2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
45 static kmem_zone_t
*xfs_buf_zone
;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp
->b_addr
&& bp
->b_page_count
> 1;
79 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
99 if (bp
->b_flags
& XBF_NO_IOACCT
)
102 ASSERT(bp
->b_flags
& XBF_ASYNC
);
103 spin_lock(&bp
->b_lock
);
104 if (!(bp
->b_state
& XFS_BSTATE_IN_FLIGHT
)) {
105 bp
->b_state
|= XFS_BSTATE_IN_FLIGHT
;
106 percpu_counter_inc(&bp
->b_target
->bt_io_count
);
108 spin_unlock(&bp
->b_lock
);
112 * Clear the in-flight state on a buffer about to be released to the LRU or
113 * freed and unaccount from the buftarg.
116 __xfs_buf_ioacct_dec(
119 ASSERT(spin_is_locked(&bp
->b_lock
));
121 if (bp
->b_state
& XFS_BSTATE_IN_FLIGHT
) {
122 bp
->b_state
&= ~XFS_BSTATE_IN_FLIGHT
;
123 percpu_counter_dec(&bp
->b_target
->bt_io_count
);
131 spin_lock(&bp
->b_lock
);
132 __xfs_buf_ioacct_dec(bp
);
133 spin_unlock(&bp
->b_lock
);
137 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138 * b_lru_ref count so that the buffer is freed immediately when the buffer
139 * reference count falls to zero. If the buffer is already on the LRU, we need
140 * to remove the reference that LRU holds on the buffer.
142 * This prevents build-up of stale buffers on the LRU.
148 ASSERT(xfs_buf_islocked(bp
));
150 bp
->b_flags
|= XBF_STALE
;
153 * Clear the delwri status so that a delwri queue walker will not
154 * flush this buffer to disk now that it is stale. The delwri queue has
155 * a reference to the buffer, so this is safe to do.
157 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
160 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 * could reset b_flags. There is no guarantee that the buffer is
162 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 * status now to preserve accounting consistency.
165 spin_lock(&bp
->b_lock
);
166 __xfs_buf_ioacct_dec(bp
);
168 atomic_set(&bp
->b_lru_ref
, 0);
169 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
170 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
171 atomic_dec(&bp
->b_hold
);
173 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
174 spin_unlock(&bp
->b_lock
);
182 ASSERT(bp
->b_maps
== NULL
);
183 bp
->b_map_count
= map_count
;
185 if (map_count
== 1) {
186 bp
->b_maps
= &bp
->__b_map
;
190 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
198 * Frees b_pages if it was allocated.
204 if (bp
->b_maps
!= &bp
->__b_map
) {
205 kmem_free(bp
->b_maps
);
212 struct xfs_buftarg
*target
,
213 struct xfs_buf_map
*map
,
215 xfs_buf_flags_t flags
)
221 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
226 * We don't want certain flags to appear in b_flags unless they are
227 * specifically set by later operations on the buffer.
229 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
231 atomic_set(&bp
->b_hold
, 1);
232 atomic_set(&bp
->b_lru_ref
, 1);
233 init_completion(&bp
->b_iowait
);
234 INIT_LIST_HEAD(&bp
->b_lru
);
235 INIT_LIST_HEAD(&bp
->b_list
);
236 RB_CLEAR_NODE(&bp
->b_rbnode
);
237 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
238 spin_lock_init(&bp
->b_lock
);
240 bp
->b_target
= target
;
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
248 error
= xfs_buf_get_maps(bp
, nmaps
);
250 kmem_zone_free(xfs_buf_zone
, bp
);
254 bp
->b_bn
= map
[0].bm_bn
;
256 for (i
= 0; i
< nmaps
; i
++) {
257 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
258 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
259 bp
->b_length
+= map
[i
].bm_len
;
261 bp
->b_io_length
= bp
->b_length
;
263 atomic_set(&bp
->b_pin_count
, 0);
264 init_waitqueue_head(&bp
->b_waiters
);
266 XFS_STATS_INC(target
->bt_mount
, xb_create
);
267 trace_xfs_buf_init(bp
, _RET_IP_
);
273 * Allocate a page array capable of holding a specified number
274 * of pages, and point the page buf at it.
281 /* Make sure that we have a page list */
282 if (bp
->b_pages
== NULL
) {
283 bp
->b_page_count
= page_count
;
284 if (page_count
<= XB_PAGES
) {
285 bp
->b_pages
= bp
->b_page_array
;
287 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
288 page_count
, KM_NOFS
);
289 if (bp
->b_pages
== NULL
)
292 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
298 * Frees b_pages if it was allocated.
304 if (bp
->b_pages
!= bp
->b_page_array
) {
305 kmem_free(bp
->b_pages
);
311 * Releases the specified buffer.
313 * The modification state of any associated pages is left unchanged.
314 * The buffer must not be on any hash - use xfs_buf_rele instead for
315 * hashed and refcounted buffers
321 trace_xfs_buf_free(bp
, _RET_IP_
);
323 ASSERT(list_empty(&bp
->b_lru
));
325 if (bp
->b_flags
& _XBF_PAGES
) {
328 if (xfs_buf_is_vmapped(bp
))
329 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
332 for (i
= 0; i
< bp
->b_page_count
; i
++) {
333 struct page
*page
= bp
->b_pages
[i
];
337 } else if (bp
->b_flags
& _XBF_KMEM
)
338 kmem_free(bp
->b_addr
);
339 _xfs_buf_free_pages(bp
);
340 xfs_buf_free_maps(bp
);
341 kmem_zone_free(xfs_buf_zone
, bp
);
345 * Allocates all the pages for buffer in question and builds it's page list.
