Merge tag 'arc-v3.13-rc1-part2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / fs / xfs / xfs_mount.c
blobda88f167af78dbf04df4eb0c1cdcfcad7a5bd699
1 /*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_inum.h"
26 #include "xfs_sb.h"
27 #include "xfs_ag.h"
28 #include "xfs_mount.h"
29 #include "xfs_da_format.h"
30 #include "xfs_inode.h"
31 #include "xfs_dir2.h"
32 #include "xfs_ialloc.h"
33 #include "xfs_alloc.h"
34 #include "xfs_rtalloc.h"
35 #include "xfs_bmap.h"
36 #include "xfs_trans.h"
37 #include "xfs_trans_priv.h"
38 #include "xfs_log.h"
39 #include "xfs_error.h"
40 #include "xfs_quota.h"
41 #include "xfs_fsops.h"
42 #include "xfs_trace.h"
43 #include "xfs_icache.h"
46 #ifdef HAVE_PERCPU_SB
47 STATIC void xfs_icsb_balance_counter(xfs_mount_t *, xfs_sb_field_t,
48 int);
49 STATIC void xfs_icsb_balance_counter_locked(xfs_mount_t *, xfs_sb_field_t,
50 int);
51 STATIC void xfs_icsb_disable_counter(xfs_mount_t *, xfs_sb_field_t);
52 #else
54 #define xfs_icsb_balance_counter(mp, a, b) do { } while (0)
55 #define xfs_icsb_balance_counter_locked(mp, a, b) do { } while (0)
56 #endif
58 static DEFINE_MUTEX(xfs_uuid_table_mutex);
59 static int xfs_uuid_table_size;
60 static uuid_t *xfs_uuid_table;
63 * See if the UUID is unique among mounted XFS filesystems.
64 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66 STATIC int
67 xfs_uuid_mount(
68 struct xfs_mount *mp)
70 uuid_t *uuid = &mp->m_sb.sb_uuid;
71 int hole, i;
73 if (mp->m_flags & XFS_MOUNT_NOUUID)
74 return 0;
76 if (uuid_is_nil(uuid)) {
77 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
78 return XFS_ERROR(EINVAL);
81 mutex_lock(&xfs_uuid_table_mutex);
82 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
83 if (uuid_is_nil(&xfs_uuid_table[i])) {
84 hole = i;
85 continue;
87 if (uuid_equal(uuid, &xfs_uuid_table[i]))
88 goto out_duplicate;
91 if (hole < 0) {
92 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
93 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
94 xfs_uuid_table_size * sizeof(*xfs_uuid_table),
95 KM_SLEEP);
96 hole = xfs_uuid_table_size++;
98 xfs_uuid_table[hole] = *uuid;
99 mutex_unlock(&xfs_uuid_table_mutex);
101 return 0;
103 out_duplicate:
104 mutex_unlock(&xfs_uuid_table_mutex);
105 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
106 return XFS_ERROR(EINVAL);
109 STATIC void
110 xfs_uuid_unmount(
111 struct xfs_mount *mp)
113 uuid_t *uuid = &mp->m_sb.sb_uuid;
114 int i;
116 if (mp->m_flags & XFS_MOUNT_NOUUID)
117 return;
119 mutex_lock(&xfs_uuid_table_mutex);
120 for (i = 0; i < xfs_uuid_table_size; i++) {
121 if (uuid_is_nil(&xfs_uuid_table[i]))
122 continue;
123 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
124 continue;
125 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
126 break;
128 ASSERT(i < xfs_uuid_table_size);
129 mutex_unlock(&xfs_uuid_table_mutex);
133 STATIC void
134 __xfs_free_perag(
135 struct rcu_head *head)
137 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
139 ASSERT(atomic_read(&pag->pag_ref) == 0);
140 kmem_free(pag);
144 * Free up the per-ag resources associated with the mount structure.
146 STATIC void
147 xfs_free_perag(
148 xfs_mount_t *mp)
150 xfs_agnumber_t agno;
151 struct xfs_perag *pag;
153 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
154 spin_lock(&mp->m_perag_lock);
155 pag = radix_tree_delete(&mp->m_perag_tree, agno);
156 spin_unlock(&mp->m_perag_lock);
157 ASSERT(pag);
158 ASSERT(atomic_read(&pag->pag_ref) == 0);
159 call_rcu(&pag->rcu_head, __xfs_free_perag);
164 * Check size of device based on the (data/realtime) block count.
165 * Note: this check is used by the growfs code as well as mount.
168 xfs_sb_validate_fsb_count(
169 xfs_sb_t *sbp,
170 __uint64_t nblocks)
172 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
173 ASSERT(sbp->sb_blocklog >= BBSHIFT);
175 #if XFS_BIG_BLKNOS /* Limited by ULONG_MAX of page cache index */
176 if (nblocks >> (PAGE_CACHE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
177 return EFBIG;
178 #else /* Limited by UINT_MAX of sectors */
179 if (nblocks << (sbp->sb_blocklog - BBSHIFT) > UINT_MAX)
180 return EFBIG;
181 #endif
182 return 0;
186 xfs_initialize_perag(
187 xfs_mount_t *mp,
188 xfs_agnumber_t agcount,
189 xfs_agnumber_t *maxagi)
191 xfs_agnumber_t index;
192 xfs_agnumber_t first_initialised = 0;
193 xfs_perag_t *pag;
194 xfs_agino_t agino;
195 xfs_ino_t ino;
196 xfs_sb_t *sbp = &mp->m_sb;
197 int error = -ENOMEM;
200 * Walk the current per-ag tree so we don't try to initialise AGs
201 * that already exist (growfs case). Allocate and insert all the
202 * AGs we don't find ready for initialisation.
204 for (index = 0; index < agcount; index++) {
205 pag = xfs_perag_get(mp, index);
206 if (pag) {
207 xfs_perag_put(pag);
208 continue;
210 if (!first_initialised)
211 first_initialised = index;
213 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
214 if (!pag)
215 goto out_unwind;
216 pag->pag_agno = index;
217 pag->pag_mount = mp;
218 spin_lock_init(&pag->pag_ici_lock);
219 mutex_init(&pag->pag_ici_reclaim_lock);
220 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
221 spin_lock_init(&pag->pag_buf_lock);
222 pag->pag_buf_tree = RB_ROOT;
224 if (radix_tree_preload(GFP_NOFS))
225 goto out_unwind;
227 spin_lock(&mp->m_perag_lock);
228 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
229 BUG();
230 spin_unlock(&mp->m_perag_lock);
231 radix_tree_preload_end();
232 error = -EEXIST;
233 goto out_unwind;
235 spin_unlock(&mp->m_perag_lock);
236 radix_tree_preload_end();
240 * If we mount with the inode64 option, or no inode overflows
241 * the legacy 32-bit address space clear the inode32 option.
243 agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0);
244 ino = XFS_AGINO_TO_INO(mp, agcount - 1, agino);
246 if ((mp->m_flags & XFS_MOUNT_SMALL_INUMS) && ino > XFS_MAXINUMBER_32)
247 mp->m_flags |= XFS_MOUNT_32BITINODES;
248 else
249 mp->m_flags &= ~XFS_MOUNT_32BITINODES;
251 if (mp->m_flags & XFS_MOUNT_32BITINODES)
252 index = xfs_set_inode32(mp);
253 else
254 index = xfs_set_inode64(mp);
256 if (maxagi)
257 *maxagi = index;
258 return 0;
260 out_unwind:
261 kmem_free(pag);
262 for (; index > first_initialised; index--) {
263 pag = radix_tree_delete(&mp->m_perag_tree, index);
264 kmem_free(pag);
266 return error;
270 * xfs_readsb
272 * Does the initial read of the superblock.
