1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/version.h>
30 #include <linux/net.h>
31 #include <linux/delay.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/slab.h>
35 #include <linux/blkdev.h>
36 #include <linux/spinlock.h>
37 #include <linux/kthread.h>
39 #include <linux/cdrom.h>
40 #include <asm/unaligned.h>
43 #include <scsi/scsi.h>
44 #include <scsi/scsi_cmnd.h>
45 #include <scsi/scsi_tcq.h>
47 #include <target/target_core_base.h>
48 #include <target/target_core_device.h>
49 #include <target/target_core_tmr.h>
50 #include <target/target_core_tpg.h>
51 #include <target/target_core_transport.h>
52 #include <target/target_core_fabric_ops.h>
53 #include <target/target_core_configfs.h>
55 #include "target_core_alua.h"
56 #include "target_core_hba.h"
57 #include "target_core_pr.h"
58 #include "target_core_scdb.h"
59 #include "target_core_ua.h"
61 /* #define DEBUG_CDB_HANDLER */
62 #ifdef DEBUG_CDB_HANDLER
63 #define DEBUG_CDB_H(x...) printk(KERN_INFO x)
65 #define DEBUG_CDB_H(x...)
68 /* #define DEBUG_CMD_MAP */
70 #define DEBUG_CMD_M(x...) printk(KERN_INFO x)
72 #define DEBUG_CMD_M(x...)
75 /* #define DEBUG_MEM_ALLOC */
76 #ifdef DEBUG_MEM_ALLOC
77 #define DEBUG_MEM(x...) printk(KERN_INFO x)
79 #define DEBUG_MEM(x...)
82 /* #define DEBUG_MEM2_ALLOC */
83 #ifdef DEBUG_MEM2_ALLOC
84 #define DEBUG_MEM2(x...) printk(KERN_INFO x)
86 #define DEBUG_MEM2(x...)
89 /* #define DEBUG_SG_CALC */
91 #define DEBUG_SC(x...) printk(KERN_INFO x)
93 #define DEBUG_SC(x...)
96 /* #define DEBUG_SE_OBJ */
98 #define DEBUG_SO(x...) printk(KERN_INFO x)
100 #define DEBUG_SO(x...)
103 /* #define DEBUG_CMD_VOL */
105 #define DEBUG_VOL(x...) printk(KERN_INFO x)
107 #define DEBUG_VOL(x...)
110 /* #define DEBUG_CMD_STOP */
111 #ifdef DEBUG_CMD_STOP
112 #define DEBUG_CS(x...) printk(KERN_INFO x)
114 #define DEBUG_CS(x...)
117 /* #define DEBUG_PASSTHROUGH */
118 #ifdef DEBUG_PASSTHROUGH
119 #define DEBUG_PT(x...) printk(KERN_INFO x)
121 #define DEBUG_PT(x...)
124 /* #define DEBUG_TASK_STOP */
125 #ifdef DEBUG_TASK_STOP
126 #define DEBUG_TS(x...) printk(KERN_INFO x)
128 #define DEBUG_TS(x...)
131 /* #define DEBUG_TRANSPORT_STOP */
132 #ifdef DEBUG_TRANSPORT_STOP
133 #define DEBUG_TRANSPORT_S(x...) printk(KERN_INFO x)
135 #define DEBUG_TRANSPORT_S(x...)
138 /* #define DEBUG_TASK_FAILURE */
139 #ifdef DEBUG_TASK_FAILURE
140 #define DEBUG_TF(x...) printk(KERN_INFO x)
142 #define DEBUG_TF(x...)
145 /* #define DEBUG_DEV_OFFLINE */
146 #ifdef DEBUG_DEV_OFFLINE
147 #define DEBUG_DO(x...) printk(KERN_INFO x)
149 #define DEBUG_DO(x...)
152 /* #define DEBUG_TASK_STATE */
153 #ifdef DEBUG_TASK_STATE
154 #define DEBUG_TSTATE(x...) printk(KERN_INFO x)
156 #define DEBUG_TSTATE(x...)
159 /* #define DEBUG_STATUS_THR */
160 #ifdef DEBUG_STATUS_THR
161 #define DEBUG_ST(x...) printk(KERN_INFO x)
163 #define DEBUG_ST(x...)
166 /* #define DEBUG_TASK_TIMEOUT */
167 #ifdef DEBUG_TASK_TIMEOUT
168 #define DEBUG_TT(x...) printk(KERN_INFO x)
170 #define DEBUG_TT(x...)
173 /* #define DEBUG_GENERIC_REQUEST_FAILURE */
174 #ifdef DEBUG_GENERIC_REQUEST_FAILURE
175 #define DEBUG_GRF(x...) printk(KERN_INFO x)
177 #define DEBUG_GRF(x...)
180 /* #define DEBUG_SAM_TASK_ATTRS */
181 #ifdef DEBUG_SAM_TASK_ATTRS
182 #define DEBUG_STA(x...) printk(KERN_INFO x)
184 #define DEBUG_STA(x...)
187 struct se_global
*se_global
;
189 static struct kmem_cache
*se_cmd_cache
;
190 static struct kmem_cache
*se_sess_cache
;
191 struct kmem_cache
*se_tmr_req_cache
;
192 struct kmem_cache
*se_ua_cache
;
193 struct kmem_cache
*se_mem_cache
;
194 struct kmem_cache
*t10_pr_reg_cache
;
195 struct kmem_cache
*t10_alua_lu_gp_cache
;
196 struct kmem_cache
*t10_alua_lu_gp_mem_cache
;
197 struct kmem_cache
*t10_alua_tg_pt_gp_cache
;
198 struct kmem_cache
*t10_alua_tg_pt_gp_mem_cache
;
200 /* Used for transport_dev_get_map_*() */
201 typedef int (*map_func_t
)(struct se_task
*, u32
);
203 static int transport_generic_write_pending(struct se_cmd
*);
204 static int transport_processing_thread(void *);
205 static int __transport_execute_tasks(struct se_device
*dev
);
206 static void transport_complete_task_attr(struct se_cmd
*cmd
);
207 static void transport_direct_request_timeout(struct se_cmd
*cmd
);
208 static void transport_free_dev_tasks(struct se_cmd
*cmd
);
209 static u32
transport_generic_get_cdb_count(struct se_cmd
*cmd
,
210 unsigned long long starting_lba
, u32 sectors
,
211 enum dma_data_direction data_direction
,
212 struct list_head
*mem_list
, int set_counts
);
213 static int transport_generic_get_mem(struct se_cmd
*cmd
, u32 length
,
215 static int transport_generic_remove(struct se_cmd
*cmd
,
216 int release_to_pool
, int session_reinstatement
);
217 static int transport_get_sectors(struct se_cmd
*cmd
);
218 static struct list_head
*transport_init_se_mem_list(void);
219 static int transport_map_sg_to_mem(struct se_cmd
*cmd
,
220 struct list_head
*se_mem_list
, void *in_mem
,
222 static void transport_memcpy_se_mem_read_contig(struct se_cmd
*cmd
,
223 unsigned char *dst
, struct list_head
*se_mem_list
);
224 static void transport_release_fe_cmd(struct se_cmd
*cmd
);
225 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
226 struct se_queue_obj
*qobj
);
227 static int transport_set_sense_codes(struct se_cmd
*cmd
, u8 asc
, u8 ascq
);
228 static void transport_stop_all_task_timers(struct se_cmd
*cmd
);
230 int init_se_global(void)
232 struct se_global
*global
;
234 global
= kzalloc(sizeof(struct se_global
), GFP_KERNEL
);
236 printk(KERN_ERR
"Unable to allocate memory for struct se_global\n");
240 INIT_LIST_HEAD(&global
->g_lu_gps_list
);
241 INIT_LIST_HEAD(&global
->g_se_tpg_list
);
242 INIT_LIST_HEAD(&global
->g_hba_list
);
243 INIT_LIST_HEAD(&global
->g_se_dev_list
);
244 spin_lock_init(&global
->g_device_lock
);
245 spin_lock_init(&global
->hba_lock
);
246 spin_lock_init(&global
->se_tpg_lock
);
247 spin_lock_init(&global
->lu_gps_lock
);
248 spin_lock_init(&global
->plugin_class_lock
);
250 se_cmd_cache
= kmem_cache_create("se_cmd_cache",
251 sizeof(struct se_cmd
), __alignof__(struct se_cmd
), 0, NULL
);
252 if (!(se_cmd_cache
)) {
253 printk(KERN_ERR
"kmem_cache_create for struct se_cmd failed\n");
256 se_tmr_req_cache
= kmem_cache_create("se_tmr_cache",
257 sizeof(struct se_tmr_req
), __alignof__(struct se_tmr_req
),
259 if (!(se_tmr_req_cache
)) {
260 printk(KERN_ERR
"kmem_cache_create() for struct se_tmr_req"
264 se_sess_cache
= kmem_cache_create("se_sess_cache",
265 sizeof(struct se_session
), __alignof__(struct se_session
),
267 if (!(se_sess_cache
)) {
268 printk(KERN_ERR
"kmem_cache_create() for struct se_session"
272 se_ua_cache
= kmem_cache_create("se_ua_cache",
273 sizeof(struct se_ua
), __alignof__(struct se_ua
),
275 if (!(se_ua_cache
)) {
276 printk(KERN_ERR
"kmem_cache_create() for struct se_ua failed\n");
279 se_mem_cache
= kmem_cache_create("se_mem_cache",
280 sizeof(struct se_mem
), __alignof__(struct se_mem
), 0, NULL
);
281 if (!(se_mem_cache
)) {
282 printk(KERN_ERR
"kmem_cache_create() for struct se_mem failed\n");
285 t10_pr_reg_cache
= kmem_cache_create("t10_pr_reg_cache",
286 sizeof(struct t10_pr_registration
),
287 __alignof__(struct t10_pr_registration
), 0, NULL
);
288 if (!(t10_pr_reg_cache
)) {
289 printk(KERN_ERR
"kmem_cache_create() for struct t10_pr_registration"
293 t10_alua_lu_gp_cache
= kmem_cache_create("t10_alua_lu_gp_cache",
294 sizeof(struct t10_alua_lu_gp
), __alignof__(struct t10_alua_lu_gp
),
296 if (!(t10_alua_lu_gp_cache
)) {
297 printk(KERN_ERR
"kmem_cache_create() for t10_alua_lu_gp_cache"
301 t10_alua_lu_gp_mem_cache
= kmem_cache_create("t10_alua_lu_gp_mem_cache",
302 sizeof(struct t10_alua_lu_gp_member
),
303 __alignof__(struct t10_alua_lu_gp_member
), 0, NULL
);
304 if (!(t10_alua_lu_gp_mem_cache
)) {
305 printk(KERN_ERR
"kmem_cache_create() for t10_alua_lu_gp_mem_"
309 t10_alua_tg_pt_gp_cache
= kmem_cache_create("t10_alua_tg_pt_gp_cache",
310 sizeof(struct t10_alua_tg_pt_gp
),
311 __alignof__(struct t10_alua_tg_pt_gp
), 0, NULL
);
312 if (!(t10_alua_tg_pt_gp_cache
)) {
313 printk(KERN_ERR
"kmem_cache_create() for t10_alua_tg_pt_gp_"
317 t10_alua_tg_pt_gp_mem_cache
= kmem_cache_create(
318 "t10_alua_tg_pt_gp_mem_cache",
319 sizeof(struct t10_alua_tg_pt_gp_member
),
320 __alignof__(struct t10_alua_tg_pt_gp_member
),
322 if (!(t10_alua_tg_pt_gp_mem_cache
)) {
323 printk(KERN_ERR
"kmem_cache_create() for t10_alua_tg_pt_gp_"
333 kmem_cache_destroy(se_cmd_cache
);
334 if (se_tmr_req_cache
)
335 kmem_cache_destroy(se_tmr_req_cache
);
337 kmem_cache_destroy(se_sess_cache
);
339 kmem_cache_destroy(se_ua_cache
);
341 kmem_cache_destroy(se_mem_cache
);
342 if (t10_pr_reg_cache
)
343 kmem_cache_destroy(t10_pr_reg_cache
);
344 if (t10_alua_lu_gp_cache
)
345 kmem_cache_destroy(t10_alua_lu_gp_cache
);
346 if (t10_alua_lu_gp_mem_cache
)
347 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
348 if (t10_alua_tg_pt_gp_cache
)
349 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
350 if (t10_alua_tg_pt_gp_mem_cache
)
351 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
356 void release_se_global(void)
358 struct se_global
*global
;
364 kmem_cache_destroy(se_cmd_cache
);
365 kmem_cache_destroy(se_tmr_req_cache
);
366 kmem_cache_destroy(se_sess_cache
);
367 kmem_cache_destroy(se_ua_cache
);
368 kmem_cache_destroy(se_mem_cache
);
369 kmem_cache_destroy(t10_pr_reg_cache
);
370 kmem_cache_destroy(t10_alua_lu_gp_cache
);
371 kmem_cache_destroy(t10_alua_lu_gp_mem_cache
);
372 kmem_cache_destroy(t10_alua_tg_pt_gp_cache
);
373 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache
);
379 /* SCSI statistics table index */
380 static struct scsi_index_table scsi_index_table
;
383 * Initialize the index table for allocating unique row indexes to various mib
386 void init_scsi_index_table(void)
388 memset(&scsi_index_table
, 0, sizeof(struct scsi_index_table
));
389 spin_lock_init(&scsi_index_table
.lock
);
393 * Allocate a new row index for the entry type specified
395 u32
scsi_get_new_index(scsi_index_t type
)
399 if ((type
< 0) || (type
>= SCSI_INDEX_TYPE_MAX
)) {
400 printk(KERN_ERR
"Invalid index type %d\n", type
);
404 spin_lock(&scsi_index_table
.lock
);
405 new_index
= ++scsi_index_table
.scsi_mib_index
[type
];
407 new_index
= ++scsi_index_table
.scsi_mib_index
[type
];
408 spin_unlock(&scsi_index_table
.lock
);
413 void transport_init_queue_obj(struct se_queue_obj
*qobj
)
415 atomic_set(&qobj
->queue_cnt
, 0);
416 INIT_LIST_HEAD(&qobj
->qobj_list
);
417 init_waitqueue_head(&qobj
->thread_wq
);
418 spin_lock_init(&qobj
->cmd_queue_lock
);
420 EXPORT_SYMBOL(transport_init_queue_obj
);
422 static int transport_subsystem_reqmods(void)
426 ret
= request_module("target_core_iblock");
428 printk(KERN_ERR
"Unable to load target_core_iblock\n");
430 ret
= request_module("target_core_file");
432 printk(KERN_ERR
"Unable to load target_core_file\n");
434 ret
= request_module("target_core_pscsi");
436 printk(KERN_ERR
"Unable to load target_core_pscsi\n");
438 ret
= request_module("target_core_stgt");
440 printk(KERN_ERR
"Unable to load target_core_stgt\n");
445 int transport_subsystem_check_init(void)
447 if (se_global
->g_sub_api_initialized
)
450 * Request the loading of known TCM subsystem plugins..
452 if (transport_subsystem_reqmods() < 0)
455 se_global
->g_sub_api_initialized
= 1;
459 struct se_session
*transport_init_session(void)
461 struct se_session
*se_sess
;
463 se_sess
= kmem_cache_zalloc(se_sess_cache
, GFP_KERNEL
);
465 printk(KERN_ERR
"Unable to allocate struct se_session from"
467 return ERR_PTR(-ENOMEM
);
469 INIT_LIST_HEAD(&se_sess
->sess_list
);
470 INIT_LIST_HEAD(&se_sess
->sess_acl_list
);
474 EXPORT_SYMBOL(transport_init_session
);
477 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
479 void __transport_register_session(
480 struct se_portal_group
*se_tpg
,
481 struct se_node_acl
*se_nacl
,
482 struct se_session
*se_sess
,
483 void *fabric_sess_ptr
)
485 unsigned char buf
[PR_REG_ISID_LEN
];
487 se_sess
->se_tpg
= se_tpg
;
488 se_sess
->fabric_sess_ptr
= fabric_sess_ptr
;
490 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
492 * Only set for struct se_session's that will actually be moving I/O.
493 * eg: *NOT* discovery sessions.
497 * If the fabric module supports an ISID based TransportID,
498 * save this value in binary from the fabric I_T Nexus now.
500 if (TPG_TFO(se_tpg
)->sess_get_initiator_sid
!= NULL
) {
501 memset(&buf
[0], 0, PR_REG_ISID_LEN
);
502 TPG_TFO(se_tpg
)->sess_get_initiator_sid(se_sess
,
503 &buf
[0], PR_REG_ISID_LEN
);
504 se_sess
->sess_bin_isid
= get_unaligned_be64(&buf
[0]);
506 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
508 * The se_nacl->nacl_sess pointer will be set to the
509 * last active I_T Nexus for each struct se_node_acl.
511 se_nacl
->nacl_sess
= se_sess
;
513 list_add_tail(&se_sess
->sess_acl_list
,
514 &se_nacl
->acl_sess_list
);
515 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
517 list_add_tail(&se_sess
->sess_list
, &se_tpg
->tpg_sess_list
);
519 printk(KERN_INFO
"TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
520 TPG_TFO(se_tpg
)->get_fabric_name(), se_sess
->fabric_sess_ptr
);
522 EXPORT_SYMBOL(__transport_register_session
);
524 void transport_register_session(
525 struct se_portal_group
*se_tpg
,
526 struct se_node_acl
*se_nacl
,
527 struct se_session
*se_sess
,
528 void *fabric_sess_ptr
)
530 spin_lock_bh(&se_tpg
->session_lock
);
531 __transport_register_session(se_tpg
, se_nacl
, se_sess
, fabric_sess_ptr
);
532 spin_unlock_bh(&se_tpg
->session_lock
);
534 EXPORT_SYMBOL(transport_register_session
);
536 void transport_deregister_session_configfs(struct se_session
*se_sess
)
538 struct se_node_acl
*se_nacl
;
541 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
543 se_nacl
= se_sess
->se_node_acl
;
545 spin_lock_irq(&se_nacl
->nacl_sess_lock
);
546 list_del(&se_sess
->sess_acl_list
);
548 * If the session list is empty, then clear the pointer.
549 * Otherwise, set the struct se_session pointer from the tail
550 * element of the per struct se_node_acl active session list.
552 if (list_empty(&se_nacl
->acl_sess_list
))
553 se_nacl
->nacl_sess
= NULL
;
555 se_nacl
->nacl_sess
= container_of(
556 se_nacl
->acl_sess_list
.prev
,
557 struct se_session
, sess_acl_list
);
559 spin_unlock_irq(&se_nacl
->nacl_sess_lock
);
562 EXPORT_SYMBOL(transport_deregister_session_configfs
);
564 void transport_free_session(struct se_session
*se_sess
)
566 kmem_cache_free(se_sess_cache
, se_sess
);
568 EXPORT_SYMBOL(transport_free_session
);
570 void transport_deregister_session(struct se_session
*se_sess
)
572 struct se_portal_group
*se_tpg
= se_sess
->se_tpg
;
573 struct se_node_acl
*se_nacl
;
576 transport_free_session(se_sess
);
580 spin_lock_bh(&se_tpg
->session_lock
);
581 list_del(&se_sess
->sess_list
);
582 se_sess
->se_tpg
= NULL
;
583 se_sess
->fabric_sess_ptr
= NULL
;
584 spin_unlock_bh(&se_tpg
->session_lock
);
587 * Determine if we need to do extra work for this initiator node's
588 * struct se_node_acl if it had been previously dynamically generated.
590 se_nacl
= se_sess
->se_node_acl
;
592 spin_lock_bh(&se_tpg
->acl_node_lock
);
593 if (se_nacl
->dynamic_node_acl
) {
594 if (!(TPG_TFO(se_tpg
)->tpg_check_demo_mode_cache(
596 list_del(&se_nacl
->acl_list
);
597 se_tpg
->num_node_acls
--;
598 spin_unlock_bh(&se_tpg
->acl_node_lock
);
600 core_tpg_wait_for_nacl_pr_ref(se_nacl
);
601 core_free_device_list_for_node(se_nacl
, se_tpg
);
602 TPG_TFO(se_tpg
)->tpg_release_fabric_acl(se_tpg
,
604 spin_lock_bh(&se_tpg
->acl_node_lock
);
607 spin_unlock_bh(&se_tpg
->acl_node_lock
);
610 transport_free_session(se_sess
);
612 printk(KERN_INFO
"TARGET_CORE[%s]: Deregistered fabric_sess\n",
613 TPG_TFO(se_tpg
)->get_fabric_name());
615 EXPORT_SYMBOL(transport_deregister_session
);
618 * Called with T_TASK(cmd)->t_state_lock held.
620 static void transport_all_task_dev_remove_state(struct se_cmd
*cmd
)
622 struct se_device
*dev
;
623 struct se_task
*task
;
629 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
634 if (atomic_read(&task
->task_active
))
637 if (!(atomic_read(&task
->task_state_active
)))
640 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
641 list_del(&task
->t_state_list
);
642 DEBUG_TSTATE("Removed ITT: 0x%08x dev: %p task[%p]\n",
643 CMD_TFO(cmd
)->tfo_get_task_tag(cmd
), dev
, task
);
644 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
646 atomic_set(&task
->task_state_active
, 0);
647 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_ex_left
);
651 /* transport_cmd_check_stop():
653 * 'transport_off = 1' determines if t_transport_active should be cleared.
654 * 'transport_off = 2' determines if task_dev_state should be removed.
656 * A non-zero u8 t_state sets cmd->t_state.
657 * Returns 1 when command is stopped, else 0.
659 static int transport_cmd_check_stop(
666 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
668 * Determine if IOCTL context caller in requesting the stopping of this
669 * command for LUN shutdown purposes.
671 if (atomic_read(&T_TASK(cmd
)->transport_lun_stop
)) {
672 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->transport_lun_stop)"
673 " == TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
674 CMD_TFO(cmd
)->get_task_tag(cmd
));
676 cmd
->deferred_t_state
= cmd
->t_state
;
677 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
678 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
679 if (transport_off
== 2)
680 transport_all_task_dev_remove_state(cmd
);
681 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
683 complete(&T_TASK(cmd
)->transport_lun_stop_comp
);
687 * Determine if frontend context caller is requesting the stopping of
688 * this command for frontend excpections.
690 if (atomic_read(&T_TASK(cmd
)->t_transport_stop
)) {
691 DEBUG_CS("%s:%d atomic_read(&T_TASK(cmd)->t_transport_stop) =="
692 " TRUE for ITT: 0x%08x\n", __func__
, __LINE__
,
693 CMD_TFO(cmd
)->get_task_tag(cmd
));
695 cmd
->deferred_t_state
= cmd
->t_state
;
696 cmd
->t_state
= TRANSPORT_DEFERRED_CMD
;
697 if (transport_off
== 2)
698 transport_all_task_dev_remove_state(cmd
);
701 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
704 if (transport_off
== 2)
706 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
708 complete(&T_TASK(cmd
)->t_transport_stop_comp
);
712 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
713 if (transport_off
== 2) {
714 transport_all_task_dev_remove_state(cmd
);
716 * Clear struct se_cmd->se_lun before the transport_off == 2
717 * handoff to fabric module.
