4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
8 * Copyright (C) 2011 Renesas Solutions Corp.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
25 #include <linux/module.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/platform_device.h>
32 #include <linux/clk.h>
33 #include <linux/dmaengine.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/of_device.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/sh_dma.h>
38 #include <linux/spi/spi.h>
39 #include <linux/spi/rspi.h>
41 #define RSPI_SPCR 0x00 /* Control Register */
42 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
43 #define RSPI_SPPCR 0x02 /* Pin Control Register */
44 #define RSPI_SPSR 0x03 /* Status Register */
45 #define RSPI_SPDR 0x04 /* Data Register */
46 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
47 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
48 #define RSPI_SPBR 0x0a /* Bit Rate Register */
49 #define RSPI_SPDCR 0x0b /* Data Control Register */
50 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
51 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
52 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
53 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
54 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
55 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
56 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
57 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
58 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
59 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
60 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
61 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
62 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
63 #define RSPI_NUM_SPCMD 8
64 #define RSPI_RZ_NUM_SPCMD 4
65 #define QSPI_NUM_SPCMD 4
68 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
69 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
72 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
73 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
74 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
75 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
76 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
77 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
78 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
80 /* SPCR - Control Register */
81 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
82 #define SPCR_SPE 0x40 /* Function Enable */
83 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
84 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
85 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
86 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
88 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
89 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
90 /* QSPI on R-Car M2 only */
91 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
92 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
94 /* SSLP - Slave Select Polarity Register */
95 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
96 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
98 /* SPPCR - Pin Control Register */
99 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
100 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
101 #define SPPCR_SPOM 0x04
102 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
103 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
105 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
106 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
108 /* SPSR - Status Register */
109 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
110 #define SPSR_TEND 0x40 /* Transmit End */
111 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
112 #define SPSR_PERF 0x08 /* Parity Error Flag */
113 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
114 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
115 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
117 /* SPSCR - Sequence Control Register */
118 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
120 /* SPSSR - Sequence Status Register */
121 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
122 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
124 /* SPDCR - Data Control Register */
125 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
126 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
127 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
128 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
129 #define SPDCR_SPLWORD SPDCR_SPLW1
130 #define SPDCR_SPLBYTE SPDCR_SPLW0
131 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
132 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
133 #define SPDCR_SLSEL1 0x08
134 #define SPDCR_SLSEL0 0x04
135 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
