2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
33 #include "xfs_attr_sf.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
51 #include "xfs_bmap_btree.h"
52 #include "xfs_reflink.h"
53 #include "xfs_dir2_priv.h"
55 kmem_zone_t
*xfs_inode_zone
;
58 * Used in xfs_itruncate_extents(). This is the maximum number of extents
59 * freed from a file in a single transaction.
61 #define XFS_ITRUNC_MAX_EXTENTS 2
63 STATIC
int xfs_iflush_int(struct xfs_inode
*, struct xfs_buf
*);
64 STATIC
int xfs_iunlink(struct xfs_trans
*, struct xfs_inode
*);
65 STATIC
int xfs_iunlink_remove(struct xfs_trans
*, struct xfs_inode
*);
68 * helper function to extract extent size hint from inode
74 if ((ip
->i_d
.di_flags
& XFS_DIFLAG_EXTSIZE
) && ip
->i_d
.di_extsize
)
75 return ip
->i_d
.di_extsize
;
76 if (XFS_IS_REALTIME_INODE(ip
))
77 return ip
->i_mount
->m_sb
.sb_rextsize
;
82 * Helper function to extract CoW extent size hint from inode.
83 * Between the extent size hint and the CoW extent size hint, we
84 * return the greater of the two. If the value is zero (automatic),
85 * use the default size.
88 xfs_get_cowextsz_hint(
94 if (ip
->i_d
.di_flags2
& XFS_DIFLAG2_COWEXTSIZE
)
95 a
= ip
->i_d
.di_cowextsize
;
96 b
= xfs_get_extsz_hint(ip
);
100 return XFS_DEFAULT_COWEXTSZ_HINT
;
105 * These two are wrapper routines around the xfs_ilock() routine used to
106 * centralize some grungy code. They are used in places that wish to lock the
107 * inode solely for reading the extents. The reason these places can't just
108 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
109 * bringing in of the extents from disk for a file in b-tree format. If the
110 * inode is in b-tree format, then we need to lock the inode exclusively until
111 * the extents are read in. Locking it exclusively all the time would limit
112 * our parallelism unnecessarily, though. What we do instead is check to see
113 * if the extents have been read in yet, and only lock the inode exclusively
116 * The functions return a value which should be given to the corresponding
117 * xfs_iunlock() call.
120 xfs_ilock_data_map_shared(
121 struct xfs_inode
*ip
)
123 uint lock_mode
= XFS_ILOCK_SHARED
;
125 if (ip
->i_d
.di_format
== XFS_DINODE_FMT_BTREE
&&
126 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
) == 0)
127 lock_mode
= XFS_ILOCK_EXCL
;
128 xfs_ilock(ip
, lock_mode
);
133 xfs_ilock_attr_map_shared(
134 struct xfs_inode
*ip
)
136 uint lock_mode
= XFS_ILOCK_SHARED
;
138 if (ip
->i_d
.di_aformat
== XFS_DINODE_FMT_BTREE
&&
139 (ip
->i_afp
->if_flags
& XFS_IFEXTENTS
) == 0)
140 lock_mode
= XFS_ILOCK_EXCL
;
141 xfs_ilock(ip
, lock_mode
);
146 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
147 * the i_lock. This routine allows various combinations of the locks to be
150 * The 3 locks should always be ordered so that the IO lock is obtained first,
151 * the mmap lock second and the ilock last in order to prevent deadlock.
153 * Basic locking order:
155 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
157 * mmap_sem locking order:
159 * i_iolock -> page lock -> mmap_sem
160 * mmap_sem -> i_mmap_lock -> page_lock
162 * The difference in mmap_sem locking order mean that we cannot hold the
163 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
164 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
165 * in get_user_pages() to map the user pages into the kernel address space for
166 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
167 * page faults already hold the mmap_sem.
169 * Hence to serialise fully against both syscall and mmap based IO, we need to
170 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
171 * taken in places where we need to invalidate the page cache in a race
172 * free manner (e.g. truncate, hole punch and other extent manipulation
180 trace_xfs_ilock(ip
, lock_flags
, _RET_IP_
);
183 * You can't set both SHARED and EXCL for the same lock,
184 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
185 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
187 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
188 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
189 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
190 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
191 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
192 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
193 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
195 if (lock_flags
& XFS_IOLOCK_EXCL
)
196 mrupdate_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
197 else if (lock_flags
& XFS_IOLOCK_SHARED
)
198 mraccess_nested(&ip
->i_iolock
, XFS_IOLOCK_DEP(lock_flags
));
200 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
201 mrupdate_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
202 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
203 mraccess_nested(&ip
->i_mmaplock
, XFS_MMAPLOCK_DEP(lock_flags
));
205 if (lock_flags
& XFS_ILOCK_EXCL
)
206 mrupdate_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
207 else if (lock_flags
& XFS_ILOCK_SHARED
)
208 mraccess_nested(&ip
->i_lock
, XFS_ILOCK_DEP(lock_flags
));
212 * This is just like xfs_ilock(), except that the caller
213 * is guaranteed not to sleep. It returns 1 if it gets
214 * the requested locks and 0 otherwise. If the IO lock is
215 * obtained but the inode lock cannot be, then the IO lock
216 * is dropped before returning.
218 * ip -- the inode being locked
219 * lock_flags -- this parameter indicates the inode's locks to be
220 * to be locked. See the comment for xfs_ilock() for a list
228 trace_xfs_ilock_nowait(ip
, lock_flags
, _RET_IP_
);
231 * You can't set both SHARED and EXCL for the same lock,
232 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
233 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
235 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
236 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
237 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
238 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
239 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
240 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
241 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
243 if (lock_flags
& XFS_IOLOCK_EXCL
) {
244 if (!mrtryupdate(&ip
->i_iolock
))
246 } else if (lock_flags
& XFS_IOLOCK_SHARED
) {
247 if (!mrtryaccess(&ip
->i_iolock
))
251 if (lock_flags
& XFS_MMAPLOCK_EXCL
) {
252 if (!mrtryupdate(&ip
->i_mmaplock
))
253 goto out_undo_iolock
;
254 } else if (lock_flags
& XFS_MMAPLOCK_SHARED
) {
255 if (!mrtryaccess(&ip
->i_mmaplock
))
256 goto out_undo_iolock
;
259 if (lock_flags
& XFS_ILOCK_EXCL
) {
260 if (!mrtryupdate(&ip
->i_lock
))
261 goto out_undo_mmaplock
;
262 } else if (lock_flags
& XFS_ILOCK_SHARED
) {
263 if (!mrtryaccess(&ip
->i_lock
))
264 goto out_undo_mmaplock
;
269 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
270 mrunlock_excl(&ip
->i_mmaplock
);
271 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
272 mrunlock_shared(&ip
->i_mmaplock
);
274 if (lock_flags
& XFS_IOLOCK_EXCL
)
275 mrunlock_excl(&ip
->i_iolock
);
276 else if (lock_flags
& XFS_IOLOCK_SHARED
)
277 mrunlock_shared(&ip
->i_iolock
);
283 * xfs_iunlock() is used to drop the inode locks acquired with
284 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
285 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
286 * that we know which locks to drop.
288 * ip -- the inode being unlocked
289 * lock_flags -- this parameter indicates the inode's locks to be
290 * to be unlocked. See the comment for xfs_ilock() for a list
291 * of valid values for this parameter.
300 * You can't set both SHARED and EXCL for the same lock,
301 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
302 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
304 ASSERT((lock_flags
& (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
)) !=
305 (XFS_IOLOCK_SHARED
| XFS_IOLOCK_EXCL
));
306 ASSERT((lock_flags
& (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
)) !=
307 (XFS_MMAPLOCK_SHARED
| XFS_MMAPLOCK_EXCL
));
308 ASSERT((lock_flags
& (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
)) !=
309 (XFS_ILOCK_SHARED
| XFS_ILOCK_EXCL
));
310 ASSERT((lock_flags
& ~(XFS_LOCK_MASK
| XFS_LOCK_SUBCLASS_MASK
)) == 0);
311 ASSERT(lock_flags
!= 0);
313 if (lock_flags
& XFS_IOLOCK_EXCL
)
314 mrunlock_excl(&ip
->i_iolock
);
315 else if (lock_flags
& XFS_IOLOCK_SHARED
)
316 mrunlock_shared(&ip
->i_iolock
);
318 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
319 mrunlock_excl(&ip
->i_mmaplock
);
320 else if (lock_flags
& XFS_MMAPLOCK_SHARED
)
321 mrunlock_shared(&ip
->i_mmaplock
);
323 if (lock_flags
& XFS_ILOCK_EXCL
)
324 mrunlock_excl(&ip
->i_lock
);
325 else if (lock_flags
& XFS_ILOCK_SHARED
)
326 mrunlock_shared(&ip
->i_lock
);
328 trace_xfs_iunlock(ip
, lock_flags
, _RET_IP_
);
332 * give up write locks. the i/o lock cannot be held nested
333 * if it is being demoted.
340 ASSERT(lock_flags
& (XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
));
342 ~(XFS_IOLOCK_EXCL
|XFS_MMAPLOCK_EXCL
|XFS_ILOCK_EXCL
)) == 0);
344 if (lock_flags
& XFS_ILOCK_EXCL
)
345 mrdemote(&ip
->i_lock
);
346 if (lock_flags
& XFS_MMAPLOCK_EXCL
)
347 mrdemote(&ip
->i_mmaplock
);
348 if (lock_flags
& XFS_IOLOCK_EXCL
)
349 mrdemote(&ip
->i_iolock
);
351 trace_xfs_ilock_demote(ip
, lock_flags
, _RET_IP_
);
354 #if defined(DEBUG) || defined(XFS_WARN)
360 if (lock_flags
& (XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
)) {
361 if (!(lock_flags
& XFS_ILOCK_SHARED
))
362 return !!ip
->i_lock
.mr_writer
;
363 return rwsem_is_locked(&ip
->i_lock
.mr_lock
);
366 if (lock_flags
& (XFS_MMAPLOCK_EXCL
|XFS_MMAPLOCK_SHARED
)) {
367 if (!(lock_flags
& XFS_MMAPLOCK_SHARED
))
368 return !!ip
->i_mmaplock
.mr_writer
;
369 return rwsem_is_locked(&ip
->i_mmaplock
.mr_lock
);
372 if (lock_flags
& (XFS_IOLOCK_EXCL
|XFS_IOLOCK_SHARED
)) {
373 if (!(lock_flags
& XFS_IOLOCK_SHARED
))
374 return !!ip
->i_iolock
.mr_writer
;
375 return rwsem_is_locked(&ip
->i_iolock
.mr_lock
);
385 int xfs_small_retries
;
386 int xfs_middle_retries
;
387 int xfs_lots_retries
;
392 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
393 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
394 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
395 * errors and warnings.
397 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
399 xfs_lockdep_subclass_ok(
402 return subclass
< MAX_LOCKDEP_SUBCLASSES
;
405 #define xfs_lockdep_subclass_ok(subclass) (true)
409 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
410 * value. This can be called for any type of inode lock combination, including
411 * parent locking. Care must be taken to ensure we don't overrun the subclass
412 * storage fields in the class mask we build.
415 xfs_lock_inumorder(int lock_mode
, int subclass
)
419 ASSERT(!(lock_mode
& (XFS_ILOCK_PARENT
| XFS_ILOCK_RTBITMAP
|
421 ASSERT(xfs_lockdep_subclass_ok(subclass
));
423 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
424 ASSERT(subclass
<= XFS_IOLOCK_MAX_SUBCLASS
);
425 ASSERT(xfs_lockdep_subclass_ok(subclass
+
426 XFS_IOLOCK_PARENT_VAL
));
427 class += subclass
<< XFS_IOLOCK_SHIFT
;
428 if (lock_mode
& XFS_IOLOCK_PARENT
)
429 class += XFS_IOLOCK_PARENT_VAL
<< XFS_IOLOCK_SHIFT
;
432 if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)) {
433 ASSERT(subclass
<= XFS_MMAPLOCK_MAX_SUBCLASS
);
434 class += subclass
<< XFS_MMAPLOCK_SHIFT
;
437 if (lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)) {
438 ASSERT(subclass
<= XFS_ILOCK_MAX_SUBCLASS
);
439 class += subclass
<< XFS_ILOCK_SHIFT
;
442 return (lock_mode
& ~XFS_LOCK_SUBCLASS_MASK
) | class;
446 * The following routine will lock n inodes in exclusive mode. We assume the
447 * caller calls us with the inodes in i_ino order.
449 * We need to detect deadlock where an inode that we lock is in the AIL and we
450 * start waiting for another inode that is locked by a thread in a long running
451 * transaction (such as truncate). This can result in deadlock since the long
452 * running trans might need to wait for the inode we just locked in order to
453 * push the tail and free space in the log.
455 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457 * lock more than one at a time, lockdep will report false positives saying we
458 * have violated locking orders.