721 * Some fabric modules like tcm_loop can release
722 * their internally allocated I/O reference now and
725 if (CMD_TFO(cmd
)->check_stop_free
!= NULL
) {
726 spin_unlock_irqrestore(
727 &T_TASK(cmd
)->t_state_lock
, flags
);
729 CMD_TFO(cmd
)->check_stop_free(cmd
);
733 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
737 cmd
->t_state
= t_state
;
738 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
743 static int transport_cmd_check_stop_to_fabric(struct se_cmd
*cmd
)
745 return transport_cmd_check_stop(cmd
, 2, 0);
748 static void transport_lun_remove_cmd(struct se_cmd
*cmd
)
750 struct se_lun
*lun
= SE_LUN(cmd
);
756 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
757 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
758 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
761 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
762 transport_all_task_dev_remove_state(cmd
);
763 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
767 spin_lock_irqsave(&lun
->lun_cmd_lock
, flags
);
768 if (atomic_read(&T_TASK(cmd
)->transport_lun_active
)) {
769 list_del(&cmd
->se_lun_list
);
770 atomic_set(&T_TASK(cmd
)->transport_lun_active
, 0);
772 printk(KERN_INFO
"Removed ITT: 0x%08x from LUN LIST[%d]\n"
773 CMD_TFO(cmd
)->get_task_tag(cmd
), lun
->unpacked_lun
);
776 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, flags
);
779 void transport_cmd_finish_abort(struct se_cmd
*cmd
, int remove
)
781 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
782 transport_lun_remove_cmd(cmd
);
784 if (transport_cmd_check_stop_to_fabric(cmd
))
787 transport_generic_remove(cmd
, 0, 0);
790 void transport_cmd_finish_abort_tmr(struct se_cmd
*cmd
)
792 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
794 if (transport_cmd_check_stop_to_fabric(cmd
))
797 transport_generic_remove(cmd
, 0, 0);
800 static int transport_add_cmd_to_queue(
804 struct se_device
*dev
= cmd
->se_dev
;
805 struct se_queue_obj
*qobj
= dev
->dev_queue_obj
;
806 struct se_queue_req
*qr
;
809 qr
= kzalloc(sizeof(struct se_queue_req
), GFP_ATOMIC
);
811 printk(KERN_ERR
"Unable to allocate memory for"
812 " struct se_queue_req\n");
815 INIT_LIST_HEAD(&qr
->qr_list
);
817 qr
->cmd
= (void *)cmd
;
821 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
822 cmd
->t_state
= t_state
;
823 atomic_set(&T_TASK(cmd
)->t_transport_active
, 1);
824 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
827 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
828 list_add_tail(&qr
->qr_list
, &qobj
->qobj_list
);
829 atomic_inc(&T_TASK(cmd
)->t_transport_queue_active
);
830 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
832 atomic_inc(&qobj
->queue_cnt
);
833 wake_up_interruptible(&qobj
->thread_wq
);
838 * Called with struct se_queue_obj->cmd_queue_lock held.
840 static struct se_queue_req
*
841 __transport_get_qr_from_queue(struct se_queue_obj
*qobj
)
844 struct se_queue_req
*qr
= NULL
;
846 if (list_empty(&qobj
->qobj_list
))
849 list_for_each_entry(qr
, &qobj
->qobj_list
, qr_list
)
853 cmd
= (struct se_cmd
*)qr
->cmd
;
854 atomic_dec(&T_TASK(cmd
)->t_transport_queue_active
);
856 list_del(&qr
->qr_list
);
857 atomic_dec(&qobj
->queue_cnt
);
862 static struct se_queue_req
*
863 transport_get_qr_from_queue(struct se_queue_obj
*qobj
)
866 struct se_queue_req
*qr
;
869 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
870 if (list_empty(&qobj
->qobj_list
)) {
871 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
875 list_for_each_entry(qr
, &qobj
->qobj_list
, qr_list
)
879 cmd
= (struct se_cmd
*)qr
->cmd
;
880 atomic_dec(&T_TASK(cmd
)->t_transport_queue_active
);
882 list_del(&qr
->qr_list
);
883 atomic_dec(&qobj
->queue_cnt
);
884 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
889 static void transport_remove_cmd_from_queue(struct se_cmd
*cmd
,
890 struct se_queue_obj
*qobj
)
892 struct se_cmd
*q_cmd
;
893 struct se_queue_req
*qr
= NULL
, *qr_p
= NULL
;
896 spin_lock_irqsave(&qobj
->cmd_queue_lock
, flags
);
897 if (!(atomic_read(&T_TASK(cmd
)->t_transport_queue_active
))) {
898 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
902 list_for_each_entry_safe(qr
, qr_p
, &qobj
->qobj_list
, qr_list
) {
903 q_cmd
= (struct se_cmd
*)qr
->cmd
;
907 atomic_dec(&T_TASK(q_cmd
)->t_transport_queue_active
);
908 atomic_dec(&qobj
->queue_cnt
);
909 list_del(&qr
->qr_list
);
912 spin_unlock_irqrestore(&qobj
->cmd_queue_lock
, flags
);
914 if (atomic_read(&T_TASK(cmd
)->t_transport_queue_active
)) {
915 printk(KERN_ERR
"ITT: 0x%08x t_transport_queue_active: %d\n",
916 CMD_TFO(cmd
)->get_task_tag(cmd
),
917 atomic_read(&T_TASK(cmd
)->t_transport_queue_active
));
922 * Completion function used by TCM subsystem plugins (such as FILEIO)
923 * for queueing up response from struct se_subsystem_api->do_task()
925 void transport_complete_sync_cache(struct se_cmd
*cmd
, int good
)
927 struct se_task
*task
= list_entry(T_TASK(cmd
)->t_task_list
.next
,
928 struct se_task
, t_list
);
931 cmd
->scsi_status
= SAM_STAT_GOOD
;
932 task
->task_scsi_status
= GOOD
;
934 task
->task_scsi_status
= SAM_STAT_CHECK_CONDITION
;
935 task
->task_error_status
= PYX_TRANSPORT_ILLEGAL_REQUEST
;
936 TASK_CMD(task
)->transport_error_status
=
937 PYX_TRANSPORT_ILLEGAL_REQUEST
;
940 transport_complete_task(task
, good
);
942 EXPORT_SYMBOL(transport_complete_sync_cache
);
944 /* transport_complete_task():
946 * Called from interrupt and non interrupt context depending
947 * on the transport plugin.
949 void transport_complete_task(struct se_task
*task
, int success
)
951 struct se_cmd
*cmd
= TASK_CMD(task
);
952 struct se_device
*dev
= task
->se_dev
;
956 printk(KERN_INFO
"task: %p CDB: 0x%02x obj_ptr: %p\n", task
,
957 T_TASK(cmd
)->t_task_cdb
[0], dev
);
960 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
961 atomic_inc(&dev
->depth_left
);
962 atomic_inc(&SE_HBA(dev
)->left_queue_depth
);
963 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
966 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
967 atomic_set(&task
->task_active
, 0);
970 * See if any sense data exists, if so set the TASK_SENSE flag.
971 * Also check for any other post completion work that needs to be
972 * done by the plugins.
974 if (dev
&& dev
->transport
->transport_complete
) {
975 if (dev
->transport
->transport_complete(task
) != 0) {
976 cmd
->se_cmd_flags
|= SCF_TRANSPORT_TASK_SENSE
;
977 task
->task_sense
= 1;
983 * See if we are waiting for outstanding struct se_task
984 * to complete for an exception condition
986 if (atomic_read(&task
->task_stop
)) {
988 * Decrement T_TASK(cmd)->t_se_count if this task had
989 * previously thrown its timeout exception handler.
991 if (atomic_read(&task
->task_timeout
)) {
992 atomic_dec(&T_TASK(cmd
)->t_se_count
);
993 atomic_set(&task
->task_timeout
, 0);
995 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
997 complete(&task
->task_stop_comp
);
1001 * If the task's timeout handler has fired, use the t_task_cdbs_timeout
1002 * left counter to determine when the struct se_cmd is ready to be queued to
1003 * the processing thread.
1005 if (atomic_read(&task
->task_timeout
)) {
1006 if (!(atomic_dec_and_test(
1007 &T_TASK(cmd
)->t_task_cdbs_timeout_left
))) {
1008 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
1012 t_state
= TRANSPORT_COMPLETE_TIMEOUT
;
1013 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1015 transport_add_cmd_to_queue(cmd
, t_state
);
1018 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_timeout_left
);
1021 * Decrement the outstanding t_task_cdbs_left count. The last
1022 * struct se_task from struct se_cmd will complete itself into the
1023 * device queue depending upon int success.
1025 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_left
))) {
1027 T_TASK(cmd
)->t_tasks_failed
= 1;
1029 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1033 if (!success
|| T_TASK(cmd
)->t_tasks_failed
) {
1034 t_state
= TRANSPORT_COMPLETE_FAILURE
;
1035 if (!task
->task_error_status
) {
1036 task
->task_error_status
=
1037 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
1038 cmd
->transport_error_status
=
1039 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
;
1042 atomic_set(&T_TASK(cmd
)->t_transport_complete
, 1);
1043 t_state
= TRANSPORT_COMPLETE_OK
;
1045 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1047 transport_add_cmd_to_queue(cmd
, t_state
);
1049 EXPORT_SYMBOL(transport_complete_task
);
1052 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
1053 * struct se_task list are ready to be added to the active execution list
1056 * Called with se_dev_t->execute_task_lock called.
1058 static inline int transport_add_task_check_sam_attr(
1059 struct se_task
*task
,
1060 struct se_task
*task_prev
,
1061 struct se_device
*dev
)
1064 * No SAM Task attribute emulation enabled, add to tail of
1067 if (dev
->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
) {
1068 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
1072 * HEAD_OF_QUEUE attribute for received CDB, which means
1073 * the first task that is associated with a struct se_cmd goes to
1074 * head of the struct se_device->execute_task_list, and task_prev
1075 * after that for each subsequent task
1077 if (task
->task_se_cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
1078 list_add(&task
->t_execute_list
,
1079 (task_prev
!= NULL
) ?
1080 &task_prev
->t_execute_list
:
1081 &dev
->execute_task_list
);
1083 DEBUG_STA("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
1084 " in execution queue\n",
1085 T_TASK(task
->task_se_cmd
)->t_task_cdb
[0]);
1089 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
1090 * transitioned from Dermant -> Active state, and are added to the end
1091 * of the struct se_device->execute_task_list
1093 list_add_tail(&task
->t_execute_list
, &dev
->execute_task_list
);
1097 /* __transport_add_task_to_execute_queue():
1099 * Called with se_dev_t->execute_task_lock called.
1101 static void __transport_add_task_to_execute_queue(
1102 struct se_task
*task
,
1103 struct se_task
*task_prev
,
1104 struct se_device
*dev
)
1108 head_of_queue
= transport_add_task_check_sam_attr(task
, task_prev
, dev
);
1109 atomic_inc(&dev
->execute_tasks
);
1111 if (atomic_read(&task
->task_state_active
))
1114 * Determine if this task needs to go to HEAD_OF_QUEUE for the
1115 * state list as well. Running with SAM Task Attribute emulation
1116 * will always return head_of_queue == 0 here
1119 list_add(&task
->t_state_list
, (task_prev
) ?
1120 &task_prev
->t_state_list
:
1121 &dev
->state_task_list
);
1123 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
1125 atomic_set(&task
->task_state_active
, 1);
1127 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1128 CMD_TFO(task
->task_se_cmd
)->get_task_tag(task
->task_se_cmd
),
1132 static void transport_add_tasks_to_state_queue(struct se_cmd
*cmd
)
1134 struct se_device
*dev
;
1135 struct se_task
*task
;
1136 unsigned long flags
;
1138 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
1139 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
1142 if (atomic_read(&task
->task_state_active
))
1145 spin_lock(&dev
->execute_task_lock
);
1146 list_add_tail(&task
->t_state_list
, &dev
->state_task_list
);
1147 atomic_set(&task
->task_state_active
, 1);
1149 DEBUG_TSTATE("Added ITT: 0x%08x task[%p] to dev: %p\n",
1150 CMD_TFO(task
->task_se_cmd
)->get_task_tag(
1151 task
->task_se_cmd
), task
, dev
);
1153 spin_unlock(&dev
->execute_task_lock
);
1155 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1158 static void transport_add_tasks_from_cmd(struct se_cmd
*cmd
)
1160 struct se_device
*dev
= SE_DEV(cmd
);
1161 struct se_task
*task
, *task_prev
= NULL
;
1162 unsigned long flags
;
1164 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
1165 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
1166 if (atomic_read(&task
->task_execute_queue
))
1169 * __transport_add_task_to_execute_queue() handles the
1170 * SAM Task Attribute emulation if enabled
1172 __transport_add_task_to_execute_queue(task
, task_prev
, dev
);
1173 atomic_set(&task
->task_execute_queue
, 1);
1176 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
1181 /* transport_get_task_from_execute_queue():
1183 * Called with dev->execute_task_lock held.
1185 static struct se_task
*
1186 transport_get_task_from_execute_queue(struct se_device
*dev
)
1188 struct se_task
*task
;
1190 if (list_empty(&dev
->execute_task_list
))
1193 list_for_each_entry(task
, &dev
->execute_task_list
, t_execute_list
)
1196 list_del(&task
->t_execute_list
);
1197 atomic_set(&task
->task_execute_queue
, 0);
1198 atomic_dec(&dev
->execute_tasks
);
1203 /* transport_remove_task_from_execute_queue():
1207 void transport_remove_task_from_execute_queue(
1208 struct se_task
*task
,
1209 struct se_device
*dev
)
1211 unsigned long flags
;
1213 if (atomic_read(&task
->task_execute_queue
) == 0) {
1218 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
1219 list_del(&task
->t_execute_list
);
1220 atomic_set(&task
->task_execute_queue
, 0);
1221 atomic_dec(&dev
->execute_tasks
);
1222 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
1225 unsigned char *transport_dump_cmd_direction(struct se_cmd
*cmd
)
1227 switch (cmd
->data_direction
) {
1230 case DMA_FROM_DEVICE
:
1234 case DMA_BIDIRECTIONAL
:
1243 void transport_dump_dev_state(
1244 struct se_device
*dev
,
1248 *bl
+= sprintf(b
+ *bl
, "Status: ");
1249 switch (dev
->dev_status
) {
1250 case TRANSPORT_DEVICE_ACTIVATED
:
1251 *bl
+= sprintf(b
+ *bl
, "ACTIVATED");
1253 case TRANSPORT_DEVICE_DEACTIVATED
:
1254 *bl
+= sprintf(b
+ *bl
, "DEACTIVATED");
1256 case TRANSPORT_DEVICE_SHUTDOWN
:
1257 *bl
+= sprintf(b
+ *bl
, "SHUTDOWN");
1259 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED
:
1260 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED
:
1261 *bl
+= sprintf(b
+ *bl
, "OFFLINE");
1264 *bl
+= sprintf(b
+ *bl
, "UNKNOWN=%d", dev
->dev_status
);
1268 *bl
+= sprintf(b
+ *bl
, " Execute/Left/Max Queue Depth: %d/%d/%d",
1269 atomic_read(&dev
->execute_tasks
), atomic_read(&dev
->depth_left
),
1271 *bl
+= sprintf(b
+ *bl
, " SectorSize: %u MaxSectors: %u\n",
1272 DEV_ATTRIB(dev
)->block_size
, DEV_ATTRIB(dev
)->max_sectors
);
1273 *bl
+= sprintf(b
+ *bl
, " ");
1276 /* transport_release_all_cmds():
1280 static void transport_release_all_cmds(struct se_device
*dev
)
1282 struct se_cmd
*cmd
= NULL
;
1283 struct se_queue_req
*qr
= NULL
, *qr_p
= NULL
;
1284 int bug_out
= 0, t_state
;
1285 unsigned long flags
;
1287 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1288 list_for_each_entry_safe(qr
, qr_p
, &dev
->dev_queue_obj
->qobj_list
,
1291 cmd
= (struct se_cmd
*)qr
->cmd
;
1292 t_state
= qr
->state
;
1293 list_del(&qr
->qr_list
);
1295 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
,
1298 printk(KERN_ERR
"Releasing ITT: 0x%08x, i_state: %u,"
1299 " t_state: %u directly\n",
1300 CMD_TFO(cmd
)->get_task_tag(cmd
),
1301 CMD_TFO(cmd
)->get_cmd_state(cmd
), t_state
);
1303 transport_release_fe_cmd(cmd
);
1306 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1308 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
1315 void transport_dump_vpd_proto_id(
1316 struct t10_vpd
*vpd
,
1317 unsigned char *p_buf
,
1320 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1323 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1324 len
= sprintf(buf
, "T10 VPD Protocol Identifier: ");
1326 switch (vpd
->protocol_identifier
) {
1328 sprintf(buf
+len
, "Fibre Channel\n");
1331 sprintf(buf
+len
, "Parallel SCSI\n");
1334 sprintf(buf
+len
, "SSA\n");
1337 sprintf(buf
+len
, "IEEE 1394\n");
1340 sprintf(buf
+len
, "SCSI Remote Direct Memory Access"
1344 sprintf(buf
+len
, "Internet SCSI (iSCSI)\n");
1347 sprintf(buf
+len
, "SAS Serial SCSI Protocol\n");
1350 sprintf(buf
+len
, "Automation/Drive Interface Transport"
1354 sprintf(buf
+len
, "AT Attachment Interface ATA/ATAPI\n");
1357 sprintf(buf
+len
, "Unknown 0x%02x\n",
1358 vpd
->protocol_identifier
);
1363 strncpy(p_buf
, buf
, p_buf_len
);
1365 printk(KERN_INFO
"%s", buf
);
1369 transport_set_vpd_proto_id(struct t10_vpd
*vpd
, unsigned char *page_83
)
1372 * Check if the Protocol Identifier Valid (PIV) bit is set..
1374 * from spc3r23.pdf section 7.5.1
1376 if (page_83
[1] & 0x80) {
1377 vpd
->protocol_identifier
= (page_83
[0] & 0xf0);
1378 vpd
->protocol_identifier_set
= 1;
1379 transport_dump_vpd_proto_id(vpd
, NULL
, 0);
1382 EXPORT_SYMBOL(transport_set_vpd_proto_id
);
1384 int transport_dump_vpd_assoc(
1385 struct t10_vpd
*vpd
,
1386 unsigned char *p_buf
,
1389 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1392 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1393 len
= sprintf(buf
, "T10 VPD Identifier Association: ");
1395 switch (vpd
->association
) {
1397 sprintf(buf
+len
, "addressed logical unit\n");
1400 sprintf(buf
+len
, "target port\n");
1403 sprintf(buf
+len
, "SCSI target device\n");
1406 sprintf(buf
+len
, "Unknown 0x%02x\n", vpd
->association
);
1412 strncpy(p_buf
, buf
, p_buf_len
);
1419 int transport_set_vpd_assoc(struct t10_vpd
*vpd
, unsigned char *page_83
)
1422 * The VPD identification association..
1424 * from spc3r23.pdf Section 7.6.3.1 Table 297
1426 vpd
->association
= (page_83
[1] & 0x30);
1427 return transport_dump_vpd_assoc(vpd
, NULL
, 0);
1429 EXPORT_SYMBOL(transport_set_vpd_assoc
);
1431 int transport_dump_vpd_ident_type(
1432 struct t10_vpd
*vpd
,
1433 unsigned char *p_buf
,
1436 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1439 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1440 len
= sprintf(buf
, "T10 VPD Identifier Type: ");
1442 switch (vpd
->device_identifier_type
) {
1444 sprintf(buf
+len
, "Vendor specific\n");
1447 sprintf(buf
+len
, "T10 Vendor ID based\n");
1450 sprintf(buf
+len
, "EUI-64 based\n");
1453 sprintf(buf
+len
, "NAA\n");
1456 sprintf(buf
+len
, "Relative target port identifier\n");
1459 sprintf(buf
+len
, "SCSI name string\n");
1462 sprintf(buf
+len
, "Unsupported: 0x%02x\n",
1463 vpd
->device_identifier_type
);
1469 strncpy(p_buf
, buf
, p_buf_len
);
1476 int transport_set_vpd_ident_type(struct t10_vpd
*vpd
, unsigned char *page_83
)
1479 * The VPD identifier type..
1481 * from spc3r23.pdf Section 7.6.3.1 Table 298
1483 vpd
->device_identifier_type
= (page_83
[1] & 0x0f);
1484 return transport_dump_vpd_ident_type(vpd
, NULL
, 0);
1486 EXPORT_SYMBOL(transport_set_vpd_ident_type
);
1488 int transport_dump_vpd_ident(
1489 struct t10_vpd
*vpd
,
1490 unsigned char *p_buf
,
1493 unsigned char buf
[VPD_TMP_BUF_SIZE
];
1496 memset(buf
, 0, VPD_TMP_BUF_SIZE
);
1498 switch (vpd
->device_identifier_code_set
) {
1499 case 0x01: /* Binary */
1500 sprintf(buf
, "T10 VPD Binary Device Identifier: %s\n",
1501 &vpd
->device_identifier
[0]);
1503 case 0x02: /* ASCII */
1504 sprintf(buf
, "T10 VPD ASCII Device Identifier: %s\n",
1505 &vpd
->device_identifier
[0]);
1507 case 0x03: /* UTF-8 */
1508 sprintf(buf
, "T10 VPD UTF-8 Device Identifier: %s\n",
1509 &vpd
->device_identifier
[0]);
1512 sprintf(buf
, "T10 VPD Device Identifier encoding unsupported:"
1513 " 0x%02x", vpd
->device_identifier_code_set
);
1519 strncpy(p_buf
, buf
, p_buf_len
);
1527 transport_set_vpd_ident(struct t10_vpd
*vpd
, unsigned char *page_83
)
1529 static const char hex_str
[] = "0123456789abcdef";
1530 int j
= 0, i
= 4; /* offset to start of the identifer */
1533 * The VPD Code Set (encoding)
1535 * from spc3r23.pdf Section 7.6.3.1 Table 296
1537 vpd
->device_identifier_code_set
= (page_83
[0] & 0x0f);
1538 switch (vpd
->device_identifier_code_set
) {
1539 case 0x01: /* Binary */
1540 vpd
->device_identifier
[j
++] =
1541 hex_str
[vpd
->device_identifier_type
];
1542 while (i
< (4 + page_83
[3])) {
1543 vpd
->device_identifier
[j
++] =
1544 hex_str
[(page_83
[i
] & 0xf0) >> 4];
1545 vpd
->device_identifier
[j
++] =
1546 hex_str
[page_83
[i
] & 0x0f];
1550 case 0x02: /* ASCII */
1551 case 0x03: /* UTF-8 */
1552 while (i
< (4 + page_83
[3]))
1553 vpd
->device_identifier
[j
++] = page_83
[i
++];
1559 return transport_dump_vpd_ident(vpd
, NULL
, 0);
1561 EXPORT_SYMBOL(transport_set_vpd_ident
);
1563 static void core_setup_task_attr_emulation(struct se_device
*dev
)
1566 * If this device is from Target_Core_Mod/pSCSI, disable the
1567 * SAM Task Attribute emulation.
1569 * This is currently not available in upsream Linux/SCSI Target
1570 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1572 if (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
) {
1573 dev
->dev_task_attr_type
= SAM_TASK_ATTR_PASSTHROUGH
;
1577 dev
->dev_task_attr_type
= SAM_TASK_ATTR_EMULATED
;
1578 DEBUG_STA("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1579 " device\n", TRANSPORT(dev
)->name
,
1580 TRANSPORT(dev
)->get_device_rev(dev
));
1583 static void scsi_dump_inquiry(struct se_device
*dev
)
1585 struct t10_wwn
*wwn
= DEV_T10_WWN(dev
);
1588 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1590 printk(" Vendor: ");
1591 for (i
= 0; i
< 8; i
++)
1592 if (wwn
->vendor
[i
] >= 0x20)
1593 printk("%c", wwn
->vendor
[i
]);
1598 for (i
= 0; i
< 16; i
++)
1599 if (wwn
->model
[i
] >= 0x20)
1600 printk("%c", wwn
->model
[i
]);
1604 printk(" Revision: ");
1605 for (i
= 0; i
< 4; i
++)
1606 if (wwn
->revision
[i
] >= 0x20)
1607 printk("%c", wwn
->revision
[i
]);
1613 device_type
= TRANSPORT(dev
)->get_device_type(dev
);
1614 printk(" Type: %s ", scsi_device_type(device_type
));
1615 printk(" ANSI SCSI revision: %02x\n",
1616 TRANSPORT(dev
)->get_device_rev(dev
));
1619 struct se_device
*transport_add_device_to_core_hba(
1621 struct se_subsystem_api
*transport
,
1622 struct se_subsystem_dev
*se_dev
,
1624 void *transport_dev
,
1625 struct se_dev_limits
*dev_limits
,
1626 const char *inquiry_prod
,
1627 const char *inquiry_rev
)
1630 struct se_device
*dev
;
1632 dev
= kzalloc(sizeof(struct se_device
), GFP_KERNEL
);
1634 printk(KERN_ERR
"Unable to allocate memory for se_dev_t\n");
1637 dev
->dev_queue_obj
= kzalloc(sizeof(struct se_queue_obj
), GFP_KERNEL
);
1638 if (!(dev
->dev_queue_obj
)) {
1639 printk(KERN_ERR
"Unable to allocate memory for"
1640 " dev->dev_queue_obj\n");
1644 transport_init_queue_obj(dev
->dev_queue_obj
);
1646 dev
->dev_status_queue_obj
= kzalloc(sizeof(struct se_queue_obj
),
1648 if (!(dev
->dev_status_queue_obj
)) {
1649 printk(KERN_ERR
"Unable to allocate memory for"
1650 " dev->dev_status_queue_obj\n");
1651 kfree(dev
->dev_queue_obj
);
1655 transport_init_queue_obj(dev
->dev_status_queue_obj
);
1657 dev
->dev_flags
= device_flags
;
1658 dev
->dev_status
|= TRANSPORT_DEVICE_DEACTIVATED
;
1659 dev
->dev_ptr
= (void *) transport_dev
;
1661 dev
->se_sub_dev
= se_dev
;
1662 dev
->transport
= transport
;
1663 atomic_set(&dev
->active_cmds
, 0);
1664 INIT_LIST_HEAD(&dev
->dev_list
);
1665 INIT_LIST_HEAD(&dev
->dev_sep_list
);
1666 INIT_LIST_HEAD(&dev
->dev_tmr_list
);
1667 INIT_LIST_HEAD(&dev
->execute_task_list
);
1668 INIT_LIST_HEAD(&dev
->delayed_cmd_list
);
1669 INIT_LIST_HEAD(&dev
->ordered_cmd_list
);
1670 INIT_LIST_HEAD(&dev
->state_task_list
);
1671 spin_lock_init(&dev
->execute_task_lock
);
1672 spin_lock_init(&dev
->delayed_cmd_lock
);
1673 spin_lock_init(&dev
->ordered_cmd_lock
);
1674 spin_lock_init(&dev
->state_task_lock
);
1675 spin_lock_init(&dev
->dev_alua_lock
);
1676 spin_lock_init(&dev
->dev_reservation_lock
);
1677 spin_lock_init(&dev
->dev_status_lock
);
1678 spin_lock_init(&dev
->dev_status_thr_lock
);
1679 spin_lock_init(&dev
->se_port_lock
);
1680 spin_lock_init(&dev
->se_tmr_lock
);
1682 dev
->queue_depth
= dev_limits
->queue_depth
;
1683 atomic_set(&dev
->depth_left
, dev
->queue_depth
);
1684 atomic_set(&dev
->dev_ordered_id
, 0);
1686 se_dev_set_default_attribs(dev
, dev_limits
);
1688 dev
->dev_index
= scsi_get_new_index(SCSI_DEVICE_INDEX
);
1689 dev
->creation_time
= get_jiffies_64();
1690 spin_lock_init(&dev
->stats_lock
);
1692 spin_lock(&hba
->device_lock
);
1693 list_add_tail(&dev
->dev_list
, &hba
->hba_dev_list
);
1695 spin_unlock(&hba
->device_lock
);
1697 * Setup the SAM Task Attribute emulation for struct se_device
1699 core_setup_task_attr_emulation(dev
);
1701 * Force PR and ALUA passthrough emulation with internal object use.
