2 #include <linux/vmacache.h>
3 #include <linux/hugetlb.h>
4 #include <linux/huge_mm.h>
5 #include <linux/mount.h>
6 #include <linux/seq_file.h>
7 #include <linux/highmem.h>
8 #include <linux/ptrace.h>
9 #include <linux/slab.h>
10 #include <linux/pagemap.h>
11 #include <linux/mempolicy.h>
12 #include <linux/rmap.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mmu_notifier.h>
16 #include <linux/page_idle.h>
17 #include <linux/shmem_fs.h>
20 #include <asm/uaccess.h>
21 #include <asm/tlbflush.h>
24 void task_mem(struct seq_file
*m
, struct mm_struct
*mm
)
26 unsigned long text
, lib
, swap
, ptes
, pmds
, anon
, file
, shmem
;
27 unsigned long hiwater_vm
, total_vm
, hiwater_rss
, total_rss
;
29 anon
= get_mm_counter(mm
, MM_ANONPAGES
);
30 file
= get_mm_counter(mm
, MM_FILEPAGES
);
31 shmem
= get_mm_counter(mm
, MM_SHMEMPAGES
);
34 * Note: to minimize their overhead, mm maintains hiwater_vm and
35 * hiwater_rss only when about to *lower* total_vm or rss. Any
36 * collector of these hiwater stats must therefore get total_vm
37 * and rss too, which will usually be the higher. Barriers? not
38 * worth the effort, such snapshots can always be inconsistent.
40 hiwater_vm
= total_vm
= mm
->total_vm
;
41 if (hiwater_vm
< mm
->hiwater_vm
)
42 hiwater_vm
= mm
->hiwater_vm
;
43 hiwater_rss
= total_rss
= anon
+ file
+ shmem
;
44 if (hiwater_rss
< mm
->hiwater_rss
)
45 hiwater_rss
= mm
->hiwater_rss
;
47 text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
)) >> 10;
48 lib
= (mm
->exec_vm
<< (PAGE_SHIFT
-10)) - text
;
49 swap
= get_mm_counter(mm
, MM_SWAPENTS
);
50 ptes
= PTRS_PER_PTE
* sizeof(pte_t
) * atomic_long_read(&mm
->nr_ptes
);
51 pmds
= PTRS_PER_PMD
* sizeof(pmd_t
) * mm_nr_pmds(mm
);
61 "RssShmem:\t%8lu kB\n"
69 hiwater_vm
<< (PAGE_SHIFT
-10),
70 total_vm
<< (PAGE_SHIFT
-10),
71 mm
->locked_vm
<< (PAGE_SHIFT
-10),
72 mm
->pinned_vm
<< (PAGE_SHIFT
-10),
73 hiwater_rss
<< (PAGE_SHIFT
-10),
74 total_rss
<< (PAGE_SHIFT
-10),
75 anon
<< (PAGE_SHIFT
-10),
76 file
<< (PAGE_SHIFT
-10),
77 shmem
<< (PAGE_SHIFT
-10),
78 mm
->data_vm
<< (PAGE_SHIFT
-10),
79 mm
->stack_vm
<< (PAGE_SHIFT
-10), text
, lib
,
82 swap
<< (PAGE_SHIFT
-10));
83 hugetlb_report_usage(m
, mm
);
86 unsigned long task_vsize(struct mm_struct
*mm
)
88 return PAGE_SIZE
* mm
->total_vm
;
91 unsigned long task_statm(struct mm_struct
*mm
,
92 unsigned long *shared
, unsigned long *text
,
93 unsigned long *data
, unsigned long *resident
)
95 *shared
= get_mm_counter(mm
, MM_FILEPAGES
) +
96 get_mm_counter(mm
, MM_SHMEMPAGES
);
97 *text
= (PAGE_ALIGN(mm
->end_code
) - (mm
->start_code
& PAGE_MASK
))
99 *data
= mm
->data_vm
+ mm
->stack_vm
;
100 *resident
= *shared
+ get_mm_counter(mm
, MM_ANONPAGES
);
106 * Save get_task_policy() for show_numa_map().
108 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
110 struct task_struct
*task
= priv
->task
;
113 priv
->task_mempolicy
= get_task_policy(task
);
114 mpol_get(priv
->task_mempolicy
);
117 static void release_task_mempolicy(struct proc_maps_private
*priv
)
119 mpol_put(priv
->task_mempolicy
);
122 static void hold_task_mempolicy(struct proc_maps_private
*priv
)
125 static void release_task_mempolicy(struct proc_maps_private
*priv
)
130 static void vma_stop(struct proc_maps_private
*priv
)
132 struct mm_struct
*mm
= priv
->mm
;
134 release_task_mempolicy(priv
);
135 up_read(&mm
->mmap_sem
);
139 static struct vm_area_struct
*
140 m_next_vma(struct proc_maps_private
*priv
, struct vm_area_struct
*vma
)
142 if (vma
== priv
->tail_vma
)
144 return vma
->vm_next
?: priv
->tail_vma
;
147 static void m_cache_vma(struct seq_file
*m
, struct vm_area_struct
*vma
)
149 if (m
->count
< m
->size
) /* vma is copied successfully */
150 m
->version
= m_next_vma(m
->private, vma
) ? vma
->vm_end
: -1UL;
153 static void *m_start(struct seq_file
*m
, loff_t
*ppos
)
155 struct proc_maps_private
*priv
= m
->private;
156 unsigned long last_addr
= m
->version
;
157 struct mm_struct
*mm
;
158 struct vm_area_struct
*vma
;
159 unsigned int pos
= *ppos
;
161 /* See m_cache_vma(). Zero at the start or after lseek. */
162 if (last_addr
== -1UL)
165 priv
->task
= get_proc_task(priv
->inode
);
167 return ERR_PTR(-ESRCH
);
170 if (!mm
|| !atomic_inc_not_zero(&mm
->mm_users
))
173 down_read(&mm
->mmap_sem
);
174 hold_task_mempolicy(priv
);
175 priv
->tail_vma
= get_gate_vma(mm
);
178 vma
= find_vma(mm
, last_addr
- 1);
179 if (vma
&& vma
->vm_start
<= last_addr
)
180 vma
= m_next_vma(priv
, vma
);
186 if (pos
< mm
->map_count
) {
187 for (vma
= mm
->mmap
; pos
; pos
--) {
188 m
->version
= vma
->vm_start
;
194 /* we do not bother to update m->version in this case */
195 if (pos
== mm
->map_count
&& priv
->tail_vma
)
196 return priv
->tail_vma
;
202 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
204 struct proc_maps_private
*priv
= m
->private;
205 struct vm_area_struct
*next
;
208 next
= m_next_vma(priv
, v
);
214 static void m_stop(struct seq_file
*m
, void *v
)
216 struct proc_maps_private
*priv
= m
->private;
218 if (!IS_ERR_OR_NULL(v
))
221 put_task_struct(priv
->task
);
226 static int proc_maps_open(struct inode
*inode
, struct file
*file
,
227 const struct seq_operations
*ops
, int psize
)
229 struct proc_maps_private
*priv
= __seq_open_private(file
, ops
, psize
);
235 priv
->mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
236 if (IS_ERR(priv
->mm
)) {
237 int err
= PTR_ERR(priv
->mm
);
239 seq_release_private(inode
, file
);
246 static int proc_map_release(struct inode
*inode
, struct file
*file
)
248 struct seq_file
*seq
= file
->private_data
;
249 struct proc_maps_private
*priv
= seq
->private;
254 return seq_release_private(inode
, file
);
257 static int do_maps_open(struct inode
*inode
, struct file
*file
,
258 const struct seq_operations
*ops
)
260 return proc_maps_open(inode
, file
, ops
,
261 sizeof(struct proc_maps_private
));
265 * Indicate if the VMA is a stack for the given task; for
266 * /proc/PID/maps that is the stack of the main task.
