | | | |
1925 * |**************************************************************************
1926 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1927 * | | | | | |
1928 * |non-shared| shared (+) | private | slave (*) | invalid |
1929 * ***************************************************************************
1930 * A bind operation clones the source mount and mounts the clone on the
1931 * destination mount.
1933 * (++) the cloned mount is propagated to all the mounts in the propagation
1934 * tree of the destination mount and the cloned mount is added to
1935 * the peer group of the source mount.
1936 * (+) the cloned mount is created under the destination mount and is marked
1937 * as shared. The cloned mount is added to the peer group of the source
1938 * mount.
1939 * (+++) the mount is propagated to all the mounts in the propagation tree
1940 * of the destination mount and the cloned mount is made slave
1941 * of the same master as that of the source mount. The cloned mount
1942 * is marked as 'shared and slave'.
1943 * (*) the cloned mount is made a slave of the same master as that of the
1944 * source mount.
1946 * ---------------------------------------------------------------------------
1947 * | MOVE MOUNT OPERATION |
1948 * |**************************************************************************
1949 * | source-->| shared | private | slave | unbindable |
1950 * | dest | | | | |
1951 * | | | | | | |
1952 * | v | | | | |
1953 * |**************************************************************************
1954 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1955 * | | | | | |
1956 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1957 * ***************************************************************************
1959 * (+) the mount is moved to the destination. And is then propagated to
1960 * all the mounts in the propagation tree of the destination mount.
1961 * (+*) the mount is moved to the destination.
1962 * (+++) the mount is moved to the destination and is then propagated to
1963 * all the mounts belonging to the destination mount's propagation tree.
1964 * the mount is marked as 'shared and slave'.
1965 * (*) the mount continues to be a slave at the new location.
1967 * if the source mount is a tree, the operations explained above is
1968 * applied to each mount in the tree.
1969 * Must be called without spinlocks held, since this function can sleep
1970 * in allocations.
1972 static int attach_recursive_mnt(struct mount *source_mnt,
1973 struct mount *dest_mnt,
1974 struct mountpoint *dest_mp,
1975 struct path *parent_path)
1977 HLIST_HEAD(tree_list);
1978 struct mnt_namespace *ns = dest_mnt->mnt_ns;
1979 struct mountpoint *smp;
1980 struct mount *child, *p;
1981 struct hlist_node *n;
1982 int err;
1984 /* Preallocate a mountpoint in case the new mounts need
1985 * to be tucked under other mounts.
1987 smp = get_mountpoint(source_mnt->mnt.mnt_root);
1988 if (IS_ERR(smp))
1989 return PTR_ERR(smp);
1991 /* Is there space to add these mounts to the mount namespace? */
1992 if (!parent_path) {
1993 err = count_mounts(ns, source_mnt);
1994 if (err)
1995 goto out;
1998 if (IS_MNT_SHARED(dest_mnt)) {
1999 err = invent_group_ids(source_mnt, true);
2000 if (err)
2001 goto out;
2002 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2003 lock_mount_hash();
2004 if (err)
2005 goto out_cleanup_ids;
2006 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2007 set_mnt_shared(p);
2008 } else {
2009 lock_mount_hash();
2011 if (parent_path) {
2012 detach_mnt(source_mnt, parent_path);
2013 attach_mnt(source_mnt, dest_mnt, dest_mp);
2014 touch_mnt_namespace(source_mnt->mnt_ns);
2015 } else {
2016 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2017 commit_tree(source_mnt);
2020 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2021 struct mount *q;
2022 hlist_del_init(&child->mnt_hash);
2023 q = __lookup_mnt(&child->mnt_parent->mnt,
2024 child->mnt_mountpoint);
2025 if (q)
2026 mnt_change_mountpoint(child, smp, q);
2027 commit_tree(child);
2029 put_mountpoint(smp);
2030 unlock_mount_hash();
2032 return 0;
2034 out_cleanup_ids:
2035 while (!hlist_empty(&tree_list)) {
2036 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2037 child->mnt_parent->mnt_ns->pending_mounts = 0;
2038 umount_tree(child, UMOUNT_SYNC);
2040 unlock_mount_hash();
2041 cleanup_group_ids(source_mnt, NULL);
2042 out:
2043 ns->pending_mounts = 0;
2045 read_seqlock_excl(&mount_lock);
2046 put_mountpoint(smp);
2047 read_sequnlock_excl(&mount_lock);
2049 return err;
2052 static struct mountpoint *lock_mount(struct path *path)
2054 struct vfsmount *mnt;
2055 struct dentry *dentry = path->dentry;
2056 retry:
2057 inode_lock(dentry->d_inode);
2058 if (unlikely(cant_mount(dentry))) {
2059 inode_unlock(dentry->d_inode);
2060 return ERR_PTR(-ENOENT);
2062 namespace_lock();
2063 mnt = lookup_mnt(path);
2064 if (likely(!mnt)) {
2065 struct mountpoint *mp = get_mountpoint(dentry);
2066 if (IS_ERR(mp)) {
2067 namespace_unlock();
2068 inode_unlock(dentry->d_inode);
2069 return mp;
2071 return mp;
2073 namespace_unlock();
2074 inode_unlock(path->dentry->d_inode);
2075 path_put(path);
2076 path->mnt = mnt;
2077 dentry = path->dentry = dget(mnt->mnt_root);
2078 goto retry;
2081 static void unlock_mount(struct mountpoint *where)
2083 struct dentry *dentry = where->m_dentry;
2085 read_seqlock_excl(&mount_lock);
2086 put_mountpoint(where);
2087 read_sequnlock_excl(&mount_lock);
2089 namespace_unlock();
2090 inode_unlock(dentry->d_inode);
2093 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2095 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
2096 return -EINVAL;
2098 if (d_is_dir(mp->m_dentry) !=
2099 d_is_dir(mnt->mnt.mnt_root))
2100 return -ENOTDIR;
2102 return attach_recursive_mnt(mnt, p, mp, NULL);
2106 * Sanity check the flags to change_mnt_propagation.
