i2c: brcmstb: Fix START and STOP conditions
[linux/fpc-iii.git] / fs / xfs / xfs_inode.c
blob7a0b4eeb99e46bd2265fd7af9fe35323318e6a0f
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_shared.h"
23 #include "xfs_format.h"
24 #include "xfs_log_format.h"
25 #include "xfs_trans_resv.h"
26 #include "xfs_sb.h"
27 #include "xfs_mount.h"
28 #include "xfs_defer.h"
29 #include "xfs_inode.h"
30 #include "xfs_da_format.h"
31 #include "xfs_da_btree.h"
32 #include "xfs_dir2.h"
33 #include "xfs_attr_sf.h"
34 #include "xfs_attr.h"
35 #include "xfs_trans_space.h"
36 #include "xfs_trans.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_bmap_util.h"
42 #include "xfs_error.h"
43 #include "xfs_quota.h"
44 #include "xfs_filestream.h"
45 #include "xfs_cksum.h"
46 #include "xfs_trace.h"
47 #include "xfs_icache.h"
48 #include "xfs_symlink.h"
49 #include "xfs_trans_priv.h"
50 #include "xfs_log.h"
51 #include "xfs_bmap_btree.h"
52 #include "xfs_reflink.h"
53 #include "xfs_dir2_priv.h"
55 kmem_zone_t *xfs_inode_zone;
58 * Used in xfs_itruncate_extents(). This is the maximum number of extents
59 * freed from a file in a single transaction.
61 #define XFS_ITRUNC_MAX_EXTENTS 2
63 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
64 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
65 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
68 * helper function to extract extent size hint from inode
70 xfs_extlen_t
71 xfs_get_extsz_hint(
72 struct xfs_inode *ip)
74 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
75 return ip->i_d.di_extsize;
76 if (XFS_IS_REALTIME_INODE(ip))
77 return ip->i_mount->m_sb.sb_rextsize;
78 return 0;
82 * Helper function to extract CoW extent size hint from inode.
83 * Between the extent size hint and the CoW extent size hint, we
84 * return the greater of the two. If the value is zero (automatic),
85 * use the default size.
87 xfs_extlen_t
88 xfs_get_cowextsz_hint(
89 struct xfs_inode *ip)
91 xfs_extlen_t a, b;
93 a = 0;
94 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
95 a = ip->i_d.di_cowextsize;
96 b = xfs_get_extsz_hint(ip);
98 a = max(a, b);
99 if (a == 0)
100 return XFS_DEFAULT_COWEXTSZ_HINT;
101 return a;
105 * These two are wrapper routines around the xfs_ilock() routine used to
106 * centralize some grungy code. They are used in places that wish to lock the
107 * inode solely for reading the extents. The reason these places can't just
108 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
109 * bringing in of the extents from disk for a file in b-tree format. If the
110 * inode is in b-tree format, then we need to lock the inode exclusively until
111 * the extents are read in. Locking it exclusively all the time would limit
112 * our parallelism unnecessarily, though. What we do instead is check to see
113 * if the extents have been read in yet, and only lock the inode exclusively
114 * if they have not.
116 * The functions return a value which should be given to the corresponding
117 * xfs_iunlock() call.
119 uint
120 xfs_ilock_data_map_shared(
121 struct xfs_inode *ip)
123 uint lock_mode = XFS_ILOCK_SHARED;
125 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
126 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
127 lock_mode = XFS_ILOCK_EXCL;
128 xfs_ilock(ip, lock_mode);
129 return lock_mode;
132 uint
133 xfs_ilock_attr_map_shared(
134 struct xfs_inode *ip)
136 uint lock_mode = XFS_ILOCK_SHARED;
138 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
139 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
140 lock_mode = XFS_ILOCK_EXCL;
141 xfs_ilock(ip, lock_mode);
142 return lock_mode;
146 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
147 * the i_lock. This routine allows various combinations of the locks to be
148 * obtained.
150 * The 3 locks should always be ordered so that the IO lock is obtained first,
151 * the mmap lock second and the ilock last in order to prevent deadlock.
153 * Basic locking order:
155 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
157 * mmap_sem locking order:
159 * i_iolock -> page lock -> mmap_sem
160 * mmap_sem -> i_mmap_lock -> page_lock
162 * The difference in mmap_sem locking order mean that we cannot hold the
163 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
164 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
165 * in get_user_pages() to map the user pages into the kernel address space for
166 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
167 * page faults already hold the mmap_sem.
169 * Hence to serialise fully against both syscall and mmap based IO, we need to
170 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
171 * taken in places where we need to invalidate the page cache in a race
172 * free manner (e.g. truncate, hole punch and other extent manipulation
173 * functions).
175 void
176 xfs_ilock(
177 xfs_inode_t *ip,
178 uint lock_flags)
180 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
183 * You can't set both SHARED and EXCL for the same lock,
184 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
185 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
187 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
188 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
189 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
190 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
191 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
192 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
193 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
195 if (lock_flags & XFS_IOLOCK_EXCL)
196 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
197 else if (lock_flags & XFS_IOLOCK_SHARED)
198 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
200 if (lock_flags & XFS_MMAPLOCK_EXCL)
201 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
202 else if (lock_flags & XFS_MMAPLOCK_SHARED)
203 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
205 if (lock_flags & XFS_ILOCK_EXCL)
206 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
207 else if (lock_flags & XFS_ILOCK_SHARED)
208 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 * This is just like xfs_ilock(), except that the caller
213 * is guaranteed not to sleep. It returns 1 if it gets
214 * the requested locks and 0 otherwise. If the IO lock is
215 * obtained but the inode lock cannot be, then the IO lock
216 * is dropped before returning.
218 * ip -- the inode being locked
219 * lock_flags -- this parameter indicates the inode's locks to be
220 * to be locked. See the comment for xfs_ilock() for a list
221 * of valid values.
224 xfs_ilock_nowait(
225 xfs_inode_t *ip,
226 uint lock_flags)
228 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
231 * You can't set both SHARED and EXCL for the same lock,
232 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
233 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
235 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
236 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
237 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
238 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
239 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
240 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
241 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
243 if (lock_flags & XFS_IOLOCK_EXCL) {
244 if (!mrtryupdate(&ip->i_iolock))
245 goto out;
246 } else if (lock_flags & XFS_IOLOCK_SHARED) {
247 if (!mrtryaccess(&ip->i_iolock))
248 goto out;
251 if (lock_flags & XFS_MMAPLOCK_EXCL) {
252 if (!mrtryupdate(&ip->i_mmaplock))
253 goto out_undo_iolock;
254 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
255 if (!mrtryaccess(&ip->i_mmaplock))
256 goto out_undo_iolock;
259 if (lock_flags & XFS_ILOCK_EXCL) {
260 if (!mrtryupdate(&ip->i_lock))
261 goto out_undo_mmaplock;
262 } else if (lock_flags & XFS_ILOCK_SHARED) {
263 if (!mrtryaccess(&ip->i_lock))
264 goto out_undo_mmaplock;
266 return 1;
268 out_undo_mmaplock:
269 if (lock_flags & XFS_MMAPLOCK_EXCL)
270 mrunlock_excl(&ip->i_mmaplock);
271 else if (lock_flags & XFS_MMAPLOCK_SHARED)
272 mrunlock_shared(&ip->i_mmaplock);
273 out_undo_iolock:
274 if (lock_flags & XFS_IOLOCK_EXCL)
275 mrunlock_excl(&ip->i_iolock);
276 else if (lock_flags & XFS_IOLOCK_SHARED)
277 mrunlock_shared(&ip->i_iolock);
278 out:
279 return 0;
283 * xfs_iunlock() is used to drop the inode locks acquired with
284 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
285 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
286 * that we know which locks to drop.
288 * ip -- the inode being unlocked
289 * lock_flags -- this parameter indicates the inode's locks to be
290 * to be unlocked. See the comment for xfs_ilock() for a list
291 * of valid values for this parameter.
294 void
295 xfs_iunlock(
296 xfs_inode_t *ip,
297 uint lock_flags)
300 * You can't set both SHARED and EXCL for the same lock,
301 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
302 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
304 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
305 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
306 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
307 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
308 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
309 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
310 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
311 ASSERT(lock_flags != 0);
313 if (lock_flags & XFS_IOLOCK_EXCL)
314 mrunlock_excl(&ip->i_iolock);
315 else if (lock_flags & XFS_IOLOCK_SHARED)
316 mrunlock_shared(&ip->i_iolock);
318 if (lock_flags & XFS_MMAPLOCK_EXCL)
319 mrunlock_excl(&ip->i_mmaplock);
320 else if (lock_flags & XFS_MMAPLOCK_SHARED)
321 mrunlock_shared(&ip->i_mmaplock);
323 if (lock_flags & XFS_ILOCK_EXCL)
324 mrunlock_excl(&ip->i_lock);
325 else if (lock_flags & XFS_ILOCK_SHARED)
326 mrunlock_shared(&ip->i_lock);
328 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
332 * give up write locks. the i/o lock cannot be held nested
333 * if it is being demoted.
335 void
336 xfs_ilock_demote(
337 xfs_inode_t *ip,
338 uint lock_flags)
340 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
341 ASSERT((lock_flags &
342 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
344 if (lock_flags & XFS_ILOCK_EXCL)
345 mrdemote(&ip->i_lock);
346 if (lock_flags & XFS_MMAPLOCK_EXCL)
347 mrdemote(&ip->i_mmaplock);
348 if (lock_flags & XFS_IOLOCK_EXCL)
349 mrdemote(&ip->i_iolock);
351 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
354 #if defined(DEBUG) || defined(XFS_WARN)
356 xfs_isilocked(
357 xfs_inode_t *ip,
358 uint lock_flags)
360 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
361 if (!(lock_flags & XFS_ILOCK_SHARED))
362 return !!ip->i_lock.mr_writer;
363 return rwsem_is_locked(&ip->i_lock.mr_lock);
366 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
367 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
368 return !!ip->i_mmaplock.mr_writer;
369 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
372 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
373 if (!(lock_flags & XFS_IOLOCK_SHARED))
374 return !!ip->i_iolock.mr_writer;
375 return rwsem_is_locked(&ip->i_iolock.mr_lock);
378 ASSERT(0);
379 return 0;
381 #endif
383 #ifdef DEBUG
384 int xfs_locked_n;
385 int xfs_small_retries;
386 int xfs_middle_retries;
387 int xfs_lots_retries;
388 int xfs_lock_delays;
389 #endif
392 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
393 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
394 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
395 * errors and warnings.
397 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
398 static bool
399 xfs_lockdep_subclass_ok(
400 int subclass)
402 return subclass < MAX_LOCKDEP_SUBCLASSES;
404 #else
405 #define xfs_lockdep_subclass_ok(subclass) (true)
406 #endif
409 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
410 * value. This can be called for any type of inode lock combination, including
411 * parent locking. Care must be taken to ensure we don't overrun the subclass
412 * storage fields in the class mask we build.
414 static inline int
415 xfs_lock_inumorder(int lock_mode, int subclass)
417 int class = 0;
419 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
420 XFS_ILOCK_RTSUM)));
421 ASSERT(xfs_lockdep_subclass_ok(subclass));
423 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
424 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
425 ASSERT(xfs_lockdep_subclass_ok(subclass +
426 XFS_IOLOCK_PARENT_VAL));
427 class += subclass << XFS_IOLOCK_SHIFT;
428 if (lock_mode & XFS_IOLOCK_PARENT)
429 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
432 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
433 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
434 class += subclass << XFS_MMAPLOCK_SHIFT;
437 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
438 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
439 class += subclass << XFS_ILOCK_SHIFT;
442 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
446 * The following routine will lock n inodes in exclusive mode. We assume the
447 * caller calls us with the inodes in i_ino order.
449 * We need to detect deadlock where an inode that we lock is in the AIL and we
450 * start waiting for another inode that is locked by a thread in a long running
451 * transaction (such as truncate). This can result in deadlock since the long
452 * running trans might need to wait for the inode we just locked in order to
453 * push the tail and free space in the log.
455 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
456 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
457 * lock more than one at a time, lockdep will report false positives saying we
458 * have violated locking orders.
460 static void
461 xfs_lock_inodes(
462 xfs_inode_t **ips,
463 int inodes,
464 uint lock_mode)
466 int attempts = 0, i, j, try_lock;
467 xfs_log_item_t *lp;
470 * Currently supports between 2 and 5 inodes with exclusive locking. We
471 * support an arbitrary depth of locking here, but absolute limits on
472 * inodes depend on the the type of locking and the limits placed by
473 * lockdep annotations in xfs_lock_inumorder. These are all checked by
474 * the asserts.