466 int attempts
= 0, i
, j
, try_lock
;
470 * Currently supports between 2 and 5 inodes with exclusive locking. We
471 * support an arbitrary depth of locking here, but absolute limits on
472 * inodes depend on the the type of locking and the limits placed by
473 * lockdep annotations in xfs_lock_inumorder. These are all checked by
476 ASSERT(ips
&& inodes
>= 2 && inodes
<= 5);
477 ASSERT(lock_mode
& (XFS_IOLOCK_EXCL
| XFS_MMAPLOCK_EXCL
|
479 ASSERT(!(lock_mode
& (XFS_IOLOCK_SHARED
| XFS_MMAPLOCK_SHARED
|
481 ASSERT(!(lock_mode
& XFS_IOLOCK_EXCL
) ||
482 inodes
<= XFS_IOLOCK_MAX_SUBCLASS
+ 1);
483 ASSERT(!(lock_mode
& XFS_MMAPLOCK_EXCL
) ||
484 inodes
<= XFS_MMAPLOCK_MAX_SUBCLASS
+ 1);
485 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
) ||
486 inodes
<= XFS_ILOCK_MAX_SUBCLASS
+ 1);
488 if (lock_mode
& XFS_IOLOCK_EXCL
) {
489 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_EXCL
| XFS_ILOCK_EXCL
)));
490 } else if (lock_mode
& XFS_MMAPLOCK_EXCL
)
491 ASSERT(!(lock_mode
& XFS_ILOCK_EXCL
));
496 for (; i
< inodes
; i
++) {
499 if (i
&& (ips
[i
] == ips
[i
- 1])) /* Already locked */
503 * If try_lock is not set yet, make sure all locked inodes are
504 * not in the AIL. If any are, set try_lock to be used later.
507 for (j
= (i
- 1); j
>= 0 && !try_lock
; j
--) {
508 lp
= (xfs_log_item_t
*)ips
[j
]->i_itemp
;
509 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
))
515 * If any of the previous locks we have locked is in the AIL,
516 * we must TRY to get the second and subsequent locks. If
517 * we can't get any, we must release all we have
521 xfs_ilock(ips
[i
], xfs_lock_inumorder(lock_mode
, i
));
525 /* try_lock means we have an inode locked that is in the AIL. */
527 if (xfs_ilock_nowait(ips
[i
], xfs_lock_inumorder(lock_mode
, i
)))
531 * Unlock all previous guys and try again. xfs_iunlock will try
532 * to push the tail if the inode is in the AIL.
535 for (j
= i
- 1; j
>= 0; j
--) {
537 * Check to see if we've already unlocked this one. Not
538 * the first one going back, and the inode ptr is the
541 if (j
!= (i
- 1) && ips
[j
] == ips
[j
+ 1])
544 xfs_iunlock(ips
[j
], lock_mode
);
547 if ((attempts
% 5) == 0) {
548 delay(1); /* Don't just spin the CPU */
560 if (attempts
< 5) xfs_small_retries
++;
561 else if (attempts
< 100) xfs_middle_retries
++;
562 else xfs_lots_retries
++;
570 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
571 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
572 * lock more than one at a time, lockdep will report false positives saying we
573 * have violated locking orders.
585 if (lock_mode
& (XFS_IOLOCK_SHARED
|XFS_IOLOCK_EXCL
)) {
586 ASSERT(!(lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
)));
587 ASSERT(!(lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
588 } else if (lock_mode
& (XFS_MMAPLOCK_SHARED
|XFS_MMAPLOCK_EXCL
))
589 ASSERT(!(lock_mode
& (XFS_ILOCK_SHARED
|XFS_ILOCK_EXCL
)));
591 ASSERT(ip0
->i_ino
!= ip1
->i_ino
);
593 if (ip0
->i_ino
> ip1
->i_ino
) {
600 xfs_ilock(ip0
, xfs_lock_inumorder(lock_mode
, 0));
603 * If the first lock we have locked is in the AIL, we must TRY to get
604 * the second lock. If we can't get it, we must release the first one
607 lp
= (xfs_log_item_t
*)ip0
->i_itemp
;
608 if (lp
&& (lp
->li_flags
& XFS_LI_IN_AIL
)) {
609 if (!xfs_ilock_nowait(ip1
, xfs_lock_inumorder(lock_mode
, 1))) {
610 xfs_iunlock(ip0
, lock_mode
);
611 if ((++attempts
% 5) == 0)
612 delay(1); /* Don't just spin the CPU */
616 xfs_ilock(ip1
, xfs_lock_inumorder(lock_mode
, 1));
623 struct xfs_inode
*ip
)
625 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IFLOCK_BIT
);
626 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IFLOCK_BIT
);
629 prepare_to_wait_exclusive(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
630 if (xfs_isiflocked(ip
))
632 } while (!xfs_iflock_nowait(ip
));
634 finish_wait(wq
, &wait
.wait
);
645 if (di_flags
& XFS_DIFLAG_ANY
) {
646 if (di_flags
& XFS_DIFLAG_REALTIME
)
647 flags
|= FS_XFLAG_REALTIME
;
648 if (di_flags
& XFS_DIFLAG_PREALLOC
)
649 flags
|= FS_XFLAG_PREALLOC
;
650 if (di_flags
& XFS_DIFLAG_IMMUTABLE
)
651 flags
|= FS_XFLAG_IMMUTABLE
;
652 if (di_flags
& XFS_DIFLAG_APPEND
)
653 flags
|= FS_XFLAG_APPEND
;
654 if (di_flags
& XFS_DIFLAG_SYNC
)
655 flags
|= FS_XFLAG_SYNC
;
656 if (di_flags
& XFS_DIFLAG_NOATIME
)
657 flags
|= FS_XFLAG_NOATIME
;
658 if (di_flags
& XFS_DIFLAG_NODUMP
)
659 flags
|= FS_XFLAG_NODUMP
;
660 if (di_flags
& XFS_DIFLAG_RTINHERIT
)
661 flags
|= FS_XFLAG_RTINHERIT
;
662 if (di_flags
& XFS_DIFLAG_PROJINHERIT
)
663 flags
|= FS_XFLAG_PROJINHERIT
;
664 if (di_flags
& XFS_DIFLAG_NOSYMLINKS
)
665 flags
|= FS_XFLAG_NOSYMLINKS
;
666 if (di_flags
& XFS_DIFLAG_EXTSIZE
)
667 flags
|= FS_XFLAG_EXTSIZE
;
668 if (di_flags
& XFS_DIFLAG_EXTSZINHERIT
)
669 flags
|= FS_XFLAG_EXTSZINHERIT
;
670 if (di_flags
& XFS_DIFLAG_NODEFRAG
)
671 flags
|= FS_XFLAG_NODEFRAG
;
672 if (di_flags
& XFS_DIFLAG_FILESTREAM
)
673 flags
|= FS_XFLAG_FILESTREAM
;
676 if (di_flags2
& XFS_DIFLAG2_ANY
) {
677 if (di_flags2
& XFS_DIFLAG2_DAX
)
678 flags
|= FS_XFLAG_DAX
;
679 if (di_flags2
& XFS_DIFLAG2_COWEXTSIZE
)
680 flags
|= FS_XFLAG_COWEXTSIZE
;
684 flags
|= FS_XFLAG_HASATTR
;
691 struct xfs_inode
*ip
)
693 struct xfs_icdinode
*dic
= &ip
->i_d
;
695 return _xfs_dic2xflags(dic
->di_flags
, dic
->di_flags2
, XFS_IFORK_Q(ip
));
699 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
700 * is allowed, otherwise it has to be an exact match. If a CI match is found,
701 * ci_name->name will point to a the actual name (caller must free) or
702 * will be set to NULL if an exact match is found.
707 struct xfs_name
*name
,
709 struct xfs_name
*ci_name
)
714 trace_xfs_lookup(dp
, name
);
716 if (XFS_FORCED_SHUTDOWN(dp
->i_mount
))
719 xfs_ilock(dp
, XFS_IOLOCK_SHARED
);
720 error
= xfs_dir_lookup(NULL
, dp
, name
, &inum
, ci_name
);
724 error
= xfs_iget(dp
->i_mount
, NULL
, inum
, 0, 0, ipp
);
728 xfs_iunlock(dp
, XFS_IOLOCK_SHARED
);
733 kmem_free(ci_name
->name
);
735 xfs_iunlock(dp
, XFS_IOLOCK_SHARED
);
741 * Allocate an inode on disk and return a copy of its in-core version.
742 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
743 * appropriately within the inode. The uid and gid for the inode are
744 * set according to the contents of the given cred structure.
746 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
747 * has a free inode available, call xfs_iget() to obtain the in-core
748 * version of the allocated inode. Finally, fill in the inode and
749 * log its initial contents. In this case, ialloc_context would be
752 * If xfs_dialloc() does not have an available inode, it will replenish
753 * its supply by doing an allocation. Since we can only do one
754 * allocation within a transaction without deadlocks, we must commit
755 * the current transaction before returning the inode itself.
756 * In this case, therefore, we will set ialloc_context and return.
757 * The caller should then commit the current transaction, start a new
758 * transaction, and call xfs_ialloc() again to actually get the inode.
760 * To ensure that some other process does not grab the inode that
761 * was allocated during the first call to xfs_ialloc(), this routine
762 * also returns the [locked] bp pointing to the head of the freelist
763 * as ialloc_context. The caller should hold this buffer across
764 * the commit and pass it back into this routine on the second call.
766 * If we are allocating quota inodes, we do not have a parent inode
767 * to attach to or associate with (i.e. pip == NULL) because they
768 * are not linked into the directory structure - they are attached
769 * directly to the superblock - and so have no parent.
780 xfs_buf_t
**ialloc_context
,
783 struct xfs_mount
*mp
= tp
->t_mountp
;
792 * Call the space management code to pick
793 * the on-disk inode to be allocated.
795 error
= xfs_dialloc(tp
, pip
? pip
->i_ino
: 0, mode
, okalloc
,
796 ialloc_context
, &ino
);
799 if (*ialloc_context
|| ino
== NULLFSINO
) {
803 ASSERT(*ialloc_context
== NULL
);
806 * Get the in-core inode with the lock held exclusively.
807 * This is because we're setting fields here we need
808 * to prevent others from looking at until we're done.
810 error
= xfs_iget(mp
, tp
, ino
, XFS_IGET_CREATE
,
811 XFS_ILOCK_EXCL
, &ip
);
818 * We always convert v1 inodes to v2 now - we only support filesystems
819 * with >= v2 inode capability, so there is no reason for ever leaving
820 * an inode in v1 format.
822 if (ip
->i_d
.di_version
== 1)
823 ip
->i_d
.di_version
= 2;
825 inode
->i_mode
= mode
;
826 set_nlink(inode
, nlink
);
827 ip
->i_d
.di_uid
= xfs_kuid_to_uid(current_fsuid());
828 ip
->i_d
.di_gid
= xfs_kgid_to_gid(current_fsgid());
829 xfs_set_projid(ip
, prid
);
831 if (pip
&& XFS_INHERIT_GID(pip
)) {
832 ip
->i_d
.di_gid
= pip
->i_d
.di_gid
;
833 if ((VFS_I(pip
)->i_mode
& S_ISGID
) && S_ISDIR(mode
))
834 inode
->i_mode
|= S_ISGID
;
838 * If the group ID of the new file does not match the effective group
839 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
840 * (and only if the irix_sgid_inherit compatibility variable is set).
842 if ((irix_sgid_inherit
) &&
843 (inode
->i_mode
& S_ISGID
) &&
844 (!in_group_p(xfs_gid_to_kgid(ip
->i_d
.di_gid
))))
845 inode
->i_mode
&= ~S_ISGID
;
848 ip
->i_d
.di_nextents
= 0;
849 ASSERT(ip
->i_d
.di_nblocks
== 0);
851 tv
= current_time(inode
);
856 ip
->i_d
.di_extsize
= 0;
857 ip
->i_d
.di_dmevmask
= 0;
858 ip
->i_d
.di_dmstate
= 0;
859 ip
->i_d
.di_flags
= 0;
861 if (ip
->i_d
.di_version
== 3) {
862 inode
->i_version
= 1;
863 ip
->i_d
.di_flags2
= 0;
864 ip
->i_d
.di_cowextsize
= 0;
865 ip
->i_d
.di_crtime
.t_sec
= (__int32_t
)tv
.tv_sec
;
866 ip
->i_d
.di_crtime
.t_nsec
= (__int32_t
)tv
.tv_nsec
;
870 flags
= XFS_ILOG_CORE
;
871 switch (mode
& S_IFMT
) {
876 ip
->i_d
.di_format
= XFS_DINODE_FMT_DEV
;
877 ip
->i_df
.if_u2
.if_rdev
= rdev
;
878 ip
->i_df
.if_flags
= 0;
879 flags
|= XFS_ILOG_DEV
;
883 if (pip
&& (pip
->i_d
.di_flags
& XFS_DIFLAG_ANY
)) {
884 uint64_t di_flags2
= 0;
888 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
889 di_flags
|= XFS_DIFLAG_RTINHERIT
;
890 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
891 di_flags
|= XFS_DIFLAG_EXTSZINHERIT
;
892 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
894 if (pip
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
)
895 di_flags
|= XFS_DIFLAG_PROJINHERIT
;
896 } else if (S_ISREG(mode
)) {
897 if (pip
->i_d
.di_flags
& XFS_DIFLAG_RTINHERIT
)
898 di_flags
|= XFS_DIFLAG_REALTIME
;
899 if (pip
->i_d
.di_flags
& XFS_DIFLAG_EXTSZINHERIT
) {
900 di_flags
|= XFS_DIFLAG_EXTSIZE
;
901 ip
->i_d
.di_extsize
= pip
->i_d
.di_extsize
;
904 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOATIME
) &&
906 di_flags
|= XFS_DIFLAG_NOATIME
;
907 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODUMP
) &&
909 di_flags
|= XFS_DIFLAG_NODUMP
;
910 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_SYNC
) &&
912 di_flags
|= XFS_DIFLAG_SYNC
;
913 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NOSYMLINKS
) &&
914 xfs_inherit_nosymlinks
)
915 di_flags
|= XFS_DIFLAG_NOSYMLINKS
;
916 if ((pip
->i_d
.di_flags
& XFS_DIFLAG_NODEFRAG
) &&
917 xfs_inherit_nodefrag
)
918 di_flags
|= XFS_DIFLAG_NODEFRAG
;
919 if (pip
->i_d
.di_flags
& XFS_DIFLAG_FILESTREAM
)
920 di_flags
|= XFS_DIFLAG_FILESTREAM
;
921 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_DAX
)
922 di_flags2
|= XFS_DIFLAG2_DAX
;
924 ip
->i_d
.di_flags
|= di_flags
;
925 ip
->i_d
.di_flags2
|= di_flags2
;
928 (pip
->i_d
.di_flags2
& XFS_DIFLAG2_ANY
) &&
929 pip
->i_d
.di_version
== 3 &&
930 ip
->i_d
.di_version
== 3) {
931 if (pip
->i_d
.di_flags2
& XFS_DIFLAG2_COWEXTSIZE
) {
932 ip
->i_d
.di_flags2
|= XFS_DIFLAG2_COWEXTSIZE
;
933 ip
->i_d
.di_cowextsize
= pip
->i_d
.di_cowextsize
;
938 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
939 ip
->i_df
.if_flags
= XFS_IFEXTENTS
;
940 ip
->i_df
.if_bytes
= ip
->i_df
.if_real_bytes
= 0;
941 ip
->i_df
.if_u1
.if_extents
= NULL
;
947 * Attribute fork settings for new inode.