2109 static int flags_to_propagation_type(int flags)
2111 int type = flags & ~(MS_REC | MS_SILENT);
2113 /* Fail if any non-propagation flags are set */
2114 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2115 return 0;
2116 /* Only one propagation flag should be set */
2117 if (!is_power_of_2(type))
2118 return 0;
2119 return type;
2123 * recursively change the type of the mountpoint.
2125 static int do_change_type(struct path *path, int flag)
2127 struct mount *m;
2128 struct mount *mnt = real_mount(path->mnt);
2129 int recurse = flag & MS_REC;
2130 int type;
2131 int err = 0;
2133 if (path->dentry != path->mnt->mnt_root)
2134 return -EINVAL;
2136 type = flags_to_propagation_type(flag);
2137 if (!type)
2138 return -EINVAL;
2140 namespace_lock();
2141 if (type == MS_SHARED) {
2142 err = invent_group_ids(mnt, recurse);
2143 if (err)
2144 goto out_unlock;
2147 lock_mount_hash();
2148 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2149 change_mnt_propagation(m, type);
2150 unlock_mount_hash();
2152 out_unlock:
2153 namespace_unlock();
2154 return err;
2157 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2159 struct mount *child;
2160 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2161 if (!is_subdir(child->mnt_mountpoint, dentry))
2162 continue;
2164 if (child->mnt.mnt_flags & MNT_LOCKED)
2165 return true;
2167 return false;
2171 * do loopback mount.
2173 static int do_loopback(struct path *path, const char *old_name,
2174 int recurse)
2176 struct path old_path;
2177 struct mount *mnt = NULL, *old, *parent;
2178 struct mountpoint *mp;
2179 int err;
2180 if (!old_name || !*old_name)
2181 return -EINVAL;
2182 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2183 if (err)
2184 return err;
2186 err = -EINVAL;
2187 if (mnt_ns_loop(old_path.dentry))
2188 goto out;
2190 mp = lock_mount(path);
2191 err = PTR_ERR(mp);
2192 if (IS_ERR(mp))
2193 goto out;
2195 old = real_mount(old_path.mnt);
2196 parent = real_mount(path->mnt);
2198 err = -EINVAL;
2199 if (IS_MNT_UNBINDABLE(old))
2200 goto out2;
2202 if (!check_mnt(parent))
2203 goto out2;
2205 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2206 goto out2;
2208 if (!recurse && has_locked_children(old, old_path.dentry))
2209 goto out2;
2211 if (recurse)
2212 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2213 else
2214 mnt = clone_mnt(old, old_path.dentry, 0);
2216 if (IS_ERR(mnt)) {
2217 err = PTR_ERR(mnt);
2218 goto out2;
2221 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2223 err = graft_tree(mnt, parent, mp);
2224 if (err) {
2225 lock_mount_hash();
2226 umount_tree(mnt, UMOUNT_SYNC);
2227 unlock_mount_hash();
2229 out2:
2230 unlock_mount(mp);
2231 out:
2232 path_put(&old_path);
2233 return err;
2236 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2238 int error = 0;
2239 int readonly_request = 0;
2241 if (ms_flags & MS_RDONLY)
2242 readonly_request = 1;
2243 if (readonly_request == __mnt_is_readonly(mnt))
2244 return 0;
2246 if (readonly_request)
2247 error = mnt_make_readonly(real_mount(mnt));
2248 else
2249 __mnt_unmake_readonly(real_mount(mnt));
2250 return error;
2254 * change filesystem flags. dir should be a physical root of filesystem.
2255 * If you've mounted a non-root directory somewhere and want to do remount
2256 * on it - tough luck.
2258 static int do_remount(struct path *path, int flags, int mnt_flags,
2259 void *data)
2261 int err;
2262 struct super_block *sb = path->mnt->mnt_sb;
2263 struct mount *mnt = real_mount(path->mnt);
2265 if (!check_mnt(mnt))
2266 return -EINVAL;
2268 if (path->dentry != path->mnt->mnt_root)
2269 return -EINVAL;
2271 /* Don't allow changing of locked mnt flags.
2273 * No locks need to be held here while testing the various
2274 * MNT_LOCK flags because those flags can never be cleared
2275 * once they are set.