275 xfs_readsb(
276 struct xfs_mount *mp,
277 int flags)
279 unsigned int sector_size;
280 struct xfs_buf *bp;
281 struct xfs_sb *sbp = &mp->m_sb;
282 int error;
283 int loud = !(flags & XFS_MFSI_QUIET);
285 ASSERT(mp->m_sb_bp == NULL);
286 ASSERT(mp->m_ddev_targp != NULL);
289 * Allocate a (locked) buffer to hold the superblock.
290 * This will be kept around at all times to optimize
291 * access to the superblock.
293 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
295 reread:
296 bp = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
297 BTOBB(sector_size), 0,
298 loud ? &xfs_sb_buf_ops
299 : &xfs_sb_quiet_buf_ops);
300 if (!bp) {
301 if (loud)
302 xfs_warn(mp, "SB buffer read failed");
303 return EIO;
305 if (bp->b_error) {
306 error = bp->b_error;
307 if (loud)
308 xfs_warn(mp, "SB validate failed with error %d.", error);
309 goto release_buf;
313 * Initialize the mount structure from the superblock.
315 xfs_sb_from_disk(&mp->m_sb, XFS_BUF_TO_SBP(bp));
316 xfs_sb_quota_from_disk(&mp->m_sb);
319 * We must be able to do sector-sized and sector-aligned IO.
321 if (sector_size > sbp->sb_sectsize) {
322 if (loud)
323 xfs_warn(mp, "device supports %u byte sectors (not %u)",
324 sector_size, sbp->sb_sectsize);
325 error = ENOSYS;
326 goto release_buf;
330 * If device sector size is smaller than the superblock size,
331 * re-read the superblock so the buffer is correctly sized.
333 if (sector_size < sbp->sb_sectsize) {
334 xfs_buf_relse(bp);
335 sector_size = sbp->sb_sectsize;
336 goto reread;
339 /* Initialize per-cpu counters */
340 xfs_icsb_reinit_counters(mp);
342 /* no need to be quiet anymore, so reset the buf ops */
343 bp->b_ops = &xfs_sb_buf_ops;
345 mp->m_sb_bp = bp;
346 xfs_buf_unlock(bp);
347 return 0;
349 release_buf:
350 xfs_buf_relse(bp);
351 return error;
355 * Update alignment values based on mount options and sb values
357 STATIC int
358 xfs_update_alignment(xfs_mount_t *mp)
360 xfs_sb_t *sbp = &(mp->m_sb);
362 if (mp->m_dalign) {
364 * If stripe unit and stripe width are not multiples
365 * of the fs blocksize turn off alignment.
367 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
368 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
369 xfs_warn(mp,
370 "alignment check failed: sunit/swidth vs. blocksize(%d)",
371 sbp->sb_blocksize);
372 return XFS_ERROR(EINVAL);
373 } else {
375 * Convert the stripe unit and width to FSBs.
377 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
378 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
379 xfs_warn(mp,
380 "alignment check failed: sunit/swidth vs. agsize(%d)",
381 sbp->sb_agblocks);
382 return XFS_ERROR(EINVAL);
383 } else if (mp->m_dalign) {
384 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
385 } else {
386 xfs_warn(mp,
387 "alignment check failed: sunit(%d) less than bsize(%d)",
388 mp->m_dalign, sbp->sb_blocksize);
389 return XFS_ERROR(EINVAL);
394 * Update superblock with new values
395 * and log changes
397 if (xfs_sb_version_hasdalign(sbp)) {
398 if (sbp->sb_unit != mp->m_dalign) {
399 sbp->sb_unit = mp->m_dalign;
400 mp->m_update_flags |= XFS_SB_UNIT;
402 if (sbp->sb_width != mp->m_swidth) {
403 sbp->sb_width = mp->m_swidth;
404 mp->m_update_flags |= XFS_SB_WIDTH;
406 } else {
407 xfs_warn(mp,
408 "cannot change alignment: superblock does not support data alignment");
409 return XFS_ERROR(EINVAL);
411 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
412 xfs_sb_version_hasdalign(&mp->m_sb)) {
413 mp->m_dalign = sbp->sb_unit;
414 mp->m_swidth = sbp->sb_width;
417 return 0;
421 * Set the maximum inode count for this filesystem
423 STATIC void
424 xfs_set_maxicount(xfs_mount_t *mp)
426 xfs_sb_t *sbp = &(mp->m_sb);
427 __uint64_t icount;
429 if (sbp->sb_imax_pct) {
431 * Make sure the maximum inode count is a multiple
432 * of the units we allocate inodes in.
434 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
435 do_div(icount, 100);
436 do_div(icount, mp->m_ialloc_blks);
437 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
438 sbp->sb_inopblog;
439 } else {
440 mp->m_maxicount = 0;
445 * Set the default minimum read and write sizes unless
446 * already specified in a mount option.
447 * We use smaller I/O sizes when the file system
448 * is being used for NFS service (wsync mount option).
450 STATIC void
451 xfs_set_rw_sizes(xfs_mount_t *mp)
453 xfs_sb_t *sbp = &(mp->m_sb);
454 int readio_log, writeio_log;
456 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
457 if (mp->m_flags & XFS_MOUNT_WSYNC) {
458 readio_log = XFS_WSYNC_READIO_LOG;
459 writeio_log = XFS_WSYNC_WRITEIO_LOG;
460 } else {
461 readio_log = XFS_READIO_LOG_LARGE;
462 writeio_log = XFS_WRITEIO_LOG_LARGE;
464 } else {
465 readio_log = mp->m_readio_log;
466 writeio_log = mp->m_writeio_log;
469 if (sbp->sb_blocklog > readio_log) {
470 mp->m_readio_log = sbp->sb_blocklog;
471 } else {
472 mp->m_readio_log = readio_log;
474 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
475 if (sbp->sb_blocklog > writeio_log) {
476 mp->m_writeio_log = sbp->sb_blocklog;
477 } else {
478 mp->m_writeio_log = writeio_log;
480 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
484 * precalculate the low space thresholds for dynamic speculative preallocation.
486 void
487 xfs_set_low_space_thresholds(
488 struct xfs_mount *mp)
490 int i;
492 for (i = 0; i < XFS_LOWSP_MAX; i++) {
493 __uint64_t space = mp->m_sb.sb_dblocks;
495 do_div(space, 100);
496 mp->m_low_space[i] = space * (i + 1);
502 * Set whether we're using inode alignment.
504 STATIC void
505 xfs_set_inoalignment(xfs_mount_t *mp)
507 if (xfs_sb_version_hasalign(&mp->m_sb) &&
508 mp->m_sb.sb_inoalignmt >=
509 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
510 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
511 else
512 mp->m_inoalign_mask = 0;
514 * If we are using stripe alignment, check whether
515 * the stripe unit is a multiple of the inode alignment
517 if (mp->m_dalign && mp->m_inoalign_mask &&
518 !(mp->m_dalign & mp->m_inoalign_mask))
519 mp->m_sinoalign = mp->m_dalign;
520 else
521 mp->m_sinoalign = 0;
525 * Check that the data (and log if separate) is an ok size.
527 STATIC int
528 xfs_check_sizes(xfs_mount_t *mp)
530 xfs_buf_t *bp;
531 xfs_daddr_t d;
533 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
534 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
535 xfs_warn(mp, "filesystem size mismatch detected");
536 return XFS_ERROR(EFBIG);
538 bp = xfs_buf_read_uncached(mp->m_ddev_targp,
539 d - XFS_FSS_TO_BB(mp, 1),
540 XFS_FSS_TO_BB(mp, 1), 0, NULL);
541 if (!bp) {
542 xfs_warn(mp, "last sector read failed");
543 return EIO;
545 xfs_buf_relse(bp);
547 if (mp->m_logdev_targp != mp->m_ddev_targp) {
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
550 xfs_warn(mp, "log size mismatch detected");
551 return XFS_ERROR(EFBIG);
553 bp = xfs_buf_read_uncached(mp->m_logdev_targp,
554 d - XFS_FSB_TO_BB(mp, 1),
555 XFS_FSB_TO_BB(mp, 1), 0, NULL);
556 if (!bp) {
557 xfs_warn(mp, "log device read failed");
558 return EIO;
560 xfs_buf_relse(bp);
562 return 0;
566 * Clear the quotaflags in memory and in the superblock.