476 ASSERT(ips && inodes >= 2 && inodes <= 5);
477 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
478 XFS_ILOCK_EXCL));
479 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
480 XFS_ILOCK_SHARED)));
481 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
482 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
483 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
484 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
485 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
486 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
488 if (lock_mode & XFS_IOLOCK_EXCL) {
489 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
490 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
491 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
493 try_lock = 0;
494 i = 0;
495 again:
496 for (; i < inodes; i++) {
497 ASSERT(ips[i]);
499 if (i && (ips[i] == ips[i - 1])) /* Already locked */
500 continue;
503 * If try_lock is not set yet, make sure all locked inodes are
504 * not in the AIL. If any are, set try_lock to be used later.
506 if (!try_lock) {
507 for (j = (i - 1); j >= 0 && !try_lock; j--) {
508 lp = (xfs_log_item_t *)ips[j]->i_itemp;
509 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
510 try_lock++;
515 * If any of the previous locks we have locked is in the AIL,
516 * we must TRY to get the second and subsequent locks. If
517 * we can't get any, we must release all we have
518 * and try again.
520 if (!try_lock) {
521 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
522 continue;
525 /* try_lock means we have an inode locked that is in the AIL. */
526 ASSERT(i != 0);
527 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
528 continue;
531 * Unlock all previous guys and try again. xfs_iunlock will try
532 * to push the tail if the inode is in the AIL.
534 attempts++;
535 for (j = i - 1; j >= 0; j--) {
537 * Check to see if we've already unlocked this one. Not
538 * the first one going back, and the inode ptr is the
539 * same.
541 if (j != (i - 1) && ips[j] == ips[j + 1])
542 continue;
544 xfs_iunlock(ips[j], lock_mode);
547 if ((attempts % 5) == 0) {
548 delay(1); /* Don't just spin the CPU */
549 #ifdef DEBUG
550 xfs_lock_delays++;
551 #endif
553 i = 0;
554 try_lock = 0;
555 goto again;
558 #ifdef DEBUG
559 if (attempts) {
560 if (attempts < 5) xfs_small_retries++;
561 else if (attempts < 100) xfs_middle_retries++;
562 else xfs_lots_retries++;
563 } else {
564 xfs_locked_n++;
566 #endif
570 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
571 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
572 * lock more than one at a time, lockdep will report false positives saying we
573 * have violated locking orders.
575 void
576 xfs_lock_two_inodes(
577 xfs_inode_t *ip0,
578 xfs_inode_t *ip1,
579 uint lock_mode)
581 xfs_inode_t *temp;
582 int attempts = 0;
583 xfs_log_item_t *lp;
585 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
586 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
587 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
588 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
589 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
591 ASSERT(ip0->i_ino != ip1->i_ino);
593 if (ip0->i_ino > ip1->i_ino) {
594 temp = ip0;
595 ip0 = ip1;
596 ip1 = temp;
599 again:
600 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
603 * If the first lock we have locked is in the AIL, we must TRY to get
604 * the second lock. If we can't get it, we must release the first one
605 * and try again.
607 lp = (xfs_log_item_t *)ip0->i_itemp;
608 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
609 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
610 xfs_iunlock(ip0, lock_mode);
611 if ((++attempts % 5) == 0)
612 delay(1); /* Don't just spin the CPU */
613 goto again;
615 } else {
616 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
621 void
622 __xfs_iflock(
623 struct xfs_inode *ip)
625 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
626 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
628 do {
629 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
630 if (xfs_isiflocked(ip))
631 io_schedule();
632 } while (!xfs_iflock_nowait(ip));
634 finish_wait(wq, &wait.wait);
637 STATIC uint
638 _xfs_dic2xflags(
639 __uint16_t di_flags,
640 uint64_t di_flags2,
641 bool has_attr)
643 uint flags = 0;
645 if (di_flags & XFS_DIFLAG_ANY) {
646 if (di_flags & XFS_DIFLAG_REALTIME)
647 flags |= FS_XFLAG_REALTIME;
648 if (di_flags & XFS_DIFLAG_PREALLOC)
649 flags |= FS_XFLAG_PREALLOC;
650 if (di_flags & XFS_DIFLAG_IMMUTABLE)
651 flags |= FS_XFLAG_IMMUTABLE;
652 if (di_flags & XFS_DIFLAG_APPEND)
653 flags |= FS_XFLAG_APPEND;
654 if (di_flags & XFS_DIFLAG_SYNC)
655 flags |= FS_XFLAG_SYNC;
656 if (di_flags & XFS_DIFLAG_NOATIME)
657 flags |= FS_XFLAG_NOATIME;
658 if (di_flags & XFS_DIFLAG_NODUMP)
659 flags |= FS_XFLAG_NODUMP;
660 if (di_flags & XFS_DIFLAG_RTINHERIT)
661 flags |= FS_XFLAG_RTINHERIT;
662 if (di_flags & XFS_DIFLAG_PROJINHERIT)
663 flags |= FS_XFLAG_PROJINHERIT;
664 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
665 flags |= FS_XFLAG_NOSYMLINKS;
666 if (di_flags & XFS_DIFLAG_EXTSIZE)
667 flags |= FS_XFLAG_EXTSIZE;
668 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
669 flags |= FS_XFLAG_EXTSZINHERIT;
670 if (di_flags & XFS_DIFLAG_NODEFRAG)
671 flags |= FS_XFLAG_NODEFRAG;
672 if (di_flags & XFS_DIFLAG_FILESTREAM)
673 flags |= FS_XFLAG_FILESTREAM;
676 if (di_flags2 & XFS_DIFLAG2_ANY) {
677 if (di_flags2 & XFS_DIFLAG2_DAX)
678 flags |= FS_XFLAG_DAX;
679 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
680 flags |= FS_XFLAG_COWEXTSIZE;
683 if (has_attr)
684 flags |= FS_XFLAG_HASATTR;
686 return flags;
689 uint
690 xfs_ip2xflags(
691 struct xfs_inode *ip)
693 struct xfs_icdinode *dic = &ip->i_d;
695 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
699 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
700 * is allowed, otherwise it has to be an exact match. If a CI match is found,
701 * ci_name->name will point to a the actual name (caller must free) or
702 * will be set to NULL if an exact match is found.
705 xfs_lookup(
706 xfs_inode_t *dp,
707 struct xfs_name *name,
708 xfs_inode_t **ipp,
709 struct xfs_name *ci_name)
711 xfs_ino_t inum;
712 int error;
714 trace_xfs_lookup(dp, name);
716 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
717 return -EIO;
719 xfs_ilock(dp, XFS_IOLOCK_SHARED);
720 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
721 if (error)
722 goto out_unlock;
724 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
725 if (error)
726 goto out_free_name;
728 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
729 return 0;
731 out_free_name:
732 if (ci_name)
733 kmem_free(ci_name->name);
734 out_unlock:
735 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
736 *ipp = NULL;
737 return error;
741 * Allocate an inode on disk and return a copy of its in-core version.
742 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
743 * appropriately within the inode. The uid and gid for the inode are
744 * set according to the contents of the given cred structure.
746 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
747 * has a free inode available, call xfs_iget() to obtain the in-core
748 * version of the allocated inode. Finally, fill in the inode and
749 * log its initial contents. In this case, ialloc_context would be
750 * set to NULL.
752 * If xfs_dialloc() does not have an available inode, it will replenish
753 * its supply by doing an allocation. Since we can only do one
754 * allocation within a transaction without deadlocks, we must commit
755 * the current transaction before returning the inode itself.
756 * In this case, therefore, we will set ialloc_context and return.
757 * The caller should then commit the current transaction, start a new
758 * transaction, and call xfs_ialloc() again to actually get the inode.
760 * To ensure that some other process does not grab the inode that
761 * was allocated during the first call to xfs_ialloc(), this routine
762 * also returns the [locked] bp pointing to the head of the freelist
763 * as ialloc_context. The caller should hold this buffer across
764 * the commit and pass it back into this routine on the second call.
766 * If we are allocating quota inodes, we do not have a parent inode
767 * to attach to or associate with (i.e. pip == NULL) because they
768 * are not linked into the directory structure - they are attached
769 * directly to the superblock - and so have no parent.
771 static int
772 xfs_ialloc(
773 xfs_trans_t *tp,
774 xfs_inode_t *pip,
775 umode_t mode,
776 xfs_nlink_t nlink,
777 xfs_dev_t rdev,
778 prid_t prid,
779 int okalloc,
780 xfs_buf_t **ialloc_context,
781 xfs_inode_t **ipp)
783 struct xfs_mount *mp = tp->t_mountp;
784 xfs_ino_t ino;
785 xfs_inode_t *ip;
786 uint flags;
787 int error;
788 struct timespec tv;
789 struct inode *inode;
792 * Call the space management code to pick
793 * the on-disk inode to be allocated.
795 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
796 ialloc_context, &ino);
797 if (error)
798 return error;
799 if (*ialloc_context || ino == NULLFSINO) {
800 *ipp = NULL;
801 return 0;
803 ASSERT(*ialloc_context == NULL);
806 * Get the in-core inode with the lock held exclusively.
807 * This is because we're setting fields here we need
808 * to prevent others from looking at until we're done.
810 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
811 XFS_ILOCK_EXCL, &ip);
812 if (error)
813 return error;
814 ASSERT(ip != NULL);
815 inode = VFS_I(ip);
818 * We always convert v1 inodes to v2 now - we only support filesystems
819 * with >= v2 inode capability, so there is no reason for ever leaving
820 * an inode in v1 format.
822 if (ip->i_d.di_version == 1)
823 ip->i_d.di_version = 2;
825 inode->i_mode = mode;
826 set_nlink(inode, nlink);
827 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
828 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
829 xfs_set_projid(ip, prid);
831 if (pip && XFS_INHERIT_GID(pip)) {
832 ip->i_d.di_gid = pip->i_d.di_gid;
833 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
834 inode->i_mode |= S_ISGID;
838 * If the group ID of the new file does not match the effective group
839 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
840 * (and only if the irix_sgid_inherit compatibility variable is set).
842 if ((irix_sgid_inherit) &&
843 (inode->i_mode & S_ISGID) &&
844 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
845 inode->i_mode &= ~S_ISGID;
847 ip->i_d.di_size = 0;
848 ip->i_d.di_nextents = 0;
849 ASSERT(ip->i_d.di_nblocks == 0);
851 tv = current_time(inode);
852 inode->i_mtime = tv;
853 inode->i_atime = tv;
854 inode->i_ctime = tv;
856 ip->i_d.di_extsize = 0;
857 ip->i_d.di_dmevmask = 0;
858 ip->i_d.di_dmstate = 0;
859 ip->i_d.di_flags = 0;
861 if (ip->i_d.di_version == 3) {
862 inode->i_version = 1;
863 ip->i_d.di_flags2 = 0;
864 ip->i_d.di_cowextsize = 0;
865 ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
866 ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
870 flags = XFS_ILOG_CORE;
871 switch (mode & S_IFMT) {
872 case S_IFIFO:
873 case S_IFCHR:
874 case S_IFBLK:
875 case S_IFSOCK:
876 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
877 ip->i_df.if_u2.if_rdev = rdev;
878 ip->i_df.if_flags = 0;
879 flags |= XFS_ILOG_DEV;
880 break;
881 case S_IFREG:
882 case S_IFDIR:
883 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
884 uint64_t di_flags2 = 0;
885 uint di_flags = 0;
887 if (S_ISDIR(mode)) {
888 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
889 di_flags |= XFS_DIFLAG_RTINHERIT;
890 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
891 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
892 ip->i_d.di_extsize = pip->i_d.di_extsize;
894 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
895 di_flags |= XFS_DIFLAG_PROJINHERIT;
896 } else if (S_ISREG(mode)) {
897 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
898 di_flags |= XFS_DIFLAG_REALTIME;
899 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
900 di_flags |= XFS_DIFLAG_EXTSIZE;
901 ip->i_d.di_extsize = pip->i_d.di_extsize;
904 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
905 xfs_inherit_noatime)
906 di_flags |= XFS_DIFLAG_NOATIME;
907 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
908 xfs_inherit_nodump)
909 di_flags |= XFS_DIFLAG_NODUMP;
910 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
911 xfs_inherit_sync)
912 di_flags |= XFS_DIFLAG_SYNC;
913 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
914 xfs_inherit_nosymlinks)
915 di_flags |= XFS_DIFLAG_NOSYMLINKS;
916 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
917 xfs_inherit_nodefrag)
918 di_flags |= XFS_DIFLAG_NODEFRAG;
919 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
920 di_flags |= XFS_DIFLAG_FILESTREAM;
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
924 ip->i_d.di_flags |= di_flags;
925 ip->i_d.di_flags2 |= di_flags2;
927 if (pip &&
928 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
929 pip->i_d.di_version == 3 &&
930 ip->i_d.di_version == 3) {
931 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
932 ip->i_d.di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
933 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
936 /* FALLTHROUGH */
937 case S_IFLNK:
938 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
939 ip->i_df.if_flags = XFS_IFEXTENTS;
940 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
941 ip->i_df.if_u1.if_extents = NULL;
942 break;
943 default:
944 ASSERT(0);
947 * Attribute fork settings for new inode.