2277 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2278 !(mnt_flags & MNT_READONLY)) {
2279 return -EPERM;
2281 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2282 !(mnt_flags & MNT_NODEV)) {
2283 return -EPERM;
2285 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2286 !(mnt_flags & MNT_NOSUID)) {
2287 return -EPERM;
2289 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2290 !(mnt_flags & MNT_NOEXEC)) {
2291 return -EPERM;
2293 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2294 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2295 return -EPERM;
2298 err = security_sb_remount(sb, data);
2299 if (err)
2300 return err;
2302 down_write(&sb->s_umount);
2303 if (flags & MS_BIND)
2304 err = change_mount_flags(path->mnt, flags);
2305 else if (!capable(CAP_SYS_ADMIN))
2306 err = -EPERM;
2307 else
2308 err = do_remount_sb(sb, flags, data, 0);
2309 if (!err) {
2310 lock_mount_hash();
2311 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2312 mnt->mnt.mnt_flags = mnt_flags;
2313 touch_mnt_namespace(mnt->mnt_ns);
2314 unlock_mount_hash();
2316 up_write(&sb->s_umount);
2317 return err;
2320 static inline int tree_contains_unbindable(struct mount *mnt)
2322 struct mount *p;
2323 for (p = mnt; p; p = next_mnt(p, mnt)) {
2324 if (IS_MNT_UNBINDABLE(p))
2325 return 1;
2327 return 0;
2330 static int do_move_mount(struct path *path, const char *old_name)
2332 struct path old_path, parent_path;
2333 struct mount *p;
2334 struct mount *old;
2335 struct mountpoint *mp;
2336 int err;
2337 if (!old_name || !*old_name)
2338 return -EINVAL;
2339 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2340 if (err)
2341 return err;
2343 mp = lock_mount(path);
2344 err = PTR_ERR(mp);
2345 if (IS_ERR(mp))
2346 goto out;
2348 old = real_mount(old_path.mnt);
2349 p = real_mount(path->mnt);
2351 err = -EINVAL;
2352 if (!check_mnt(p) || !check_mnt(old))
2353 goto out1;
2355 if (old->mnt.mnt_flags & MNT_LOCKED)
2356 goto out1;
2358 err = -EINVAL;
2359 if (old_path.dentry != old_path.mnt->mnt_root)
2360 goto out1;
2362 if (!mnt_has_parent(old))
2363 goto out1;
2365 if (d_is_dir(path->dentry) !=
2366 d_is_dir(old_path.dentry))
2367 goto out1;
2369 * Don't move a mount residing in a shared parent.
2371 if (IS_MNT_SHARED(old->mnt_parent))
2372 goto out1;
2374 * Don't move a mount tree containing unbindable mounts to a destination
2375 * mount which is shared.
2377 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2378 goto out1;
2379 err = -ELOOP;
2380 for (; mnt_has_parent(p); p = p->mnt_parent)
2381 if (p == old)
2382 goto out1;
2384 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2385 if (err)
2386 goto out1;
2388 /* if the mount is moved, it should no longer be expire
2389 * automatically */
2390 list_del_init(&old->mnt_expire);
2391 out1:
2392 unlock_mount(mp);
2393 out:
2394 if (!err)
2395 path_put(&parent_path);
2396 path_put(&old_path);
2397 return err;
2400 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2402 int err;
2403 const char *subtype = strchr(fstype, '.');
2404 if (subtype) {
2405 subtype++;
2406 err = -EINVAL;
2407 if (!subtype[0])
2408 goto err;
2409 } else
2410 subtype = "";
2412 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2413 err = -ENOMEM;
2414 if (!mnt->mnt_sb->s_subtype)
2415 goto err;
2416 return mnt;
2418 err:
2419 mntput(mnt);
2420 return ERR_PTR(err);
2424 * add a mount into a namespace's mount tree
2426 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2428 struct mountpoint *mp;
2429 struct mount *parent;
2430 int err;
2432 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2434 mp = lock_mount(path);
2435 if (IS_ERR(mp))
2436 return PTR_ERR(mp);
2438 parent = real_mount(path->mnt);
2439 err = -EINVAL;
2440 if (unlikely(!check_mnt(parent))) {
2441 /* that's acceptable only for automounts done in private ns */
2442 if (!(mnt_flags & MNT_SHRINKABLE))
2443 goto unlock;
2444 /* ... and for those we'd better have mountpoint still alive */
2445 if (!parent->mnt_ns)
2446 goto unlock;
2449 /* Refuse the same filesystem on the same mount point */
2450 err = -EBUSY;
2451 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2452 path->mnt->mnt_root == path->dentry)
2453 goto unlock;
2455 err = -EINVAL;
2456 if (d_is_symlink(newmnt->mnt.mnt_root))
2457 goto unlock;
2459 newmnt->mnt.mnt_flags = mnt_flags;
2460 err = graft_tree(newmnt, parent, mp);
2462 unlock:
2463 unlock_mount(mp);
2464 return err;
2467 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags);
2470 * create a new mount for userspace and request it to be added into the
2471 * namespace's tree
2473 static int do_new_mount(struct path *path, const char *fstype, int flags,
2474 int mnt_flags, const char *name, void *data)
2476 struct file_system_type *type;
2477 struct vfsmount *mnt;
2478 int err;
2480 if (!fstype)
2481 return -EINVAL;
2483 type = get_fs_type(fstype);
2484 if (!type)
2485 return -ENODEV;
2487 mnt = vfs_kern_mount(type, flags, name, data);
2488 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2489 !mnt->mnt_sb->s_subtype)
2490 mnt = fs_set_subtype(mnt, fstype);
2492 put_filesystem(type);
2493 if (IS_ERR(mnt))
2494 return PTR_ERR(mnt);
2496 if (mount_too_revealing(mnt, &mnt_flags)) {
2497 mntput(mnt);
2498 return -EPERM;
2501 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2502 if (err)
2503 mntput(mnt);
2504 return err;
2507 int finish_automount(struct vfsmount *m, struct path *path)
2509 struct mount *mnt = real_mount(m);
2510 int err;
2511 /* The new mount record should have at least 2 refs to prevent it being
2512 * expired before we get a chance to add it
2514 BUG_ON(mnt_get_count(mnt) < 2);
2516 if (m->mnt_sb == path->mnt->mnt_sb &&
2517 m->mnt_root == path->dentry) {
2518 err = -ELOOP;
2519 goto fail;
2522 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2523 if (!err)
2524 return 0;
2525 fail:
2526 /* remove m from any expiration list it may be on */
2527 if (!list_empty(&mnt->mnt_expire)) {
2528 namespace_lock();
2529 list_del_init(&mnt->mnt_expire);
2530 namespace_unlock();
2532 mntput(m);
2533 mntput(m);
2534 return err;
2538 * mnt_set_expiry - Put a mount on an expiration list
2539 * @mnt: The mount to list.