569 xfs_mount_reset_sbqflags(
570 struct xfs_mount *mp)
572 int error;
573 struct xfs_trans *tp;
575 mp->m_qflags = 0;
578 * It is OK to look at sb_qflags here in mount path,
579 * without m_sb_lock.
581 if (mp->m_sb.sb_qflags == 0)
582 return 0;
583 spin_lock(&mp->m_sb_lock);
584 mp->m_sb.sb_qflags = 0;
585 spin_unlock(&mp->m_sb_lock);
588 * If the fs is readonly, let the incore superblock run
589 * with quotas off but don't flush the update out to disk
591 if (mp->m_flags & XFS_MOUNT_RDONLY)
592 return 0;
594 tp = xfs_trans_alloc(mp, XFS_TRANS_QM_SBCHANGE);
595 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_qm_sbchange, 0, 0);
596 if (error) {
597 xfs_trans_cancel(tp, 0);
598 xfs_alert(mp, "%s: Superblock update failed!", __func__);
599 return error;
602 xfs_mod_sb(tp, XFS_SB_QFLAGS);
603 return xfs_trans_commit(tp, 0);
606 __uint64_t
607 xfs_default_resblks(xfs_mount_t *mp)
609 __uint64_t resblks;
612 * We default to 5% or 8192 fsbs of space reserved, whichever is
613 * smaller. This is intended to cover concurrent allocation
614 * transactions when we initially hit enospc. These each require a 4
615 * block reservation. Hence by default we cover roughly 2000 concurrent
616 * allocation reservations.
618 resblks = mp->m_sb.sb_dblocks;
619 do_div(resblks, 20);
620 resblks = min_t(__uint64_t, resblks, 8192);
621 return resblks;
625 * This function does the following on an initial mount of a file system:
626 * - reads the superblock from disk and init the mount struct
627 * - if we're a 32-bit kernel, do a size check on the superblock
628 * so we don't mount terabyte filesystems
629 * - init mount struct realtime fields
630 * - allocate inode hash table for fs
631 * - init directory manager
632 * - perform recovery and init the log manager
635 xfs_mountfs(
636 xfs_mount_t *mp)
638 xfs_sb_t *sbp = &(mp->m_sb);
639 xfs_inode_t *rip;
640 __uint64_t resblks;
641 uint quotamount = 0;
642 uint quotaflags = 0;
643 int error = 0;
645 xfs_sb_mount_common(mp, sbp);
648 * Check for a mismatched features2 values. Older kernels
649 * read & wrote into the wrong sb offset for sb_features2
650 * on some platforms due to xfs_sb_t not being 64bit size aligned
651 * when sb_features2 was added, which made older superblock
652 * reading/writing routines swap it as a 64-bit value.
654 * For backwards compatibility, we make both slots equal.
656 * If we detect a mismatched field, we OR the set bits into the
657 * existing features2 field in case it has already been modified; we
658 * don't want to lose any features. We then update the bad location
659 * with the ORed value so that older kernels will see any features2
660 * flags, and mark the two fields as needing updates once the
661 * transaction subsystem is online.
663 if (xfs_sb_has_mismatched_features2(sbp)) {
664 xfs_warn(mp, "correcting sb_features alignment problem");
665 sbp->sb_features2 |= sbp->sb_bad_features2;
666 sbp->sb_bad_features2 = sbp->sb_features2;
667 mp->m_update_flags |= XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2;
670 * Re-check for ATTR2 in case it was found in bad_features2
671 * slot.
673 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
674 !(mp->m_flags & XFS_MOUNT_NOATTR2))
675 mp->m_flags |= XFS_MOUNT_ATTR2;
678 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
679 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
680 xfs_sb_version_removeattr2(&mp->m_sb);
681 mp->m_update_flags |= XFS_SB_FEATURES2;
683 /* update sb_versionnum for the clearing of the morebits */
684 if (!sbp->sb_features2)
685 mp->m_update_flags |= XFS_SB_VERSIONNUM;
689 * Check if sb_agblocks is aligned at stripe boundary
690 * If sb_agblocks is NOT aligned turn off m_dalign since
691 * allocator alignment is within an ag, therefore ag has
692 * to be aligned at stripe boundary.
694 error = xfs_update_alignment(mp);
695 if (error)
696 goto out;
698 xfs_alloc_compute_maxlevels(mp);
699 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
700 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
701 xfs_ialloc_compute_maxlevels(mp);
703 xfs_set_maxicount(mp);
705 error = xfs_uuid_mount(mp);
706 if (error)
707 goto out;
710 * Set the minimum read and write sizes
712 xfs_set_rw_sizes(mp);
714 /* set the low space thresholds for dynamic preallocation */
715 xfs_set_low_space_thresholds(mp);
718 * Set the inode cluster size.
719 * This may still be overridden by the file system
720 * block size if it is larger than the chosen cluster size.
722 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
725 * Set inode alignment fields
727 xfs_set_inoalignment(mp);
730 * Check that the data (and log if separate) is an ok size.
732 error = xfs_check_sizes(mp);
733 if (error)
734 goto out_remove_uuid;
737 * Initialize realtime fields in the mount structure
739 error = xfs_rtmount_init(mp);
740 if (error) {
741 xfs_warn(mp, "RT mount failed");
742 goto out_remove_uuid;
746 * Copies the low order bits of the timestamp and the randomly
747 * set "sequence" number out of a UUID.
749 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
751 mp->m_dmevmask = 0; /* not persistent; set after each mount */
753 xfs_dir_mount(mp);
756 * Initialize the attribute manager's entries.
758 mp->m_attr_magicpct = (mp->m_sb.sb_blocksize * 37) / 100;
761 * Initialize the precomputed transaction reservations values.
763 xfs_trans_init(mp);
766 * Allocate and initialize the per-ag data.
768 spin_lock_init(&mp->m_perag_lock);
769 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
770 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
771 if (error) {
772 xfs_warn(mp, "Failed per-ag init: %d", error);
773 goto out_remove_uuid;
776 if (!sbp->sb_logblocks) {
777 xfs_warn(mp, "no log defined");
778 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
779 error = XFS_ERROR(EFSCORRUPTED);
780 goto out_free_perag;
784 * log's mount-time initialization. Perform 1st part recovery if needed
786 error = xfs_log_mount(mp, mp->m_logdev_targp,
787 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
788 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
789 if (error) {
790 xfs_warn(mp, "log mount failed");
791 goto out_fail_wait;
795 * Now the log is mounted, we know if it was an unclean shutdown or
796 * not. If it was, with the first phase of recovery has completed, we
797 * have consistent AG blocks on disk. We have not recovered EFIs yet,
798 * but they are recovered transactionally in the second recovery phase
799 * later.
801 * Hence we can safely re-initialise incore superblock counters from
802 * the per-ag data. These may not be correct if the filesystem was not
803 * cleanly unmounted, so we need to wait for recovery to finish before
804 * doing this.
806 * If the filesystem was cleanly unmounted, then we can trust the
807 * values in the superblock to be correct and we don't need to do
808 * anything here.
810 * If we are currently making the filesystem, the initialisation will
811 * fail as the perag data is in an undefined state.
