i2c: brcmstb: Fix START and STOP conditions
[linux/fpc-iii.git] / fs / xfs / xfs_buf.c
blob16269271ebd69ba5bd68233dac6f98919d9064cb
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
40 #include "xfs_sb.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
43 #include "xfs_log.h"
45 static kmem_zone_t *xfs_buf_zone;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
51 #else
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
55 #endif
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
61 static inline int
62 xfs_buf_is_vmapped(
63 struct xfs_buf *bp)
66 * Return true if the buffer is vmapped.
68 * b_addr is null if the buffer is not mapped, but the code is clever
69 * enough to know it doesn't have to map a single page, so the check has
70 * to be both for b_addr and bp->b_page_count > 1.
72 return bp->b_addr && bp->b_page_count > 1;
75 static inline int
76 xfs_buf_vmap_len(
77 struct xfs_buf *bp)
79 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
83 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
84 * this buffer. The count is incremented once per buffer (per hold cycle)
85 * because the corresponding decrement is deferred to buffer release. Buffers
86 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
87 * tracking adds unnecessary overhead. This is used for sychronization purposes
88 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
89 * in-flight buffers.
91 * Buffers that are never released (e.g., superblock, iclog buffers) must set
92 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
93 * never reaches zero and unmount hangs indefinitely.
95 static inline void
96 xfs_buf_ioacct_inc(
97 struct xfs_buf *bp)
99 if (bp->b_flags & XBF_NO_IOACCT)
100 return;
102 ASSERT(bp->b_flags & XBF_ASYNC);
103 spin_lock(&bp->b_lock);
104 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
105 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
106 percpu_counter_inc(&bp->b_target->bt_io_count);
108 spin_unlock(&bp->b_lock);
112 * Clear the in-flight state on a buffer about to be released to the LRU or
113 * freed and unaccount from the buftarg.
115 static inline void
116 __xfs_buf_ioacct_dec(
117 struct xfs_buf *bp)
119 ASSERT(spin_is_locked(&bp->b_lock));
121 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
122 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
123 percpu_counter_dec(&bp->b_target->bt_io_count);
127 static inline void
128 xfs_buf_ioacct_dec(
129 struct xfs_buf *bp)
131 spin_lock(&bp->b_lock);
132 __xfs_buf_ioacct_dec(bp);
133 spin_unlock(&bp->b_lock);
137 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
138 * b_lru_ref count so that the buffer is freed immediately when the buffer
139 * reference count falls to zero. If the buffer is already on the LRU, we need
140 * to remove the reference that LRU holds on the buffer.
142 * This prevents build-up of stale buffers on the LRU.
144 void
145 xfs_buf_stale(
146 struct xfs_buf *bp)
148 ASSERT(xfs_buf_islocked(bp));
150 bp->b_flags |= XBF_STALE;
153 * Clear the delwri status so that a delwri queue walker will not
154 * flush this buffer to disk now that it is stale. The delwri queue has
155 * a reference to the buffer, so this is safe to do.
157 bp->b_flags &= ~_XBF_DELWRI_Q;
160 * Once the buffer is marked stale and unlocked, a subsequent lookup
161 * could reset b_flags. There is no guarantee that the buffer is
162 * unaccounted (released to LRU) before that occurs. Drop in-flight
163 * status now to preserve accounting consistency.
165 spin_lock(&bp->b_lock);
166 __xfs_buf_ioacct_dec(bp);
168 atomic_set(&bp->b_lru_ref, 0);
169 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
170 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
171 atomic_dec(&bp->b_hold);
173 ASSERT(atomic_read(&bp->b_hold) >= 1);
174 spin_unlock(&bp->b_lock);
177 static int
178 xfs_buf_get_maps(
179 struct xfs_buf *bp,
180 int map_count)
182 ASSERT(bp->b_maps == NULL);
183 bp->b_map_count = map_count;
185 if (map_count == 1) {
186 bp->b_maps = &bp->__b_map;
187 return 0;
190 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
191 KM_NOFS);
192 if (!bp->b_maps)
193 return -ENOMEM;
194 return 0;
198 * Frees b_pages if it was allocated.
200 static void
201 xfs_buf_free_maps(
202 struct xfs_buf *bp)
204 if (bp->b_maps != &bp->__b_map) {
205 kmem_free(bp->b_maps);
206 bp->b_maps = NULL;
210 struct xfs_buf *
211 _xfs_buf_alloc(
212 struct xfs_buftarg *target,
213 struct xfs_buf_map *map,
214 int nmaps,
215 xfs_buf_flags_t flags)
217 struct xfs_buf *bp;
218 int error;
219 int i;
221 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
222 if (unlikely(!bp))
223 return NULL;
226 * We don't want certain flags to appear in b_flags unless they are
227 * specifically set by later operations on the buffer.
229 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
231 atomic_set(&bp->b_hold, 1);
232 atomic_set(&bp->b_lru_ref, 1);
233 init_completion(&bp->b_iowait);
234 INIT_LIST_HEAD(&bp->b_lru);
235 INIT_LIST_HEAD(&bp->b_list);
236 RB_CLEAR_NODE(&bp->b_rbnode);
237 sema_init(&bp->b_sema, 0); /* held, no waiters */
238 spin_lock_init(&bp->b_lock);
239 XB_SET_OWNER(bp);
240 bp->b_target = target;
241 bp->b_flags = flags;
244 * Set length and io_length to the same value initially.
245 * I/O routines should use io_length, which will be the same in
246 * most cases but may be reset (e.g. XFS recovery).
248 error = xfs_buf_get_maps(bp, nmaps);
249 if (error) {
250 kmem_zone_free(xfs_buf_zone, bp);
251 return NULL;
254 bp->b_bn = map[0].bm_bn;
255 bp->b_length = 0;
256 for (i = 0; i < nmaps; i++) {
257 bp->b_maps[i].bm_bn = map[i].bm_bn;
258 bp->b_maps[i].bm_len = map[i].bm_len;
259 bp->b_length += map[i].bm_len;
261 bp->b_io_length = bp->b_length;
263 atomic_set(&bp->b_pin_count, 0);
264 init_waitqueue_head(&bp->b_waiters);
266 XFS_STATS_INC(target->bt_mount, xb_create);
267 trace_xfs_buf_init(bp, _RET_IP_);
269 return bp;
273 * Allocate a page array capable of holding a specified number
274 * of pages, and point the page buf at it.
276 STATIC int
277 _xfs_buf_get_pages(
278 xfs_buf_t *bp,
279 int page_count)
281 /* Make sure that we have a page list */
282 if (bp->b_pages == NULL) {
283 bp->b_page_count = page_count;
284 if (page_count <= XB_PAGES) {
285 bp->b_pages = bp->b_page_array;
286 } else {
287 bp->b_pages = kmem_alloc(sizeof(struct page *) *
288 page_count, KM_NOFS);
289 if (bp->b_pages == NULL)
290 return -ENOMEM;
292 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
294 return 0;
298 * Frees b_pages if it was allocated.