1703 force_pt
= (hba
->hba_flags
& HBA_FLAGS_INTERNAL_USE
);
1705 * Setup the Reservations infrastructure for struct se_device
1707 core_setup_reservations(dev
, force_pt
);
1709 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1711 if (core_setup_alua(dev
, force_pt
) < 0)
1715 * Startup the struct se_device processing thread
1717 dev
->process_thread
= kthread_run(transport_processing_thread
, dev
,
1718 "LIO_%s", TRANSPORT(dev
)->name
);
1719 if (IS_ERR(dev
->process_thread
)) {
1720 printk(KERN_ERR
"Unable to create kthread: LIO_%s\n",
1721 TRANSPORT(dev
)->name
);
1726 * Preload the initial INQUIRY const values if we are doing
1727 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1728 * passthrough because this is being provided by the backend LLD.
1729 * This is required so that transport_get_inquiry() copies these
1730 * originals once back into DEV_T10_WWN(dev) for the virtual device
1733 if (TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) {
1734 if (!(inquiry_prod
) || !(inquiry_prod
)) {
1735 printk(KERN_ERR
"All non TCM/pSCSI plugins require"
1736 " INQUIRY consts\n");
1740 strncpy(&DEV_T10_WWN(dev
)->vendor
[0], "LIO-ORG", 8);
1741 strncpy(&DEV_T10_WWN(dev
)->model
[0], inquiry_prod
, 16);
1742 strncpy(&DEV_T10_WWN(dev
)->revision
[0], inquiry_rev
, 4);
1744 scsi_dump_inquiry(dev
);
1748 kthread_stop(dev
->process_thread
);
1750 spin_lock(&hba
->device_lock
);
1751 list_del(&dev
->dev_list
);
1753 spin_unlock(&hba
->device_lock
);
1755 se_release_vpd_for_dev(dev
);
1757 kfree(dev
->dev_status_queue_obj
);
1758 kfree(dev
->dev_queue_obj
);
1763 EXPORT_SYMBOL(transport_add_device_to_core_hba
);
1765 /* transport_generic_prepare_cdb():
1767 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1768 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1769 * The point of this is since we are mapping iSCSI LUNs to
1770 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1771 * devices and HBAs for a loop.
1773 static inline void transport_generic_prepare_cdb(
1777 case READ_10
: /* SBC - RDProtect */
1778 case READ_12
: /* SBC - RDProtect */
1779 case READ_16
: /* SBC - RDProtect */
1780 case SEND_DIAGNOSTIC
: /* SPC - SELF-TEST Code */
1781 case VERIFY
: /* SBC - VRProtect */
1782 case VERIFY_16
: /* SBC - VRProtect */
1783 case WRITE_VERIFY
: /* SBC - VRProtect */
1784 case WRITE_VERIFY_12
: /* SBC - VRProtect */
1787 cdb
[1] &= 0x1f; /* clear logical unit number */
1792 static struct se_task
*
1793 transport_generic_get_task(struct se_cmd
*cmd
,
1794 enum dma_data_direction data_direction
)
1796 struct se_task
*task
;
1797 struct se_device
*dev
= SE_DEV(cmd
);
1798 unsigned long flags
;
1800 task
= dev
->transport
->alloc_task(cmd
);
1802 printk(KERN_ERR
"Unable to allocate struct se_task\n");
1806 INIT_LIST_HEAD(&task
->t_list
);
1807 INIT_LIST_HEAD(&task
->t_execute_list
);
1808 INIT_LIST_HEAD(&task
->t_state_list
);
1809 init_completion(&task
->task_stop_comp
);
1810 task
->task_no
= T_TASK(cmd
)->t_tasks_no
++;
1811 task
->task_se_cmd
= cmd
;
1813 task
->task_data_direction
= data_direction
;
1815 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
1816 list_add_tail(&task
->t_list
, &T_TASK(cmd
)->t_task_list
);
1817 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
1822 static int transport_generic_cmd_sequencer(struct se_cmd
*, unsigned char *);
1824 void transport_device_setup_cmd(struct se_cmd
*cmd
)
1826 cmd
->se_dev
= SE_LUN(cmd
)->lun_se_dev
;
1828 EXPORT_SYMBOL(transport_device_setup_cmd
);
1831 * Used by fabric modules containing a local struct se_cmd within their
1832 * fabric dependent per I/O descriptor.
1834 void transport_init_se_cmd(
1836 struct target_core_fabric_ops
*tfo
,
1837 struct se_session
*se_sess
,
1841 unsigned char *sense_buffer
)
1843 INIT_LIST_HEAD(&cmd
->se_lun_list
);
1844 INIT_LIST_HEAD(&cmd
->se_delayed_list
);
1845 INIT_LIST_HEAD(&cmd
->se_ordered_list
);
1847 * Setup t_task pointer to t_task_backstore
1849 cmd
->t_task
= &cmd
->t_task_backstore
;
1851 INIT_LIST_HEAD(&T_TASK(cmd
)->t_task_list
);
1852 init_completion(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
1853 init_completion(&T_TASK(cmd
)->transport_lun_stop_comp
);
1854 init_completion(&T_TASK(cmd
)->t_transport_stop_comp
);
1855 spin_lock_init(&T_TASK(cmd
)->t_state_lock
);
1856 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 1);
1859 cmd
->se_sess
= se_sess
;
1860 cmd
->data_length
= data_length
;
1861 cmd
->data_direction
= data_direction
;
1862 cmd
->sam_task_attr
= task_attr
;
1863 cmd
->sense_buffer
= sense_buffer
;
1865 EXPORT_SYMBOL(transport_init_se_cmd
);
1867 static int transport_check_alloc_task_attr(struct se_cmd
*cmd
)
1870 * Check if SAM Task Attribute emulation is enabled for this
1871 * struct se_device storage object
1873 if (SE_DEV(cmd
)->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
1876 if (cmd
->sam_task_attr
== MSG_ACA_TAG
) {
1877 DEBUG_STA("SAM Task Attribute ACA"
1878 " emulation is not supported\n");
1882 * Used to determine when ORDERED commands should go from
1883 * Dormant to Active status.
1885 cmd
->se_ordered_id
= atomic_inc_return(&SE_DEV(cmd
)->dev_ordered_id
);
1886 smp_mb__after_atomic_inc();
1887 DEBUG_STA("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1888 cmd
->se_ordered_id
, cmd
->sam_task_attr
,
1889 TRANSPORT(cmd
->se_dev
)->name
);
1893 void transport_free_se_cmd(
1894 struct se_cmd
*se_cmd
)
1896 if (se_cmd
->se_tmr_req
)
1897 core_tmr_release_req(se_cmd
->se_tmr_req
);
1899 * Check and free any extended CDB buffer that was allocated
1901 if (T_TASK(se_cmd
)->t_task_cdb
!= T_TASK(se_cmd
)->__t_task_cdb
)
1902 kfree(T_TASK(se_cmd
)->t_task_cdb
);
1904 EXPORT_SYMBOL(transport_free_se_cmd
);
1906 static void transport_generic_wait_for_tasks(struct se_cmd
*, int, int);
1908 /* transport_generic_allocate_tasks():
1910 * Called from fabric RX Thread.
1912 int transport_generic_allocate_tasks(
1918 transport_generic_prepare_cdb(cdb
);
1921 * This is needed for early exceptions.
1923 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
1925 transport_device_setup_cmd(cmd
);
1927 * Ensure that the received CDB is less than the max (252 + 8) bytes
1928 * for VARIABLE_LENGTH_CMD
1930 if (scsi_command_size(cdb
) > SCSI_MAX_VARLEN_CDB_SIZE
) {
1931 printk(KERN_ERR
"Received SCSI CDB with command_size: %d that"
1932 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1933 scsi_command_size(cdb
), SCSI_MAX_VARLEN_CDB_SIZE
);
1937 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1938 * allocate the additional extended CDB buffer now.. Otherwise
1939 * setup the pointer from __t_task_cdb to t_task_cdb.
1941 if (scsi_command_size(cdb
) > sizeof(T_TASK(cmd
)->__t_task_cdb
)) {
1942 T_TASK(cmd
)->t_task_cdb
= kzalloc(scsi_command_size(cdb
),
1944 if (!(T_TASK(cmd
)->t_task_cdb
)) {
1945 printk(KERN_ERR
"Unable to allocate T_TASK(cmd)->t_task_cdb"
1946 " %u > sizeof(T_TASK(cmd)->__t_task_cdb): %lu ops\n",
1947 scsi_command_size(cdb
),
1948 (unsigned long)sizeof(T_TASK(cmd
)->__t_task_cdb
));
1952 T_TASK(cmd
)->t_task_cdb
= &T_TASK(cmd
)->__t_task_cdb
[0];
1954 * Copy the original CDB into T_TASK(cmd).
1956 memcpy(T_TASK(cmd
)->t_task_cdb
, cdb
, scsi_command_size(cdb
));
1958 * Setup the received CDB based on SCSI defined opcodes and
1959 * perform unit attention, persistent reservations and ALUA
1960 * checks for virtual device backends. The T_TASK(cmd)->t_task_cdb
1961 * pointer is expected to be setup before we reach this point.
1963 ret
= transport_generic_cmd_sequencer(cmd
, cdb
);
1967 * Check for SAM Task Attribute Emulation
1969 if (transport_check_alloc_task_attr(cmd
) < 0) {
1970 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
1971 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
1974 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
1975 if (cmd
->se_lun
->lun_sep
)
1976 cmd
->se_lun
->lun_sep
->sep_stats
.cmd_pdus
++;
1977 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
1980 EXPORT_SYMBOL(transport_generic_allocate_tasks
);
1983 * Used by fabric module frontends not defining a TFO->new_cmd_map()
1984 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD statis
1986 int transport_generic_handle_cdb(
1991 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
1995 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD
);
1998 EXPORT_SYMBOL(transport_generic_handle_cdb
);
2001 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
2002 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
2003 * complete setup in TCM process context w/ TFO->new_cmd_map().
2005 int transport_generic_handle_cdb_map(
2010 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
2014 transport_add_cmd_to_queue(cmd
, TRANSPORT_NEW_CMD_MAP
);
2017 EXPORT_SYMBOL(transport_generic_handle_cdb_map
);
2019 /* transport_generic_handle_data():
2023 int transport_generic_handle_data(
2027 * For the software fabric case, then we assume the nexus is being
2028 * failed/shutdown when signals are pending from the kthread context
2029 * caller, so we return a failure. For the HW target mode case running
2030 * in interrupt code, the signal_pending() check is skipped.
2032 if (!in_interrupt() && signal_pending(current
))
2035 * If the received CDB has aleady been ABORTED by the generic
2036 * target engine, we now call transport_check_aborted_status()
2037 * to queue any delated TASK_ABORTED status for the received CDB to the
2038 * fabric module as we are expecting no further incoming DATA OUT
2039 * sequences at this point.
2041 if (transport_check_aborted_status(cmd
, 1) != 0)
2044 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_WRITE
);
2047 EXPORT_SYMBOL(transport_generic_handle_data
);
2049 /* transport_generic_handle_tmr():
2053 int transport_generic_handle_tmr(
2057 * This is needed for early exceptions.
2059 cmd
->transport_wait_for_tasks
= &transport_generic_wait_for_tasks
;
2060 transport_device_setup_cmd(cmd
);
2062 transport_add_cmd_to_queue(cmd
, TRANSPORT_PROCESS_TMR
);
2065 EXPORT_SYMBOL(transport_generic_handle_tmr
);
2067 void transport_generic_free_cmd_intr(
2070 transport_add_cmd_to_queue(cmd
, TRANSPORT_FREE_CMD_INTR
);
2072 EXPORT_SYMBOL(transport_generic_free_cmd_intr
);
2074 static int transport_stop_tasks_for_cmd(struct se_cmd
*cmd
)
2076 struct se_task
*task
, *task_tmp
;
2077 unsigned long flags
;
2080 DEBUG_TS("ITT[0x%08x] - Stopping tasks\n",
2081 CMD_TFO(cmd
)->get_task_tag(cmd
));
2084 * No tasks remain in the execution queue
2086 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2087 list_for_each_entry_safe(task
, task_tmp
,
2088 &T_TASK(cmd
)->t_task_list
, t_list
) {
2089 DEBUG_TS("task_no[%d] - Processing task %p\n",
2090 task
->task_no
, task
);
2092 * If the struct se_task has not been sent and is not active,
2093 * remove the struct se_task from the execution queue.
2095 if (!atomic_read(&task
->task_sent
) &&
2096 !atomic_read(&task
->task_active
)) {
2097 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
2099 transport_remove_task_from_execute_queue(task
,
2102 DEBUG_TS("task_no[%d] - Removed from execute queue\n",
2104 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2109 * If the struct se_task is active, sleep until it is returned
2112 if (atomic_read(&task
->task_active
)) {
2113 atomic_set(&task
->task_stop
, 1);
2114 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
2117 DEBUG_TS("task_no[%d] - Waiting to complete\n",
2119 wait_for_completion(&task
->task_stop_comp
);
2120 DEBUG_TS("task_no[%d] - Stopped successfully\n",
2123 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2124 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_left
);
2126 atomic_set(&task
->task_active
, 0);
2127 atomic_set(&task
->task_stop
, 0);
2129 DEBUG_TS("task_no[%d] - Did nothing\n", task
->task_no
);
2133 __transport_stop_task_timer(task
, &flags
);
2135 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2140 static void transport_failure_reset_queue_depth(struct se_device
*dev
)
2142 unsigned long flags
;
2144 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2145 atomic_inc(&dev
->depth_left
);
2146 atomic_inc(&SE_HBA(dev
)->left_queue_depth
);
2147 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2151 * Handle SAM-esque emulation for generic transport request failures.
2153 static void transport_generic_request_failure(
2155 struct se_device
*dev
,
2159 DEBUG_GRF("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
2160 " CDB: 0x%02x\n", cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
),
2161 T_TASK(cmd
)->t_task_cdb
[0]);
2162 DEBUG_GRF("-----[ i_state: %d t_state/def_t_state:"
2163 " %d/%d transport_error_status: %d\n",
2164 CMD_TFO(cmd
)->get_cmd_state(cmd
),
2165 cmd
->t_state
, cmd
->deferred_t_state
,
2166 cmd
->transport_error_status
);
2167 DEBUG_GRF("-----[ t_task_cdbs: %d t_task_cdbs_left: %d"
2168 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
2169 " t_transport_active: %d t_transport_stop: %d"
2170 " t_transport_sent: %d\n", T_TASK(cmd
)->t_task_cdbs
,
2171 atomic_read(&T_TASK(cmd
)->t_task_cdbs_left
),
2172 atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
),
2173 atomic_read(&T_TASK(cmd
)->t_task_cdbs_ex_left
),
2174 atomic_read(&T_TASK(cmd
)->t_transport_active
),
2175 atomic_read(&T_TASK(cmd
)->t_transport_stop
),
2176 atomic_read(&T_TASK(cmd
)->t_transport_sent
));
2178 transport_stop_all_task_timers(cmd
);
2181 transport_failure_reset_queue_depth(dev
);
2183 * For SAM Task Attribute emulation for failed struct se_cmd
2185 if (cmd
->se_dev
->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
2186 transport_complete_task_attr(cmd
);
2189 transport_direct_request_timeout(cmd
);
2190 cmd
->transport_error_status
= PYX_TRANSPORT_LU_COMM_FAILURE
;
2193 switch (cmd
->transport_error_status
) {
2194 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE
:
2195 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2197 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
:
2198 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
2200 case PYX_TRANSPORT_INVALID_CDB_FIELD
:
2201 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
2203 case PYX_TRANSPORT_INVALID_PARAMETER_LIST
:
2204 cmd
->scsi_sense_reason
= TCM_INVALID_PARAMETER_LIST
;
2206 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
:
2208 transport_new_cmd_failure(cmd
);
2210 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
2211 * we force this session to fall back to session
2214 CMD_TFO(cmd
)->fall_back_to_erl0(cmd
->se_sess
);
2215 CMD_TFO(cmd
)->stop_session(cmd
->se_sess
, 0, 0);
2218 case PYX_TRANSPORT_LU_COMM_FAILURE
:
2219 case PYX_TRANSPORT_ILLEGAL_REQUEST
:
2220 cmd
->scsi_sense_reason
= TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
2222 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE
:
2223 cmd
->scsi_sense_reason
= TCM_UNKNOWN_MODE_PAGE
;
2225 case PYX_TRANSPORT_WRITE_PROTECTED
:
2226 cmd
->scsi_sense_reason
= TCM_WRITE_PROTECTED
;
2228 case PYX_TRANSPORT_RESERVATION_CONFLICT
:
2230 * No SENSE Data payload for this case, set SCSI Status
2231 * and queue the response to $FABRIC_MOD.
2233 * Uses linux/include/scsi/scsi.h SAM status codes defs
2235 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
2237 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2238 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2241 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2244 DEV_ATTRIB(cmd
->se_dev
)->emulate_ua_intlck_ctrl
== 2)
2245 core_scsi3_ua_allocate(SE_SESS(cmd
)->se_node_acl
,
2246 cmd
->orig_fe_lun
, 0x2C,
2247 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
2249 CMD_TFO(cmd
)->queue_status(cmd
);
2251 case PYX_TRANSPORT_USE_SENSE_REASON
:
2253 * struct se_cmd->scsi_sense_reason already set
2257 printk(KERN_ERR
"Unknown transport error for CDB 0x%02x: %d\n",
2258 T_TASK(cmd
)->t_task_cdb
[0],
2259 cmd
->transport_error_status
);
2260 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
2265 transport_new_cmd_failure(cmd
);
2267 transport_send_check_condition_and_sense(cmd
,
2268 cmd
->scsi_sense_reason
, 0);
2270 transport_lun_remove_cmd(cmd
);
2271 if (!(transport_cmd_check_stop_to_fabric(cmd
)))
2275 static void transport_direct_request_timeout(struct se_cmd
*cmd
)
2277 unsigned long flags
;
2279 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2280 if (!(atomic_read(&T_TASK(cmd
)->t_transport_timeout
))) {
2281 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2284 if (atomic_read(&T_TASK(cmd
)->t_task_cdbs_timeout_left
)) {
2285 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2289 atomic_sub(atomic_read(&T_TASK(cmd
)->t_transport_timeout
),
2290 &T_TASK(cmd
)->t_se_count
);
2291 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2294 static void transport_generic_request_timeout(struct se_cmd
*cmd
)
2296 unsigned long flags
;
2299 * Reset T_TASK(cmd)->t_se_count to allow transport_generic_remove()
2300 * to allow last call to free memory resources.
2302 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2303 if (atomic_read(&T_TASK(cmd
)->t_transport_timeout
) > 1) {
2304 int tmp
= (atomic_read(&T_TASK(cmd
)->t_transport_timeout
) - 1);
2306 atomic_sub(tmp
, &T_TASK(cmd
)->t_se_count
);
2308 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2310 transport_generic_remove(cmd
, 0, 0);
2314 transport_generic_allocate_buf(struct se_cmd
*cmd
, u32 data_length
)
2318 buf
= kzalloc(data_length
, GFP_KERNEL
);
2320 printk(KERN_ERR
"Unable to allocate memory for buffer\n");
2324 T_TASK(cmd
)->t_tasks_se_num
= 0;
2325 T_TASK(cmd
)->t_task_buf
= buf
;
2330 static inline u32
transport_lba_21(unsigned char *cdb
)
2332 return ((cdb
[1] & 0x1f) << 16) | (cdb
[2] << 8) | cdb
[3];
2335 static inline u32
transport_lba_32(unsigned char *cdb
)
2337 return (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2340 static inline unsigned long long transport_lba_64(unsigned char *cdb
)
2342 unsigned int __v1
, __v2
;
2344 __v1
= (cdb
[2] << 24) | (cdb
[3] << 16) | (cdb
[4] << 8) | cdb
[5];
2345 __v2
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
2347 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2351 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
2353 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb
)
2355 unsigned int __v1
, __v2
;
2357 __v1
= (cdb
[12] << 24) | (cdb
[13] << 16) | (cdb
[14] << 8) | cdb
[15];
2358 __v2
= (cdb
[16] << 24) | (cdb
[17] << 16) | (cdb
[18] << 8) | cdb
[19];
2360 return ((unsigned long long)__v2
) | (unsigned long long)__v1
<< 32;
2363 static void transport_set_supported_SAM_opcode(struct se_cmd
*se_cmd
)
2365 unsigned long flags
;
2367 spin_lock_irqsave(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2368 se_cmd
->se_cmd_flags
|= SCF_SUPPORTED_SAM_OPCODE
;
2369 spin_unlock_irqrestore(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2373 * Called from interrupt context.
2375 static void transport_task_timeout_handler(unsigned long data
)
2377 struct se_task
*task
= (struct se_task
*)data
;
2378 struct se_cmd
*cmd
= TASK_CMD(task
);
2379 unsigned long flags
;
2381 DEBUG_TT("transport task timeout fired! task: %p cmd: %p\n", task
, cmd
);
2383 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2384 if (task
->task_flags
& TF_STOP
) {
2385 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2388 task
->task_flags
&= ~TF_RUNNING
;
2391 * Determine if transport_complete_task() has already been called.
2393 if (!(atomic_read(&task
->task_active
))) {
2394 DEBUG_TT("transport task: %p cmd: %p timeout task_active"
2395 " == 0\n", task
, cmd
);
2396 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2400 atomic_inc(&T_TASK(cmd
)->t_se_count
);
2401 atomic_inc(&T_TASK(cmd
)->t_transport_timeout
);
2402 T_TASK(cmd
)->t_tasks_failed
= 1;
2404 atomic_set(&task
->task_timeout
, 1);
2405 task
->task_error_status
= PYX_TRANSPORT_TASK_TIMEOUT
;
2406 task
->task_scsi_status
= 1;
2408 if (atomic_read(&task
->task_stop
)) {
2409 DEBUG_TT("transport task: %p cmd: %p timeout task_stop"
2410 " == 1\n", task
, cmd
);
2411 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2412 complete(&task
->task_stop_comp
);
2416 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_left
))) {
2417 DEBUG_TT("transport task: %p cmd: %p timeout non zero"
2418 " t_task_cdbs_left\n", task
, cmd
);
2419 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2422 DEBUG_TT("transport task: %p cmd: %p timeout ZERO t_task_cdbs_left\n",
2425 cmd
->t_state
= TRANSPORT_COMPLETE_FAILURE
;
2426 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2428 transport_add_cmd_to_queue(cmd
, TRANSPORT_COMPLETE_FAILURE
);
2432 * Called with T_TASK(cmd)->t_state_lock held.
