2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
47 STATIC
void xfs_icsb_balance_counter(xfs_mount_t
*, xfs_sb_field_t
,
49 STATIC
void xfs_icsb_balance_counter_locked(xfs_mount_t
*, xfs_sb_field_t
,
51 STATIC
void xfs_icsb_disable_counter(xfs_mount_t
*, xfs_sb_field_t
);
54 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
55 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
58 static DEFINE_MUTEX(xfs_uuid_table_mutex
);
59 static int xfs_uuid_table_size
;
60 static uuid_t
*xfs_uuid_table
;
63 * See if the UUID is unique among mounted XFS filesystems.
64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
70 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
73 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
76 if (uuid_is_nil(uuid
)) {
77 xfs_warn(mp
, "Filesystem has nil UUID - can't mount");
78 return XFS_ERROR(EINVAL
);
81 mutex_lock(&xfs_uuid_table_mutex
);
82 for (i
= 0, hole
= -1; i
< xfs_uuid_table_size
; i
++) {
83 if (uuid_is_nil(&xfs_uuid_table
[i
])) {
87 if (uuid_equal(uuid
, &xfs_uuid_table
[i
]))
92 xfs_uuid_table
= kmem_realloc(xfs_uuid_table
,
93 (xfs_uuid_table_size
+ 1) * sizeof(*xfs_uuid_table
),
94 xfs_uuid_table_size
* sizeof(*xfs_uuid_table
),
96 hole
= xfs_uuid_table_size
++;
98 xfs_uuid_table
[hole
] = *uuid
;
99 mutex_unlock(&xfs_uuid_table_mutex
);
104 mutex_unlock(&xfs_uuid_table_mutex
);
105 xfs_warn(mp
, "Filesystem has duplicate UUID %pU - can't mount", uuid
);
106 return XFS_ERROR(EINVAL
);
111 struct xfs_mount
*mp
)
113 uuid_t
*uuid
= &mp
->m_sb
.sb_uuid
;
116 if (mp
->m_flags
& XFS_MOUNT_NOUUID
)
119 mutex_lock(&xfs_uuid_table_mutex
);
120 for (i
= 0; i
< xfs_uuid_table_size
; i
++) {
121 if (uuid_is_nil(&xfs_uuid_table
[i
]))
123 if (!uuid_equal(uuid
, &xfs_uuid_table
[i
]))
125 memset(&xfs_uuid_table
[i
], 0, sizeof(uuid_t
));
128 ASSERT(i
< xfs_uuid_table_size
);
129 mutex_unlock(&xfs_uuid_table_mutex
);
135 struct rcu_head
*head
)
137 struct xfs_perag
*pag
= container_of(head
, struct xfs_perag
, rcu_head
);
139 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
144 * Free up the per-ag resources associated with the mount structure.
151 struct xfs_perag
*pag
;
153 for (agno
= 0; agno
< mp
->m_sb
.sb_agcount
; agno
++) {
154 spin_lock(&mp
->m_perag_lock
);
155 pag
= radix_tree_delete(&mp
->m_perag_tree
, agno
);
156 spin_unlock(&mp
->m_perag_lock
);
158 ASSERT(atomic_read(&pag
->pag_ref
) == 0);
159 call_rcu(&pag
->rcu_head
, __xfs_free_perag
);
164 * Check size of device based on the (data/realtime) block count.
165 * Note: this check is used by the growfs code as well as mount.
168 xfs_sb_validate_fsb_count(
172 ASSERT(PAGE_SHIFT
>= sbp
->sb_blocklog
);
173 ASSERT(sbp
->sb_blocklog
>= BBSHIFT
);
175 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
176 if (nblocks
>> (PAGE_CACHE_SHIFT
- sbp
->sb_blocklog
) > ULONG_MAX
)
178 #else /* Limited by UINT_MAX of sectors */
179 if (nblocks
<< (sbp
->sb_blocklog
- BBSHIFT
) > UINT_MAX
)
186 xfs_initialize_perag(
188 xfs_agnumber_t agcount
,
189 xfs_agnumber_t
*maxagi
)
191 xfs_agnumber_t index
;
192 xfs_agnumber_t first_initialised
= 0;
196 xfs_sb_t
*sbp
= &mp
->m_sb
;
200 * Walk the current per-ag tree so we don't try to initialise AGs
201 * that already exist (growfs case). Allocate and insert all the
202 * AGs we don't find ready for initialisation.
204 for (index
= 0; index
< agcount
; index
++) {
205 pag
= xfs_perag_get(mp
, index
);
210 if (!first_initialised
)
211 first_initialised
= index
;
213 pag
= kmem_zalloc(sizeof(*pag
), KM_MAYFAIL
);
216 pag
->pag_agno
= index
;
218 spin_lock_init(&pag
->pag_ici_lock
);
219 mutex_init(&pag
->pag_ici_reclaim_lock
);
220 INIT_RADIX_TREE(&pag
->pag_ici_root
, GFP_ATOMIC
);
221 spin_lock_init(&pag
->pag_buf_lock
);
222 pag
->pag_buf_tree
= RB_ROOT
;
224 if (radix_tree_preload(GFP_NOFS
))
227 spin_lock(&mp
->m_perag_lock
);
228 if (radix_tree_insert(&mp
->m_perag_tree
, index
, pag
)) {
230 spin_unlock(&mp
->m_perag_lock
);
231 radix_tree_preload_end();
235 spin_unlock(&mp
->m_perag_lock
);
236 radix_tree_preload_end();
240 * If we mount with the inode64 option, or no inode overflows
241 * the legacy 32-bit address space clear the inode32 option.
243 agino
= XFS_OFFBNO_TO_AGINO(mp
, sbp
->sb_agblocks
- 1, 0);
244 ino
= XFS_AGINO_TO_INO(mp
, agcount
- 1, agino
);
246 if ((mp
->m_flags
& XFS_MOUNT_SMALL_INUMS
) && ino
> XFS_MAXINUMBER_32
)
247 mp
->m_flags
|= XFS_MOUNT_32BITINODES
;
249 mp
->m_flags
&= ~XFS_MOUNT_32BITINODES
;
251 if (mp
->m_flags
& XFS_MOUNT_32BITINODES
)
252 index
= xfs_set_inode32(mp
);
254 index
= xfs_set_inode64(mp
);
262 for (; index
> first_initialised
; index
--) {
263 pag
= radix_tree_delete(&mp
->m_perag_tree
, index
);
272 * Does the initial read of the superblock.
276 struct xfs_mount
*mp
,
279 unsigned int sector_size
;
281 struct xfs_sb
*sbp
= &mp
->m_sb
;
283 int loud
= !(flags
& XFS_MFSI_QUIET
);
285 ASSERT(mp
->m_sb_bp
== NULL
);
286 ASSERT(mp
->m_ddev_targp
!= NULL
);
289 * Allocate a (locked) buffer to hold the superblock.
290 * This will be kept around at all times to optimize
291 * access to the superblock.