300 STATIC void
301 _xfs_buf_free_pages(
302 xfs_buf_t *bp)
304 if (bp->b_pages != bp->b_page_array) {
305 kmem_free(bp->b_pages);
306 bp->b_pages = NULL;
311 * Releases the specified buffer.
313 * The modification state of any associated pages is left unchanged.
314 * The buffer must not be on any hash - use xfs_buf_rele instead for
315 * hashed and refcounted buffers
317 void
318 xfs_buf_free(
319 xfs_buf_t *bp)
321 trace_xfs_buf_free(bp, _RET_IP_);
323 ASSERT(list_empty(&bp->b_lru));
325 if (bp->b_flags & _XBF_PAGES) {
326 uint i;
328 if (xfs_buf_is_vmapped(bp))
329 vm_unmap_ram(bp->b_addr - bp->b_offset,
330 bp->b_page_count);
332 for (i = 0; i < bp->b_page_count; i++) {
333 struct page *page = bp->b_pages[i];
335 __free_page(page);
337 } else if (bp->b_flags & _XBF_KMEM)
338 kmem_free(bp->b_addr);
339 _xfs_buf_free_pages(bp);
340 xfs_buf_free_maps(bp);
341 kmem_zone_free(xfs_buf_zone, bp);
345 * Allocates all the pages for buffer in question and builds it's page list.
347 STATIC int
348 xfs_buf_allocate_memory(
349 xfs_buf_t *bp,
350 uint flags)
352 size_t size;
353 size_t nbytes, offset;
354 gfp_t gfp_mask = xb_to_gfp(flags);
355 unsigned short page_count, i;
356 xfs_off_t start, end;
357 int error;
360 * for buffers that are contained within a single page, just allocate
361 * the memory from the heap - there's no need for the complexity of
362 * page arrays to keep allocation down to order 0.
364 size = BBTOB(bp->b_length);
365 if (size < PAGE_SIZE) {
366 bp->b_addr = kmem_alloc(size, KM_NOFS);
367 if (!bp->b_addr) {
368 /* low memory - use alloc_page loop instead */
369 goto use_alloc_page;
372 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
373 ((unsigned long)bp->b_addr & PAGE_MASK)) {
374 /* b_addr spans two pages - use alloc_page instead */
375 kmem_free(bp->b_addr);
376 bp->b_addr = NULL;
377 goto use_alloc_page;
379 bp->b_offset = offset_in_page(bp->b_addr);
380 bp->b_pages = bp->b_page_array;
381 bp->b_pages[0] = virt_to_page(bp->b_addr);
382 bp->b_page_count = 1;
383 bp->b_flags |= _XBF_KMEM;
384 return 0;
387 use_alloc_page:
388 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
389 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
390 >> PAGE_SHIFT;
391 page_count = end - start;
392 error = _xfs_buf_get_pages(bp, page_count);
393 if (unlikely(error))
394 return error;
396 offset = bp->b_offset;
397 bp->b_flags |= _XBF_PAGES;
399 for (i = 0; i < bp->b_page_count; i++) {
400 struct page *page;
401 uint retries = 0;
402 retry:
403 page = alloc_page(gfp_mask);
404 if (unlikely(page == NULL)) {
405 if (flags & XBF_READ_AHEAD) {
406 bp->b_page_count = i;
407 error = -ENOMEM;
408 goto out_free_pages;
412 * This could deadlock.
414 * But until all the XFS lowlevel code is revamped to
415 * handle buffer allocation failures we can't do much.
417 if (!(++retries % 100))
418 xfs_err(NULL,
419 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
420 current->comm, current->pid,
421 __func__, gfp_mask);
423 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
424 congestion_wait(BLK_RW_ASYNC, HZ/50);
425 goto retry;
428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
430 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
431 size -= nbytes;
432 bp->b_pages[i] = page;
433 offset = 0;
435 return 0;
437 out_free_pages:
438 for (i = 0; i < bp->b_page_count; i++)
439 __free_page(bp->b_pages[i]);
440 bp->b_flags &= ~_XBF_PAGES;
441 return error;
445 * Map buffer into kernel address-space if necessary.
447 STATIC int
448 _xfs_buf_map_pages(
449 xfs_buf_t *bp,
450 uint flags)
452 ASSERT(bp->b_flags & _XBF_PAGES);
453 if (bp->b_page_count == 1) {
454 /* A single page buffer is always mappable */
455 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
456 } else if (flags & XBF_UNMAPPED) {
457 bp->b_addr = NULL;
458 } else {
459 int retried = 0;
460 unsigned noio_flag;
463 * vm_map_ram() will allocate auxillary structures (e.g.
464 * pagetables) with GFP_KERNEL, yet we are likely to be under
465 * GFP_NOFS context here. Hence we need to tell memory reclaim
466 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
467 * memory reclaim re-entering the filesystem here and
468 * potentially deadlocking.
470 noio_flag = memalloc_noio_save();
471 do {
472 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
473 -1, PAGE_KERNEL);
474 if (bp->b_addr)
475 break;
476 vm_unmap_aliases();
477 } while (retried++ <= 1);
478 memalloc_noio_restore(noio_flag);
480 if (!bp->b_addr)
481 return -ENOMEM;
482 bp->b_addr += bp->b_offset;
485 return 0;
489 * Finding and Reading Buffers
493 * Look up, and creates if absent, a lockable buffer for
494 * a given range of an inode. The buffer is returned
495 * locked. No I/O is implied by this call.
497 xfs_buf_t *
498 _xfs_buf_find(
499 struct xfs_buftarg *btp,
500 struct xfs_buf_map *map,
501 int nmaps,
502 xfs_buf_flags_t flags,
503 xfs_buf_t *new_bp)
505 struct xfs_perag *pag;
506 struct rb_node **rbp;
507 struct rb_node *parent;
508 xfs_buf_t *bp;
509 xfs_daddr_t blkno = map[0].bm_bn;
510 xfs_daddr_t eofs;
511 int numblks = 0;
512 int i;
514 for (i = 0; i < nmaps; i++)
515 numblks += map[i].bm_len;
517 /* Check for IOs smaller than the sector size / not sector aligned */
518 ASSERT(!(BBTOB(numblks) < btp->bt_meta_sectorsize));
519 ASSERT(!(BBTOB(blkno) & (xfs_off_t)btp->bt_meta_sectormask));
522 * Corrupted block numbers can get through to here, unfortunately, so we
523 * have to check that the buffer falls within the filesystem bounds.
525 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
526 if (blkno < 0 || blkno >= eofs) {
528 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
529 * but none of the higher level infrastructure supports
530 * returning a specific error on buffer lookup failures.