2434 static void transport_start_task_timer(struct se_task
*task
)
2436 struct se_device
*dev
= task
->se_dev
;
2439 if (task
->task_flags
& TF_RUNNING
)
2442 * If the task_timeout is disabled, exit now.
2444 timeout
= DEV_ATTRIB(dev
)->task_timeout
;
2448 init_timer(&task
->task_timer
);
2449 task
->task_timer
.expires
= (get_jiffies_64() + timeout
* HZ
);
2450 task
->task_timer
.data
= (unsigned long) task
;
2451 task
->task_timer
.function
= transport_task_timeout_handler
;
2453 task
->task_flags
|= TF_RUNNING
;
2454 add_timer(&task
->task_timer
);
2456 printk(KERN_INFO
"Starting task timer for cmd: %p task: %p seconds:"
2457 " %d\n", task
->task_se_cmd
, task
, timeout
);
2462 * Called with spin_lock_irq(&T_TASK(cmd)->t_state_lock) held.
2464 void __transport_stop_task_timer(struct se_task
*task
, unsigned long *flags
)
2466 struct se_cmd
*cmd
= TASK_CMD(task
);
2468 if (!(task
->task_flags
& TF_RUNNING
))
2471 task
->task_flags
|= TF_STOP
;
2472 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, *flags
);
2474 del_timer_sync(&task
->task_timer
);
2476 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, *flags
);
2477 task
->task_flags
&= ~TF_RUNNING
;
2478 task
->task_flags
&= ~TF_STOP
;
2481 static void transport_stop_all_task_timers(struct se_cmd
*cmd
)
2483 struct se_task
*task
= NULL
, *task_tmp
;
2484 unsigned long flags
;
2486 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2487 list_for_each_entry_safe(task
, task_tmp
,
2488 &T_TASK(cmd
)->t_task_list
, t_list
)
2489 __transport_stop_task_timer(task
, &flags
);
2490 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2493 static inline int transport_tcq_window_closed(struct se_device
*dev
)
2495 if (dev
->dev_tcq_window_closed
++ <
2496 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD
) {
2497 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT
);
2499 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG
);
2501 wake_up_interruptible(&dev
->dev_queue_obj
->thread_wq
);
2506 * Called from Fabric Module context from transport_execute_tasks()
2508 * The return of this function determins if the tasks from struct se_cmd
2509 * get added to the execution queue in transport_execute_tasks(),
2510 * or are added to the delayed or ordered lists here.
2512 static inline int transport_execute_task_attr(struct se_cmd
*cmd
)
2514 if (SE_DEV(cmd
)->dev_task_attr_type
!= SAM_TASK_ATTR_EMULATED
)
2517 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
2518 * to allow the passed struct se_cmd list of tasks to the front of the list.
2520 if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
2521 atomic_inc(&SE_DEV(cmd
)->dev_hoq_count
);
2522 smp_mb__after_atomic_inc();
2523 DEBUG_STA("Added HEAD_OF_QUEUE for CDB:"
2524 " 0x%02x, se_ordered_id: %u\n",
2525 T_TASK(cmd
)->t_task_cdb
[0],
2526 cmd
->se_ordered_id
);
2528 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
2529 spin_lock(&SE_DEV(cmd
)->ordered_cmd_lock
);
2530 list_add_tail(&cmd
->se_ordered_list
,
2531 &SE_DEV(cmd
)->ordered_cmd_list
);
2532 spin_unlock(&SE_DEV(cmd
)->ordered_cmd_lock
);
2534 atomic_inc(&SE_DEV(cmd
)->dev_ordered_sync
);
2535 smp_mb__after_atomic_inc();
2537 DEBUG_STA("Added ORDERED for CDB: 0x%02x to ordered"
2538 " list, se_ordered_id: %u\n",
2539 T_TASK(cmd
)->t_task_cdb
[0],
2540 cmd
->se_ordered_id
);
2542 * Add ORDERED command to tail of execution queue if
2543 * no other older commands exist that need to be
2546 if (!(atomic_read(&SE_DEV(cmd
)->simple_cmds
)))
2550 * For SIMPLE and UNTAGGED Task Attribute commands
2552 atomic_inc(&SE_DEV(cmd
)->simple_cmds
);
2553 smp_mb__after_atomic_inc();
2556 * Otherwise if one or more outstanding ORDERED task attribute exist,
2557 * add the dormant task(s) built for the passed struct se_cmd to the
2558 * execution queue and become in Active state for this struct se_device.
2560 if (atomic_read(&SE_DEV(cmd
)->dev_ordered_sync
) != 0) {
2562 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2563 * will be drained upon completion of HEAD_OF_QUEUE task.
2565 spin_lock(&SE_DEV(cmd
)->delayed_cmd_lock
);
2566 cmd
->se_cmd_flags
|= SCF_DELAYED_CMD_FROM_SAM_ATTR
;
2567 list_add_tail(&cmd
->se_delayed_list
,
2568 &SE_DEV(cmd
)->delayed_cmd_list
);
2569 spin_unlock(&SE_DEV(cmd
)->delayed_cmd_lock
);
2571 DEBUG_STA("Added CDB: 0x%02x Task Attr: 0x%02x to"
2572 " delayed CMD list, se_ordered_id: %u\n",
2573 T_TASK(cmd
)->t_task_cdb
[0], cmd
->sam_task_attr
,
2574 cmd
->se_ordered_id
);
2576 * Return zero to let transport_execute_tasks() know
2577 * not to add the delayed tasks to the execution list.
2582 * Otherwise, no ORDERED task attributes exist..
2588 * Called from fabric module context in transport_generic_new_cmd() and
2589 * transport_generic_process_write()
2591 static int transport_execute_tasks(struct se_cmd
*cmd
)
2595 if (!(cmd
->se_cmd_flags
& SCF_SE_DISABLE_ONLINE_CHECK
)) {
2596 if (se_dev_check_online(cmd
->se_orig_obj_ptr
) != 0) {
2597 cmd
->transport_error_status
=
2598 PYX_TRANSPORT_LU_COMM_FAILURE
;
2599 transport_generic_request_failure(cmd
, NULL
, 0, 1);
2604 * Call transport_cmd_check_stop() to see if a fabric exception
2605 * has occurred that prevents execution.
2607 if (!(transport_cmd_check_stop(cmd
, 0, TRANSPORT_PROCESSING
))) {
2609 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2610 * attribute for the tasks of the received struct se_cmd CDB
2612 add_tasks
= transport_execute_task_attr(cmd
);
2616 * This calls transport_add_tasks_from_cmd() to handle
2617 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2618 * (if enabled) in __transport_add_task_to_execute_queue() and
2619 * transport_add_task_check_sam_attr().
2621 transport_add_tasks_from_cmd(cmd
);
2624 * Kick the execution queue for the cmd associated struct se_device
2628 __transport_execute_tasks(SE_DEV(cmd
));
2633 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2634 * from struct se_device->execute_task_list and
2636 * Called from transport_processing_thread()
2638 static int __transport_execute_tasks(struct se_device
*dev
)
2641 struct se_cmd
*cmd
= NULL
;
2642 struct se_task
*task
;
2643 unsigned long flags
;
2646 * Check if there is enough room in the device and HBA queue to send
2647 * struct se_transport_task's to the selected transport.
2650 spin_lock_irqsave(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2651 if (!(atomic_read(&dev
->depth_left
)) ||
2652 !(atomic_read(&SE_HBA(dev
)->left_queue_depth
))) {
2653 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2654 return transport_tcq_window_closed(dev
);
2656 dev
->dev_tcq_window_closed
= 0;
2658 spin_lock(&dev
->execute_task_lock
);
2659 task
= transport_get_task_from_execute_queue(dev
);
2660 spin_unlock(&dev
->execute_task_lock
);
2663 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2667 atomic_dec(&dev
->depth_left
);
2668 atomic_dec(&SE_HBA(dev
)->left_queue_depth
);
2669 spin_unlock_irqrestore(&SE_HBA(dev
)->hba_queue_lock
, flags
);
2671 cmd
= TASK_CMD(task
);
2673 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
2674 atomic_set(&task
->task_active
, 1);
2675 atomic_set(&task
->task_sent
, 1);
2676 atomic_inc(&T_TASK(cmd
)->t_task_cdbs_sent
);
2678 if (atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
) ==
2679 T_TASK(cmd
)->t_task_cdbs
)
2680 atomic_set(&cmd
->transport_sent
, 1);
2682 transport_start_task_timer(task
);
2683 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
2685 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2686 * to grab REPORT_LUNS CDBs before they hit the
2687 * struct se_subsystem_api->do_task() caller below.
2689 if (cmd
->transport_emulate_cdb
) {
2690 error
= cmd
->transport_emulate_cdb(cmd
);
2692 cmd
->transport_error_status
= error
;
2693 atomic_set(&task
->task_active
, 0);
2694 atomic_set(&cmd
->transport_sent
, 0);
2695 transport_stop_tasks_for_cmd(cmd
);
2696 transport_generic_request_failure(cmd
, dev
, 0, 1);
2700 * Handle the successful completion for transport_emulate_cdb()
2701 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2702 * Otherwise the caller is expected to complete the task with
2705 if (!(cmd
->se_cmd_flags
& SCF_EMULATE_CDB_ASYNC
)) {
2706 cmd
->scsi_status
= SAM_STAT_GOOD
;
2707 task
->task_scsi_status
= GOOD
;
2708 transport_complete_task(task
, 1);
2712 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2713 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2714 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2715 * LUN emulation code.
2717 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2718 * call ->do_task() directly and let the underlying TCM subsystem plugin
2719 * code handle the CDB emulation.
2721 if ((TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
) &&
2722 (!(TASK_CMD(task
)->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)))
2723 error
= transport_emulate_control_cdb(task
);
2725 error
= TRANSPORT(dev
)->do_task(task
);
2728 cmd
->transport_error_status
= error
;
2729 atomic_set(&task
->task_active
, 0);
2730 atomic_set(&cmd
->transport_sent
, 0);
2731 transport_stop_tasks_for_cmd(cmd
);
2732 transport_generic_request_failure(cmd
, dev
, 0, 1);
2741 void transport_new_cmd_failure(struct se_cmd
*se_cmd
)
2743 unsigned long flags
;
2745 * Any unsolicited data will get dumped for failed command inside of
2748 spin_lock_irqsave(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2749 se_cmd
->se_cmd_flags
|= SCF_SE_CMD_FAILED
;
2750 se_cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
2751 spin_unlock_irqrestore(&T_TASK(se_cmd
)->t_state_lock
, flags
);
2753 CMD_TFO(se_cmd
)->new_cmd_failure(se_cmd
);
2756 static void transport_nop_wait_for_tasks(struct se_cmd
*, int, int);
2758 static inline u32
transport_get_sectors_6(
2763 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2766 * Assume TYPE_DISK for non struct se_device objects.
2767 * Use 8-bit sector value.
2773 * Use 24-bit allocation length for TYPE_TAPE.
2775 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
)
2776 return (u32
)(cdb
[2] << 16) + (cdb
[3] << 8) + cdb
[4];
2779 * Everything else assume TYPE_DISK Sector CDB location.
2780 * Use 8-bit sector value.
2786 static inline u32
transport_get_sectors_10(
2791 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2794 * Assume TYPE_DISK for non struct se_device objects.
2795 * Use 16-bit sector value.
2801 * XXX_10 is not defined in SSC, throw an exception
2803 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2809 * Everything else assume TYPE_DISK Sector CDB location.
2810 * Use 16-bit sector value.
2813 return (u32
)(cdb
[7] << 8) + cdb
[8];
2816 static inline u32
transport_get_sectors_12(
2821 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2824 * Assume TYPE_DISK for non struct se_device objects.
2825 * Use 32-bit sector value.
2831 * XXX_12 is not defined in SSC, throw an exception
2833 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2839 * Everything else assume TYPE_DISK Sector CDB location.
2840 * Use 32-bit sector value.
2843 return (u32
)(cdb
[6] << 24) + (cdb
[7] << 16) + (cdb
[8] << 8) + cdb
[9];
2846 static inline u32
transport_get_sectors_16(
2851 struct se_device
*dev
= SE_LUN(cmd
)->lun_se_dev
;
2854 * Assume TYPE_DISK for non struct se_device objects.
2855 * Use 32-bit sector value.
2861 * Use 24-bit allocation length for TYPE_TAPE.
2863 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
)
2864 return (u32
)(cdb
[12] << 16) + (cdb
[13] << 8) + cdb
[14];
2867 return (u32
)(cdb
[10] << 24) + (cdb
[11] << 16) +
2868 (cdb
[12] << 8) + cdb
[13];
2872 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2874 static inline u32
transport_get_sectors_32(
2880 * Assume TYPE_DISK for non struct se_device objects.
2881 * Use 32-bit sector value.
2883 return (u32
)(cdb
[28] << 24) + (cdb
[29] << 16) +
2884 (cdb
[30] << 8) + cdb
[31];
2888 static inline u32
transport_get_size(
2893 struct se_device
*dev
= SE_DEV(cmd
);
2895 if (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_TAPE
) {
2896 if (cdb
[1] & 1) { /* sectors */
2897 return DEV_ATTRIB(dev
)->block_size
* sectors
;
2902 printk(KERN_INFO
"Returning block_size: %u, sectors: %u == %u for"
2903 " %s object\n", DEV_ATTRIB(dev
)->block_size
, sectors
,
2904 DEV_ATTRIB(dev
)->block_size
* sectors
,
2905 TRANSPORT(dev
)->name
);
2907 return DEV_ATTRIB(dev
)->block_size
* sectors
;
2910 unsigned char transport_asciihex_to_binaryhex(unsigned char val
[2])
2912 unsigned char result
= 0;
2916 if ((val
[0] >= 'a') && (val
[0] <= 'f'))
2917 result
= ((val
[0] - 'a' + 10) & 0xf) << 4;
2919 if ((val
[0] >= 'A') && (val
[0] <= 'F'))
2920 result
= ((val
[0] - 'A' + 10) & 0xf) << 4;
2922 result
= ((val
[0] - '0') & 0xf) << 4;
2926 if ((val
[1] >= 'a') && (val
[1] <= 'f'))
2927 result
|= ((val
[1] - 'a' + 10) & 0xf);
2929 if ((val
[1] >= 'A') && (val
[1] <= 'F'))
2930 result
|= ((val
[1] - 'A' + 10) & 0xf);
2932 result
|= ((val
[1] - '0') & 0xf);
2936 EXPORT_SYMBOL(transport_asciihex_to_binaryhex
);
2938 static void transport_xor_callback(struct se_cmd
*cmd
)
2940 unsigned char *buf
, *addr
;
2941 struct se_mem
*se_mem
;
2942 unsigned int offset
;
2945 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2947 * 1) read the specified logical block(s);
2948 * 2) transfer logical blocks from the data-out buffer;
2949 * 3) XOR the logical blocks transferred from the data-out buffer with
2950 * the logical blocks read, storing the resulting XOR data in a buffer;
2951 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2952 * blocks transferred from the data-out buffer; and
2953 * 5) transfer the resulting XOR data to the data-in buffer.
2955 buf
= kmalloc(cmd
->data_length
, GFP_KERNEL
);
2957 printk(KERN_ERR
"Unable to allocate xor_callback buf\n");
2961 * Copy the scatterlist WRITE buffer located at T_TASK(cmd)->t_mem_list
2962 * into the locally allocated *buf
2964 transport_memcpy_se_mem_read_contig(cmd
, buf
, T_TASK(cmd
)->t_mem_list
);
2966 * Now perform the XOR against the BIDI read memory located at
2967 * T_TASK(cmd)->t_mem_bidi_list
2971 list_for_each_entry(se_mem
, T_TASK(cmd
)->t_mem_bidi_list
, se_list
) {
2972 addr
= (unsigned char *)kmap_atomic(se_mem
->se_page
, KM_USER0
);
2976 for (i
= 0; i
< se_mem
->se_len
; i
++)
2977 *(addr
+ se_mem
->se_off
+ i
) ^= *(buf
+ offset
+ i
);
2979 offset
+= se_mem
->se_len
;
2980 kunmap_atomic(addr
, KM_USER0
);
2987 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2989 static int transport_get_sense_data(struct se_cmd
*cmd
)
2991 unsigned char *buffer
= cmd
->sense_buffer
, *sense_buffer
= NULL
;
2992 struct se_device
*dev
;
2993 struct se_task
*task
= NULL
, *task_tmp
;
2994 unsigned long flags
;
2998 printk(KERN_ERR
"SE_LUN(cmd) is NULL\n");
3001 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
3002 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
3003 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3007 list_for_each_entry_safe(task
, task_tmp
,
3008 &T_TASK(cmd
)->t_task_list
, t_list
) {
3010 if (!task
->task_sense
)
3017 if (!TRANSPORT(dev
)->get_sense_buffer
) {
3018 printk(KERN_ERR
"TRANSPORT(dev)->get_sense_buffer"
3023 sense_buffer
= TRANSPORT(dev
)->get_sense_buffer(task
);
3024 if (!(sense_buffer
)) {
3025 printk(KERN_ERR
"ITT[0x%08x]_TASK[%d]: Unable to locate"
3026 " sense buffer for task with sense\n",
3027 CMD_TFO(cmd
)->get_task_tag(cmd
), task
->task_no
);
3030 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3032 offset
= CMD_TFO(cmd
)->set_fabric_sense_len(cmd
,
3033 TRANSPORT_SENSE_BUFFER
);
3035 memcpy((void *)&buffer
[offset
], (void *)sense_buffer
,
3036 TRANSPORT_SENSE_BUFFER
);
3037 cmd
->scsi_status
= task
->task_scsi_status
;
3038 /* Automatically padded */
3039 cmd
->scsi_sense_length
=
3040 (TRANSPORT_SENSE_BUFFER
+ offset
);
3042 printk(KERN_INFO
"HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
3044 dev
->se_hba
->hba_id
, TRANSPORT(dev
)->name
,
3048 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3053 static int transport_allocate_resources(struct se_cmd
*cmd
)
3055 u32 length
= cmd
->data_length
;
3057 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
3058 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
))
3059 return transport_generic_get_mem(cmd
, length
, PAGE_SIZE
);
3060 else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
)
3061 return transport_generic_allocate_buf(cmd
, length
);
3067 transport_handle_reservation_conflict(struct se_cmd
*cmd
)
3069 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3070 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3071 cmd
->se_cmd_flags
|= SCF_SCSI_RESERVATION_CONFLICT
;
3072 cmd
->scsi_status
= SAM_STAT_RESERVATION_CONFLICT
;
3074 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
3075 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
3078 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
3081 DEV_ATTRIB(cmd
->se_dev
)->emulate_ua_intlck_ctrl
== 2)
3082 core_scsi3_ua_allocate(SE_SESS(cmd
)->se_node_acl
,
3083 cmd
->orig_fe_lun
, 0x2C,
3084 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS
);
3088 /* transport_generic_cmd_sequencer():
3090 * Generic Command Sequencer that should work for most DAS transport
3093 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
3096 * FIXME: Need to support other SCSI OPCODES where as well.
3098 static int transport_generic_cmd_sequencer(
3102 struct se_device
*dev
= SE_DEV(cmd
);
3103 struct se_subsystem_dev
*su_dev
= dev
->se_sub_dev
;
3104 int ret
= 0, sector_ret
= 0, passthrough
;
3105 u32 sectors
= 0, size
= 0, pr_reg_type
= 0;
3109 * Check for an existing UNIT ATTENTION condition
3111 if (core_scsi3_ua_check(cmd
, cdb
) < 0) {
3112 cmd
->transport_wait_for_tasks
=
3113 &transport_nop_wait_for_tasks
;
3114 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3115 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_UNIT_ATTENTION
;
3119 * Check status of Asymmetric Logical Unit Assignment port
3121 ret
= T10_ALUA(su_dev
)->alua_state_check(cmd
, cdb
, &alua_ascq
);
3123 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3125 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
3126 * The ALUA additional sense code qualifier (ASCQ) is determined
3127 * by the ALUA primary or secondary access state..
3131 printk(KERN_INFO
"[%s]: ALUA TG Port not available,"
3132 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
3133 CMD_TFO(cmd
)->get_fabric_name(), alua_ascq
);
3135 transport_set_sense_codes(cmd
, 0x04, alua_ascq
);
3136 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3137 cmd
->scsi_sense_reason
= TCM_CHECK_CONDITION_NOT_READY
;
3140 goto out_invalid_cdb_field
;
3143 * Check status for SPC-3 Persistent Reservations
3145 if (T10_PR_OPS(su_dev
)->t10_reservation_check(cmd
, &pr_reg_type
) != 0) {
3146 if (T10_PR_OPS(su_dev
)->t10_seq_non_holder(
3147 cmd
, cdb
, pr_reg_type
) != 0)
3148 return transport_handle_reservation_conflict(cmd
);
3150 * This means the CDB is allowed for the SCSI Initiator port
3151 * when said port is *NOT* holding the legacy SPC-2 or
3152 * SPC-3 Persistent Reservation.
3158 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
3160 goto out_unsupported_cdb
;
3161 size
= transport_get_size(sectors
, cdb
, cmd
);
3162 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
3163 T_TASK(cmd
)->t_task_lba
= transport_lba_21(cdb
);
3164 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3167 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3169 goto out_unsupported_cdb
;
3170 size
= transport_get_size(sectors
, cdb
, cmd
);
3171 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3172 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3173 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3176 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
3178 goto out_unsupported_cdb
;
3179 size
= transport_get_size(sectors
, cdb
, cmd
);
3180 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
3181 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3182 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3185 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3187 goto out_unsupported_cdb
;
3188 size
= transport_get_size(sectors
, cdb
, cmd
);
3189 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
3190 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3191 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3194 sectors
= transport_get_sectors_6(cdb
, cmd
, §or_ret
);
3196 goto out_unsupported_cdb
;
3197 size
= transport_get_size(sectors
, cdb
, cmd
);
3198 cmd
->transport_split_cdb
= &split_cdb_XX_6
;
3199 T_TASK(cmd
)->t_task_lba
= transport_lba_21(cdb
);
3200 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3203 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3205 goto out_unsupported_cdb
;
3206 size
= transport_get_size(sectors
, cdb
, cmd
);
3207 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3208 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3209 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3210 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3213 sectors
= transport_get_sectors_12(cdb
, cmd
, §or_ret
);
3215 goto out_unsupported_cdb
;
3216 size
= transport_get_size(sectors
, cdb
, cmd
);
3217 cmd
->transport_split_cdb
= &split_cdb_XX_12
;
3218 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3219 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3220 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3223 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3225 goto out_unsupported_cdb
;
3226 size
= transport_get_size(sectors
, cdb
, cmd
);
3227 cmd
->transport_split_cdb
= &split_cdb_XX_16
;
3228 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3229 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3230 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3232 case XDWRITEREAD_10
:
3233 if ((cmd
->data_direction
!= DMA_TO_DEVICE
) ||
3234 !(T_TASK(cmd
)->t_tasks_bidi
))
3235 goto out_invalid_cdb_field
;
3236 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3238 goto out_unsupported_cdb
;
3239 size
= transport_get_size(sectors
, cdb
, cmd
);
3240 cmd
->transport_split_cdb
= &split_cdb_XX_10
;
3241 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3242 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3243 passthrough
= (TRANSPORT(dev
)->transport_type
==
3244 TRANSPORT_PLUGIN_PHBA_PDEV
);
3246 * Skip the remaining assignments for TCM/PSCSI passthrough
3251 * Setup BIDI XOR callback to be run during transport_generic_complete_ok()
3253 cmd
->transport_complete_callback
= &transport_xor_callback
;
3254 T_TASK(cmd
)->t_tasks_fua
= (cdb
[1] & 0x8);
3256 case VARIABLE_LENGTH_CMD
:
3257 service_action
= get_unaligned_be16(&cdb
[8]);
3259 * Determine if this is TCM/PSCSI device and we should disable
3260 * internal emulation for this CDB.