949 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
950 ip->i_d.di_anextents = 0;
953 * Log the new values stuffed into the inode.
955 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
956 xfs_trans_log_inode(tp, ip, flags);
958 /* now that we have an i_mode we can setup the inode structure */
959 xfs_setup_inode(ip);
961 *ipp = ip;
962 return 0;
966 * Allocates a new inode from disk and return a pointer to the
967 * incore copy. This routine will internally commit the current
968 * transaction and allocate a new one if the Space Manager needed
969 * to do an allocation to replenish the inode free-list.
971 * This routine is designed to be called from xfs_create and
972 * xfs_create_dir.
976 xfs_dir_ialloc(
977 xfs_trans_t **tpp, /* input: current transaction;
978 output: may be a new transaction. */
979 xfs_inode_t *dp, /* directory within whose allocate
980 the inode. */
981 umode_t mode,
982 xfs_nlink_t nlink,
983 xfs_dev_t rdev,
984 prid_t prid, /* project id */
985 int okalloc, /* ok to allocate new space */
986 xfs_inode_t **ipp, /* pointer to inode; it will be
987 locked. */
988 int *committed)
991 xfs_trans_t *tp;
992 xfs_inode_t *ip;
993 xfs_buf_t *ialloc_context = NULL;
994 int code;
995 void *dqinfo;
996 uint tflags;
998 tp = *tpp;
999 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1002 * xfs_ialloc will return a pointer to an incore inode if
1003 * the Space Manager has an available inode on the free
1004 * list. Otherwise, it will do an allocation and replenish
1005 * the freelist. Since we can only do one allocation per
1006 * transaction without deadlocks, we will need to commit the
1007 * current transaction and start a new one. We will then
1008 * need to call xfs_ialloc again to get the inode.
1010 * If xfs_ialloc did an allocation to replenish the freelist,
1011 * it returns the bp containing the head of the freelist as
1012 * ialloc_context. We will hold a lock on it across the
1013 * transaction commit so that no other process can steal
1014 * the inode(s) that we've just allocated.
1016 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
1017 &ialloc_context, &ip);
1020 * Return an error if we were unable to allocate a new inode.
1021 * This should only happen if we run out of space on disk or
1022 * encounter a disk error.
1024 if (code) {
1025 *ipp = NULL;
1026 return code;
1028 if (!ialloc_context && !ip) {
1029 *ipp = NULL;
1030 return -ENOSPC;
1034 * If the AGI buffer is non-NULL, then we were unable to get an
1035 * inode in one operation. We need to commit the current
1036 * transaction and call xfs_ialloc() again. It is guaranteed
1037 * to succeed the second time.
1039 if (ialloc_context) {
1041 * Normally, xfs_trans_commit releases all the locks.
1042 * We call bhold to hang on to the ialloc_context across
1043 * the commit. Holding this buffer prevents any other
1044 * processes from doing any allocations in this
1045 * allocation group.
1047 xfs_trans_bhold(tp, ialloc_context);
1050 * We want the quota changes to be associated with the next
1051 * transaction, NOT this one. So, detach the dqinfo from this
1052 * and attach it to the next transaction.
1054 dqinfo = NULL;
1055 tflags = 0;
1056 if (tp->t_dqinfo) {
1057 dqinfo = (void *)tp->t_dqinfo;
1058 tp->t_dqinfo = NULL;
1059 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1060 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1063 code = xfs_trans_roll(&tp, NULL);
1064 if (committed != NULL)
1065 *committed = 1;
1068 * Re-attach the quota info that we detached from prev trx.
1070 if (dqinfo) {
1071 tp->t_dqinfo = dqinfo;
1072 tp->t_flags |= tflags;
1075 if (code) {
1076 xfs_buf_relse(ialloc_context);
1077 *tpp = tp;
1078 *ipp = NULL;
1079 return code;
1081 xfs_trans_bjoin(tp, ialloc_context);
1084 * Call ialloc again. Since we've locked out all
1085 * other allocations in this allocation group,
1086 * this call should always succeed.
1088 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1089 okalloc, &ialloc_context, &ip);
1092 * If we get an error at this point, return to the caller
1093 * so that the current transaction can be aborted.
1095 if (code) {
1096 *tpp = tp;
1097 *ipp = NULL;
1098 return code;
1100 ASSERT(!ialloc_context && ip);
1102 } else {
1103 if (committed != NULL)
1104 *committed = 0;
1107 *ipp = ip;
1108 *tpp = tp;
1110 return 0;
1114 * Decrement the link count on an inode & log the change. If this causes the
1115 * link count to go to zero, move the inode to AGI unlinked list so that it can
1116 * be freed when the last active reference goes away via xfs_inactive().
1118 static int /* error */
1119 xfs_droplink(
1120 xfs_trans_t *tp,
1121 xfs_inode_t *ip)
1123 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125 drop_nlink(VFS_I(ip));
1126 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1128 if (VFS_I(ip)->i_nlink)
1129 return 0;
1131 return xfs_iunlink(tp, ip);
1135 * Increment the link count on an inode & log the change.
1137 static int
1138 xfs_bumplink(
1139 xfs_trans_t *tp,
1140 xfs_inode_t *ip)
1142 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1144 ASSERT(ip->i_d.di_version > 1);
1145 inc_nlink(VFS_I(ip));
1146 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1147 return 0;
1151 xfs_create(
1152 xfs_inode_t *dp,
1153 struct xfs_name *name,
1154 umode_t mode,
1155 xfs_dev_t rdev,
1156 xfs_inode_t **ipp)
1158 int is_dir = S_ISDIR(mode);
1159 struct xfs_mount *mp = dp->i_mount;
1160 struct xfs_inode *ip = NULL;
1161 struct xfs_trans *tp = NULL;
1162 int error;
1163 struct xfs_defer_ops dfops;
1164 xfs_fsblock_t first_block;
1165 bool unlock_dp_on_error = false;
1166 prid_t prid;
1167 struct xfs_dquot *udqp = NULL;
1168 struct xfs_dquot *gdqp = NULL;
1169 struct xfs_dquot *pdqp = NULL;
1170 struct xfs_trans_res *tres;
1171 uint resblks;
1173 trace_xfs_create(dp, name);
1175 if (XFS_FORCED_SHUTDOWN(mp))
1176 return -EIO;
1178 prid = xfs_get_initial_prid(dp);
1181 * Make sure that we have allocated dquot(s) on disk.
1183 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1184 xfs_kgid_to_gid(current_fsgid()), prid,
1185 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1186 &udqp, &gdqp, &pdqp);
1187 if (error)
1188 return error;
1190 if (is_dir) {
1191 rdev = 0;
1192 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1193 tres = &M_RES(mp)->tr_mkdir;
1194 } else {
1195 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1196 tres = &M_RES(mp)->tr_create;
1200 * Initially assume that the file does not exist and
1201 * reserve the resources for that case. If that is not
1202 * the case we'll drop the one we have and get a more
1203 * appropriate transaction later.
1205 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1206 if (error == -ENOSPC) {
1207 /* flush outstanding delalloc blocks and retry */
1208 xfs_flush_inodes(mp);
1209 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1211 if (error == -ENOSPC) {
1212 /* No space at all so try a "no-allocation" reservation */
1213 resblks = 0;
1214 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1216 if (error)
1217 goto out_release_inode;
1219 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1220 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1221 unlock_dp_on_error = true;
1223 xfs_defer_init(&dfops, &first_block);
1226 * Reserve disk quota and the inode.
1228 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1229 pdqp, resblks, 1, 0);
1230 if (error)
1231 goto out_trans_cancel;
1233 if (!resblks) {
1234 error = xfs_dir_canenter(tp, dp, name);
1235 if (error)
1236 goto out_trans_cancel;
1240 * A newly created regular or special file just has one directory
1241 * entry pointing to them, but a directory also the "." entry
1242 * pointing to itself.
1244 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1245 prid, resblks > 0, &ip, NULL);
1246 if (error)
1247 goto out_trans_cancel;
1250 * Now we join the directory inode to the transaction. We do not do it
1251 * earlier because xfs_dir_ialloc might commit the previous transaction
1252 * (and release all the locks). An error from here on will result in
1253 * the transaction cancel unlocking dp so don't do it explicitly in the
1254 * error path.
1256 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1257 unlock_dp_on_error = false;
1259 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1260 &first_block, &dfops, resblks ?
1261 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1262 if (error) {
1263 ASSERT(error != -ENOSPC);
1264 goto out_trans_cancel;
1266 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1267 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1269 if (is_dir) {
1270 error = xfs_dir_init(tp, ip, dp);
1271 if (error)
1272 goto out_bmap_cancel;
1274 error = xfs_bumplink(tp, dp);
1275 if (error)
1276 goto out_bmap_cancel;
1280 * If this is a synchronous mount, make sure that the
1281 * create transaction goes to disk before returning to
1282 * the user.
1284 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1285 xfs_trans_set_sync(tp);
1288 * Attach the dquot(s) to the inodes and modify them incore.
1289 * These ids of the inode couldn't have changed since the new
1290 * inode has been locked ever since it was created.
1292 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1294 error = xfs_defer_finish(&tp, &dfops, NULL);
1295 if (error)
1296 goto out_bmap_cancel;
1298 error = xfs_trans_commit(tp);
1299 if (error)
1300 goto out_release_inode;
1302 xfs_qm_dqrele(udqp);
1303 xfs_qm_dqrele(gdqp);
1304 xfs_qm_dqrele(pdqp);
1306 *ipp = ip;
1307 return 0;
1309 out_bmap_cancel:
1310 xfs_defer_cancel(&dfops);
1311 out_trans_cancel:
1312 xfs_trans_cancel(tp);
1313 out_release_inode:
1315 * Wait until after the current transaction is aborted to finish the
1316 * setup of the inode and release the inode. This prevents recursive
1317 * transactions and deadlocks from xfs_inactive.
1319 if (ip) {
1320 xfs_finish_inode_setup(ip);
1321 IRELE(ip);
1324 xfs_qm_dqrele(udqp);
1325 xfs_qm_dqrele(gdqp);
1326 xfs_qm_dqrele(pdqp);
1328 if (unlock_dp_on_error)
1329 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1330 return error;
1334 xfs_create_tmpfile(
1335 struct xfs_inode *dp,
1336 struct dentry *dentry,
1337 umode_t mode,
1338 struct xfs_inode **ipp)
1340 struct xfs_mount *mp = dp->i_mount;
1341 struct xfs_inode *ip = NULL;
1342 struct xfs_trans *tp = NULL;
1343 int error;
1344 prid_t prid;
1345 struct xfs_dquot *udqp = NULL;
1346 struct xfs_dquot *gdqp = NULL;
1347 struct xfs_dquot *pdqp = NULL;
1348 struct xfs_trans_res *tres;
1349 uint resblks;
1351 if (XFS_FORCED_SHUTDOWN(mp))
1352 return -EIO;
1354 prid = xfs_get_initial_prid(dp);
1357 * Make sure that we have allocated dquot(s) on disk.
1359 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1360 xfs_kgid_to_gid(current_fsgid()), prid,
1361 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1362 &udqp, &gdqp, &pdqp);
1363 if (error)
1364 return error;
1366 resblks = XFS_IALLOC_SPACE_RES(mp);
1367 tres = &M_RES(mp)->tr_create_tmpfile;
1369 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1370 if (error == -ENOSPC) {
1371 /* No space at all so try a "no-allocation" reservation */
1372 resblks = 0;
1373 error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1375 if (error)
1376 goto out_release_inode;
1378 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1379 pdqp, resblks, 1, 0);
1380 if (error)
1381 goto out_trans_cancel;
1383 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1384 prid, resblks > 0, &ip, NULL);
1385 if (error)
1386 goto out_trans_cancel;
1388 if (mp->m_flags & XFS_MOUNT_WSYNC)
1389 xfs_trans_set_sync(tp);
1392 * Attach the dquot(s) to the inodes and modify them incore.