949 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
950 ip
->i_d
.di_anextents
= 0;
953 * Log the new values stuffed into the inode.
955 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
956 xfs_trans_log_inode(tp
, ip
, flags
);
958 /* now that we have an i_mode we can setup the inode structure */
966 * Allocates a new inode from disk and return a pointer to the
967 * incore copy. This routine will internally commit the current
968 * transaction and allocate a new one if the Space Manager needed
969 * to do an allocation to replenish the inode free-list.
971 * This routine is designed to be called from xfs_create and
977 xfs_trans_t
**tpp
, /* input: current transaction;
978 output: may be a new transaction. */
979 xfs_inode_t
*dp
, /* directory within whose allocate
984 prid_t prid
, /* project id */
985 int okalloc
, /* ok to allocate new space */
986 xfs_inode_t
**ipp
, /* pointer to inode; it will be
993 xfs_buf_t
*ialloc_context
= NULL
;
999 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1002 * xfs_ialloc will return a pointer to an incore inode if
1003 * the Space Manager has an available inode on the free
1004 * list. Otherwise, it will do an allocation and replenish
1005 * the freelist. Since we can only do one allocation per
1006 * transaction without deadlocks, we will need to commit the
1007 * current transaction and start a new one. We will then
1008 * need to call xfs_ialloc again to get the inode.
1010 * If xfs_ialloc did an allocation to replenish the freelist,
1011 * it returns the bp containing the head of the freelist as
1012 * ialloc_context. We will hold a lock on it across the
1013 * transaction commit so that no other process can steal
1014 * the inode(s) that we've just allocated.
1016 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
, okalloc
,
1017 &ialloc_context
, &ip
);
1020 * Return an error if we were unable to allocate a new inode.
1021 * This should only happen if we run out of space on disk or
1022 * encounter a disk error.
1028 if (!ialloc_context
&& !ip
) {
1034 * If the AGI buffer is non-NULL, then we were unable to get an
1035 * inode in one operation. We need to commit the current
1036 * transaction and call xfs_ialloc() again. It is guaranteed
1037 * to succeed the second time.
1039 if (ialloc_context
) {
1041 * Normally, xfs_trans_commit releases all the locks.
1042 * We call bhold to hang on to the ialloc_context across
1043 * the commit. Holding this buffer prevents any other
1044 * processes from doing any allocations in this
1047 xfs_trans_bhold(tp
, ialloc_context
);
1050 * We want the quota changes to be associated with the next
1051 * transaction, NOT this one. So, detach the dqinfo from this
1052 * and attach it to the next transaction.
1057 dqinfo
= (void *)tp
->t_dqinfo
;
1058 tp
->t_dqinfo
= NULL
;
1059 tflags
= tp
->t_flags
& XFS_TRANS_DQ_DIRTY
;
1060 tp
->t_flags
&= ~(XFS_TRANS_DQ_DIRTY
);
1063 code
= xfs_trans_roll(&tp
, NULL
);
1064 if (committed
!= NULL
)
1068 * Re-attach the quota info that we detached from prev trx.
1071 tp
->t_dqinfo
= dqinfo
;
1072 tp
->t_flags
|= tflags
;
1076 xfs_buf_relse(ialloc_context
);
1081 xfs_trans_bjoin(tp
, ialloc_context
);
1084 * Call ialloc again. Since we've locked out all
1085 * other allocations in this allocation group,
1086 * this call should always succeed.
1088 code
= xfs_ialloc(tp
, dp
, mode
, nlink
, rdev
, prid
,
1089 okalloc
, &ialloc_context
, &ip
);
1092 * If we get an error at this point, return to the caller
1093 * so that the current transaction can be aborted.
1100 ASSERT(!ialloc_context
&& ip
);
1103 if (committed
!= NULL
)
1114 * Decrement the link count on an inode & log the change. If this causes the
1115 * link count to go to zero, move the inode to AGI unlinked list so that it can
1116 * be freed when the last active reference goes away via xfs_inactive().
1118 static int /* error */
1123 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1125 drop_nlink(VFS_I(ip
));
1126 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1128 if (VFS_I(ip
)->i_nlink
)
1131 return xfs_iunlink(tp
, ip
);
1135 * Increment the link count on an inode & log the change.
1142 xfs_trans_ichgtime(tp
, ip
, XFS_ICHGTIME_CHG
);
1144 ASSERT(ip
->i_d
.di_version
> 1);
1145 inc_nlink(VFS_I(ip
));
1146 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1153 struct xfs_name
*name
,
1158 int is_dir
= S_ISDIR(mode
);
1159 struct xfs_mount
*mp
= dp
->i_mount
;
1160 struct xfs_inode
*ip
= NULL
;
1161 struct xfs_trans
*tp
= NULL
;
1163 struct xfs_defer_ops dfops
;
1164 xfs_fsblock_t first_block
;
1165 bool unlock_dp_on_error
= false;
1167 struct xfs_dquot
*udqp
= NULL
;
1168 struct xfs_dquot
*gdqp
= NULL
;
1169 struct xfs_dquot
*pdqp
= NULL
;
1170 struct xfs_trans_res
*tres
;
1173 trace_xfs_create(dp
, name
);
1175 if (XFS_FORCED_SHUTDOWN(mp
))
1178 prid
= xfs_get_initial_prid(dp
);
1181 * Make sure that we have allocated dquot(s) on disk.
1183 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1184 xfs_kgid_to_gid(current_fsgid()), prid
,
1185 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1186 &udqp
, &gdqp
, &pdqp
);
1192 resblks
= XFS_MKDIR_SPACE_RES(mp
, name
->len
);
1193 tres
= &M_RES(mp
)->tr_mkdir
;
1195 resblks
= XFS_CREATE_SPACE_RES(mp
, name
->len
);
1196 tres
= &M_RES(mp
)->tr_create
;
1200 * Initially assume that the file does not exist and
1201 * reserve the resources for that case. If that is not
1202 * the case we'll drop the one we have and get a more
1203 * appropriate transaction later.
1205 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1206 if (error
== -ENOSPC
) {
1207 /* flush outstanding delalloc blocks and retry */
1208 xfs_flush_inodes(mp
);
1209 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1211 if (error
== -ENOSPC
) {
1212 /* No space at all so try a "no-allocation" reservation */
1214 error
= xfs_trans_alloc(mp
, tres
, 0, 0, 0, &tp
);
1217 goto out_release_inode
;
1219 xfs_ilock(dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
|
1220 XFS_IOLOCK_PARENT
| XFS_ILOCK_PARENT
);
1221 unlock_dp_on_error
= true;
1223 xfs_defer_init(&dfops
, &first_block
);
1226 * Reserve disk quota and the inode.
1228 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1229 pdqp
, resblks
, 1, 0);
1231 goto out_trans_cancel
;
1234 error
= xfs_dir_canenter(tp
, dp
, name
);
1236 goto out_trans_cancel
;
1240 * A newly created regular or special file just has one directory
1241 * entry pointing to them, but a directory also the "." entry
1242 * pointing to itself.
1244 error
= xfs_dir_ialloc(&tp
, dp
, mode
, is_dir
? 2 : 1, rdev
,
1245 prid
, resblks
> 0, &ip
, NULL
);
1247 goto out_trans_cancel
;
1250 * Now we join the directory inode to the transaction. We do not do it
1251 * earlier because xfs_dir_ialloc might commit the previous transaction
1252 * (and release all the locks). An error from here on will result in
1253 * the transaction cancel unlocking dp so don't do it explicitly in the
1256 xfs_trans_ijoin(tp
, dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1257 unlock_dp_on_error
= false;
1259 error
= xfs_dir_createname(tp
, dp
, name
, ip
->i_ino
,
1260 &first_block
, &dfops
, resblks
?
1261 resblks
- XFS_IALLOC_SPACE_RES(mp
) : 0);
1263 ASSERT(error
!= -ENOSPC
);
1264 goto out_trans_cancel
;
1266 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1267 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
1270 error
= xfs_dir_init(tp
, ip
, dp
);
1272 goto out_bmap_cancel
;
1274 error
= xfs_bumplink(tp
, dp
);
1276 goto out_bmap_cancel
;
1280 * If this is a synchronous mount, make sure that the
1281 * create transaction goes to disk before returning to
1284 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1285 xfs_trans_set_sync(tp
);
1288 * Attach the dquot(s) to the inodes and modify them incore.
1289 * These ids of the inode couldn't have changed since the new
1290 * inode has been locked ever since it was created.
1292 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1294 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
1296 goto out_bmap_cancel
;
1298 error
= xfs_trans_commit(tp
);
1300 goto out_release_inode
;
1302 xfs_qm_dqrele(udqp
);
1303 xfs_qm_dqrele(gdqp
);
1304 xfs_qm_dqrele(pdqp
);
1310 xfs_defer_cancel(&dfops
);
1312 xfs_trans_cancel(tp
);
1315 * Wait until after the current transaction is aborted to finish the
1316 * setup of the inode and release the inode. This prevents recursive
1317 * transactions and deadlocks from xfs_inactive.
1320 xfs_finish_inode_setup(ip
);
1324 xfs_qm_dqrele(udqp
);
1325 xfs_qm_dqrele(gdqp
);
1326 xfs_qm_dqrele(pdqp
);
1328 if (unlock_dp_on_error
)
1329 xfs_iunlock(dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1335 struct xfs_inode
*dp
,
1336 struct dentry
*dentry
,
1338 struct xfs_inode
**ipp
)
1340 struct xfs_mount
*mp
= dp
->i_mount
;
1341 struct xfs_inode
*ip
= NULL
;
1342 struct xfs_trans
*tp
= NULL
;
1345 struct xfs_dquot
*udqp
= NULL
;
1346 struct xfs_dquot
*gdqp
= NULL
;
1347 struct xfs_dquot
*pdqp
= NULL
;
1348 struct xfs_trans_res
*tres
;
1351 if (XFS_FORCED_SHUTDOWN(mp
))
1354 prid
= xfs_get_initial_prid(dp
);
1357 * Make sure that we have allocated dquot(s) on disk.
1359 error
= xfs_qm_vop_dqalloc(dp
, xfs_kuid_to_uid(current_fsuid()),
1360 xfs_kgid_to_gid(current_fsgid()), prid
,
1361 XFS_QMOPT_QUOTALL
| XFS_QMOPT_INHERIT
,
1362 &udqp
, &gdqp
, &pdqp
);
1366 resblks
= XFS_IALLOC_SPACE_RES(mp
);
1367 tres
= &M_RES(mp
)->tr_create_tmpfile
;
1369 error
= xfs_trans_alloc(mp
, tres
, resblks
, 0, 0, &tp
);
1370 if (error
== -ENOSPC
) {
1371 /* No space at all so try a "no-allocation" reservation */
1373 error
= xfs_trans_alloc(mp
, tres
, 0, 0, 0, &tp
);
1376 goto out_release_inode
;
1378 error
= xfs_trans_reserve_quota(tp
, mp
, udqp
, gdqp
,
1379 pdqp
, resblks
, 1, 0);
1381 goto out_trans_cancel
;
1383 error
= xfs_dir_ialloc(&tp
, dp
, mode
, 1, 0,
1384 prid
, resblks
> 0, &ip
, NULL
);
1386 goto out_trans_cancel
;
1388 if (mp
->m_flags
& XFS_MOUNT_WSYNC
)
1389 xfs_trans_set_sync(tp
);
1392 * Attach the dquot(s) to the inodes and modify them incore.
1393 * These ids of the inode couldn't have changed since the new
1394 * inode has been locked ever since it was created.