532 xfs_alert(btp->bt_mount,
533 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
534 __func__, blkno, eofs);
535 WARN_ON(1);
536 return NULL;
539 /* get tree root */
540 pag = xfs_perag_get(btp->bt_mount,
541 xfs_daddr_to_agno(btp->bt_mount, blkno));
543 /* walk tree */
544 spin_lock(&pag->pag_buf_lock);
545 rbp = &pag->pag_buf_tree.rb_node;
546 parent = NULL;
547 bp = NULL;
548 while (*rbp) {
549 parent = *rbp;
550 bp = rb_entry(parent, struct xfs_buf, b_rbnode);
552 if (blkno < bp->b_bn)
553 rbp = &(*rbp)->rb_left;
554 else if (blkno > bp->b_bn)
555 rbp = &(*rbp)->rb_right;
556 else {
558 * found a block number match. If the range doesn't
559 * match, the only way this is allowed is if the buffer
560 * in the cache is stale and the transaction that made
561 * it stale has not yet committed. i.e. we are
562 * reallocating a busy extent. Skip this buffer and
563 * continue searching to the right for an exact match.
565 if (bp->b_length != numblks) {
566 ASSERT(bp->b_flags & XBF_STALE);
567 rbp = &(*rbp)->rb_right;
568 continue;
570 atomic_inc(&bp->b_hold);
571 goto found;
575 /* No match found */
576 if (new_bp) {
577 rb_link_node(&new_bp->b_rbnode, parent, rbp);
578 rb_insert_color(&new_bp->b_rbnode, &pag->pag_buf_tree);
579 /* the buffer keeps the perag reference until it is freed */
580 new_bp->b_pag = pag;
581 spin_unlock(&pag->pag_buf_lock);
582 } else {
583 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
584 spin_unlock(&pag->pag_buf_lock);
585 xfs_perag_put(pag);
587 return new_bp;
589 found:
590 spin_unlock(&pag->pag_buf_lock);
591 xfs_perag_put(pag);
593 if (!xfs_buf_trylock(bp)) {
594 if (flags & XBF_TRYLOCK) {
595 xfs_buf_rele(bp);
596 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
597 return NULL;
599 xfs_buf_lock(bp);
600 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
604 * if the buffer is stale, clear all the external state associated with
605 * it. We need to keep flags such as how we allocated the buffer memory
606 * intact here.
608 if (bp->b_flags & XBF_STALE) {
609 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
610 ASSERT(bp->b_iodone == NULL);
611 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
612 bp->b_ops = NULL;
615 trace_xfs_buf_find(bp, flags, _RET_IP_);
616 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
617 return bp;
621 * Assembles a buffer covering the specified range. The code is optimised for
622 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
623 * more hits than misses.
625 struct xfs_buf *
626 xfs_buf_get_map(
627 struct xfs_buftarg *target,
628 struct xfs_buf_map *map,
629 int nmaps,
630 xfs_buf_flags_t flags)
632 struct xfs_buf *bp;
633 struct xfs_buf *new_bp;
634 int error = 0;
636 bp = _xfs_buf_find(target, map, nmaps, flags, NULL);
637 if (likely(bp))
638 goto found;
640 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
641 if (unlikely(!new_bp))
642 return NULL;
644 error = xfs_buf_allocate_memory(new_bp, flags);
645 if (error) {
646 xfs_buf_free(new_bp);
647 return NULL;
650 bp = _xfs_buf_find(target, map, nmaps, flags, new_bp);
651 if (!bp) {
652 xfs_buf_free(new_bp);
653 return NULL;
656 if (bp != new_bp)
657 xfs_buf_free(new_bp);
659 found:
660 if (!bp->b_addr) {
661 error = _xfs_buf_map_pages(bp, flags);
662 if (unlikely(error)) {
663 xfs_warn(target->bt_mount,
664 "%s: failed to map pagesn", __func__);
665 xfs_buf_relse(bp);
666 return NULL;
671 * Clear b_error if this is a lookup from a caller that doesn't expect
672 * valid data to be found in the buffer.
674 if (!(flags & XBF_READ))
675 xfs_buf_ioerror(bp, 0);
677 XFS_STATS_INC(target->bt_mount, xb_get);
678 trace_xfs_buf_get(bp, flags, _RET_IP_);
679 return bp;
682 STATIC int
683 _xfs_buf_read(
684 xfs_buf_t *bp,
685 xfs_buf_flags_t flags)
687 ASSERT(!(flags & XBF_WRITE));
688 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
690 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
691 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
693 if (flags & XBF_ASYNC) {
694 xfs_buf_submit(bp);
695 return 0;
697 return xfs_buf_submit_wait(bp);
700 xfs_buf_t *
701 xfs_buf_read_map(
702 struct xfs_buftarg *target,
703 struct xfs_buf_map *map,
704 int nmaps,
705 xfs_buf_flags_t flags,
706 const struct xfs_buf_ops *ops)
708 struct xfs_buf *bp;
710 flags |= XBF_READ;
712 bp = xfs_buf_get_map(target, map, nmaps, flags);
713 if (bp) {
714 trace_xfs_buf_read(bp, flags, _RET_IP_);
716 if (!(bp->b_flags & XBF_DONE)) {
717 XFS_STATS_INC(target->bt_mount, xb_get_read);
718 bp->b_ops = ops;
719 _xfs_buf_read(bp, flags);
720 } else if (flags & XBF_ASYNC) {
722 * Read ahead call which is already satisfied,
723 * drop the buffer
725 xfs_buf_relse(bp);
726 return NULL;
727 } else {
728 /* We do not want read in the flags */
729 bp->b_flags &= ~XBF_READ;
733 return bp;
737 * If we are not low on memory then do the readahead in a deadlock
738 * safe manner.
740 void
741 xfs_buf_readahead_map(
742 struct xfs_buftarg *target,
743 struct xfs_buf_map *map,
744 int nmaps,
745 const struct xfs_buf_ops *ops)
747 if (bdi_read_congested(target->bt_bdi))
748 return;
750 xfs_buf_read_map(target, map, nmaps,
751 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
755 * Read an uncached buffer from disk. Allocates and returns a locked
756 * buffer containing the disk contents or nothing.
759 xfs_buf_read_uncached(
760 struct xfs_buftarg *target,
761 xfs_daddr_t daddr,
762 size_t numblks,
763 int flags,
764 struct xfs_buf **bpp,
765 const struct xfs_buf_ops *ops)
767 struct xfs_buf *bp;
769 *bpp = NULL;
771 bp = xfs_buf_get_uncached(target, numblks, flags);
772 if (!bp)
773 return -ENOMEM;
775 /* set up the buffer for a read IO */
776 ASSERT(bp->b_map_count == 1);
777 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
778 bp->b_maps[0].bm_bn = daddr;
779 bp->b_flags |= XBF_READ;
780 bp->b_ops = ops;
782 xfs_buf_submit_wait(bp);
783 if (bp->b_error) {
784 int error = bp->b_error;
785 xfs_buf_relse(bp);
786 return error;
789 *bpp = bp;
790 return 0;
794 * Return a buffer allocated as an empty buffer and associated to external
795 * memory via xfs_buf_associate_memory() back to it's empty state.
