2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, you can access it online at
16 * http://www.gnu.org/licenses/gpl-2.0.html.
18 * Copyright IBM Corporation, 2001
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
23 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
24 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
27 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
29 * For detailed explanation of Read-Copy Update mechanism see -
30 * http://lse.sourceforge.net/locking/rcupdate.html
33 #include <linux/types.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/spinlock.h>
37 #include <linux/smp.h>
38 #include <linux/interrupt.h>
39 #include <linux/sched.h>
40 #include <linux/atomic.h>
41 #include <linux/bitops.h>
42 #include <linux/percpu.h>
43 #include <linux/notifier.h>
44 #include <linux/cpu.h>
45 #include <linux/mutex.h>
46 #include <linux/export.h>
47 #include <linux/hardirq.h>
48 #include <linux/delay.h>
49 #include <linux/moduleparam.h>
50 #include <linux/kthread.h>
51 #include <linux/tick.h>
53 #define CREATE_TRACE_POINTS
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
60 #define MODULE_PARAM_PREFIX "rcupdate."
62 #ifndef CONFIG_TINY_RCU
63 module_param(rcu_expedited
, int, 0);
64 module_param(rcu_normal
, int, 0);
65 static int rcu_normal_after_boot
;
66 module_param(rcu_normal_after_boot
, int, 0);
67 #endif /* #ifndef CONFIG_TINY_RCU */
69 #ifdef CONFIG_DEBUG_LOCK_ALLOC
71 * rcu_read_lock_sched_held() - might we be in RCU-sched read-side critical section?
73 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an
74 * RCU-sched read-side critical section. In absence of
75 * CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU-sched read-side
76 * critical section unless it can prove otherwise. Note that disabling
77 * of preemption (including disabling irqs) counts as an RCU-sched
78 * read-side critical section. This is useful for debug checks in functions
79 * that required that they be called within an RCU-sched read-side
82 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot
83 * and while lockdep is disabled.
85 * Note that if the CPU is in the idle loop from an RCU point of
86 * view (ie: that we are in the section between rcu_idle_enter() and
87 * rcu_idle_exit()) then rcu_read_lock_held() returns false even if the CPU
88 * did an rcu_read_lock(). The reason for this is that RCU ignores CPUs
89 * that are in such a section, considering these as in extended quiescent
90 * state, so such a CPU is effectively never in an RCU read-side critical
91 * section regardless of what RCU primitives it invokes. This state of
92 * affairs is required --- we need to keep an RCU-free window in idle
93 * where the CPU may possibly enter into low power mode. This way we can
94 * notice an extended quiescent state to other CPUs that started a grace
95 * period. Otherwise we would delay any grace period as long as we run in
98 * Similarly, we avoid claiming an SRCU read lock held if the current
101 int rcu_read_lock_sched_held(void)
103 int lockdep_opinion
= 0;
105 if (!debug_lockdep_rcu_enabled())
107 if (!rcu_is_watching())
109 if (!rcu_lockdep_current_cpu_online())
112 lockdep_opinion
= lock_is_held(&rcu_sched_lock_map
);
113 return lockdep_opinion
|| !preemptible();
115 EXPORT_SYMBOL(rcu_read_lock_sched_held
);
118 #ifndef CONFIG_TINY_RCU
121 * Should expedited grace-period primitives always fall back to their
122 * non-expedited counterparts? Intended for use within RCU. Note
123 * that if the user specifies both rcu_expedited and rcu_normal, then
124 * rcu_normal wins. (Except during the time period during boot from
125 * when the first task is spawned until the rcu_exp_runtime_mode()
126 * core_initcall() is invoked, at which point everything is expedited.)
128 bool rcu_gp_is_normal(void)
130 return READ_ONCE(rcu_normal
) &&
131 rcu_scheduler_active
!= RCU_SCHEDULER_INIT
;
133 EXPORT_SYMBOL_GPL(rcu_gp_is_normal
);
135 static atomic_t rcu_expedited_nesting
=
136 ATOMIC_INIT(IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT
) ? 1 : 0);
139 * Should normal grace-period primitives be expedited? Intended for
140 * use within RCU. Note that this function takes the rcu_expedited
141 * sysfs/boot variable and rcu_scheduler_active into account as well
142 * as the rcu_expedite_gp() nesting. So looping on rcu_unexpedite_gp()
143 * until rcu_gp_is_expedited() returns false is a -really- bad idea.