1396 xfs_qm_vop_create_dqattach(tp
, ip
, udqp
, gdqp
, pdqp
);
1398 error
= xfs_iunlink(tp
, ip
);
1400 goto out_trans_cancel
;
1402 error
= xfs_trans_commit(tp
);
1404 goto out_release_inode
;
1406 xfs_qm_dqrele(udqp
);
1407 xfs_qm_dqrele(gdqp
);
1408 xfs_qm_dqrele(pdqp
);
1414 xfs_trans_cancel(tp
);
1417 * Wait until after the current transaction is aborted to finish the
1418 * setup of the inode and release the inode. This prevents recursive
1419 * transactions and deadlocks from xfs_inactive.
1422 xfs_finish_inode_setup(ip
);
1426 xfs_qm_dqrele(udqp
);
1427 xfs_qm_dqrele(gdqp
);
1428 xfs_qm_dqrele(pdqp
);
1437 struct xfs_name
*target_name
)
1439 xfs_mount_t
*mp
= tdp
->i_mount
;
1442 struct xfs_defer_ops dfops
;
1443 xfs_fsblock_t first_block
;
1446 trace_xfs_link(tdp
, target_name
);
1448 ASSERT(!S_ISDIR(VFS_I(sip
)->i_mode
));
1450 if (XFS_FORCED_SHUTDOWN(mp
))
1453 error
= xfs_qm_dqattach(sip
, 0);
1457 error
= xfs_qm_dqattach(tdp
, 0);
1461 resblks
= XFS_LINK_SPACE_RES(mp
, target_name
->len
);
1462 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, resblks
, 0, 0, &tp
);
1463 if (error
== -ENOSPC
) {
1465 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_link
, 0, 0, 0, &tp
);
1470 xfs_ilock(tdp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
1471 xfs_lock_two_inodes(sip
, tdp
, XFS_ILOCK_EXCL
);
1473 xfs_trans_ijoin(tp
, sip
, XFS_ILOCK_EXCL
);
1474 xfs_trans_ijoin(tp
, tdp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
1477 * If we are using project inheritance, we only allow hard link
1478 * creation in our tree when the project IDs are the same; else
1479 * the tree quota mechanism could be circumvented.
1481 if (unlikely((tdp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
1482 (xfs_get_projid(tdp
) != xfs_get_projid(sip
)))) {
1488 error
= xfs_dir_canenter(tp
, tdp
, target_name
);
1493 xfs_defer_init(&dfops
, &first_block
);
1496 * Handle initial link state of O_TMPFILE inode
1498 if (VFS_I(sip
)->i_nlink
== 0) {
1499 error
= xfs_iunlink_remove(tp
, sip
);
1504 error
= xfs_dir_createname(tp
, tdp
, target_name
, sip
->i_ino
,
1505 &first_block
, &dfops
, resblks
);
1508 xfs_trans_ichgtime(tp
, tdp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
1509 xfs_trans_log_inode(tp
, tdp
, XFS_ILOG_CORE
);
1511 error
= xfs_bumplink(tp
, sip
);
1516 * If this is a synchronous mount, make sure that the
1517 * link transaction goes to disk before returning to
1520 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
1521 xfs_trans_set_sync(tp
);
1523 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
1525 xfs_defer_cancel(&dfops
);
1529 return xfs_trans_commit(tp
);
1532 xfs_trans_cancel(tp
);
1538 * Free up the underlying blocks past new_size. The new size must be smaller
1539 * than the current size. This routine can be used both for the attribute and
1540 * data fork, and does not modify the inode size, which is left to the caller.
1542 * The transaction passed to this routine must have made a permanent log
1543 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1544 * given transaction and start new ones, so make sure everything involved in
1545 * the transaction is tidy before calling here. Some transaction will be
1546 * returned to the caller to be committed. The incoming transaction must
1547 * already include the inode, and both inode locks must be held exclusively.
1548 * The inode must also be "held" within the transaction. On return the inode
1549 * will be "held" within the returned transaction. This routine does NOT
1550 * require any disk space to be reserved for it within the transaction.
1552 * If we get an error, we must return with the inode locked and linked into the
1553 * current transaction. This keeps things simple for the higher level code,
1554 * because it always knows that the inode is locked and held in the transaction
1555 * that returns to it whether errors occur or not. We don't mark the inode
1556 * dirty on error so that transactions can be easily aborted if possible.
1559 xfs_itruncate_extents(
1560 struct xfs_trans
**tpp
,
1561 struct xfs_inode
*ip
,
1563 xfs_fsize_t new_size
)
1565 struct xfs_mount
*mp
= ip
->i_mount
;
1566 struct xfs_trans
*tp
= *tpp
;
1567 struct xfs_defer_ops dfops
;
1568 xfs_fsblock_t first_block
;
1569 xfs_fileoff_t first_unmap_block
;
1570 xfs_fileoff_t last_block
;
1571 xfs_filblks_t unmap_len
;
1575 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
1576 ASSERT(!atomic_read(&VFS_I(ip
)->i_count
) ||
1577 xfs_isilocked(ip
, XFS_IOLOCK_EXCL
));
1578 ASSERT(new_size
<= XFS_ISIZE(ip
));
1579 ASSERT(tp
->t_flags
& XFS_TRANS_PERM_LOG_RES
);
1580 ASSERT(ip
->i_itemp
!= NULL
);
1581 ASSERT(ip
->i_itemp
->ili_lock_flags
== 0);
1582 ASSERT(!XFS_NOT_DQATTACHED(mp
, ip
));
1584 trace_xfs_itruncate_extents_start(ip
, new_size
);
1587 * Since it is possible for space to become allocated beyond
1588 * the end of the file (in a crash where the space is allocated
1589 * but the inode size is not yet updated), simply remove any
1590 * blocks which show up between the new EOF and the maximum
1591 * possible file size. If the first block to be removed is
1592 * beyond the maximum file size (ie it is the same as last_block),
1593 * then there is nothing to do.
1595 first_unmap_block
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)new_size
);
1596 last_block
= XFS_B_TO_FSB(mp
, mp
->m_super
->s_maxbytes
);
1597 if (first_unmap_block
== last_block
)
1600 ASSERT(first_unmap_block
< last_block
);
1601 unmap_len
= last_block
- first_unmap_block
+ 1;
1603 xfs_defer_init(&dfops
, &first_block
);
1604 error
= xfs_bunmapi(tp
, ip
,
1605 first_unmap_block
, unmap_len
,
1606 xfs_bmapi_aflag(whichfork
),
1607 XFS_ITRUNC_MAX_EXTENTS
,
1608 &first_block
, &dfops
,
1611 goto out_bmap_cancel
;
1614 * Duplicate the transaction that has the permanent
1615 * reservation and commit the old transaction.
1617 error
= xfs_defer_finish(&tp
, &dfops
, ip
);
1619 goto out_bmap_cancel
;
1621 error
= xfs_trans_roll(&tp
, ip
);
1626 /* Remove all pending CoW reservations. */
1627 error
= xfs_reflink_cancel_cow_blocks(ip
, &tp
, first_unmap_block
,
1633 * Clear the reflink flag if we truncated everything.
1635 if (ip
->i_d
.di_nblocks
== 0 && xfs_is_reflink_inode(ip
)) {
1636 ip
->i_d
.di_flags2
&= ~XFS_DIFLAG2_REFLINK
;
1637 xfs_inode_clear_cowblocks_tag(ip
);
1641 * Always re-log the inode so that our permanent transaction can keep
1642 * on rolling it forward in the log.
1644 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1646 trace_xfs_itruncate_extents_end(ip
, new_size
);
1653 * If the bunmapi call encounters an error, return to the caller where
1654 * the transaction can be properly aborted. We just need to make sure
1655 * we're not holding any resources that we were not when we came in.
1657 xfs_defer_cancel(&dfops
);
1665 xfs_mount_t
*mp
= ip
->i_mount
;
1668 if (!S_ISREG(VFS_I(ip
)->i_mode
) || (VFS_I(ip
)->i_mode
== 0))
1671 /* If this is a read-only mount, don't do this (would generate I/O) */
1672 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1675 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1679 * If we previously truncated this file and removed old data
1680 * in the process, we want to initiate "early" writeout on
1681 * the last close. This is an attempt to combat the notorious
1682 * NULL files problem which is particularly noticeable from a
1683 * truncate down, buffered (re-)write (delalloc), followed by
1684 * a crash. What we are effectively doing here is
1685 * significantly reducing the time window where we'd otherwise
1686 * be exposed to that problem.
1688 truncated
= xfs_iflags_test_and_clear(ip
, XFS_ITRUNCATED
);
1690 xfs_iflags_clear(ip
, XFS_IDIRTY_RELEASE
);
1691 if (ip
->i_delayed_blks
> 0) {
1692 error
= filemap_flush(VFS_I(ip
)->i_mapping
);
1699 if (VFS_I(ip
)->i_nlink
== 0)
1702 if (xfs_can_free_eofblocks(ip
, false)) {
1705 * Check if the inode is being opened, written and closed
1706 * frequently and we have delayed allocation blocks outstanding
1707 * (e.g. streaming writes from the NFS server), truncating the
1708 * blocks past EOF will cause fragmentation to occur.
1710 * In this case don't do the truncation, but we have to be
1711 * careful how we detect this case. Blocks beyond EOF show up as
1712 * i_delayed_blks even when the inode is clean, so we need to
1713 * truncate them away first before checking for a dirty release.
1714 * Hence on the first dirty close we will still remove the
1715 * speculative allocation, but after that we will leave it in
1718 if (xfs_iflags_test(ip
, XFS_IDIRTY_RELEASE
))
1721 * If we can't get the iolock just skip truncating the blocks
1722 * past EOF because we could deadlock with the mmap_sem
1723 * otherwise. We'll get another chance to drop them once the
1724 * last reference to the inode is dropped, so we'll never leak
1725 * blocks permanently.
1727 if (xfs_ilock_nowait(ip
, XFS_IOLOCK_EXCL
)) {
1728 error
= xfs_free_eofblocks(ip
);
1729 xfs_iunlock(ip
, XFS_IOLOCK_EXCL
);
1734 /* delalloc blocks after truncation means it really is dirty */
1735 if (ip
->i_delayed_blks
)
1736 xfs_iflags_set(ip
, XFS_IDIRTY_RELEASE
);
1742 * xfs_inactive_truncate
1744 * Called to perform a truncate when an inode becomes unlinked.
1747 xfs_inactive_truncate(
1748 struct xfs_inode
*ip
)
1750 struct xfs_mount
*mp
= ip
->i_mount
;
1751 struct xfs_trans
*tp
;
1754 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_itruncate
, 0, 0, 0, &tp
);
1756 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1760 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1761 xfs_trans_ijoin(tp
, ip
, 0);
1764 * Log the inode size first to prevent stale data exposure in the event
1765 * of a system crash before the truncate completes. See the related
1766 * comment in xfs_vn_setattr_size() for details.
1768 ip
->i_d
.di_size
= 0;
1769 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
1771 error
= xfs_itruncate_extents(&tp
, ip
, XFS_DATA_FORK
, 0);
1773 goto error_trans_cancel
;
1775 ASSERT(ip
->i_d
.di_nextents
== 0);
1777 error
= xfs_trans_commit(tp
);
1781 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1785 xfs_trans_cancel(tp
);
1787 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1792 * xfs_inactive_ifree()
1794 * Perform the inode free when an inode is unlinked.
1798 struct xfs_inode
*ip
)
1800 struct xfs_defer_ops dfops
;
1801 xfs_fsblock_t first_block
;
1802 struct xfs_mount
*mp
= ip
->i_mount
;
1803 struct xfs_trans
*tp
;
1807 * We try to use a per-AG reservation for any block needed by the finobt
1808 * tree, but as the finobt feature predates the per-AG reservation
1809 * support a degraded file system might not have enough space for the
1810 * reservation at mount time. In that case try to dip into the reserved
1813 * Send a warning if the reservation does happen to fail, as the inode
1814 * now remains allocated and sits on the unlinked list until the fs is
1817 if (unlikely(mp
->m_inotbt_nores
)) {
1818 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ifree
,
1819 XFS_IFREE_SPACE_RES(mp
), 0, XFS_TRANS_RESERVE
,
1822 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_ifree
, 0, 0, 0, &tp
);
1825 if (error
== -ENOSPC
) {
1826 xfs_warn_ratelimited(mp
,
1827 "Failed to remove inode(s) from unlinked list. "
1828 "Please free space, unmount and run xfs_repair.");
1830 ASSERT(XFS_FORCED_SHUTDOWN(mp
));
1835 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
1836 xfs_trans_ijoin(tp
, ip
, 0);
1838 xfs_defer_init(&dfops
, &first_block
);
1839 error
= xfs_ifree(tp
, ip
, &dfops
);
1842 * If we fail to free the inode, shut down. The cancel
1843 * might do that, we need to make sure. Otherwise the
1844 * inode might be lost for a long time or forever.
1846 if (!XFS_FORCED_SHUTDOWN(mp
)) {
1847 xfs_notice(mp
, "%s: xfs_ifree returned error %d",
1849 xfs_force_shutdown(mp
, SHUTDOWN_META_IO_ERROR
);
1851 xfs_trans_cancel(tp
);
1852 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1857 * Credit the quota account(s). The inode is gone.
1859 xfs_trans_mod_dquot_byino(tp
, ip
, XFS_TRANS_DQ_ICOUNT
, -1);
1862 * Just ignore errors at this point. There is nothing we can do except
1863 * to try to keep going. Make sure it's not a silent error.