797 void
798 xfs_buf_set_empty(
799 struct xfs_buf *bp,
800 size_t numblks)
802 if (bp->b_pages)
803 _xfs_buf_free_pages(bp);
805 bp->b_pages = NULL;
806 bp->b_page_count = 0;
807 bp->b_addr = NULL;
808 bp->b_length = numblks;
809 bp->b_io_length = numblks;
811 ASSERT(bp->b_map_count == 1);
812 bp->b_bn = XFS_BUF_DADDR_NULL;
813 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
814 bp->b_maps[0].bm_len = bp->b_length;
817 static inline struct page *
818 mem_to_page(
819 void *addr)
821 if ((!is_vmalloc_addr(addr))) {
822 return virt_to_page(addr);
823 } else {
824 return vmalloc_to_page(addr);
829 xfs_buf_associate_memory(
830 xfs_buf_t *bp,
831 void *mem,
832 size_t len)
834 int rval;
835 int i = 0;
836 unsigned long pageaddr;
837 unsigned long offset;
838 size_t buflen;
839 int page_count;
841 pageaddr = (unsigned long)mem & PAGE_MASK;
842 offset = (unsigned long)mem - pageaddr;
843 buflen = PAGE_ALIGN(len + offset);
844 page_count = buflen >> PAGE_SHIFT;
846 /* Free any previous set of page pointers */
847 if (bp->b_pages)
848 _xfs_buf_free_pages(bp);
850 bp->b_pages = NULL;
851 bp->b_addr = mem;
853 rval = _xfs_buf_get_pages(bp, page_count);
854 if (rval)
855 return rval;
857 bp->b_offset = offset;
859 for (i = 0; i < bp->b_page_count; i++) {
860 bp->b_pages[i] = mem_to_page((void *)pageaddr);
861 pageaddr += PAGE_SIZE;
864 bp->b_io_length = BTOBB(len);
865 bp->b_length = BTOBB(buflen);
867 return 0;
870 xfs_buf_t *
871 xfs_buf_get_uncached(
872 struct xfs_buftarg *target,
873 size_t numblks,
874 int flags)
876 unsigned long page_count;
877 int error, i;
878 struct xfs_buf *bp;
879 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
881 /* flags might contain irrelevant bits, pass only what we care about */
882 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
883 if (unlikely(bp == NULL))
884 goto fail;
886 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
887 error = _xfs_buf_get_pages(bp, page_count);
888 if (error)
889 goto fail_free_buf;
891 for (i = 0; i < page_count; i++) {
892 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
893 if (!bp->b_pages[i])
894 goto fail_free_mem;
896 bp->b_flags |= _XBF_PAGES;
898 error = _xfs_buf_map_pages(bp, 0);
899 if (unlikely(error)) {
900 xfs_warn(target->bt_mount,
901 "%s: failed to map pages", __func__);
902 goto fail_free_mem;
905 trace_xfs_buf_get_uncached(bp, _RET_IP_);
906 return bp;
908 fail_free_mem:
909 while (--i >= 0)
910 __free_page(bp->b_pages[i]);
911 _xfs_buf_free_pages(bp);
912 fail_free_buf:
913 xfs_buf_free_maps(bp);
914 kmem_zone_free(xfs_buf_zone, bp);
915 fail:
916 return NULL;
920 * Increment reference count on buffer, to hold the buffer concurrently
921 * with another thread which may release (free) the buffer asynchronously.
922 * Must hold the buffer already to call this function.
924 void
925 xfs_buf_hold(
926 xfs_buf_t *bp)
928 trace_xfs_buf_hold(bp, _RET_IP_);
929 atomic_inc(&bp->b_hold);
933 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
934 * placed on LRU or freed (depending on b_lru_ref).
936 void
937 xfs_buf_rele(
938 xfs_buf_t *bp)
940 struct xfs_perag *pag = bp->b_pag;
941 bool release;
942 bool freebuf = false;
944 trace_xfs_buf_rele(bp, _RET_IP_);
946 if (!pag) {
947 ASSERT(list_empty(&bp->b_lru));
948 ASSERT(RB_EMPTY_NODE(&bp->b_rbnode));
949 if (atomic_dec_and_test(&bp->b_hold)) {
950 xfs_buf_ioacct_dec(bp);
951 xfs_buf_free(bp);
953 return;
956 ASSERT(!RB_EMPTY_NODE(&bp->b_rbnode));
958 ASSERT(atomic_read(&bp->b_hold) > 0);
960 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
961 spin_lock(&bp->b_lock);
962 if (!release) {
964 * Drop the in-flight state if the buffer is already on the LRU
965 * and it holds the only reference. This is racy because we
966 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
967 * ensures the decrement occurs only once per-buf.
969 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
970 __xfs_buf_ioacct_dec(bp);
971 goto out_unlock;
974 /* the last reference has been dropped ... */
975 __xfs_buf_ioacct_dec(bp);
976 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
978 * If the buffer is added to the LRU take a new reference to the
979 * buffer for the LRU and clear the (now stale) dispose list
980 * state flag
982 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
983 bp->b_state &= ~XFS_BSTATE_DISPOSE;
984 atomic_inc(&bp->b_hold);
986 spin_unlock(&pag->pag_buf_lock);
987 } else {
989 * most of the time buffers will already be removed from the
990 * LRU, so optimise that case by checking for the
991 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
992 * was on was the disposal list
994 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
995 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
996 } else {
997 ASSERT(list_empty(&bp->b_lru));
1000 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1001 rb_erase(&bp->b_rbnode, &pag->pag_buf_tree);
1002 spin_unlock(&pag->pag_buf_lock);
1003 xfs_perag_put(pag);
1004 freebuf = true;
1007 out_unlock:
1008 spin_unlock(&bp->b_lock);
1010 if (freebuf)
1011 xfs_buf_free(bp);
1016 * Lock a buffer object, if it is not already locked.
1018 * If we come across a stale, pinned, locked buffer, we know that we are
1019 * being asked to lock a buffer that has been reallocated. Because it is
1020 * pinned, we know that the log has not been pushed to disk and hence it
1021 * will still be locked. Rather than continuing to have trylock attempts
1022 * fail until someone else pushes the log, push it ourselves before
1023 * returning. This means that the xfsaild will not get stuck trying
1024 * to push on stale inode buffers.
1027 xfs_buf_trylock(
1028 struct xfs_buf *bp)
1030 int locked;
1032 locked = down_trylock(&bp->b_sema) == 0;
1033 if (locked) {
1034 XB_SET_OWNER(bp);
1035 trace_xfs_buf_trylock(bp, _RET_IP_);
1036 } else {
1037 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1039 return locked;
1043 * Lock a buffer object.
1045 * If we come across a stale, pinned, locked buffer, we know that we
1046 * are being asked to lock a buffer that has been reallocated. Because
1047 * it is pinned, we know that the log has not been pushed to disk and
1048 * hence it will still be locked. Rather than sleeping until someone
1049 * else pushes the log, push it ourselves before trying to get the lock.