348 xfs_buf_allocate_memory(
353 size_t nbytes
, offset
;
354 gfp_t gfp_mask
= xb_to_gfp(flags
);
355 unsigned short page_count
, i
;
356 xfs_off_t start
, end
;
360 * for buffers that are contained within a single page, just allocate
361 * the memory from the heap - there's no need for the complexity of
362 * page arrays to keep allocation down to order 0.
364 size
= BBTOB(bp
->b_length
);
365 if (size
< PAGE_SIZE
) {
366 bp
->b_addr
= kmem_alloc(size
, KM_NOFS
);
368 /* low memory - use alloc_page loop instead */
372 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
373 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
374 /* b_addr spans two pages - use alloc_page instead */
375 kmem_free(bp
->b_addr
);
379 bp
->b_offset
= offset_in_page(bp
->b_addr
);
380 bp
->b_pages
= bp
->b_page_array
;
381 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
382 bp
->b_page_count
= 1;
383 bp
->b_flags
|= _XBF_KMEM
;
388 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
389 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
391 page_count
= end
- start
;
392 error
= _xfs_buf_get_pages(bp
, page_count
);
396 offset
= bp
->b_offset
;
397 bp
->b_flags
|= _XBF_PAGES
;
399 for (i
= 0; i
< bp
->b_page_count
; i
++) {
403 page
= alloc_page(gfp_mask
);
404 if (unlikely(page
== NULL
)) {
405 if (flags
& XBF_READ_AHEAD
) {
406 bp
->b_page_count
= i
;
412 * This could deadlock.
414 * But until all the XFS lowlevel code is revamped to
415 * handle buffer allocation failures we can't do much.
417 if (!(++retries
% 100))
419 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
420 current
->comm
, current
->pid
,
423 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_retries
);
424 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
428 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_found
);
430 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
432 bp
->b_pages
[i
] = page
;
438 for (i
= 0; i
< bp
->b_page_count
; i
++)
439 __free_page(bp
->b_pages
[i
]);
440 bp
->b_flags
&= ~_XBF_PAGES
;
445 * Map buffer into kernel address-space if necessary.
452 ASSERT(bp
->b_flags
& _XBF_PAGES
);
453 if (bp
->b_page_count
== 1) {
454 /* A single page buffer is always mappable */
455 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
456 } else if (flags
& XBF_UNMAPPED
) {
463 * vm_map_ram() will allocate auxillary structures (e.g.
464 * pagetables) with GFP_KERNEL, yet we are likely to be under
465 * GFP_NOFS context here. Hence we need to tell memory reclaim
466 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
467 * memory reclaim re-entering the filesystem here and
468 * potentially deadlocking.
470 noio_flag
= memalloc_noio_save();
472 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
477 } while (retried
++ <= 1);
478 memalloc_noio_restore(noio_flag
);
482 bp
->b_addr
+= bp
->b_offset
;
489 * Finding and Reading Buffers
493 * Look up, and creates if absent, a lockable buffer for
494 * a given range of an inode. The buffer is returned
495 * locked. No I/O is implied by this call.
499 struct xfs_buftarg
*btp
,
500 struct xfs_buf_map
*map
,
502 xfs_buf_flags_t flags
,
505 struct xfs_perag
*pag
;
506 struct rb_node
**rbp
;
507 struct rb_node
*parent
;
509 xfs_daddr_t blkno
= map
[0].bm_bn
;
514 for (i
= 0; i
< nmaps
; i
++)
515 numblks
+= map
[i
].bm_len
;
517 /* Check for IOs smaller than the sector size / not sector aligned */
518 ASSERT(!(BBTOB(numblks
) < btp
->bt_meta_sectorsize
));
519 ASSERT(!(BBTOB(blkno
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
522 * Corrupted block numbers can get through to here, unfortunately, so we
523 * have to check that the buffer falls within the filesystem bounds.
525 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
526 if (blkno
< 0 || blkno
>= eofs
) {
528 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
529 * but none of the higher level infrastructure supports
530 * returning a specific error on buffer lookup failures.
532 xfs_alert(btp
->bt_mount
,
533 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
534 __func__
, blkno
, eofs
);
540 pag
= xfs_perag_get(btp
->bt_mount
,
541 xfs_daddr_to_agno(btp
->bt_mount
, blkno
));
544 spin_lock(&pag
->pag_buf_lock
);
545 rbp
= &pag
->pag_buf_tree
.rb_node
;
550 bp
= rb_entry(parent
, struct xfs_buf
, b_rbnode
);
552 if (blkno
< bp
->b_bn
)
553 rbp
= &(*rbp
)->rb_left
;
554 else if (blkno
> bp
->b_bn
)
555 rbp
= &(*rbp
)->rb_right
;
558 * found a block number match. If the range doesn't
559 * match, the only way this is allowed is if the buffer
560 * in the cache is stale and the transaction that made
561 * it stale has not yet committed. i.e. we are
562 * reallocating a busy extent. Skip this buffer and
563 * continue searching to the right for an exact match.