136 #define SPDCR_SPFC1 0x02
137 #define SPDCR_SPFC0 0x01
138 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
140 /* SPCKD - Clock Delay Register */
141 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
143 /* SSLND - Slave Select Negation Delay Register */
144 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
146 /* SPND - Next-Access Delay Register */
147 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
149 /* SPCR2 - Control Register 2 */
150 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
151 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
152 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
153 #define SPCR2_SPPE 0x01 /* Parity Enable */
155 /* SPCMDn - Command Registers */
156 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
157 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
158 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
159 #define SPCMD_LSBF 0x1000 /* LSB First */
160 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
161 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
162 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
163 #define SPCMD_SPB_16BIT 0x0100
164 #define SPCMD_SPB_20BIT 0x0000
165 #define SPCMD_SPB_24BIT 0x0100
166 #define SPCMD_SPB_32BIT 0x0200
167 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
168 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
169 #define SPCMD_SPIMOD1 0x0040
170 #define SPCMD_SPIMOD0 0x0020
171 #define SPCMD_SPIMOD_SINGLE 0
172 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
173 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
174 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
175 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
176 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
177 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
178 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
180 /* SPBFCR - Buffer Control Register */
181 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
182 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
183 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
184 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
186 #define DUMMY_DATA 0x00
191 struct spi_master
*master
;
192 wait_queue_head_t wait
;
198 const struct spi_ops
*ops
;
201 struct dma_chan
*chan_tx
;
202 struct dma_chan
*chan_rx
;
204 unsigned dma_width_16bit
:1;
205 unsigned dma_callbacked
:1;
206 unsigned byte_access
:1;
209 static void rspi_write8(const struct rspi_data
*rspi
, u8 data
, u16 offset
)
211 iowrite8(data
, rspi
->addr
+ offset
);
214 static void rspi_write16(const struct rspi_data
*rspi
, u16 data
, u16 offset
)
216 iowrite16(data
, rspi
->addr
+ offset
);
219 static void rspi_write32(const struct rspi_data
*rspi
, u32 data
, u16 offset
)
221 iowrite32(data
, rspi
->addr
+ offset
);
224 static u8
rspi_read8(const struct rspi_data
*rspi
, u16 offset
)
226 return ioread8(rspi
->addr
+ offset
);
229 static u16
rspi_read16(const struct rspi_data
*rspi
, u16 offset
)
231 return ioread16(rspi
->addr
+ offset
);
234 static void rspi_write_data(const struct rspi_data
*rspi
, u16 data
)
236 if (rspi
->byte_access
)
237 rspi_write8(rspi
, data
, RSPI_SPDR
);
239 rspi_write16(rspi
, data
, RSPI_SPDR
);
242 static u16
rspi_read_data(const struct rspi_data
*rspi
)
244 if (rspi
->byte_access
)
245 return rspi_read8(rspi
, RSPI_SPDR
);
247 return rspi_read16(rspi
, RSPI_SPDR
);
250 /* optional functions */
252 int (*set_config_register
)(struct rspi_data
*rspi
, int access_size
);
253 int (*transfer_one
)(struct spi_master
*master
, struct spi_device
*spi
,
254 struct spi_transfer
*xfer
);
259 * functions for RSPI on legacy SH
261 static int rspi_set_config_register(struct rspi_data
*rspi
, int access_size
)
265 /* Sets output mode, MOSI signal, and (optionally) loopback */
266 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
268 /* Sets transfer bit rate */
269 spbr
= clk_get_rate(rspi
->clk
) / (2 * rspi
->max_speed_hz
) - 1;
270 rspi_write8(rspi
, clamp(spbr
, 0, 255), RSPI_SPBR
);
272 /* Disable dummy transmission, set 16-bit word access, 1 frame */
273 rspi_write8(rspi
, 0, RSPI_SPDCR
);
274 rspi
->byte_access
= 0;
276 /* Sets RSPCK, SSL, next-access delay value */
277 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
278 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
279 rspi_write8(rspi
, 0x00, RSPI_SPND
);
281 /* Sets parity, interrupt mask */
282 rspi_write8(rspi
, 0x00, RSPI_SPCR2
);
285 rspi
->spcmd
|= SPCMD_SPB_8_TO_16(access_size
);
286 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
289 rspi_write8(rspi
, SPCR_MSTR
, RSPI_SPCR
);
295 * functions for RSPI on RZ
297 static int rspi_rz_set_config_register(struct rspi_data
*rspi
, int access_size
)