1051 void
1052 xfs_buf_lock(
1053 struct xfs_buf *bp)
1055 trace_xfs_buf_lock(bp, _RET_IP_);
1057 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1058 xfs_log_force(bp->b_target->bt_mount, 0);
1059 down(&bp->b_sema);
1060 XB_SET_OWNER(bp);
1062 trace_xfs_buf_lock_done(bp, _RET_IP_);
1065 void
1066 xfs_buf_unlock(
1067 struct xfs_buf *bp)
1069 ASSERT(xfs_buf_islocked(bp));
1071 XB_CLEAR_OWNER(bp);
1072 up(&bp->b_sema);
1074 trace_xfs_buf_unlock(bp, _RET_IP_);
1077 STATIC void
1078 xfs_buf_wait_unpin(
1079 xfs_buf_t *bp)
1081 DECLARE_WAITQUEUE (wait, current);
1083 if (atomic_read(&bp->b_pin_count) == 0)
1084 return;
1086 add_wait_queue(&bp->b_waiters, &wait);
1087 for (;;) {
1088 set_current_state(TASK_UNINTERRUPTIBLE);
1089 if (atomic_read(&bp->b_pin_count) == 0)
1090 break;
1091 io_schedule();
1093 remove_wait_queue(&bp->b_waiters, &wait);
1094 set_current_state(TASK_RUNNING);
1098 * Buffer Utility Routines
1101 void
1102 xfs_buf_ioend(
1103 struct xfs_buf *bp)
1105 bool read = bp->b_flags & XBF_READ;
1107 trace_xfs_buf_iodone(bp, _RET_IP_);
1109 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1112 * Pull in IO completion errors now. We are guaranteed to be running
1113 * single threaded, so we don't need the lock to read b_io_error.
1115 if (!bp->b_error && bp->b_io_error)
1116 xfs_buf_ioerror(bp, bp->b_io_error);
1118 /* Only validate buffers that were read without errors */
1119 if (read && !bp->b_error && bp->b_ops) {
1120 ASSERT(!bp->b_iodone);
1121 bp->b_ops->verify_read(bp);
1124 if (!bp->b_error)
1125 bp->b_flags |= XBF_DONE;
1127 if (bp->b_iodone)
1128 (*(bp->b_iodone))(bp);
1129 else if (bp->b_flags & XBF_ASYNC)
1130 xfs_buf_relse(bp);
1131 else
1132 complete(&bp->b_iowait);
1135 static void
1136 xfs_buf_ioend_work(
1137 struct work_struct *work)
1139 struct xfs_buf *bp =
1140 container_of(work, xfs_buf_t, b_ioend_work);
1142 xfs_buf_ioend(bp);
1145 static void
1146 xfs_buf_ioend_async(
1147 struct xfs_buf *bp)
1149 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1150 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1153 void
1154 xfs_buf_ioerror(
1155 xfs_buf_t *bp,
1156 int error)
1158 ASSERT(error <= 0 && error >= -1000);
1159 bp->b_error = error;
1160 trace_xfs_buf_ioerror(bp, error, _RET_IP_);
1163 void
1164 xfs_buf_ioerror_alert(
1165 struct xfs_buf *bp,
1166 const char *func)
1168 xfs_alert(bp->b_target->bt_mount,
1169 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1170 (__uint64_t)XFS_BUF_ADDR(bp), func, -bp->b_error, bp->b_length);
1174 xfs_bwrite(
1175 struct xfs_buf *bp)
1177 int error;
1179 ASSERT(xfs_buf_islocked(bp));
1181 bp->b_flags |= XBF_WRITE;
1182 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1183 XBF_WRITE_FAIL | XBF_DONE);
1185 error = xfs_buf_submit_wait(bp);
1186 if (error) {
1187 xfs_force_shutdown(bp->b_target->bt_mount,
1188 SHUTDOWN_META_IO_ERROR);
1190 return error;
1193 static void
1194 xfs_buf_bio_end_io(
1195 struct bio *bio)
1197 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1200 * don't overwrite existing errors - otherwise we can lose errors on
1201 * buffers that require multiple bios to complete.
1203 if (bio->bi_error)
1204 cmpxchg(&bp->b_io_error, 0, bio->bi_error);
1206 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1207 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1209 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1210 xfs_buf_ioend_async(bp);
1211 bio_put(bio);
1214 static void
1215 xfs_buf_ioapply_map(
1216 struct xfs_buf *bp,
1217 int map,
1218 int *buf_offset,
1219 int *count,
1220 int op,
1221 int op_flags)
1223 int page_index;
1224 int total_nr_pages = bp->b_page_count;
1225 int nr_pages;
1226 struct bio *bio;
1227 sector_t sector = bp->b_maps[map].bm_bn;
1228 int size;
1229 int offset;
1231 total_nr_pages = bp->b_page_count;
1233 /* skip the pages in the buffer before the start offset */
1234 page_index = 0;
1235 offset = *buf_offset;
1236 while (offset >= PAGE_SIZE) {
1237 page_index++;
1238 offset -= PAGE_SIZE;
1242 * Limit the IO size to the length of the current vector, and update the
1243 * remaining IO count for the next time around.
1245 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1246 *count -= size;
1247 *buf_offset += size;
1249 next_chunk:
1250 atomic_inc(&bp->b_io_remaining);
1251 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1253 bio = bio_alloc(GFP_NOIO, nr_pages);
1254 bio->bi_bdev = bp->b_target->bt_bdev;
1255 bio->bi_iter.bi_sector = sector;
1256 bio->bi_end_io = xfs_buf_bio_end_io;
1257 bio->bi_private = bp;
1258 bio_set_op_attrs(bio, op, op_flags);
1260 for (; size && nr_pages; nr_pages--, page_index++) {
1261 int rbytes, nbytes = PAGE_SIZE - offset;
1263 if (nbytes > size)
1264 nbytes = size;
1266 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1267 offset);
1268 if (rbytes < nbytes)
1269 break;
1271 offset = 0;
1272 sector += BTOBB(nbytes);
1273 size -= nbytes;
1274 total_nr_pages--;
1277 if (likely(bio->bi_iter.bi_size)) {
1278 if (xfs_buf_is_vmapped(bp)) {
1279 flush_kernel_vmap_range(bp->b_addr,
1280 xfs_buf_vmap_len(bp));
1282 submit_bio(bio);
1283 if (size)
1284 goto next_chunk;
1285 } else {
1287 * This is guaranteed not to be the last io reference count
1288 * because the caller (xfs_buf_submit) holds a count itself.
1290 atomic_dec(&bp->b_io_remaining);
1291 xfs_buf_ioerror(bp, -EIO);
1292 bio_put(bio);
1297 STATIC void
1298 _xfs_buf_ioapply(
1299 struct xfs_buf *bp)
1301 struct blk_plug plug;
1302 int op;
1303 int op_flags = 0;
1304 int offset;
1305 int size;
1306 int i;
1309 * Make sure we capture only current IO errors rather than stale errors
1310 * left over from previous use of the buffer (e.g. failed readahead).