268 static int is_stack(struct proc_maps_private
*priv
,
269 struct vm_area_struct
*vma
)
272 * We make no effort to guess what a given thread considers to be
273 * its "stack". It's not even well-defined for programs written
276 return vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
277 vma
->vm_end
>= vma
->vm_mm
->start_stack
;
281 show_map_vma(struct seq_file
*m
, struct vm_area_struct
*vma
, int is_pid
)
283 struct mm_struct
*mm
= vma
->vm_mm
;
284 struct file
*file
= vma
->vm_file
;
285 struct proc_maps_private
*priv
= m
->private;
286 vm_flags_t flags
= vma
->vm_flags
;
287 unsigned long ino
= 0;
288 unsigned long long pgoff
= 0;
289 unsigned long start
, end
;
291 const char *name
= NULL
;
294 struct inode
*inode
= file_inode(vma
->vm_file
);
295 dev
= inode
->i_sb
->s_dev
;
297 pgoff
= ((loff_t
)vma
->vm_pgoff
) << PAGE_SHIFT
;
300 /* We don't show the stack guard page in /proc/maps */
301 start
= vma
->vm_start
;
304 seq_setwidth(m
, 25 + sizeof(void *) * 6 - 1);
305 seq_printf(m
, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
308 flags
& VM_READ
? 'r' : '-',
309 flags
& VM_WRITE
? 'w' : '-',
310 flags
& VM_EXEC
? 'x' : '-',
311 flags
& VM_MAYSHARE
? 's' : 'p',
313 MAJOR(dev
), MINOR(dev
), ino
);
316 * Print the dentry name for named mappings, and a
317 * special [heap] marker for the heap:
321 seq_file_path(m
, file
, "\n");
325 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
326 name
= vma
->vm_ops
->name(vma
);
331 name
= arch_vma_name(vma
);
338 if (vma
->vm_start
<= mm
->brk
&&
339 vma
->vm_end
>= mm
->start_brk
) {
344 if (is_stack(priv
, vma
))
356 static int show_map(struct seq_file
*m
, void *v
, int is_pid
)
358 show_map_vma(m
, v
, is_pid
);
363 static int show_pid_map(struct seq_file
*m
, void *v
)
365 return show_map(m
, v
, 1);
368 static int show_tid_map(struct seq_file
*m
, void *v
)
370 return show_map(m
, v
, 0);
373 static const struct seq_operations proc_pid_maps_op
= {
380 static const struct seq_operations proc_tid_maps_op
= {
387 static int pid_maps_open(struct inode
*inode
, struct file
*file
)
389 return do_maps_open(inode
, file
, &proc_pid_maps_op
);
392 static int tid_maps_open(struct inode
*inode
, struct file
*file
)
394 return do_maps_open(inode
, file
, &proc_tid_maps_op
);
397 const struct file_operations proc_pid_maps_operations
= {
398 .open
= pid_maps_open
,
401 .release
= proc_map_release
,
404 const struct file_operations proc_tid_maps_operations
= {
405 .open
= tid_maps_open
,
408 .release
= proc_map_release
,
412 * Proportional Set Size(PSS): my share of RSS.
414 * PSS of a process is the count of pages it has in memory, where each
415 * page is divided by the number of processes sharing it. So if a
416 * process has 1000 pages all to itself, and 1000 shared with one other
417 * process, its PSS will be 1500.
419 * To keep (accumulated) division errors low, we adopt a 64bit
420 * fixed-point pss counter to minimize division errors. So (pss >>
421 * PSS_SHIFT) would be the real byte count.
423 * A shift of 12 before division means (assuming 4K page size):
424 * - 1M 3-user-pages add up to 8KB errors;
425 * - supports mapcount up to 2^24, or 16M;
426 * - supports PSS up to 2^52 bytes, or 4PB.
430 #ifdef CONFIG_PROC_PAGE_MONITOR
431 struct mem_size_stats
{
432 unsigned long resident
;
433 unsigned long shared_clean
;
434 unsigned long shared_dirty
;
435 unsigned long private_clean
;
436 unsigned long private_dirty
;
437 unsigned long referenced
;
438 unsigned long anonymous
;
439 unsigned long anonymous_thp
;
440 unsigned long shmem_thp
;
442 unsigned long shared_hugetlb
;
443 unsigned long private_hugetlb
;
446 bool check_shmem_swap
;
449 static void smaps_account(struct mem_size_stats
*mss
, struct page
*page
,
450 bool compound
, bool young
, bool dirty
)
452 int i
, nr
= compound
? 1 << compound_order(page
) : 1;
453 unsigned long size
= nr
* PAGE_SIZE
;
456 mss
->anonymous
+= size
;
458 mss
->resident
+= size
;
459 /* Accumulate the size in pages that have been accessed. */
460 if (young
|| page_is_young(page
) || PageReferenced(page
))
461 mss
->referenced
+= size
;
464 * page_count(page) == 1 guarantees the page is mapped exactly once.