813 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
814 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
815 !mp->m_sb.sb_inprogress) {
816 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
817 if (error)
818 goto out_fail_wait;
822 * Get and sanity-check the root inode.
823 * Save the pointer to it in the mount structure.
825 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
826 if (error) {
827 xfs_warn(mp, "failed to read root inode");
828 goto out_log_dealloc;
831 ASSERT(rip != NULL);
833 if (unlikely(!S_ISDIR(rip->i_d.di_mode))) {
834 xfs_warn(mp, "corrupted root inode %llu: not a directory",
835 (unsigned long long)rip->i_ino);
836 xfs_iunlock(rip, XFS_ILOCK_EXCL);
837 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
838 mp);
839 error = XFS_ERROR(EFSCORRUPTED);
840 goto out_rele_rip;
842 mp->m_rootip = rip; /* save it */
844 xfs_iunlock(rip, XFS_ILOCK_EXCL);
847 * Initialize realtime inode pointers in the mount structure
849 error = xfs_rtmount_inodes(mp);
850 if (error) {
852 * Free up the root inode.
854 xfs_warn(mp, "failed to read RT inodes");
855 goto out_rele_rip;
859 * If this is a read-only mount defer the superblock updates until
860 * the next remount into writeable mode. Otherwise we would never
861 * perform the update e.g. for the root filesystem.
863 if (mp->m_update_flags && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
864 error = xfs_mount_log_sb(mp, mp->m_update_flags);
865 if (error) {
866 xfs_warn(mp, "failed to write sb changes");
867 goto out_rtunmount;
872 * Initialise the XFS quota management subsystem for this mount
874 if (XFS_IS_QUOTA_RUNNING(mp)) {
875 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
876 if (error)
877 goto out_rtunmount;
878 } else {
879 ASSERT(!XFS_IS_QUOTA_ON(mp));
882 * If a file system had quotas running earlier, but decided to
883 * mount without -o uquota/pquota/gquota options, revoke the
884 * quotachecked license.
886 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
887 xfs_notice(mp, "resetting quota flags");
888 error = xfs_mount_reset_sbqflags(mp);
889 if (error)
890 return error;
895 * Finish recovering the file system. This part needed to be
896 * delayed until after the root and real-time bitmap inodes
897 * were consistently read in.
899 error = xfs_log_mount_finish(mp);
900 if (error) {
901 xfs_warn(mp, "log mount finish failed");
902 goto out_rtunmount;
906 * Complete the quota initialisation, post-log-replay component.
908 if (quotamount) {
909 ASSERT(mp->m_qflags == 0);
910 mp->m_qflags = quotaflags;
912 xfs_qm_mount_quotas(mp);
916 * Now we are mounted, reserve a small amount of unused space for
917 * privileged transactions. This is needed so that transaction
918 * space required for critical operations can dip into this pool
919 * when at ENOSPC. This is needed for operations like create with
920 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
921 * are not allowed to use this reserved space.
923 * This may drive us straight to ENOSPC on mount, but that implies
924 * we were already there on the last unmount. Warn if this occurs.
926 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
927 resblks = xfs_default_resblks(mp);
928 error = xfs_reserve_blocks(mp, &resblks, NULL);
929 if (error)
930 xfs_warn(mp,
931 "Unable to allocate reserve blocks. Continuing without reserve pool.");
934 return 0;
936 out_rtunmount:
937 xfs_rtunmount_inodes(mp);
938 out_rele_rip:
939 IRELE(rip);
940 out_log_dealloc:
941 xfs_log_unmount(mp);
942 out_fail_wait:
943 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
944 xfs_wait_buftarg(mp->m_logdev_targp);
945 xfs_wait_buftarg(mp->m_ddev_targp);
946 out_free_perag:
947 xfs_free_perag(mp);
948 out_remove_uuid:
949 xfs_uuid_unmount(mp);
950 out:
951 return error;
955 * This flushes out the inodes,dquots and the superblock, unmounts the
956 * log and makes sure that incore structures are freed.
958 void
959 xfs_unmountfs(
960 struct xfs_mount *mp)
962 __uint64_t resblks;
963 int error;
965 cancel_delayed_work_sync(&mp->m_eofblocks_work);
967 xfs_qm_unmount_quotas(mp);
968 xfs_rtunmount_inodes(mp);
969 IRELE(mp->m_rootip);
972 * We can potentially deadlock here if we have an inode cluster
973 * that has been freed has its buffer still pinned in memory because
974 * the transaction is still sitting in a iclog. The stale inodes
975 * on that buffer will have their flush locks held until the
976 * transaction hits the disk and the callbacks run. the inode
977 * flush takes the flush lock unconditionally and with nothing to
978 * push out the iclog we will never get that unlocked. hence we
979 * need to force the log first.
981 xfs_log_force(mp, XFS_LOG_SYNC);
984 * Flush all pending changes from the AIL.
986 xfs_ail_push_all_sync(mp->m_ail);
989 * And reclaim all inodes. At this point there should be no dirty
990 * inodes and none should be pinned or locked, but use synchronous
991 * reclaim just to be sure. We can stop background inode reclaim
992 * here as well if it is still running.
994 cancel_delayed_work_sync(&mp->m_reclaim_work);
995 xfs_reclaim_inodes(mp, SYNC_WAIT);
997 xfs_qm_unmount(mp);
1000 * Unreserve any blocks we have so that when we unmount we don't account
1001 * the reserved free space as used. This is really only necessary for
1002 * lazy superblock counting because it trusts the incore superblock
1003 * counters to be absolutely correct on clean unmount.
1005 * We don't bother correcting this elsewhere for lazy superblock
1006 * counting because on mount of an unclean filesystem we reconstruct the
1007 * correct counter value and this is irrelevant.
1009 * For non-lazy counter filesystems, this doesn't matter at all because
1010 * we only every apply deltas to the superblock and hence the incore
1011 * value does not matter....
1013 resblks = 0;
1014 error = xfs_reserve_blocks(mp, &resblks, NULL);
1015 if (error)
1016 xfs_warn(mp, "Unable to free reserved block pool. "
1017 "Freespace may not be correct on next mount.");
1019 error = xfs_log_sbcount(mp);
1020 if (error)
1021 xfs_warn(mp, "Unable to update superblock counters. "
1022 "Freespace may not be correct on next mount.");
1024 xfs_log_unmount(mp);
1025 xfs_uuid_unmount(mp);
1027 #if defined(DEBUG)
1028 xfs_errortag_clearall(mp, 0);
1029 #endif
1030 xfs_free_perag(mp);
1034 xfs_fs_writable(xfs_mount_t *mp)
1036 return !(mp->m_super->s_writers.frozen || XFS_FORCED_SHUTDOWN(mp) ||
1037 (mp->m_flags & XFS_MOUNT_RDONLY));
1041 * xfs_log_sbcount
1043 * Sync the superblock counters to disk.
1045 * Note this code can be called during the process of freezing, so
1046 * we may need to use the transaction allocator which does not
1047 * block when the transaction subsystem is in its frozen state.
1050 xfs_log_sbcount(xfs_mount_t *mp)
1052 xfs_trans_t *tp;
1053 int error;
1055 if (!xfs_fs_writable(mp))
1056 return 0;
1058 xfs_icsb_sync_counters(mp, 0);
1061 * we don't need to do this if we are updating the superblock
1062 * counters on every modification.
1064 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1065 return 0;
1067 tp = _xfs_trans_alloc(mp, XFS_TRANS_SB_COUNT, KM_SLEEP);
1068 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1069 if (error) {
1070 xfs_trans_cancel(tp, 0);
1071 return error;
1074 xfs_mod_sb(tp, XFS_SB_IFREE | XFS_SB_ICOUNT | XFS_SB_FDBLOCKS);
1075 xfs_trans_set_sync(tp);
1076 error = xfs_trans_commit(tp, 0);
1077 return error;
1081 * xfs_mod_incore_sb_unlocked() is a utility routine commonly used to apply
1082 * a delta to a specified field in the in-core superblock. Simply
1083 * switch on the field indicated and apply the delta to that field.