1312 bp->b_error = 0;
1315 * Initialize the I/O completion workqueue if we haven't yet or the
1316 * submitter has not opted to specify a custom one.
1318 if (!bp->b_ioend_wq)
1319 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1321 if (bp->b_flags & XBF_WRITE) {
1322 op = REQ_OP_WRITE;
1323 if (bp->b_flags & XBF_SYNCIO)
1324 op_flags = WRITE_SYNC;
1325 if (bp->b_flags & XBF_FUA)
1326 op_flags |= REQ_FUA;
1327 if (bp->b_flags & XBF_FLUSH)
1328 op_flags |= REQ_PREFLUSH;
1331 * Run the write verifier callback function if it exists. If
1332 * this function fails it will mark the buffer with an error and
1333 * the IO should not be dispatched.
1335 if (bp->b_ops) {
1336 bp->b_ops->verify_write(bp);
1337 if (bp->b_error) {
1338 xfs_force_shutdown(bp->b_target->bt_mount,
1339 SHUTDOWN_CORRUPT_INCORE);
1340 return;
1342 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1343 struct xfs_mount *mp = bp->b_target->bt_mount;
1346 * non-crc filesystems don't attach verifiers during
1347 * log recovery, so don't warn for such filesystems.
1349 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1350 xfs_warn(mp,
1351 "%s: no ops on block 0x%llx/0x%x",
1352 __func__, bp->b_bn, bp->b_length);
1353 xfs_hex_dump(bp->b_addr, 64);
1354 dump_stack();
1357 } else if (bp->b_flags & XBF_READ_AHEAD) {
1358 op = REQ_OP_READ;
1359 op_flags = REQ_RAHEAD;
1360 } else {
1361 op = REQ_OP_READ;
1364 /* we only use the buffer cache for meta-data */
1365 op_flags |= REQ_META;
1368 * Walk all the vectors issuing IO on them. Set up the initial offset
1369 * into the buffer and the desired IO size before we start -
1370 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1371 * subsequent call.
1373 offset = bp->b_offset;
1374 size = BBTOB(bp->b_io_length);
1375 blk_start_plug(&plug);
1376 for (i = 0; i < bp->b_map_count; i++) {
1377 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1378 if (bp->b_error)
1379 break;
1380 if (size <= 0)
1381 break; /* all done */
1383 blk_finish_plug(&plug);
1387 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1388 * the current reference to the IO. It is not safe to reference the buffer after
1389 * a call to this function unless the caller holds an additional reference
1390 * itself.
1392 void
1393 xfs_buf_submit(
1394 struct xfs_buf *bp)
1396 trace_xfs_buf_submit(bp, _RET_IP_);
1398 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1399 ASSERT(bp->b_flags & XBF_ASYNC);
1401 /* on shutdown we stale and complete the buffer immediately */
1402 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1403 xfs_buf_ioerror(bp, -EIO);
1404 bp->b_flags &= ~XBF_DONE;
1405 xfs_buf_stale(bp);
1406 xfs_buf_ioend(bp);
1407 return;
1410 if (bp->b_flags & XBF_WRITE)
1411 xfs_buf_wait_unpin(bp);
1413 /* clear the internal error state to avoid spurious errors */
1414 bp->b_io_error = 0;
1417 * The caller's reference is released during I/O completion.
1418 * This occurs some time after the last b_io_remaining reference is
1419 * released, so after we drop our Io reference we have to have some
1420 * other reference to ensure the buffer doesn't go away from underneath
1421 * us. Take a direct reference to ensure we have safe access to the
1422 * buffer until we are finished with it.
1424 xfs_buf_hold(bp);
1427 * Set the count to 1 initially, this will stop an I/O completion
1428 * callout which happens before we have started all the I/O from calling
1429 * xfs_buf_ioend too early.
1431 atomic_set(&bp->b_io_remaining, 1);
1432 xfs_buf_ioacct_inc(bp);
1433 _xfs_buf_ioapply(bp);
1436 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1437 * reference we took above. If we drop it to zero, run completion so
1438 * that we don't return to the caller with completion still pending.
1440 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1441 if (bp->b_error)
1442 xfs_buf_ioend(bp);
1443 else
1444 xfs_buf_ioend_async(bp);
1447 xfs_buf_rele(bp);
1448 /* Note: it is not safe to reference bp now we've dropped our ref */
1452 * Synchronous buffer IO submission path, read or write.
1455 xfs_buf_submit_wait(
1456 struct xfs_buf *bp)
1458 int error;
1460 trace_xfs_buf_submit_wait(bp, _RET_IP_);
1462 ASSERT(!(bp->b_flags & (_XBF_DELWRI_Q | XBF_ASYNC)));
1464 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1465 xfs_buf_ioerror(bp, -EIO);
1466 xfs_buf_stale(bp);
1467 bp->b_flags &= ~XBF_DONE;
1468 return -EIO;
1471 if (bp->b_flags & XBF_WRITE)
1472 xfs_buf_wait_unpin(bp);
1474 /* clear the internal error state to avoid spurious errors */
1475 bp->b_io_error = 0;
1478 * For synchronous IO, the IO does not inherit the submitters reference
1479 * count, nor the buffer lock. Hence we cannot release the reference we
1480 * are about to take until we've waited for all IO completion to occur,
1481 * including any xfs_buf_ioend_async() work that may be pending.
1483 xfs_buf_hold(bp);
1486 * Set the count to 1 initially, this will stop an I/O completion
1487 * callout which happens before we have started all the I/O from calling
1488 * xfs_buf_ioend too early.
1490 atomic_set(&bp->b_io_remaining, 1);
1491 _xfs_buf_ioapply(bp);
1494 * make sure we run completion synchronously if it raced with us and is
1495 * already complete.
1497 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1498 xfs_buf_ioend(bp);
1500 /* wait for completion before gathering the error from the buffer */
1501 trace_xfs_buf_iowait(bp, _RET_IP_);
1502 wait_for_completion(&bp->b_iowait);
1503 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1504 error = bp->b_error;
1507 * all done now, we can release the hold that keeps the buffer
1508 * referenced for the entire IO.
1510 xfs_buf_rele(bp);
1511 return error;
1514 void *
1515 xfs_buf_offset(
1516 struct xfs_buf *bp,
1517 size_t offset)
1519 struct page *page;
1521 if (bp->b_addr)
1522 return bp->b_addr + offset;
1524 offset += bp->b_offset;
1525 page = bp->b_pages[offset >> PAGE_SHIFT];
1526 return page_address(page) + (offset & (PAGE_SIZE-1));
1530 * Move data into or out of a buffer.