1393 * These ids of the inode couldn't have changed since the new
1394 * inode has been locked ever since it was created.
1396 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1398 error = xfs_iunlink(tp, ip);
1399 if (error)
1400 goto out_trans_cancel;
1402 error = xfs_trans_commit(tp);
1403 if (error)
1404 goto out_release_inode;
1406 xfs_qm_dqrele(udqp);
1407 xfs_qm_dqrele(gdqp);
1408 xfs_qm_dqrele(pdqp);
1410 *ipp = ip;
1411 return 0;
1413 out_trans_cancel:
1414 xfs_trans_cancel(tp);
1415 out_release_inode:
1417 * Wait until after the current transaction is aborted to finish the
1418 * setup of the inode and release the inode. This prevents recursive
1419 * transactions and deadlocks from xfs_inactive.
1421 if (ip) {
1422 xfs_finish_inode_setup(ip);
1423 IRELE(ip);
1426 xfs_qm_dqrele(udqp);
1427 xfs_qm_dqrele(gdqp);
1428 xfs_qm_dqrele(pdqp);
1430 return error;
1434 xfs_link(
1435 xfs_inode_t *tdp,
1436 xfs_inode_t *sip,
1437 struct xfs_name *target_name)
1439 xfs_mount_t *mp = tdp->i_mount;
1440 xfs_trans_t *tp;
1441 int error;
1442 struct xfs_defer_ops dfops;
1443 xfs_fsblock_t first_block;
1444 int resblks;
1446 trace_xfs_link(tdp, target_name);
1448 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1450 if (XFS_FORCED_SHUTDOWN(mp))
1451 return -EIO;
1453 error = xfs_qm_dqattach(sip, 0);
1454 if (error)
1455 goto std_return;
1457 error = xfs_qm_dqattach(tdp, 0);
1458 if (error)
1459 goto std_return;
1461 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1462 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1463 if (error == -ENOSPC) {
1464 resblks = 0;
1465 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1467 if (error)
1468 goto std_return;
1470 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1471 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1473 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1474 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1477 * If we are using project inheritance, we only allow hard link
1478 * creation in our tree when the project IDs are the same; else
1479 * the tree quota mechanism could be circumvented.
1481 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1482 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1483 error = -EXDEV;
1484 goto error_return;
1487 if (!resblks) {
1488 error = xfs_dir_canenter(tp, tdp, target_name);
1489 if (error)
1490 goto error_return;
1493 xfs_defer_init(&dfops, &first_block);
1496 * Handle initial link state of O_TMPFILE inode
1498 if (VFS_I(sip)->i_nlink == 0) {
1499 error = xfs_iunlink_remove(tp, sip);
1500 if (error)
1501 goto error_return;
1504 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1505 &first_block, &dfops, resblks);
1506 if (error)
1507 goto error_return;
1508 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1509 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1511 error = xfs_bumplink(tp, sip);
1512 if (error)
1513 goto error_return;
1516 * If this is a synchronous mount, make sure that the
1517 * link transaction goes to disk before returning to
1518 * the user.
1520 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1521 xfs_trans_set_sync(tp);
1523 error = xfs_defer_finish(&tp, &dfops, NULL);
1524 if (error) {
1525 xfs_defer_cancel(&dfops);
1526 goto error_return;
1529 return xfs_trans_commit(tp);
1531 error_return:
1532 xfs_trans_cancel(tp);
1533 std_return:
1534 return error;
1538 * Free up the underlying blocks past new_size. The new size must be smaller
1539 * than the current size. This routine can be used both for the attribute and
1540 * data fork, and does not modify the inode size, which is left to the caller.
1542 * The transaction passed to this routine must have made a permanent log
1543 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1544 * given transaction and start new ones, so make sure everything involved in
1545 * the transaction is tidy before calling here. Some transaction will be
1546 * returned to the caller to be committed. The incoming transaction must
1547 * already include the inode, and both inode locks must be held exclusively.
1548 * The inode must also be "held" within the transaction. On return the inode
1549 * will be "held" within the returned transaction. This routine does NOT
1550 * require any disk space to be reserved for it within the transaction.
1552 * If we get an error, we must return with the inode locked and linked into the
1553 * current transaction. This keeps things simple for the higher level code,
1554 * because it always knows that the inode is locked and held in the transaction
1555 * that returns to it whether errors occur or not. We don't mark the inode
1556 * dirty on error so that transactions can be easily aborted if possible.
1559 xfs_itruncate_extents(
1560 struct xfs_trans **tpp,
1561 struct xfs_inode *ip,
1562 int whichfork,
1563 xfs_fsize_t new_size)
1565 struct xfs_mount *mp = ip->i_mount;
1566 struct xfs_trans *tp = *tpp;
1567 struct xfs_defer_ops dfops;
1568 xfs_fsblock_t first_block;
1569 xfs_fileoff_t first_unmap_block;
1570 xfs_fileoff_t last_block;
1571 xfs_filblks_t unmap_len;
1572 int error = 0;
1573 int done = 0;
1575 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1576 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1577 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1578 ASSERT(new_size <= XFS_ISIZE(ip));
1579 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1580 ASSERT(ip->i_itemp != NULL);
1581 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1582 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1584 trace_xfs_itruncate_extents_start(ip, new_size);
1587 * Since it is possible for space to become allocated beyond
1588 * the end of the file (in a crash where the space is allocated
1589 * but the inode size is not yet updated), simply remove any
1590 * blocks which show up between the new EOF and the maximum
1591 * possible file size. If the first block to be removed is
1592 * beyond the maximum file size (ie it is the same as last_block),
1593 * then there is nothing to do.
1595 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1596 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1597 if (first_unmap_block == last_block)
1598 return 0;
1600 ASSERT(first_unmap_block < last_block);
1601 unmap_len = last_block - first_unmap_block + 1;
1602 while (!done) {
1603 xfs_defer_init(&dfops, &first_block);
1604 error = xfs_bunmapi(tp, ip,
1605 first_unmap_block, unmap_len,
1606 xfs_bmapi_aflag(whichfork),
1607 XFS_ITRUNC_MAX_EXTENTS,
1608 &first_block, &dfops,
1609 &done);
1610 if (error)
1611 goto out_bmap_cancel;
1614 * Duplicate the transaction that has the permanent
1615 * reservation and commit the old transaction.
1617 error = xfs_defer_finish(&tp, &dfops, ip);
1618 if (error)
1619 goto out_bmap_cancel;
1621 error = xfs_trans_roll(&tp, ip);
1622 if (error)
1623 goto out;
1626 /* Remove all pending CoW reservations. */
1627 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
1628 last_block, true);
1629 if (error)
1630 goto out;
1633 * Clear the reflink flag if we truncated everything.
1635 if (ip->i_d.di_nblocks == 0 && xfs_is_reflink_inode(ip)) {
1636 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1637 xfs_inode_clear_cowblocks_tag(ip);
1641 * Always re-log the inode so that our permanent transaction can keep
1642 * on rolling it forward in the log.
1644 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1646 trace_xfs_itruncate_extents_end(ip, new_size);
1648 out:
1649 *tpp = tp;
1650 return error;
1651 out_bmap_cancel:
1653 * If the bunmapi call encounters an error, return to the caller where
1654 * the transaction can be properly aborted. We just need to make sure
1655 * we're not holding any resources that we were not when we came in.
1657 xfs_defer_cancel(&dfops);
1658 goto out;
1662 xfs_release(
1663 xfs_inode_t *ip)
1665 xfs_mount_t *mp = ip->i_mount;
1666 int error;
1668 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1669 return 0;
1671 /* If this is a read-only mount, don't do this (would generate I/O) */
1672 if (mp->m_flags & XFS_MOUNT_RDONLY)
1673 return 0;
1675 if (!XFS_FORCED_SHUTDOWN(mp)) {
1676 int truncated;
1679 * If we previously truncated this file and removed old data
1680 * in the process, we want to initiate "early" writeout on
1681 * the last close. This is an attempt to combat the notorious
1682 * NULL files problem which is particularly noticeable from a
1683 * truncate down, buffered (re-)write (delalloc), followed by
1684 * a crash. What we are effectively doing here is
1685 * significantly reducing the time window where we'd otherwise
1686 * be exposed to that problem.
1688 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1689 if (truncated) {
1690 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1691 if (ip->i_delayed_blks > 0) {
1692 error = filemap_flush(VFS_I(ip)->i_mapping);
1693 if (error)
1694 return error;
1699 if (VFS_I(ip)->i_nlink == 0)
1700 return 0;
1702 if (xfs_can_free_eofblocks(ip, false)) {
1705 * Check if the inode is being opened, written and closed
1706 * frequently and we have delayed allocation blocks outstanding
1707 * (e.g. streaming writes from the NFS server), truncating the
1708 * blocks past EOF will cause fragmentation to occur.
1710 * In this case don't do the truncation, but we have to be
1711 * careful how we detect this case. Blocks beyond EOF show up as
1712 * i_delayed_blks even when the inode is clean, so we need to
1713 * truncate them away first before checking for a dirty release.
1714 * Hence on the first dirty close we will still remove the
1715 * speculative allocation, but after that we will leave it in
1716 * place.
1718 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1719 return 0;
1721 * If we can't get the iolock just skip truncating the blocks
1722 * past EOF because we could deadlock with the mmap_sem
1723 * otherwise. We'll get another chance to drop them once the
1724 * last reference to the inode is dropped, so we'll never leak
1725 * blocks permanently.
1727 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1728 error = xfs_free_eofblocks(ip);
1729 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1730 if (error)
1731 return error;
1734 /* delalloc blocks after truncation means it really is dirty */
1735 if (ip->i_delayed_blks)
1736 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1738 return 0;
1742 * xfs_inactive_truncate
1744 * Called to perform a truncate when an inode becomes unlinked.
1746 STATIC int
1747 xfs_inactive_truncate(
1748 struct xfs_inode *ip)
1750 struct xfs_mount *mp = ip->i_mount;
1751 struct xfs_trans *tp;
1752 int error;
1754 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1755 if (error) {
1756 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1757 return error;
1760 xfs_ilock(ip, XFS_ILOCK_EXCL);
1761 xfs_trans_ijoin(tp, ip, 0);
1764 * Log the inode size first to prevent stale data exposure in the event
1765 * of a system crash before the truncate completes. See the related
1766 * comment in xfs_vn_setattr_size() for details.
1768 ip->i_d.di_size = 0;
1769 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1771 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1772 if (error)
1773 goto error_trans_cancel;
1775 ASSERT(ip->i_d.di_nextents == 0);
1777 error = xfs_trans_commit(tp);
1778 if (error)
1779 goto error_unlock;
1781 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1782 return 0;
1784 error_trans_cancel:
1785 xfs_trans_cancel(tp);
1786 error_unlock:
1787 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1788 return error;
1792 * xfs_inactive_ifree()
1794 * Perform the inode free when an inode is unlinked.
1796 STATIC int
1797 xfs_inactive_ifree(
1798 struct xfs_inode *ip)
1800 struct xfs_defer_ops dfops;
1801 xfs_fsblock_t first_block;
1802 struct xfs_mount *mp = ip->i_mount;
1803 struct xfs_trans *tp;
1804 int error;
1807 * We try to use a per-AG reservation for any block needed by the finobt
1808 * tree, but as the finobt feature predates the per-AG reservation
1809 * support a degraded file system might not have enough space for the
1810 * reservation at mount time. In that case try to dip into the reserved
1811 * pool and pray.
1813 * Send a warning if the reservation does happen to fail, as the inode
1814 * now remains allocated and sits on the unlinked list until the fs is
1815 * repaired.
1817 if (unlikely(mp->m_inotbt_nores)) {
1818 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1819 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1820 &tp);
1821 } else {
1822 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1824 if (error) {
1825 if (error == -ENOSPC) {
1826 xfs_warn_ratelimited(mp,
1827 "Failed to remove inode(s) from unlinked list. "
1828 "Please free space, unmount and run xfs_repair.");
1829 } else {
1830 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1832 return error;
1835 xfs_ilock(ip, XFS_ILOCK_EXCL);
1836 xfs_trans_ijoin(tp, ip, 0);
1838 xfs_defer_init(&dfops, &first_block);
1839 error = xfs_ifree(tp, ip, &dfops);
1840 if (error) {
1842 * If we fail to free the inode, shut down. The cancel
1843 * might do that, we need to make sure. Otherwise the
1844 * inode might be lost for a long time or forever.