1084 * Fields are not allowed to dip below zero, so if the delta would
1085 * do this do not apply it and return EINVAL.
1087 * The m_sb_lock must be held when this routine is called.
1089 STATIC int
1090 xfs_mod_incore_sb_unlocked(
1091 xfs_mount_t *mp,
1092 xfs_sb_field_t field,
1093 int64_t delta,
1094 int rsvd)
1096 int scounter; /* short counter for 32 bit fields */
1097 long long lcounter; /* long counter for 64 bit fields */
1098 long long res_used, rem;
1101 * With the in-core superblock spin lock held, switch
1102 * on the indicated field. Apply the delta to the
1103 * proper field. If the fields value would dip below
1104 * 0, then do not apply the delta and return EINVAL.
1106 switch (field) {
1107 case XFS_SBS_ICOUNT:
1108 lcounter = (long long)mp->m_sb.sb_icount;
1109 lcounter += delta;
1110 if (lcounter < 0) {
1111 ASSERT(0);
1112 return XFS_ERROR(EINVAL);
1114 mp->m_sb.sb_icount = lcounter;
1115 return 0;
1116 case XFS_SBS_IFREE:
1117 lcounter = (long long)mp->m_sb.sb_ifree;
1118 lcounter += delta;
1119 if (lcounter < 0) {
1120 ASSERT(0);
1121 return XFS_ERROR(EINVAL);
1123 mp->m_sb.sb_ifree = lcounter;
1124 return 0;
1125 case XFS_SBS_FDBLOCKS:
1126 lcounter = (long long)
1127 mp->m_sb.sb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1128 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1130 if (delta > 0) { /* Putting blocks back */
1131 if (res_used > delta) {
1132 mp->m_resblks_avail += delta;
1133 } else {
1134 rem = delta - res_used;
1135 mp->m_resblks_avail = mp->m_resblks;
1136 lcounter += rem;
1138 } else { /* Taking blocks away */
1139 lcounter += delta;
1140 if (lcounter >= 0) {
1141 mp->m_sb.sb_fdblocks = lcounter +
1142 XFS_ALLOC_SET_ASIDE(mp);
1143 return 0;
1147 * We are out of blocks, use any available reserved
1148 * blocks if were allowed to.
1150 if (!rsvd)
1151 return XFS_ERROR(ENOSPC);
1153 lcounter = (long long)mp->m_resblks_avail + delta;
1154 if (lcounter >= 0) {
1155 mp->m_resblks_avail = lcounter;
1156 return 0;
1158 printk_once(KERN_WARNING
1159 "Filesystem \"%s\": reserve blocks depleted! "
1160 "Consider increasing reserve pool size.",
1161 mp->m_fsname);
1162 return XFS_ERROR(ENOSPC);
1165 mp->m_sb.sb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1166 return 0;
1167 case XFS_SBS_FREXTENTS:
1168 lcounter = (long long)mp->m_sb.sb_frextents;
1169 lcounter += delta;
1170 if (lcounter < 0) {
1171 return XFS_ERROR(ENOSPC);
1173 mp->m_sb.sb_frextents = lcounter;
1174 return 0;
1175 case XFS_SBS_DBLOCKS:
1176 lcounter = (long long)mp->m_sb.sb_dblocks;
1177 lcounter += delta;
1178 if (lcounter < 0) {
1179 ASSERT(0);
1180 return XFS_ERROR(EINVAL);
1182 mp->m_sb.sb_dblocks = lcounter;
1183 return 0;
1184 case XFS_SBS_AGCOUNT:
1185 scounter = mp->m_sb.sb_agcount;
1186 scounter += delta;
1187 if (scounter < 0) {
1188 ASSERT(0);
1189 return XFS_ERROR(EINVAL);
1191 mp->m_sb.sb_agcount = scounter;
1192 return 0;
1193 case XFS_SBS_IMAX_PCT:
1194 scounter = mp->m_sb.sb_imax_pct;
1195 scounter += delta;
1196 if (scounter < 0) {
1197 ASSERT(0);
1198 return XFS_ERROR(EINVAL);
1200 mp->m_sb.sb_imax_pct = scounter;
1201 return 0;
1202 case XFS_SBS_REXTSIZE:
1203 scounter = mp->m_sb.sb_rextsize;
1204 scounter += delta;
1205 if (scounter < 0) {
1206 ASSERT(0);
1207 return XFS_ERROR(EINVAL);
1209 mp->m_sb.sb_rextsize = scounter;
1210 return 0;
1211 case XFS_SBS_RBMBLOCKS:
1212 scounter = mp->m_sb.sb_rbmblocks;
1213 scounter += delta;
1214 if (scounter < 0) {
1215 ASSERT(0);
1216 return XFS_ERROR(EINVAL);
1218 mp->m_sb.sb_rbmblocks = scounter;
1219 return 0;
1220 case XFS_SBS_RBLOCKS:
1221 lcounter = (long long)mp->m_sb.sb_rblocks;
1222 lcounter += delta;
1223 if (lcounter < 0) {
1224 ASSERT(0);
1225 return XFS_ERROR(EINVAL);
1227 mp->m_sb.sb_rblocks = lcounter;
1228 return 0;
1229 case XFS_SBS_REXTENTS:
1230 lcounter = (long long)mp->m_sb.sb_rextents;
1231 lcounter += delta;
1232 if (lcounter < 0) {
1233 ASSERT(0);
1234 return XFS_ERROR(EINVAL);
1236 mp->m_sb.sb_rextents = lcounter;
1237 return 0;
1238 case XFS_SBS_REXTSLOG:
1239 scounter = mp->m_sb.sb_rextslog;
1240 scounter += delta;
1241 if (scounter < 0) {
1242 ASSERT(0);
1243 return XFS_ERROR(EINVAL);
1245 mp->m_sb.sb_rextslog = scounter;
1246 return 0;
1247 default:
1248 ASSERT(0);
1249 return XFS_ERROR(EINVAL);
1254 * xfs_mod_incore_sb() is used to change a field in the in-core
1255 * superblock structure by the specified delta. This modification
1256 * is protected by the m_sb_lock. Just use the xfs_mod_incore_sb_unlocked()
1257 * routine to do the work.
1260 xfs_mod_incore_sb(
1261 struct xfs_mount *mp,
1262 xfs_sb_field_t field,
1263 int64_t delta,
1264 int rsvd)
1266 int status;
1268 #ifdef HAVE_PERCPU_SB
1269 ASSERT(field < XFS_SBS_ICOUNT || field > XFS_SBS_FDBLOCKS);
1270 #endif
1271 spin_lock(&mp->m_sb_lock);
1272 status = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1273 spin_unlock(&mp->m_sb_lock);
1275 return status;
1279 * Change more than one field in the in-core superblock structure at a time.
1281 * The fields and changes to those fields are specified in the array of
1282 * xfs_mod_sb structures passed in. Either all of the specified deltas
1283 * will be applied or none of them will. If any modified field dips below 0,
1284 * then all modifications will be backed out and EINVAL will be returned.
1286 * Note that this function may not be used for the superblock values that
1287 * are tracked with the in-memory per-cpu counters - a direct call to
1288 * xfs_icsb_modify_counters is required for these.
1291 xfs_mod_incore_sb_batch(
1292 struct xfs_mount *mp,
1293 xfs_mod_sb_t *msb,
1294 uint nmsb,
1295 int rsvd)
1297 xfs_mod_sb_t *msbp;
1298 int error = 0;
1301 * Loop through the array of mod structures and apply each individually.