565 if (bp
->b_length
!= numblks
) {
566 ASSERT(bp
->b_flags
& XBF_STALE
);
567 rbp
= &(*rbp
)->rb_right
;
570 atomic_inc(&bp
->b_hold
);
577 rb_link_node(&new_bp
->b_rbnode
, parent
, rbp
);
578 rb_insert_color(&new_bp
->b_rbnode
, &pag
->pag_buf_tree
);
579 /* the buffer keeps the perag reference until it is freed */
581 spin_unlock(&pag
->pag_buf_lock
);
583 XFS_STATS_INC(btp
->bt_mount
, xb_miss_locked
);
584 spin_unlock(&pag
->pag_buf_lock
);
590 spin_unlock(&pag
->pag_buf_lock
);
593 if (!xfs_buf_trylock(bp
)) {
594 if (flags
& XBF_TRYLOCK
) {
596 XFS_STATS_INC(btp
->bt_mount
, xb_busy_locked
);
600 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked_waited
);
604 * if the buffer is stale, clear all the external state associated with
605 * it. We need to keep flags such as how we allocated the buffer memory
608 if (bp
->b_flags
& XBF_STALE
) {
609 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
610 ASSERT(bp
->b_iodone
== NULL
);
611 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
615 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
616 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked
);
621 * Assembles a buffer covering the specified range. The code is optimised for
622 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
623 * more hits than misses.
627 struct xfs_buftarg
*target
,
628 struct xfs_buf_map
*map
,
630 xfs_buf_flags_t flags
)
633 struct xfs_buf
*new_bp
;
636 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, NULL
);
640 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
641 if (unlikely(!new_bp
))
644 error
= xfs_buf_allocate_memory(new_bp
, flags
);
646 xfs_buf_free(new_bp
);
650 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
);
652 xfs_buf_free(new_bp
);
657 xfs_buf_free(new_bp
);
661 error
= _xfs_buf_map_pages(bp
, flags
);
662 if (unlikely(error
)) {
663 xfs_warn(target
->bt_mount
,
664 "%s: failed to map pagesn", __func__
);
671 * Clear b_error if this is a lookup from a caller that doesn't expect
672 * valid data to be found in the buffer.
674 if (!(flags
& XBF_READ
))
675 xfs_buf_ioerror(bp
, 0);
677 XFS_STATS_INC(target
->bt_mount
, xb_get
);
678 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
685 xfs_buf_flags_t flags
)
687 ASSERT(!(flags
& XBF_WRITE
));
688 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
690 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
691 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
693 if (flags
& XBF_ASYNC
) {
697 return xfs_buf_submit_wait(bp
);
702 struct xfs_buftarg
*target
,
703 struct xfs_buf_map
*map
,
705 xfs_buf_flags_t flags
,
706 const struct xfs_buf_ops
*ops
)
712 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
714 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
716 if (!(bp
->b_flags
& XBF_DONE
)) {
717 XFS_STATS_INC(target
->bt_mount
, xb_get_read
);
719 _xfs_buf_read(bp
, flags
);
720 } else if (flags
& XBF_ASYNC
) {
722 * Read ahead call which is already satisfied,
728 /* We do not want read in the flags */
729 bp
->b_flags
&= ~XBF_READ
;
737 * If we are not low on memory then do the readahead in a deadlock
741 xfs_buf_readahead_map(
742 struct xfs_buftarg
*target
,
743 struct xfs_buf_map
*map
,
745 const struct xfs_buf_ops
*ops
)
747 if (bdi_read_congested(target
->bt_bdi
))
750 xfs_buf_read_map(target
, map
, nmaps
,
751 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
, ops
);
755 * Read an uncached buffer from disk. Allocates and returns a locked
756 * buffer containing the disk contents or nothing.
759 xfs_buf_read_uncached(
760 struct xfs_buftarg
*target
,
764 struct xfs_buf
**bpp
,
765 const struct xfs_buf_ops
*ops
)
771 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
775 /* set up the buffer for a read IO */
776 ASSERT(bp
->b_map_count
== 1);
777 bp
->b_bn
= XFS_BUF_DADDR_NULL
; /* always null for uncached buffers */
778 bp
->b_maps
[0].bm_bn
= daddr
;
779 bp
->b_flags
|= XBF_READ
;
782 xfs_buf_submit_wait(bp
);
784 int error
= bp
->b_error
;
794 * Return a buffer allocated as an empty buffer and associated to external
795 * memory via xfs_buf_associate_memory() back to it's empty state.