2540 * @expiry_list: The list to add the mount to.
2542 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2544 namespace_lock();
2546 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2548 namespace_unlock();
2550 EXPORT_SYMBOL(mnt_set_expiry);
2553 * process a list of expirable mountpoints with the intent of discarding any
2554 * mountpoints that aren't in use and haven't been touched since last we came
2555 * here
2557 void mark_mounts_for_expiry(struct list_head *mounts)
2559 struct mount *mnt, *next;
2560 LIST_HEAD(graveyard);
2562 if (list_empty(mounts))
2563 return;
2565 namespace_lock();
2566 lock_mount_hash();
2568 /* extract from the expiration list every vfsmount that matches the
2569 * following criteria:
2570 * - only referenced by its parent vfsmount
2571 * - still marked for expiry (marked on the last call here; marks are
2572 * cleared by mntput())
2574 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2575 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2576 propagate_mount_busy(mnt, 1))
2577 continue;
2578 list_move(&mnt->mnt_expire, &graveyard);
2580 while (!list_empty(&graveyard)) {
2581 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2582 touch_mnt_namespace(mnt->mnt_ns);
2583 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2585 unlock_mount_hash();
2586 namespace_unlock();
2589 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2592 * Ripoff of 'select_parent()'
2594 * search the list of submounts for a given mountpoint, and move any
2595 * shrinkable submounts to the 'graveyard' list.
2597 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2599 struct mount *this_parent = parent;
2600 struct list_head *next;
2601 int found = 0;
2603 repeat:
2604 next = this_parent->mnt_mounts.next;
2605 resume:
2606 while (next != &this_parent->mnt_mounts) {
2607 struct list_head *tmp = next;
2608 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2610 next = tmp->next;
2611 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2612 continue;
2614 * Descend a level if the d_mounts list is non-empty.
2616 if (!list_empty(&mnt->mnt_mounts)) {
2617 this_parent = mnt;
2618 goto repeat;
2621 if (!propagate_mount_busy(mnt, 1)) {
2622 list_move_tail(&mnt->mnt_expire, graveyard);
2623 found++;
2627 * All done at this level ... ascend and resume the search
2629 if (this_parent != parent) {
2630 next = this_parent->mnt_child.next;
2631 this_parent = this_parent->mnt_parent;
2632 goto resume;
2634 return found;
2638 * process a list of expirable mountpoints with the intent of discarding any
2639 * submounts of a specific parent mountpoint
2641 * mount_lock must be held for write
2643 static void shrink_submounts(struct mount *mnt)
2645 LIST_HEAD(graveyard);
2646 struct mount *m;
2648 /* extract submounts of 'mountpoint' from the expiration list */
2649 while (select_submounts(mnt, &graveyard)) {
2650 while (!list_empty(&graveyard)) {
2651 m = list_first_entry(&graveyard, struct mount,
2652 mnt_expire);
2653 touch_mnt_namespace(m->mnt_ns);
2654 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2660 * Some copy_from_user() implementations do not return the exact number of
2661 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2662 * Note that this function differs from copy_from_user() in that it will oops
2663 * on bad values of `to', rather than returning a short copy.
2665 static long exact_copy_from_user(void *to, const void __user * from,
2666 unsigned long n)
2668 char *t = to;
2669 const char __user *f = from;
2670 char c;
2672 if (!access_ok(VERIFY_READ, from, n))
2673 return n;
2675 while (n) {
2676 if (__get_user(c, f)) {
2677 memset(t, 0, n);
2678 break;
2680 *t++ = c;
2681 f++;
2682 n--;
2684 return n;
2687 void *copy_mount_options(const void __user * data)
2689 int i;
2690 unsigned long size;
2691 char *copy;
2693 if (!data)
2694 return NULL;
2696 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
2697 if (!copy)
2698 return ERR_PTR(-ENOMEM);
2700 /* We only care that *some* data at the address the user
2701 * gave us is valid. Just in case, we'll zero
2702 * the remainder of the page.
2704 /* copy_from_user cannot cross TASK_SIZE ! */
2705 size = TASK_SIZE - (unsigned long)data;
2706 if (size > PAGE_SIZE)
2707 size = PAGE_SIZE;
2709 i = size - exact_copy_from_user(copy, data, size);
2710 if (!i) {
2711 kfree(copy);
2712 return ERR_PTR(-EFAULT);
2714 if (i != PAGE_SIZE)
2715 memset(copy + i, 0, PAGE_SIZE - i);
2716 return copy;
2719 char *copy_mount_string(const void __user *data)
2721 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2725 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2726 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2728 * data is a (void *) that can point to any structure up to
2729 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2730 * information (or be NULL).
2732 * Pre-0.97 versions of mount() didn't have a flags word.
2733 * When the flags word was introduced its top half was required
2734 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2735 * Therefore, if this magic number is present, it carries no information
2736 * and must be discarded.