293 sector_size
= xfs_getsize_buftarg(mp
->m_ddev_targp
);
296 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
, XFS_SB_DADDR
,
297 BTOBB(sector_size
), 0,
298 loud
? &xfs_sb_buf_ops
299 : &xfs_sb_quiet_buf_ops
);
302 xfs_warn(mp
, "SB buffer read failed");
308 xfs_warn(mp
, "SB validate failed with error %d.", error
);
313 * Initialize the mount structure from the superblock.
315 xfs_sb_from_disk(&mp
->m_sb
, XFS_BUF_TO_SBP(bp
));
316 xfs_sb_quota_from_disk(&mp
->m_sb
);
319 * We must be able to do sector-sized and sector-aligned IO.
321 if (sector_size
> sbp
->sb_sectsize
) {
323 xfs_warn(mp
, "device supports %u byte sectors (not %u)",
324 sector_size
, sbp
->sb_sectsize
);
330 * If device sector size is smaller than the superblock size,
331 * re-read the superblock so the buffer is correctly sized.
333 if (sector_size
< sbp
->sb_sectsize
) {
335 sector_size
= sbp
->sb_sectsize
;
339 /* Initialize per-cpu counters */
340 xfs_icsb_reinit_counters(mp
);
342 /* no need to be quiet anymore, so reset the buf ops */
343 bp
->b_ops
= &xfs_sb_buf_ops
;
355 * Update alignment values based on mount options and sb values
358 xfs_update_alignment(xfs_mount_t
*mp
)
360 xfs_sb_t
*sbp
= &(mp
->m_sb
);
364 * If stripe unit and stripe width are not multiples
365 * of the fs blocksize turn off alignment.
367 if ((BBTOB(mp
->m_dalign
) & mp
->m_blockmask
) ||
368 (BBTOB(mp
->m_swidth
) & mp
->m_blockmask
)) {
370 "alignment check failed: sunit/swidth vs. blocksize(%d)",
372 return XFS_ERROR(EINVAL
);
375 * Convert the stripe unit and width to FSBs.
377 mp
->m_dalign
= XFS_BB_TO_FSBT(mp
, mp
->m_dalign
);
378 if (mp
->m_dalign
&& (sbp
->sb_agblocks
% mp
->m_dalign
)) {
380 "alignment check failed: sunit/swidth vs. agsize(%d)",
382 return XFS_ERROR(EINVAL
);
383 } else if (mp
->m_dalign
) {
384 mp
->m_swidth
= XFS_BB_TO_FSBT(mp
, mp
->m_swidth
);
387 "alignment check failed: sunit(%d) less than bsize(%d)",
388 mp
->m_dalign
, sbp
->sb_blocksize
);
389 return XFS_ERROR(EINVAL
);
394 * Update superblock with new values
397 if (xfs_sb_version_hasdalign(sbp
)) {
398 if (sbp
->sb_unit
!= mp
->m_dalign
) {
399 sbp
->sb_unit
= mp
->m_dalign
;
400 mp
->m_update_flags
|= XFS_SB_UNIT
;
402 if (sbp
->sb_width
!= mp
->m_swidth
) {
403 sbp
->sb_width
= mp
->m_swidth
;
404 mp
->m_update_flags
|= XFS_SB_WIDTH
;
408 "cannot change alignment: superblock does not support data alignment");
409 return XFS_ERROR(EINVAL
);
411 } else if ((mp
->m_flags
& XFS_MOUNT_NOALIGN
) != XFS_MOUNT_NOALIGN
&&
412 xfs_sb_version_hasdalign(&mp
->m_sb
)) {
413 mp
->m_dalign
= sbp
->sb_unit
;
414 mp
->m_swidth
= sbp
->sb_width
;
421 * Set the maximum inode count for this filesystem
424 xfs_set_maxicount(xfs_mount_t
*mp
)
426 xfs_sb_t
*sbp
= &(mp
->m_sb
);
429 if (sbp
->sb_imax_pct
) {
431 * Make sure the maximum inode count is a multiple
432 * of the units we allocate inodes in.
434 icount
= sbp
->sb_dblocks
* sbp
->sb_imax_pct
;
436 do_div(icount
, mp
->m_ialloc_blks
);
437 mp
->m_maxicount
= (icount
* mp
->m_ialloc_blks
) <<
445 * Set the default minimum read and write sizes unless
446 * already specified in a mount option.
447 * We use smaller I/O sizes when the file system
448 * is being used for NFS service (wsync mount option).
451 xfs_set_rw_sizes(xfs_mount_t
*mp
)
453 xfs_sb_t
*sbp
= &(mp
->m_sb
);
454 int readio_log
, writeio_log
;
456 if (!(mp
->m_flags
& XFS_MOUNT_DFLT_IOSIZE
)) {
457 if (mp
->m_flags
& XFS_MOUNT_WSYNC
) {
458 readio_log
= XFS_WSYNC_READIO_LOG
;
459 writeio_log
= XFS_WSYNC_WRITEIO_LOG
;
461 readio_log
= XFS_READIO_LOG_LARGE
;
462 writeio_log
= XFS_WRITEIO_LOG_LARGE
;
465 readio_log
= mp
->m_readio_log
;
466 writeio_log
= mp
->m_writeio_log
;
469 if (sbp
->sb_blocklog
> readio_log
) {
470 mp
->m_readio_log
= sbp
->sb_blocklog
;
472 mp
->m_readio_log
= readio_log
;
474 mp
->m_readio_blocks
= 1 << (mp
->m_readio_log
- sbp
->sb_blocklog
);
475 if (sbp
->sb_blocklog
> writeio_log
) {
476 mp
->m_writeio_log
= sbp
->sb_blocklog
;
478 mp
->m_writeio_log
= writeio_log
;
480 mp
->m_writeio_blocks
= 1 << (mp
->m_writeio_log
- sbp
->sb_blocklog
);
484 * precalculate the low space thresholds for dynamic speculative preallocation.
487 xfs_set_low_space_thresholds(
488 struct xfs_mount
*mp
)
492 for (i
= 0; i
< XFS_LOWSP_MAX
; i
++) {
493 __uint64_t space
= mp
->m_sb
.sb_dblocks
;
496 mp
->m_low_space
[i
] = space
* (i
+ 1);
502 * Set whether we're using inode alignment.
505 xfs_set_inoalignment(xfs_mount_t
*mp
)
507 if (xfs_sb_version_hasalign(&mp
->m_sb
) &&
508 mp
->m_sb
.sb_inoalignmt
>=
509 XFS_B_TO_FSBT(mp
, mp
->m_inode_cluster_size
))
510 mp
->m_inoalign_mask
= mp
->m_sb
.sb_inoalignmt
- 1;
512 mp
->m_inoalign_mask
= 0;
514 * If we are using stripe alignment, check whether
515 * the stripe unit is a multiple of the inode alignment
517 if (mp
->m_dalign
&& mp
->m_inoalign_mask
&&
518 !(mp
->m_dalign
& mp
->m_inoalign_mask
))
519 mp
->m_sinoalign
= mp
->m_dalign
;
525 * Check that the data (and log if separate) is an ok size.