1532 void
1533 xfs_buf_iomove(
1534 xfs_buf_t *bp, /* buffer to process */
1535 size_t boff, /* starting buffer offset */
1536 size_t bsize, /* length to copy */
1537 void *data, /* data address */
1538 xfs_buf_rw_t mode) /* read/write/zero flag */
1540 size_t bend;
1542 bend = boff + bsize;
1543 while (boff < bend) {
1544 struct page *page;
1545 int page_index, page_offset, csize;
1547 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1548 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1549 page = bp->b_pages[page_index];
1550 csize = min_t(size_t, PAGE_SIZE - page_offset,
1551 BBTOB(bp->b_io_length) - boff);
1553 ASSERT((csize + page_offset) <= PAGE_SIZE);
1555 switch (mode) {
1556 case XBRW_ZERO:
1557 memset(page_address(page) + page_offset, 0, csize);
1558 break;
1559 case XBRW_READ:
1560 memcpy(data, page_address(page) + page_offset, csize);
1561 break;
1562 case XBRW_WRITE:
1563 memcpy(page_address(page) + page_offset, data, csize);
1566 boff += csize;
1567 data += csize;
1572 * Handling of buffer targets (buftargs).
1576 * Wait for any bufs with callbacks that have been submitted but have not yet
1577 * returned. These buffers will have an elevated hold count, so wait on those
1578 * while freeing all the buffers only held by the LRU.
1580 static enum lru_status
1581 xfs_buftarg_wait_rele(
1582 struct list_head *item,
1583 struct list_lru_one *lru,
1584 spinlock_t *lru_lock,
1585 void *arg)
1588 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1589 struct list_head *dispose = arg;
1591 if (atomic_read(&bp->b_hold) > 1) {
1592 /* need to wait, so skip it this pass */
1593 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1594 return LRU_SKIP;
1596 if (!spin_trylock(&bp->b_lock))
1597 return LRU_SKIP;
1600 * clear the LRU reference count so the buffer doesn't get
1601 * ignored in xfs_buf_rele().
1603 atomic_set(&bp->b_lru_ref, 0);
1604 bp->b_state |= XFS_BSTATE_DISPOSE;
1605 list_lru_isolate_move(lru, item, dispose);
1606 spin_unlock(&bp->b_lock);
1607 return LRU_REMOVED;
1610 void
1611 xfs_wait_buftarg(
1612 struct xfs_buftarg *btp)
1614 LIST_HEAD(dispose);
1615 int loop = 0;
1618 * First wait on the buftarg I/O count for all in-flight buffers to be
1619 * released. This is critical as new buffers do not make the LRU until
1620 * they are released.
1622 * Next, flush the buffer workqueue to ensure all completion processing
1623 * has finished. Just waiting on buffer locks is not sufficient for
1624 * async IO as the reference count held over IO is not released until
1625 * after the buffer lock is dropped. Hence we need to ensure here that
1626 * all reference counts have been dropped before we start walking the
1627 * LRU list.
1629 while (percpu_counter_sum(&btp->bt_io_count))
1630 delay(100);
1631 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1633 /* loop until there is nothing left on the lru list. */
1634 while (list_lru_count(&btp->bt_lru)) {
1635 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1636 &dispose, LONG_MAX);
1638 while (!list_empty(&dispose)) {
1639 struct xfs_buf *bp;
1640 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1641 list_del_init(&bp->b_lru);
1642 if (bp->b_flags & XBF_WRITE_FAIL) {
1643 xfs_alert(btp->bt_mount,
1644 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1645 (long long)bp->b_bn);
1646 xfs_alert(btp->bt_mount,
1647 "Please run xfs_repair to determine the extent of the problem.");
1649 xfs_buf_rele(bp);
1651 if (loop++ != 0)
1652 delay(100);
1656 static enum lru_status
1657 xfs_buftarg_isolate(
1658 struct list_head *item,
1659 struct list_lru_one *lru,
1660 spinlock_t *lru_lock,
1661 void *arg)
1663 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1664 struct list_head *dispose = arg;
1667 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1668 * If we fail to get the lock, just skip it.
1670 if (!spin_trylock(&bp->b_lock))
1671 return LRU_SKIP;
1673 * Decrement the b_lru_ref count unless the value is already
1674 * zero. If the value is already zero, we need to reclaim the
1675 * buffer, otherwise it gets another trip through the LRU.
1677 if (!atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1678 spin_unlock(&bp->b_lock);
1679 return LRU_ROTATE;
1682 bp->b_state |= XFS_BSTATE_DISPOSE;
1683 list_lru_isolate_move(lru, item, dispose);
1684 spin_unlock(&bp->b_lock);
1685 return LRU_REMOVED;
1688 static unsigned long
1689 xfs_buftarg_shrink_scan(
1690 struct shrinker *shrink,
1691 struct shrink_control *sc)
1693 struct xfs_buftarg *btp = container_of(shrink,
1694 struct xfs_buftarg, bt_shrinker);
1695 LIST_HEAD(dispose);
1696 unsigned long freed;
1698 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1699 xfs_buftarg_isolate, &dispose);
1701 while (!list_empty(&dispose)) {
1702 struct xfs_buf *bp;
1703 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1704 list_del_init(&bp->b_lru);
1705 xfs_buf_rele(bp);
1708 return freed;
1711 static unsigned long
1712 xfs_buftarg_shrink_count(
1713 struct shrinker *shrink,
1714 struct shrink_control *sc)
1716 struct xfs_buftarg *btp = container_of(shrink,
1717 struct xfs_buftarg, bt_shrinker);
1718 return list_lru_shrink_count(&btp->bt_lru, sc);
1721 void
1722 xfs_free_buftarg(
1723 struct xfs_mount *mp,
1724 struct xfs_buftarg *btp)
1726 unregister_shrinker(&btp->bt_shrinker);
1727 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1728 percpu_counter_destroy(&btp->bt_io_count);
1729 list_lru_destroy(&btp->bt_lru);
1731 if (mp->m_flags & XFS_MOUNT_BARRIER)
1732 xfs_blkdev_issue_flush(btp);
1734 kmem_free(btp);
1738 xfs_setsize_buftarg(
1739 xfs_buftarg_t *btp,
1740 unsigned int sectorsize)
1742 /* Set up metadata sector size info */
1743 btp->bt_meta_sectorsize = sectorsize;
1744 btp->bt_meta_sectormask = sectorsize - 1;
1746 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1747 xfs_warn(btp->bt_mount,
1748 "Cannot set_blocksize to %u on device %pg",
1749 sectorsize, btp->bt_bdev);
1750 return -EINVAL;
1753 /* Set up device logical sector size mask */
1754 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1755 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1757 return 0;
1761 * When allocating the initial buffer target we have not yet
1762 * read in the superblock, so don't know what sized sectors
1763 * are being used at this early stage. Play safe.