301 /* Sets output mode, MOSI signal, and (optionally) loopback */
302 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
304 /* Sets transfer bit rate */
305 spbr
= clk_get_rate(rspi
->clk
) / (2 * rspi
->max_speed_hz
) - 1;
306 rspi_write8(rspi
, clamp(spbr
, 0, 255), RSPI_SPBR
);
308 /* Disable dummy transmission, set byte access */
309 rspi_write8(rspi
, SPDCR_SPLBYTE
, RSPI_SPDCR
);
310 rspi
->byte_access
= 1;
312 /* Sets RSPCK, SSL, next-access delay value */
313 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
314 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
315 rspi_write8(rspi
, 0x00, RSPI_SPND
);
318 rspi
->spcmd
|= SPCMD_SPB_8_TO_16(access_size
);
319 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
322 rspi_write8(rspi
, SPCR_MSTR
, RSPI_SPCR
);
330 static int qspi_set_config_register(struct rspi_data
*rspi
, int access_size
)
334 /* Sets output mode, MOSI signal, and (optionally) loopback */
335 rspi_write8(rspi
, rspi
->sppcr
, RSPI_SPPCR
);
337 /* Sets transfer bit rate */
338 spbr
= clk_get_rate(rspi
->clk
) / (2 * rspi
->max_speed_hz
);
339 rspi_write8(rspi
, clamp(spbr
, 0, 255), RSPI_SPBR
);
341 /* Disable dummy transmission, set byte access */
342 rspi_write8(rspi
, 0, RSPI_SPDCR
);
343 rspi
->byte_access
= 1;
345 /* Sets RSPCK, SSL, next-access delay value */
346 rspi_write8(rspi
, 0x00, RSPI_SPCKD
);
347 rspi_write8(rspi
, 0x00, RSPI_SSLND
);
348 rspi_write8(rspi
, 0x00, RSPI_SPND
);
350 /* Data Length Setting */
351 if (access_size
== 8)
352 rspi
->spcmd
|= SPCMD_SPB_8BIT
;
353 else if (access_size
== 16)
354 rspi
->spcmd
|= SPCMD_SPB_16BIT
;
356 rspi
->spcmd
|= SPCMD_SPB_32BIT
;
358 rspi
->spcmd
|= SPCMD_SCKDEN
| SPCMD_SLNDEN
| SPCMD_SPNDEN
;
360 /* Resets transfer data length */
361 rspi_write32(rspi
, 0, QSPI_SPBMUL0
);
363 /* Resets transmit and receive buffer */
364 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, QSPI_SPBFCR
);
365 /* Sets buffer to allow normal operation */
366 rspi_write8(rspi
, 0x00, QSPI_SPBFCR
);
369 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
371 /* Enables SPI function in master mode */
372 rspi_write8(rspi
, SPCR_SPE
| SPCR_MSTR
, RSPI_SPCR
);
377 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
379 static void rspi_enable_irq(const struct rspi_data
*rspi
, u8 enable
)
381 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) | enable
, RSPI_SPCR
);
384 static void rspi_disable_irq(const struct rspi_data
*rspi
, u8 disable
)
386 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) & ~disable
, RSPI_SPCR
);
389 static int rspi_wait_for_interrupt(struct rspi_data
*rspi
, u8 wait_mask
,
394 rspi
->spsr
= rspi_read8(rspi
, RSPI_SPSR
);
395 if (rspi
->spsr
& wait_mask
)
398 rspi_enable_irq(rspi
, enable_bit
);
399 ret
= wait_event_timeout(rspi
->wait
, rspi
->spsr
& wait_mask
, HZ
);
400 if (ret
== 0 && !(rspi
->spsr
& wait_mask
))
406 static int rspi_data_out(struct rspi_data
*rspi
, u8 data
)
408 if (rspi_wait_for_interrupt(rspi
, SPSR_SPTEF
, SPCR_SPTIE
) < 0) {
409 dev_err(&rspi
->master
->dev
, "transmit timeout\n");
412 rspi_write_data(rspi
, data
);
416 static int rspi_data_in(struct rspi_data
*rspi
)
420 if (rspi_wait_for_interrupt(rspi
, SPSR_SPRF
, SPCR_SPRIE
) < 0) {
421 dev_err(&rspi
->master
->dev
, "receive timeout\n");
424 data
= rspi_read_data(rspi
);
428 static int rspi_data_out_in(struct rspi_data
*rspi
, u8 data
)
432 ret
= rspi_data_out(rspi
, data
);
436 return rspi_data_in(rspi
);
439 static void rspi_dma_complete(void *arg
)
441 struct rspi_data
*rspi
= arg
;
443 rspi
->dma_callbacked
= 1;
444 wake_up_interruptible(&rspi
->wait
);
447 static int rspi_dma_map_sg(struct scatterlist
*sg
, const void *buf
,
448 unsigned len
, struct dma_chan
*chan
,
449 enum dma_transfer_direction dir
)
451 sg_init_table(sg
, 1);
452 sg_set_buf(sg
, buf
, len
);
453 sg_dma_len(sg
) = len
;
454 return dma_map_sg(chan
->device
->dev
, sg
, 1, dir
);
457 static void rspi_dma_unmap_sg(struct scatterlist
*sg
, struct dma_chan
*chan
,
458 enum dma_transfer_direction dir
)
460 dma_unmap_sg(chan
->device
->dev
, sg
, 1, dir
);
463 static void rspi_memory_to_8bit(void *buf
, const void *data
, unsigned len
)
466 const u8
*src
= data
;
469 *dst
++ = (u16
)(*src
++);
474 static void rspi_memory_from_8bit(void *buf
, const void *data
, unsigned len
)
477 const u16
*src
= data
;
485 static int rspi_send_dma(struct rspi_data
*rspi
, struct spi_transfer
*t
)
487 struct scatterlist sg
;
488 const void *buf
= NULL
;
489 struct dma_async_tx_descriptor
*desc
;
493 if (rspi
->dma_width_16bit
) {
496 * If DMAC bus width is 16-bit, the driver allocates a dummy
497 * buffer. And, the driver converts original data into the
498 * DMAC data as the following format:
499 * original data: 1st byte, 2nd byte ...