2738 long do_mount(const char *dev_name, const char __user *dir_name,
2739 const char *type_page, unsigned long flags, void *data_page)
2741 struct path path;
2742 int retval = 0;
2743 int mnt_flags = 0;
2745 /* Discard magic */
2746 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2747 flags &= ~MS_MGC_MSK;
2749 /* Basic sanity checks */
2750 if (data_page)
2751 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2753 /* ... and get the mountpoint */
2754 retval = user_path(dir_name, &path);
2755 if (retval)
2756 return retval;
2758 retval = security_sb_mount(dev_name, &path,
2759 type_page, flags, data_page);
2760 if (!retval && !may_mount())
2761 retval = -EPERM;
2762 if (!retval && (flags & MS_MANDLOCK) && !may_mandlock())
2763 retval = -EPERM;
2764 if (retval)
2765 goto dput_out;
2767 /* Default to relatime unless overriden */
2768 if (!(flags & MS_NOATIME))
2769 mnt_flags |= MNT_RELATIME;
2771 /* Separate the per-mountpoint flags */
2772 if (flags & MS_NOSUID)
2773 mnt_flags |= MNT_NOSUID;
2774 if (flags & MS_NODEV)
2775 mnt_flags |= MNT_NODEV;
2776 if (flags & MS_NOEXEC)
2777 mnt_flags |= MNT_NOEXEC;
2778 if (flags & MS_NOATIME)
2779 mnt_flags |= MNT_NOATIME;
2780 if (flags & MS_NODIRATIME)
2781 mnt_flags |= MNT_NODIRATIME;
2782 if (flags & MS_STRICTATIME)
2783 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2784 if (flags & MS_RDONLY)
2785 mnt_flags |= MNT_READONLY;
2787 /* The default atime for remount is preservation */
2788 if ((flags & MS_REMOUNT) &&
2789 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2790 MS_STRICTATIME)) == 0)) {
2791 mnt_flags &= ~MNT_ATIME_MASK;
2792 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2795 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2796 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2797 MS_STRICTATIME | MS_NOREMOTELOCK | MS_SUBMOUNT);
2799 if (flags & MS_REMOUNT)
2800 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2801 data_page);
2802 else if (flags & MS_BIND)
2803 retval = do_loopback(&path, dev_name, flags & MS_REC);
2804 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2805 retval = do_change_type(&path, flags);
2806 else if (flags & MS_MOVE)
2807 retval = do_move_mount(&path, dev_name);
2808 else
2809 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2810 dev_name, data_page);
2811 dput_out:
2812 path_put(&path);
2813 return retval;
2816 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
2818 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
2821 static void dec_mnt_namespaces(struct ucounts *ucounts)
2823 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
2826 static void free_mnt_ns(struct mnt_namespace *ns)
2828 ns_free_inum(&ns->ns);
2829 dec_mnt_namespaces(ns->ucounts);
2830 put_user_ns(ns->user_ns);
2831 kfree(ns);
2835 * Assign a sequence number so we can detect when we attempt to bind
2836 * mount a reference to an older mount namespace into the current
2837 * mount namespace, preventing reference counting loops. A 64bit
2838 * number incrementing at 10Ghz will take 12,427 years to wrap which
2839 * is effectively never, so we can ignore the possibility.
2841 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2843 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2845 struct mnt_namespace *new_ns;
2846 struct ucounts *ucounts;
2847 int ret;
2849 ucounts = inc_mnt_namespaces(user_ns);
2850 if (!ucounts)
2851 return ERR_PTR(-ENOSPC);
2853 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2854 if (!new_ns) {
2855 dec_mnt_namespaces(ucounts);
2856 return ERR_PTR(-ENOMEM);
2858 ret = ns_alloc_inum(&new_ns->ns);
2859 if (ret) {
2860 kfree(new_ns);
2861 dec_mnt_namespaces(ucounts);
2862 return ERR_PTR(ret);
2864 new_ns->ns.ops = &mntns_operations;
2865 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2866 atomic_set(&new_ns->count, 1);
2867 new_ns->root = NULL;
2868 INIT_LIST_HEAD(&new_ns->list);
2869 init_waitqueue_head(&new_ns->poll);
2870 new_ns->event = 0;
2871 new_ns->user_ns = get_user_ns(user_ns);
2872 new_ns->ucounts = ucounts;
2873 new_ns->mounts = 0;
2874 new_ns->pending_mounts = 0;
2875 return new_ns;
2878 __latent_entropy
2879 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2880 struct user_namespace *user_ns, struct fs_struct *new_fs)
2882 struct mnt_namespace *new_ns;
2883 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2884 struct mount *p, *q;
2885 struct mount *old;
2886 struct mount *new;
2887 int copy_flags;
2889 BUG_ON(!ns);
2891 if (likely(!(flags & CLONE_NEWNS))) {
2892 get_mnt_ns(ns);
2893 return ns;
2896 old = ns->root;
2898 new_ns = alloc_mnt_ns(user_ns);
2899 if (IS_ERR(new_ns))
2900 return new_ns;
2902 namespace_lock();
2903 /* First pass: copy the tree topology */
2904 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2905 if (user_ns != ns->user_ns)
2906 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2907 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2908 if (IS_ERR(new)) {
2909 namespace_unlock();
2910 free_mnt_ns(new_ns);
2911 return ERR_CAST(new);
2913 new_ns->root = new;
2914 list_add_tail(&new_ns->list, &new->mnt_list);
2917 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2918 * as belonging to new namespace. We have already acquired a private
2919 * fs_struct, so tsk->fs->lock is not needed.