145 bool rcu_gp_is_expedited(void)
147 return rcu_expedited
|| atomic_read(&rcu_expedited_nesting
) ||
148 rcu_scheduler_active
== RCU_SCHEDULER_INIT
;
150 EXPORT_SYMBOL_GPL(rcu_gp_is_expedited
);
153 * rcu_expedite_gp - Expedite future RCU grace periods
155 * After a call to this function, future calls to synchronize_rcu() and
156 * friends act as the corresponding synchronize_rcu_expedited() function
157 * had instead been called.
159 void rcu_expedite_gp(void)
161 atomic_inc(&rcu_expedited_nesting
);
163 EXPORT_SYMBOL_GPL(rcu_expedite_gp
);
166 * rcu_unexpedite_gp - Cancel prior rcu_expedite_gp() invocation
168 * Undo a prior call to rcu_expedite_gp(). If all prior calls to
169 * rcu_expedite_gp() are undone by a subsequent call to rcu_unexpedite_gp(),
170 * and if the rcu_expedited sysfs/boot parameter is not set, then all
171 * subsequent calls to synchronize_rcu() and friends will return to
172 * their normal non-expedited behavior.
174 void rcu_unexpedite_gp(void)
176 atomic_dec(&rcu_expedited_nesting
);
178 EXPORT_SYMBOL_GPL(rcu_unexpedite_gp
);
181 * Inform RCU of the end of the in-kernel boot sequence.
183 void rcu_end_inkernel_boot(void)
185 if (IS_ENABLED(CONFIG_RCU_EXPEDITE_BOOT
))
187 if (rcu_normal_after_boot
)
188 WRITE_ONCE(rcu_normal
, 1);
191 #endif /* #ifndef CONFIG_TINY_RCU */
193 #ifdef CONFIG_PREEMPT_RCU
196 * Preemptible RCU implementation for rcu_read_lock().
197 * Just increment ->rcu_read_lock_nesting, shared state will be updated
200 void __rcu_read_lock(void)
202 current
->rcu_read_lock_nesting
++;
203 barrier(); /* critical section after entry code. */
205 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
208 * Preemptible RCU implementation for rcu_read_unlock().
209 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
210 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
211 * invoke rcu_read_unlock_special() to clean up after a context switch
212 * in an RCU read-side critical section and other special cases.
214 void __rcu_read_unlock(void)
216 struct task_struct
*t
= current
;
218 if (t
->rcu_read_lock_nesting
!= 1) {
219 --t
->rcu_read_lock_nesting
;
221 barrier(); /* critical section before exit code. */
222 t
->rcu_read_lock_nesting
= INT_MIN
;
223 barrier(); /* assign before ->rcu_read_unlock_special load */
224 if (unlikely(READ_ONCE(t
->rcu_read_unlock_special
.s
)))
225 rcu_read_unlock_special(t
);
226 barrier(); /* ->rcu_read_unlock_special load before assign */
227 t
->rcu_read_lock_nesting
= 0;
229 #ifdef CONFIG_PROVE_LOCKING
231 int rrln
= READ_ONCE(t
->rcu_read_lock_nesting
);
233 WARN_ON_ONCE(rrln
< 0 && rrln
> INT_MIN
/ 2);
235 #endif /* #ifdef CONFIG_PROVE_LOCKING */
237 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
239 #endif /* #ifdef CONFIG_PREEMPT_RCU */
241 #ifdef CONFIG_DEBUG_LOCK_ALLOC
242 static struct lock_class_key rcu_lock_key
;
243 struct lockdep_map rcu_lock_map
=
244 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key
);
245 EXPORT_SYMBOL_GPL(rcu_lock_map
);
247 static struct lock_class_key rcu_bh_lock_key
;
248 struct lockdep_map rcu_bh_lock_map
=
249 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key
);
250 EXPORT_SYMBOL_GPL(rcu_bh_lock_map
);
252 static struct lock_class_key rcu_sched_lock_key
;
253 struct lockdep_map rcu_sched_lock_map
=
254 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key
);
255 EXPORT_SYMBOL_GPL(rcu_sched_lock_map
);
257 static struct lock_class_key rcu_callback_key
;
258 struct lockdep_map rcu_callback_map
=
259 STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key
);
260 EXPORT_SYMBOL_GPL(rcu_callback_map
);
262 int notrace
debug_lockdep_rcu_enabled(void)
264 return rcu_scheduler_active
!= RCU_SCHEDULER_INACTIVE
&& debug_locks
&&
265 current
->lockdep_recursion
== 0;
267 EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled
);
270 * rcu_read_lock_held() - might we be in RCU read-side critical section?