1302 * If any fail, then back out all those which have already been applied.
1303 * Do all of this within the scope of the m_sb_lock so that all of the
1304 * changes will be atomic.
1306 spin_lock(&mp->m_sb_lock);
1307 for (msbp = msb; msbp < (msb + nmsb); msbp++) {
1308 ASSERT(msbp->msb_field < XFS_SBS_ICOUNT ||
1309 msbp->msb_field > XFS_SBS_FDBLOCKS);
1311 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1312 msbp->msb_delta, rsvd);
1313 if (error)
1314 goto unwind;
1316 spin_unlock(&mp->m_sb_lock);
1317 return 0;
1319 unwind:
1320 while (--msbp >= msb) {
1321 error = xfs_mod_incore_sb_unlocked(mp, msbp->msb_field,
1322 -msbp->msb_delta, rsvd);
1323 ASSERT(error == 0);
1325 spin_unlock(&mp->m_sb_lock);
1326 return error;
1330 * xfs_getsb() is called to obtain the buffer for the superblock.
1331 * The buffer is returned locked and read in from disk.
1332 * The buffer should be released with a call to xfs_brelse().
1334 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1335 * the superblock buffer if it can be locked without sleeping.
1336 * If it can't then we'll return NULL.
1338 struct xfs_buf *
1339 xfs_getsb(
1340 struct xfs_mount *mp,
1341 int flags)
1343 struct xfs_buf *bp = mp->m_sb_bp;
1345 if (!xfs_buf_trylock(bp)) {
1346 if (flags & XBF_TRYLOCK)
1347 return NULL;
1348 xfs_buf_lock(bp);
1351 xfs_buf_hold(bp);
1352 ASSERT(XFS_BUF_ISDONE(bp));
1353 return bp;
1357 * Used to free the superblock along various error paths.
1359 void
1360 xfs_freesb(
1361 struct xfs_mount *mp)
1363 struct xfs_buf *bp = mp->m_sb_bp;
1365 xfs_buf_lock(bp);
1366 mp->m_sb_bp = NULL;
1367 xfs_buf_relse(bp);
1371 * Used to log changes to the superblock unit and width fields which could
1372 * be altered by the mount options, as well as any potential sb_features2
1373 * fixup. Only the first superblock is updated.
1376 xfs_mount_log_sb(
1377 xfs_mount_t *mp,
1378 __int64_t fields)
1380 xfs_trans_t *tp;
1381 int error;
1383 ASSERT(fields & (XFS_SB_UNIT | XFS_SB_WIDTH | XFS_SB_UUID |
1384 XFS_SB_FEATURES2 | XFS_SB_BAD_FEATURES2 |
1385 XFS_SB_VERSIONNUM));
1387 tp = xfs_trans_alloc(mp, XFS_TRANS_SB_UNIT);
1388 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_sb, 0, 0);
1389 if (error) {
1390 xfs_trans_cancel(tp, 0);
1391 return error;
1393 xfs_mod_sb(tp, fields);
1394 error = xfs_trans_commit(tp, 0);
1395 return error;
1399 * If the underlying (data/log/rt) device is readonly, there are some
1400 * operations that cannot proceed.
1403 xfs_dev_is_read_only(
1404 struct xfs_mount *mp,
1405 char *message)
1407 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1408 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1409 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1410 xfs_notice(mp, "%s required on read-only device.", message);
1411 xfs_notice(mp, "write access unavailable, cannot proceed.");
1412 return EROFS;
1414 return 0;
1417 #ifdef HAVE_PERCPU_SB
1419 * Per-cpu incore superblock counters
1421 * Simple concept, difficult implementation
1423 * Basically, replace the incore superblock counters with a distributed per cpu
1424 * counter for contended fields (e.g. free block count).
1426 * Difficulties arise in that the incore sb is used for ENOSPC checking, and
1427 * hence needs to be accurately read when we are running low on space. Hence
1428 * there is a method to enable and disable the per-cpu counters based on how
1429 * much "stuff" is available in them.
1431 * Basically, a counter is enabled if there is enough free resource to justify
1432 * running a per-cpu fast-path. If the per-cpu counter runs out (i.e. a local
1433 * ENOSPC), then we disable the counters to synchronise all callers and
1434 * re-distribute the available resources.
1436 * If, once we redistributed the available resources, we still get a failure,
1437 * we disable the per-cpu counter and go through the slow path.
1439 * The slow path is the current xfs_mod_incore_sb() function. This means that
1440 * when we disable a per-cpu counter, we need to drain its resources back to
1441 * the global superblock. We do this after disabling the counter to prevent
1442 * more threads from queueing up on the counter.
1444 * Essentially, this means that we still need a lock in the fast path to enable
1445 * synchronisation between the global counters and the per-cpu counters. This
1446 * is not a problem because the lock will be local to a CPU almost all the time
1447 * and have little contention except when we get to ENOSPC conditions.
1449 * Basically, this lock becomes a barrier that enables us to lock out the fast
1450 * path while we do things like enabling and disabling counters and
1451 * synchronising the counters.
1453 * Locking rules:
1455 * 1. m_sb_lock before picking up per-cpu locks
1456 * 2. per-cpu locks always picked up via for_each_online_cpu() order
1457 * 3. accurate counter sync requires m_sb_lock + per cpu locks
1458 * 4. modifying per-cpu counters requires holding per-cpu lock
1459 * 5. modifying global counters requires holding m_sb_lock
1460 * 6. enabling or disabling a counter requires holding the m_sb_lock
1461 * and _none_ of the per-cpu locks.
1463 * Disabled counters are only ever re-enabled by a balance operation
1464 * that results in more free resources per CPU than a given threshold.
1465 * To ensure counters don't remain disabled, they are rebalanced when
1466 * the global resource goes above a higher threshold (i.e. some hysteresis
1467 * is present to prevent thrashing).
1470 #ifdef CONFIG_HOTPLUG_CPU
1472 * hot-plug CPU notifier support.
1474 * We need a notifier per filesystem as we need to be able to identify
1475 * the filesystem to balance the counters out. This is achieved by
1476 * having a notifier block embedded in the xfs_mount_t and doing pointer
1477 * magic to get the mount pointer from the notifier block address.