803 _xfs_buf_free_pages(bp
);
806 bp
->b_page_count
= 0;
808 bp
->b_length
= numblks
;
809 bp
->b_io_length
= numblks
;
811 ASSERT(bp
->b_map_count
== 1);
812 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
813 bp
->b_maps
[0].bm_bn
= XFS_BUF_DADDR_NULL
;
814 bp
->b_maps
[0].bm_len
= bp
->b_length
;
817 static inline struct page
*
821 if ((!is_vmalloc_addr(addr
))) {
822 return virt_to_page(addr
);
824 return vmalloc_to_page(addr
);
829 xfs_buf_associate_memory(
836 unsigned long pageaddr
;
837 unsigned long offset
;
841 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
842 offset
= (unsigned long)mem
- pageaddr
;
843 buflen
= PAGE_ALIGN(len
+ offset
);
844 page_count
= buflen
>> PAGE_SHIFT
;
846 /* Free any previous set of page pointers */
848 _xfs_buf_free_pages(bp
);
853 rval
= _xfs_buf_get_pages(bp
, page_count
);
857 bp
->b_offset
= offset
;
859 for (i
= 0; i
< bp
->b_page_count
; i
++) {
860 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
861 pageaddr
+= PAGE_SIZE
;
864 bp
->b_io_length
= BTOBB(len
);
865 bp
->b_length
= BTOBB(buflen
);
871 xfs_buf_get_uncached(
872 struct xfs_buftarg
*target
,
876 unsigned long page_count
;
879 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
881 /* flags might contain irrelevant bits, pass only what we care about */
882 bp
= _xfs_buf_alloc(target
, &map
, 1, flags
& XBF_NO_IOACCT
);
883 if (unlikely(bp
== NULL
))
886 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
887 error
= _xfs_buf_get_pages(bp
, page_count
);
891 for (i
= 0; i
< page_count
; i
++) {
892 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
896 bp
->b_flags
|= _XBF_PAGES
;
898 error
= _xfs_buf_map_pages(bp
, 0);
899 if (unlikely(error
)) {
900 xfs_warn(target
->bt_mount
,
901 "%s: failed to map pages", __func__
);
905 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
910 __free_page(bp
->b_pages
[i
]);
911 _xfs_buf_free_pages(bp
);
913 xfs_buf_free_maps(bp
);
914 kmem_zone_free(xfs_buf_zone
, bp
);
920 * Increment reference count on buffer, to hold the buffer concurrently
921 * with another thread which may release (free) the buffer asynchronously.
922 * Must hold the buffer already to call this function.
928 trace_xfs_buf_hold(bp
, _RET_IP_
);
929 atomic_inc(&bp
->b_hold
);
933 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
934 * placed on LRU or freed (depending on b_lru_ref).
940 struct xfs_perag
*pag
= bp
->b_pag
;
942 bool freebuf
= false;
944 trace_xfs_buf_rele(bp
, _RET_IP_
);
947 ASSERT(list_empty(&bp
->b_lru
));
948 ASSERT(RB_EMPTY_NODE(&bp
->b_rbnode
));
949 if (atomic_dec_and_test(&bp
->b_hold
)) {
950 xfs_buf_ioacct_dec(bp
);
956 ASSERT(!RB_EMPTY_NODE(&bp
->b_rbnode
));
958 ASSERT(atomic_read(&bp
->b_hold
) > 0);
960 release
= atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
);
961 spin_lock(&bp
->b_lock
);
964 * Drop the in-flight state if the buffer is already on the LRU
965 * and it holds the only reference. This is racy because we
966 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
967 * ensures the decrement occurs only once per-buf.
969 if ((atomic_read(&bp
->b_hold
) == 1) && !list_empty(&bp
->b_lru
))
970 __xfs_buf_ioacct_dec(bp
);
974 /* the last reference has been dropped ... */
975 __xfs_buf_ioacct_dec(bp
);
976 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
978 * If the buffer is added to the LRU take a new reference to the
979 * buffer for the LRU and clear the (now stale) dispose list
982 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
983 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
984 atomic_inc(&bp
->b_hold
);
986 spin_unlock(&pag
->pag_buf_lock
);
989 * most of the time buffers will already be removed from the
990 * LRU, so optimise that case by checking for the
991 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
992 * was on was the disposal list
994 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
995 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
997 ASSERT(list_empty(&bp
->b_lru
));
1000 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1001 rb_erase(&bp
->b_rbnode
, &pag
->pag_buf_tree
);
1002 spin_unlock(&pag
->pag_buf_lock
);
1008 spin_unlock(&bp
->b_lock
);
1016 * Lock a buffer object, if it is not already locked.
1018 * If we come across a stale, pinned, locked buffer, we know that we are
1019 * being asked to lock a buffer that has been reallocated. Because it is
1020 * pinned, we know that the log has not been pushed to disk and hence it
1021 * will still be locked. Rather than continuing to have trylock attempts
1022 * fail until someone else pushes the log, push it ourselves before
1023 * returning. This means that the xfsaild will not get stuck trying
1024 * to push on stale inode buffers.
1032 locked
= down_trylock(&bp
->b_sema
) == 0;
1035 trace_xfs_buf_trylock(bp
, _RET_IP_
);
1037 trace_xfs_buf_trylock_fail(bp
, _RET_IP_
);
1043 * Lock a buffer object.
1045 * If we come across a stale, pinned, locked buffer, we know that we
1046 * are being asked to lock a buffer that has been reallocated. Because
1047 * it is pinned, we know that the log has not been pushed to disk and
1048 * hence it will still be locked. Rather than sleeping until someone
1049 * else pushes the log, push it ourselves before trying to get the lock.