1846 if (!XFS_FORCED_SHUTDOWN(mp)) {
1847 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1848 __func__, error);
1849 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1851 xfs_trans_cancel(tp);
1852 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1853 return error;
1857 * Credit the quota account(s). The inode is gone.
1859 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1862 * Just ignore errors at this point. There is nothing we can do except
1863 * to try to keep going. Make sure it's not a silent error.
1865 error = xfs_defer_finish(&tp, &dfops, NULL);
1866 if (error) {
1867 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1868 __func__, error);
1869 xfs_defer_cancel(&dfops);
1871 error = xfs_trans_commit(tp);
1872 if (error)
1873 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1874 __func__, error);
1876 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1877 return 0;
1881 * xfs_inactive
1883 * This is called when the vnode reference count for the vnode
1884 * goes to zero. If the file has been unlinked, then it must
1885 * now be truncated. Also, we clear all of the read-ahead state
1886 * kept for the inode here since the file is now closed.
1888 void
1889 xfs_inactive(
1890 xfs_inode_t *ip)
1892 struct xfs_mount *mp;
1893 int error;
1894 int truncate = 0;
1897 * If the inode is already free, then there can be nothing
1898 * to clean up here.
1900 if (VFS_I(ip)->i_mode == 0) {
1901 ASSERT(ip->i_df.if_real_bytes == 0);
1902 ASSERT(ip->i_df.if_broot_bytes == 0);
1903 return;
1906 mp = ip->i_mount;
1907 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1909 /* If this is a read-only mount, don't do this (would generate I/O) */
1910 if (mp->m_flags & XFS_MOUNT_RDONLY)
1911 return;
1913 if (VFS_I(ip)->i_nlink != 0) {
1915 * force is true because we are evicting an inode from the
1916 * cache. Post-eof blocks must be freed, lest we end up with
1917 * broken free space accounting.
1919 * Note: don't bother with iolock here since lockdep complains
1920 * about acquiring it in reclaim context. We have the only
1921 * reference to the inode at this point anyways.
1923 if (xfs_can_free_eofblocks(ip, true))
1924 xfs_free_eofblocks(ip);
1926 return;
1929 if (S_ISREG(VFS_I(ip)->i_mode) &&
1930 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1931 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1932 truncate = 1;
1934 error = xfs_qm_dqattach(ip, 0);
1935 if (error)
1936 return;
1938 if (S_ISLNK(VFS_I(ip)->i_mode))
1939 error = xfs_inactive_symlink(ip);
1940 else if (truncate)
1941 error = xfs_inactive_truncate(ip);
1942 if (error)
1943 return;
1946 * If there are attributes associated with the file then blow them away
1947 * now. The code calls a routine that recursively deconstructs the
1948 * attribute fork. If also blows away the in-core attribute fork.
1950 if (XFS_IFORK_Q(ip)) {
1951 error = xfs_attr_inactive(ip);
1952 if (error)
1953 return;
1956 ASSERT(!ip->i_afp);
1957 ASSERT(ip->i_d.di_anextents == 0);
1958 ASSERT(ip->i_d.di_forkoff == 0);
1961 * Free the inode.
1963 error = xfs_inactive_ifree(ip);
1964 if (error)
1965 return;
1968 * Release the dquots held by inode, if any.
1970 xfs_qm_dqdetach(ip);
1974 * This is called when the inode's link count goes to 0 or we are creating a
1975 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1976 * set to true as the link count is dropped to zero by the VFS after we've
1977 * created the file successfully, so we have to add it to the unlinked list
1978 * while the link count is non-zero.
1980 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1981 * list when the inode is freed.
1983 STATIC int
1984 xfs_iunlink(
1985 struct xfs_trans *tp,
1986 struct xfs_inode *ip)
1988 xfs_mount_t *mp = tp->t_mountp;
1989 xfs_agi_t *agi;
1990 xfs_dinode_t *dip;
1991 xfs_buf_t *agibp;
1992 xfs_buf_t *ibp;
1993 xfs_agino_t agino;
1994 short bucket_index;
1995 int offset;
1996 int error;
1998 ASSERT(VFS_I(ip)->i_mode != 0);
2001 * Get the agi buffer first. It ensures lock ordering
2002 * on the list.
2004 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
2005 if (error)
2006 return error;
2007 agi = XFS_BUF_TO_AGI(agibp);
2010 * Get the index into the agi hash table for the
2011 * list this inode will go on.
2013 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2014 ASSERT(agino != 0);
2015 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2016 ASSERT(agi->agi_unlinked[bucket_index]);
2017 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2019 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2021 * There is already another inode in the bucket we need
2022 * to add ourselves to. Add us at the front of the list.
2023 * Here we put the head pointer into our next pointer,
2024 * and then we fall through to point the head at us.
2026 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2027 0, 0);
2028 if (error)
2029 return error;
2031 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2032 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2033 offset = ip->i_imap.im_boffset +
2034 offsetof(xfs_dinode_t, di_next_unlinked);
2036 /* need to recalc the inode CRC if appropriate */
2037 xfs_dinode_calc_crc(mp, dip);
2039 xfs_trans_inode_buf(tp, ibp);
2040 xfs_trans_log_buf(tp, ibp, offset,
2041 (offset + sizeof(xfs_agino_t) - 1));
2042 xfs_inobp_check(mp, ibp);
2046 * Point the bucket head pointer at the inode being inserted.
2048 ASSERT(agino != 0);
2049 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2050 offset = offsetof(xfs_agi_t, agi_unlinked) +
2051 (sizeof(xfs_agino_t) * bucket_index);
2052 xfs_trans_log_buf(tp, agibp, offset,
2053 (offset + sizeof(xfs_agino_t) - 1));
2054 return 0;
2058 * Pull the on-disk inode from the AGI unlinked list.
2060 STATIC int
2061 xfs_iunlink_remove(
2062 xfs_trans_t *tp,
2063 xfs_inode_t *ip)
2065 xfs_ino_t next_ino;
2066 xfs_mount_t *mp;
2067 xfs_agi_t *agi;
2068 xfs_dinode_t *dip;
2069 xfs_buf_t *agibp;
2070 xfs_buf_t *ibp;
2071 xfs_agnumber_t agno;
2072 xfs_agino_t agino;
2073 xfs_agino_t next_agino;
2074 xfs_buf_t *last_ibp;
2075 xfs_dinode_t *last_dip = NULL;
2076 short bucket_index;
2077 int offset, last_offset = 0;
2078 int error;
2080 mp = tp->t_mountp;
2081 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2084 * Get the agi buffer first. It ensures lock ordering
2085 * on the list.
2087 error = xfs_read_agi(mp, tp, agno, &agibp);
2088 if (error)
2089 return error;
2091 agi = XFS_BUF_TO_AGI(agibp);
2094 * Get the index into the agi hash table for the
2095 * list this inode will go on.
2097 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2098 ASSERT(agino != 0);
2099 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2100 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2101 ASSERT(agi->agi_unlinked[bucket_index]);
2103 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2105 * We're at the head of the list. Get the inode's on-disk
2106 * buffer to see if there is anyone after us on the list.
2107 * Only modify our next pointer if it is not already NULLAGINO.
2108 * This saves us the overhead of dealing with the buffer when
2109 * there is no need to change it.
2111 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2112 0, 0);
2113 if (error) {
2114 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2115 __func__, error);
2116 return error;
2118 next_agino = be32_to_cpu(dip->di_next_unlinked);
2119 ASSERT(next_agino != 0);
2120 if (next_agino != NULLAGINO) {
2121 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2122 offset = ip->i_imap.im_boffset +
2123 offsetof(xfs_dinode_t, di_next_unlinked);
2125 /* need to recalc the inode CRC if appropriate */
2126 xfs_dinode_calc_crc(mp, dip);
2128 xfs_trans_inode_buf(tp, ibp);
2129 xfs_trans_log_buf(tp, ibp, offset,
2130 (offset + sizeof(xfs_agino_t) - 1));
2131 xfs_inobp_check(mp, ibp);
2132 } else {
2133 xfs_trans_brelse(tp, ibp);
2136 * Point the bucket head pointer at the next inode.
2138 ASSERT(next_agino != 0);
2139 ASSERT(next_agino != agino);
2140 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2141 offset = offsetof(xfs_agi_t, agi_unlinked) +
2142 (sizeof(xfs_agino_t) * bucket_index);
2143 xfs_trans_log_buf(tp, agibp, offset,
2144 (offset + sizeof(xfs_agino_t) - 1));
2145 } else {
2147 * We need to search the list for the inode being freed.
2149 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2150 last_ibp = NULL;
2151 while (next_agino != agino) {
2152 struct xfs_imap imap;
2154 if (last_ibp)
2155 xfs_trans_brelse(tp, last_ibp);
2157 imap.im_blkno = 0;
2158 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2160 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2161 if (error) {
2162 xfs_warn(mp,
2163 "%s: xfs_imap returned error %d.",
2164 __func__, error);
2165 return error;
2168 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2169 &last_ibp, 0, 0);
2170 if (error) {
2171 xfs_warn(mp,
2172 "%s: xfs_imap_to_bp returned error %d.",
2173 __func__, error);
2174 return error;
2177 last_offset = imap.im_boffset;
2178 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2179 ASSERT(next_agino != NULLAGINO);
2180 ASSERT(next_agino != 0);
2184 * Now last_ibp points to the buffer previous to us on the
2185 * unlinked list. Pull us from the list.
2187 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2188 0, 0);
2189 if (error) {
2190 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2191 __func__, error);
2192 return error;
2194 next_agino = be32_to_cpu(dip->di_next_unlinked);
2195 ASSERT(next_agino != 0);
2196 ASSERT(next_agino != agino);
2197 if (next_agino != NULLAGINO) {
2198 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2199 offset = ip->i_imap.im_boffset +
2200 offsetof(xfs_dinode_t, di_next_unlinked);
2202 /* need to recalc the inode CRC if appropriate */
2203 xfs_dinode_calc_crc(mp, dip);
2205 xfs_trans_inode_buf(tp, ibp);
2206 xfs_trans_log_buf(tp, ibp, offset,
2207 (offset + sizeof(xfs_agino_t) - 1));
2208 xfs_inobp_check(mp, ibp);
2209 } else {
2210 xfs_trans_brelse(tp, ibp);
2213 * Point the previous inode on the list to the next inode.
2215 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2216 ASSERT(next_agino != 0);
2217 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2219 /* need to recalc the inode CRC if appropriate */
2220 xfs_dinode_calc_crc(mp, last_dip);
2222 xfs_trans_inode_buf(tp, last_ibp);
2223 xfs_trans_log_buf(tp, last_ibp, offset,
2224 (offset + sizeof(xfs_agino_t) - 1));
2225 xfs_inobp_check(mp, last_ibp);
2227 return 0;
2231 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2232 * inodes that are in memory - they all must be marked stale and attached to
2233 * the cluster buffer.
2235 STATIC int
2236 xfs_ifree_cluster(
2237 xfs_inode_t *free_ip,
2238 xfs_trans_t *tp,
2239 struct xfs_icluster *xic)
2241 xfs_mount_t *mp = free_ip->i_mount;
2242 int blks_per_cluster;
2243 int inodes_per_cluster;
2244 int nbufs;
2245 int i, j;
2246 int ioffset;
2247 xfs_daddr_t blkno;
2248 xfs_buf_t *bp;
2249 xfs_inode_t *ip;
2250 xfs_inode_log_item_t *iip;
2251 xfs_log_item_t *lip;
2252 struct xfs_perag *pag;
2253 xfs_ino_t inum;
2255 inum = xic->first_ino;
2256 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2257 blks_per_cluster = xfs_icluster_size_fsb(mp);
2258 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2259 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2261 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2263 * The allocation bitmap tells us which inodes of the chunk were
2264 * physically allocated. Skip the cluster if an inode falls into
2265 * a sparse region.
2267 ioffset = inum - xic->first_ino;
2268 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2269 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2270 continue;
2273 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2274 XFS_INO_TO_AGBNO(mp, inum));
2277 * We obtain and lock the backing buffer first in the process
2278 * here, as we have to ensure that any dirty inode that we
2279 * can't get the flush lock on is attached to the buffer.