1765 STATIC int
1766 xfs_setsize_buftarg_early(
1767 xfs_buftarg_t *btp,
1768 struct block_device *bdev)
1770 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1773 xfs_buftarg_t *
1774 xfs_alloc_buftarg(
1775 struct xfs_mount *mp,
1776 struct block_device *bdev)
1778 xfs_buftarg_t *btp;
1780 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1782 btp->bt_mount = mp;
1783 btp->bt_dev = bdev->bd_dev;
1784 btp->bt_bdev = bdev;
1785 btp->bt_bdi = blk_get_backing_dev_info(bdev);
1787 if (xfs_setsize_buftarg_early(btp, bdev))
1788 goto error;
1790 if (list_lru_init(&btp->bt_lru))
1791 goto error;
1793 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1794 goto error;
1796 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1797 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1798 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1799 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1800 register_shrinker(&btp->bt_shrinker);
1801 return btp;
1803 error:
1804 kmem_free(btp);
1805 return NULL;
1809 * Cancel a delayed write list.
1811 * Remove each buffer from the list, clear the delwri queue flag and drop the
1812 * associated buffer reference.
1814 void
1815 xfs_buf_delwri_cancel(
1816 struct list_head *list)
1818 struct xfs_buf *bp;
1820 while (!list_empty(list)) {
1821 bp = list_first_entry(list, struct xfs_buf, b_list);
1823 xfs_buf_lock(bp);
1824 bp->b_flags &= ~_XBF_DELWRI_Q;
1825 list_del_init(&bp->b_list);
1826 xfs_buf_relse(bp);
1831 * Add a buffer to the delayed write list.
1833 * This queues a buffer for writeout if it hasn't already been. Note that
1834 * neither this routine nor the buffer list submission functions perform
1835 * any internal synchronization. It is expected that the lists are thread-local
1836 * to the callers.
1838 * Returns true if we queued up the buffer, or false if it already had
1839 * been on the buffer list.
1841 bool
1842 xfs_buf_delwri_queue(
1843 struct xfs_buf *bp,
1844 struct list_head *list)
1846 ASSERT(xfs_buf_islocked(bp));
1847 ASSERT(!(bp->b_flags & XBF_READ));
1850 * If the buffer is already marked delwri it already is queued up
1851 * by someone else for imediate writeout. Just ignore it in that
1852 * case.
1854 if (bp->b_flags & _XBF_DELWRI_Q) {
1855 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1856 return false;
1859 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1862 * If a buffer gets written out synchronously or marked stale while it
1863 * is on a delwri list we lazily remove it. To do this, the other party
1864 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1865 * It remains referenced and on the list. In a rare corner case it
1866 * might get readded to a delwri list after the synchronous writeout, in
1867 * which case we need just need to re-add the flag here.
1869 bp->b_flags |= _XBF_DELWRI_Q;
1870 if (list_empty(&bp->b_list)) {
1871 atomic_inc(&bp->b_hold);
1872 list_add_tail(&bp->b_list, list);
1875 return true;
1879 * Compare function is more complex than it needs to be because
1880 * the return value is only 32 bits and we are doing comparisons
1881 * on 64 bit values
1883 static int
1884 xfs_buf_cmp(
1885 void *priv,
1886 struct list_head *a,
1887 struct list_head *b)
1889 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1890 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1891 xfs_daddr_t diff;
1893 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1894 if (diff < 0)
1895 return -1;
1896 if (diff > 0)
1897 return 1;
1898 return 0;
1902 * submit buffers for write.
1904 * When we have a large buffer list, we do not want to hold all the buffers
1905 * locked while we block on the request queue waiting for IO dispatch. To avoid
1906 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1907 * the lock hold times for lists which may contain thousands of objects.
1909 * To do this, we sort the buffer list before we walk the list to lock and
1910 * submit buffers, and we plug and unplug around each group of buffers we
1911 * submit.
1913 static int
1914 xfs_buf_delwri_submit_buffers(
1915 struct list_head *buffer_list,
1916 struct list_head *wait_list)
1918 struct xfs_buf *bp, *n;
1919 LIST_HEAD (submit_list);
1920 int pinned = 0;
1921 struct blk_plug plug;
1923 list_sort(NULL, buffer_list, xfs_buf_cmp);
1925 blk_start_plug(&plug);
1926 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1927 if (!wait_list) {
1928 if (xfs_buf_ispinned(bp)) {
1929 pinned++;
1930 continue;
1932 if (!xfs_buf_trylock(bp))
1933 continue;
1934 } else {
1935 xfs_buf_lock(bp);
1939 * Someone else might have written the buffer synchronously or
1940 * marked it stale in the meantime. In that case only the
1941 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1942 * reference and remove it from the list here.
1944 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1945 list_del_init(&bp->b_list);
1946 xfs_buf_relse(bp);
1947 continue;
1950 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1953 * We do all IO submission async. This means if we need
1954 * to wait for IO completion we need to take an extra
1955 * reference so the buffer is still valid on the other
1956 * side. We need to move the buffer onto the io_list
1957 * at this point so the caller can still access it.
1959 bp->b_flags &= ~(_XBF_DELWRI_Q | XBF_WRITE_FAIL);
1960 bp->b_flags |= XBF_WRITE | XBF_ASYNC;
1961 if (wait_list) {
1962 xfs_buf_hold(bp);
1963 list_move_tail(&bp->b_list, wait_list);
1964 } else
1965 list_del_init(&bp->b_list);
1967 xfs_buf_submit(bp);
1969 blk_finish_plug(&plug);
1971 return pinned;
1975 * Write out a buffer list asynchronously.
1977 * This will take the @buffer_list, write all non-locked and non-pinned buffers
1978 * out and not wait for I/O completion on any of the buffers. This interface
1979 * is only safely useable for callers that can track I/O completion by higher
1980 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
1981 * function.
1984 xfs_buf_delwri_submit_nowait(
1985 struct list_head *buffer_list)
1987 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
1991 * Write out a buffer list synchronously.
1993 * This will take the @buffer_list, write all buffers out and wait for I/O
1994 * completion on all of the buffers. @buffer_list is consumed by the function,
1995 * so callers must have some other way of tracking buffers if they require such
1996 * functionality.
1999 xfs_buf_delwri_submit(
2000 struct list_head *buffer_list)
2002 LIST_HEAD (wait_list);
2003 int error = 0, error2;
2004 struct xfs_buf *bp;
2006 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2008 /* Wait for IO to complete. */
2009 while (!list_empty(&wait_list)) {
2010 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2012 list_del_init(&bp->b_list);
2014 /* locking the buffer will wait for async IO completion. */
2015 xfs_buf_lock(bp);
2016 error2 = bp->b_error;
2017 xfs_buf_relse(bp);
2018 if (!error)
2019 error = error2;
2022 return error;
2025 int __init
2026 xfs_buf_init(void)
2028 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2029 KM_ZONE_HWALIGN, NULL);
2030 if (!xfs_buf_zone)
2031 goto out;
2033 return 0;
2035 out:
2036 return -ENOMEM;
2039 void
2040 xfs_buf_terminate(void)
2042 kmem_zone_destroy(xfs_buf_zone);