1055 trace_xfs_buf_lock(bp
, _RET_IP_
);
1057 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
1058 xfs_log_force(bp
->b_target
->bt_mount
, 0);
1062 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1069 ASSERT(xfs_buf_islocked(bp
));
1074 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1081 DECLARE_WAITQUEUE (wait
, current
);
1083 if (atomic_read(&bp
->b_pin_count
) == 0)
1086 add_wait_queue(&bp
->b_waiters
, &wait
);
1088 set_current_state(TASK_UNINTERRUPTIBLE
);
1089 if (atomic_read(&bp
->b_pin_count
) == 0)
1093 remove_wait_queue(&bp
->b_waiters
, &wait
);
1094 set_current_state(TASK_RUNNING
);
1098 * Buffer Utility Routines
1105 bool read
= bp
->b_flags
& XBF_READ
;
1107 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1109 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1112 * Pull in IO completion errors now. We are guaranteed to be running
1113 * single threaded, so we don't need the lock to read b_io_error.
1115 if (!bp
->b_error
&& bp
->b_io_error
)
1116 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1118 /* Only validate buffers that were read without errors */
1119 if (read
&& !bp
->b_error
&& bp
->b_ops
) {
1120 ASSERT(!bp
->b_iodone
);
1121 bp
->b_ops
->verify_read(bp
);
1125 bp
->b_flags
|= XBF_DONE
;
1128 (*(bp
->b_iodone
))(bp
);
1129 else if (bp
->b_flags
& XBF_ASYNC
)
1132 complete(&bp
->b_iowait
);
1137 struct work_struct
*work
)
1139 struct xfs_buf
*bp
=
1140 container_of(work
, xfs_buf_t
, b_ioend_work
);
1146 xfs_buf_ioend_async(
1149 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1150 queue_work(bp
->b_ioend_wq
, &bp
->b_ioend_work
);
1158 ASSERT(error
<= 0 && error
>= -1000);
1159 bp
->b_error
= error
;
1160 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1164 xfs_buf_ioerror_alert(
1168 xfs_alert(bp
->b_target
->bt_mount
,
1169 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1170 (__uint64_t
)XFS_BUF_ADDR(bp
), func
, -bp
->b_error
, bp
->b_length
);
1179 ASSERT(xfs_buf_islocked(bp
));
1181 bp
->b_flags
|= XBF_WRITE
;
1182 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1183 XBF_WRITE_FAIL
| XBF_DONE
);
1185 error
= xfs_buf_submit_wait(bp
);
1187 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1188 SHUTDOWN_META_IO_ERROR
);
1197 struct xfs_buf
*bp
= (struct xfs_buf
*)bio
->bi_private
;
1200 * don't overwrite existing errors - otherwise we can lose errors on
1201 * buffers that require multiple bios to complete.
1204 cmpxchg(&bp
->b_io_error
, 0, bio
->bi_error
);
1206 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1207 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1209 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1210 xfs_buf_ioend_async(bp
);
1215 xfs_buf_ioapply_map(
1224 int total_nr_pages
= bp
->b_page_count
;
1227 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1231 total_nr_pages
= bp
->b_page_count
;
1233 /* skip the pages in the buffer before the start offset */
1235 offset
= *buf_offset
;
1236 while (offset
>= PAGE_SIZE
) {
1238 offset
-= PAGE_SIZE
;
1242 * Limit the IO size to the length of the current vector, and update the
1243 * remaining IO count for the next time around.
1245 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1247 *buf_offset
+= size
;
1250 atomic_inc(&bp
->b_io_remaining
);
1251 nr_pages
= min(total_nr_pages
, BIO_MAX_PAGES
);
1253 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1254 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1255 bio
->bi_iter
.bi_sector
= sector
;
1256 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1257 bio
->bi_private
= bp
;
1258 bio_set_op_attrs(bio
, op
, op_flags
);
1260 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1261 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1266 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1268 if (rbytes
< nbytes
)
1272 sector
+= BTOBB(nbytes
);
1277 if (likely(bio
->bi_iter
.bi_size
)) {
1278 if (xfs_buf_is_vmapped(bp
)) {
1279 flush_kernel_vmap_range(bp
->b_addr
,
1280 xfs_buf_vmap_len(bp
));
1287 * This is guaranteed not to be the last io reference count
1288 * because the caller (xfs_buf_submit) holds a count itself.
1290 atomic_dec(&bp
->b_io_remaining
);
1291 xfs_buf_ioerror(bp
, -EIO
);
1301 struct blk_plug plug
;
1309 * Make sure we capture only current IO errors rather than stale errors
1310 * left over from previous use of the buffer (e.g. failed readahead).
1315 * Initialize the I/O completion workqueue if we haven't yet or the
1316 * submitter has not opted to specify a custom one.
1318 if (!bp
->b_ioend_wq
)
1319 bp
->b_ioend_wq
= bp
->b_target
->bt_mount
->m_buf_workqueue
;
1321 if (bp
->b_flags
& XBF_WRITE
) {
1323 if (bp
->b_flags
& XBF_SYNCIO
)
1324 op_flags
= WRITE_SYNC
;
1325 if (bp
->b_flags
& XBF_FUA
)
1326 op_flags
|= REQ_FUA
;
1327 if (bp
->b_flags
& XBF_FLUSH
)
1328 op_flags
|= REQ_PREFLUSH
;
1331 * Run the write verifier callback function if it exists. If
1332 * this function fails it will mark the buffer with an error and
1333 * the IO should not be dispatched.
1336 bp
->b_ops
->verify_write(bp
);
1338 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1339 SHUTDOWN_CORRUPT_INCORE
);
1342 } else if (bp
->b_bn
!= XFS_BUF_DADDR_NULL
) {
1343 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
1346 * non-crc filesystems don't attach verifiers during
1347 * log recovery, so don't warn for such filesystems.