272 * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU
273 * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC,
274 * this assumes we are in an RCU read-side critical section unless it can
275 * prove otherwise. This is useful for debug checks in functions that
276 * require that they be called within an RCU read-side critical section.
278 * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot
279 * and while lockdep is disabled.
281 * Note that rcu_read_lock() and the matching rcu_read_unlock() must
282 * occur in the same context, for example, it is illegal to invoke
283 * rcu_read_unlock() in process context if the matching rcu_read_lock()
284 * was invoked from within an irq handler.
286 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
287 * offline from an RCU perspective, so check for those as well.
289 int rcu_read_lock_held(void)
291 if (!debug_lockdep_rcu_enabled())
293 if (!rcu_is_watching())
295 if (!rcu_lockdep_current_cpu_online())
297 return lock_is_held(&rcu_lock_map
);
299 EXPORT_SYMBOL_GPL(rcu_read_lock_held
);
302 * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section?
304 * Check for bottom half being disabled, which covers both the
305 * CONFIG_PROVE_RCU and not cases. Note that if someone uses
306 * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled)
307 * will show the situation. This is useful for debug checks in functions
308 * that require that they be called within an RCU read-side critical
311 * Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
313 * Note that rcu_read_lock() is disallowed if the CPU is either idle or
314 * offline from an RCU perspective, so check for those as well.
316 int rcu_read_lock_bh_held(void)
318 if (!debug_lockdep_rcu_enabled())
320 if (!rcu_is_watching())
322 if (!rcu_lockdep_current_cpu_online())
324 return in_softirq() || irqs_disabled();
326 EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held
);
328 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
331 * wakeme_after_rcu() - Callback function to awaken a task after grace period
332 * @head: Pointer to rcu_head member within rcu_synchronize structure
334 * Awaken the corresponding task now that a grace period has elapsed.
336 void wakeme_after_rcu(struct rcu_head
*head
)
338 struct rcu_synchronize
*rcu
;
340 rcu
= container_of(head
, struct rcu_synchronize
, head
);
341 complete(&rcu
->completion
);
343 EXPORT_SYMBOL_GPL(wakeme_after_rcu
);
345 void __wait_rcu_gp(bool checktiny
, int n
, call_rcu_func_t
*crcu_array
,
346 struct rcu_synchronize
*rs_array
)
350 /* Initialize and register callbacks for each flavor specified. */
351 for (i
= 0; i
< n
; i
++) {
353 (crcu_array
[i
] == call_rcu
||
354 crcu_array
[i
] == call_rcu_bh
)) {
358 init_rcu_head_on_stack(&rs_array
[i
].head
);
359 init_completion(&rs_array
[i
].completion
);
360 (crcu_array
[i
])(&rs_array
[i
].head
, wakeme_after_rcu
);
363 /* Wait for all callbacks to be invoked. */
364 for (i
= 0; i
< n
; i
++) {
366 (crcu_array
[i
] == call_rcu
||
367 crcu_array
[i
] == call_rcu_bh
))
369 wait_for_completion(&rs_array
[i
].completion
);
370 destroy_rcu_head_on_stack(&rs_array
[i
].head
);
373 EXPORT_SYMBOL_GPL(__wait_rcu_gp
);
375 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
376 void init_rcu_head(struct rcu_head
*head
)
378 debug_object_init(head
, &rcuhead_debug_descr
);
381 void destroy_rcu_head(struct rcu_head
*head
)
383 debug_object_free(head
, &rcuhead_debug_descr
);
386 static bool rcuhead_is_static_object(void *addr
)
392 * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects
393 * @head: pointer to rcu_head structure to be initialized
395 * This function informs debugobjects of a new rcu_head structure that
396 * has been allocated as an auto variable on the stack. This function