3262 passthrough
= (TRANSPORT(dev
)->transport_type
==
3263 TRANSPORT_PLUGIN_PHBA_PDEV
);
3265 switch (service_action
) {
3266 case XDWRITEREAD_32
:
3267 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3269 goto out_unsupported_cdb
;
3270 size
= transport_get_size(sectors
, cdb
, cmd
);
3272 * Use WRITE_32 and READ_32 opcodes for the emulated
3273 * XDWRITE_READ_32 logic.
3275 cmd
->transport_split_cdb
= &split_cdb_XX_32
;
3276 T_TASK(cmd
)->t_task_lba
= transport_lba_64_ext(cdb
);
3277 cmd
->se_cmd_flags
|= SCF_SCSI_DATA_SG_IO_CDB
;
3280 * Skip the remaining assignments for TCM/PSCSI passthrough
3286 * Setup BIDI XOR callback to be run during
3287 * transport_generic_complete_ok()
3289 cmd
->transport_complete_callback
= &transport_xor_callback
;
3290 T_TASK(cmd
)->t_tasks_fua
= (cdb
[10] & 0x8);
3293 sectors
= transport_get_sectors_32(cdb
, cmd
, §or_ret
);
3295 goto out_unsupported_cdb
;
3296 size
= transport_get_size(sectors
, cdb
, cmd
);
3297 T_TASK(cmd
)->t_task_lba
= get_unaligned_be64(&cdb
[12]);
3298 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3301 * Skip the remaining assignments for TCM/PSCSI passthrough
3306 if ((cdb
[10] & 0x04) || (cdb
[10] & 0x02)) {
3307 printk(KERN_ERR
"WRITE_SAME PBDATA and LBDATA"
3308 " bits not supported for Block Discard"
3310 goto out_invalid_cdb_field
;
3313 * Currently for the emulated case we only accept
3314 * tpws with the UNMAP=1 bit set.
3316 if (!(cdb
[10] & 0x08)) {
3317 printk(KERN_ERR
"WRITE_SAME w/o UNMAP bit not"
3318 " supported for Block Discard Emulation\n");
3319 goto out_invalid_cdb_field
;
3323 printk(KERN_ERR
"VARIABLE_LENGTH_CMD service action"
3324 " 0x%04x not supported\n", service_action
);
3325 goto out_unsupported_cdb
;
3329 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_ROM
) {
3330 /* MAINTENANCE_IN from SCC-2 */
3332 * Check for emulated MI_REPORT_TARGET_PGS.
3334 if (cdb
[1] == MI_REPORT_TARGET_PGS
) {
3335 cmd
->transport_emulate_cdb
=
3336 (T10_ALUA(su_dev
)->alua_type
==
3337 SPC3_ALUA_EMULATED
) ?
3338 &core_emulate_report_target_port_groups
:
3341 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3342 (cdb
[8] << 8) | cdb
[9];
3344 /* GPCMD_SEND_KEY from multi media commands */
3345 size
= (cdb
[8] << 8) + cdb
[9];
3347 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3351 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3353 case MODE_SELECT_10
:
3354 size
= (cdb
[7] << 8) + cdb
[8];
3355 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3359 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3362 case GPCMD_READ_BUFFER_CAPACITY
:
3363 case GPCMD_SEND_OPC
:
3366 size
= (cdb
[7] << 8) + cdb
[8];
3367 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3369 case READ_BLOCK_LIMITS
:
3370 size
= READ_BLOCK_LEN
;
3371 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3373 case GPCMD_GET_CONFIGURATION
:
3374 case GPCMD_READ_FORMAT_CAPACITIES
:
3375 case GPCMD_READ_DISC_INFO
:
3376 case GPCMD_READ_TRACK_RZONE_INFO
:
3377 size
= (cdb
[7] << 8) + cdb
[8];
3378 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3380 case PERSISTENT_RESERVE_IN
:
3381 case PERSISTENT_RESERVE_OUT
:
3382 cmd
->transport_emulate_cdb
=
3383 (T10_RES(su_dev
)->res_type
==
3384 SPC3_PERSISTENT_RESERVATIONS
) ?
3385 &core_scsi3_emulate_pr
: NULL
;
3386 size
= (cdb
[7] << 8) + cdb
[8];
3387 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3389 case GPCMD_MECHANISM_STATUS
:
3390 case GPCMD_READ_DVD_STRUCTURE
:
3391 size
= (cdb
[8] << 8) + cdb
[9];
3392 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3395 size
= READ_POSITION_LEN
;
3396 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3399 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_ROM
) {
3400 /* MAINTENANCE_OUT from SCC-2
3402 * Check for emulated MO_SET_TARGET_PGS.
3404 if (cdb
[1] == MO_SET_TARGET_PGS
) {
3405 cmd
->transport_emulate_cdb
=
3406 (T10_ALUA(su_dev
)->alua_type
==
3407 SPC3_ALUA_EMULATED
) ?
3408 &core_emulate_set_target_port_groups
:
3412 size
= (cdb
[6] << 24) | (cdb
[7] << 16) |
3413 (cdb
[8] << 8) | cdb
[9];
3415 /* GPCMD_REPORT_KEY from multi media commands */
3416 size
= (cdb
[8] << 8) + cdb
[9];
3418 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3421 size
= (cdb
[3] << 8) + cdb
[4];
3423 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
3424 * See spc4r17 section 5.3
3426 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3427 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3428 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3431 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3432 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3435 size
= READ_CAP_LEN
;
3436 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3438 case READ_MEDIA_SERIAL_NUMBER
:
3439 case SECURITY_PROTOCOL_IN
:
3440 case SECURITY_PROTOCOL_OUT
:
3441 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3442 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3444 case SERVICE_ACTION_IN
:
3445 case ACCESS_CONTROL_IN
:
3446 case ACCESS_CONTROL_OUT
:
3448 case READ_ATTRIBUTE
:
3449 case RECEIVE_COPY_RESULTS
:
3450 case WRITE_ATTRIBUTE
:
3451 size
= (cdb
[10] << 24) | (cdb
[11] << 16) |
3452 (cdb
[12] << 8) | cdb
[13];
3453 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3455 case RECEIVE_DIAGNOSTIC
:
3456 case SEND_DIAGNOSTIC
:
3457 size
= (cdb
[3] << 8) | cdb
[4];
3458 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3460 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
3463 sectors
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3464 size
= (2336 * sectors
);
3465 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3470 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3474 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3476 case READ_ELEMENT_STATUS
:
3477 size
= 65536 * cdb
[7] + 256 * cdb
[8] + cdb
[9];
3478 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3481 size
= (cdb
[6] << 16) + (cdb
[7] << 8) + cdb
[8];
3482 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3487 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
3488 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3490 if (cdb
[0] == RESERVE_10
)
3491 size
= (cdb
[7] << 8) | cdb
[8];
3493 size
= cmd
->data_length
;
3496 * Setup the legacy emulated handler for SPC-2 and
3497 * >= SPC-3 compatible reservation handling (CRH=1)
3498 * Otherwise, we assume the underlying SCSI logic is
3499 * is running in SPC_PASSTHROUGH, and wants reservations
3500 * emulation disabled.
3502 cmd
->transport_emulate_cdb
=
3503 (T10_RES(su_dev
)->res_type
!=
3505 &core_scsi2_emulate_crh
: NULL
;
3506 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3511 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
3512 * Assume the passthrough or $FABRIC_MOD will tell us about it.
3514 if (cdb
[0] == RELEASE_10
)
3515 size
= (cdb
[7] << 8) | cdb
[8];
3517 size
= cmd
->data_length
;
3519 cmd
->transport_emulate_cdb
=
3520 (T10_RES(su_dev
)->res_type
!=
3522 &core_scsi2_emulate_crh
: NULL
;
3523 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3525 case SYNCHRONIZE_CACHE
:
3526 case 0x91: /* SYNCHRONIZE_CACHE_16: */
3528 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
3530 if (cdb
[0] == SYNCHRONIZE_CACHE
) {
3531 sectors
= transport_get_sectors_10(cdb
, cmd
, §or_ret
);
3532 T_TASK(cmd
)->t_task_lba
= transport_lba_32(cdb
);
3534 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3535 T_TASK(cmd
)->t_task_lba
= transport_lba_64(cdb
);
3538 goto out_unsupported_cdb
;
3540 size
= transport_get_size(sectors
, cdb
, cmd
);
3541 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3544 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3546 if (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)
3549 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3550 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3552 cmd
->se_cmd_flags
|= SCF_EMULATE_CDB_ASYNC
;
3554 * Check to ensure that LBA + Range does not exceed past end of
3557 if (transport_get_sectors(cmd
) < 0)
3558 goto out_invalid_cdb_field
;
3561 size
= get_unaligned_be16(&cdb
[7]);
3562 passthrough
= (TRANSPORT(dev
)->transport_type
==
3563 TRANSPORT_PLUGIN_PHBA_PDEV
);
3565 * Determine if the received UNMAP used to for direct passthrough
3566 * into Linux/SCSI with struct request via TCM/pSCSI or we are
3567 * signaling the use of internal transport_generic_unmap() emulation
3568 * for UNMAP -> Linux/BLOCK disbard with TCM/IBLOCK and TCM/FILEIO
3569 * subsystem plugin backstores.
3572 cmd
->se_cmd_flags
|= SCF_EMULATE_SYNC_UNMAP
;
3574 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3577 sectors
= transport_get_sectors_16(cdb
, cmd
, §or_ret
);
3579 goto out_unsupported_cdb
;
3580 size
= transport_get_size(sectors
, cdb
, cmd
);
3581 T_TASK(cmd
)->t_task_lba
= get_unaligned_be16(&cdb
[2]);
3582 passthrough
= (TRANSPORT(dev
)->transport_type
==
3583 TRANSPORT_PLUGIN_PHBA_PDEV
);
3585 * Determine if the received WRITE_SAME_16 is used to for direct
3586 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
3587 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
3588 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK and
3589 * TCM/FILEIO subsystem plugin backstores.
3591 if (!(passthrough
)) {
3592 if ((cdb
[1] & 0x04) || (cdb
[1] & 0x02)) {
3593 printk(KERN_ERR
"WRITE_SAME PBDATA and LBDATA"
3594 " bits not supported for Block Discard"
3596 goto out_invalid_cdb_field
;
3599 * Currently for the emulated case we only accept
3600 * tpws with the UNMAP=1 bit set.
3602 if (!(cdb
[1] & 0x08)) {
3603 printk(KERN_ERR
"WRITE_SAME w/o UNMAP bit not "
3604 " supported for Block Discard Emulation\n");
3605 goto out_invalid_cdb_field
;
3608 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_SG_IO_CDB
;
3610 case ALLOW_MEDIUM_REMOVAL
:
3611 case GPCMD_CLOSE_TRACK
:
3613 case INITIALIZE_ELEMENT_STATUS
:
3614 case GPCMD_LOAD_UNLOAD
:
3617 case GPCMD_SET_SPEED
:
3620 case TEST_UNIT_READY
:
3622 case WRITE_FILEMARKS
:
3624 cmd
->se_cmd_flags
|= SCF_SCSI_NON_DATA_CDB
;
3627 cmd
->transport_emulate_cdb
=
3628 &transport_core_report_lun_response
;
3629 size
= (cdb
[6] << 24) | (cdb
[7] << 16) | (cdb
[8] << 8) | cdb
[9];
3631 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3632 * See spc4r17 section 5.3
3634 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3635 cmd
->sam_task_attr
= MSG_HEAD_TAG
;
3636 cmd
->se_cmd_flags
|= SCF_SCSI_CONTROL_NONSG_IO_CDB
;
3639 printk(KERN_WARNING
"TARGET_CORE[%s]: Unsupported SCSI Opcode"
3640 " 0x%02x, sending CHECK_CONDITION.\n",
3641 CMD_TFO(cmd
)->get_fabric_name(), cdb
[0]);
3642 cmd
->transport_wait_for_tasks
= &transport_nop_wait_for_tasks
;
3643 goto out_unsupported_cdb
;
3646 if (size
!= cmd
->data_length
) {
3647 printk(KERN_WARNING
"TARGET_CORE[%s]: Expected Transfer Length:"
3648 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3649 " 0x%02x\n", CMD_TFO(cmd
)->get_fabric_name(),
3650 cmd
->data_length
, size
, cdb
[0]);
3652 cmd
->cmd_spdtl
= size
;
3654 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
3655 printk(KERN_ERR
"Rejecting underflow/overflow"
3657 goto out_invalid_cdb_field
;
3660 * Reject READ_* or WRITE_* with overflow/underflow for
3661 * type SCF_SCSI_DATA_SG_IO_CDB.
3663 if (!(ret
) && (DEV_ATTRIB(dev
)->block_size
!= 512)) {
3664 printk(KERN_ERR
"Failing OVERFLOW/UNDERFLOW for LBA op"
3665 " CDB on non 512-byte sector setup subsystem"
3666 " plugin: %s\n", TRANSPORT(dev
)->name
);
3667 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3668 goto out_invalid_cdb_field
;
3671 if (size
> cmd
->data_length
) {
3672 cmd
->se_cmd_flags
|= SCF_OVERFLOW_BIT
;
3673 cmd
->residual_count
= (size
- cmd
->data_length
);
3675 cmd
->se_cmd_flags
|= SCF_UNDERFLOW_BIT
;
3676 cmd
->residual_count
= (cmd
->data_length
- size
);
3678 cmd
->data_length
= size
;
3681 transport_set_supported_SAM_opcode(cmd
);
3684 out_unsupported_cdb
:
3685 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3686 cmd
->scsi_sense_reason
= TCM_UNSUPPORTED_SCSI_OPCODE
;
3688 out_invalid_cdb_field
:
3689 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
3690 cmd
->scsi_sense_reason
= TCM_INVALID_CDB_FIELD
;
3694 static inline void transport_release_tasks(struct se_cmd
*);
3697 * This function will copy a contiguous *src buffer into a destination
3698 * struct scatterlist array.
3700 static void transport_memcpy_write_contig(
3702 struct scatterlist
*sg_d
,
3705 u32 i
= 0, length
= 0, total_length
= cmd
->data_length
;
3708 while (total_length
) {
3709 length
= sg_d
[i
].length
;
3711 if (length
> total_length
)
3712 length
= total_length
;
3714 dst
= sg_virt(&sg_d
[i
]);
3716 memcpy(dst
, src
, length
);
3718 if (!(total_length
-= length
))
3727 * This function will copy a struct scatterlist array *sg_s into a destination
3728 * contiguous *dst buffer.
3730 static void transport_memcpy_read_contig(
3733 struct scatterlist
*sg_s
)
3735 u32 i
= 0, length
= 0, total_length
= cmd
->data_length
;
3738 while (total_length
) {
3739 length
= sg_s
[i
].length
;
3741 if (length
> total_length
)
3742 length
= total_length
;
3744 src
= sg_virt(&sg_s
[i
]);
3746 memcpy(dst
, src
, length
);
3748 if (!(total_length
-= length
))
3756 static void transport_memcpy_se_mem_read_contig(
3759 struct list_head
*se_mem_list
)
3761 struct se_mem
*se_mem
;
3763 u32 length
= 0, total_length
= cmd
->data_length
;
3765 list_for_each_entry(se_mem
, se_mem_list
, se_list
) {
3766 length
= se_mem
->se_len
;
3768 if (length
> total_length
)
3769 length
= total_length
;
3771 src
= page_address(se_mem
->se_page
) + se_mem
->se_off
;
3773 memcpy(dst
, src
, length
);
3775 if (!(total_length
-= length
))
3783 * Called from transport_generic_complete_ok() and
3784 * transport_generic_request_failure() to determine which dormant/delayed
3785 * and ordered cmds need to have their tasks added to the execution queue.
3787 static void transport_complete_task_attr(struct se_cmd
*cmd
)
3789 struct se_device
*dev
= SE_DEV(cmd
);
3790 struct se_cmd
*cmd_p
, *cmd_tmp
;
3791 int new_active_tasks
= 0;
3793 if (cmd
->sam_task_attr
== MSG_SIMPLE_TAG
) {
3794 atomic_dec(&dev
->simple_cmds
);
3795 smp_mb__after_atomic_dec();
3796 dev
->dev_cur_ordered_id
++;
3797 DEBUG_STA("Incremented dev->dev_cur_ordered_id: %u for"
3798 " SIMPLE: %u\n", dev
->dev_cur_ordered_id
,
3799 cmd
->se_ordered_id
);
3800 } else if (cmd
->sam_task_attr
== MSG_HEAD_TAG
) {
3801 atomic_dec(&dev
->dev_hoq_count
);
3802 smp_mb__after_atomic_dec();
3803 dev
->dev_cur_ordered_id
++;
3804 DEBUG_STA("Incremented dev_cur_ordered_id: %u for"
3805 " HEAD_OF_QUEUE: %u\n", dev
->dev_cur_ordered_id
,
3806 cmd
->se_ordered_id
);
3807 } else if (cmd
->sam_task_attr
== MSG_ORDERED_TAG
) {
3808 spin_lock(&dev
->ordered_cmd_lock
);
3809 list_del(&cmd
->se_ordered_list
);
3810 atomic_dec(&dev
->dev_ordered_sync
);
3811 smp_mb__after_atomic_dec();
3812 spin_unlock(&dev
->ordered_cmd_lock
);
3814 dev
->dev_cur_ordered_id
++;
3815 DEBUG_STA("Incremented dev_cur_ordered_id: %u for ORDERED:"
3816 " %u\n", dev
->dev_cur_ordered_id
, cmd
->se_ordered_id
);
3819 * Process all commands up to the last received
3820 * ORDERED task attribute which requires another blocking
3823 spin_lock(&dev
->delayed_cmd_lock
);
3824 list_for_each_entry_safe(cmd_p
, cmd_tmp
,
3825 &dev
->delayed_cmd_list
, se_delayed_list
) {
3827 list_del(&cmd_p
->se_delayed_list
);
3828 spin_unlock(&dev
->delayed_cmd_lock
);
3830 DEBUG_STA("Calling add_tasks() for"
3831 " cmd_p: 0x%02x Task Attr: 0x%02x"
3832 " Dormant -> Active, se_ordered_id: %u\n",
3833 T_TASK(cmd_p
)->t_task_cdb
[0],
3834 cmd_p
->sam_task_attr
, cmd_p
->se_ordered_id
);
3836 transport_add_tasks_from_cmd(cmd_p
);
3839 spin_lock(&dev
->delayed_cmd_lock
);
3840 if (cmd_p
->sam_task_attr
== MSG_ORDERED_TAG
)
3843 spin_unlock(&dev
->delayed_cmd_lock
);
3845 * If new tasks have become active, wake up the transport thread
3846 * to do the processing of the Active tasks.
3848 if (new_active_tasks
!= 0)
3849 wake_up_interruptible(&dev
->dev_queue_obj
->thread_wq
);
3852 static void transport_generic_complete_ok(struct se_cmd
*cmd
)
3856 * Check if we need to move delayed/dormant tasks from cmds on the
3857 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3860 if (SE_DEV(cmd
)->dev_task_attr_type
== SAM_TASK_ATTR_EMULATED
)
3861 transport_complete_task_attr(cmd
);
3863 * Check if we need to retrieve a sense buffer from
3864 * the struct se_cmd in question.
3866 if (cmd
->se_cmd_flags
& SCF_TRANSPORT_TASK_SENSE
) {
3867 if (transport_get_sense_data(cmd
) < 0)
3868 reason
= TCM_NON_EXISTENT_LUN
;
3871 * Only set when an struct se_task->task_scsi_status returned
3872 * a non GOOD status.
3874 if (cmd
->scsi_status
) {
3875 transport_send_check_condition_and_sense(
3877 transport_lun_remove_cmd(cmd
);
3878 transport_cmd_check_stop_to_fabric(cmd
);
3883 * Check for a callback, used by amongst other things
3884 * XDWRITE_READ_10 emulation.
3886 if (cmd
->transport_complete_callback
)
3887 cmd
->transport_complete_callback(cmd
);
3889 switch (cmd
->data_direction
) {
3890 case DMA_FROM_DEVICE
:
3891 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3892 if (SE_LUN(cmd
)->lun_sep
) {
3893 SE_LUN(cmd
)->lun_sep
->sep_stats
.tx_data_octets
+=
3896 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3898 * If enabled by TCM fabirc module pre-registered SGL
3899 * memory, perform the memcpy() from the TCM internal
3900 * contigious buffer back to the original SGL.
3902 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_CONTIG_TO_SG
)
3903 transport_memcpy_write_contig(cmd
,
3904 T_TASK(cmd
)->t_task_pt_sgl
,
3905 T_TASK(cmd
)->t_task_buf
);
3907 CMD_TFO(cmd
)->queue_data_in(cmd
);
3910 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3911 if (SE_LUN(cmd
)->lun_sep
) {
3912 SE_LUN(cmd
)->lun_sep
->sep_stats
.rx_data_octets
+=
3915 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3917 * Check if we need to send READ payload for BIDI-COMMAND
3919 if (T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) {
3920 spin_lock(&cmd
->se_lun
->lun_sep_lock
);
3921 if (SE_LUN(cmd
)->lun_sep
) {
3922 SE_LUN(cmd
)->lun_sep
->sep_stats
.tx_data_octets
+=
3925 spin_unlock(&cmd
->se_lun
->lun_sep_lock
);
3926 CMD_TFO(cmd
)->queue_data_in(cmd
);
3929 /* Fall through for DMA_TO_DEVICE */
3931 CMD_TFO(cmd
)->queue_status(cmd
);
3937 transport_lun_remove_cmd(cmd
);
3938 transport_cmd_check_stop_to_fabric(cmd
);
3941 static void transport_free_dev_tasks(struct se_cmd
*cmd
)
3943 struct se_task
*task
, *task_tmp
;
3944 unsigned long flags
;
3946 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
3947 list_for_each_entry_safe(task
, task_tmp
,
3948 &T_TASK(cmd
)->t_task_list
, t_list
) {
3949 if (atomic_read(&task
->task_active
))
3952 kfree(task
->task_sg_bidi
);
3953 kfree(task
->task_sg
);
3955 list_del(&task
->t_list
);
3957 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3959 TRANSPORT(task
->se_dev
)->free_task(task
);
3961 printk(KERN_ERR
"task[%u] - task->se_dev is NULL\n",
3963 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
3965 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
3968 static inline void transport_free_pages(struct se_cmd
*cmd
)
3970 struct se_mem
*se_mem
, *se_mem_tmp
;
3973 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)
3975 if (cmd
->se_dev
->transport
->do_se_mem_map
)
3978 if (T_TASK(cmd
)->t_task_buf
) {
3979 kfree(T_TASK(cmd
)->t_task_buf
);
3980 T_TASK(cmd
)->t_task_buf
= NULL
;
3985 * Caller will handle releasing of struct se_mem.