1349 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
1351 "%s: no ops on block 0x%llx/0x%x",
1352 __func__
, bp
->b_bn
, bp
->b_length
);
1353 xfs_hex_dump(bp
->b_addr
, 64);
1357 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1359 op_flags
= REQ_RAHEAD
;
1364 /* we only use the buffer cache for meta-data */
1365 op_flags
|= REQ_META
;
1368 * Walk all the vectors issuing IO on them. Set up the initial offset
1369 * into the buffer and the desired IO size before we start -
1370 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1373 offset
= bp
->b_offset
;
1374 size
= BBTOB(bp
->b_io_length
);
1375 blk_start_plug(&plug
);
1376 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1377 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, op
, op_flags
);
1381 break; /* all done */
1383 blk_finish_plug(&plug
);
1387 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1388 * the current reference to the IO. It is not safe to reference the buffer after
1389 * a call to this function unless the caller holds an additional reference
1396 trace_xfs_buf_submit(bp
, _RET_IP_
);
1398 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1399 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1401 /* on shutdown we stale and complete the buffer immediately */
1402 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1403 xfs_buf_ioerror(bp
, -EIO
);
1404 bp
->b_flags
&= ~XBF_DONE
;
1410 if (bp
->b_flags
& XBF_WRITE
)
1411 xfs_buf_wait_unpin(bp
);
1413 /* clear the internal error state to avoid spurious errors */
1417 * The caller's reference is released during I/O completion.
1418 * This occurs some time after the last b_io_remaining reference is
1419 * released, so after we drop our Io reference we have to have some
1420 * other reference to ensure the buffer doesn't go away from underneath
1421 * us. Take a direct reference to ensure we have safe access to the
1422 * buffer until we are finished with it.
1427 * Set the count to 1 initially, this will stop an I/O completion
1428 * callout which happens before we have started all the I/O from calling
1429 * xfs_buf_ioend too early.
1431 atomic_set(&bp
->b_io_remaining
, 1);
1432 xfs_buf_ioacct_inc(bp
);
1433 _xfs_buf_ioapply(bp
);
1436 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1437 * reference we took above. If we drop it to zero, run completion so
1438 * that we don't return to the caller with completion still pending.
1440 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1444 xfs_buf_ioend_async(bp
);
1448 /* Note: it is not safe to reference bp now we've dropped our ref */
1452 * Synchronous buffer IO submission path, read or write.
1455 xfs_buf_submit_wait(
1460 trace_xfs_buf_submit_wait(bp
, _RET_IP_
);
1462 ASSERT(!(bp
->b_flags
& (_XBF_DELWRI_Q
| XBF_ASYNC
)));
1464 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1465 xfs_buf_ioerror(bp
, -EIO
);
1467 bp
->b_flags
&= ~XBF_DONE
;
1471 if (bp
->b_flags
& XBF_WRITE
)
1472 xfs_buf_wait_unpin(bp
);
1474 /* clear the internal error state to avoid spurious errors */
1478 * For synchronous IO, the IO does not inherit the submitters reference
1479 * count, nor the buffer lock. Hence we cannot release the reference we
1480 * are about to take until we've waited for all IO completion to occur,
1481 * including any xfs_buf_ioend_async() work that may be pending.
1486 * Set the count to 1 initially, this will stop an I/O completion
1487 * callout which happens before we have started all the I/O from calling
1488 * xfs_buf_ioend too early.
1490 atomic_set(&bp
->b_io_remaining
, 1);
1491 _xfs_buf_ioapply(bp
);
1494 * make sure we run completion synchronously if it raced with us and is
1497 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1500 /* wait for completion before gathering the error from the buffer */
1501 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1502 wait_for_completion(&bp
->b_iowait
);
1503 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1504 error
= bp
->b_error
;
1507 * all done now, we can release the hold that keeps the buffer
1508 * referenced for the entire IO.
1522 return bp
->b_addr
+ offset
;
1524 offset
+= bp
->b_offset
;
1525 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1526 return page_address(page
) + (offset
& (PAGE_SIZE
-1));
1530 * Move data into or out of a buffer.
1534 xfs_buf_t
*bp
, /* buffer to process */
1535 size_t boff
, /* starting buffer offset */
1536 size_t bsize
, /* length to copy */
1537 void *data
, /* data address */
1538 xfs_buf_rw_t mode
) /* read/write/zero flag */
1542 bend
= boff
+ bsize
;
1543 while (boff
< bend
) {
1545 int page_index
, page_offset
, csize
;
1547 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1548 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1549 page
= bp
->b_pages
[page_index
];
1550 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1551 BBTOB(bp
->b_io_length
) - boff
);
1553 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1557 memset(page_address(page
) + page_offset
, 0, csize
);
1560 memcpy(data
, page_address(page
) + page_offset
, csize
);
1563 memcpy(page_address(page
) + page_offset
, data
, csize
);
1572 * Handling of buffer targets (buftargs).
1576 * Wait for any bufs with callbacks that have been submitted but have not yet
1577 * returned. These buffers will have an elevated hold count, so wait on those
1578 * while freeing all the buffers only held by the LRU.