465 * If any subpage of the compound page mapped with PTE it would elevate
468 if (page_count(page
) == 1) {
469 if (dirty
|| PageDirty(page
))
470 mss
->private_dirty
+= size
;
472 mss
->private_clean
+= size
;
473 mss
->pss
+= (u64
)size
<< PSS_SHIFT
;
477 for (i
= 0; i
< nr
; i
++, page
++) {
478 int mapcount
= page_mapcount(page
);
481 if (dirty
|| PageDirty(page
))
482 mss
->shared_dirty
+= PAGE_SIZE
;
484 mss
->shared_clean
+= PAGE_SIZE
;
485 mss
->pss
+= (PAGE_SIZE
<< PSS_SHIFT
) / mapcount
;
487 if (dirty
|| PageDirty(page
))
488 mss
->private_dirty
+= PAGE_SIZE
;
490 mss
->private_clean
+= PAGE_SIZE
;
491 mss
->pss
+= PAGE_SIZE
<< PSS_SHIFT
;
497 static int smaps_pte_hole(unsigned long addr
, unsigned long end
,
498 struct mm_walk
*walk
)
500 struct mem_size_stats
*mss
= walk
->private;
502 mss
->swap
+= shmem_partial_swap_usage(
503 walk
->vma
->vm_file
->f_mapping
, addr
, end
);
509 static void smaps_pte_entry(pte_t
*pte
, unsigned long addr
,
510 struct mm_walk
*walk
)
512 struct mem_size_stats
*mss
= walk
->private;
513 struct vm_area_struct
*vma
= walk
->vma
;
514 struct page
*page
= NULL
;
516 if (pte_present(*pte
)) {
517 page
= vm_normal_page(vma
, addr
, *pte
);
518 } else if (is_swap_pte(*pte
)) {
519 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
521 if (!non_swap_entry(swpent
)) {
524 mss
->swap
+= PAGE_SIZE
;
525 mapcount
= swp_swapcount(swpent
);
527 u64 pss_delta
= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
529 do_div(pss_delta
, mapcount
);
530 mss
->swap_pss
+= pss_delta
;
532 mss
->swap_pss
+= (u64
)PAGE_SIZE
<< PSS_SHIFT
;
534 } else if (is_migration_entry(swpent
))
535 page
= migration_entry_to_page(swpent
);
536 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM
) && mss
->check_shmem_swap
537 && pte_none(*pte
))) {
538 page
= find_get_entry(vma
->vm_file
->f_mapping
,
539 linear_page_index(vma
, addr
));
543 if (radix_tree_exceptional_entry(page
))
544 mss
->swap
+= PAGE_SIZE
;
554 smaps_account(mss
, page
, false, pte_young(*pte
), pte_dirty(*pte
));
557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
558 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
559 struct mm_walk
*walk
)
561 struct mem_size_stats
*mss
= walk
->private;
562 struct vm_area_struct
*vma
= walk
->vma
;
565 /* FOLL_DUMP will return -EFAULT on huge zero page */
566 page
= follow_trans_huge_pmd(vma
, addr
, pmd
, FOLL_DUMP
);
567 if (IS_ERR_OR_NULL(page
))
570 mss
->anonymous_thp
+= HPAGE_PMD_SIZE
;
571 else if (PageSwapBacked(page
))
572 mss
->shmem_thp
+= HPAGE_PMD_SIZE
;
573 else if (is_zone_device_page(page
))
576 VM_BUG_ON_PAGE(1, page
);
577 smaps_account(mss
, page
, true, pmd_young(*pmd
), pmd_dirty(*pmd
));
580 static void smaps_pmd_entry(pmd_t
*pmd
, unsigned long addr
,
581 struct mm_walk
*walk
)
586 static int smaps_pte_range(pmd_t
*pmd
, unsigned long addr
, unsigned long end
,
587 struct mm_walk
*walk
)
589 struct vm_area_struct
*vma
= walk
->vma
;
593 ptl
= pmd_trans_huge_lock(pmd
, vma
);
595 smaps_pmd_entry(pmd
, addr
, walk
);
600 if (pmd_trans_unstable(pmd
))
603 * The mmap_sem held all the way back in m_start() is what
604 * keeps khugepaged out of here and from collapsing things
607 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
608 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
609 smaps_pte_entry(pte
, addr
, walk
);
610 pte_unmap_unlock(pte
- 1, ptl
);
615 static void show_smap_vma_flags(struct seq_file
*m
, struct vm_area_struct
*vma
)
618 * Don't forget to update Documentation/ on changes.
620 static const char mnemonics
[BITS_PER_LONG
][2] = {
622 * In case if we meet a flag we don't know about.