397 * is not required for rcu_head structures that are statically defined or
398 * that are dynamically allocated on the heap. This function has no
399 * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
401 void init_rcu_head_on_stack(struct rcu_head
*head
)
403 debug_object_init_on_stack(head
, &rcuhead_debug_descr
);
405 EXPORT_SYMBOL_GPL(init_rcu_head_on_stack
);
408 * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects
409 * @head: pointer to rcu_head structure to be initialized
411 * This function informs debugobjects that an on-stack rcu_head structure
412 * is about to go out of scope. As with init_rcu_head_on_stack(), this
413 * function is not required for rcu_head structures that are statically
414 * defined or that are dynamically allocated on the heap. Also as with
415 * init_rcu_head_on_stack(), this function has no effect for
416 * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
418 void destroy_rcu_head_on_stack(struct rcu_head
*head
)
420 debug_object_free(head
, &rcuhead_debug_descr
);
422 EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack
);
424 struct debug_obj_descr rcuhead_debug_descr
= {
426 .is_static_object
= rcuhead_is_static_object
,
428 EXPORT_SYMBOL_GPL(rcuhead_debug_descr
);
429 #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */
431 #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE)
432 void do_trace_rcu_torture_read(const char *rcutorturename
, struct rcu_head
*rhp
,
434 unsigned long c_old
, unsigned long c
)
436 trace_rcu_torture_read(rcutorturename
, rhp
, secs
, c_old
, c
);
438 EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read
);
440 #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \
444 #ifdef CONFIG_RCU_STALL_COMMON
446 #ifdef CONFIG_PROVE_RCU
447 #define RCU_STALL_DELAY_DELTA (5 * HZ)
449 #define RCU_STALL_DELAY_DELTA 0
452 int rcu_cpu_stall_suppress __read_mostly
; /* 1 = suppress stall warnings. */
453 static int rcu_cpu_stall_timeout __read_mostly
= CONFIG_RCU_CPU_STALL_TIMEOUT
;
455 module_param(rcu_cpu_stall_suppress
, int, 0644);
456 module_param(rcu_cpu_stall_timeout
, int, 0644);
458 int rcu_jiffies_till_stall_check(void)
460 int till_stall_check
= READ_ONCE(rcu_cpu_stall_timeout
);
463 * Limit check must be consistent with the Kconfig limits
464 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
466 if (till_stall_check
< 3) {
467 WRITE_ONCE(rcu_cpu_stall_timeout
, 3);
468 till_stall_check
= 3;
469 } else if (till_stall_check
> 300) {
470 WRITE_ONCE(rcu_cpu_stall_timeout
, 300);
471 till_stall_check
= 300;
473 return till_stall_check
* HZ
+ RCU_STALL_DELAY_DELTA
;
476 void rcu_sysrq_start(void)
478 if (!rcu_cpu_stall_suppress
)
479 rcu_cpu_stall_suppress
= 2;
482 void rcu_sysrq_end(void)
484 if (rcu_cpu_stall_suppress
== 2)
485 rcu_cpu_stall_suppress
= 0;
488 static int rcu_panic(struct notifier_block
*this, unsigned long ev
, void *ptr
)
490 rcu_cpu_stall_suppress
= 1;
494 static struct notifier_block rcu_panic_block
= {
495 .notifier_call
= rcu_panic
,
498 static int __init
check_cpu_stall_init(void)
500 atomic_notifier_chain_register(&panic_notifier_list
, &rcu_panic_block
);
503 early_initcall(check_cpu_stall_init
);
505 #endif /* #ifdef CONFIG_RCU_STALL_COMMON */
507 #ifdef CONFIG_TASKS_RCU
510 * Simple variant of RCU whose quiescent states are voluntary context switch,
511 * user-space execution, and idle. As such, grace periods can take one good
512 * long time. There are no read-side primitives similar to rcu_read_lock()
513 * and rcu_read_unlock() because this implementation is intended to get
514 * the system into a safe state for some of the manipulations involved in
515 * tracing and the like. Finally, this implementation does not support
516 * high call_rcu_tasks() rates from multiple CPUs. If this is required,
517 * per-CPU callback lists will be needed.