1580 static enum lru_status
1581 xfs_buftarg_wait_rele(
1582 struct list_head
*item
,
1583 struct list_lru_one
*lru
,
1584 spinlock_t
*lru_lock
,
1588 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1589 struct list_head
*dispose
= arg
;
1591 if (atomic_read(&bp
->b_hold
) > 1) {
1592 /* need to wait, so skip it this pass */
1593 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1596 if (!spin_trylock(&bp
->b_lock
))
1600 * clear the LRU reference count so the buffer doesn't get
1601 * ignored in xfs_buf_rele().
1603 atomic_set(&bp
->b_lru_ref
, 0);
1604 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1605 list_lru_isolate_move(lru
, item
, dispose
);
1606 spin_unlock(&bp
->b_lock
);
1612 struct xfs_buftarg
*btp
)
1618 * First wait on the buftarg I/O count for all in-flight buffers to be
1619 * released. This is critical as new buffers do not make the LRU until
1620 * they are released.
1622 * Next, flush the buffer workqueue to ensure all completion processing
1623 * has finished. Just waiting on buffer locks is not sufficient for
1624 * async IO as the reference count held over IO is not released until
1625 * after the buffer lock is dropped. Hence we need to ensure here that
1626 * all reference counts have been dropped before we start walking the
1629 while (percpu_counter_sum(&btp
->bt_io_count
))
1631 flush_workqueue(btp
->bt_mount
->m_buf_workqueue
);
1633 /* loop until there is nothing left on the lru list. */
1634 while (list_lru_count(&btp
->bt_lru
)) {
1635 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1636 &dispose
, LONG_MAX
);
1638 while (!list_empty(&dispose
)) {
1640 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1641 list_del_init(&bp
->b_lru
);
1642 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1643 xfs_alert(btp
->bt_mount
,
1644 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1645 (long long)bp
->b_bn
);
1646 xfs_alert(btp
->bt_mount
,
1647 "Please run xfs_repair to determine the extent of the problem.");
1656 static enum lru_status
1657 xfs_buftarg_isolate(
1658 struct list_head
*item
,
1659 struct list_lru_one
*lru
,
1660 spinlock_t
*lru_lock
,
1663 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1664 struct list_head
*dispose
= arg
;
1667 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1668 * If we fail to get the lock, just skip it.
1670 if (!spin_trylock(&bp
->b_lock
))
1673 * Decrement the b_lru_ref count unless the value is already
1674 * zero. If the value is already zero, we need to reclaim the
1675 * buffer, otherwise it gets another trip through the LRU.
1677 if (!atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1678 spin_unlock(&bp
->b_lock
);
1682 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1683 list_lru_isolate_move(lru
, item
, dispose
);
1684 spin_unlock(&bp
->b_lock
);
1688 static unsigned long
1689 xfs_buftarg_shrink_scan(
1690 struct shrinker
*shrink
,
1691 struct shrink_control
*sc
)
1693 struct xfs_buftarg
*btp
= container_of(shrink
,
1694 struct xfs_buftarg
, bt_shrinker
);
1696 unsigned long freed
;
1698 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1699 xfs_buftarg_isolate
, &dispose
);
1701 while (!list_empty(&dispose
)) {
1703 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1704 list_del_init(&bp
->b_lru
);
1711 static unsigned long
1712 xfs_buftarg_shrink_count(
1713 struct shrinker
*shrink
,
1714 struct shrink_control
*sc
)
1716 struct xfs_buftarg
*btp
= container_of(shrink
,
1717 struct xfs_buftarg
, bt_shrinker
);
1718 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
1723 struct xfs_mount
*mp
,
1724 struct xfs_buftarg
*btp
)
1726 unregister_shrinker(&btp
->bt_shrinker
);
1727 ASSERT(percpu_counter_sum(&btp
->bt_io_count
) == 0);
1728 percpu_counter_destroy(&btp
->bt_io_count
);
1729 list_lru_destroy(&btp
->bt_lru
);
1731 if (mp
->m_flags
& XFS_MOUNT_BARRIER
)
1732 xfs_blkdev_issue_flush(btp
);
1738 xfs_setsize_buftarg(
1740 unsigned int sectorsize
)
1742 /* Set up metadata sector size info */
1743 btp
->bt_meta_sectorsize
= sectorsize
;
1744 btp
->bt_meta_sectormask
= sectorsize
- 1;
1746 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1747 xfs_warn(btp
->bt_mount
,
1748 "Cannot set_blocksize to %u on device %pg",
1749 sectorsize
, btp
->bt_bdev
);
1753 /* Set up device logical sector size mask */
1754 btp
->bt_logical_sectorsize
= bdev_logical_block_size(btp
->bt_bdev
);
1755 btp
->bt_logical_sectormask
= bdev_logical_block_size(btp
->bt_bdev
) - 1;
1761 * When allocating the initial buffer target we have not yet
1762 * read in the superblock, so don't know what sized sectors
1763 * are being used at this early stage. Play safe.