528 xfs_check_sizes(xfs_mount_t
*mp
)
533 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_dblocks
);
534 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_dblocks
) {
535 xfs_warn(mp
, "filesystem size mismatch detected");
536 return XFS_ERROR(EFBIG
);
538 bp
= xfs_buf_read_uncached(mp
->m_ddev_targp
,
539 d
- XFS_FSS_TO_BB(mp
, 1),
540 XFS_FSS_TO_BB(mp
, 1), 0, NULL
);
542 xfs_warn(mp
, "last sector read failed");
547 if (mp
->m_logdev_targp
!= mp
->m_ddev_targp
) {
548 d
= (xfs_daddr_t
)XFS_FSB_TO_BB(mp
, mp
->m_sb
.sb_logblocks
);
549 if (XFS_BB_TO_FSB(mp
, d
) != mp
->m_sb
.sb_logblocks
) {
550 xfs_warn(mp
, "log size mismatch detected");
551 return XFS_ERROR(EFBIG
);
553 bp
= xfs_buf_read_uncached(mp
->m_logdev_targp
,
554 d
- XFS_FSB_TO_BB(mp
, 1),
555 XFS_FSB_TO_BB(mp
, 1), 0, NULL
);
557 xfs_warn(mp
, "log device read failed");
566 * Clear the quotaflags in memory and in the superblock.
569 xfs_mount_reset_sbqflags(
570 struct xfs_mount
*mp
)
573 struct xfs_trans
*tp
;
578 * It is OK to look at sb_qflags here in mount path,
581 if (mp
->m_sb
.sb_qflags
== 0)
583 spin_lock(&mp
->m_sb_lock
);
584 mp
->m_sb
.sb_qflags
= 0;
585 spin_unlock(&mp
->m_sb_lock
);
588 * If the fs is readonly, let the incore superblock run
589 * with quotas off but don't flush the update out to disk
591 if (mp
->m_flags
& XFS_MOUNT_RDONLY
)
594 tp
= xfs_trans_alloc(mp
, XFS_TRANS_QM_SBCHANGE
);
595 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_qm_sbchange
, 0, 0);
597 xfs_trans_cancel(tp
, 0);
598 xfs_alert(mp
, "%s: Superblock update failed!", __func__
);
602 xfs_mod_sb(tp
, XFS_SB_QFLAGS
);
603 return xfs_trans_commit(tp
, 0);
607 xfs_default_resblks(xfs_mount_t
*mp
)
612 * We default to 5% or 8192 fsbs of space reserved, whichever is
613 * smaller. This is intended to cover concurrent allocation
614 * transactions when we initially hit enospc. These each require a 4
615 * block reservation. Hence by default we cover roughly 2000 concurrent
616 * allocation reservations.
618 resblks
= mp
->m_sb
.sb_dblocks
;
620 resblks
= min_t(__uint64_t
, resblks
, 8192);
625 * This function does the following on an initial mount of a file system:
626 * - reads the superblock from disk and init the mount struct
627 * - if we're a 32-bit kernel, do a size check on the superblock
628 * so we don't mount terabyte filesystems
629 * - init mount struct realtime fields
630 * - allocate inode hash table for fs
631 * - init directory manager
632 * - perform recovery and init the log manager
638 xfs_sb_t
*sbp
= &(mp
->m_sb
);
645 xfs_sb_mount_common(mp
, sbp
);
648 * Check for a mismatched features2 values. Older kernels
649 * read & wrote into the wrong sb offset for sb_features2
650 * on some platforms due to xfs_sb_t not being 64bit size aligned
651 * when sb_features2 was added, which made older superblock
652 * reading/writing routines swap it as a 64-bit value.
654 * For backwards compatibility, we make both slots equal.
656 * If we detect a mismatched field, we OR the set bits into the
657 * existing features2 field in case it has already been modified; we
658 * don't want to lose any features. We then update the bad location
659 * with the ORed value so that older kernels will see any features2
660 * flags, and mark the two fields as needing updates once the
661 * transaction subsystem is online.
663 if (xfs_sb_has_mismatched_features2(sbp
)) {
664 xfs_warn(mp
, "correcting sb_features alignment problem");
665 sbp
->sb_features2
|= sbp
->sb_bad_features2
;
666 sbp
->sb_bad_features2
= sbp
->sb_features2
;
667 mp
->m_update_flags
|= XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
;
670 * Re-check for ATTR2 in case it was found in bad_features2
673 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
674 !(mp
->m_flags
& XFS_MOUNT_NOATTR2
))
675 mp
->m_flags
|= XFS_MOUNT_ATTR2
;
678 if (xfs_sb_version_hasattr2(&mp
->m_sb
) &&
679 (mp
->m_flags
& XFS_MOUNT_NOATTR2
)) {
680 xfs_sb_version_removeattr2(&mp
->m_sb
);
681 mp
->m_update_flags
|= XFS_SB_FEATURES2
;
683 /* update sb_versionnum for the clearing of the morebits */
684 if (!sbp
->sb_features2
)
685 mp
->m_update_flags
|= XFS_SB_VERSIONNUM
;
689 * Check if sb_agblocks is aligned at stripe boundary
690 * If sb_agblocks is NOT aligned turn off m_dalign since
691 * allocator alignment is within an ag, therefore ag has
692 * to be aligned at stripe boundary.
694 error
= xfs_update_alignment(mp
);
698 xfs_alloc_compute_maxlevels(mp
);
699 xfs_bmap_compute_maxlevels(mp
, XFS_DATA_FORK
);
700 xfs_bmap_compute_maxlevels(mp
, XFS_ATTR_FORK
);
701 xfs_ialloc_compute_maxlevels(mp
);
703 xfs_set_maxicount(mp
);
705 error
= xfs_uuid_mount(mp
);
710 * Set the minimum read and write sizes
712 xfs_set_rw_sizes(mp
);
714 /* set the low space thresholds for dynamic preallocation */
715 xfs_set_low_space_thresholds(mp
);
718 * Set the inode cluster size.
719 * This may still be overridden by the file system
720 * block size if it is larger than the chosen cluster size.
722 mp
->m_inode_cluster_size
= XFS_INODE_BIG_CLUSTER_SIZE
;
725 * Set inode alignment fields
727 xfs_set_inoalignment(mp
);
730 * Check that the data (and log if separate) is an ok size.
732 error
= xfs_check_sizes(mp
);
734 goto out_remove_uuid
;
737 * Initialize realtime fields in the mount structure
739 error
= xfs_rtmount_init(mp
);
741 xfs_warn(mp
, "RT mount failed");
742 goto out_remove_uuid
;
746 * Copies the low order bits of the timestamp and the randomly
747 * set "sequence" number out of a UUID.
749 uuid_getnodeuniq(&sbp
->sb_uuid
, mp
->m_fixedfsid
);
751 mp
->m_dmevmask
= 0; /* not persistent; set after each mount */
756 * Initialize the attribute manager's entries.