1479 STATIC int
1480 xfs_icsb_cpu_notify(
1481 struct notifier_block *nfb,
1482 unsigned long action,
1483 void *hcpu)
1485 xfs_icsb_cnts_t *cntp;
1486 xfs_mount_t *mp;
1488 mp = (xfs_mount_t *)container_of(nfb, xfs_mount_t, m_icsb_notifier);
1489 cntp = (xfs_icsb_cnts_t *)
1490 per_cpu_ptr(mp->m_sb_cnts, (unsigned long)hcpu);
1491 switch (action) {
1492 case CPU_UP_PREPARE:
1493 case CPU_UP_PREPARE_FROZEN:
1494 /* Easy Case - initialize the area and locks, and
1495 * then rebalance when online does everything else for us. */
1496 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1497 break;
1498 case CPU_ONLINE:
1499 case CPU_ONLINE_FROZEN:
1500 xfs_icsb_lock(mp);
1501 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1502 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1503 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1504 xfs_icsb_unlock(mp);
1505 break;
1506 case CPU_DEAD:
1507 case CPU_DEAD_FROZEN:
1508 /* Disable all the counters, then fold the dead cpu's
1509 * count into the total on the global superblock and
1510 * re-enable the counters. */
1511 xfs_icsb_lock(mp);
1512 spin_lock(&mp->m_sb_lock);
1513 xfs_icsb_disable_counter(mp, XFS_SBS_ICOUNT);
1514 xfs_icsb_disable_counter(mp, XFS_SBS_IFREE);
1515 xfs_icsb_disable_counter(mp, XFS_SBS_FDBLOCKS);
1517 mp->m_sb.sb_icount += cntp->icsb_icount;
1518 mp->m_sb.sb_ifree += cntp->icsb_ifree;
1519 mp->m_sb.sb_fdblocks += cntp->icsb_fdblocks;
1521 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1523 xfs_icsb_balance_counter_locked(mp, XFS_SBS_ICOUNT, 0);
1524 xfs_icsb_balance_counter_locked(mp, XFS_SBS_IFREE, 0);
1525 xfs_icsb_balance_counter_locked(mp, XFS_SBS_FDBLOCKS, 0);
1526 spin_unlock(&mp->m_sb_lock);
1527 xfs_icsb_unlock(mp);
1528 break;
1531 return NOTIFY_OK;
1533 #endif /* CONFIG_HOTPLUG_CPU */
1536 xfs_icsb_init_counters(
1537 xfs_mount_t *mp)
1539 xfs_icsb_cnts_t *cntp;
1540 int i;
1542 mp->m_sb_cnts = alloc_percpu(xfs_icsb_cnts_t);
1543 if (mp->m_sb_cnts == NULL)
1544 return -ENOMEM;
1546 for_each_online_cpu(i) {
1547 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1548 memset(cntp, 0, sizeof(xfs_icsb_cnts_t));
1551 mutex_init(&mp->m_icsb_mutex);
1554 * start with all counters disabled so that the
1555 * initial balance kicks us off correctly
1557 mp->m_icsb_counters = -1;
1559 #ifdef CONFIG_HOTPLUG_CPU
1560 mp->m_icsb_notifier.notifier_call = xfs_icsb_cpu_notify;
1561 mp->m_icsb_notifier.priority = 0;
1562 register_hotcpu_notifier(&mp->m_icsb_notifier);
1563 #endif /* CONFIG_HOTPLUG_CPU */
1565 return 0;
1568 void
1569 xfs_icsb_reinit_counters(
1570 xfs_mount_t *mp)
1572 xfs_icsb_lock(mp);
1574 * start with all counters disabled so that the
1575 * initial balance kicks us off correctly
1577 mp->m_icsb_counters = -1;
1578 xfs_icsb_balance_counter(mp, XFS_SBS_ICOUNT, 0);
1579 xfs_icsb_balance_counter(mp, XFS_SBS_IFREE, 0);
1580 xfs_icsb_balance_counter(mp, XFS_SBS_FDBLOCKS, 0);
1581 xfs_icsb_unlock(mp);
1584 void
1585 xfs_icsb_destroy_counters(
1586 xfs_mount_t *mp)
1588 if (mp->m_sb_cnts) {
1589 unregister_hotcpu_notifier(&mp->m_icsb_notifier);
1590 free_percpu(mp->m_sb_cnts);
1592 mutex_destroy(&mp->m_icsb_mutex);
1595 STATIC void
1596 xfs_icsb_lock_cntr(
1597 xfs_icsb_cnts_t *icsbp)
1599 while (test_and_set_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags)) {
1600 ndelay(1000);
1604 STATIC void
1605 xfs_icsb_unlock_cntr(
1606 xfs_icsb_cnts_t *icsbp)
1608 clear_bit(XFS_ICSB_FLAG_LOCK, &icsbp->icsb_flags);
1612 STATIC void
1613 xfs_icsb_lock_all_counters(
1614 xfs_mount_t *mp)
1616 xfs_icsb_cnts_t *cntp;
1617 int i;
1619 for_each_online_cpu(i) {
1620 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1621 xfs_icsb_lock_cntr(cntp);
1625 STATIC void
1626 xfs_icsb_unlock_all_counters(
1627 xfs_mount_t *mp)
1629 xfs_icsb_cnts_t *cntp;
1630 int i;
1632 for_each_online_cpu(i) {
1633 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1634 xfs_icsb_unlock_cntr(cntp);
1638 STATIC void
1639 xfs_icsb_count(
1640 xfs_mount_t *mp,
1641 xfs_icsb_cnts_t *cnt,
1642 int flags)
1644 xfs_icsb_cnts_t *cntp;
1645 int i;
1647 memset(cnt, 0, sizeof(xfs_icsb_cnts_t));
1649 if (!(flags & XFS_ICSB_LAZY_COUNT))
1650 xfs_icsb_lock_all_counters(mp);
1652 for_each_online_cpu(i) {
1653 cntp = (xfs_icsb_cnts_t *)per_cpu_ptr(mp->m_sb_cnts, i);
1654 cnt->icsb_icount += cntp->icsb_icount;
1655 cnt->icsb_ifree += cntp->icsb_ifree;
1656 cnt->icsb_fdblocks += cntp->icsb_fdblocks;
1659 if (!(flags & XFS_ICSB_LAZY_COUNT))
1660 xfs_icsb_unlock_all_counters(mp);
1663 STATIC int
1664 xfs_icsb_counter_disabled(
1665 xfs_mount_t *mp,
1666 xfs_sb_field_t field)
1668 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1669 return test_bit(field, &mp->m_icsb_counters);
1672 STATIC void
1673 xfs_icsb_disable_counter(
1674 xfs_mount_t *mp,
1675 xfs_sb_field_t field)
1677 xfs_icsb_cnts_t cnt;
1679 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1682 * If we are already disabled, then there is nothing to do
1683 * here. We check before locking all the counters to avoid
1684 * the expensive lock operation when being called in the
1685 * slow path and the counter is already disabled. This is
1686 * safe because the only time we set or clear this state is under
1687 * the m_icsb_mutex.
1689 if (xfs_icsb_counter_disabled(mp, field))
1690 return;
1692 xfs_icsb_lock_all_counters(mp);
1693 if (!test_and_set_bit(field, &mp->m_icsb_counters)) {
1694 /* drain back to superblock */
1696 xfs_icsb_count(mp, &cnt, XFS_ICSB_LAZY_COUNT);
1697 switch(field) {
1698 case XFS_SBS_ICOUNT:
1699 mp->m_sb.sb_icount = cnt.icsb_icount;
1700 break;
1701 case XFS_SBS_IFREE:
1702 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1703 break;
1704 case XFS_SBS_FDBLOCKS:
1705 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1706 break;
1707 default:
1708 BUG();
1712 xfs_icsb_unlock_all_counters(mp);
1715 STATIC void
1716 xfs_icsb_enable_counter(
1717 xfs_mount_t *mp,
1718 xfs_sb_field_t field,
1719 uint64_t count,
1720 uint64_t resid)
1722 xfs_icsb_cnts_t *cntp;
1723 int i;
1725 ASSERT((field >= XFS_SBS_ICOUNT) && (field <= XFS_SBS_FDBLOCKS));
1727 xfs_icsb_lock_all_counters(mp);
1728 for_each_online_cpu(i) {
1729 cntp = per_cpu_ptr(mp->m_sb_cnts, i);
1730 switch (field) {
1731 case XFS_SBS_ICOUNT:
1732 cntp->icsb_icount = count + resid;
1733 break;
1734 case XFS_SBS_IFREE:
1735 cntp->icsb_ifree = count + resid;
1736 break;
1737 case XFS_SBS_FDBLOCKS:
1738 cntp->icsb_fdblocks = count + resid;
1739 break;
1740 default:
1741 BUG();
1742 break;
1744 resid = 0;
1746 clear_bit(field, &mp->m_icsb_counters);
1747 xfs_icsb_unlock_all_counters(mp);
1750 void
1751 xfs_icsb_sync_counters_locked(
1752 xfs_mount_t *mp,
1753 int flags)
1755 xfs_icsb_cnts_t cnt;
1757 xfs_icsb_count(mp, &cnt, flags);
1759 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_ICOUNT))
1760 mp->m_sb.sb_icount = cnt.icsb_icount;
1761 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_IFREE))
1762 mp->m_sb.sb_ifree = cnt.icsb_ifree;
1763 if (!xfs_icsb_counter_disabled(mp, XFS_SBS_FDBLOCKS))
1764 mp->m_sb.sb_fdblocks = cnt.icsb_fdblocks;
1768 * Accurate update of per-cpu counters to incore superblock
1770 void
1771 xfs_icsb_sync_counters(
1772 xfs_mount_t *mp,
1773 int flags)
1775 spin_lock(&mp->m_sb_lock);
1776 xfs_icsb_sync_counters_locked(mp, flags);
1777 spin_unlock(&mp->m_sb_lock);
1781 * Balance and enable/disable counters as necessary.