624 [0 ... (BITS_PER_LONG
-1)] = "??",
626 [ilog2(VM_READ
)] = "rd",
627 [ilog2(VM_WRITE
)] = "wr",
628 [ilog2(VM_EXEC
)] = "ex",
629 [ilog2(VM_SHARED
)] = "sh",
630 [ilog2(VM_MAYREAD
)] = "mr",
631 [ilog2(VM_MAYWRITE
)] = "mw",
632 [ilog2(VM_MAYEXEC
)] = "me",
633 [ilog2(VM_MAYSHARE
)] = "ms",
634 [ilog2(VM_GROWSDOWN
)] = "gd",
635 [ilog2(VM_PFNMAP
)] = "pf",
636 [ilog2(VM_DENYWRITE
)] = "dw",
637 #ifdef CONFIG_X86_INTEL_MPX
638 [ilog2(VM_MPX
)] = "mp",
640 [ilog2(VM_LOCKED
)] = "lo",
641 [ilog2(VM_IO
)] = "io",
642 [ilog2(VM_SEQ_READ
)] = "sr",
643 [ilog2(VM_RAND_READ
)] = "rr",
644 [ilog2(VM_DONTCOPY
)] = "dc",
645 [ilog2(VM_DONTEXPAND
)] = "de",
646 [ilog2(VM_ACCOUNT
)] = "ac",
647 [ilog2(VM_NORESERVE
)] = "nr",
648 [ilog2(VM_HUGETLB
)] = "ht",
649 [ilog2(VM_ARCH_1
)] = "ar",
650 [ilog2(VM_DONTDUMP
)] = "dd",
651 #ifdef CONFIG_MEM_SOFT_DIRTY
652 [ilog2(VM_SOFTDIRTY
)] = "sd",
654 [ilog2(VM_MIXEDMAP
)] = "mm",
655 [ilog2(VM_HUGEPAGE
)] = "hg",
656 [ilog2(VM_NOHUGEPAGE
)] = "nh",
657 [ilog2(VM_MERGEABLE
)] = "mg",
658 [ilog2(VM_UFFD_MISSING
)]= "um",
659 [ilog2(VM_UFFD_WP
)] = "uw",
660 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
661 /* These come out via ProtectionKey: */
662 [ilog2(VM_PKEY_BIT0
)] = "",
663 [ilog2(VM_PKEY_BIT1
)] = "",
664 [ilog2(VM_PKEY_BIT2
)] = "",
665 [ilog2(VM_PKEY_BIT3
)] = "",
670 seq_puts(m
, "VmFlags: ");
671 for (i
= 0; i
< BITS_PER_LONG
; i
++) {
672 if (!mnemonics
[i
][0])
674 if (vma
->vm_flags
& (1UL << i
)) {
675 seq_printf(m
, "%c%c ",
676 mnemonics
[i
][0], mnemonics
[i
][1]);
682 #ifdef CONFIG_HUGETLB_PAGE
683 static int smaps_hugetlb_range(pte_t
*pte
, unsigned long hmask
,
684 unsigned long addr
, unsigned long end
,
685 struct mm_walk
*walk
)
687 struct mem_size_stats
*mss
= walk
->private;
688 struct vm_area_struct
*vma
= walk
->vma
;
689 struct page
*page
= NULL
;
691 if (pte_present(*pte
)) {
692 page
= vm_normal_page(vma
, addr
, *pte
);
693 } else if (is_swap_pte(*pte
)) {
694 swp_entry_t swpent
= pte_to_swp_entry(*pte
);
696 if (is_migration_entry(swpent
))
697 page
= migration_entry_to_page(swpent
);
700 int mapcount
= page_mapcount(page
);
703 mss
->shared_hugetlb
+= huge_page_size(hstate_vma(vma
));
705 mss
->private_hugetlb
+= huge_page_size(hstate_vma(vma
));
709 #endif /* HUGETLB_PAGE */
711 void __weak
arch_show_smap(struct seq_file
*m
, struct vm_area_struct
*vma
)
715 static int show_smap(struct seq_file
*m
, void *v
, int is_pid
)
717 struct vm_area_struct
*vma
= v
;
718 struct mem_size_stats mss
;
719 struct mm_walk smaps_walk
= {
720 .pmd_entry
= smaps_pte_range
,
721 #ifdef CONFIG_HUGETLB_PAGE
722 .hugetlb_entry
= smaps_hugetlb_range
,
728 memset(&mss
, 0, sizeof mss
);
731 if (vma
->vm_file
&& shmem_mapping(vma
->vm_file
->f_mapping
)) {
733 * For shared or readonly shmem mappings we know that all
734 * swapped out pages belong to the shmem object, and we can
735 * obtain the swap value much more efficiently. For private
736 * writable mappings, we might have COW pages that are
737 * not affected by the parent swapped out pages of the shmem
738 * object, so we have to distinguish them during the page walk.
739 * Unless we know that the shmem object (or the part mapped by
740 * our VMA) has no swapped out pages at all.
742 unsigned long shmem_swapped
= shmem_swap_usage(vma
);
744 if (!shmem_swapped
|| (vma
->vm_flags
& VM_SHARED
) ||
745 !(vma
->vm_flags
& VM_WRITE
)) {
746 mss
.swap
= shmem_swapped
;
748 mss
.check_shmem_swap
= true;
749 smaps_walk
.pte_hole
= smaps_pte_hole
;
754 /* mmap_sem is held in m_start */
755 walk_page_vma(vma
, &smaps_walk
);
757 show_map_vma(m
, vma
, is_pid
);
763 "Shared_Clean: %8lu kB\n"
764 "Shared_Dirty: %8lu kB\n"
765 "Private_Clean: %8lu kB\n"
766 "Private_Dirty: %8lu kB\n"
767 "Referenced: %8lu kB\n"
768 "Anonymous: %8lu kB\n"
769 "AnonHugePages: %8lu kB\n"
770 "ShmemPmdMapped: %8lu kB\n"
771 "Shared_Hugetlb: %8lu kB\n"
772 "Private_Hugetlb: %7lu kB\n"
775 "KernelPageSize: %8lu kB\n"
776 "MMUPageSize: %8lu kB\n"
778 (vma
->vm_end
- vma
->vm_start
) >> 10,
780 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)),
781 mss
.shared_clean
>> 10,
782 mss
.shared_dirty
>> 10,
783 mss
.private_clean
>> 10,
784 mss
.private_dirty
>> 10,
785 mss
.referenced
>> 10,
787 mss
.anonymous_thp
>> 10,
789 mss
.shared_hugetlb
>> 10,
790 mss
.private_hugetlb
>> 10,
792 (unsigned long)(mss
.swap_pss
>> (10 + PSS_SHIFT
)),
793 vma_kernel_pagesize(vma
) >> 10,
794 vma_mmu_pagesize(vma
) >> 10,
795 (vma
->vm_flags
& VM_LOCKED
) ?
796 (unsigned long)(mss
.pss
>> (10 + PSS_SHIFT
)) : 0);
798 arch_show_smap(m
, vma
);
799 show_smap_vma_flags(m
, vma
);
804 static int show_pid_smap(struct seq_file
*m
, void *v
)
806 return show_smap(m
, v
, 1);
809 static int show_tid_smap(struct seq_file
*m
, void *v
)
811 return show_smap(m
, v
, 0);
814 static const struct seq_operations proc_pid_smaps_op
= {
818 .show
= show_pid_smap
821 static const struct seq_operations proc_tid_smaps_op
= {
825 .show
= show_tid_smap
828 static int pid_smaps_open(struct inode
*inode
, struct file
*file
)
830 return do_maps_open(inode
, file
, &proc_pid_smaps_op
);
833 static int tid_smaps_open(struct inode
*inode
, struct file
*file
)
835 return do_maps_open(inode
, file
, &proc_tid_smaps_op
);
838 const struct file_operations proc_pid_smaps_operations
= {
839 .open
= pid_smaps_open
,
842 .release
= proc_map_release
,
845 const struct file_operations proc_tid_smaps_operations
= {
846 .open
= tid_smaps_open
,
849 .release
= proc_map_release
,
852 enum clear_refs_types
{
856 CLEAR_REFS_SOFT_DIRTY
,
857 CLEAR_REFS_MM_HIWATER_RSS
,
861 struct clear_refs_private
{
862 enum clear_refs_types type
;
865 #ifdef CONFIG_MEM_SOFT_DIRTY
866 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
867 unsigned long addr
, pte_t
*pte
)
870 * The soft-dirty tracker uses #PF-s to catch writes
871 * to pages, so write-protect the pte as well. See the
872 * Documentation/vm/soft-dirty.txt for full description
873 * of how soft-dirty works.