3987 if (cmd
->se_cmd_flags
& SCF_CMD_PASSTHROUGH_NOALLOC
)
3990 if (!(T_TASK(cmd
)->t_tasks_se_num
))
3993 list_for_each_entry_safe(se_mem
, se_mem_tmp
,
3994 T_TASK(cmd
)->t_mem_list
, se_list
) {
3996 * We only release call __free_page(struct se_mem->se_page) when
3997 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4000 __free_page(se_mem
->se_page
);
4002 list_del(&se_mem
->se_list
);
4003 kmem_cache_free(se_mem_cache
, se_mem
);
4006 if (T_TASK(cmd
)->t_mem_bidi_list
&& T_TASK(cmd
)->t_tasks_se_bidi_num
) {
4007 list_for_each_entry_safe(se_mem
, se_mem_tmp
,
4008 T_TASK(cmd
)->t_mem_bidi_list
, se_list
) {
4010 * We only release call __free_page(struct se_mem->se_page) when
4011 * SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC is NOT in use,
4014 __free_page(se_mem
->se_page
);
4016 list_del(&se_mem
->se_list
);
4017 kmem_cache_free(se_mem_cache
, se_mem
);
4021 kfree(T_TASK(cmd
)->t_mem_bidi_list
);
4022 T_TASK(cmd
)->t_mem_bidi_list
= NULL
;
4023 kfree(T_TASK(cmd
)->t_mem_list
);
4024 T_TASK(cmd
)->t_mem_list
= NULL
;
4025 T_TASK(cmd
)->t_tasks_se_num
= 0;
4028 static inline void transport_release_tasks(struct se_cmd
*cmd
)
4030 transport_free_dev_tasks(cmd
);
4033 static inline int transport_dec_and_check(struct se_cmd
*cmd
)
4035 unsigned long flags
;
4037 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4038 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
4039 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_fe_count
))) {
4040 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4046 if (atomic_read(&T_TASK(cmd
)->t_se_count
)) {
4047 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_se_count
))) {
4048 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4053 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4058 static void transport_release_fe_cmd(struct se_cmd
*cmd
)
4060 unsigned long flags
;
4062 if (transport_dec_and_check(cmd
))
4065 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4066 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
4067 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4070 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
4071 transport_all_task_dev_remove_state(cmd
);
4072 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4074 transport_release_tasks(cmd
);
4076 transport_free_pages(cmd
);
4077 transport_free_se_cmd(cmd
);
4078 CMD_TFO(cmd
)->release_cmd_direct(cmd
);
4081 static int transport_generic_remove(
4083 int release_to_pool
,
4084 int session_reinstatement
)
4086 unsigned long flags
;
4091 if (transport_dec_and_check(cmd
)) {
4092 if (session_reinstatement
) {
4093 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4094 transport_all_task_dev_remove_state(cmd
);
4095 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
4101 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
4102 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
4103 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4106 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
4107 transport_all_task_dev_remove_state(cmd
);
4108 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
4110 transport_release_tasks(cmd
);
4112 transport_free_pages(cmd
);
4115 if (release_to_pool
) {
4116 transport_release_cmd_to_pool(cmd
);
4118 transport_free_se_cmd(cmd
);
4119 CMD_TFO(cmd
)->release_cmd_direct(cmd
);
4126 * transport_generic_map_mem_to_cmd - Perform SGL -> struct se_mem map
4127 * @cmd: Associated se_cmd descriptor
4128 * @mem: SGL style memory for TCM WRITE / READ
4129 * @sg_mem_num: Number of SGL elements
4130 * @mem_bidi_in: SGL style memory for TCM BIDI READ
4131 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
4133 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
4136 int transport_generic_map_mem_to_cmd(
4138 struct scatterlist
*mem
,
4140 struct scatterlist
*mem_bidi_in
,
4141 u32 sg_mem_bidi_num
)
4143 u32 se_mem_cnt_out
= 0;
4146 if (!(mem
) || !(sg_mem_num
))
4149 * Passed *mem will contain a list_head containing preformatted
4150 * struct se_mem elements...
4152 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM
)) {
4153 if ((mem_bidi_in
) || (sg_mem_bidi_num
)) {
4154 printk(KERN_ERR
"SCF_CMD_PASSTHROUGH_NOALLOC not supported"
4155 " with BIDI-COMMAND\n");
4159 T_TASK(cmd
)->t_mem_list
= (struct list_head
*)mem
;
4160 T_TASK(cmd
)->t_tasks_se_num
= sg_mem_num
;
4161 cmd
->se_cmd_flags
|= SCF_CMD_PASSTHROUGH_NOALLOC
;
4165 * Otherwise, assume the caller is passing a struct scatterlist
4166 * array from include/linux/scatterlist.h
4168 if ((cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) ||
4169 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
)) {
4171 * For CDB using TCM struct se_mem linked list scatterlist memory
4172 * processed into a TCM struct se_subsystem_dev, we do the mapping
4173 * from the passed physical memory to struct se_mem->se_page here.
4175 T_TASK(cmd
)->t_mem_list
= transport_init_se_mem_list();
4176 if (!(T_TASK(cmd
)->t_mem_list
))
4179 ret
= transport_map_sg_to_mem(cmd
,
4180 T_TASK(cmd
)->t_mem_list
, mem
, &se_mem_cnt_out
);
4184 T_TASK(cmd
)->t_tasks_se_num
= se_mem_cnt_out
;
4186 * Setup BIDI READ list of struct se_mem elements
4188 if ((mem_bidi_in
) && (sg_mem_bidi_num
)) {
4189 T_TASK(cmd
)->t_mem_bidi_list
= transport_init_se_mem_list();
4190 if (!(T_TASK(cmd
)->t_mem_bidi_list
)) {
4191 kfree(T_TASK(cmd
)->t_mem_list
);
4196 ret
= transport_map_sg_to_mem(cmd
,
4197 T_TASK(cmd
)->t_mem_bidi_list
, mem_bidi_in
,
4200 kfree(T_TASK(cmd
)->t_mem_list
);
4204 T_TASK(cmd
)->t_tasks_se_bidi_num
= se_mem_cnt_out
;
4206 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
;
4208 } else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
) {
4209 if (mem_bidi_in
|| sg_mem_bidi_num
) {
4210 printk(KERN_ERR
"BIDI-Commands not supported using "
4211 "SCF_SCSI_CONTROL_NONSG_IO_CDB\n");
4215 * For incoming CDBs using a contiguous buffer internall with TCM,
4216 * save the passed struct scatterlist memory. After TCM storage object
4217 * processing has completed for this struct se_cmd, TCM core will call
4218 * transport_memcpy_[write,read]_contig() as necessary from
4219 * transport_generic_complete_ok() and transport_write_pending() in order
4220 * to copy the TCM buffer to/from the original passed *mem in SGL ->
4221 * struct scatterlist format.
4223 cmd
->se_cmd_flags
|= SCF_PASSTHROUGH_CONTIG_TO_SG
;
4224 T_TASK(cmd
)->t_task_pt_sgl
= mem
;
4229 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd
);
4232 static inline long long transport_dev_end_lba(struct se_device
*dev
)
4234 return dev
->transport
->get_blocks(dev
) + 1;
4237 static int transport_get_sectors(struct se_cmd
*cmd
)
4239 struct se_device
*dev
= SE_DEV(cmd
);
4241 T_TASK(cmd
)->t_tasks_sectors
=
4242 (cmd
->data_length
/ DEV_ATTRIB(dev
)->block_size
);
4243 if (!(T_TASK(cmd
)->t_tasks_sectors
))
4244 T_TASK(cmd
)->t_tasks_sectors
= 1;
4246 if (TRANSPORT(dev
)->get_device_type(dev
) != TYPE_DISK
)
4249 if ((T_TASK(cmd
)->t_task_lba
+ T_TASK(cmd
)->t_tasks_sectors
) >
4250 transport_dev_end_lba(dev
)) {
4251 printk(KERN_ERR
"LBA: %llu Sectors: %u exceeds"
4252 " transport_dev_end_lba(): %llu\n",
4253 T_TASK(cmd
)->t_task_lba
, T_TASK(cmd
)->t_tasks_sectors
,
4254 transport_dev_end_lba(dev
));
4255 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4256 cmd
->scsi_sense_reason
= TCM_SECTOR_COUNT_TOO_MANY
;
4257 return PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
;
4263 static int transport_new_cmd_obj(struct se_cmd
*cmd
)
4265 struct se_device
*dev
= SE_DEV(cmd
);
4266 u32 task_cdbs
= 0, rc
;
4268 if (!(cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
)) {
4270 T_TASK(cmd
)->t_task_cdbs
++;
4275 * Setup any BIDI READ tasks and memory from
4276 * T_TASK(cmd)->t_mem_bidi_list so the READ struct se_tasks
4277 * are queued first for the non pSCSI passthrough case.
4279 if ((T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) &&
4280 (TRANSPORT(dev
)->transport_type
!= TRANSPORT_PLUGIN_PHBA_PDEV
)) {
4281 rc
= transport_generic_get_cdb_count(cmd
,
4282 T_TASK(cmd
)->t_task_lba
,
4283 T_TASK(cmd
)->t_tasks_sectors
,
4284 DMA_FROM_DEVICE
, T_TASK(cmd
)->t_mem_bidi_list
,
4287 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4288 cmd
->scsi_sense_reason
=
4289 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
4290 return PYX_TRANSPORT_LU_COMM_FAILURE
;
4295 * Setup the tasks and memory from T_TASK(cmd)->t_mem_list
4296 * Note for BIDI transfers this will contain the WRITE payload
4298 task_cdbs
= transport_generic_get_cdb_count(cmd
,
4299 T_TASK(cmd
)->t_task_lba
,
4300 T_TASK(cmd
)->t_tasks_sectors
,
4301 cmd
->data_direction
, T_TASK(cmd
)->t_mem_list
,
4304 cmd
->se_cmd_flags
|= SCF_SCSI_CDB_EXCEPTION
;
4305 cmd
->scsi_sense_reason
=
4306 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
;
4307 return PYX_TRANSPORT_LU_COMM_FAILURE
;
4309 T_TASK(cmd
)->t_task_cdbs
+= task_cdbs
;
4312 printk(KERN_INFO
"data_length: %u, LBA: %llu t_tasks_sectors:"
4313 " %u, t_task_cdbs: %u\n", obj_ptr
, cmd
->data_length
,
4314 T_TASK(cmd
)->t_task_lba
, T_TASK(cmd
)->t_tasks_sectors
,
4315 T_TASK(cmd
)->t_task_cdbs
);
4319 atomic_set(&T_TASK(cmd
)->t_task_cdbs_left
, task_cdbs
);
4320 atomic_set(&T_TASK(cmd
)->t_task_cdbs_ex_left
, task_cdbs
);
4321 atomic_set(&T_TASK(cmd
)->t_task_cdbs_timeout_left
, task_cdbs
);
4325 static struct list_head
*transport_init_se_mem_list(void)
4327 struct list_head
*se_mem_list
;
4329 se_mem_list
= kzalloc(sizeof(struct list_head
), GFP_KERNEL
);
4330 if (!(se_mem_list
)) {
4331 printk(KERN_ERR
"Unable to allocate memory for se_mem_list\n");
4334 INIT_LIST_HEAD(se_mem_list
);
4340 transport_generic_get_mem(struct se_cmd
*cmd
, u32 length
, u32 dma_size
)
4343 struct se_mem
*se_mem
;
4345 T_TASK(cmd
)->t_mem_list
= transport_init_se_mem_list();
4346 if (!(T_TASK(cmd
)->t_mem_list
))
4350 * If the device uses memory mapping this is enough.
4352 if (cmd
->se_dev
->transport
->do_se_mem_map
)
4356 * Setup BIDI-COMMAND READ list of struct se_mem elements
4358 if (T_TASK(cmd
)->t_tasks_bidi
) {
4359 T_TASK(cmd
)->t_mem_bidi_list
= transport_init_se_mem_list();
4360 if (!(T_TASK(cmd
)->t_mem_bidi_list
)) {
4361 kfree(T_TASK(cmd
)->t_mem_list
);
4367 se_mem
= kmem_cache_zalloc(se_mem_cache
, GFP_KERNEL
);
4369 printk(KERN_ERR
"Unable to allocate struct se_mem\n");
4373 /* #warning FIXME Allocate contigous pages for struct se_mem elements */
4374 se_mem
->se_page
= alloc_pages(GFP_KERNEL
, 0);
4375 if (!(se_mem
->se_page
)) {
4376 printk(KERN_ERR
"alloc_pages() failed\n");
4380 buf
= kmap_atomic(se_mem
->se_page
, KM_IRQ0
);
4382 printk(KERN_ERR
"kmap_atomic() failed\n");
4385 INIT_LIST_HEAD(&se_mem
->se_list
);
4386 se_mem
->se_len
= (length
> dma_size
) ? dma_size
: length
;
4387 memset(buf
, 0, se_mem
->se_len
);
4388 kunmap_atomic(buf
, KM_IRQ0
);
4390 list_add_tail(&se_mem
->se_list
, T_TASK(cmd
)->t_mem_list
);
4391 T_TASK(cmd
)->t_tasks_se_num
++;
4393 DEBUG_MEM("Allocated struct se_mem page(%p) Length(%u)"
4394 " Offset(%u)\n", se_mem
->se_page
, se_mem
->se_len
,
4397 length
-= se_mem
->se_len
;
4400 DEBUG_MEM("Allocated total struct se_mem elements(%u)\n",
4401 T_TASK(cmd
)->t_tasks_se_num
);
4406 __free_pages(se_mem
->se_page
, 0);
4407 kmem_cache_free(se_mem_cache
, se_mem
);
4411 u32
transport_calc_sg_num(
4412 struct se_task
*task
,
4413 struct se_mem
*in_se_mem
,
4416 struct se_cmd
*se_cmd
= task
->task_se_cmd
;
4417 struct se_device
*se_dev
= SE_DEV(se_cmd
);
4418 struct se_mem
*se_mem
= in_se_mem
;
4419 struct target_core_fabric_ops
*tfo
= CMD_TFO(se_cmd
);
4420 u32 sg_length
, task_size
= task
->task_size
, task_sg_num_padded
;
4422 while (task_size
!= 0) {
4423 DEBUG_SC("se_mem->se_page(%p) se_mem->se_len(%u)"
4424 " se_mem->se_off(%u) task_offset(%u)\n",
4425 se_mem
->se_page
, se_mem
->se_len
,
4426 se_mem
->se_off
, task_offset
);
4428 if (task_offset
== 0) {
4429 if (task_size
>= se_mem
->se_len
) {
4430 sg_length
= se_mem
->se_len
;
4432 if (!(list_is_last(&se_mem
->se_list
,
4433 T_TASK(se_cmd
)->t_mem_list
)))
4434 se_mem
= list_entry(se_mem
->se_list
.next
,
4435 struct se_mem
, se_list
);
4437 sg_length
= task_size
;
4438 task_size
-= sg_length
;
4442 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4443 sg_length
, task_size
);
4445 if ((se_mem
->se_len
- task_offset
) > task_size
) {
4446 sg_length
= task_size
;
4447 task_size
-= sg_length
;
4450 sg_length
= (se_mem
->se_len
- task_offset
);
4452 if (!(list_is_last(&se_mem
->se_list
,
4453 T_TASK(se_cmd
)->t_mem_list
)))
4454 se_mem
= list_entry(se_mem
->se_list
.next
,
4455 struct se_mem
, se_list
);
4458 DEBUG_SC("sg_length(%u) task_size(%u)\n",
4459 sg_length
, task_size
);
4463 task_size
-= sg_length
;
4465 DEBUG_SC("task[%u] - Reducing task_size to(%u)\n",
4466 task
->task_no
, task_size
);
4468 task
->task_sg_num
++;
4471 * Check if the fabric module driver is requesting that all
4472 * struct se_task->task_sg[] be chained together.. If so,
4473 * then allocate an extra padding SG entry for linking and
4474 * marking the end of the chained SGL.
4476 if (tfo
->task_sg_chaining
) {
4477 task_sg_num_padded
= (task
->task_sg_num
+ 1);
4478 task
->task_padded_sg
= 1;
4480 task_sg_num_padded
= task
->task_sg_num
;
4482 task
->task_sg
= kzalloc(task_sg_num_padded
*
4483 sizeof(struct scatterlist
), GFP_KERNEL
);
4484 if (!(task
->task_sg
)) {
4485 printk(KERN_ERR
"Unable to allocate memory for"
4486 " task->task_sg\n");
4489 sg_init_table(&task
->task_sg
[0], task_sg_num_padded
);
4491 * Setup task->task_sg_bidi for SCSI READ payload for
4492 * TCM/pSCSI passthrough if present for BIDI-COMMAND
4494 if ((T_TASK(se_cmd
)->t_mem_bidi_list
!= NULL
) &&
4495 (TRANSPORT(se_dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
)) {
4496 task
->task_sg_bidi
= kzalloc(task_sg_num_padded
*
4497 sizeof(struct scatterlist
), GFP_KERNEL
);
4498 if (!(task
->task_sg_bidi
)) {
4499 printk(KERN_ERR
"Unable to allocate memory for"
4500 " task->task_sg_bidi\n");
4503 sg_init_table(&task
->task_sg_bidi
[0], task_sg_num_padded
);
4506 * For the chaining case, setup the proper end of SGL for the
4507 * initial submission struct task into struct se_subsystem_api.
4508 * This will be cleared later by transport_do_task_sg_chain()
4510 if (task
->task_padded_sg
) {
4511 sg_mark_end(&task
->task_sg
[task
->task_sg_num
- 1]);
4513 * Added the 'if' check before marking end of bi-directional
4514 * scatterlist (which gets created only in case of request
4517 if (task
->task_sg_bidi
)
4518 sg_mark_end(&task
->task_sg_bidi
[task
->task_sg_num
- 1]);
4521 DEBUG_SC("Successfully allocated task->task_sg_num(%u),"
4522 " task_sg_num_padded(%u)\n", task
->task_sg_num
,
4523 task_sg_num_padded
);
4525 return task
->task_sg_num
;
4528 static inline int transport_set_tasks_sectors_disk(
4529 struct se_task
*task
,
4530 struct se_device
*dev
,
4531 unsigned long long lba
,
4533 int *max_sectors_set
)
4535 if ((lba
+ sectors
) > transport_dev_end_lba(dev
)) {
4536 task
->task_sectors
= ((transport_dev_end_lba(dev
) - lba
) + 1);
4538 if (task
->task_sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4539 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4540 *max_sectors_set
= 1;
4543 if (sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4544 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4545 *max_sectors_set
= 1;
4547 task
->task_sectors
= sectors
;
4553 static inline int transport_set_tasks_sectors_non_disk(
4554 struct se_task
*task
,
4555 struct se_device
*dev
,
4556 unsigned long long lba
,
4558 int *max_sectors_set
)
4560 if (sectors
> DEV_ATTRIB(dev
)->max_sectors
) {
4561 task
->task_sectors
= DEV_ATTRIB(dev
)->max_sectors
;
4562 *max_sectors_set
= 1;
4564 task
->task_sectors
= sectors
;
4569 static inline int transport_set_tasks_sectors(
4570 struct se_task
*task
,
4571 struct se_device
*dev
,
4572 unsigned long long lba
,
4574 int *max_sectors_set
)
4576 return (TRANSPORT(dev
)->get_device_type(dev
) == TYPE_DISK
) ?
4577 transport_set_tasks_sectors_disk(task
, dev
, lba
, sectors
,
4579 transport_set_tasks_sectors_non_disk(task
, dev
, lba
, sectors
,
4583 static int transport_map_sg_to_mem(
4585 struct list_head
*se_mem_list
,
4589 struct se_mem
*se_mem
;
4590 struct scatterlist
*sg
;
4591 u32 sg_count
= 1, cmd_size
= cmd
->data_length
;
4594 printk(KERN_ERR
"No source scatterlist\n");
4597 sg
= (struct scatterlist
*)in_mem
;
4600 se_mem
= kmem_cache_zalloc(se_mem_cache
, GFP_KERNEL
);
4602 printk(KERN_ERR
"Unable to allocate struct se_mem\n");
4605 INIT_LIST_HEAD(&se_mem
->se_list
);
4606 DEBUG_MEM("sg_to_mem: Starting loop with cmd_size: %u"
4607 " sg_page: %p offset: %d length: %d\n", cmd_size
,
4608 sg_page(sg
), sg
->offset
, sg
->length
);
4610 se_mem
->se_page
= sg_page(sg
);
4611 se_mem
->se_off
= sg
->offset
;
4613 if (cmd_size
> sg
->length
) {
4614 se_mem
->se_len
= sg
->length
;
4618 se_mem
->se_len
= cmd_size
;
4620 cmd_size
-= se_mem
->se_len
;
4622 DEBUG_MEM("sg_to_mem: *se_mem_cnt: %u cmd_size: %u\n",
4623 *se_mem_cnt
, cmd_size
);
4624 DEBUG_MEM("sg_to_mem: Final se_page: %p se_off: %d se_len: %d\n",
4625 se_mem
->se_page
, se_mem
->se_off
, se_mem
->se_len
);
4627 list_add_tail(&se_mem
->se_list
, se_mem_list
);
4631 DEBUG_MEM("task[0] - Mapped(%u) struct scatterlist segments to(%u)"
4632 " struct se_mem\n", sg_count
, *se_mem_cnt
);
4634 if (sg_count
!= *se_mem_cnt
)
4640 /* transport_map_mem_to_sg():
4644 int transport_map_mem_to_sg(
4645 struct se_task
*task
,
4646 struct list_head
*se_mem_list
,
4648 struct se_mem
*in_se_mem
,
4649 struct se_mem
**out_se_mem
,
4653 struct se_cmd
*se_cmd
= task
->task_se_cmd
;
4654 struct se_mem
*se_mem
= in_se_mem
;
4655 struct scatterlist
*sg
= (struct scatterlist
*)in_mem
;
4656 u32 task_size
= task
->task_size
, sg_no
= 0;
4659 printk(KERN_ERR
"Unable to locate valid struct"
4660 " scatterlist pointer\n");
4664 while (task_size
!= 0) {
4666 * Setup the contigious array of scatterlists for
4667 * this struct se_task.
4669 sg_assign_page(sg
, se_mem
->se_page
);
4671 if (*task_offset
== 0) {
4672 sg
->offset
= se_mem
->se_off
;
4674 if (task_size
>= se_mem
->se_len
) {
4675 sg
->length
= se_mem
->se_len
;
4677 if (!(list_is_last(&se_mem
->se_list
,
4678 T_TASK(se_cmd
)->t_mem_list
))) {
4679 se_mem
= list_entry(se_mem
->se_list
.next
,
4680 struct se_mem
, se_list
);
4684 sg
->length
= task_size
;
4686 * Determine if we need to calculate an offset
4687 * into the struct se_mem on the next go around..
4689 task_size
-= sg
->length
;
4691 *task_offset
= sg
->length
;
4697 sg
->offset
= (*task_offset
+ se_mem
->se_off
);
4699 if ((se_mem
->se_len
- *task_offset
) > task_size
) {
4700 sg
->length
= task_size
;
4702 * Determine if we need to calculate an offset
4703 * into the struct se_mem on the next go around..
4705 task_size
-= sg
->length
;
4707 *task_offset
+= sg
->length
;
4711 sg
->length
= (se_mem
->se_len
- *task_offset
);
4713 if (!(list_is_last(&se_mem
->se_list
,
4714 T_TASK(se_cmd
)->t_mem_list
))) {
4715 se_mem
= list_entry(se_mem
->se_list
.next
,
4716 struct se_mem
, se_list
);
4723 task_size
-= sg
->length
;
4725 DEBUG_MEM("task[%u] mem_to_sg - sg[%u](%p)(%u)(%u) - Reducing"
4726 " task_size to(%u), task_offset: %u\n", task
->task_no
, sg_no
,
4727 sg_page(sg
), sg
->length
, sg
->offset
, task_size
, *task_offset
);
4735 if (task_size
> se_cmd
->data_length
)
4738 *out_se_mem
= se_mem
;
4740 DEBUG_MEM("task[%u] - Mapped(%u) struct se_mem segments to total(%u)"
4741 " SGs\n", task
->task_no
, *se_mem_cnt
, sg_no
);
4747 * This function can be used by HW target mode drivers to create a linked
4748 * scatterlist from all contiguously allocated struct se_task->task_sg[].
4749 * This is intended to be called during the completion path by TCM Core
4750 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
4752 void transport_do_task_sg_chain(struct se_cmd
*cmd
)
4754 struct scatterlist
*sg_head
= NULL
, *sg_link
= NULL
, *sg_first
= NULL
;
4755 struct scatterlist
*sg_head_cur
= NULL
, *sg_link_cur
= NULL
;
4756 struct scatterlist
*sg
, *sg_end
= NULL
, *sg_end_cur
= NULL
;
4757 struct se_task
*task
;
4758 struct target_core_fabric_ops
*tfo
= CMD_TFO(cmd
);
4759 u32 task_sg_num
= 0, sg_count
= 0;
4762 if (tfo
->task_sg_chaining
== 0) {
4763 printk(KERN_ERR
"task_sg_chaining is diabled for fabric module:"
4764 " %s\n", tfo
->get_fabric_name());
4769 * Walk the struct se_task list and setup scatterlist chains
4770 * for each contiguosly allocated struct se_task->task_sg[].
4772 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
4773 if (!(task
->task_sg
) || !(task
->task_padded_sg
))
4776 if (sg_head
&& sg_link
) {
4777 sg_head_cur
= &task
->task_sg
[0];
4778 sg_link_cur
= &task
->task_sg
[task
->task_sg_num
];
4780 * Either add chain or mark end of scatterlist
4782 if (!(list_is_last(&task
->t_list
,
4783 &T_TASK(cmd
)->t_task_list
))) {
4785 * Clear existing SGL termination bit set in
4786 * transport_calc_sg_num(), see sg_mark_end()
4788 sg_end_cur
= &task
->task_sg
[task
->task_sg_num
- 1];
4789 sg_end_cur
->page_link
&= ~0x02;
4791 sg_chain(sg_head
, task_sg_num
, sg_head_cur
);
4792 sg_count
+= task
->task_sg_num
;
4793 task_sg_num
= (task
->task_sg_num
+ 1);
4795 sg_chain(sg_head
, task_sg_num
, sg_head_cur
);
4796 sg_count
+= task
->task_sg_num
;
4797 task_sg_num
= task
->task_sg_num
;
4800 sg_head
= sg_head_cur
;
4801 sg_link
= sg_link_cur
;
4804 sg_head
= sg_first
= &task
->task_sg
[0];
4805 sg_link
= &task
->task_sg
[task
->task_sg_num
];
4807 * Check for single task..