2921 p = old;
2922 q = new;
2923 while (p) {
2924 q->mnt_ns = new_ns;
2925 new_ns->mounts++;
2926 if (new_fs) {
2927 if (&p->mnt == new_fs->root.mnt) {
2928 new_fs->root.mnt = mntget(&q->mnt);
2929 rootmnt = &p->mnt;
2931 if (&p->mnt == new_fs->pwd.mnt) {
2932 new_fs->pwd.mnt = mntget(&q->mnt);
2933 pwdmnt = &p->mnt;
2936 p = next_mnt(p, old);
2937 q = next_mnt(q, new);
2938 if (!q)
2939 break;
2940 while (p->mnt.mnt_root != q->mnt.mnt_root)
2941 p = next_mnt(p, old);
2943 namespace_unlock();
2945 if (rootmnt)
2946 mntput(rootmnt);
2947 if (pwdmnt)
2948 mntput(pwdmnt);
2950 return new_ns;
2954 * create_mnt_ns - creates a private namespace and adds a root filesystem
2955 * @mnt: pointer to the new root filesystem mountpoint
2957 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2959 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2960 if (!IS_ERR(new_ns)) {
2961 struct mount *mnt = real_mount(m);
2962 mnt->mnt_ns = new_ns;
2963 new_ns->root = mnt;
2964 new_ns->mounts++;
2965 list_add(&mnt->mnt_list, &new_ns->list);
2966 } else {
2967 mntput(m);
2969 return new_ns;
2972 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2974 struct mnt_namespace *ns;
2975 struct super_block *s;
2976 struct path path;
2977 int err;
2979 ns = create_mnt_ns(mnt);
2980 if (IS_ERR(ns))
2981 return ERR_CAST(ns);
2983 err = vfs_path_lookup(mnt->mnt_root, mnt,
2984 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2986 put_mnt_ns(ns);
2988 if (err)
2989 return ERR_PTR(err);
2991 /* trade a vfsmount reference for active sb one */
2992 s = path.mnt->mnt_sb;
2993 atomic_inc(&s->s_active);
2994 mntput(path.mnt);
2995 /* lock the sucker */
2996 down_write(&s->s_umount);
2997 /* ... and return the root of (sub)tree on it */
2998 return path.dentry;
3000 EXPORT_SYMBOL(mount_subtree);
3002 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
3003 char __user *, type, unsigned long, flags, void __user *, data)
3005 int ret;
3006 char *kernel_type;
3007 char *kernel_dev;
3008 void *options;
3010 kernel_type = copy_mount_string(type);
3011 ret = PTR_ERR(kernel_type);
3012 if (IS_ERR(kernel_type))
3013 goto out_type;
3015 kernel_dev = copy_mount_string(dev_name);
3016 ret = PTR_ERR(kernel_dev);
3017 if (IS_ERR(kernel_dev))
3018 goto out_dev;
3020 options = copy_mount_options(data);
3021 ret = PTR_ERR(options);
3022 if (IS_ERR(options))
3023 goto out_data;
3025 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
3027 kfree(options);
3028 out_data:
3029 kfree(kernel_dev);
3030 out_dev:
3031 kfree(kernel_type);
3032 out_type:
3033 return ret;
3037 * Return true if path is reachable from root
3039 * namespace_sem or mount_lock is held
3041 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
3042 const struct path *root)
3044 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
3045 dentry = mnt->mnt_mountpoint;
3046 mnt = mnt->mnt_parent;
3048 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
3051 bool path_is_under(struct path *path1, struct path *path2)
3053 bool res;
3054 read_seqlock_excl(&mount_lock);
3055 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
3056 read_sequnlock_excl(&mount_lock);
3057 return res;
3059 EXPORT_SYMBOL(path_is_under);
3062 * pivot_root Semantics:
3063 * Moves the root file system of the current process to the directory put_old,
3064 * makes new_root as the new root file system of the current process, and sets
3065 * root/cwd of all processes which had them on the current root to new_root.
3067 * Restrictions:
3068 * The new_root and put_old must be directories, and must not be on the
3069 * same file system as the current process root. The put_old must be
3070 * underneath new_root, i.e. adding a non-zero number of /.. to the string
3071 * pointed to by put_old must yield the same directory as new_root. No other
3072 * file system may be mounted on put_old. After all, new_root is a mountpoint.
3074 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
3075 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
3076 * in this situation.
3078 * Notes:
3079 * - we don't move root/cwd if they are not at the root (reason: if something
3080 * cared enough to change them, it's probably wrong to force them elsewhere)
3081 * - it's okay to pick a root that isn't the root of a file system, e.g.
3082 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
3083 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
3084 * first.