758 mp
->m_attr_magicpct
= (mp
->m_sb
.sb_blocksize
* 37) / 100;
761 * Initialize the precomputed transaction reservations values.
766 * Allocate and initialize the per-ag data.
768 spin_lock_init(&mp
->m_perag_lock
);
769 INIT_RADIX_TREE(&mp
->m_perag_tree
, GFP_ATOMIC
);
770 error
= xfs_initialize_perag(mp
, sbp
->sb_agcount
, &mp
->m_maxagi
);
772 xfs_warn(mp
, "Failed per-ag init: %d", error
);
773 goto out_remove_uuid
;
776 if (!sbp
->sb_logblocks
) {
777 xfs_warn(mp
, "no log defined");
778 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW
, mp
);
779 error
= XFS_ERROR(EFSCORRUPTED
);
784 * log's mount-time initialization. Perform 1st part recovery if needed
786 error
= xfs_log_mount(mp
, mp
->m_logdev_targp
,
787 XFS_FSB_TO_DADDR(mp
, sbp
->sb_logstart
),
788 XFS_FSB_TO_BB(mp
, sbp
->sb_logblocks
));
790 xfs_warn(mp
, "log mount failed");
795 * Now the log is mounted, we know if it was an unclean shutdown or
796 * not. If it was, with the first phase of recovery has completed, we
797 * have consistent AG blocks on disk. We have not recovered EFIs yet,
798 * but they are recovered transactionally in the second recovery phase
801 * Hence we can safely re-initialise incore superblock counters from
802 * the per-ag data. These may not be correct if the filesystem was not
803 * cleanly unmounted, so we need to wait for recovery to finish before
806 * If the filesystem was cleanly unmounted, then we can trust the
807 * values in the superblock to be correct and we don't need to do
810 * If we are currently making the filesystem, the initialisation will
811 * fail as the perag data is in an undefined state.
813 if (xfs_sb_version_haslazysbcount(&mp
->m_sb
) &&
814 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp
) &&
815 !mp
->m_sb
.sb_inprogress
) {
816 error
= xfs_initialize_perag_data(mp
, sbp
->sb_agcount
);
822 * Get and sanity-check the root inode.
823 * Save the pointer to it in the mount structure.
825 error
= xfs_iget(mp
, NULL
, sbp
->sb_rootino
, 0, XFS_ILOCK_EXCL
, &rip
);
827 xfs_warn(mp
, "failed to read root inode");
828 goto out_log_dealloc
;
833 if (unlikely(!S_ISDIR(rip
->i_d
.di_mode
))) {
834 xfs_warn(mp
, "corrupted root inode %llu: not a directory",
835 (unsigned long long)rip
->i_ino
);
836 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
837 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW
,
839 error
= XFS_ERROR(EFSCORRUPTED
);
842 mp
->m_rootip
= rip
; /* save it */
844 xfs_iunlock(rip
, XFS_ILOCK_EXCL
);
847 * Initialize realtime inode pointers in the mount structure
849 error
= xfs_rtmount_inodes(mp
);
852 * Free up the root inode.
854 xfs_warn(mp
, "failed to read RT inodes");
859 * If this is a read-only mount defer the superblock updates until
860 * the next remount into writeable mode. Otherwise we would never
861 * perform the update e.g. for the root filesystem.
863 if (mp
->m_update_flags
&& !(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
864 error
= xfs_mount_log_sb(mp
, mp
->m_update_flags
);
866 xfs_warn(mp
, "failed to write sb changes");
872 * Initialise the XFS quota management subsystem for this mount
874 if (XFS_IS_QUOTA_RUNNING(mp
)) {
875 error
= xfs_qm_newmount(mp
, "amount
, "aflags
);
879 ASSERT(!XFS_IS_QUOTA_ON(mp
));
882 * If a file system had quotas running earlier, but decided to
883 * mount without -o uquota/pquota/gquota options, revoke the
884 * quotachecked license.
886 if (mp
->m_sb
.sb_qflags
& XFS_ALL_QUOTA_ACCT
) {
887 xfs_notice(mp
, "resetting quota flags");
888 error
= xfs_mount_reset_sbqflags(mp
);
895 * Finish recovering the file system. This part needed to be
896 * delayed until after the root and real-time bitmap inodes
897 * were consistently read in.
899 error
= xfs_log_mount_finish(mp
);
901 xfs_warn(mp
, "log mount finish failed");
906 * Complete the quota initialisation, post-log-replay component.
909 ASSERT(mp
->m_qflags
== 0);
910 mp
->m_qflags
= quotaflags
;
912 xfs_qm_mount_quotas(mp
);
916 * Now we are mounted, reserve a small amount of unused space for
917 * privileged transactions. This is needed so that transaction
918 * space required for critical operations can dip into this pool
919 * when at ENOSPC. This is needed for operations like create with
920 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
921 * are not allowed to use this reserved space.
923 * This may drive us straight to ENOSPC on mount, but that implies
924 * we were already there on the last unmount. Warn if this occurs.
926 if (!(mp
->m_flags
& XFS_MOUNT_RDONLY
)) {
927 resblks
= xfs_default_resblks(mp
);
928 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
931 "Unable to allocate reserve blocks. Continuing without reserve pool.");
937 xfs_rtunmount_inodes(mp
);
943 if (mp
->m_logdev_targp
&& mp
->m_logdev_targp
!= mp
->m_ddev_targp
)
944 xfs_wait_buftarg(mp
->m_logdev_targp
);
945 xfs_wait_buftarg(mp
->m_ddev_targp
);
949 xfs_uuid_unmount(mp
);
955 * This flushes out the inodes,dquots and the superblock, unmounts the
956 * log and makes sure that incore structures are freed.
960 struct xfs_mount
*mp
)
965 cancel_delayed_work_sync(&mp
->m_eofblocks_work
);
967 xfs_qm_unmount_quotas(mp
);
968 xfs_rtunmount_inodes(mp
);
972 * We can potentially deadlock here if we have an inode cluster
973 * that has been freed has its buffer still pinned in memory because
974 * the transaction is still sitting in a iclog. The stale inodes
975 * on that buffer will have their flush locks held until the
976 * transaction hits the disk and the callbacks run. the inode
977 * flush takes the flush lock unconditionally and with nothing to
978 * push out the iclog we will never get that unlocked. hence we
979 * need to force the log first.
981 xfs_log_force(mp
, XFS_LOG_SYNC
);
984 * Flush all pending changes from the AIL.
986 xfs_ail_push_all_sync(mp
->m_ail
);
989 * And reclaim all inodes. At this point there should be no dirty
990 * inodes and none should be pinned or locked, but use synchronous
991 * reclaim just to be sure. We can stop background inode reclaim
992 * here as well if it is still running.
994 cancel_delayed_work_sync(&mp
->m_reclaim_work
);
995 xfs_reclaim_inodes(mp
, SYNC_WAIT
);
1000 * Unreserve any blocks we have so that when we unmount we don't account
1001 * the reserved free space as used. This is really only necessary for
1002 * lazy superblock counting because it trusts the incore superblock
1003 * counters to be absolutely correct on clean unmount.