1865 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
1867 xfs_notice(mp
, "%s: xfs_defer_finish returned error %d",
1869 xfs_defer_cancel(&dfops
);
1871 error
= xfs_trans_commit(tp
);
1873 xfs_notice(mp
, "%s: xfs_trans_commit returned error %d",
1876 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
1883 * This is called when the vnode reference count for the vnode
1884 * goes to zero. If the file has been unlinked, then it must
1885 * now be truncated. Also, we clear all of the read-ahead state
1886 * kept for the inode here since the file is now closed.
1892 struct xfs_mount
*mp
;
1897 * If the inode is already free, then there can be nothing
1900 if (VFS_I(ip
)->i_mode
== 0) {
1901 ASSERT(ip
->i_df
.if_real_bytes
== 0);
1902 ASSERT(ip
->i_df
.if_broot_bytes
== 0);
1907 ASSERT(!xfs_iflags_test(ip
, XFS_IRECOVERY
));
1909 /* If this is a read-only mount, don't do this (would generate I/O) */
1910 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
1913 if (VFS_I(ip
)->i_nlink
!= 0) {
1915 * force is true because we are evicting an inode from the
1916 * cache. Post-eof blocks must be freed, lest we end up with
1917 * broken free space accounting.
1919 * Note: don't bother with iolock here since lockdep complains
1920 * about acquiring it in reclaim context. We have the only
1921 * reference to the inode at this point anyways.
1923 if (xfs_can_free_eofblocks(ip
, true))
1924 xfs_free_eofblocks(ip
);
1929 if (S_ISREG(VFS_I(ip
)->i_mode
) &&
1930 (ip
->i_d
.di_size
!= 0 || XFS_ISIZE(ip
) != 0 ||
1931 ip
->i_d
.di_nextents
> 0 || ip
->i_delayed_blks
> 0))
1934 error
= xfs_qm_dqattach(ip
, 0);
1938 if (S_ISLNK(VFS_I(ip
)->i_mode
))
1939 error
= xfs_inactive_symlink(ip
);
1941 error
= xfs_inactive_truncate(ip
);
1946 * If there are attributes associated with the file then blow them away
1947 * now. The code calls a routine that recursively deconstructs the
1948 * attribute fork. If also blows away the in-core attribute fork.
1950 if (XFS_IFORK_Q(ip
)) {
1951 error
= xfs_attr_inactive(ip
);
1957 ASSERT(ip
->i_d
.di_anextents
== 0);
1958 ASSERT(ip
->i_d
.di_forkoff
== 0);
1963 error
= xfs_inactive_ifree(ip
);
1968 * Release the dquots held by inode, if any.
1970 xfs_qm_dqdetach(ip
);
1974 * This is called when the inode's link count goes to 0 or we are creating a
1975 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1976 * set to true as the link count is dropped to zero by the VFS after we've
1977 * created the file successfully, so we have to add it to the unlinked list
1978 * while the link count is non-zero.
1980 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1981 * list when the inode is freed.
1985 struct xfs_trans
*tp
,
1986 struct xfs_inode
*ip
)
1988 xfs_mount_t
*mp
= tp
->t_mountp
;
1998 ASSERT(VFS_I(ip
)->i_mode
!= 0);
2001 * Get the agi buffer first. It ensures lock ordering
2004 error
= xfs_read_agi(mp
, tp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
), &agibp
);
2007 agi
= XFS_BUF_TO_AGI(agibp
);
2010 * Get the index into the agi hash table for the
2011 * list this inode will go on.
2013 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2015 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2016 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2017 ASSERT(be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) != agino
);
2019 if (agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
)) {
2021 * There is already another inode in the bucket we need
2022 * to add ourselves to. Add us at the front of the list.
2023 * Here we put the head pointer into our next pointer,
2024 * and then we fall through to point the head at us.
2026 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2031 ASSERT(dip
->di_next_unlinked
== cpu_to_be32(NULLAGINO
));
2032 dip
->di_next_unlinked
= agi
->agi_unlinked
[bucket_index
];
2033 offset
= ip
->i_imap
.im_boffset
+
2034 offsetof(xfs_dinode_t
, di_next_unlinked
);
2036 /* need to recalc the inode CRC if appropriate */
2037 xfs_dinode_calc_crc(mp
, dip
);
2039 xfs_trans_inode_buf(tp
, ibp
);
2040 xfs_trans_log_buf(tp
, ibp
, offset
,
2041 (offset
+ sizeof(xfs_agino_t
) - 1));
2042 xfs_inobp_check(mp
, ibp
);
2046 * Point the bucket head pointer at the inode being inserted.
2049 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(agino
);
2050 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2051 (sizeof(xfs_agino_t
) * bucket_index
);
2052 xfs_trans_log_buf(tp
, agibp
, offset
,
2053 (offset
+ sizeof(xfs_agino_t
) - 1));
2058 * Pull the on-disk inode from the AGI unlinked list.
2071 xfs_agnumber_t agno
;
2073 xfs_agino_t next_agino
;
2074 xfs_buf_t
*last_ibp
;
2075 xfs_dinode_t
*last_dip
= NULL
;
2077 int offset
, last_offset
= 0;
2081 agno
= XFS_INO_TO_AGNO(mp
, ip
->i_ino
);
2084 * Get the agi buffer first. It ensures lock ordering
2087 error
= xfs_read_agi(mp
, tp
, agno
, &agibp
);
2091 agi
= XFS_BUF_TO_AGI(agibp
);
2094 * Get the index into the agi hash table for the
2095 * list this inode will go on.
2097 agino
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
);
2099 bucket_index
= agino
% XFS_AGI_UNLINKED_BUCKETS
;
2100 ASSERT(agi
->agi_unlinked
[bucket_index
] != cpu_to_be32(NULLAGINO
));
2101 ASSERT(agi
->agi_unlinked
[bucket_index
]);
2103 if (be32_to_cpu(agi
->agi_unlinked
[bucket_index
]) == agino
) {
2105 * We're at the head of the list. Get the inode's on-disk
2106 * buffer to see if there is anyone after us on the list.
2107 * Only modify our next pointer if it is not already NULLAGINO.
2108 * This saves us the overhead of dealing with the buffer when
2109 * there is no need to change it.
2111 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2114 xfs_warn(mp
, "%s: xfs_imap_to_bp returned error %d.",
2118 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2119 ASSERT(next_agino
!= 0);
2120 if (next_agino
!= NULLAGINO
) {
2121 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2122 offset
= ip
->i_imap
.im_boffset
+
2123 offsetof(xfs_dinode_t
, di_next_unlinked
);
2125 /* need to recalc the inode CRC if appropriate */
2126 xfs_dinode_calc_crc(mp
, dip
);
2128 xfs_trans_inode_buf(tp
, ibp
);
2129 xfs_trans_log_buf(tp
, ibp
, offset
,
2130 (offset
+ sizeof(xfs_agino_t
) - 1));
2131 xfs_inobp_check(mp
, ibp
);
2133 xfs_trans_brelse(tp
, ibp
);
2136 * Point the bucket head pointer at the next inode.
2138 ASSERT(next_agino
!= 0);
2139 ASSERT(next_agino
!= agino
);
2140 agi
->agi_unlinked
[bucket_index
] = cpu_to_be32(next_agino
);
2141 offset
= offsetof(xfs_agi_t
, agi_unlinked
) +
2142 (sizeof(xfs_agino_t
) * bucket_index
);
2143 xfs_trans_log_buf(tp
, agibp
, offset
,
2144 (offset
+ sizeof(xfs_agino_t
) - 1));
2147 * We need to search the list for the inode being freed.
2149 next_agino
= be32_to_cpu(agi
->agi_unlinked
[bucket_index
]);
2151 while (next_agino
!= agino
) {
2152 struct xfs_imap imap
;
2155 xfs_trans_brelse(tp
, last_ibp
);
2158 next_ino
= XFS_AGINO_TO_INO(mp
, agno
, next_agino
);
2160 error
= xfs_imap(mp
, tp
, next_ino
, &imap
, 0);
2163 "%s: xfs_imap returned error %d.",
2168 error
= xfs_imap_to_bp(mp
, tp
, &imap
, &last_dip
,
2172 "%s: xfs_imap_to_bp returned error %d.",
2177 last_offset
= imap
.im_boffset
;
2178 next_agino
= be32_to_cpu(last_dip
->di_next_unlinked
);
2179 ASSERT(next_agino
!= NULLAGINO
);
2180 ASSERT(next_agino
!= 0);
2184 * Now last_ibp points to the buffer previous to us on the
2185 * unlinked list. Pull us from the list.
2187 error
= xfs_imap_to_bp(mp
, tp
, &ip
->i_imap
, &dip
, &ibp
,
2190 xfs_warn(mp
, "%s: xfs_imap_to_bp(2) returned error %d.",
2194 next_agino
= be32_to_cpu(dip
->di_next_unlinked
);
2195 ASSERT(next_agino
!= 0);
2196 ASSERT(next_agino
!= agino
);
2197 if (next_agino
!= NULLAGINO
) {
2198 dip
->di_next_unlinked
= cpu_to_be32(NULLAGINO
);
2199 offset
= ip
->i_imap
.im_boffset
+
2200 offsetof(xfs_dinode_t
, di_next_unlinked
);
2202 /* need to recalc the inode CRC if appropriate */
2203 xfs_dinode_calc_crc(mp
, dip
);
2205 xfs_trans_inode_buf(tp
, ibp
);
2206 xfs_trans_log_buf(tp
, ibp
, offset
,
2207 (offset
+ sizeof(xfs_agino_t
) - 1));
2208 xfs_inobp_check(mp
, ibp
);
2210 xfs_trans_brelse(tp
, ibp
);
2213 * Point the previous inode on the list to the next inode.
2215 last_dip
->di_next_unlinked
= cpu_to_be32(next_agino
);
2216 ASSERT(next_agino
!= 0);
2217 offset
= last_offset
+ offsetof(xfs_dinode_t
, di_next_unlinked
);
2219 /* need to recalc the inode CRC if appropriate */
2220 xfs_dinode_calc_crc(mp
, last_dip
);
2222 xfs_trans_inode_buf(tp
, last_ibp
);
2223 xfs_trans_log_buf(tp
, last_ibp
, offset
,
2224 (offset
+ sizeof(xfs_agino_t
) - 1));
2225 xfs_inobp_check(mp
, last_ibp
);
2231 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2232 * inodes that are in memory - they all must be marked stale and attached to
2233 * the cluster buffer.
2237 xfs_inode_t
*free_ip
,
2239 struct xfs_icluster
*xic
)
2241 xfs_mount_t
*mp
= free_ip
->i_mount
;
2242 int blks_per_cluster
;
2243 int inodes_per_cluster
;
2250 xfs_inode_log_item_t
*iip
;
2251 xfs_log_item_t
*lip
;
2252 struct xfs_perag
*pag
;
2255 inum
= xic
->first_ino
;
2256 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, inum
));
2257 blks_per_cluster
= xfs_icluster_size_fsb(mp
);
2258 inodes_per_cluster
= blks_per_cluster
<< mp
->m_sb
.sb_inopblog
;
2259 nbufs
= mp
->m_ialloc_blks
/ blks_per_cluster
;
2261 for (j
= 0; j
< nbufs
; j
++, inum
+= inodes_per_cluster
) {
2263 * The allocation bitmap tells us which inodes of the chunk were
2264 * physically allocated. Skip the cluster if an inode falls into
2267 ioffset
= inum
- xic
->first_ino
;
2268 if ((xic
->alloc
& XFS_INOBT_MASK(ioffset
)) == 0) {
2269 ASSERT(do_mod(ioffset
, inodes_per_cluster
) == 0);
2273 blkno
= XFS_AGB_TO_DADDR(mp
, XFS_INO_TO_AGNO(mp
, inum
),
2274 XFS_INO_TO_AGBNO(mp
, inum
));
2277 * We obtain and lock the backing buffer first in the process
2278 * here, as we have to ensure that any dirty inode that we
2279 * can't get the flush lock on is attached to the buffer.
2280 * If we scan the in-memory inodes first, then buffer IO can
2281 * complete before we get a lock on it, and hence we may fail
2282 * to mark all the active inodes on the buffer stale.
2284 bp
= xfs_trans_get_buf(tp
, mp
->m_ddev_targp
, blkno
,
2285 mp
->m_bsize
* blks_per_cluster
,
2292 * This buffer may not have been correctly initialised as we
2293 * didn't read it from disk. That's not important because we are
2294 * only using to mark the buffer as stale in the log, and to
2295 * attach stale cached inodes on it. That means it will never be
2296 * dispatched for IO. If it is, we want to know about it, and we
2297 * want it to fail. We can acheive this by adding a write
2298 * verifier to the buffer.
2300 bp
->b_ops
= &xfs_inode_buf_ops
;
2303 * Walk the inodes already attached to the buffer and mark them
2304 * stale. These will all have the flush locks held, so an
2305 * in-memory inode walk can't lock them. By marking them all
2306 * stale first, we will not attempt to lock them in the loop
2307 * below as the XFS_ISTALE flag will be set.