3086 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
3087 const char __user *, put_old)
3089 struct path new, old, parent_path, root_parent, root;
3090 struct mount *new_mnt, *root_mnt, *old_mnt;
3091 struct mountpoint *old_mp, *root_mp;
3092 int error;
3094 if (!may_mount())
3095 return -EPERM;
3097 error = user_path_dir(new_root, &new);
3098 if (error)
3099 goto out0;
3101 error = user_path_dir(put_old, &old);
3102 if (error)
3103 goto out1;
3105 error = security_sb_pivotroot(&old, &new);
3106 if (error)
3107 goto out2;
3109 get_fs_root(current->fs, &root);
3110 old_mp = lock_mount(&old);
3111 error = PTR_ERR(old_mp);
3112 if (IS_ERR(old_mp))
3113 goto out3;
3115 error = -EINVAL;
3116 new_mnt = real_mount(new.mnt);
3117 root_mnt = real_mount(root.mnt);
3118 old_mnt = real_mount(old.mnt);
3119 if (IS_MNT_SHARED(old_mnt) ||
3120 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3121 IS_MNT_SHARED(root_mnt->mnt_parent))
3122 goto out4;
3123 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3124 goto out4;
3125 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3126 goto out4;
3127 error = -ENOENT;
3128 if (d_unlinked(new.dentry))
3129 goto out4;
3130 error = -EBUSY;
3131 if (new_mnt == root_mnt || old_mnt == root_mnt)
3132 goto out4; /* loop, on the same file system */
3133 error = -EINVAL;
3134 if (root.mnt->mnt_root != root.dentry)
3135 goto out4; /* not a mountpoint */
3136 if (!mnt_has_parent(root_mnt))
3137 goto out4; /* not attached */
3138 root_mp = root_mnt->mnt_mp;
3139 if (new.mnt->mnt_root != new.dentry)
3140 goto out4; /* not a mountpoint */
3141 if (!mnt_has_parent(new_mnt))
3142 goto out4; /* not attached */
3143 /* make sure we can reach put_old from new_root */
3144 if (!is_path_reachable(old_mnt, old.dentry, &new))
3145 goto out4;
3146 /* make certain new is below the root */
3147 if (!is_path_reachable(new_mnt, new.dentry, &root))
3148 goto out4;
3149 root_mp->m_count++; /* pin it so it won't go away */
3150 lock_mount_hash();
3151 detach_mnt(new_mnt, &parent_path);
3152 detach_mnt(root_mnt, &root_parent);
3153 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3154 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3155 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3157 /* mount old root on put_old */
3158 attach_mnt(root_mnt, old_mnt, old_mp);
3159 /* mount new_root on / */
3160 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3161 touch_mnt_namespace(current->nsproxy->mnt_ns);
3162 /* A moved mount should not expire automatically */
3163 list_del_init(&new_mnt->mnt_expire);
3164 put_mountpoint(root_mp);
3165 unlock_mount_hash();
3166 chroot_fs_refs(&root, &new);
3167 error = 0;
3168 out4:
3169 unlock_mount(old_mp);
3170 if (!error) {
3171 path_put(&root_parent);
3172 path_put(&parent_path);
3174 out3:
3175 path_put(&root);
3176 out2:
3177 path_put(&old);
3178 out1:
3179 path_put(&new);
3180 out0:
3181 return error;
3184 static void __init init_mount_tree(void)
3186 struct vfsmount *mnt;
3187 struct mnt_namespace *ns;
3188 struct path root;
3189 struct file_system_type *type;
3191 type = get_fs_type("rootfs");
3192 if (!type)
3193 panic("Can't find rootfs type");
3194 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3195 put_filesystem(type);
3196 if (IS_ERR(mnt))
3197 panic("Can't create rootfs");
3199 ns = create_mnt_ns(mnt);
3200 if (IS_ERR(ns))
3201 panic("Can't allocate initial namespace");
3203 init_task.nsproxy->mnt_ns = ns;
3204 get_mnt_ns(ns);
3206 root.mnt = mnt;
3207 root.dentry = mnt->mnt_root;
3208 mnt->mnt_flags |= MNT_LOCKED;
3210 set_fs_pwd(current->fs, &root);
3211 set_fs_root(current->fs, &root);
3214 void __init mnt_init(void)
3216 unsigned u;
3217 int err;
3219 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3220 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3222 mount_hashtable = alloc_large_system_hash("Mount-cache",
3223 sizeof(struct hlist_head),
3224 mhash_entries, 19,
3226 &m_hash_shift, &m_hash_mask, 0, 0);
3227 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3228 sizeof(struct hlist_head),
3229 mphash_entries, 19,
3231 &mp_hash_shift, &mp_hash_mask, 0, 0);
3233 if (!mount_hashtable || !mountpoint_hashtable)
3234 panic("Failed to allocate mount hash table\n");
3236 for (u = 0; u <= m_hash_mask; u++)
3237 INIT_HLIST_HEAD(&mount_hashtable[u]);
3238 for (u = 0; u <= mp_hash_mask; u++)
3239 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3241 kernfs_init();
3243 err = sysfs_init();
3244 if (err)
3245 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3246 __func__, err);
3247 fs_kobj = kobject_create_and_add("fs", NULL);
3248 if (!fs_kobj)
3249 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3250 init_rootfs();
3251 init_mount_tree();
3254 void put_mnt_ns(struct mnt_namespace *ns)
3256 if (!atomic_dec_and_test(&ns->count))
3257 return;
3258 drop_collected_mounts(&ns->root->mnt);
3259 free_mnt_ns(ns);
3262 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3264 struct vfsmount *mnt;
3265 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3266 if (!IS_ERR(mnt)) {
3268 * it is a longterm mount, don't release mnt until
3269 * we unmount before file sys is unregistered
3271 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3273 return mnt;
3275 EXPORT_SYMBOL_GPL(kern_mount_data);
3277 void kern_unmount(struct vfsmount *mnt)
3279 /* release long term mount so mount point can be released */
3280 if (!IS_ERR_OR_NULL(mnt)) {
3281 real_mount(mnt)->mnt_ns = NULL;
3282 synchronize_rcu(); /* yecchhh... */
3283 mntput(mnt);
3286 EXPORT_SYMBOL(kern_unmount);
3288 bool our_mnt(struct vfsmount *mnt)
3290 return check_mnt(real_mount(mnt));
3293 bool current_chrooted(void)
3295 /* Does the current process have a non-standard root */
3296 struct path ns_root;
3297 struct path fs_root;
3298 bool chrooted;
3300 /* Find the namespace root */
3301 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3302 ns_root.dentry = ns_root.mnt->mnt_root;
3303 path_get(&ns_root);
3304 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3307 get_fs_root(current->fs, &fs_root);
3309 chrooted = !path_equal(&fs_root, &ns_root);
3311 path_put(&fs_root);
3312 path_put(&ns_root);
3314 return chrooted;
3317 static bool mnt_already_visible(struct mnt_namespace *ns, struct vfsmount *new,
3318 int *new_mnt_flags)
3320 int new_flags = *new_mnt_flags;
3321 struct mount *mnt;
3322 bool visible = false;
3324 down_read(&namespace_sem);
3325 list_for_each_entry(mnt, &ns->list, mnt_list) {
3326 struct mount *child;
3327 int mnt_flags;
3329 if (mnt->mnt.mnt_sb->s_type != new->mnt_sb->s_type)
3330 continue;
3332 /* This mount is not fully visible if it's root directory
3333 * is not the root directory of the filesystem.