1005 * We don't bother correcting this elsewhere for lazy superblock
1006 * counting because on mount of an unclean filesystem we reconstruct the
1007 * correct counter value and this is irrelevant.
1009 * For non-lazy counter filesystems, this doesn't matter at all because
1010 * we only every apply deltas to the superblock and hence the incore
1011 * value does not matter....
1014 error
= xfs_reserve_blocks(mp
, &resblks
, NULL
);
1016 xfs_warn(mp
, "Unable to free reserved block pool. "
1017 "Freespace may not be correct on next mount.");
1019 error
= xfs_log_sbcount(mp
);
1021 xfs_warn(mp
, "Unable to update superblock counters. "
1022 "Freespace may not be correct on next mount.");
1024 xfs_log_unmount(mp
);
1025 xfs_uuid_unmount(mp
);
1028 xfs_errortag_clearall(mp
, 0);
1034 xfs_fs_writable(xfs_mount_t
*mp
)
1036 return !(mp
->m_super
->s_writers
.frozen
|| XFS_FORCED_SHUTDOWN(mp
) ||
1037 (mp
->m_flags
& XFS_MOUNT_RDONLY
));
1043 * Sync the superblock counters to disk.
1045 * Note this code can be called during the process of freezing, so
1046 * we may need to use the transaction allocator which does not
1047 * block when the transaction subsystem is in its frozen state.
1050 xfs_log_sbcount(xfs_mount_t
*mp
)
1055 if (!xfs_fs_writable(mp
))
1058 xfs_icsb_sync_counters(mp
, 0);
1061 * we don't need to do this if we are updating the superblock
1062 * counters on every modification.
1064 if (!xfs_sb_version_haslazysbcount(&mp
->m_sb
))
1067 tp
= _xfs_trans_alloc(mp
, XFS_TRANS_SB_COUNT
, KM_SLEEP
);
1068 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_sb
, 0, 0);
1070 xfs_trans_cancel(tp
, 0);
1074 xfs_mod_sb(tp
, XFS_SB_IFREE
| XFS_SB_ICOUNT
| XFS_SB_FDBLOCKS
);
1075 xfs_trans_set_sync(tp
);
1076 error
= xfs_trans_commit(tp
, 0);
1081 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1082 * a delta to a specified field in the in-core superblock. Simply
1083 * switch on the field indicated and apply the delta to that field.
1084 * Fields are not allowed to dip below zero, so if the delta would
1085 * do this do not apply it and return EINVAL.
1087 * The m_sb_lock must be held when this routine is called.
1090 xfs_mod_incore_sb_unlocked(
1092 xfs_sb_field_t field
,
1096 int scounter
; /* short counter for 32 bit fields */
1097 long long lcounter
; /* long counter for 64 bit fields */
1098 long long res_used
, rem
;
1101 * With the in-core superblock spin lock held, switch
1102 * on the indicated field. Apply the delta to the
1103 * proper field. If the fields value would dip below
1104 * 0, then do not apply the delta and return EINVAL.
1107 case XFS_SBS_ICOUNT
:
1108 lcounter
= (long long)mp
->m_sb
.sb_icount
;
1112 return XFS_ERROR(EINVAL
);
1114 mp
->m_sb
.sb_icount
= lcounter
;
1117 lcounter
= (long long)mp
->m_sb
.sb_ifree
;
1121 return XFS_ERROR(EINVAL
);
1123 mp
->m_sb
.sb_ifree
= lcounter
;
1125 case XFS_SBS_FDBLOCKS
:
1126 lcounter
= (long long)
1127 mp
->m_sb
.sb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1128 res_used
= (long long)(mp
->m_resblks
- mp
->m_resblks_avail
);
1130 if (delta
> 0) { /* Putting blocks back */
1131 if (res_used
> delta
) {
1132 mp
->m_resblks_avail
+= delta
;
1134 rem
= delta
- res_used
;
1135 mp
->m_resblks_avail
= mp
->m_resblks
;
1138 } else { /* Taking blocks away */
1140 if (lcounter
>= 0) {
1141 mp
->m_sb
.sb_fdblocks
= lcounter
+
1142 XFS_ALLOC_SET_ASIDE(mp
);
1147 * We are out of blocks, use any available reserved
1148 * blocks if were allowed to.
1151 return XFS_ERROR(ENOSPC
);
1153 lcounter
= (long long)mp
->m_resblks_avail
+ delta
;
1154 if (lcounter
>= 0) {
1155 mp
->m_resblks_avail
= lcounter
;
1158 printk_once(KERN_WARNING
1159 "Filesystem \"%s\": reserve blocks depleted! "
1160 "Consider increasing reserve pool size.",
1162 return XFS_ERROR(ENOSPC
);
1165 mp
->m_sb
.sb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1167 case XFS_SBS_FREXTENTS
:
1168 lcounter
= (long long)mp
->m_sb
.sb_frextents
;
1171 return XFS_ERROR(ENOSPC
);
1173 mp
->m_sb
.sb_frextents
= lcounter
;
1175 case XFS_SBS_DBLOCKS
:
1176 lcounter
= (long long)mp
->m_sb
.sb_dblocks
;
1180 return XFS_ERROR(EINVAL
);
1182 mp
->m_sb
.sb_dblocks
= lcounter
;
1184 case XFS_SBS_AGCOUNT
:
1185 scounter
= mp
->m_sb
.sb_agcount
;
1189 return XFS_ERROR(EINVAL
);
1191 mp
->m_sb
.sb_agcount
= scounter
;
1193 case XFS_SBS_IMAX_PCT
:
1194 scounter
= mp
->m_sb
.sb_imax_pct
;
1198 return XFS_ERROR(EINVAL
);
1200 mp
->m_sb
.sb_imax_pct
= scounter
;
1202 case XFS_SBS_REXTSIZE
:
1203 scounter
= mp
->m_sb
.sb_rextsize
;
1207 return XFS_ERROR(EINVAL
);
1209 mp
->m_sb
.sb_rextsize
= scounter
;
1211 case XFS_SBS_RBMBLOCKS
:
1212 scounter
= mp
->m_sb
.sb_rbmblocks
;
1216 return XFS_ERROR(EINVAL
);
1218 mp
->m_sb
.sb_rbmblocks
= scounter
;
1220 case XFS_SBS_RBLOCKS
:
1221 lcounter
= (long long)mp
->m_sb
.sb_rblocks
;
1225 return XFS_ERROR(EINVAL
);
1227 mp
->m_sb
.sb_rblocks
= lcounter
;
1229 case XFS_SBS_REXTENTS
:
1230 lcounter
= (long long)mp
->m_sb
.sb_rextents
;
1234 return XFS_ERROR(EINVAL
);
1236 mp
->m_sb
.sb_rextents
= lcounter
;
1238 case XFS_SBS_REXTSLOG
:
1239 scounter
= mp
->m_sb
.sb_rextslog
;
1243 return XFS_ERROR(EINVAL
);
1245 mp
->m_sb
.sb_rextslog
= scounter
;
1249 return XFS_ERROR(EINVAL
);
1254 * xfs_mod_incore_sb() is used to change a field in the in-core
1255 * superblock structure by the specified delta. This modification
1256 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1257 * routine to do the work.