1783 * Thresholds for re-enabling counters are somewhat magic. inode counts are
1784 * chosen to be the same number as single on disk allocation chunk per CPU, and
1785 * free blocks is something far enough zero that we aren't going thrash when we
1786 * get near ENOSPC. We also need to supply a minimum we require per cpu to
1787 * prevent looping endlessly when xfs_alloc_space asks for more than will
1788 * be distributed to a single CPU but each CPU has enough blocks to be
1789 * reenabled.
1791 * Note that we can be called when counters are already disabled.
1792 * xfs_icsb_disable_counter() optimises the counter locking in this case to
1793 * prevent locking every per-cpu counter needlessly.
1796 #define XFS_ICSB_INO_CNTR_REENABLE (uint64_t)64
1797 #define XFS_ICSB_FDBLK_CNTR_REENABLE(mp) \
1798 (uint64_t)(512 + XFS_ALLOC_SET_ASIDE(mp))
1799 STATIC void
1800 xfs_icsb_balance_counter_locked(
1801 xfs_mount_t *mp,
1802 xfs_sb_field_t field,
1803 int min_per_cpu)
1805 uint64_t count, resid;
1806 int weight = num_online_cpus();
1807 uint64_t min = (uint64_t)min_per_cpu;
1809 /* disable counter and sync counter */
1810 xfs_icsb_disable_counter(mp, field);
1812 /* update counters - first CPU gets residual*/
1813 switch (field) {
1814 case XFS_SBS_ICOUNT:
1815 count = mp->m_sb.sb_icount;
1816 resid = do_div(count, weight);
1817 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1818 return;
1819 break;
1820 case XFS_SBS_IFREE:
1821 count = mp->m_sb.sb_ifree;
1822 resid = do_div(count, weight);
1823 if (count < max(min, XFS_ICSB_INO_CNTR_REENABLE))
1824 return;
1825 break;
1826 case XFS_SBS_FDBLOCKS:
1827 count = mp->m_sb.sb_fdblocks;
1828 resid = do_div(count, weight);
1829 if (count < max(min, XFS_ICSB_FDBLK_CNTR_REENABLE(mp)))
1830 return;
1831 break;
1832 default:
1833 BUG();
1834 count = resid = 0; /* quiet, gcc */
1835 break;
1838 xfs_icsb_enable_counter(mp, field, count, resid);
1841 STATIC void
1842 xfs_icsb_balance_counter(
1843 xfs_mount_t *mp,
1844 xfs_sb_field_t fields,
1845 int min_per_cpu)
1847 spin_lock(&mp->m_sb_lock);
1848 xfs_icsb_balance_counter_locked(mp, fields, min_per_cpu);
1849 spin_unlock(&mp->m_sb_lock);
1853 xfs_icsb_modify_counters(
1854 xfs_mount_t *mp,
1855 xfs_sb_field_t field,
1856 int64_t delta,
1857 int rsvd)
1859 xfs_icsb_cnts_t *icsbp;
1860 long long lcounter; /* long counter for 64 bit fields */
1861 int ret = 0;
1863 might_sleep();
1864 again:
1865 preempt_disable();
1866 icsbp = this_cpu_ptr(mp->m_sb_cnts);
1869 * if the counter is disabled, go to slow path
1871 if (unlikely(xfs_icsb_counter_disabled(mp, field)))
1872 goto slow_path;
1873 xfs_icsb_lock_cntr(icsbp);
1874 if (unlikely(xfs_icsb_counter_disabled(mp, field))) {
1875 xfs_icsb_unlock_cntr(icsbp);
1876 goto slow_path;
1879 switch (field) {
1880 case XFS_SBS_ICOUNT:
1881 lcounter = icsbp->icsb_icount;
1882 lcounter += delta;
1883 if (unlikely(lcounter < 0))
1884 goto balance_counter;
1885 icsbp->icsb_icount = lcounter;
1886 break;
1888 case XFS_SBS_IFREE:
1889 lcounter = icsbp->icsb_ifree;
1890 lcounter += delta;
1891 if (unlikely(lcounter < 0))
1892 goto balance_counter;
1893 icsbp->icsb_ifree = lcounter;
1894 break;
1896 case XFS_SBS_FDBLOCKS:
1897 BUG_ON((mp->m_resblks - mp->m_resblks_avail) != 0);
1899 lcounter = icsbp->icsb_fdblocks - XFS_ALLOC_SET_ASIDE(mp);
1900 lcounter += delta;
1901 if (unlikely(lcounter < 0))
1902 goto balance_counter;
1903 icsbp->icsb_fdblocks = lcounter + XFS_ALLOC_SET_ASIDE(mp);
1904 break;
1905 default:
1906 BUG();
1907 break;
1909 xfs_icsb_unlock_cntr(icsbp);
1910 preempt_enable();
1911 return 0;
1913 slow_path:
1914 preempt_enable();
1917 * serialise with a mutex so we don't burn lots of cpu on
1918 * the superblock lock. We still need to hold the superblock
1919 * lock, however, when we modify the global structures.
1921 xfs_icsb_lock(mp);
1924 * Now running atomically.
1926 * If the counter is enabled, someone has beaten us to rebalancing.
1927 * Drop the lock and try again in the fast path....
1929 if (!(xfs_icsb_counter_disabled(mp, field))) {
1930 xfs_icsb_unlock(mp);
1931 goto again;
1935 * The counter is currently disabled. Because we are
1936 * running atomically here, we know a rebalance cannot
1937 * be in progress. Hence we can go straight to operating
1938 * on the global superblock. We do not call xfs_mod_incore_sb()
1939 * here even though we need to get the m_sb_lock. Doing so
1940 * will cause us to re-enter this function and deadlock.
1941 * Hence we get the m_sb_lock ourselves and then call
1942 * xfs_mod_incore_sb_unlocked() as the unlocked path operates
1943 * directly on the global counters.
1945 spin_lock(&mp->m_sb_lock);
1946 ret = xfs_mod_incore_sb_unlocked(mp, field, delta, rsvd);
1947 spin_unlock(&mp->m_sb_lock);
1950 * Now that we've modified the global superblock, we
1951 * may be able to re-enable the distributed counters
1952 * (e.g. lots of space just got freed). After that
1953 * we are done.
1955 if (ret != ENOSPC)
1956 xfs_icsb_balance_counter(mp, field, 0);
1957 xfs_icsb_unlock(mp);
1958 return ret;
1960 balance_counter:
1961 xfs_icsb_unlock_cntr(icsbp);
1962 preempt_enable();
1965 * We may have multiple threads here if multiple per-cpu
1966 * counters run dry at the same time. This will mean we can
1967 * do more balances than strictly necessary but it is not
1968 * the common slowpath case.
1970 xfs_icsb_lock(mp);
1973 * running atomically.
1975 * This will leave the counter in the correct state for future
1976 * accesses. After the rebalance, we simply try again and our retry
1977 * will either succeed through the fast path or slow path without
1978 * another balance operation being required.
1980 xfs_icsb_balance_counter(mp, field, delta);
1981 xfs_icsb_unlock(mp);
1982 goto again;
1985 #endif