2311 if (lip
->li_type
== XFS_LI_INODE
) {
2312 iip
= (xfs_inode_log_item_t
*)lip
;
2313 ASSERT(iip
->ili_logged
== 1);
2314 lip
->li_cb
= xfs_istale_done
;
2315 xfs_trans_ail_copy_lsn(mp
->m_ail
,
2316 &iip
->ili_flush_lsn
,
2317 &iip
->ili_item
.li_lsn
);
2318 xfs_iflags_set(iip
->ili_inode
, XFS_ISTALE
);
2320 lip
= lip
->li_bio_list
;
2325 * For each inode in memory attempt to add it to the inode
2326 * buffer and set it up for being staled on buffer IO
2327 * completion. This is safe as we've locked out tail pushing
2328 * and flushing by locking the buffer.
2330 * We have already marked every inode that was part of a
2331 * transaction stale above, which means there is no point in
2332 * even trying to lock them.
2334 for (i
= 0; i
< inodes_per_cluster
; i
++) {
2337 ip
= radix_tree_lookup(&pag
->pag_ici_root
,
2338 XFS_INO_TO_AGINO(mp
, (inum
+ i
)));
2340 /* Inode not in memory, nothing to do */
2347 * because this is an RCU protected lookup, we could
2348 * find a recently freed or even reallocated inode
2349 * during the lookup. We need to check under the
2350 * i_flags_lock for a valid inode here. Skip it if it
2351 * is not valid, the wrong inode or stale.
2353 spin_lock(&ip
->i_flags_lock
);
2354 if (ip
->i_ino
!= inum
+ i
||
2355 __xfs_iflags_test(ip
, XFS_ISTALE
)) {
2356 spin_unlock(&ip
->i_flags_lock
);
2360 spin_unlock(&ip
->i_flags_lock
);
2363 * Don't try to lock/unlock the current inode, but we
2364 * _cannot_ skip the other inodes that we did not find
2365 * in the list attached to the buffer and are not
2366 * already marked stale. If we can't lock it, back off
2369 if (ip
!= free_ip
&&
2370 !xfs_ilock_nowait(ip
, XFS_ILOCK_EXCL
)) {
2378 xfs_iflags_set(ip
, XFS_ISTALE
);
2381 * we don't need to attach clean inodes or those only
2382 * with unlogged changes (which we throw away, anyway).
2385 if (!iip
|| xfs_inode_clean(ip
)) {
2386 ASSERT(ip
!= free_ip
);
2388 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2392 iip
->ili_last_fields
= iip
->ili_fields
;
2393 iip
->ili_fields
= 0;
2394 iip
->ili_fsync_fields
= 0;
2395 iip
->ili_logged
= 1;
2396 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
2397 &iip
->ili_item
.li_lsn
);
2399 xfs_buf_attach_iodone(bp
, xfs_istale_done
,
2403 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
2406 xfs_trans_stale_inode_buf(tp
, bp
);
2407 xfs_trans_binval(tp
, bp
);
2415 * This is called to return an inode to the inode free list.
2416 * The inode should already be truncated to 0 length and have
2417 * no pages associated with it. This routine also assumes that
2418 * the inode is already a part of the transaction.
2420 * The on-disk copy of the inode will have been added to the list
2421 * of unlinked inodes in the AGI. We need to remove the inode from
2422 * that list atomically with respect to freeing it here.
2428 struct xfs_defer_ops
*dfops
)
2431 struct xfs_icluster xic
= { 0 };
2433 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
));
2434 ASSERT(VFS_I(ip
)->i_nlink
== 0);
2435 ASSERT(ip
->i_d
.di_nextents
== 0);
2436 ASSERT(ip
->i_d
.di_anextents
== 0);
2437 ASSERT(ip
->i_d
.di_size
== 0 || !S_ISREG(VFS_I(ip
)->i_mode
));
2438 ASSERT(ip
->i_d
.di_nblocks
== 0);
2441 * Pull the on-disk inode from the AGI unlinked list.
2443 error
= xfs_iunlink_remove(tp
, ip
);
2447 error
= xfs_difree(tp
, ip
->i_ino
, dfops
, &xic
);
2451 VFS_I(ip
)->i_mode
= 0; /* mark incore inode as free */
2452 ip
->i_d
.di_flags
= 0;
2453 ip
->i_d
.di_dmevmask
= 0;
2454 ip
->i_d
.di_forkoff
= 0; /* mark the attr fork not in use */
2455 ip
->i_d
.di_format
= XFS_DINODE_FMT_EXTENTS
;
2456 ip
->i_d
.di_aformat
= XFS_DINODE_FMT_EXTENTS
;
2458 * Bump the generation count so no one will be confused
2459 * by reincarnations of this inode.
2461 VFS_I(ip
)->i_generation
++;
2462 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
2465 error
= xfs_ifree_cluster(ip
, tp
, &xic
);
2471 * This is called to unpin an inode. The caller must have the inode locked
2472 * in at least shared mode so that the buffer cannot be subsequently pinned
2473 * once someone is waiting for it to be unpinned.
2477 struct xfs_inode
*ip
)
2479 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
2481 trace_xfs_inode_unpin_nowait(ip
, _RET_IP_
);
2483 /* Give the log a push to start the unpinning I/O */
2484 xfs_log_force_lsn(ip
->i_mount
, ip
->i_itemp
->ili_last_lsn
, 0);
2490 struct xfs_inode
*ip
)
2492 wait_queue_head_t
*wq
= bit_waitqueue(&ip
->i_flags
, __XFS_IPINNED_BIT
);
2493 DEFINE_WAIT_BIT(wait
, &ip
->i_flags
, __XFS_IPINNED_BIT
);
2498 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
2499 if (xfs_ipincount(ip
))
2501 } while (xfs_ipincount(ip
));
2502 finish_wait(wq
, &wait
.wait
);
2507 struct xfs_inode
*ip
)
2509 if (xfs_ipincount(ip
))
2510 __xfs_iunpin_wait(ip
);
2514 * Removing an inode from the namespace involves removing the directory entry
2515 * and dropping the link count on the inode. Removing the directory entry can
2516 * result in locking an AGF (directory blocks were freed) and removing a link
2517 * count can result in placing the inode on an unlinked list which results in
2520 * The big problem here is that we have an ordering constraint on AGF and AGI
2521 * locking - inode allocation locks the AGI, then can allocate a new extent for
2522 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2523 * removes the inode from the unlinked list, requiring that we lock the AGI
2524 * first, and then freeing the inode can result in an inode chunk being freed
2525 * and hence freeing disk space requiring that we lock an AGF.
2527 * Hence the ordering that is imposed by other parts of the code is AGI before
2528 * AGF. This means we cannot remove the directory entry before we drop the inode
2529 * reference count and put it on the unlinked list as this results in a lock
2530 * order of AGF then AGI, and this can deadlock against inode allocation and
2531 * freeing. Therefore we must drop the link counts before we remove the
2534 * This is still safe from a transactional point of view - it is not until we
2535 * get to xfs_defer_finish() that we have the possibility of multiple
2536 * transactions in this operation. Hence as long as we remove the directory
2537 * entry and drop the link count in the first transaction of the remove
2538 * operation, there are no transactional constraints on the ordering here.
2543 struct xfs_name
*name
,
2546 xfs_mount_t
*mp
= dp
->i_mount
;
2547 xfs_trans_t
*tp
= NULL
;
2548 int is_dir
= S_ISDIR(VFS_I(ip
)->i_mode
);
2550 struct xfs_defer_ops dfops
;
2551 xfs_fsblock_t first_block
;
2554 trace_xfs_remove(dp
, name
);
2556 if (XFS_FORCED_SHUTDOWN(mp
))
2559 error
= xfs_qm_dqattach(dp
, 0);
2563 error
= xfs_qm_dqattach(ip
, 0);
2568 * We try to get the real space reservation first,
2569 * allowing for directory btree deletion(s) implying
2570 * possible bmap insert(s). If we can't get the space
2571 * reservation then we use 0 instead, and avoid the bmap
2572 * btree insert(s) in the directory code by, if the bmap
2573 * insert tries to happen, instead trimming the LAST
2574 * block from the directory.
2576 resblks
= XFS_REMOVE_SPACE_RES(mp
);
2577 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, resblks
, 0, 0, &tp
);
2578 if (error
== -ENOSPC
) {
2580 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_remove
, 0, 0, 0,
2584 ASSERT(error
!= -ENOSPC
);
2588 xfs_ilock(dp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2589 xfs_lock_two_inodes(dp
, ip
, XFS_ILOCK_EXCL
);
2591 xfs_trans_ijoin(tp
, dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2592 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
2595 * If we're removing a directory perform some additional validation.
2598 ASSERT(VFS_I(ip
)->i_nlink
>= 2);
2599 if (VFS_I(ip
)->i_nlink
!= 2) {
2601 goto out_trans_cancel
;
2603 if (!xfs_dir_isempty(ip
)) {
2605 goto out_trans_cancel
;
2608 /* Drop the link from ip's "..". */
2609 error
= xfs_droplink(tp
, dp
);
2611 goto out_trans_cancel
;
2613 /* Drop the "." link from ip to self. */
2614 error
= xfs_droplink(tp
, ip
);
2616 goto out_trans_cancel
;
2619 * When removing a non-directory we need to log the parent
2620 * inode here. For a directory this is done implicitly
2621 * by the xfs_droplink call for the ".." entry.
2623 xfs_trans_log_inode(tp
, dp
, XFS_ILOG_CORE
);
2625 xfs_trans_ichgtime(tp
, dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2627 /* Drop the link from dp to ip. */
2628 error
= xfs_droplink(tp
, ip
);
2630 goto out_trans_cancel
;
2632 xfs_defer_init(&dfops
, &first_block
);
2633 error
= xfs_dir_removename(tp
, dp
, name
, ip
->i_ino
,
2634 &first_block
, &dfops
, resblks
);
2636 ASSERT(error
!= -ENOENT
);
2637 goto out_bmap_cancel
;
2641 * If this is a synchronous mount, make sure that the
2642 * remove transaction goes to disk before returning to
2645 if (mp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2646 xfs_trans_set_sync(tp
);
2648 error
= xfs_defer_finish(&tp
, &dfops
, NULL
);
2650 goto out_bmap_cancel
;
2652 error
= xfs_trans_commit(tp
);
2656 if (is_dir
&& xfs_inode_is_filestream(ip
))
2657 xfs_filestream_deassociate(ip
);
2662 xfs_defer_cancel(&dfops
);
2664 xfs_trans_cancel(tp
);
2670 * Enter all inodes for a rename transaction into a sorted array.
2672 #define __XFS_SORT_INODES 5
2674 xfs_sort_for_rename(
2675 struct xfs_inode
*dp1
, /* in: old (source) directory inode */
2676 struct xfs_inode
*dp2
, /* in: new (target) directory inode */
2677 struct xfs_inode
*ip1
, /* in: inode of old entry */
2678 struct xfs_inode
*ip2
, /* in: inode of new entry */
2679 struct xfs_inode
*wip
, /* in: whiteout inode */
2680 struct xfs_inode
**i_tab
,/* out: sorted array of inodes */
2681 int *num_inodes
) /* in/out: inodes in array */
2685 ASSERT(*num_inodes
== __XFS_SORT_INODES
);
2686 memset(i_tab
, 0, *num_inodes
* sizeof(struct xfs_inode
*));
2689 * i_tab contains a list of pointers to inodes. We initialize
2690 * the table here & we'll sort it. We will then use it to
2691 * order the acquisition of the inode locks.
2693 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2706 * Sort the elements via bubble sort. (Remember, there are at
2707 * most 5 elements to sort, so this is adequate.)
2709 for (i
= 0; i
< *num_inodes
; i
++) {
2710 for (j
= 1; j
< *num_inodes
; j
++) {
2711 if (i_tab
[j
]->i_ino
< i_tab
[j
-1]->i_ino
) {
2712 struct xfs_inode
*temp
= i_tab
[j
];
2713 i_tab
[j
] = i_tab
[j
-1];
2722 struct xfs_trans
*tp
,
2723 struct xfs_defer_ops
*dfops
)
2728 * If this is a synchronous mount, make sure that the rename transaction
2729 * goes to disk before returning to the user.