1261 struct xfs_mount
*mp
,
1262 xfs_sb_field_t field
,
1268 #ifdef HAVE_PERCPU_SB
1269 ASSERT(field
< XFS_SBS_ICOUNT
|| field
> XFS_SBS_FDBLOCKS
);
1271 spin_lock(&mp
->m_sb_lock
);
1272 status
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1273 spin_unlock(&mp
->m_sb_lock
);
1279 * Change more than one field in the in-core superblock structure at a time.
1281 * The fields and changes to those fields are specified in the array of
1282 * xfs_mod_sb structures passed in. Either all of the specified deltas
1283 * will be applied or none of them will. If any modified field dips below 0,
1284 * then all modifications will be backed out and EINVAL will be returned.
1286 * Note that this function may not be used for the superblock values that
1287 * are tracked with the in-memory per-cpu counters - a direct call to
1288 * xfs_icsb_modify_counters is required for these.
1291 xfs_mod_incore_sb_batch(
1292 struct xfs_mount
*mp
,
1301 * Loop through the array of mod structures and apply each individually.
1302 * If any fail, then back out all those which have already been applied.
1303 * Do all of this within the scope of the m_sb_lock so that all of the
1304 * changes will be atomic.
1306 spin_lock(&mp
->m_sb_lock
);
1307 for (msbp
= msb
; msbp
< (msb
+ nmsb
); msbp
++) {
1308 ASSERT(msbp
->msb_field
< XFS_SBS_ICOUNT
||
1309 msbp
->msb_field
> XFS_SBS_FDBLOCKS
);
1311 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1312 msbp
->msb_delta
, rsvd
);
1316 spin_unlock(&mp
->m_sb_lock
);
1320 while (--msbp
>= msb
) {
1321 error
= xfs_mod_incore_sb_unlocked(mp
, msbp
->msb_field
,
1322 -msbp
->msb_delta
, rsvd
);
1325 spin_unlock(&mp
->m_sb_lock
);
1330 * xfs_getsb() is called to obtain the buffer for the superblock.
1331 * The buffer is returned locked and read in from disk.
1332 * The buffer should be released with a call to xfs_brelse().
1334 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1335 * the superblock buffer if it can be locked without sleeping.
1336 * If it can't then we'll return NULL.
1340 struct xfs_mount
*mp
,
1343 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1345 if (!xfs_buf_trylock(bp
)) {
1346 if (flags
& XBF_TRYLOCK
)
1352 ASSERT(XFS_BUF_ISDONE(bp
));
1357 * Used to free the superblock along various error paths.
1361 struct xfs_mount
*mp
)
1363 struct xfs_buf
*bp
= mp
->m_sb_bp
;
1371 * Used to log changes to the superblock unit and width fields which could
1372 * be altered by the mount options, as well as any potential sb_features2
1373 * fixup. Only the first superblock is updated.
1383 ASSERT(fields
& (XFS_SB_UNIT
| XFS_SB_WIDTH
| XFS_SB_UUID
|
1384 XFS_SB_FEATURES2
| XFS_SB_BAD_FEATURES2
|
1385 XFS_SB_VERSIONNUM
));
1387 tp
= xfs_trans_alloc(mp
, XFS_TRANS_SB_UNIT
);
1388 error
= xfs_trans_reserve(tp
, &M_RES(mp
)->tr_sb
, 0, 0);
1390 xfs_trans_cancel(tp
, 0);
1393 xfs_mod_sb(tp
, fields
);
1394 error
= xfs_trans_commit(tp
, 0);
1399 * If the underlying (data/log/rt) device is readonly, there are some
1400 * operations that cannot proceed.
1403 xfs_dev_is_read_only(
1404 struct xfs_mount
*mp
,
1407 if (xfs_readonly_buftarg(mp
->m_ddev_targp
) ||
1408 xfs_readonly_buftarg(mp
->m_logdev_targp
) ||
1409 (mp
->m_rtdev_targp
&& xfs_readonly_buftarg(mp
->m_rtdev_targp
))) {
1410 xfs_notice(mp
, "%s required on read-only device.", message
);
1411 xfs_notice(mp
, "write access unavailable, cannot proceed.");
1417 #ifdef HAVE_PERCPU_SB
1419 * Per-cpu incore superblock counters
1421 * Simple concept, difficult implementation
1423 * Basically, replace the incore superblock counters with a distributed per cpu
1424 * counter for contended fields (e.g. free block count).
1426 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1427 * hence needs to be accurately read when we are running low on space. Hence
1428 * there is a method to enable and disable the per-cpu counters based on how
1429 * much "stuff" is available in them.
1431 * Basically, a counter is enabled if there is enough free resource to justify
1432 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1433 * ENOSPC), then we disable the counters to synchronise all callers and
1434 * re-distribute the available resources.
1436 * If, once we redistributed the available resources, we still get a failure,
1437 * we disable the per-cpu counter and go through the slow path.
1439 * The slow path is the current xfs_mod_incore_sb() function. This means that
1440 * when we disable a per-cpu counter, we need to drain its resources back to
1441 * the global superblock. We do this after disabling the counter to prevent
1442 * more threads from queueing up on the counter.
1444 * Essentially, this means that we still need a lock in the fast path to enable
1445 * synchronisation between the global counters and the per-cpu counters. This
1446 * is not a problem because the lock will be local to a CPU almost all the time
1447 * and have little contention except when we get to ENOSPC conditions.
1449 * Basically, this lock becomes a barrier that enables us to lock out the fast
1450 * path while we do things like enabling and disabling counters and
1451 * synchronising the counters.
1455 * 1. m_sb_lock before picking up per-cpu locks
1456 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1457 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1458 * 4. modifying per-cpu counters requires holding per-cpu lock
1459 * 5. modifying global counters requires holding m_sb_lock
1460 * 6. enabling or disabling a counter requires holding the m_sb_lock
1461 * and _none_ of the per-cpu locks.
1463 * Disabled counters are only ever re-enabled by a balance operation
1464 * that results in more free resources per CPU than a given threshold.
1465 * To ensure counters don't remain disabled, they are rebalanced when
1466 * the global resource goes above a higher threshold (i.e. some hysteresis
1467 * is present to prevent thrashing).
1470 #ifdef CONFIG_HOTPLUG_CPU
1472 * hot-plug CPU notifier support.
1474 * We need a notifier per filesystem as we need to be able to identify
1475 * the filesystem to balance the counters out. This is achieved by
1476 * having a notifier block embedded in the xfs_mount_t and doing pointer
1477 * magic to get the mount pointer from the notifier block address.