877 if (pte_present(ptent
)) {
878 ptent
= ptep_modify_prot_start(vma
->vm_mm
, addr
, pte
);
879 ptent
= pte_wrprotect(ptent
);
880 ptent
= pte_clear_soft_dirty(ptent
);
881 ptep_modify_prot_commit(vma
->vm_mm
, addr
, pte
, ptent
);
882 } else if (is_swap_pte(ptent
)) {
883 ptent
= pte_swp_clear_soft_dirty(ptent
);
884 set_pte_at(vma
->vm_mm
, addr
, pte
, ptent
);
888 static inline void clear_soft_dirty(struct vm_area_struct
*vma
,
889 unsigned long addr
, pte_t
*pte
)
894 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
895 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
896 unsigned long addr
, pmd_t
*pmdp
)
900 /* See comment in change_huge_pmd() */
901 pmdp_invalidate(vma
, addr
, pmdp
);
902 if (pmd_dirty(*pmdp
))
903 pmd
= pmd_mkdirty(pmd
);
904 if (pmd_young(*pmdp
))
905 pmd
= pmd_mkyoung(pmd
);
907 pmd
= pmd_wrprotect(pmd
);
908 pmd
= pmd_clear_soft_dirty(pmd
);
910 set_pmd_at(vma
->vm_mm
, addr
, pmdp
, pmd
);
913 static inline void clear_soft_dirty_pmd(struct vm_area_struct
*vma
,
914 unsigned long addr
, pmd_t
*pmdp
)
919 static int clear_refs_pte_range(pmd_t
*pmd
, unsigned long addr
,
920 unsigned long end
, struct mm_walk
*walk
)
922 struct clear_refs_private
*cp
= walk
->private;
923 struct vm_area_struct
*vma
= walk
->vma
;
928 ptl
= pmd_trans_huge_lock(pmd
, vma
);
930 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
931 clear_soft_dirty_pmd(vma
, addr
, pmd
);
935 page
= pmd_page(*pmd
);
937 /* Clear accessed and referenced bits. */
938 pmdp_test_and_clear_young(vma
, addr
, pmd
);
939 test_and_clear_page_young(page
);
940 ClearPageReferenced(page
);
946 if (pmd_trans_unstable(pmd
))
949 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
950 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
953 if (cp
->type
== CLEAR_REFS_SOFT_DIRTY
) {
954 clear_soft_dirty(vma
, addr
, pte
);
958 if (!pte_present(ptent
))
961 page
= vm_normal_page(vma
, addr
, ptent
);
965 /* Clear accessed and referenced bits. */
966 ptep_test_and_clear_young(vma
, addr
, pte
);
967 test_and_clear_page_young(page
);
968 ClearPageReferenced(page
);
970 pte_unmap_unlock(pte
- 1, ptl
);
975 static int clear_refs_test_walk(unsigned long start
, unsigned long end
,
976 struct mm_walk
*walk
)
978 struct clear_refs_private
*cp
= walk
->private;
979 struct vm_area_struct
*vma
= walk
->vma
;
981 if (vma
->vm_flags
& VM_PFNMAP
)
985 * Writing 1 to /proc/pid/clear_refs affects all pages.
986 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
987 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
988 * Writing 4 to /proc/pid/clear_refs affects all pages.
990 if (cp
->type
== CLEAR_REFS_ANON
&& vma
->vm_file
)
992 if (cp
->type
== CLEAR_REFS_MAPPED
&& !vma
->vm_file
)
997 static ssize_t
clear_refs_write(struct file
*file
, const char __user
*buf
,
998 size_t count
, loff_t
*ppos
)
1000 struct task_struct
*task
;
1001 char buffer
[PROC_NUMBUF
];
1002 struct mm_struct
*mm
;
1003 struct vm_area_struct
*vma
;
1004 enum clear_refs_types type
;
1008 memset(buffer
, 0, sizeof(buffer
));
1009 if (count
> sizeof(buffer
) - 1)
1010 count
= sizeof(buffer
) - 1;
1011 if (copy_from_user(buffer
, buf
, count
))
1013 rv
= kstrtoint(strstrip(buffer
), 10, &itype
);
1016 type
= (enum clear_refs_types
)itype
;
1017 if (type
< CLEAR_REFS_ALL
|| type
>= CLEAR_REFS_LAST
)
1020 task
= get_proc_task(file_inode(file
));
1023 mm
= get_task_mm(task
);
1025 struct clear_refs_private cp
= {
1028 struct mm_walk clear_refs_walk
= {
1029 .pmd_entry
= clear_refs_pte_range
,
1030 .test_walk
= clear_refs_test_walk
,
1035 if (type
== CLEAR_REFS_MM_HIWATER_RSS
) {
1036 if (down_write_killable(&mm
->mmap_sem
)) {
1042 * Writing 5 to /proc/pid/clear_refs resets the peak
1043 * resident set size to this mm's current rss value.