2731 if (tp
->t_mountp
->m_flags
& (XFS_MOUNT_WSYNC
|XFS_MOUNT_DIRSYNC
))
2732 xfs_trans_set_sync(tp
);
2734 error
= xfs_defer_finish(&tp
, dfops
, NULL
);
2736 xfs_defer_cancel(dfops
);
2737 xfs_trans_cancel(tp
);
2741 return xfs_trans_commit(tp
);
2745 * xfs_cross_rename()
2747 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2751 struct xfs_trans
*tp
,
2752 struct xfs_inode
*dp1
,
2753 struct xfs_name
*name1
,
2754 struct xfs_inode
*ip1
,
2755 struct xfs_inode
*dp2
,
2756 struct xfs_name
*name2
,
2757 struct xfs_inode
*ip2
,
2758 struct xfs_defer_ops
*dfops
,
2759 xfs_fsblock_t
*first_block
,
2767 /* Swap inode number for dirent in first parent */
2768 error
= xfs_dir_replace(tp
, dp1
, name1
,
2770 first_block
, dfops
, spaceres
);
2772 goto out_trans_abort
;
2774 /* Swap inode number for dirent in second parent */
2775 error
= xfs_dir_replace(tp
, dp2
, name2
,
2777 first_block
, dfops
, spaceres
);
2779 goto out_trans_abort
;
2782 * If we're renaming one or more directories across different parents,
2783 * update the respective ".." entries (and link counts) to match the new
2787 dp2_flags
= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2789 if (S_ISDIR(VFS_I(ip2
)->i_mode
)) {
2790 error
= xfs_dir_replace(tp
, ip2
, &xfs_name_dotdot
,
2791 dp1
->i_ino
, first_block
,
2794 goto out_trans_abort
;
2796 /* transfer ip2 ".." reference to dp1 */
2797 if (!S_ISDIR(VFS_I(ip1
)->i_mode
)) {
2798 error
= xfs_droplink(tp
, dp2
);
2800 goto out_trans_abort
;
2801 error
= xfs_bumplink(tp
, dp1
);
2803 goto out_trans_abort
;
2807 * Although ip1 isn't changed here, userspace needs
2808 * to be warned about the change, so that applications
2809 * relying on it (like backup ones), will properly
2812 ip1_flags
|= XFS_ICHGTIME_CHG
;
2813 ip2_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2816 if (S_ISDIR(VFS_I(ip1
)->i_mode
)) {
2817 error
= xfs_dir_replace(tp
, ip1
, &xfs_name_dotdot
,
2818 dp2
->i_ino
, first_block
,
2821 goto out_trans_abort
;
2823 /* transfer ip1 ".." reference to dp2 */
2824 if (!S_ISDIR(VFS_I(ip2
)->i_mode
)) {
2825 error
= xfs_droplink(tp
, dp1
);
2827 goto out_trans_abort
;
2828 error
= xfs_bumplink(tp
, dp2
);
2830 goto out_trans_abort
;
2834 * Although ip2 isn't changed here, userspace needs
2835 * to be warned about the change, so that applications
2836 * relying on it (like backup ones), will properly
2839 ip1_flags
|= XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
;
2840 ip2_flags
|= XFS_ICHGTIME_CHG
;
2845 xfs_trans_ichgtime(tp
, ip1
, ip1_flags
);
2846 xfs_trans_log_inode(tp
, ip1
, XFS_ILOG_CORE
);
2849 xfs_trans_ichgtime(tp
, ip2
, ip2_flags
);
2850 xfs_trans_log_inode(tp
, ip2
, XFS_ILOG_CORE
);
2853 xfs_trans_ichgtime(tp
, dp2
, dp2_flags
);
2854 xfs_trans_log_inode(tp
, dp2
, XFS_ILOG_CORE
);
2856 xfs_trans_ichgtime(tp
, dp1
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
2857 xfs_trans_log_inode(tp
, dp1
, XFS_ILOG_CORE
);
2858 return xfs_finish_rename(tp
, dfops
);
2861 xfs_defer_cancel(dfops
);
2862 xfs_trans_cancel(tp
);
2867 * xfs_rename_alloc_whiteout()
2869 * Return a referenced, unlinked, unlocked inode that that can be used as a
2870 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2871 * crash between allocating the inode and linking it into the rename transaction
2872 * recovery will free the inode and we won't leak it.
2875 xfs_rename_alloc_whiteout(
2876 struct xfs_inode
*dp
,
2877 struct xfs_inode
**wip
)
2879 struct xfs_inode
*tmpfile
;
2882 error
= xfs_create_tmpfile(dp
, NULL
, S_IFCHR
| WHITEOUT_MODE
, &tmpfile
);
2887 * Prepare the tmpfile inode as if it were created through the VFS.
2888 * Otherwise, the link increment paths will complain about nlink 0->1.
2889 * Drop the link count as done by d_tmpfile(), complete the inode setup
2890 * and flag it as linkable.
2892 drop_nlink(VFS_I(tmpfile
));
2893 xfs_setup_iops(tmpfile
);
2894 xfs_finish_inode_setup(tmpfile
);
2895 VFS_I(tmpfile
)->i_state
|= I_LINKABLE
;
2906 struct xfs_inode
*src_dp
,
2907 struct xfs_name
*src_name
,
2908 struct xfs_inode
*src_ip
,
2909 struct xfs_inode
*target_dp
,
2910 struct xfs_name
*target_name
,
2911 struct xfs_inode
*target_ip
,
2914 struct xfs_mount
*mp
= src_dp
->i_mount
;
2915 struct xfs_trans
*tp
;
2916 struct xfs_defer_ops dfops
;
2917 xfs_fsblock_t first_block
;
2918 struct xfs_inode
*wip
= NULL
; /* whiteout inode */
2919 struct xfs_inode
*inodes
[__XFS_SORT_INODES
];
2920 int num_inodes
= __XFS_SORT_INODES
;
2921 bool new_parent
= (src_dp
!= target_dp
);
2922 bool src_is_directory
= S_ISDIR(VFS_I(src_ip
)->i_mode
);
2926 trace_xfs_rename(src_dp
, target_dp
, src_name
, target_name
);
2928 if ((flags
& RENAME_EXCHANGE
) && !target_ip
)
2932 * If we are doing a whiteout operation, allocate the whiteout inode
2933 * we will be placing at the target and ensure the type is set
2936 if (flags
& RENAME_WHITEOUT
) {
2937 ASSERT(!(flags
& (RENAME_NOREPLACE
| RENAME_EXCHANGE
)));
2938 error
= xfs_rename_alloc_whiteout(target_dp
, &wip
);
2942 /* setup target dirent info as whiteout */
2943 src_name
->type
= XFS_DIR3_FT_CHRDEV
;
2946 xfs_sort_for_rename(src_dp
, target_dp
, src_ip
, target_ip
, wip
,
2947 inodes
, &num_inodes
);
2949 spaceres
= XFS_RENAME_SPACE_RES(mp
, target_name
->len
);
2950 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, spaceres
, 0, 0, &tp
);
2951 if (error
== -ENOSPC
) {
2953 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_rename
, 0, 0, 0,
2957 goto out_release_wip
;
2960 * Attach the dquots to the inodes
2962 error
= xfs_qm_vop_rename_dqattach(inodes
);
2964 goto out_trans_cancel
;
2967 * Lock all the participating inodes. Depending upon whether
2968 * the target_name exists in the target directory, and
2969 * whether the target directory is the same as the source
2970 * directory, we can lock from 2 to 4 inodes.
2973 xfs_ilock(src_dp
, XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2975 xfs_lock_two_inodes(src_dp
, target_dp
,
2976 XFS_IOLOCK_EXCL
| XFS_IOLOCK_PARENT
);
2978 xfs_lock_inodes(inodes
, num_inodes
, XFS_ILOCK_EXCL
);
2981 * Join all the inodes to the transaction. From this point on,
2982 * we can rely on either trans_commit or trans_cancel to unlock
2985 xfs_trans_ijoin(tp
, src_dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2987 xfs_trans_ijoin(tp
, target_dp
, XFS_IOLOCK_EXCL
| XFS_ILOCK_EXCL
);
2988 xfs_trans_ijoin(tp
, src_ip
, XFS_ILOCK_EXCL
);
2990 xfs_trans_ijoin(tp
, target_ip
, XFS_ILOCK_EXCL
);
2992 xfs_trans_ijoin(tp
, wip
, XFS_ILOCK_EXCL
);
2995 * If we are using project inheritance, we only allow renames
2996 * into our tree when the project IDs are the same; else the
2997 * tree quota mechanism would be circumvented.
2999 if (unlikely((target_dp
->i_d
.di_flags
& XFS_DIFLAG_PROJINHERIT
) &&
3000 (xfs_get_projid(target_dp
) != xfs_get_projid(src_ip
)))) {
3002 goto out_trans_cancel
;
3005 xfs_defer_init(&dfops
, &first_block
);
3007 /* RENAME_EXCHANGE is unique from here on. */
3008 if (flags
& RENAME_EXCHANGE
)
3009 return xfs_cross_rename(tp
, src_dp
, src_name
, src_ip
,
3010 target_dp
, target_name
, target_ip
,
3011 &dfops
, &first_block
, spaceres
);
3014 * Set up the target.
3016 if (target_ip
== NULL
) {
3018 * If there's no space reservation, check the entry will
3019 * fit before actually inserting it.
3022 error
= xfs_dir_canenter(tp
, target_dp
, target_name
);
3024 goto out_trans_cancel
;
3027 * If target does not exist and the rename crosses
3028 * directories, adjust the target directory link count
3029 * to account for the ".." reference from the new entry.
3031 error
= xfs_dir_createname(tp
, target_dp
, target_name
,
3032 src_ip
->i_ino
, &first_block
,
3035 goto out_bmap_cancel
;
3037 xfs_trans_ichgtime(tp
, target_dp
,
3038 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3040 if (new_parent
&& src_is_directory
) {
3041 error
= xfs_bumplink(tp
, target_dp
);
3043 goto out_bmap_cancel
;
3045 } else { /* target_ip != NULL */
3047 * If target exists and it's a directory, check that both
3048 * target and source are directories and that target can be
3049 * destroyed, or that neither is a directory.
3051 if (S_ISDIR(VFS_I(target_ip
)->i_mode
)) {
3053 * Make sure target dir is empty.
3055 if (!(xfs_dir_isempty(target_ip
)) ||
3056 (VFS_I(target_ip
)->i_nlink
> 2)) {
3058 goto out_trans_cancel
;
3063 * Link the source inode under the target name.
3064 * If the source inode is a directory and we are moving
3065 * it across directories, its ".." entry will be
3066 * inconsistent until we replace that down below.
3068 * In case there is already an entry with the same
3069 * name at the destination directory, remove it first.
3071 error
= xfs_dir_replace(tp
, target_dp
, target_name
,
3073 &first_block
, &dfops
, spaceres
);
3075 goto out_bmap_cancel
;
3077 xfs_trans_ichgtime(tp
, target_dp
,
3078 XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3081 * Decrement the link count on the target since the target
3082 * dir no longer points to it.
3084 error
= xfs_droplink(tp
, target_ip
);
3086 goto out_bmap_cancel
;
3088 if (src_is_directory
) {
3090 * Drop the link from the old "." entry.
3092 error
= xfs_droplink(tp
, target_ip
);
3094 goto out_bmap_cancel
;
3096 } /* target_ip != NULL */
3099 * Remove the source.
3101 if (new_parent
&& src_is_directory
) {
3103 * Rewrite the ".." entry to point to the new
3106 error
= xfs_dir_replace(tp
, src_ip
, &xfs_name_dotdot
,
3108 &first_block
, &dfops
, spaceres
);
3109 ASSERT(error
!= -EEXIST
);
3111 goto out_bmap_cancel
;
3115 * We always want to hit the ctime on the source inode.
3117 * This isn't strictly required by the standards since the source
3118 * inode isn't really being changed, but old unix file systems did
3119 * it and some incremental backup programs won't work without it.
3121 xfs_trans_ichgtime(tp
, src_ip
, XFS_ICHGTIME_CHG
);
3122 xfs_trans_log_inode(tp
, src_ip
, XFS_ILOG_CORE
);
3125 * Adjust the link count on src_dp. This is necessary when
3126 * renaming a directory, either within one parent when
3127 * the target existed, or across two parent directories.
3129 if (src_is_directory
&& (new_parent
|| target_ip
!= NULL
)) {
3132 * Decrement link count on src_directory since the
3133 * entry that's moved no longer points to it.
3135 error
= xfs_droplink(tp
, src_dp
);
3137 goto out_bmap_cancel
;
3141 * For whiteouts, we only need to update the source dirent with the
3142 * inode number of the whiteout inode rather than removing it
3146 error
= xfs_dir_replace(tp
, src_dp
, src_name
, wip
->i_ino
,
3147 &first_block
, &dfops
, spaceres
);
3149 error
= xfs_dir_removename(tp
, src_dp
, src_name
, src_ip
->i_ino
,
3150 &first_block
, &dfops
, spaceres
);
3152 goto out_bmap_cancel
;
3155 * For whiteouts, we need to bump the link count on the whiteout inode.
3156 * This means that failures all the way up to this point leave the inode
3157 * on the unlinked list and so cleanup is a simple matter of dropping
3158 * the remaining reference to it. If we fail here after bumping the link
3159 * count, we're shutting down the filesystem so we'll never see the
3160 * intermediate state on disk.
3163 ASSERT(VFS_I(wip
)->i_nlink
== 0);
3164 error
= xfs_bumplink(tp
, wip
);
3166 goto out_bmap_cancel
;
3167 error
= xfs_iunlink_remove(tp
, wip
);
3169 goto out_bmap_cancel
;
3170 xfs_trans_log_inode(tp
, wip
, XFS_ILOG_CORE
);
3173 * Now we have a real link, clear the "I'm a tmpfile" state
3174 * flag from the inode so it doesn't accidentally get misused in
3177 VFS_I(wip
)->i_state
&= ~I_LINKABLE
;
3180 xfs_trans_ichgtime(tp
, src_dp
, XFS_ICHGTIME_MOD
| XFS_ICHGTIME_CHG
);
3181 xfs_trans_log_inode(tp
, src_dp
, XFS_ILOG_CORE
);
3183 xfs_trans_log_inode(tp
, target_dp
, XFS_ILOG_CORE
);
3185 error
= xfs_finish_rename(tp
, &dfops
);
3191 xfs_defer_cancel(&dfops
);
3193 xfs_trans_cancel(tp
);
3202 struct xfs_inode
*ip
,
3205 struct xfs_mount
*mp
= ip
->i_mount
;
3206 struct xfs_perag
*pag
;
3207 unsigned long first_index
, mask
;
3208 unsigned long inodes_per_cluster
;
3210 struct xfs_inode
**cilist
;
3211 struct xfs_inode
*cip
;
3217 pag
= xfs_perag_get(mp
, XFS_INO_TO_AGNO(mp
, ip
->i_ino
));
3219 inodes_per_cluster
= mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
;
3220 cilist_size
= inodes_per_cluster
* sizeof(xfs_inode_t
*);
3221 cilist
= kmem_alloc(cilist_size
, KM_MAYFAIL
|KM_NOFS
);
3225 mask
= ~(((mp
->m_inode_cluster_size
>> mp
->m_sb
.sb_inodelog
)) - 1);
3226 first_index
= XFS_INO_TO_AGINO(mp
, ip
->i_ino
) & mask
;
3228 /* really need a gang lookup range call here */
3229 nr_found
= radix_tree_gang_lookup(&pag
->pag_ici_root
, (void**)cilist
,
3230 first_index
, inodes_per_cluster
);
3234 for (i
= 0; i
< nr_found
; i
++) {
3240 * because this is an RCU protected lookup, we could find a
3241 * recently freed or even reallocated inode during the lookup.