2280 * If we scan the in-memory inodes first, then buffer IO can
2281 * complete before we get a lock on it, and hence we may fail
2282 * to mark all the active inodes on the buffer stale.
2284 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2285 mp->m_bsize * blks_per_cluster,
2286 XBF_UNMAPPED);
2288 if (!bp)
2289 return -ENOMEM;
2292 * This buffer may not have been correctly initialised as we
2293 * didn't read it from disk. That's not important because we are
2294 * only using to mark the buffer as stale in the log, and to
2295 * attach stale cached inodes on it. That means it will never be
2296 * dispatched for IO. If it is, we want to know about it, and we
2297 * want it to fail. We can acheive this by adding a write
2298 * verifier to the buffer.
2300 bp->b_ops = &xfs_inode_buf_ops;
2303 * Walk the inodes already attached to the buffer and mark them
2304 * stale. These will all have the flush locks held, so an
2305 * in-memory inode walk can't lock them. By marking them all
2306 * stale first, we will not attempt to lock them in the loop
2307 * below as the XFS_ISTALE flag will be set.
2309 lip = bp->b_fspriv;
2310 while (lip) {
2311 if (lip->li_type == XFS_LI_INODE) {
2312 iip = (xfs_inode_log_item_t *)lip;
2313 ASSERT(iip->ili_logged == 1);
2314 lip->li_cb = xfs_istale_done;
2315 xfs_trans_ail_copy_lsn(mp->m_ail,
2316 &iip->ili_flush_lsn,
2317 &iip->ili_item.li_lsn);
2318 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2320 lip = lip->li_bio_list;
2325 * For each inode in memory attempt to add it to the inode
2326 * buffer and set it up for being staled on buffer IO
2327 * completion. This is safe as we've locked out tail pushing
2328 * and flushing by locking the buffer.
2330 * We have already marked every inode that was part of a
2331 * transaction stale above, which means there is no point in
2332 * even trying to lock them.
2334 for (i = 0; i < inodes_per_cluster; i++) {
2335 retry:
2336 rcu_read_lock();
2337 ip = radix_tree_lookup(&pag->pag_ici_root,
2338 XFS_INO_TO_AGINO(mp, (inum + i)));
2340 /* Inode not in memory, nothing to do */
2341 if (!ip) {
2342 rcu_read_unlock();
2343 continue;
2347 * because this is an RCU protected lookup, we could
2348 * find a recently freed or even reallocated inode
2349 * during the lookup. We need to check under the
2350 * i_flags_lock for a valid inode here. Skip it if it
2351 * is not valid, the wrong inode or stale.
2353 spin_lock(&ip->i_flags_lock);
2354 if (ip->i_ino != inum + i ||
2355 __xfs_iflags_test(ip, XFS_ISTALE)) {
2356 spin_unlock(&ip->i_flags_lock);
2357 rcu_read_unlock();
2358 continue;
2360 spin_unlock(&ip->i_flags_lock);
2363 * Don't try to lock/unlock the current inode, but we
2364 * _cannot_ skip the other inodes that we did not find
2365 * in the list attached to the buffer and are not
2366 * already marked stale. If we can't lock it, back off
2367 * and retry.
2369 if (ip != free_ip &&
2370 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2371 rcu_read_unlock();
2372 delay(1);
2373 goto retry;
2375 rcu_read_unlock();
2377 xfs_iflock(ip);
2378 xfs_iflags_set(ip, XFS_ISTALE);
2381 * we don't need to attach clean inodes or those only
2382 * with unlogged changes (which we throw away, anyway).
2384 iip = ip->i_itemp;
2385 if (!iip || xfs_inode_clean(ip)) {
2386 ASSERT(ip != free_ip);
2387 xfs_ifunlock(ip);
2388 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2389 continue;
2392 iip->ili_last_fields = iip->ili_fields;
2393 iip->ili_fields = 0;
2394 iip->ili_fsync_fields = 0;
2395 iip->ili_logged = 1;
2396 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2397 &iip->ili_item.li_lsn);
2399 xfs_buf_attach_iodone(bp, xfs_istale_done,
2400 &iip->ili_item);
2402 if (ip != free_ip)
2403 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2406 xfs_trans_stale_inode_buf(tp, bp);
2407 xfs_trans_binval(tp, bp);
2410 xfs_perag_put(pag);
2411 return 0;
2415 * This is called to return an inode to the inode free list.
2416 * The inode should already be truncated to 0 length and have
2417 * no pages associated with it. This routine also assumes that
2418 * the inode is already a part of the transaction.
2420 * The on-disk copy of the inode will have been added to the list
2421 * of unlinked inodes in the AGI. We need to remove the inode from
2422 * that list atomically with respect to freeing it here.
2425 xfs_ifree(
2426 xfs_trans_t *tp,
2427 xfs_inode_t *ip,
2428 struct xfs_defer_ops *dfops)
2430 int error;
2431 struct xfs_icluster xic = { 0 };
2433 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2434 ASSERT(VFS_I(ip)->i_nlink == 0);
2435 ASSERT(ip->i_d.di_nextents == 0);
2436 ASSERT(ip->i_d.di_anextents == 0);
2437 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2438 ASSERT(ip->i_d.di_nblocks == 0);
2441 * Pull the on-disk inode from the AGI unlinked list.
2443 error = xfs_iunlink_remove(tp, ip);
2444 if (error)
2445 return error;
2447 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2448 if (error)
2449 return error;
2451 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2452 ip->i_d.di_flags = 0;
2453 ip->i_d.di_dmevmask = 0;
2454 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2455 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2456 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2458 * Bump the generation count so no one will be confused
2459 * by reincarnations of this inode.
2461 VFS_I(ip)->i_generation++;
2462 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2464 if (xic.deleted)
2465 error = xfs_ifree_cluster(ip, tp, &xic);
2467 return error;
2471 * This is called to unpin an inode. The caller must have the inode locked
2472 * in at least shared mode so that the buffer cannot be subsequently pinned
2473 * once someone is waiting for it to be unpinned.
2475 static void
2476 xfs_iunpin(
2477 struct xfs_inode *ip)
2479 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2481 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2483 /* Give the log a push to start the unpinning I/O */
2484 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2488 static void
2489 __xfs_iunpin_wait(
2490 struct xfs_inode *ip)
2492 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2493 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2495 xfs_iunpin(ip);
2497 do {
2498 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2499 if (xfs_ipincount(ip))
2500 io_schedule();
2501 } while (xfs_ipincount(ip));
2502 finish_wait(wq, &wait.wait);
2505 void
2506 xfs_iunpin_wait(
2507 struct xfs_inode *ip)
2509 if (xfs_ipincount(ip))
2510 __xfs_iunpin_wait(ip);
2514 * Removing an inode from the namespace involves removing the directory entry
2515 * and dropping the link count on the inode. Removing the directory entry can
2516 * result in locking an AGF (directory blocks were freed) and removing a link
2517 * count can result in placing the inode on an unlinked list which results in
2518 * locking an AGI.
2520 * The big problem here is that we have an ordering constraint on AGF and AGI
2521 * locking - inode allocation locks the AGI, then can allocate a new extent for
2522 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2523 * removes the inode from the unlinked list, requiring that we lock the AGI
2524 * first, and then freeing the inode can result in an inode chunk being freed
2525 * and hence freeing disk space requiring that we lock an AGF.
2527 * Hence the ordering that is imposed by other parts of the code is AGI before
2528 * AGF. This means we cannot remove the directory entry before we drop the inode
2529 * reference count and put it on the unlinked list as this results in a lock
2530 * order of AGF then AGI, and this can deadlock against inode allocation and
2531 * freeing. Therefore we must drop the link counts before we remove the
2532 * directory entry.
2534 * This is still safe from a transactional point of view - it is not until we
2535 * get to xfs_defer_finish() that we have the possibility of multiple
2536 * transactions in this operation. Hence as long as we remove the directory
2537 * entry and drop the link count in the first transaction of the remove
2538 * operation, there are no transactional constraints on the ordering here.
2541 xfs_remove(
2542 xfs_inode_t *dp,
2543 struct xfs_name *name,
2544 xfs_inode_t *ip)
2546 xfs_mount_t *mp = dp->i_mount;
2547 xfs_trans_t *tp = NULL;
2548 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2549 int error = 0;
2550 struct xfs_defer_ops dfops;
2551 xfs_fsblock_t first_block;
2552 uint resblks;
2554 trace_xfs_remove(dp, name);
2556 if (XFS_FORCED_SHUTDOWN(mp))
2557 return -EIO;
2559 error = xfs_qm_dqattach(dp, 0);
2560 if (error)
2561 goto std_return;
2563 error = xfs_qm_dqattach(ip, 0);
2564 if (error)
2565 goto std_return;
2568 * We try to get the real space reservation first,
2569 * allowing for directory btree deletion(s) implying
2570 * possible bmap insert(s). If we can't get the space
2571 * reservation then we use 0 instead, and avoid the bmap
2572 * btree insert(s) in the directory code by, if the bmap
2573 * insert tries to happen, instead trimming the LAST
2574 * block from the directory.
2576 resblks = XFS_REMOVE_SPACE_RES(mp);
2577 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2578 if (error == -ENOSPC) {
2579 resblks = 0;
2580 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2581 &tp);
2583 if (error) {
2584 ASSERT(error != -ENOSPC);
2585 goto std_return;
2588 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2589 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2591 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2592 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2595 * If we're removing a directory perform some additional validation.
2597 if (is_dir) {
2598 ASSERT(VFS_I(ip)->i_nlink >= 2);
2599 if (VFS_I(ip)->i_nlink != 2) {
2600 error = -ENOTEMPTY;
2601 goto out_trans_cancel;
2603 if (!xfs_dir_isempty(ip)) {
2604 error = -ENOTEMPTY;
2605 goto out_trans_cancel;
2608 /* Drop the link from ip's "..". */
2609 error = xfs_droplink(tp, dp);
2610 if (error)
2611 goto out_trans_cancel;
2613 /* Drop the "." link from ip to self. */
2614 error = xfs_droplink(tp, ip);
2615 if (error)
2616 goto out_trans_cancel;
2617 } else {
2619 * When removing a non-directory we need to log the parent
2620 * inode here. For a directory this is done implicitly
2621 * by the xfs_droplink call for the ".." entry.
2623 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2625 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2627 /* Drop the link from dp to ip. */
2628 error = xfs_droplink(tp, ip);
2629 if (error)
2630 goto out_trans_cancel;
2632 xfs_defer_init(&dfops, &first_block);
2633 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2634 &first_block, &dfops, resblks);
2635 if (error) {
2636 ASSERT(error != -ENOENT);
2637 goto out_bmap_cancel;
2641 * If this is a synchronous mount, make sure that the
2642 * remove transaction goes to disk before returning to
2643 * the user.
2645 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2646 xfs_trans_set_sync(tp);
2648 error = xfs_defer_finish(&tp, &dfops, NULL);
2649 if (error)
2650 goto out_bmap_cancel;
2652 error = xfs_trans_commit(tp);
2653 if (error)
2654 goto std_return;
2656 if (is_dir && xfs_inode_is_filestream(ip))
2657 xfs_filestream_deassociate(ip);
2659 return 0;
2661 out_bmap_cancel:
2662 xfs_defer_cancel(&dfops);
2663 out_trans_cancel:
2664 xfs_trans_cancel(tp);
2665 std_return:
2666 return error;
2670 * Enter all inodes for a rename transaction into a sorted array.
2672 #define __XFS_SORT_INODES 5
2673 STATIC void
2674 xfs_sort_for_rename(
2675 struct xfs_inode *dp1, /* in: old (source) directory inode */
2676 struct xfs_inode *dp2, /* in: new (target) directory inode */
2677 struct xfs_inode *ip1, /* in: inode of old entry */
2678 struct xfs_inode *ip2, /* in: inode of new entry */
2679 struct xfs_inode *wip, /* in: whiteout inode */
2680 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2681 int *num_inodes) /* in/out: inodes in array */
2683 int i, j;
2685 ASSERT(*num_inodes == __XFS_SORT_INODES);
2686 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2689 * i_tab contains a list of pointers to inodes. We initialize
2690 * the table here & we'll sort it. We will then use it to
2691 * order the acquisition of the inode locks.