4809 if (!(list_is_last(&task
->t_list
, &T_TASK(cmd
)->t_task_list
))) {
4811 * Clear existing SGL termination bit set in
4812 * transport_calc_sg_num(), see sg_mark_end()
4814 sg_end
= &task
->task_sg
[task
->task_sg_num
- 1];
4815 sg_end
->page_link
&= ~0x02;
4816 sg_count
+= task
->task_sg_num
;
4817 task_sg_num
= (task
->task_sg_num
+ 1);
4819 sg_count
+= task
->task_sg_num
;
4820 task_sg_num
= task
->task_sg_num
;
4824 * Setup the starting pointer and total t_tasks_sg_linked_no including
4825 * padding SGs for linking and to mark the end.
4827 T_TASK(cmd
)->t_tasks_sg_chained
= sg_first
;
4828 T_TASK(cmd
)->t_tasks_sg_chained_no
= sg_count
;
4830 DEBUG_CMD_M("Setup cmd: %p T_TASK(cmd)->t_tasks_sg_chained: %p and"
4831 " t_tasks_sg_chained_no: %u\n", cmd
, T_TASK(cmd
)->t_tasks_sg_chained
,
4832 T_TASK(cmd
)->t_tasks_sg_chained_no
);
4834 for_each_sg(T_TASK(cmd
)->t_tasks_sg_chained
, sg
,
4835 T_TASK(cmd
)->t_tasks_sg_chained_no
, i
) {
4837 DEBUG_CMD_M("SG[%d]: %p page: %p length: %d offset: %d, magic: 0x%08x\n",
4838 i
, sg
, sg_page(sg
), sg
->length
, sg
->offset
, sg
->sg_magic
);
4839 if (sg_is_chain(sg
))
4840 DEBUG_CMD_M("SG: %p sg_is_chain=1\n", sg
);
4842 DEBUG_CMD_M("SG: %p sg_is_last=1\n", sg
);
4845 EXPORT_SYMBOL(transport_do_task_sg_chain
);
4847 static int transport_do_se_mem_map(
4848 struct se_device
*dev
,
4849 struct se_task
*task
,
4850 struct list_head
*se_mem_list
,
4852 struct se_mem
*in_se_mem
,
4853 struct se_mem
**out_se_mem
,
4855 u32
*task_offset_in
)
4857 u32 task_offset
= *task_offset_in
;
4860 * se_subsystem_api_t->do_se_mem_map is used when internal allocation
4861 * has been done by the transport plugin.
4863 if (TRANSPORT(dev
)->do_se_mem_map
) {
4864 ret
= TRANSPORT(dev
)->do_se_mem_map(task
, se_mem_list
,
4865 in_mem
, in_se_mem
, out_se_mem
, se_mem_cnt
,
4868 T_TASK(task
->task_se_cmd
)->t_tasks_se_num
+= *se_mem_cnt
;
4873 BUG_ON(list_empty(se_mem_list
));
4875 * This is the normal path for all normal non BIDI and BIDI-COMMAND
4876 * WRITE payloads.. If we need to do BIDI READ passthrough for
4877 * TCM/pSCSI the first call to transport_do_se_mem_map ->
4878 * transport_calc_sg_num() -> transport_map_mem_to_sg() will do the
4879 * allocation for task->task_sg_bidi, and the subsequent call to
4880 * transport_do_se_mem_map() from transport_generic_get_cdb_count()
4882 if (!(task
->task_sg_bidi
)) {
4884 * Assume default that transport plugin speaks preallocated
4887 if (!(transport_calc_sg_num(task
, in_se_mem
, task_offset
)))
4890 * struct se_task->task_sg now contains the struct scatterlist array.
4892 return transport_map_mem_to_sg(task
, se_mem_list
, task
->task_sg
,
4893 in_se_mem
, out_se_mem
, se_mem_cnt
,
4897 * Handle the se_mem_list -> struct task->task_sg_bidi
4898 * memory map for the extra BIDI READ payload
4900 return transport_map_mem_to_sg(task
, se_mem_list
, task
->task_sg_bidi
,
4901 in_se_mem
, out_se_mem
, se_mem_cnt
,
4905 static u32
transport_generic_get_cdb_count(
4907 unsigned long long lba
,
4909 enum dma_data_direction data_direction
,
4910 struct list_head
*mem_list
,
4913 unsigned char *cdb
= NULL
;
4914 struct se_task
*task
;
4915 struct se_mem
*se_mem
= NULL
, *se_mem_lout
= NULL
;
4916 struct se_mem
*se_mem_bidi
= NULL
, *se_mem_bidi_lout
= NULL
;
4917 struct se_device
*dev
= SE_DEV(cmd
);
4918 int max_sectors_set
= 0, ret
;
4919 u32 task_offset_in
= 0, se_mem_cnt
= 0, se_mem_bidi_cnt
= 0, task_cdbs
= 0;
4922 printk(KERN_ERR
"mem_list is NULL in transport_generic_get"
4927 * While using RAMDISK_DR backstores is the only case where
4928 * mem_list will ever be empty at this point.
4930 if (!(list_empty(mem_list
)))
4931 se_mem
= list_entry(mem_list
->next
, struct se_mem
, se_list
);
4933 * Check for extra se_mem_bidi mapping for BIDI-COMMANDs to
4934 * struct se_task->task_sg_bidi for TCM/pSCSI passthrough operation
4936 if ((T_TASK(cmd
)->t_mem_bidi_list
!= NULL
) &&
4937 !(list_empty(T_TASK(cmd
)->t_mem_bidi_list
)) &&
4938 (TRANSPORT(dev
)->transport_type
== TRANSPORT_PLUGIN_PHBA_PDEV
))
4939 se_mem_bidi
= list_entry(T_TASK(cmd
)->t_mem_bidi_list
->next
,
4940 struct se_mem
, se_list
);
4943 DEBUG_VOL("ITT[0x%08x] LBA(%llu) SectorsLeft(%u) EOBJ(%llu)\n",
4944 CMD_TFO(cmd
)->get_task_tag(cmd
), lba
, sectors
,
4945 transport_dev_end_lba(dev
));
4947 task
= transport_generic_get_task(cmd
, data_direction
);
4951 transport_set_tasks_sectors(task
, dev
, lba
, sectors
,
4954 task
->task_lba
= lba
;
4955 lba
+= task
->task_sectors
;
4956 sectors
-= task
->task_sectors
;
4957 task
->task_size
= (task
->task_sectors
*
4958 DEV_ATTRIB(dev
)->block_size
);
4960 cdb
= TRANSPORT(dev
)->get_cdb(task
);
4962 memcpy(cdb
, T_TASK(cmd
)->t_task_cdb
,
4963 scsi_command_size(T_TASK(cmd
)->t_task_cdb
));
4964 cmd
->transport_split_cdb(task
->task_lba
,
4965 &task
->task_sectors
, cdb
);
4969 * Perform the SE OBJ plugin and/or Transport plugin specific
4970 * mapping for T_TASK(cmd)->t_mem_list. And setup the
4971 * task->task_sg and if necessary task->task_sg_bidi
4973 ret
= transport_do_se_mem_map(dev
, task
, mem_list
,
4974 NULL
, se_mem
, &se_mem_lout
, &se_mem_cnt
,
4979 se_mem
= se_mem_lout
;
4981 * Setup the T_TASK(cmd)->t_mem_bidi_list -> task->task_sg_bidi
4982 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI
4984 * Note that the first call to transport_do_se_mem_map() above will
4985 * allocate struct se_task->task_sg_bidi in transport_do_se_mem_map()
4986 * -> transport_calc_sg_num(), and the second here will do the
4987 * mapping for SCSI READ for BIDI-COMMAND passthrough with TCM/pSCSI.
4989 if (task
->task_sg_bidi
!= NULL
) {
4990 ret
= transport_do_se_mem_map(dev
, task
,
4991 T_TASK(cmd
)->t_mem_bidi_list
, NULL
,
4992 se_mem_bidi
, &se_mem_bidi_lout
, &se_mem_bidi_cnt
,
4997 se_mem_bidi
= se_mem_bidi_lout
;
5001 DEBUG_VOL("Incremented task_cdbs(%u) task->task_sg_num(%u)\n",
5002 task_cdbs
, task
->task_sg_num
);
5004 if (max_sectors_set
) {
5005 max_sectors_set
= 0;
5014 atomic_inc(&T_TASK(cmd
)->t_fe_count
);
5015 atomic_inc(&T_TASK(cmd
)->t_se_count
);
5018 DEBUG_VOL("ITT[0x%08x] total %s cdbs(%u)\n",
5019 CMD_TFO(cmd
)->get_task_tag(cmd
), (data_direction
== DMA_TO_DEVICE
)
5020 ? "DMA_TO_DEVICE" : "DMA_FROM_DEVICE", task_cdbs
);
5028 transport_map_control_cmd_to_task(struct se_cmd
*cmd
)
5030 struct se_device
*dev
= SE_DEV(cmd
);
5032 struct se_task
*task
;
5035 task
= transport_generic_get_task(cmd
, cmd
->data_direction
);
5037 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5039 cdb
= TRANSPORT(dev
)->get_cdb(task
);
5041 memcpy(cdb
, cmd
->t_task
->t_task_cdb
,
5042 scsi_command_size(cmd
->t_task
->t_task_cdb
));
5044 task
->task_size
= cmd
->data_length
;
5046 (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) ? 1 : 0;
5048 atomic_inc(&cmd
->t_task
->t_fe_count
);
5049 atomic_inc(&cmd
->t_task
->t_se_count
);
5051 if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_SG_IO_CDB
) {
5052 struct se_mem
*se_mem
= NULL
, *se_mem_lout
= NULL
;
5053 u32 se_mem_cnt
= 0, task_offset
= 0;
5055 if (!list_empty(T_TASK(cmd
)->t_mem_list
))
5056 se_mem
= list_entry(T_TASK(cmd
)->t_mem_list
->next
,
5057 struct se_mem
, se_list
);
5059 ret
= transport_do_se_mem_map(dev
, task
,
5060 cmd
->t_task
->t_mem_list
, NULL
, se_mem
,
5061 &se_mem_lout
, &se_mem_cnt
, &task_offset
);
5063 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5065 if (dev
->transport
->map_task_SG
)
5066 return dev
->transport
->map_task_SG(task
);
5068 } else if (cmd
->se_cmd_flags
& SCF_SCSI_CONTROL_NONSG_IO_CDB
) {
5069 if (dev
->transport
->map_task_non_SG
)
5070 return dev
->transport
->map_task_non_SG(task
);
5072 } else if (cmd
->se_cmd_flags
& SCF_SCSI_NON_DATA_CDB
) {
5073 if (dev
->transport
->cdb_none
)
5074 return dev
->transport
->cdb_none(task
);
5078 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5082 /* transport_generic_new_cmd(): Called from transport_processing_thread()
5084 * Allocate storage transport resources from a set of values predefined
5085 * by transport_generic_cmd_sequencer() from the iSCSI Target RX process.
5086 * Any non zero return here is treated as an "out of resource' op here.
5089 * Generate struct se_task(s) and/or their payloads for this CDB.
5091 static int transport_generic_new_cmd(struct se_cmd
*cmd
)
5093 struct se_portal_group
*se_tpg
;
5094 struct se_task
*task
;
5095 struct se_device
*dev
= SE_DEV(cmd
);
5099 * Determine is the TCM fabric module has already allocated physical
5100 * memory, and is directly calling transport_generic_map_mem_to_cmd()
5101 * to setup beforehand the linked list of physical memory at
5102 * T_TASK(cmd)->t_mem_list of struct se_mem->se_page
5104 if (!(cmd
->se_cmd_flags
& SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC
)) {
5105 ret
= transport_allocate_resources(cmd
);
5110 ret
= transport_get_sectors(cmd
);
5114 ret
= transport_new_cmd_obj(cmd
);
5119 * Determine if the calling TCM fabric module is talking to
5120 * Linux/NET via kernel sockets and needs to allocate a
5121 * struct iovec array to complete the struct se_cmd
5123 se_tpg
= SE_LUN(cmd
)->lun_sep
->sep_tpg
;
5124 if (TPG_TFO(se_tpg
)->alloc_cmd_iovecs
!= NULL
) {
5125 ret
= TPG_TFO(se_tpg
)->alloc_cmd_iovecs(cmd
);
5127 return PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES
;
5130 if (cmd
->se_cmd_flags
& SCF_SCSI_DATA_SG_IO_CDB
) {
5131 list_for_each_entry(task
, &T_TASK(cmd
)->t_task_list
, t_list
) {
5132 if (atomic_read(&task
->task_sent
))
5134 if (!dev
->transport
->map_task_SG
)
5137 ret
= dev
->transport
->map_task_SG(task
);
5142 ret
= transport_map_control_cmd_to_task(cmd
);
5148 * For WRITEs, let the iSCSI Target RX Thread know its buffer is ready..
5149 * This WRITE struct se_cmd (and all of its associated struct se_task's)
5150 * will be added to the struct se_device execution queue after its WRITE
5151 * data has arrived. (ie: It gets handled by the transport processing
5152 * thread a second time)
5154 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
5155 transport_add_tasks_to_state_queue(cmd
);
5156 return transport_generic_write_pending(cmd
);
5159 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
5160 * to the execution queue.
5162 transport_execute_tasks(cmd
);
5166 /* transport_generic_process_write():
5170 void transport_generic_process_write(struct se_cmd
*cmd
)
5174 * Copy SCSI Presented DTL sector(s) from received buffers allocated to
5177 if (cmd
->se_cmd_flags
& SCF_UNDERFLOW_BIT
) {
5178 if (!T_TASK(cmd
)->t_tasks_se_num
) {
5179 unsigned char *dst
, *buf
=
5180 (unsigned char *)T_TASK(cmd
)->t_task_buf
;
5182 dst
= kzalloc(cmd
->cmd_spdtl
), GFP_KERNEL
);
5184 printk(KERN_ERR
"Unable to allocate memory for"
5185 " WRITE underflow\n");
5186 transport_generic_request_failure(cmd
, NULL
,
5187 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5190 memcpy(dst
, buf
, cmd
->cmd_spdtl
);
5192 kfree(T_TASK(cmd
)->t_task_buf
);
5193 T_TASK(cmd
)->t_task_buf
= dst
;
5195 struct scatterlist
*sg
=
5196 (struct scatterlist
*sg
)T_TASK(cmd
)->t_task_buf
;
5197 struct scatterlist
*orig_sg
;
5199 orig_sg
= kzalloc(sizeof(struct scatterlist
) *
5200 T_TASK(cmd
)->t_tasks_se_num
,
5203 printk(KERN_ERR
"Unable to allocate memory"
5204 " for WRITE underflow\n");
5205 transport_generic_request_failure(cmd
, NULL
,
5206 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5210 memcpy(orig_sg
, T_TASK(cmd
)->t_task_buf
,
5211 sizeof(struct scatterlist
) *
5212 T_TASK(cmd
)->t_tasks_se_num
);
5214 cmd
->data_length
= cmd
->cmd_spdtl
;
5216 * FIXME, clear out original struct se_task and state
5219 if (transport_generic_new_cmd(cmd
) < 0) {
5220 transport_generic_request_failure(cmd
, NULL
,
5221 PYX_TRANSPORT_REQ_TOO_MANY_SECTORS
, 1);
5226 transport_memcpy_write_sg(cmd
, orig_sg
);
5230 transport_execute_tasks(cmd
);
5232 EXPORT_SYMBOL(transport_generic_process_write
);
5234 /* transport_generic_write_pending():
5238 static int transport_generic_write_pending(struct se_cmd
*cmd
)
5240 unsigned long flags
;
5243 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5244 cmd
->t_state
= TRANSPORT_WRITE_PENDING
;
5245 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5247 * For the TCM control CDBs using a contiguous buffer, do the memcpy
5248 * from the passed Linux/SCSI struct scatterlist located at
5249 * T_TASK(se_cmd)->t_task_pt_buf to the contiguous buffer at
5250 * T_TASK(se_cmd)->t_task_buf.
5252 if (cmd
->se_cmd_flags
& SCF_PASSTHROUGH_CONTIG_TO_SG
)
5253 transport_memcpy_read_contig(cmd
,
5254 T_TASK(cmd
)->t_task_buf
,
5255 T_TASK(cmd
)->t_task_pt_sgl
);
5257 * Clear the se_cmd for WRITE_PENDING status in order to set
5258 * T_TASK(cmd)->t_transport_active=0 so that transport_generic_handle_data
5259 * can be called from HW target mode interrupt code. This is safe
5260 * to be called with transport_off=1 before the CMD_TFO(cmd)->write_pending
5261 * because the se_cmd->se_lun pointer is not being cleared.
5263 transport_cmd_check_stop(cmd
, 1, 0);
5266 * Call the fabric write_pending function here to let the
5267 * frontend know that WRITE buffers are ready.
5269 ret
= CMD_TFO(cmd
)->write_pending(cmd
);
5273 return PYX_TRANSPORT_WRITE_PENDING
;
5276 /* transport_release_cmd_to_pool():
5280 void transport_release_cmd_to_pool(struct se_cmd
*cmd
)
5282 BUG_ON(!T_TASK(cmd
));
5283 BUG_ON(!CMD_TFO(cmd
));
5285 transport_free_se_cmd(cmd
);
5286 CMD_TFO(cmd
)->release_cmd_to_pool(cmd
);
5288 EXPORT_SYMBOL(transport_release_cmd_to_pool
);
5290 /* transport_generic_free_cmd():
5292 * Called from processing frontend to release storage engine resources
5294 void transport_generic_free_cmd(
5297 int release_to_pool
,
5298 int session_reinstatement
)
5300 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) || !T_TASK(cmd
))
5301 transport_release_cmd_to_pool(cmd
);
5303 core_dec_lacl_count(cmd
->se_sess
->se_node_acl
, cmd
);
5307 printk(KERN_INFO
"cmd: %p ITT: 0x%08x contains"
5308 " SE_LUN(cmd)\n", cmd
,
5309 CMD_TFO(cmd
)->get_task_tag(cmd
));
5311 transport_lun_remove_cmd(cmd
);
5314 if (wait_for_tasks
&& cmd
->transport_wait_for_tasks
)
5315 cmd
->transport_wait_for_tasks(cmd
, 0, 0);
5317 transport_free_dev_tasks(cmd
);
5319 transport_generic_remove(cmd
, release_to_pool
,
5320 session_reinstatement
);
5323 EXPORT_SYMBOL(transport_generic_free_cmd
);
5325 static void transport_nop_wait_for_tasks(
5328 int session_reinstatement
)
5333 /* transport_lun_wait_for_tasks():
5335 * Called from ConfigFS context to stop the passed struct se_cmd to allow
5336 * an struct se_lun to be successfully shutdown.
5338 static int transport_lun_wait_for_tasks(struct se_cmd
*cmd
, struct se_lun
*lun
)
5340 unsigned long flags
;
5343 * If the frontend has already requested this struct se_cmd to
5344 * be stopped, we can safely ignore this struct se_cmd.
5346 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5347 if (atomic_read(&T_TASK(cmd
)->t_transport_stop
)) {
5348 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 0);
5349 DEBUG_TRANSPORT_S("ConfigFS ITT[0x%08x] - t_transport_stop =="
5350 " TRUE, skipping\n", CMD_TFO(cmd
)->get_task_tag(cmd
));
5351 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5352 transport_cmd_check_stop(cmd
, 1, 0);
5355 atomic_set(&T_TASK(cmd
)->transport_lun_fe_stop
, 1);
5356 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5358 wake_up_interruptible(&SE_DEV(cmd
)->dev_queue_obj
->thread_wq
);
5360 ret
= transport_stop_tasks_for_cmd(cmd
);
5362 DEBUG_TRANSPORT_S("ConfigFS: cmd: %p t_task_cdbs: %d stop tasks ret:"
5363 " %d\n", cmd
, T_TASK(cmd
)->t_task_cdbs
, ret
);
5365 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
5366 CMD_TFO(cmd
)->get_task_tag(cmd
));
5367 wait_for_completion(&T_TASK(cmd
)->transport_lun_stop_comp
);
5368 DEBUG_TRANSPORT_S("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
5369 CMD_TFO(cmd
)->get_task_tag(cmd
));
5371 transport_remove_cmd_from_queue(cmd
, SE_DEV(cmd
)->dev_queue_obj
);
5376 /* #define DEBUG_CLEAR_LUN */
5377 #ifdef DEBUG_CLEAR_LUN
5378 #define DEBUG_CLEAR_L(x...) printk(KERN_INFO x)
5380 #define DEBUG_CLEAR_L(x...)
5383 static void __transport_clear_lun_from_sessions(struct se_lun
*lun
)
5385 struct se_cmd
*cmd
= NULL
;
5386 unsigned long lun_flags
, cmd_flags
;
5388 * Do exception processing and return CHECK_CONDITION status to the
5391 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5392 while (!list_empty_careful(&lun
->lun_cmd_list
)) {
5393 cmd
= list_entry(lun
->lun_cmd_list
.next
,
5394 struct se_cmd
, se_lun_list
);
5395 list_del(&cmd
->se_lun_list
);
5397 if (!(T_TASK(cmd
))) {
5398 printk(KERN_ERR
"ITT: 0x%08x, T_TASK(cmd) = NULL"
5399 "[i,t]_state: %u/%u\n",
5400 CMD_TFO(cmd
)->get_task_tag(cmd
),
5401 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
);
5404 atomic_set(&T_TASK(cmd
)->transport_lun_active
, 0);
5406 * This will notify iscsi_target_transport.c:
5407 * transport_cmd_check_stop() that a LUN shutdown is in
5408 * progress for the iscsi_cmd_t.
5410 spin_lock(&T_TASK(cmd
)->t_state_lock
);
5411 DEBUG_CLEAR_L("SE_LUN[%d] - Setting T_TASK(cmd)->transport"
5412 "_lun_stop for ITT: 0x%08x\n",
5413 SE_LUN(cmd
)->unpacked_lun
,
5414 CMD_TFO(cmd
)->get_task_tag(cmd
));
5415 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 1);
5416 spin_unlock(&T_TASK(cmd
)->t_state_lock
);
5418 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
5420 if (!(SE_LUN(cmd
))) {
5421 printk(KERN_ERR
"ITT: 0x%08x, [i,t]_state: %u/%u\n",
5422 CMD_TFO(cmd
)->get_task_tag(cmd
),
5423 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
);
5427 * If the Storage engine still owns the iscsi_cmd_t, determine
5428 * and/or stop its context.
5430 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x before transport"
5431 "_lun_wait_for_tasks()\n", SE_LUN(cmd
)->unpacked_lun
,
5432 CMD_TFO(cmd
)->get_task_tag(cmd
));
5434 if (transport_lun_wait_for_tasks(cmd
, SE_LUN(cmd
)) < 0) {
5435 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5439 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
5440 "_wait_for_tasks(): SUCCESS\n",
5441 SE_LUN(cmd
)->unpacked_lun
,
5442 CMD_TFO(cmd
)->get_task_tag(cmd
));
5444 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5445 if (!(atomic_read(&T_TASK(cmd
)->transport_dev_active
))) {
5446 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5449 atomic_set(&T_TASK(cmd
)->transport_dev_active
, 0);
5450 transport_all_task_dev_remove_state(cmd
);
5451 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5453 transport_free_dev_tasks(cmd
);
5455 * The Storage engine stopped this struct se_cmd before it was
5456 * send to the fabric frontend for delivery back to the
5457 * Initiator Node. Return this SCSI CDB back with an
5458 * CHECK_CONDITION status.
5461 transport_send_check_condition_and_sense(cmd
,
5462 TCM_NON_EXISTENT_LUN
, 0);
5464 * If the fabric frontend is waiting for this iscsi_cmd_t to
5465 * be released, notify the waiting thread now that LU has
5466 * finished accessing it.