3242 * We need to check under the i_flags_lock for a valid inode
3243 * here. Skip it if it is not valid or the wrong inode.
3245 spin_lock(&cip
->i_flags_lock
);
3247 __xfs_iflags_test(cip
, XFS_ISTALE
)) {
3248 spin_unlock(&cip
->i_flags_lock
);
3253 * Once we fall off the end of the cluster, no point checking
3254 * any more inodes in the list because they will also all be
3255 * outside the cluster.
3257 if ((XFS_INO_TO_AGINO(mp
, cip
->i_ino
) & mask
) != first_index
) {
3258 spin_unlock(&cip
->i_flags_lock
);
3261 spin_unlock(&cip
->i_flags_lock
);
3264 * Do an un-protected check to see if the inode is dirty and
3265 * is a candidate for flushing. These checks will be repeated
3266 * later after the appropriate locks are acquired.
3268 if (xfs_inode_clean(cip
) && xfs_ipincount(cip
) == 0)
3272 * Try to get locks. If any are unavailable or it is pinned,
3273 * then this inode cannot be flushed and is skipped.
3276 if (!xfs_ilock_nowait(cip
, XFS_ILOCK_SHARED
))
3278 if (!xfs_iflock_nowait(cip
)) {
3279 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3282 if (xfs_ipincount(cip
)) {
3284 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3290 * Check the inode number again, just to be certain we are not
3291 * racing with freeing in xfs_reclaim_inode(). See the comments
3292 * in that function for more information as to why the initial
3293 * check is not sufficient.
3297 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3302 * arriving here means that this inode can be flushed. First
3303 * re-check that it's dirty before flushing.
3305 if (!xfs_inode_clean(cip
)) {
3307 error
= xfs_iflush_int(cip
, bp
);
3309 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3310 goto cluster_corrupt_out
;
3316 xfs_iunlock(cip
, XFS_ILOCK_SHARED
);
3320 XFS_STATS_INC(mp
, xs_icluster_flushcnt
);
3321 XFS_STATS_ADD(mp
, xs_icluster_flushinode
, clcount
);
3332 cluster_corrupt_out
:
3334 * Corruption detected in the clustering loop. Invalidate the
3335 * inode buffer and shut down the filesystem.
3339 * Clean up the buffer. If it was delwri, just release it --
3340 * brelse can handle it with no problems. If not, shut down the
3341 * filesystem before releasing the buffer.
3343 bufwasdelwri
= (bp
->b_flags
& _XBF_DELWRI_Q
);
3347 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3349 if (!bufwasdelwri
) {
3351 * Just like incore_relse: if we have b_iodone functions,
3352 * mark the buffer as an error and call them. Otherwise
3353 * mark it as stale and brelse.
3356 bp
->b_flags
&= ~XBF_DONE
;
3358 xfs_buf_ioerror(bp
, -EIO
);
3367 * Unlocks the flush lock
3369 xfs_iflush_abort(cip
, false);
3372 return -EFSCORRUPTED
;
3376 * Flush dirty inode metadata into the backing buffer.
3378 * The caller must have the inode lock and the inode flush lock held. The
3379 * inode lock will still be held upon return to the caller, and the inode
3380 * flush lock will be released after the inode has reached the disk.
3382 * The caller must write out the buffer returned in *bpp and release it.
3386 struct xfs_inode
*ip
,
3387 struct xfs_buf
**bpp
)
3389 struct xfs_mount
*mp
= ip
->i_mount
;
3390 struct xfs_buf
*bp
= NULL
;
3391 struct xfs_dinode
*dip
;
3394 XFS_STATS_INC(mp
, xs_iflush_count
);
3396 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3397 ASSERT(xfs_isiflocked(ip
));
3398 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3399 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3403 xfs_iunpin_wait(ip
);
3406 * For stale inodes we cannot rely on the backing buffer remaining
3407 * stale in cache for the remaining life of the stale inode and so
3408 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3409 * inodes below. We have to check this after ensuring the inode is
3410 * unpinned so that it is safe to reclaim the stale inode after the
3413 if (xfs_iflags_test(ip
, XFS_ISTALE
)) {
3419 * This may have been unpinned because the filesystem is shutting
3420 * down forcibly. If that's the case we must not write this inode
3421 * to disk, because the log record didn't make it to disk.
3423 * We also have to remove the log item from the AIL in this case,
3424 * as we wait for an empty AIL as part of the unmount process.
3426 if (XFS_FORCED_SHUTDOWN(mp
)) {
3432 * Get the buffer containing the on-disk inode. We are doing a try-lock
3433 * operation here, so we may get an EAGAIN error. In that case, we
3434 * simply want to return with the inode still dirty.
3436 * If we get any other error, we effectively have a corruption situation
3437 * and we cannot flush the inode, so we treat it the same as failing
3440 error
= xfs_imap_to_bp(mp
, NULL
, &ip
->i_imap
, &dip
, &bp
, XBF_TRYLOCK
,
3442 if (error
== -EAGAIN
) {
3450 * First flush out the inode that xfs_iflush was called with.
3452 error
= xfs_iflush_int(ip
, bp
);
3457 * If the buffer is pinned then push on the log now so we won't
3458 * get stuck waiting in the write for too long.
3460 if (xfs_buf_ispinned(bp
))
3461 xfs_log_force(mp
, 0);
3465 * see if other inodes can be gathered into this write
3467 error
= xfs_iflush_cluster(ip
, bp
);
3469 goto cluster_corrupt_out
;
3477 xfs_force_shutdown(mp
, SHUTDOWN_CORRUPT_INCORE
);
3478 cluster_corrupt_out
:
3479 error
= -EFSCORRUPTED
;
3482 * Unlocks the flush lock
3484 xfs_iflush_abort(ip
, false);
3490 struct xfs_inode
*ip
,
3493 struct xfs_inode_log_item
*iip
= ip
->i_itemp
;
3494 struct xfs_dinode
*dip
;
3495 struct xfs_mount
*mp
= ip
->i_mount
;
3497 ASSERT(xfs_isilocked(ip
, XFS_ILOCK_EXCL
|XFS_ILOCK_SHARED
));
3498 ASSERT(xfs_isiflocked(ip
));
3499 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
3500 ip
->i_d
.di_nextents
> XFS_IFORK_MAXEXT(ip
, XFS_DATA_FORK
));
3501 ASSERT(iip
!= NULL
&& iip
->ili_fields
!= 0);
3502 ASSERT(ip
->i_d
.di_version
> 1);
3504 /* set *dip = inode's place in the buffer */
3505 dip
= xfs_buf_offset(bp
, ip
->i_imap
.im_boffset
);
3507 if (XFS_TEST_ERROR(dip
->di_magic
!= cpu_to_be16(XFS_DINODE_MAGIC
),
3508 mp
, XFS_ERRTAG_IFLUSH_1
, XFS_RANDOM_IFLUSH_1
)) {
3509 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3510 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3511 __func__
, ip
->i_ino
, be16_to_cpu(dip
->di_magic
), dip
);
3514 if (S_ISREG(VFS_I(ip
)->i_mode
)) {
3516 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3517 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
),
3518 mp
, XFS_ERRTAG_IFLUSH_3
, XFS_RANDOM_IFLUSH_3
)) {
3519 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3520 "%s: Bad regular inode %Lu, ptr 0x%p",
3521 __func__
, ip
->i_ino
, ip
);
3524 } else if (S_ISDIR(VFS_I(ip
)->i_mode
)) {
3526 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_EXTENTS
) &&
3527 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
) &&
3528 (ip
->i_d
.di_format
!= XFS_DINODE_FMT_LOCAL
),
3529 mp
, XFS_ERRTAG_IFLUSH_4
, XFS_RANDOM_IFLUSH_4
)) {
3530 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3531 "%s: Bad directory inode %Lu, ptr 0x%p",
3532 __func__
, ip
->i_ino
, ip
);
3536 if (XFS_TEST_ERROR(ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
>
3537 ip
->i_d
.di_nblocks
, mp
, XFS_ERRTAG_IFLUSH_5
,
3538 XFS_RANDOM_IFLUSH_5
)) {
3539 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3540 "%s: detected corrupt incore inode %Lu, "
3541 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3542 __func__
, ip
->i_ino
,
3543 ip
->i_d
.di_nextents
+ ip
->i_d
.di_anextents
,
3544 ip
->i_d
.di_nblocks
, ip
);
3547 if (XFS_TEST_ERROR(ip
->i_d
.di_forkoff
> mp
->m_sb
.sb_inodesize
,
3548 mp
, XFS_ERRTAG_IFLUSH_6
, XFS_RANDOM_IFLUSH_6
)) {
3549 xfs_alert_tag(mp
, XFS_PTAG_IFLUSH
,
3550 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3551 __func__
, ip
->i_ino
, ip
->i_d
.di_forkoff
, ip
);
3556 * Inode item log recovery for v2 inodes are dependent on the
3557 * di_flushiter count for correct sequencing. We bump the flush
3558 * iteration count so we can detect flushes which postdate a log record
3559 * during recovery. This is redundant as we now log every change and
3560 * hence this can't happen but we need to still do it to ensure
3561 * backwards compatibility with old kernels that predate logging all
3564 if (ip
->i_d
.di_version
< 3)
3565 ip
->i_d
.di_flushiter
++;
3567 /* Check the inline directory data. */
3568 if (S_ISDIR(VFS_I(ip
)->i_mode
) &&
3569 ip
->i_d
.di_format
== XFS_DINODE_FMT_LOCAL
&&
3570 xfs_dir2_sf_verify(ip
))
3574 * Copy the dirty parts of the inode into the on-disk inode. We always
3575 * copy out the core of the inode, because if the inode is dirty at all
3578 xfs_inode_to_disk(ip
, dip
, iip
->ili_item
.li_lsn
);
3580 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3581 if (ip
->i_d
.di_flushiter
== DI_MAX_FLUSH
)
3582 ip
->i_d
.di_flushiter
= 0;
3584 xfs_iflush_fork(ip
, dip
, iip
, XFS_DATA_FORK
);
3585 if (XFS_IFORK_Q(ip
))
3586 xfs_iflush_fork(ip
, dip
, iip
, XFS_ATTR_FORK
);
3587 xfs_inobp_check(mp
, bp
);
3590 * We've recorded everything logged in the inode, so we'd like to clear
3591 * the ili_fields bits so we don't log and flush things unnecessarily.
3592 * However, we can't stop logging all this information until the data
3593 * we've copied into the disk buffer is written to disk. If we did we
3594 * might overwrite the copy of the inode in the log with all the data
3595 * after re-logging only part of it, and in the face of a crash we
3596 * wouldn't have all the data we need to recover.
3598 * What we do is move the bits to the ili_last_fields field. When
3599 * logging the inode, these bits are moved back to the ili_fields field.
3600 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3601 * know that the information those bits represent is permanently on
3602 * disk. As long as the flush completes before the inode is logged
3603 * again, then both ili_fields and ili_last_fields will be cleared.
3605 * We can play with the ili_fields bits here, because the inode lock
3606 * must be held exclusively in order to set bits there and the flush
3607 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3608 * done routine can tell whether or not to look in the AIL. Also, store
3609 * the current LSN of the inode so that we can tell whether the item has
3610 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3611 * need the AIL lock, because it is a 64 bit value that cannot be read
3614 iip
->ili_last_fields
= iip
->ili_fields
;
3615 iip
->ili_fields
= 0;
3616 iip
->ili_fsync_fields
= 0;
3617 iip
->ili_logged
= 1;
3619 xfs_trans_ail_copy_lsn(mp
->m_ail
, &iip
->ili_flush_lsn
,
3620 &iip
->ili_item
.li_lsn
);
3623 * Attach the function xfs_iflush_done to the inode's
3624 * buffer. This will remove the inode from the AIL
3625 * and unlock the inode's flush lock when the inode is
3626 * completely written to disk.
3628 xfs_buf_attach_iodone(bp
, xfs_iflush_done
, &iip
->ili_item
);
3630 /* generate the checksum. */
3631 xfs_dinode_calc_crc(mp
, dip
);
3633 ASSERT(bp
->b_fspriv
!= NULL
);
3634 ASSERT(bp
->b_iodone
!= NULL
);
3638 return -EFSCORRUPTED
;