1766 xfs_setsize_buftarg_early(
1768 struct block_device
*bdev
)
1770 return xfs_setsize_buftarg(btp
, bdev_logical_block_size(bdev
));
1775 struct xfs_mount
*mp
,
1776 struct block_device
*bdev
)
1780 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
| KM_NOFS
);
1783 btp
->bt_dev
= bdev
->bd_dev
;
1784 btp
->bt_bdev
= bdev
;
1785 btp
->bt_bdi
= blk_get_backing_dev_info(bdev
);
1787 if (xfs_setsize_buftarg_early(btp
, bdev
))
1790 if (list_lru_init(&btp
->bt_lru
))
1793 if (percpu_counter_init(&btp
->bt_io_count
, 0, GFP_KERNEL
))
1796 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1797 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1798 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1799 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1800 register_shrinker(&btp
->bt_shrinker
);
1809 * Cancel a delayed write list.
1811 * Remove each buffer from the list, clear the delwri queue flag and drop the
1812 * associated buffer reference.
1815 xfs_buf_delwri_cancel(
1816 struct list_head
*list
)
1820 while (!list_empty(list
)) {
1821 bp
= list_first_entry(list
, struct xfs_buf
, b_list
);
1824 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
1825 list_del_init(&bp
->b_list
);
1831 * Add a buffer to the delayed write list.
1833 * This queues a buffer for writeout if it hasn't already been. Note that
1834 * neither this routine nor the buffer list submission functions perform
1835 * any internal synchronization. It is expected that the lists are thread-local
1838 * Returns true if we queued up the buffer, or false if it already had
1839 * been on the buffer list.
1842 xfs_buf_delwri_queue(
1844 struct list_head
*list
)
1846 ASSERT(xfs_buf_islocked(bp
));
1847 ASSERT(!(bp
->b_flags
& XBF_READ
));
1850 * If the buffer is already marked delwri it already is queued up
1851 * by someone else for imediate writeout. Just ignore it in that
1854 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1855 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1859 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1862 * If a buffer gets written out synchronously or marked stale while it
1863 * is on a delwri list we lazily remove it. To do this, the other party
1864 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1865 * It remains referenced and on the list. In a rare corner case it
1866 * might get readded to a delwri list after the synchronous writeout, in
1867 * which case we need just need to re-add the flag here.
1869 bp
->b_flags
|= _XBF_DELWRI_Q
;
1870 if (list_empty(&bp
->b_list
)) {
1871 atomic_inc(&bp
->b_hold
);
1872 list_add_tail(&bp
->b_list
, list
);
1879 * Compare function is more complex than it needs to be because
1880 * the return value is only 32 bits and we are doing comparisons
1886 struct list_head
*a
,
1887 struct list_head
*b
)
1889 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1890 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1893 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1902 * submit buffers for write.
1904 * When we have a large buffer list, we do not want to hold all the buffers
1905 * locked while we block on the request queue waiting for IO dispatch. To avoid
1906 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1907 * the lock hold times for lists which may contain thousands of objects.
1909 * To do this, we sort the buffer list before we walk the list to lock and
1910 * submit buffers, and we plug and unplug around each group of buffers we
1914 xfs_buf_delwri_submit_buffers(
1915 struct list_head
*buffer_list
,
1916 struct list_head
*wait_list
)
1918 struct xfs_buf
*bp
, *n
;
1919 LIST_HEAD (submit_list
);
1921 struct blk_plug plug
;
1923 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
1925 blk_start_plug(&plug
);
1926 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1928 if (xfs_buf_ispinned(bp
)) {
1932 if (!xfs_buf_trylock(bp
))
1939 * Someone else might have written the buffer synchronously or
1940 * marked it stale in the meantime. In that case only the
1941 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1942 * reference and remove it from the list here.
1944 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
1945 list_del_init(&bp
->b_list
);
1950 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1953 * We do all IO submission async. This means if we need
1954 * to wait for IO completion we need to take an extra
1955 * reference so the buffer is still valid on the other
1956 * side. We need to move the buffer onto the io_list
1957 * at this point so the caller can still access it.
1959 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_WRITE_FAIL
);
1960 bp
->b_flags
|= XBF_WRITE
| XBF_ASYNC
;
1963 list_move_tail(&bp
->b_list
, wait_list
);
1965 list_del_init(&bp
->b_list
);
1969 blk_finish_plug(&plug
);
1975 * Write out a buffer list asynchronously.
1977 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1978 * out and not wait for I/O completion on any of the buffers. This interface
1979 * is only safely useable for callers that can track I/O completion by higher
1980 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1984 xfs_buf_delwri_submit_nowait(
1985 struct list_head
*buffer_list
)
1987 return xfs_buf_delwri_submit_buffers(buffer_list
, NULL
);
1991 * Write out a buffer list synchronously.
1993 * This will take the @buffer_list, write all buffers out and wait for I/O
1994 * completion on all of the buffers. @buffer_list is consumed by the function,
1995 * so callers must have some other way of tracking buffers if they require such
1999 xfs_buf_delwri_submit(
2000 struct list_head
*buffer_list
)
2002 LIST_HEAD (wait_list
);
2003 int error
= 0, error2
;
2006 xfs_buf_delwri_submit_buffers(buffer_list
, &wait_list
);
2008 /* Wait for IO to complete. */
2009 while (!list_empty(&wait_list
)) {
2010 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
2012 list_del_init(&bp
->b_list
);
2014 /* locking the buffer will wait for async IO completion. */
2016 error2
= bp
->b_error
;
2028 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
2029 KM_ZONE_HWALIGN
, NULL
);
2040 xfs_buf_terminate(void)
2042 kmem_zone_destroy(xfs_buf_zone
);