520 /* Global list of callbacks and associated lock. */
521 static struct rcu_head
*rcu_tasks_cbs_head
;
522 static struct rcu_head
**rcu_tasks_cbs_tail
= &rcu_tasks_cbs_head
;
523 static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq
);
524 static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock
);
526 /* Track exiting tasks in order to allow them to be waited for. */
527 DEFINE_SRCU(tasks_rcu_exit_srcu
);
529 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
530 static int rcu_task_stall_timeout __read_mostly
= HZ
* 60 * 10;
531 module_param(rcu_task_stall_timeout
, int, 0644);
533 static void rcu_spawn_tasks_kthread(void);
534 static struct task_struct
*rcu_tasks_kthread_ptr
;
537 * Post an RCU-tasks callback. First call must be from process context
538 * after the scheduler if fully operational.
540 void call_rcu_tasks(struct rcu_head
*rhp
, rcu_callback_t func
)
544 bool havetask
= READ_ONCE(rcu_tasks_kthread_ptr
);
548 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock
, flags
);
549 needwake
= !rcu_tasks_cbs_head
;
550 *rcu_tasks_cbs_tail
= rhp
;
551 rcu_tasks_cbs_tail
= &rhp
->next
;
552 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock
, flags
);
553 /* We can't create the thread unless interrupts are enabled. */
554 if ((needwake
&& havetask
) ||
555 (!havetask
&& !irqs_disabled_flags(flags
))) {
556 rcu_spawn_tasks_kthread();
557 wake_up(&rcu_tasks_cbs_wq
);
560 EXPORT_SYMBOL_GPL(call_rcu_tasks
);
563 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
565 * Control will return to the caller some time after a full rcu-tasks
566 * grace period has elapsed, in other words after all currently
567 * executing rcu-tasks read-side critical sections have elapsed. These
568 * read-side critical sections are delimited by calls to schedule(),
569 * cond_resched_rcu_qs(), idle execution, userspace execution, calls
570 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
572 * This is a very specialized primitive, intended only for a few uses in
573 * tracing and other situations requiring manipulation of function
574 * preambles and profiling hooks. The synchronize_rcu_tasks() function
575 * is not (yet) intended for heavy use from multiple CPUs.
577 * Note that this guarantee implies further memory-ordering guarantees.
578 * On systems with more than one CPU, when synchronize_rcu_tasks() returns,
579 * each CPU is guaranteed to have executed a full memory barrier since the
580 * end of its last RCU-tasks read-side critical section whose beginning
581 * preceded the call to synchronize_rcu_tasks(). In addition, each CPU
582 * having an RCU-tasks read-side critical section that extends beyond
583 * the return from synchronize_rcu_tasks() is guaranteed to have executed
584 * a full memory barrier after the beginning of synchronize_rcu_tasks()
585 * and before the beginning of that RCU-tasks read-side critical section.
586 * Note that these guarantees include CPUs that are offline, idle, or
587 * executing in user mode, as well as CPUs that are executing in the kernel.
589 * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned
590 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
591 * to have executed a full memory barrier during the execution of
592 * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU
593 * (but again only if the system has more than one CPU).
595 void synchronize_rcu_tasks(void)
597 /* Complain if the scheduler has not started. */
598 RCU_LOCKDEP_WARN(rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
,
599 "synchronize_rcu_tasks called too soon");
601 /* Wait for the grace period. */
602 wait_rcu_gp(call_rcu_tasks
);
604 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks
);
607 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
609 * Although the current implementation is guaranteed to wait, it is not
610 * obligated to, for example, if there are no pending callbacks.