2693 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2695 i = 0;
2696 i_tab[i++] = dp1;
2697 i_tab[i++] = dp2;
2698 i_tab[i++] = ip1;
2699 if (ip2)
2700 i_tab[i++] = ip2;
2701 if (wip)
2702 i_tab[i++] = wip;
2703 *num_inodes = i;
2706 * Sort the elements via bubble sort. (Remember, there are at
2707 * most 5 elements to sort, so this is adequate.)
2709 for (i = 0; i < *num_inodes; i++) {
2710 for (j = 1; j < *num_inodes; j++) {
2711 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2712 struct xfs_inode *temp = i_tab[j];
2713 i_tab[j] = i_tab[j-1];
2714 i_tab[j-1] = temp;
2720 static int
2721 xfs_finish_rename(
2722 struct xfs_trans *tp,
2723 struct xfs_defer_ops *dfops)
2725 int error;
2728 * If this is a synchronous mount, make sure that the rename transaction
2729 * goes to disk before returning to the user.
2731 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2732 xfs_trans_set_sync(tp);
2734 error = xfs_defer_finish(&tp, dfops, NULL);
2735 if (error) {
2736 xfs_defer_cancel(dfops);
2737 xfs_trans_cancel(tp);
2738 return error;
2741 return xfs_trans_commit(tp);
2745 * xfs_cross_rename()
2747 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2749 STATIC int
2750 xfs_cross_rename(
2751 struct xfs_trans *tp,
2752 struct xfs_inode *dp1,
2753 struct xfs_name *name1,
2754 struct xfs_inode *ip1,
2755 struct xfs_inode *dp2,
2756 struct xfs_name *name2,
2757 struct xfs_inode *ip2,
2758 struct xfs_defer_ops *dfops,
2759 xfs_fsblock_t *first_block,
2760 int spaceres)
2762 int error = 0;
2763 int ip1_flags = 0;
2764 int ip2_flags = 0;
2765 int dp2_flags = 0;
2767 /* Swap inode number for dirent in first parent */
2768 error = xfs_dir_replace(tp, dp1, name1,
2769 ip2->i_ino,
2770 first_block, dfops, spaceres);
2771 if (error)
2772 goto out_trans_abort;
2774 /* Swap inode number for dirent in second parent */
2775 error = xfs_dir_replace(tp, dp2, name2,
2776 ip1->i_ino,
2777 first_block, dfops, spaceres);
2778 if (error)
2779 goto out_trans_abort;
2782 * If we're renaming one or more directories across different parents,
2783 * update the respective ".." entries (and link counts) to match the new
2784 * parents.
2786 if (dp1 != dp2) {
2787 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2789 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2790 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2791 dp1->i_ino, first_block,
2792 dfops, spaceres);
2793 if (error)
2794 goto out_trans_abort;
2796 /* transfer ip2 ".." reference to dp1 */
2797 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2798 error = xfs_droplink(tp, dp2);
2799 if (error)
2800 goto out_trans_abort;
2801 error = xfs_bumplink(tp, dp1);
2802 if (error)
2803 goto out_trans_abort;
2807 * Although ip1 isn't changed here, userspace needs
2808 * to be warned about the change, so that applications
2809 * relying on it (like backup ones), will properly
2810 * notify the change
2812 ip1_flags |= XFS_ICHGTIME_CHG;
2813 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2816 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2817 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2818 dp2->i_ino, first_block,
2819 dfops, spaceres);
2820 if (error)
2821 goto out_trans_abort;
2823 /* transfer ip1 ".." reference to dp2 */
2824 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2825 error = xfs_droplink(tp, dp1);
2826 if (error)
2827 goto out_trans_abort;
2828 error = xfs_bumplink(tp, dp2);
2829 if (error)
2830 goto out_trans_abort;
2834 * Although ip2 isn't changed here, userspace needs
2835 * to be warned about the change, so that applications
2836 * relying on it (like backup ones), will properly
2837 * notify the change
2839 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2840 ip2_flags |= XFS_ICHGTIME_CHG;
2844 if (ip1_flags) {
2845 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2846 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2848 if (ip2_flags) {
2849 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2850 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2852 if (dp2_flags) {
2853 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2854 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2856 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2857 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2858 return xfs_finish_rename(tp, dfops);
2860 out_trans_abort:
2861 xfs_defer_cancel(dfops);
2862 xfs_trans_cancel(tp);
2863 return error;
2867 * xfs_rename_alloc_whiteout()
2869 * Return a referenced, unlinked, unlocked inode that that can be used as a
2870 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2871 * crash between allocating the inode and linking it into the rename transaction
2872 * recovery will free the inode and we won't leak it.
2874 static int
2875 xfs_rename_alloc_whiteout(
2876 struct xfs_inode *dp,
2877 struct xfs_inode **wip)
2879 struct xfs_inode *tmpfile;
2880 int error;
2882 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2883 if (error)
2884 return error;
2887 * Prepare the tmpfile inode as if it were created through the VFS.
2888 * Otherwise, the link increment paths will complain about nlink 0->1.
2889 * Drop the link count as done by d_tmpfile(), complete the inode setup
2890 * and flag it as linkable.
2892 drop_nlink(VFS_I(tmpfile));
2893 xfs_setup_iops(tmpfile);
2894 xfs_finish_inode_setup(tmpfile);
2895 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2897 *wip = tmpfile;
2898 return 0;
2902 * xfs_rename
2905 xfs_rename(
2906 struct xfs_inode *src_dp,
2907 struct xfs_name *src_name,
2908 struct xfs_inode *src_ip,
2909 struct xfs_inode *target_dp,
2910 struct xfs_name *target_name,
2911 struct xfs_inode *target_ip,
2912 unsigned int flags)
2914 struct xfs_mount *mp = src_dp->i_mount;
2915 struct xfs_trans *tp;
2916 struct xfs_defer_ops dfops;
2917 xfs_fsblock_t first_block;
2918 struct xfs_inode *wip = NULL; /* whiteout inode */
2919 struct xfs_inode *inodes[__XFS_SORT_INODES];
2920 int num_inodes = __XFS_SORT_INODES;
2921 bool new_parent = (src_dp != target_dp);
2922 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2923 int spaceres;
2924 int error;
2926 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2928 if ((flags & RENAME_EXCHANGE) && !target_ip)
2929 return -EINVAL;
2932 * If we are doing a whiteout operation, allocate the whiteout inode
2933 * we will be placing at the target and ensure the type is set
2934 * appropriately.
2936 if (flags & RENAME_WHITEOUT) {
2937 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2938 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2939 if (error)
2940 return error;
2942 /* setup target dirent info as whiteout */
2943 src_name->type = XFS_DIR3_FT_CHRDEV;
2946 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2947 inodes, &num_inodes);
2949 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2950 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2951 if (error == -ENOSPC) {
2952 spaceres = 0;
2953 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2954 &tp);
2956 if (error)
2957 goto out_release_wip;
2960 * Attach the dquots to the inodes
2962 error = xfs_qm_vop_rename_dqattach(inodes);
2963 if (error)
2964 goto out_trans_cancel;
2967 * Lock all the participating inodes. Depending upon whether
2968 * the target_name exists in the target directory, and
2969 * whether the target directory is the same as the source
2970 * directory, we can lock from 2 to 4 inodes.
2972 if (!new_parent)
2973 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2974 else
2975 xfs_lock_two_inodes(src_dp, target_dp,
2976 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2978 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2981 * Join all the inodes to the transaction. From this point on,
2982 * we can rely on either trans_commit or trans_cancel to unlock
2983 * them.
2985 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2986 if (new_parent)
2987 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2988 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2989 if (target_ip)
2990 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2991 if (wip)
2992 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2995 * If we are using project inheritance, we only allow renames
2996 * into our tree when the project IDs are the same; else the
2997 * tree quota mechanism would be circumvented.
2999 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3000 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
3001 error = -EXDEV;
3002 goto out_trans_cancel;
3005 xfs_defer_init(&dfops, &first_block);
3007 /* RENAME_EXCHANGE is unique from here on. */
3008 if (flags & RENAME_EXCHANGE)
3009 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3010 target_dp, target_name, target_ip,
3011 &dfops, &first_block, spaceres);
3014 * Set up the target.
3016 if (target_ip == NULL) {
3018 * If there's no space reservation, check the entry will
3019 * fit before actually inserting it.
3021 if (!spaceres) {
3022 error = xfs_dir_canenter(tp, target_dp, target_name);
3023 if (error)
3024 goto out_trans_cancel;
3027 * If target does not exist and the rename crosses
3028 * directories, adjust the target directory link count
3029 * to account for the ".." reference from the new entry.
3031 error = xfs_dir_createname(tp, target_dp, target_name,
3032 src_ip->i_ino, &first_block,
3033 &dfops, spaceres);
3034 if (error)
3035 goto out_bmap_cancel;
3037 xfs_trans_ichgtime(tp, target_dp,
3038 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3040 if (new_parent && src_is_directory) {
3041 error = xfs_bumplink(tp, target_dp);
3042 if (error)
3043 goto out_bmap_cancel;
3045 } else { /* target_ip != NULL */
3047 * If target exists and it's a directory, check that both
3048 * target and source are directories and that target can be
3049 * destroyed, or that neither is a directory.
3051 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
3053 * Make sure target dir is empty.
3055 if (!(xfs_dir_isempty(target_ip)) ||
3056 (VFS_I(target_ip)->i_nlink > 2)) {
3057 error = -EEXIST;
3058 goto out_trans_cancel;
3063 * Link the source inode under the target name.
3064 * If the source inode is a directory and we are moving
3065 * it across directories, its ".." entry will be
3066 * inconsistent until we replace that down below.
3068 * In case there is already an entry with the same
3069 * name at the destination directory, remove it first.
3071 error = xfs_dir_replace(tp, target_dp, target_name,
3072 src_ip->i_ino,
3073 &first_block, &dfops, spaceres);
3074 if (error)
3075 goto out_bmap_cancel;
3077 xfs_trans_ichgtime(tp, target_dp,
3078 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3081 * Decrement the link count on the target since the target
3082 * dir no longer points to it.
3084 error = xfs_droplink(tp, target_ip);
3085 if (error)
3086 goto out_bmap_cancel;
3088 if (src_is_directory) {
3090 * Drop the link from the old "." entry.
3092 error = xfs_droplink(tp, target_ip);
3093 if (error)
3094 goto out_bmap_cancel;
3096 } /* target_ip != NULL */
3099 * Remove the source.
3101 if (new_parent && src_is_directory) {
3103 * Rewrite the ".." entry to point to the new
3104 * directory.
3106 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3107 target_dp->i_ino,
3108 &first_block, &dfops, spaceres);
3109 ASSERT(error != -EEXIST);
3110 if (error)
3111 goto out_bmap_cancel;
3115 * We always want to hit the ctime on the source inode.
3117 * This isn't strictly required by the standards since the source
3118 * inode isn't really being changed, but old unix file systems did
3119 * it and some incremental backup programs won't work without it.
3121 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3122 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3125 * Adjust the link count on src_dp. This is necessary when
3126 * renaming a directory, either within one parent when
3127 * the target existed, or across two parent directories.
3129 if (src_is_directory && (new_parent || target_ip != NULL)) {
3132 * Decrement link count on src_directory since the
3133 * entry that's moved no longer points to it.
3135 error = xfs_droplink(tp, src_dp);
3136 if (error)
3137 goto out_bmap_cancel;
3141 * For whiteouts, we only need to update the source dirent with the
3142 * inode number of the whiteout inode rather than removing it
3143 * altogether.
3145 if (wip) {
3146 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3147 &first_block, &dfops, spaceres);
3148 } else
3149 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3150 &first_block, &dfops, spaceres);
3151 if (error)
3152 goto out_bmap_cancel;
3155 * For whiteouts, we need to bump the link count on the whiteout inode.
3156 * This means that failures all the way up to this point leave the inode
3157 * on the unlinked list and so cleanup is a simple matter of dropping
3158 * the remaining reference to it. If we fail here after bumping the link
3159 * count, we're shutting down the filesystem so we'll never see the
3160 * intermediate state on disk.
3162 if (wip) {
3163 ASSERT(VFS_I(wip)->i_nlink == 0);
3164 error = xfs_bumplink(tp, wip);
3165 if (error)
3166 goto out_bmap_cancel;
3167 error = xfs_iunlink_remove(tp, wip);
3168 if (error)
3169 goto out_bmap_cancel;
3170 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3173 * Now we have a real link, clear the "I'm a tmpfile" state
3174 * flag from the inode so it doesn't accidentally get misused in
3175 * future.