1045 reset_mm_hiwater_rss(mm
);
1046 up_write(&mm
->mmap_sem
);
1050 down_read(&mm
->mmap_sem
);
1051 if (type
== CLEAR_REFS_SOFT_DIRTY
) {
1052 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1053 if (!(vma
->vm_flags
& VM_SOFTDIRTY
))
1055 up_read(&mm
->mmap_sem
);
1056 if (down_write_killable(&mm
->mmap_sem
)) {
1060 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
1061 vma
->vm_flags
&= ~VM_SOFTDIRTY
;
1062 vma_set_page_prot(vma
);
1064 downgrade_write(&mm
->mmap_sem
);
1067 mmu_notifier_invalidate_range_start(mm
, 0, -1);
1069 walk_page_range(0, mm
->highest_vm_end
, &clear_refs_walk
);
1070 if (type
== CLEAR_REFS_SOFT_DIRTY
)
1071 mmu_notifier_invalidate_range_end(mm
, 0, -1);
1073 up_read(&mm
->mmap_sem
);
1077 put_task_struct(task
);
1082 const struct file_operations proc_clear_refs_operations
= {
1083 .write
= clear_refs_write
,
1084 .llseek
= noop_llseek
,
1091 struct pagemapread
{
1092 int pos
, len
; /* units: PM_ENTRY_BYTES, not bytes */
1093 pagemap_entry_t
*buffer
;
1097 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1098 #define PAGEMAP_WALK_MASK (PMD_MASK)
1100 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1101 #define PM_PFRAME_BITS 55
1102 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1103 #define PM_SOFT_DIRTY BIT_ULL(55)
1104 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1105 #define PM_FILE BIT_ULL(61)
1106 #define PM_SWAP BIT_ULL(62)
1107 #define PM_PRESENT BIT_ULL(63)
1109 #define PM_END_OF_BUFFER 1
1111 static inline pagemap_entry_t
make_pme(u64 frame
, u64 flags
)
1113 return (pagemap_entry_t
) { .pme
= (frame
& PM_PFRAME_MASK
) | flags
};
1116 static int add_to_pagemap(unsigned long addr
, pagemap_entry_t
*pme
,
1117 struct pagemapread
*pm
)
1119 pm
->buffer
[pm
->pos
++] = *pme
;
1120 if (pm
->pos
>= pm
->len
)
1121 return PM_END_OF_BUFFER
;
1125 static int pagemap_pte_hole(unsigned long start
, unsigned long end
,
1126 struct mm_walk
*walk
)
1128 struct pagemapread
*pm
= walk
->private;
1129 unsigned long addr
= start
;
1132 while (addr
< end
) {
1133 struct vm_area_struct
*vma
= find_vma(walk
->mm
, addr
);
1134 pagemap_entry_t pme
= make_pme(0, 0);
1135 /* End of address space hole, which we mark as non-present. */
1136 unsigned long hole_end
;
1139 hole_end
= min(end
, vma
->vm_start
);
1143 for (; addr
< hole_end
; addr
+= PAGE_SIZE
) {
1144 err
= add_to_pagemap(addr
, &pme
, pm
);
1152 /* Addresses in the VMA. */
1153 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1154 pme
= make_pme(0, PM_SOFT_DIRTY
);
1155 for (; addr
< min(end
, vma
->vm_end
); addr
+= PAGE_SIZE
) {
1156 err
= add_to_pagemap(addr
, &pme
, pm
);
1165 static pagemap_entry_t
pte_to_pagemap_entry(struct pagemapread
*pm
,
1166 struct vm_area_struct
*vma
, unsigned long addr
, pte_t pte
)
1168 u64 frame
= 0, flags
= 0;
1169 struct page
*page
= NULL
;
1171 if (pte_present(pte
)) {
1173 frame
= pte_pfn(pte
);
1174 flags
|= PM_PRESENT
;
1175 page
= vm_normal_page(vma
, addr
, pte
);
1176 if (pte_soft_dirty(pte
))
1177 flags
|= PM_SOFT_DIRTY
;
1178 } else if (is_swap_pte(pte
)) {
1180 if (pte_swp_soft_dirty(pte
))
1181 flags
|= PM_SOFT_DIRTY
;
1182 entry
= pte_to_swp_entry(pte
);
1183 frame
= swp_type(entry
) |
1184 (swp_offset(entry
) << MAX_SWAPFILES_SHIFT
);
1186 if (is_migration_entry(entry
))
1187 page
= migration_entry_to_page(entry
);
1190 if (page
&& !PageAnon(page
))
1192 if (page
&& page_mapcount(page
) == 1)
1193 flags
|= PM_MMAP_EXCLUSIVE
;
1194 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1195 flags
|= PM_SOFT_DIRTY
;
1197 return make_pme(frame
, flags
);
1200 static int pagemap_pmd_range(pmd_t
*pmdp
, unsigned long addr
, unsigned long end
,
1201 struct mm_walk
*walk
)
1203 struct vm_area_struct
*vma
= walk
->vma
;
1204 struct pagemapread
*pm
= walk
->private;
1206 pte_t
*pte
, *orig_pte
;
1209 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1210 ptl
= pmd_trans_huge_lock(pmdp
, vma
);
1212 u64 flags
= 0, frame
= 0;
1215 if ((vma
->vm_flags
& VM_SOFTDIRTY
) || pmd_soft_dirty(pmd
))
1216 flags
|= PM_SOFT_DIRTY
;
1219 * Currently pmd for thp is always present because thp
1220 * can not be swapped-out, migrated, or HWPOISONed
1221 * (split in such cases instead.)
1222 * This if-check is just to prepare for future implementation.
1224 if (pmd_present(pmd
)) {
1225 struct page
*page
= pmd_page(pmd
);
1227 if (page_mapcount(page
) == 1)
1228 flags
|= PM_MMAP_EXCLUSIVE
;
1230 flags
|= PM_PRESENT
;
1232 frame
= pmd_pfn(pmd
) +
1233 ((addr
& ~PMD_MASK
) >> PAGE_SHIFT
);
1236 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1237 pagemap_entry_t pme
= make_pme(frame
, flags
);
1239 err
= add_to_pagemap(addr
, &pme
, pm
);
1242 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1249 if (pmd_trans_unstable(pmdp
))
1251 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1254 * We can assume that @vma always points to a valid one and @end never
1255 * goes beyond vma->vm_end.