5468 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5469 if (atomic_read(&T_TASK(cmd
)->transport_lun_fe_stop
)) {
5470 DEBUG_CLEAR_L("SE_LUN[%d] - Detected FE stop for"
5471 " struct se_cmd: %p ITT: 0x%08x\n",
5473 cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
));
5475 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
,
5477 transport_cmd_check_stop(cmd
, 1, 0);
5478 complete(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
5479 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5482 DEBUG_CLEAR_L("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
5483 lun
->unpacked_lun
, CMD_TFO(cmd
)->get_task_tag(cmd
));
5485 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, cmd_flags
);
5486 spin_lock_irqsave(&lun
->lun_cmd_lock
, lun_flags
);
5488 spin_unlock_irqrestore(&lun
->lun_cmd_lock
, lun_flags
);
5491 static int transport_clear_lun_thread(void *p
)
5493 struct se_lun
*lun
= (struct se_lun
*)p
;
5495 __transport_clear_lun_from_sessions(lun
);
5496 complete(&lun
->lun_shutdown_comp
);
5501 int transport_clear_lun_from_sessions(struct se_lun
*lun
)
5503 struct task_struct
*kt
;
5505 kt
= kthread_run(transport_clear_lun_thread
, (void *)lun
,
5506 "tcm_cl_%u", lun
->unpacked_lun
);
5508 printk(KERN_ERR
"Unable to start clear_lun thread\n");
5511 wait_for_completion(&lun
->lun_shutdown_comp
);
5516 /* transport_generic_wait_for_tasks():
5518 * Called from frontend or passthrough context to wait for storage engine
5519 * to pause and/or release frontend generated struct se_cmd.
5521 static void transport_generic_wait_for_tasks(
5524 int session_reinstatement
)
5526 unsigned long flags
;
5528 if (!(cmd
->se_cmd_flags
& SCF_SE_LUN_CMD
) && !(cmd
->se_tmr_req
))
5531 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5533 * If we are already stopped due to an external event (ie: LUN shutdown)
5534 * sleep until the connection can have the passed struct se_cmd back.
5535 * The T_TASK(cmd)->transport_lun_stopped_sem will be upped by
5536 * transport_clear_lun_from_sessions() once the ConfigFS context caller
5537 * has completed its operation on the struct se_cmd.
5539 if (atomic_read(&T_TASK(cmd
)->transport_lun_stop
)) {
5541 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping"
5542 " wait_for_completion(&T_TASK(cmd)transport_lun_fe"
5543 "_stop_comp); for ITT: 0x%08x\n",
5544 CMD_TFO(cmd
)->get_task_tag(cmd
));
5546 * There is a special case for WRITES where a FE exception +
5547 * LUN shutdown means ConfigFS context is still sleeping on
5548 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
5549 * We go ahead and up transport_lun_stop_comp just to be sure
5552 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5553 complete(&T_TASK(cmd
)->transport_lun_stop_comp
);
5554 wait_for_completion(&T_TASK(cmd
)->transport_lun_fe_stop_comp
);
5555 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5557 transport_all_task_dev_remove_state(cmd
);
5559 * At this point, the frontend who was the originator of this
5560 * struct se_cmd, now owns the structure and can be released through
5561 * normal means below.
5563 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped"
5564 " wait_for_completion(&T_TASK(cmd)transport_lun_fe_"
5565 "stop_comp); for ITT: 0x%08x\n",
5566 CMD_TFO(cmd
)->get_task_tag(cmd
));
5568 atomic_set(&T_TASK(cmd
)->transport_lun_stop
, 0);
5570 if (!atomic_read(&T_TASK(cmd
)->t_transport_active
) ||
5571 atomic_read(&T_TASK(cmd
)->t_transport_aborted
))
5574 atomic_set(&T_TASK(cmd
)->t_transport_stop
, 1);
5576 DEBUG_TRANSPORT_S("wait_for_tasks: Stopping %p ITT: 0x%08x"
5577 " i_state: %d, t_state/def_t_state: %d/%d, t_transport_stop"
5578 " = TRUE\n", cmd
, CMD_TFO(cmd
)->get_task_tag(cmd
),
5579 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->t_state
,
5580 cmd
->deferred_t_state
);
5582 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5584 wake_up_interruptible(&SE_DEV(cmd
)->dev_queue_obj
->thread_wq
);
5586 wait_for_completion(&T_TASK(cmd
)->t_transport_stop_comp
);
5588 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5589 atomic_set(&T_TASK(cmd
)->t_transport_active
, 0);
5590 atomic_set(&T_TASK(cmd
)->t_transport_stop
, 0);
5592 DEBUG_TRANSPORT_S("wait_for_tasks: Stopped wait_for_compltion("
5593 "&T_TASK(cmd)->t_transport_stop_comp) for ITT: 0x%08x\n",
5594 CMD_TFO(cmd
)->get_task_tag(cmd
));
5596 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5600 transport_generic_free_cmd(cmd
, 0, 0, session_reinstatement
);
5603 static int transport_get_sense_codes(
5608 *asc
= cmd
->scsi_asc
;
5609 *ascq
= cmd
->scsi_ascq
;
5614 static int transport_set_sense_codes(
5619 cmd
->scsi_asc
= asc
;
5620 cmd
->scsi_ascq
= ascq
;
5625 int transport_send_check_condition_and_sense(
5630 unsigned char *buffer
= cmd
->sense_buffer
;
5631 unsigned long flags
;
5633 u8 asc
= 0, ascq
= 0;
5635 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5636 if (cmd
->se_cmd_flags
& SCF_SENT_CHECK_CONDITION
) {
5637 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5640 cmd
->se_cmd_flags
|= SCF_SENT_CHECK_CONDITION
;
5641 spin_unlock_irqrestore(&T_TASK(cmd
)->t_state_lock
, flags
);
5643 if (!reason
&& from_transport
)
5646 if (!from_transport
)
5647 cmd
->se_cmd_flags
|= SCF_EMULATED_TASK_SENSE
;
5649 * Data Segment and SenseLength of the fabric response PDU.
5651 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
5652 * from include/scsi/scsi_cmnd.h
5654 offset
= CMD_TFO(cmd
)->set_fabric_sense_len(cmd
,
5655 TRANSPORT_SENSE_BUFFER
);
5657 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
5658 * SENSE KEY values from include/scsi/scsi.h
5661 case TCM_NON_EXISTENT_LUN
:
5662 case TCM_UNSUPPORTED_SCSI_OPCODE
:
5663 case TCM_SECTOR_COUNT_TOO_MANY
:
5665 buffer
[offset
] = 0x70;
5666 /* ILLEGAL REQUEST */
5667 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5668 /* INVALID COMMAND OPERATION CODE */
5669 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x20;
5671 case TCM_UNKNOWN_MODE_PAGE
:
5673 buffer
[offset
] = 0x70;
5674 /* ILLEGAL REQUEST */
5675 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5676 /* INVALID FIELD IN CDB */
5677 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
5679 case TCM_CHECK_CONDITION_ABORT_CMD
:
5681 buffer
[offset
] = 0x70;
5682 /* ABORTED COMMAND */
5683 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5684 /* BUS DEVICE RESET FUNCTION OCCURRED */
5685 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x29;
5686 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x03;
5688 case TCM_INCORRECT_AMOUNT_OF_DATA
:
5690 buffer
[offset
] = 0x70;
5691 /* ABORTED COMMAND */
5692 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5694 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
5695 /* NOT ENOUGH UNSOLICITED DATA */
5696 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0d;
5698 case TCM_INVALID_CDB_FIELD
:
5700 buffer
[offset
] = 0x70;
5701 /* ABORTED COMMAND */
5702 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5703 /* INVALID FIELD IN CDB */
5704 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x24;
5706 case TCM_INVALID_PARAMETER_LIST
:
5708 buffer
[offset
] = 0x70;
5709 /* ABORTED COMMAND */
5710 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5711 /* INVALID FIELD IN PARAMETER LIST */
5712 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x26;
5714 case TCM_UNEXPECTED_UNSOLICITED_DATA
:
5716 buffer
[offset
] = 0x70;
5717 /* ABORTED COMMAND */
5718 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5720 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x0c;
5721 /* UNEXPECTED_UNSOLICITED_DATA */
5722 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x0c;
5724 case TCM_SERVICE_CRC_ERROR
:
5726 buffer
[offset
] = 0x70;
5727 /* ABORTED COMMAND */
5728 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5729 /* PROTOCOL SERVICE CRC ERROR */
5730 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x47;
5732 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x05;
5734 case TCM_SNACK_REJECTED
:
5736 buffer
[offset
] = 0x70;
5737 /* ABORTED COMMAND */
5738 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ABORTED_COMMAND
;
5740 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x11;
5741 /* FAILED RETRANSMISSION REQUEST */
5742 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = 0x13;
5744 case TCM_WRITE_PROTECTED
:
5746 buffer
[offset
] = 0x70;
5748 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = DATA_PROTECT
;
5749 /* WRITE PROTECTED */
5750 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x27;
5752 case TCM_CHECK_CONDITION_UNIT_ATTENTION
:
5754 buffer
[offset
] = 0x70;
5755 /* UNIT ATTENTION */
5756 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = UNIT_ATTENTION
;
5757 core_scsi3_ua_for_check_condition(cmd
, &asc
, &ascq
);
5758 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
5759 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
5761 case TCM_CHECK_CONDITION_NOT_READY
:
5763 buffer
[offset
] = 0x70;
5765 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = NOT_READY
;
5766 transport_get_sense_codes(cmd
, &asc
, &ascq
);
5767 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = asc
;
5768 buffer
[offset
+SPC_ASCQ_KEY_OFFSET
] = ascq
;
5770 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
:
5773 buffer
[offset
] = 0x70;
5774 /* ILLEGAL REQUEST */
5775 buffer
[offset
+SPC_SENSE_KEY_OFFSET
] = ILLEGAL_REQUEST
;
5776 /* LOGICAL UNIT COMMUNICATION FAILURE */
5777 buffer
[offset
+SPC_ASC_KEY_OFFSET
] = 0x80;
5781 * This code uses linux/include/scsi/scsi.h SAM status codes!
5783 cmd
->scsi_status
= SAM_STAT_CHECK_CONDITION
;
5785 * Automatically padded, this value is encoded in the fabric's
5786 * data_length response PDU containing the SCSI defined sense data.
5788 cmd
->scsi_sense_length
= TRANSPORT_SENSE_BUFFER
+ offset
;
5791 CMD_TFO(cmd
)->queue_status(cmd
);
5794 EXPORT_SYMBOL(transport_send_check_condition_and_sense
);
5796 int transport_check_aborted_status(struct se_cmd
*cmd
, int send_status
)
5800 if (atomic_read(&T_TASK(cmd
)->t_transport_aborted
) != 0) {
5801 if (!(send_status
) ||
5802 (cmd
->se_cmd_flags
& SCF_SENT_DELAYED_TAS
))
5805 printk(KERN_INFO
"Sending delayed SAM_STAT_TASK_ABORTED"
5806 " status for CDB: 0x%02x ITT: 0x%08x\n",
5807 T_TASK(cmd
)->t_task_cdb
[0],
5808 CMD_TFO(cmd
)->get_task_tag(cmd
));
5810 cmd
->se_cmd_flags
|= SCF_SENT_DELAYED_TAS
;
5811 CMD_TFO(cmd
)->queue_status(cmd
);
5816 EXPORT_SYMBOL(transport_check_aborted_status
);
5818 void transport_send_task_abort(struct se_cmd
*cmd
)
5821 * If there are still expected incoming fabric WRITEs, we wait
5822 * until until they have completed before sending a TASK_ABORTED
5823 * response. This response with TASK_ABORTED status will be
5824 * queued back to fabric module by transport_check_aborted_status().
5826 if (cmd
->data_direction
== DMA_TO_DEVICE
) {
5827 if (CMD_TFO(cmd
)->write_pending_status(cmd
) != 0) {
5828 atomic_inc(&T_TASK(cmd
)->t_transport_aborted
);
5829 smp_mb__after_atomic_inc();
5830 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
5831 transport_new_cmd_failure(cmd
);
5835 cmd
->scsi_status
= SAM_STAT_TASK_ABORTED
;
5837 printk(KERN_INFO
"Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
5838 " ITT: 0x%08x\n", T_TASK(cmd
)->t_task_cdb
[0],
5839 CMD_TFO(cmd
)->get_task_tag(cmd
));
5841 CMD_TFO(cmd
)->queue_status(cmd
);
5844 /* transport_generic_do_tmr():
5848 int transport_generic_do_tmr(struct se_cmd
*cmd
)
5850 struct se_cmd
*ref_cmd
;
5851 struct se_device
*dev
= SE_DEV(cmd
);
5852 struct se_tmr_req
*tmr
= cmd
->se_tmr_req
;
5855 switch (tmr
->function
) {
5856 case TMR_ABORT_TASK
:
5857 ref_cmd
= tmr
->ref_cmd
;
5858 tmr
->response
= TMR_FUNCTION_REJECTED
;
5860 case TMR_ABORT_TASK_SET
:
5862 case TMR_CLEAR_TASK_SET
:
5863 tmr
->response
= TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED
;
5866 ret
= core_tmr_lun_reset(dev
, tmr
, NULL
, NULL
);
5867 tmr
->response
= (!ret
) ? TMR_FUNCTION_COMPLETE
:
5868 TMR_FUNCTION_REJECTED
;
5870 case TMR_TARGET_WARM_RESET
:
5871 tmr
->response
= TMR_FUNCTION_REJECTED
;
5873 case TMR_TARGET_COLD_RESET
:
5874 tmr
->response
= TMR_FUNCTION_REJECTED
;
5877 printk(KERN_ERR
"Uknown TMR function: 0x%02x.\n",
5879 tmr
->response
= TMR_FUNCTION_REJECTED
;
5883 cmd
->t_state
= TRANSPORT_ISTATE_PROCESSING
;
5884 CMD_TFO(cmd
)->queue_tm_rsp(cmd
);
5886 transport_cmd_check_stop(cmd
, 2, 0);
5891 * Called with spin_lock_irq(&dev->execute_task_lock); held
5894 static struct se_task
*
5895 transport_get_task_from_state_list(struct se_device
*dev
)
5897 struct se_task
*task
;
5899 if (list_empty(&dev
->state_task_list
))
5902 list_for_each_entry(task
, &dev
->state_task_list
, t_state_list
)
5905 list_del(&task
->t_state_list
);
5906 atomic_set(&task
->task_state_active
, 0);
5911 static void transport_processing_shutdown(struct se_device
*dev
)
5914 struct se_queue_req
*qr
;
5915 struct se_task
*task
;
5917 unsigned long flags
;
5919 * Empty the struct se_device's struct se_task state list.
5921 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5922 while ((task
= transport_get_task_from_state_list(dev
))) {
5923 if (!(TASK_CMD(task
))) {
5924 printk(KERN_ERR
"TASK_CMD(task) is NULL!\n");
5927 cmd
= TASK_CMD(task
);
5930 printk(KERN_ERR
"T_TASK(cmd) is NULL for task: %p cmd:"
5931 " %p ITT: 0x%08x\n", task
, cmd
,
5932 CMD_TFO(cmd
)->get_task_tag(cmd
));
5935 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
5937 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5939 DEBUG_DO("PT: cmd: %p task: %p ITT/CmdSN: 0x%08x/0x%08x,"
5940 " i_state/def_i_state: %d/%d, t_state/def_t_state:"
5941 " %d/%d cdb: 0x%02x\n", cmd
, task
,
5942 CMD_TFO(cmd
)->get_task_tag(cmd
), cmd
->cmd_sn
,
5943 CMD_TFO(cmd
)->get_cmd_state(cmd
), cmd
->deferred_i_state
,
5944 cmd
->t_state
, cmd
->deferred_t_state
,
5945 T_TASK(cmd
)->t_task_cdb
[0]);
5946 DEBUG_DO("PT: ITT[0x%08x] - t_task_cdbs: %d t_task_cdbs_left:"
5947 " %d t_task_cdbs_sent: %d -- t_transport_active: %d"
5948 " t_transport_stop: %d t_transport_sent: %d\n",
5949 CMD_TFO(cmd
)->get_task_tag(cmd
),
5950 T_TASK(cmd
)->t_task_cdbs
,
5951 atomic_read(&T_TASK(cmd
)->t_task_cdbs_left
),
5952 atomic_read(&T_TASK(cmd
)->t_task_cdbs_sent
),
5953 atomic_read(&T_TASK(cmd
)->t_transport_active
),
5954 atomic_read(&T_TASK(cmd
)->t_transport_stop
),
5955 atomic_read(&T_TASK(cmd
)->t_transport_sent
));
5957 if (atomic_read(&task
->task_active
)) {
5958 atomic_set(&task
->task_stop
, 1);
5959 spin_unlock_irqrestore(
5960 &T_TASK(cmd
)->t_state_lock
, flags
);
5962 DEBUG_DO("Waiting for task: %p to shutdown for dev:"
5963 " %p\n", task
, dev
);
5964 wait_for_completion(&task
->task_stop_comp
);
5965 DEBUG_DO("Completed task: %p shutdown for dev: %p\n",
5968 spin_lock_irqsave(&T_TASK(cmd
)->t_state_lock
, flags
);
5969 atomic_dec(&T_TASK(cmd
)->t_task_cdbs_left
);
5971 atomic_set(&task
->task_active
, 0);
5972 atomic_set(&task
->task_stop
, 0);
5974 if (atomic_read(&task
->task_execute_queue
) != 0)
5975 transport_remove_task_from_execute_queue(task
, dev
);
5977 __transport_stop_task_timer(task
, &flags
);
5979 if (!(atomic_dec_and_test(&T_TASK(cmd
)->t_task_cdbs_ex_left
))) {
5980 spin_unlock_irqrestore(
5981 &T_TASK(cmd
)->t_state_lock
, flags
);
5983 DEBUG_DO("Skipping task: %p, dev: %p for"
5984 " t_task_cdbs_ex_left: %d\n", task
, dev
,
5985 atomic_read(&T_TASK(cmd
)->t_task_cdbs_ex_left
));
5987 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
5991 if (atomic_read(&T_TASK(cmd
)->t_transport_active
)) {
5992 DEBUG_DO("got t_transport_active = 1 for task: %p, dev:"
5993 " %p\n", task
, dev
);
5995 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
5996 spin_unlock_irqrestore(
5997 &T_TASK(cmd
)->t_state_lock
, flags
);
5998 transport_send_check_condition_and_sense(
5999 cmd
, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
,
6001 transport_remove_cmd_from_queue(cmd
,
6002 SE_DEV(cmd
)->dev_queue_obj
);
6004 transport_lun_remove_cmd(cmd
);
6005 transport_cmd_check_stop(cmd
, 1, 0);
6007 spin_unlock_irqrestore(
6008 &T_TASK(cmd
)->t_state_lock
, flags
);
6010 transport_remove_cmd_from_queue(cmd
,
6011 SE_DEV(cmd
)->dev_queue_obj
);
6013 transport_lun_remove_cmd(cmd
);
6015 if (transport_cmd_check_stop(cmd
, 1, 0))
6016 transport_generic_remove(cmd
, 0, 0);
6019 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
6022 DEBUG_DO("Got t_transport_active = 0 for task: %p, dev: %p\n",
6025 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
6026 spin_unlock_irqrestore(
6027 &T_TASK(cmd
)->t_state_lock
, flags
);
6028 transport_send_check_condition_and_sense(cmd
,
6029 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
6030 transport_remove_cmd_from_queue(cmd
,
6031 SE_DEV(cmd
)->dev_queue_obj
);
6033 transport_lun_remove_cmd(cmd
);
6034 transport_cmd_check_stop(cmd
, 1, 0);
6036 spin_unlock_irqrestore(
6037 &T_TASK(cmd
)->t_state_lock
, flags
);
6039 transport_remove_cmd_from_queue(cmd
,
6040 SE_DEV(cmd
)->dev_queue_obj
);
6041 transport_lun_remove_cmd(cmd
);
6043 if (transport_cmd_check_stop(cmd
, 1, 0))
6044 transport_generic_remove(cmd
, 0, 0);
6047 spin_lock_irqsave(&dev
->execute_task_lock
, flags
);
6049 spin_unlock_irqrestore(&dev
->execute_task_lock
, flags
);
6051 * Empty the struct se_device's struct se_cmd list.
6053 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6054 while ((qr
= __transport_get_qr_from_queue(dev
->dev_queue_obj
))) {
6055 spin_unlock_irqrestore(
6056 &dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6057 cmd
= (struct se_cmd
*)qr
->cmd
;
6061 DEBUG_DO("From Device Queue: cmd: %p t_state: %d\n",
6064 if (atomic_read(&T_TASK(cmd
)->t_fe_count
)) {
6065 transport_send_check_condition_and_sense(cmd
,
6066 TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE
, 0);
6068 transport_lun_remove_cmd(cmd
);
6069 transport_cmd_check_stop(cmd
, 1, 0);
6071 transport_lun_remove_cmd(cmd
);
6072 if (transport_cmd_check_stop(cmd
, 1, 0))
6073 transport_generic_remove(cmd
, 0, 0);
6075 spin_lock_irqsave(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6077 spin_unlock_irqrestore(&dev
->dev_queue_obj
->cmd_queue_lock
, flags
);
6080 /* transport_processing_thread():
6084 static int transport_processing_thread(void *param
)
6088 struct se_device
*dev
= (struct se_device
*) param
;
6089 struct se_queue_req
*qr
;
6091 set_user_nice(current
, -20);
6093 while (!kthread_should_stop()) {
6094 ret
= wait_event_interruptible(dev
->dev_queue_obj
->thread_wq
,
6095 atomic_read(&dev
->dev_queue_obj
->queue_cnt
) ||
6096 kthread_should_stop());
6100 spin_lock_irq(&dev
->dev_status_lock
);
6101 if (dev
->dev_status
& TRANSPORT_DEVICE_SHUTDOWN
) {
6102 spin_unlock_irq(&dev
->dev_status_lock
);
6103 transport_processing_shutdown(dev
);
6106 spin_unlock_irq(&dev
->dev_status_lock
);
6109 __transport_execute_tasks(dev
);
6111 qr
= transport_get_qr_from_queue(dev
->dev_queue_obj
);
6115 cmd
= (struct se_cmd
*)qr
->cmd
;
6116 t_state
= qr
->state
;
6120 case TRANSPORT_NEW_CMD_MAP
:
6121 if (!(CMD_TFO(cmd
)->new_cmd_map
)) {
6122 printk(KERN_ERR
"CMD_TFO(cmd)->new_cmd_map is"
6123 " NULL for TRANSPORT_NEW_CMD_MAP\n");
6126 ret
= CMD_TFO(cmd
)->new_cmd_map(cmd
);
6128 cmd
->transport_error_status
= ret
;
6129 transport_generic_request_failure(cmd
, NULL
,
6130 0, (cmd
->data_direction
!=
6135 case TRANSPORT_NEW_CMD
:
6136 ret
= transport_generic_new_cmd(cmd
);
6138 cmd
->transport_error_status
= ret
;
6139 transport_generic_request_failure(cmd
, NULL
,
6140 0, (cmd
->data_direction
!=
6144 case TRANSPORT_PROCESS_WRITE
:
6145 transport_generic_process_write(cmd
);
6147 case TRANSPORT_COMPLETE_OK
:
6148 transport_stop_all_task_timers(cmd
);
6149 transport_generic_complete_ok(cmd
);
6151 case TRANSPORT_REMOVE
:
6152 transport_generic_remove(cmd
, 1, 0);
6154 case TRANSPORT_FREE_CMD_INTR
:
6155 transport_generic_free_cmd(cmd
, 0, 1, 0);
6157 case TRANSPORT_PROCESS_TMR
:
6158 transport_generic_do_tmr(cmd
);
6160 case TRANSPORT_COMPLETE_FAILURE
:
6161 transport_generic_request_failure(cmd
, NULL
, 1, 1);
6163 case TRANSPORT_COMPLETE_TIMEOUT
:
6164 transport_stop_all_task_timers(cmd
);
6165 transport_generic_request_timeout(cmd
);
6168 printk(KERN_ERR
"Unknown t_state: %d deferred_t_state:"
6169 " %d for ITT: 0x%08x i_state: %d on SE LUN:"
6170 " %u\n", t_state
, cmd
->deferred_t_state
,
6171 CMD_TFO(cmd
)->get_task_tag(cmd
),
6172 CMD_TFO(cmd
)->get_cmd_state(cmd
),
6173 SE_LUN(cmd
)->unpacked_lun
);
6181 transport_release_all_cmds(dev
);
6182 dev
->process_thread
= NULL
;