1480 xfs_icsb_cpu_notify(
1481 struct notifier_block
*nfb
,
1482 unsigned long action
,
1485 xfs_icsb_cnts_t
*cntp
;
1488 mp
= (xfs_mount_t
*)container_of(nfb
, xfs_mount_t
, m_icsb_notifier
);
1489 cntp
= (xfs_icsb_cnts_t
*)
1490 per_cpu_ptr(mp
->m_sb_cnts
, (unsigned long)hcpu
);
1492 case CPU_UP_PREPARE
:
1493 case CPU_UP_PREPARE_FROZEN
:
1494 /* Easy Case - initialize the area and locks, and
1495 * then rebalance when online does everything else for us. */
1496 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1499 case CPU_ONLINE_FROZEN
:
1501 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
1502 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
1503 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
1504 xfs_icsb_unlock(mp
);
1507 case CPU_DEAD_FROZEN
:
1508 /* Disable all the counters, then fold the dead cpu's
1509 * count into the total on the global superblock and
1510 * re-enable the counters. */
1512 spin_lock(&mp
->m_sb_lock
);
1513 xfs_icsb_disable_counter(mp
, XFS_SBS_ICOUNT
);
1514 xfs_icsb_disable_counter(mp
, XFS_SBS_IFREE
);
1515 xfs_icsb_disable_counter(mp
, XFS_SBS_FDBLOCKS
);
1517 mp
->m_sb
.sb_icount
+= cntp
->icsb_icount
;
1518 mp
->m_sb
.sb_ifree
+= cntp
->icsb_ifree
;
1519 mp
->m_sb
.sb_fdblocks
+= cntp
->icsb_fdblocks
;
1521 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1523 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_ICOUNT
, 0);
1524 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_IFREE
, 0);
1525 xfs_icsb_balance_counter_locked(mp
, XFS_SBS_FDBLOCKS
, 0);
1526 spin_unlock(&mp
->m_sb_lock
);
1527 xfs_icsb_unlock(mp
);
1533 #endif /* CONFIG_HOTPLUG_CPU */
1536 xfs_icsb_init_counters(
1539 xfs_icsb_cnts_t
*cntp
;
1542 mp
->m_sb_cnts
= alloc_percpu(xfs_icsb_cnts_t
);
1543 if (mp
->m_sb_cnts
== NULL
)
1546 for_each_online_cpu(i
) {
1547 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1548 memset(cntp
, 0, sizeof(xfs_icsb_cnts_t
));
1551 mutex_init(&mp
->m_icsb_mutex
);
1554 * start with all counters disabled so that the
1555 * initial balance kicks us off correctly
1557 mp
->m_icsb_counters
= -1;
1559 #ifdef CONFIG_HOTPLUG_CPU
1560 mp
->m_icsb_notifier
.notifier_call
= xfs_icsb_cpu_notify
;
1561 mp
->m_icsb_notifier
.priority
= 0;
1562 register_hotcpu_notifier(&mp
->m_icsb_notifier
);
1563 #endif /* CONFIG_HOTPLUG_CPU */
1569 xfs_icsb_reinit_counters(
1574 * start with all counters disabled so that the
1575 * initial balance kicks us off correctly
1577 mp
->m_icsb_counters
= -1;
1578 xfs_icsb_balance_counter(mp
, XFS_SBS_ICOUNT
, 0);
1579 xfs_icsb_balance_counter(mp
, XFS_SBS_IFREE
, 0);
1580 xfs_icsb_balance_counter(mp
, XFS_SBS_FDBLOCKS
, 0);
1581 xfs_icsb_unlock(mp
);
1585 xfs_icsb_destroy_counters(
1588 if (mp
->m_sb_cnts
) {
1589 unregister_hotcpu_notifier(&mp
->m_icsb_notifier
);
1590 free_percpu(mp
->m_sb_cnts
);
1592 mutex_destroy(&mp
->m_icsb_mutex
);
1597 xfs_icsb_cnts_t
*icsbp
)
1599 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
)) {
1605 xfs_icsb_unlock_cntr(
1606 xfs_icsb_cnts_t
*icsbp
)
1608 clear_bit(XFS_ICSB_FLAG_LOCK
, &icsbp
->icsb_flags
);
1613 xfs_icsb_lock_all_counters(
1616 xfs_icsb_cnts_t
*cntp
;
1619 for_each_online_cpu(i
) {
1620 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1621 xfs_icsb_lock_cntr(cntp
);
1626 xfs_icsb_unlock_all_counters(
1629 xfs_icsb_cnts_t
*cntp
;
1632 for_each_online_cpu(i
) {
1633 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1634 xfs_icsb_unlock_cntr(cntp
);
1641 xfs_icsb_cnts_t
*cnt
,
1644 xfs_icsb_cnts_t
*cntp
;
1647 memset(cnt
, 0, sizeof(xfs_icsb_cnts_t
));
1649 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
1650 xfs_icsb_lock_all_counters(mp
);
1652 for_each_online_cpu(i
) {
1653 cntp
= (xfs_icsb_cnts_t
*)per_cpu_ptr(mp
->m_sb_cnts
, i
);
1654 cnt
->icsb_icount
+= cntp
->icsb_icount
;
1655 cnt
->icsb_ifree
+= cntp
->icsb_ifree
;
1656 cnt
->icsb_fdblocks
+= cntp
->icsb_fdblocks
;
1659 if (!(flags
& XFS_ICSB_LAZY_COUNT
))
1660 xfs_icsb_unlock_all_counters(mp
);
1664 xfs_icsb_counter_disabled(
1666 xfs_sb_field_t field
)
1668 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
1669 return test_bit(field
, &mp
->m_icsb_counters
);
1673 xfs_icsb_disable_counter(
1675 xfs_sb_field_t field
)
1677 xfs_icsb_cnts_t cnt
;
1679 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
1682 * If we are already disabled, then there is nothing to do
1683 * here. We check before locking all the counters to avoid
1684 * the expensive lock operation when being called in the
1685 * slow path and the counter is already disabled. This is
1686 * safe because the only time we set or clear this state is under
1689 if (xfs_icsb_counter_disabled(mp
, field
))
1692 xfs_icsb_lock_all_counters(mp
);
1693 if (!test_and_set_bit(field
, &mp
->m_icsb_counters
)) {
1694 /* drain back to superblock */
1696 xfs_icsb_count(mp
, &cnt
, XFS_ICSB_LAZY_COUNT
);
1698 case XFS_SBS_ICOUNT
:
1699 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
1702 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
1704 case XFS_SBS_FDBLOCKS
:
1705 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
1712 xfs_icsb_unlock_all_counters(mp
);
1716 xfs_icsb_enable_counter(
1718 xfs_sb_field_t field
,
1722 xfs_icsb_cnts_t
*cntp
;
1725 ASSERT((field
>= XFS_SBS_ICOUNT
) && (field
<= XFS_SBS_FDBLOCKS
));
1727 xfs_icsb_lock_all_counters(mp
);
1728 for_each_online_cpu(i
) {
1729 cntp
= per_cpu_ptr(mp
->m_sb_cnts
, i
);
1731 case XFS_SBS_ICOUNT
:
1732 cntp
->icsb_icount
= count
+ resid
;
1735 cntp
->icsb_ifree
= count
+ resid
;
1737 case XFS_SBS_FDBLOCKS
:
1738 cntp
->icsb_fdblocks
= count
+ resid
;
1746 clear_bit(field
, &mp
->m_icsb_counters
);
1747 xfs_icsb_unlock_all_counters(mp
);
1751 xfs_icsb_sync_counters_locked(
1755 xfs_icsb_cnts_t cnt
;
1757 xfs_icsb_count(mp
, &cnt
, flags
);
1759 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_ICOUNT
))
1760 mp
->m_sb
.sb_icount
= cnt
.icsb_icount
;
1761 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_IFREE
))
1762 mp
->m_sb
.sb_ifree
= cnt
.icsb_ifree
;
1763 if (!xfs_icsb_counter_disabled(mp
, XFS_SBS_FDBLOCKS
))
1764 mp
->m_sb
.sb_fdblocks
= cnt
.icsb_fdblocks
;
1768 * Accurate update of per-cpu counters to incore superblock
1771 xfs_icsb_sync_counters(
1775 spin_lock(&mp
->m_sb_lock
);
1776 xfs_icsb_sync_counters_locked(mp
, flags
);
1777 spin_unlock(&mp
->m_sb_lock
);
1781 * Balance and enable/disable counters as necessary.