1257 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmdp
, addr
, &ptl
);
1258 for (; addr
< end
; pte
++, addr
+= PAGE_SIZE
) {
1259 pagemap_entry_t pme
;
1261 pme
= pte_to_pagemap_entry(pm
, vma
, addr
, *pte
);
1262 err
= add_to_pagemap(addr
, &pme
, pm
);
1266 pte_unmap_unlock(orig_pte
, ptl
);
1273 #ifdef CONFIG_HUGETLB_PAGE
1274 /* This function walks within one hugetlb entry in the single call */
1275 static int pagemap_hugetlb_range(pte_t
*ptep
, unsigned long hmask
,
1276 unsigned long addr
, unsigned long end
,
1277 struct mm_walk
*walk
)
1279 struct pagemapread
*pm
= walk
->private;
1280 struct vm_area_struct
*vma
= walk
->vma
;
1281 u64 flags
= 0, frame
= 0;
1285 if (vma
->vm_flags
& VM_SOFTDIRTY
)
1286 flags
|= PM_SOFT_DIRTY
;
1288 pte
= huge_ptep_get(ptep
);
1289 if (pte_present(pte
)) {
1290 struct page
*page
= pte_page(pte
);
1292 if (!PageAnon(page
))
1295 if (page_mapcount(page
) == 1)
1296 flags
|= PM_MMAP_EXCLUSIVE
;
1298 flags
|= PM_PRESENT
;
1300 frame
= pte_pfn(pte
) +
1301 ((addr
& ~hmask
) >> PAGE_SHIFT
);
1304 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
1305 pagemap_entry_t pme
= make_pme(frame
, flags
);
1307 err
= add_to_pagemap(addr
, &pme
, pm
);
1310 if (pm
->show_pfn
&& (flags
& PM_PRESENT
))
1318 #endif /* HUGETLB_PAGE */
1321 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1323 * For each page in the address space, this file contains one 64-bit entry
1324 * consisting of the following:
1326 * Bits 0-54 page frame number (PFN) if present
1327 * Bits 0-4 swap type if swapped
1328 * Bits 5-54 swap offset if swapped
1329 * Bit 55 pte is soft-dirty (see Documentation/vm/soft-dirty.txt)
1330 * Bit 56 page exclusively mapped
1332 * Bit 61 page is file-page or shared-anon
1333 * Bit 62 page swapped
1334 * Bit 63 page present
1336 * If the page is not present but in swap, then the PFN contains an
1337 * encoding of the swap file number and the page's offset into the
1338 * swap. Unmapped pages return a null PFN. This allows determining
1339 * precisely which pages are mapped (or in swap) and comparing mapped
1340 * pages between processes.
1342 * Efficient users of this interface will use /proc/pid/maps to
1343 * determine which areas of memory are actually mapped and llseek to
1344 * skip over unmapped regions.
1346 static ssize_t
pagemap_read(struct file
*file
, char __user
*buf
,
1347 size_t count
, loff_t
*ppos
)
1349 struct mm_struct
*mm
= file
->private_data
;
1350 struct pagemapread pm
;
1351 struct mm_walk pagemap_walk
= {};
1353 unsigned long svpfn
;
1354 unsigned long start_vaddr
;
1355 unsigned long end_vaddr
;
1356 int ret
= 0, copied
= 0;
1358 if (!mm
|| !atomic_inc_not_zero(&mm
->mm_users
))
1362 /* file position must be aligned */
1363 if ((*ppos
% PM_ENTRY_BYTES
) || (count
% PM_ENTRY_BYTES
))
1370 /* do not disclose physical addresses: attack vector */
1371 pm
.show_pfn
= file_ns_capable(file
, &init_user_ns
, CAP_SYS_ADMIN
);
1373 pm
.len
= (PAGEMAP_WALK_SIZE
>> PAGE_SHIFT
);
1374 pm
.buffer
= kmalloc(pm
.len
* PM_ENTRY_BYTES
, GFP_TEMPORARY
);
1379 pagemap_walk
.pmd_entry
= pagemap_pmd_range
;
1380 pagemap_walk
.pte_hole
= pagemap_pte_hole
;
1381 #ifdef CONFIG_HUGETLB_PAGE
1382 pagemap_walk
.hugetlb_entry
= pagemap_hugetlb_range
;
1384 pagemap_walk
.mm
= mm
;
1385 pagemap_walk
.private = &pm
;
1388 svpfn
= src
/ PM_ENTRY_BYTES
;
1389 start_vaddr
= svpfn
<< PAGE_SHIFT
;
1390 end_vaddr
= mm
->task_size
;
1392 /* watch out for wraparound */
1393 if (svpfn
> mm
->task_size
>> PAGE_SHIFT
)
1394 start_vaddr
= end_vaddr
;
1397 * The odds are that this will stop walking way
1398 * before end_vaddr, because the length of the
1399 * user buffer is tracked in "pm", and the walk
1400 * will stop when we hit the end of the buffer.
1403 while (count
&& (start_vaddr
< end_vaddr
)) {
1408 end
= (start_vaddr
+ PAGEMAP_WALK_SIZE
) & PAGEMAP_WALK_MASK
;
1410 if (end
< start_vaddr
|| end
> end_vaddr
)
1412 down_read(&mm
->mmap_sem
);
1413 ret
= walk_page_range(start_vaddr
, end
, &pagemap_walk
);
1414 up_read(&mm
->mmap_sem
);
1417 len
= min(count
, PM_ENTRY_BYTES
* pm
.pos
);
1418 if (copy_to_user(buf
, pm
.buffer
, len
)) {
1427 if (!ret
|| ret
== PM_END_OF_BUFFER
)
1438 static int pagemap_open(struct inode
*inode
, struct file
*file
)
1440 struct mm_struct
*mm
;
1442 mm
= proc_mem_open(inode
, PTRACE_MODE_READ
);
1445 file
->private_data
= mm
;
1449 static int pagemap_release(struct inode
*inode
, struct file
*file
)
1451 struct mm_struct
*mm
= file
->private_data
;
1458 const struct file_operations proc_pagemap_operations
= {
1459 .llseek
= mem_lseek
, /* borrow this */
1460 .read
= pagemap_read
,
1461 .open
= pagemap_open
,
1462 .release
= pagemap_release
,
1464 #endif /* CONFIG_PROC_PAGE_MONITOR */
1469 unsigned long pages
;
1471 unsigned long active
;
1472 unsigned long writeback
;
1473 unsigned long mapcount_max
;
1474 unsigned long dirty
;
1475 unsigned long swapcache
;
1476 unsigned long node
[MAX_NUMNODES
];
1479 struct numa_maps_private
{
1480 struct proc_maps_private proc_maps
;
1481 struct numa_maps md
;
1484 static void gather_stats(struct page
*page
, struct numa_maps
*md
, int pte_dirty
,
1485 unsigned long nr_pages
)
1487 int count
= page_mapcount(page
);
1489 md
->pages
+= nr_pages
;
1490 if (pte_dirty
|| PageDirty(page
))
1491 md
->dirty
+= nr_pages
;
1493 if (PageSwapCache(page
))
1494 md
->swapcache
+= nr_pages
;
1496 if (PageActive(page
) || PageUnevictable(page