612 void rcu_barrier_tasks(void)
614 /* There is only one callback queue, so this is easy. ;-) */
615 synchronize_rcu_tasks();
617 EXPORT_SYMBOL_GPL(rcu_barrier_tasks
);
619 /* See if tasks are still holding out, complain if so. */
620 static void check_holdout_task(struct task_struct
*t
,
621 bool needreport
, bool *firstreport
)
625 if (!READ_ONCE(t
->rcu_tasks_holdout
) ||
626 t
->rcu_tasks_nvcsw
!= READ_ONCE(t
->nvcsw
) ||
627 !READ_ONCE(t
->on_rq
) ||
628 (IS_ENABLED(CONFIG_NO_HZ_FULL
) &&
629 !is_idle_task(t
) && t
->rcu_tasks_idle_cpu
>= 0)) {
630 WRITE_ONCE(t
->rcu_tasks_holdout
, false);
631 list_del_init(&t
->rcu_tasks_holdout_list
);
638 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
639 *firstreport
= false;
642 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
643 t
, ".I"[is_idle_task(t
)],
644 "N."[cpu
< 0 || !tick_nohz_full_cpu(cpu
)],
645 t
->rcu_tasks_nvcsw
, t
->nvcsw
, t
->rcu_tasks_holdout
,
646 t
->rcu_tasks_idle_cpu
, cpu
);
650 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
651 static int __noreturn
rcu_tasks_kthread(void *arg
)
654 struct task_struct
*g
, *t
;
655 unsigned long lastreport
;
656 struct rcu_head
*list
;
657 struct rcu_head
*next
;
658 LIST_HEAD(rcu_tasks_holdouts
);
660 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
661 housekeeping_affine(current
);
664 * Each pass through the following loop makes one check for
665 * newly arrived callbacks, and, if there are some, waits for
666 * one RCU-tasks grace period and then invokes the callbacks.
667 * This loop is terminated by the system going down. ;-)
671 /* Pick up any new callbacks. */
672 raw_spin_lock_irqsave(&rcu_tasks_cbs_lock
, flags
);
673 list
= rcu_tasks_cbs_head
;
674 rcu_tasks_cbs_head
= NULL
;
675 rcu_tasks_cbs_tail
= &rcu_tasks_cbs_head
;
676 raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock
, flags
);
678 /* If there were none, wait a bit and start over. */
680 wait_event_interruptible(rcu_tasks_cbs_wq
,
682 if (!rcu_tasks_cbs_head
) {
683 WARN_ON(signal_pending(current
));
684 schedule_timeout_interruptible(HZ
/10);
690 * Wait for all pre-existing t->on_rq and t->nvcsw
691 * transitions to complete. Invoking synchronize_sched()
692 * suffices because all these transitions occur with
693 * interrupts disabled. Without this synchronize_sched(),
694 * a read-side critical section that started before the
695 * grace period might be incorrectly seen as having started
696 * after the grace period.
698 * This synchronize_sched() also dispenses with the
699 * need for a memory barrier on the first store to
700 * ->rcu_tasks_holdout, as it forces the store to happen
701 * after the beginning of the grace period.
706 * There were callbacks, so we need to wait for an
707 * RCU-tasks grace period. Start off by scanning
708 * the task list for tasks that are not already
709 * voluntarily blocked. Mark these tasks and make
710 * a list of them in rcu_tasks_holdouts.
713 for_each_process_thread(g
, t
) {
714 if (t
!= current
&& READ_ONCE(t
->on_rq
) &&
717 t
->rcu_tasks_nvcsw
= READ_ONCE(t
->nvcsw
);
718 WRITE_ONCE(t
->rcu_tasks_holdout
, true);
719 list_add(&t
->rcu_tasks_holdout_list
,
720 &rcu_tasks_holdouts
);
726 * Wait for tasks that are in the process of exiting.
727 * This does only part of the job, ensuring that all
728 * tasks that were previously exiting reach the point
729 * where they have disabled preemption, allowing the
730 * later synchronize_sched() to finish the job.
732 synchronize_srcu(&tasks_rcu_exit_srcu
);
735 * Each pass through the following loop scans the list
736 * of holdout tasks, removing any that are no longer
737 * holdouts. When the list is empty, we are done.
739 lastreport
= jiffies
;
740 while (!list_empty(&rcu_tasks_holdouts
)) {
744 struct task_struct
*t1
;
746 schedule_timeout_interruptible(HZ
);
747 rtst
= READ_ONCE(rcu_task_stall_timeout
);
748 needreport
= rtst
> 0 &&
749 time_after(jiffies
, lastreport
+ rtst
);
751 lastreport
= jiffies
;
753 WARN_ON(signal_pending(current
));
754 list_for_each_entry_safe(t
, t1
, &rcu_tasks_holdouts
,
755 rcu_tasks_holdout_list
) {
756 check_holdout_task(t
, needreport
, &firstreport
);
762 * Because ->on_rq and ->nvcsw are not guaranteed
763 * to have a full memory barriers prior to them in the
764 * schedule() path, memory reordering on other CPUs could
765 * cause their RCU-tasks read-side critical sections to
766 * extend past the end of the grace period. However,
767 * because these ->nvcsw updates are carried out with
768 * interrupts disabled, we can use synchronize_sched()
769 * to force the needed ordering on all such CPUs.