3335 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3336 continue;
3338 /* A local view of the mount flags */
3339 mnt_flags = mnt->mnt.mnt_flags;
3341 /* Don't miss readonly hidden in the superblock flags */
3342 if (mnt->mnt.mnt_sb->s_flags & MS_RDONLY)
3343 mnt_flags |= MNT_LOCK_READONLY;
3345 /* Verify the mount flags are equal to or more permissive
3346 * than the proposed new mount.
3348 if ((mnt_flags & MNT_LOCK_READONLY) &&
3349 !(new_flags & MNT_READONLY))
3350 continue;
3351 if ((mnt_flags & MNT_LOCK_ATIME) &&
3352 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3353 continue;
3355 /* This mount is not fully visible if there are any
3356 * locked child mounts that cover anything except for
3357 * empty directories.
3359 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3360 struct inode *inode = child->mnt_mountpoint->d_inode;
3361 /* Only worry about locked mounts */
3362 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3363 continue;
3364 /* Is the directory permanetly empty? */
3365 if (!is_empty_dir_inode(inode))
3366 goto next;
3368 /* Preserve the locked attributes */
3369 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
3370 MNT_LOCK_ATIME);
3371 visible = true;
3372 goto found;
3373 next: ;
3375 found:
3376 up_read(&namespace_sem);
3377 return visible;
3380 static bool mount_too_revealing(struct vfsmount *mnt, int *new_mnt_flags)
3382 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
3383 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3384 unsigned long s_iflags;
3386 if (ns->user_ns == &init_user_ns)
3387 return false;
3389 /* Can this filesystem be too revealing? */
3390 s_iflags = mnt->mnt_sb->s_iflags;
3391 if (!(s_iflags & SB_I_USERNS_VISIBLE))
3392 return false;
3394 if ((s_iflags & required_iflags) != required_iflags) {
3395 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
3396 required_iflags);
3397 return true;
3400 return !mnt_already_visible(ns, mnt, new_mnt_flags);
3403 bool mnt_may_suid(struct vfsmount *mnt)
3406 * Foreign mounts (accessed via fchdir or through /proc
3407 * symlinks) are always treated as if they are nosuid. This
3408 * prevents namespaces from trusting potentially unsafe
3409 * suid/sgid bits, file caps, or security labels that originate
3410 * in other namespaces.
3412 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
3413 current_in_userns(mnt->mnt_sb->s_user_ns);
3416 static struct ns_common *mntns_get(struct task_struct *task)
3418 struct ns_common *ns = NULL;
3419 struct nsproxy *nsproxy;
3421 task_lock(task);
3422 nsproxy = task->nsproxy;
3423 if (nsproxy) {
3424 ns = &nsproxy->mnt_ns->ns;
3425 get_mnt_ns(to_mnt_ns(ns));
3427 task_unlock(task);
3429 return ns;
3432 static void mntns_put(struct ns_common *ns)
3434 put_mnt_ns(to_mnt_ns(ns));
3437 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3439 struct fs_struct *fs = current->fs;
3440 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3441 struct path root;
3443 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3444 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3445 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3446 return -EPERM;
3448 if (fs->users != 1)
3449 return -EINVAL;
3451 get_mnt_ns(mnt_ns);
3452 put_mnt_ns(nsproxy->mnt_ns);
3453 nsproxy->mnt_ns = mnt_ns;
3455 /* Find the root */
3456 root.mnt = &mnt_ns->root->mnt;
3457 root.dentry = mnt_ns->root->mnt.mnt_root;
3458 path_get(&root);
3459 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3462 /* Update the pwd and root */
3463 set_fs_pwd(fs, &root);
3464 set_fs_root(fs, &root);
3466 path_put(&root);
3467 return 0;
3470 static struct user_namespace *mntns_owner(struct ns_common *ns)
3472 return to_mnt_ns(ns)->user_ns;
3475 const struct proc_ns_operations mntns_operations = {
3476 .name = "mnt",
3477 .type = CLONE_NEWNS,
3478 .get = mntns_get,
3479 .put = mntns_put,
3480 .install = mntns_install,
3481 .owner = mntns_owner,