))
1497 md
->active
+= nr_pages
;
1499 if (PageWriteback(page
))
1500 md
->writeback
+= nr_pages
;
1503 md
->anon
+= nr_pages
;
1505 if (count
> md
->mapcount_max
)
1506 md
->mapcount_max
= count
;
1508 md
->node
[page_to_nid(page
)] += nr_pages
;
1511 static struct page
*can_gather_numa_stats(pte_t pte
, struct vm_area_struct
*vma
,
1517 if (!pte_present(pte
))
1520 page
= vm_normal_page(vma
, addr
, pte
);
1524 if (PageReserved(page
))
1527 nid
= page_to_nid(page
);
1528 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1534 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1535 static struct page
*can_gather_numa_stats_pmd(pmd_t pmd
,
1536 struct vm_area_struct
*vma
,
1542 if (!pmd_present(pmd
))
1545 page
= vm_normal_page_pmd(vma
, addr
, pmd
);
1549 if (PageReserved(page
))
1552 nid
= page_to_nid(page
);
1553 if (!node_isset(nid
, node_states
[N_MEMORY
]))
1560 static int gather_pte_stats(pmd_t
*pmd
, unsigned long addr
,
1561 unsigned long end
, struct mm_walk
*walk
)
1563 struct numa_maps
*md
= walk
->private;
1564 struct vm_area_struct
*vma
= walk
->vma
;
1569 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1570 ptl
= pmd_trans_huge_lock(pmd
, vma
);
1574 page
= can_gather_numa_stats_pmd(*pmd
, vma
, addr
);
1576 gather_stats(page
, md
, pmd_dirty(*pmd
),
1577 HPAGE_PMD_SIZE
/PAGE_SIZE
);
1582 if (pmd_trans_unstable(pmd
))
1585 orig_pte
= pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
1587 struct page
*page
= can_gather_numa_stats(*pte
, vma
, addr
);
1590 gather_stats(page
, md
, pte_dirty(*pte
), 1);
1592 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1593 pte_unmap_unlock(orig_pte
, ptl
);
1596 #ifdef CONFIG_HUGETLB_PAGE
1597 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1598 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1600 pte_t huge_pte
= huge_ptep_get(pte
);
1601 struct numa_maps
*md
;
1604 if (!pte_present(huge_pte
))
1607 page
= pte_page(huge_pte
);
1612 gather_stats(page
, md
, pte_dirty(huge_pte
), 1);
1617 static int gather_hugetlb_stats(pte_t
*pte
, unsigned long hmask
,
1618 unsigned long addr
, unsigned long end
, struct mm_walk
*walk
)
1625 * Display pages allocated per node and memory policy via /proc.
1627 static int show_numa_map(struct seq_file
*m
, void *v
, int is_pid
)
1629 struct numa_maps_private
*numa_priv
= m
->private;
1630 struct proc_maps_private
*proc_priv
= &numa_priv
->proc_maps
;
1631 struct vm_area_struct
*vma
= v
;
1632 struct numa_maps
*md
= &numa_priv
->md
;
1633 struct file
*file
= vma
->vm_file
;
1634 struct mm_struct
*mm
= vma
->vm_mm
;
1635 struct mm_walk walk
= {
1636 .hugetlb_entry
= gather_hugetlb_stats
,
1637 .pmd_entry
= gather_pte_stats
,
1641 struct mempolicy
*pol
;
1648 /* Ensure we start with an empty set of numa_maps statistics. */
1649 memset(md
, 0, sizeof(*md
));
1651 pol
= __get_vma_policy(vma
, vma
->vm_start
);
1653 mpol_to_str(buffer
, sizeof(buffer
), pol
);
1656 mpol_to_str(buffer
, sizeof(buffer
), proc_priv
->task_mempolicy
);
1659 seq_printf(m
, "%08lx %s", vma
->vm_start
, buffer
);
1662 seq_puts(m
, " file=");
1663 seq_file_path(m
, file
, "\n\t= ");
1664 } else if (vma
->vm_start
<= mm
->brk
&& vma
->vm_end
>= mm
->start_brk
) {
1665 seq_puts(m
, " heap");
1666 } else if (is_stack(proc_priv
, vma
)) {
1667 seq_puts(m
, " stack");
1670 if (is_vm_hugetlb_page(vma
))
1671 seq_puts(m
, " huge");
1673 /* mmap_sem is held by m_start */
1674 walk_page_vma(vma
, &walk
);
1680 seq_printf(m
, " anon=%lu", md
->anon
);
1683 seq_printf(m
, " dirty=%lu", md
->dirty
);
1685 if (md
->pages
!= md
->anon
&& md
->pages
!= md
->dirty
)
1686 seq_printf(m
, " mapped=%lu", md
->pages
);
1688 if (md
->mapcount_max
> 1)
1689 seq_printf(m
, " mapmax=%lu", md
->mapcount_max
);
1692 seq_printf(m
, " swapcache=%lu", md
->swapcache
);
1694 if (md
->active
< md
->pages
&& !is_vm_hugetlb_page(vma
))
1695 seq_printf(m
, " active=%lu", md
->active
);
1698 seq_printf(m
, " writeback=%lu", md
->writeback
);
1700 for_each_node_state(nid
, N_MEMORY
)
1702 seq_printf(m
, " N%d=%lu", nid
, md
->node
[nid
]);
1704 seq_printf(m
, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma
) >> 10);
1707 m_cache_vma(m
, vma
);
1711 static int show_pid_numa_map(struct seq_file
*m
, void *v
)
1713 return show_numa_map(m
, v
, 1);
1716 static int show_tid_numa_map(struct seq_file
*m
, void *v
)
1718 return show_numa_map(m
, v
, 0);
1721 static const struct seq_operations proc_pid_numa_maps_op
= {
1725 .show
= show_pid_numa_map
,
1728 static const struct seq_operations proc_tid_numa_maps_op
= {
1732 .show
= show_tid_numa_map
,
1735 static int numa_maps_open(struct inode
*inode
, struct file
*file
,
1736 const struct seq_operations
*ops
)
1738 return proc_maps_open(inode
, file
, ops
,
1739 sizeof(struct numa_maps_private
));
1742 static int pid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1744 return numa_maps_open(inode
, file
, &proc_pid_numa_maps_op
);
1747 static int tid_numa_maps_open(struct inode
*inode
, struct file
*file
)
1749 return numa_maps_open(inode
, file
, &proc_tid_numa_maps_op
);
1752 const struct file_operations proc_pid_numa_maps_operations
= {
1753 .open
= pid_numa_maps_open
,
1755 .llseek
= seq_lseek
,
1756 .release
= proc_map_release
,
1759 const struct file_operations proc_tid_numa_maps_operations
= {
1760 .open
= tid_numa_maps_open
,
1762 .llseek
= seq_lseek
,
1763 .release
= proc_map_release
,
1765 #endif /* CONFIG_NUMA */