1783 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1784 * chosen to be the same number as single on disk allocation chunk per CPU, and
1785 * free blocks is something far enough zero that we aren't going thrash when we
1786 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1787 * prevent looping endlessly when xfs_alloc_space asks for more than will
1788 * be distributed to a single CPU but each CPU has enough blocks to be
1791 * Note that we can be called when counters are already disabled.
1792 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1793 * prevent locking every per-cpu counter needlessly.
1796 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1797 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1798 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1800 xfs_icsb_balance_counter_locked(
1802 xfs_sb_field_t field
,
1805 uint64_t count
, resid
;
1806 int weight
= num_online_cpus();
1807 uint64_t min
= (uint64_t)min_per_cpu
;
1809 /* disable counter and sync counter */
1810 xfs_icsb_disable_counter(mp
, field
);
1812 /* update counters - first CPU gets residual*/
1814 case XFS_SBS_ICOUNT
:
1815 count
= mp
->m_sb
.sb_icount
;
1816 resid
= do_div(count
, weight
);
1817 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
1821 count
= mp
->m_sb
.sb_ifree
;
1822 resid
= do_div(count
, weight
);
1823 if (count
< max(min
, XFS_ICSB_INO_CNTR_REENABLE
))
1826 case XFS_SBS_FDBLOCKS
:
1827 count
= mp
->m_sb
.sb_fdblocks
;
1828 resid
= do_div(count
, weight
);
1829 if (count
< max(min
, XFS_ICSB_FDBLK_CNTR_REENABLE(mp
)))
1834 count
= resid
= 0; /* quiet, gcc */
1838 xfs_icsb_enable_counter(mp
, field
, count
, resid
);
1842 xfs_icsb_balance_counter(
1844 xfs_sb_field_t fields
,
1847 spin_lock(&mp
->m_sb_lock
);
1848 xfs_icsb_balance_counter_locked(mp
, fields
, min_per_cpu
);
1849 spin_unlock(&mp
->m_sb_lock
);
1853 xfs_icsb_modify_counters(
1855 xfs_sb_field_t field
,
1859 xfs_icsb_cnts_t
*icsbp
;
1860 long long lcounter
; /* long counter for 64 bit fields */
1866 icsbp
= this_cpu_ptr(mp
->m_sb_cnts
);
1869 * if the counter is disabled, go to slow path
1871 if (unlikely(xfs_icsb_counter_disabled(mp
, field
)))
1873 xfs_icsb_lock_cntr(icsbp
);
1874 if (unlikely(xfs_icsb_counter_disabled(mp
, field
))) {
1875 xfs_icsb_unlock_cntr(icsbp
);
1880 case XFS_SBS_ICOUNT
:
1881 lcounter
= icsbp
->icsb_icount
;
1883 if (unlikely(lcounter
< 0))
1884 goto balance_counter
;
1885 icsbp
->icsb_icount
= lcounter
;
1889 lcounter
= icsbp
->icsb_ifree
;
1891 if (unlikely(lcounter
< 0))
1892 goto balance_counter
;
1893 icsbp
->icsb_ifree
= lcounter
;
1896 case XFS_SBS_FDBLOCKS
:
1897 BUG_ON((mp
->m_resblks
- mp
->m_resblks_avail
) != 0);
1899 lcounter
= icsbp
->icsb_fdblocks
- XFS_ALLOC_SET_ASIDE(mp
);
1901 if (unlikely(lcounter
< 0))
1902 goto balance_counter
;
1903 icsbp
->icsb_fdblocks
= lcounter
+ XFS_ALLOC_SET_ASIDE(mp
);
1909 xfs_icsb_unlock_cntr(icsbp
);
1917 * serialise with a mutex so we don't burn lots of cpu on
1918 * the superblock lock. We still need to hold the superblock
1919 * lock, however, when we modify the global structures.
1924 * Now running atomically.
1926 * If the counter is enabled, someone has beaten us to rebalancing.
1927 * Drop the lock and try again in the fast path....
1929 if (!(xfs_icsb_counter_disabled(mp
, field
))) {
1930 xfs_icsb_unlock(mp
);
1935 * The counter is currently disabled. Because we are
1936 * running atomically here, we know a rebalance cannot
1937 * be in progress. Hence we can go straight to operating
1938 * on the global superblock. We do not call xfs_mod_incore_sb()
1939 * here even though we need to get the m_sb_lock. Doing so
1940 * will cause us to re-enter this function and deadlock.
1941 * Hence we get the m_sb_lock ourselves and then call
1942 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1943 * directly on the global counters.
1945 spin_lock(&mp
->m_sb_lock
);
1946 ret
= xfs_mod_incore_sb_unlocked(mp
, field
, delta
, rsvd
);
1947 spin_unlock(&mp
->m_sb_lock
);
1950 * Now that we've modified the global superblock, we
1951 * may be able to re-enable the distributed counters
1952 * (e.g. lots of space just got freed). After that
1956 xfs_icsb_balance_counter(mp
, field
, 0);
1957 xfs_icsb_unlock(mp
);
1961 xfs_icsb_unlock_cntr(icsbp
);
1965 * We may have multiple threads here if multiple per-cpu
1966 * counters run dry at the same time. This will mean we can
1967 * do more balances than strictly necessary but it is not
1968 * the common slowpath case.
1973 * running atomically.
1975 * This will leave the counter in the correct state for future
1976 * accesses. After the rebalance, we simply try again and our retry
1977 * will either succeed through the fast path or slow path without
1978 * another balance operation being required.
1980 xfs_icsb_balance_counter(mp
, field
, delta
);
1981 xfs_icsb_unlock(mp
);