3177 VFS_I(wip)->i_state &= ~I_LINKABLE;
3180 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3181 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3182 if (new_parent)
3183 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3185 error = xfs_finish_rename(tp, &dfops);
3186 if (wip)
3187 IRELE(wip);
3188 return error;
3190 out_bmap_cancel:
3191 xfs_defer_cancel(&dfops);
3192 out_trans_cancel:
3193 xfs_trans_cancel(tp);
3194 out_release_wip:
3195 if (wip)
3196 IRELE(wip);
3197 return error;
3200 STATIC int
3201 xfs_iflush_cluster(
3202 struct xfs_inode *ip,
3203 struct xfs_buf *bp)
3205 struct xfs_mount *mp = ip->i_mount;
3206 struct xfs_perag *pag;
3207 unsigned long first_index, mask;
3208 unsigned long inodes_per_cluster;
3209 int cilist_size;
3210 struct xfs_inode **cilist;
3211 struct xfs_inode *cip;
3212 int nr_found;
3213 int clcount = 0;
3214 int bufwasdelwri;
3215 int i;
3217 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3219 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3220 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3221 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3222 if (!cilist)
3223 goto out_put;
3225 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3226 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3227 rcu_read_lock();
3228 /* really need a gang lookup range call here */
3229 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3230 first_index, inodes_per_cluster);
3231 if (nr_found == 0)
3232 goto out_free;
3234 for (i = 0; i < nr_found; i++) {
3235 cip = cilist[i];
3236 if (cip == ip)
3237 continue;
3240 * because this is an RCU protected lookup, we could find a
3241 * recently freed or even reallocated inode during the lookup.
3242 * We need to check under the i_flags_lock for a valid inode
3243 * here. Skip it if it is not valid or the wrong inode.
3245 spin_lock(&cip->i_flags_lock);
3246 if (!cip->i_ino ||
3247 __xfs_iflags_test(cip, XFS_ISTALE)) {
3248 spin_unlock(&cip->i_flags_lock);
3249 continue;
3253 * Once we fall off the end of the cluster, no point checking
3254 * any more inodes in the list because they will also all be
3255 * outside the cluster.
3257 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3258 spin_unlock(&cip->i_flags_lock);
3259 break;
3261 spin_unlock(&cip->i_flags_lock);
3264 * Do an un-protected check to see if the inode is dirty and
3265 * is a candidate for flushing. These checks will be repeated
3266 * later after the appropriate locks are acquired.
3268 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3269 continue;
3272 * Try to get locks. If any are unavailable or it is pinned,
3273 * then this inode cannot be flushed and is skipped.
3276 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3277 continue;
3278 if (!xfs_iflock_nowait(cip)) {
3279 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3280 continue;
3282 if (xfs_ipincount(cip)) {
3283 xfs_ifunlock(cip);
3284 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3285 continue;
3290 * Check the inode number again, just to be certain we are not
3291 * racing with freeing in xfs_reclaim_inode(). See the comments
3292 * in that function for more information as to why the initial
3293 * check is not sufficient.
3295 if (!cip->i_ino) {
3296 xfs_ifunlock(cip);
3297 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3298 continue;
3302 * arriving here means that this inode can be flushed. First
3303 * re-check that it's dirty before flushing.
3305 if (!xfs_inode_clean(cip)) {
3306 int error;
3307 error = xfs_iflush_int(cip, bp);
3308 if (error) {
3309 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3310 goto cluster_corrupt_out;
3312 clcount++;
3313 } else {
3314 xfs_ifunlock(cip);
3316 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3319 if (clcount) {
3320 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3321 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3324 out_free:
3325 rcu_read_unlock();
3326 kmem_free(cilist);
3327 out_put:
3328 xfs_perag_put(pag);
3329 return 0;
3332 cluster_corrupt_out:
3334 * Corruption detected in the clustering loop. Invalidate the
3335 * inode buffer and shut down the filesystem.
3337 rcu_read_unlock();
3339 * Clean up the buffer. If it was delwri, just release it --
3340 * brelse can handle it with no problems. If not, shut down the
3341 * filesystem before releasing the buffer.
3343 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3344 if (bufwasdelwri)
3345 xfs_buf_relse(bp);
3347 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3349 if (!bufwasdelwri) {
3351 * Just like incore_relse: if we have b_iodone functions,
3352 * mark the buffer as an error and call them. Otherwise
3353 * mark it as stale and brelse.
3355 if (bp->b_iodone) {
3356 bp->b_flags &= ~XBF_DONE;
3357 xfs_buf_stale(bp);
3358 xfs_buf_ioerror(bp, -EIO);
3359 xfs_buf_ioend(bp);
3360 } else {
3361 xfs_buf_stale(bp);
3362 xfs_buf_relse(bp);
3367 * Unlocks the flush lock
3369 xfs_iflush_abort(cip, false);
3370 kmem_free(cilist);
3371 xfs_perag_put(pag);
3372 return -EFSCORRUPTED;
3376 * Flush dirty inode metadata into the backing buffer.
3378 * The caller must have the inode lock and the inode flush lock held. The
3379 * inode lock will still be held upon return to the caller, and the inode
3380 * flush lock will be released after the inode has reached the disk.
3382 * The caller must write out the buffer returned in *bpp and release it.
3385 xfs_iflush(
3386 struct xfs_inode *ip,
3387 struct xfs_buf **bpp)
3389 struct xfs_mount *mp = ip->i_mount;
3390 struct xfs_buf *bp = NULL;
3391 struct xfs_dinode *dip;
3392 int error;
3394 XFS_STATS_INC(mp, xs_iflush_count);
3396 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3397 ASSERT(xfs_isiflocked(ip));
3398 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3399 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3401 *bpp = NULL;
3403 xfs_iunpin_wait(ip);
3406 * For stale inodes we cannot rely on the backing buffer remaining
3407 * stale in cache for the remaining life of the stale inode and so
3408 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3409 * inodes below. We have to check this after ensuring the inode is
3410 * unpinned so that it is safe to reclaim the stale inode after the
3411 * flush call.
3413 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3414 xfs_ifunlock(ip);
3415 return 0;
3419 * This may have been unpinned because the filesystem is shutting
3420 * down forcibly. If that's the case we must not write this inode
3421 * to disk, because the log record didn't make it to disk.
3423 * We also have to remove the log item from the AIL in this case,
3424 * as we wait for an empty AIL as part of the unmount process.
3426 if (XFS_FORCED_SHUTDOWN(mp)) {
3427 error = -EIO;
3428 goto abort_out;
3432 * Get the buffer containing the on-disk inode. We are doing a try-lock
3433 * operation here, so we may get an EAGAIN error. In that case, we
3434 * simply want to return with the inode still dirty.
3436 * If we get any other error, we effectively have a corruption situation
3437 * and we cannot flush the inode, so we treat it the same as failing
3438 * xfs_iflush_int().
3440 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3442 if (error == -EAGAIN) {
3443 xfs_ifunlock(ip);
3444 return error;
3446 if (error)
3447 goto corrupt_out;
3450 * First flush out the inode that xfs_iflush was called with.
3452 error = xfs_iflush_int(ip, bp);
3453 if (error)
3454 goto corrupt_out;
3457 * If the buffer is pinned then push on the log now so we won't
3458 * get stuck waiting in the write for too long.
3460 if (xfs_buf_ispinned(bp))
3461 xfs_log_force(mp, 0);
3464 * inode clustering:
3465 * see if other inodes can be gathered into this write
3467 error = xfs_iflush_cluster(ip, bp);
3468 if (error)
3469 goto cluster_corrupt_out;
3471 *bpp = bp;
3472 return 0;
3474 corrupt_out:
3475 if (bp)
3476 xfs_buf_relse(bp);
3477 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3478 cluster_corrupt_out:
3479 error = -EFSCORRUPTED;
3480 abort_out:
3482 * Unlocks the flush lock
3484 xfs_iflush_abort(ip, false);
3485 return error;
3488 STATIC int
3489 xfs_iflush_int(
3490 struct xfs_inode *ip,
3491 struct xfs_buf *bp)
3493 struct xfs_inode_log_item *iip = ip->i_itemp;
3494 struct xfs_dinode *dip;
3495 struct xfs_mount *mp = ip->i_mount;
3497 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3498 ASSERT(xfs_isiflocked(ip));
3499 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3500 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3501 ASSERT(iip != NULL && iip->ili_fields != 0);
3502 ASSERT(ip->i_d.di_version > 1);
3504 /* set *dip = inode's place in the buffer */
3505 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3507 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3508 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3509 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3510 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3511 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3512 goto corrupt_out;
3514 if (S_ISREG(VFS_I(ip)->i_mode)) {
3515 if (XFS_TEST_ERROR(
3516 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3517 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3518 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3519 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3520 "%s: Bad regular inode %Lu, ptr 0x%p",
3521 __func__, ip->i_ino, ip);
3522 goto corrupt_out;
3524 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3525 if (XFS_TEST_ERROR(
3526 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3527 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3528 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3529 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3530 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3531 "%s: Bad directory inode %Lu, ptr 0x%p",
3532 __func__, ip->i_ino, ip);
3533 goto corrupt_out;
3536 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3537 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3538 XFS_RANDOM_IFLUSH_5)) {
3539 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3540 "%s: detected corrupt incore inode %Lu, "
3541 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3542 __func__, ip->i_ino,
3543 ip->i_d.di_nextents + ip->i_d.di_anextents,
3544 ip->i_d.di_nblocks, ip);
3545 goto corrupt_out;
3547 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3548 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3549 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3550 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3551 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3552 goto corrupt_out;
3556 * Inode item log recovery for v2 inodes are dependent on the
3557 * di_flushiter count for correct sequencing. We bump the flush
3558 * iteration count so we can detect flushes which postdate a log record
3559 * during recovery. This is redundant as we now log every change and
3560 * hence this can't happen but we need to still do it to ensure
3561 * backwards compatibility with old kernels that predate logging all
3562 * inode changes.
3564 if (ip->i_d.di_version < 3)
3565 ip->i_d.di_flushiter++;
3567 /* Check the inline directory data. */
3568 if (S_ISDIR(VFS_I(ip)->i_mode) &&
3569 ip->i_d.di_format == XFS_DINODE_FMT_LOCAL &&
3570 xfs_dir2_sf_verify(ip))
3571 goto corrupt_out;
3574 * Copy the dirty parts of the inode into the on-disk inode. We always
3575 * copy out the core of the inode, because if the inode is dirty at all
3576 * the core must be.
3578 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3580 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3581 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3582 ip->i_d.di_flushiter = 0;
3584 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3585 if (XFS_IFORK_Q(ip))
3586 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3587 xfs_inobp_check(mp, bp);
3590 * We've recorded everything logged in the inode, so we'd like to clear
3591 * the ili_fields bits so we don't log and flush things unnecessarily.
3592 * However, we can't stop logging all this information until the data
3593 * we've copied into the disk buffer is written to disk. If we did we
3594 * might overwrite the copy of the inode in the log with all the data
3595 * after re-logging only part of it, and in the face of a crash we
3596 * wouldn't have all the data we need to recover.
3598 * What we do is move the bits to the ili_last_fields field. When
3599 * logging the inode, these bits are moved back to the ili_fields field.
3600 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3601 * know that the information those bits represent is permanently on
3602 * disk. As long as the flush completes before the inode is logged
3603 * again, then both ili_fields and ili_last_fields will be cleared.
3605 * We can play with the ili_fields bits here, because the inode lock
3606 * must be held exclusively in order to set bits there and the flush
3607 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3608 * done routine can tell whether or not to look in the AIL. Also, store
3609 * the current LSN of the inode so that we can tell whether the item has
3610 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3611 * need the AIL lock, because it is a 64 bit value that cannot be read
3612 * atomically.
3614 iip->ili_last_fields = iip->ili_fields;
3615 iip->ili_fields = 0;
3616 iip->ili_fsync_fields = 0;
3617 iip->ili_logged = 1;
3619 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3620 &iip->ili_item.li_lsn);
3623 * Attach the function xfs_iflush_done to the inode's
3624 * buffer. This will remove the inode from the AIL
3625 * and unlock the inode's flush lock when the inode is
3626 * completely written to disk.
3628 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3630 /* generate the checksum. */
3631 xfs_dinode_calc_crc(mp, dip);
3633 ASSERT(bp->b_fspriv != NULL);
3634 ASSERT(bp->b_iodone != NULL);
3635 return 0;
3637 corrupt_out:
3638 return -EFSCORRUPTED;