771 * This synchronize_sched() also confines all
772 * ->rcu_tasks_holdout accesses to be within the grace
773 * period, avoiding the need for memory barriers for
774 * ->rcu_tasks_holdout accesses.
776 * In addition, this synchronize_sched() waits for exiting
777 * tasks to complete their final preempt_disable() region
778 * of execution, cleaning up after the synchronize_srcu()
783 /* Invoke the callbacks. */
792 schedule_timeout_uninterruptible(HZ
/10);
796 /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */
797 static void rcu_spawn_tasks_kthread(void)
799 static DEFINE_MUTEX(rcu_tasks_kthread_mutex
);
800 struct task_struct
*t
;
802 if (READ_ONCE(rcu_tasks_kthread_ptr
)) {
803 smp_mb(); /* Ensure caller sees full kthread. */
806 mutex_lock(&rcu_tasks_kthread_mutex
);
807 if (rcu_tasks_kthread_ptr
) {
808 mutex_unlock(&rcu_tasks_kthread_mutex
);
811 t
= kthread_run(rcu_tasks_kthread
, NULL
, "rcu_tasks_kthread");
813 smp_mb(); /* Ensure others see full kthread. */
814 WRITE_ONCE(rcu_tasks_kthread_ptr
, t
);
815 mutex_unlock(&rcu_tasks_kthread_mutex
);
818 #endif /* #ifdef CONFIG_TASKS_RCU */
821 * Test each non-SRCU synchronous grace-period wait API. This is
822 * useful just after a change in mode for these primitives, and
825 void rcu_test_sync_prims(void)
827 if (!IS_ENABLED(CONFIG_PROVE_RCU
))
830 synchronize_rcu_bh();
832 synchronize_rcu_expedited();
833 synchronize_rcu_bh_expedited();
834 synchronize_sched_expedited();
837 #ifdef CONFIG_PROVE_RCU
840 * Early boot self test parameters, one for each flavor
842 static bool rcu_self_test
;
843 static bool rcu_self_test_bh
;
844 static bool rcu_self_test_sched
;
846 module_param(rcu_self_test
, bool, 0444);
847 module_param(rcu_self_test_bh
, bool, 0444);
848 module_param(rcu_self_test_sched
, bool, 0444);
850 static int rcu_self_test_counter
;
852 static void test_callback(struct rcu_head
*r
)
854 rcu_self_test_counter
++;
855 pr_info("RCU test callback executed %d\n", rcu_self_test_counter
);
858 static void early_boot_test_call_rcu(void)
860 static struct rcu_head head
;
862 call_rcu(&head
, test_callback
);
865 static void early_boot_test_call_rcu_bh(void)
867 static struct rcu_head head
;
869 call_rcu_bh(&head
, test_callback
);
872 static void early_boot_test_call_rcu_sched(void)
874 static struct rcu_head head
;
876 call_rcu_sched(&head
, test_callback
);
879 void rcu_early_boot_tests(void)
881 pr_info("Running RCU self tests\n");
884 early_boot_test_call_rcu();
885 if (rcu_self_test_bh
)
886 early_boot_test_call_rcu_bh();
887 if (rcu_self_test_sched
)
888 early_boot_test_call_rcu_sched();
889 rcu_test_sync_prims();
892 static int rcu_verify_early_boot_tests(void)
895 int early_boot_test_counter
= 0;
898 early_boot_test_counter
++;
901 if (rcu_self_test_bh
) {
902 early_boot_test_counter
++;
905 if (rcu_self_test_sched
) {
906 early_boot_test_counter
++;
910 if (rcu_self_test_counter
!= early_boot_test_counter
) {
917 late_initcall(rcu_verify_early_boot_tests
);
919 void rcu_early_boot_tests(void) {}
920 #endif /* CONFIG_PROVE_RCU */