500 * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
503 tmp
= kmalloc(len
, GFP_KERNEL
);
506 rspi_memory_to_8bit(tmp
, t
->tx_buf
, t
->len
);
513 if (!rspi_dma_map_sg(&sg
, buf
, len
, rspi
->chan_tx
, DMA_TO_DEVICE
)) {
517 desc
= dmaengine_prep_slave_sg(rspi
->chan_tx
, &sg
, 1, DMA_TO_DEVICE
,
518 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
525 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
526 * called. So, this driver disables the IRQ while DMA transfer.
528 disable_irq(rspi
->tx_irq
);
530 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) | SPCR_TXMD
, RSPI_SPCR
);
531 rspi_enable_irq(rspi
, SPCR_SPTIE
);
532 rspi
->dma_callbacked
= 0;
534 desc
->callback
= rspi_dma_complete
;
535 desc
->callback_param
= rspi
;
536 dmaengine_submit(desc
);
537 dma_async_issue_pending(rspi
->chan_tx
);
539 ret
= wait_event_interruptible_timeout(rspi
->wait
,
540 rspi
->dma_callbacked
, HZ
);
541 if (ret
> 0 && rspi
->dma_callbacked
)
545 rspi_disable_irq(rspi
, SPCR_SPTIE
);
547 enable_irq(rspi
->tx_irq
);
550 rspi_dma_unmap_sg(&sg
, rspi
->chan_tx
, DMA_TO_DEVICE
);
552 if (rspi
->dma_width_16bit
)
558 static void rspi_receive_init(const struct rspi_data
*rspi
)
562 spsr
= rspi_read8(rspi
, RSPI_SPSR
);
563 if (spsr
& SPSR_SPRF
)
564 rspi_read_data(rspi
); /* dummy read */
565 if (spsr
& SPSR_OVRF
)
566 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPSR
) & ~SPSR_OVRF
,
570 static void rspi_rz_receive_init(const struct rspi_data
*rspi
)
572 rspi_receive_init(rspi
);
573 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, RSPI_SPBFCR
);
574 rspi_write8(rspi
, 0, RSPI_SPBFCR
);
577 static void qspi_receive_init(const struct rspi_data
*rspi
)
581 spsr
= rspi_read8(rspi
, RSPI_SPSR
);
582 if (spsr
& SPSR_SPRF
)
583 rspi_read_data(rspi
); /* dummy read */
584 rspi_write8(rspi
, SPBFCR_TXRST
| SPBFCR_RXRST
, QSPI_SPBFCR
);
585 rspi_write8(rspi
, 0, QSPI_SPBFCR
);
588 static int rspi_receive_dma(struct rspi_data
*rspi
, struct spi_transfer
*t
)
590 struct scatterlist sg
, sg_dummy
;
591 void *dummy
= NULL
, *rx_buf
= NULL
;
592 struct dma_async_tx_descriptor
*desc
, *desc_dummy
;
596 if (rspi
->dma_width_16bit
) {
598 * If DMAC bus width is 16-bit, the driver allocates a dummy
599 * buffer. And, finally the driver converts the DMAC data into
600 * actual data as the following format:
601 * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
602 * actual data: 1st byte, 2nd byte ...
605 rx_buf
= kmalloc(len
, GFP_KERNEL
);
613 /* prepare dummy transfer to generate SPI clocks */
614 dummy
= kzalloc(len
, GFP_KERNEL
);
619 if (!rspi_dma_map_sg(&sg_dummy
, dummy
, len
, rspi
->chan_tx
,
624 desc_dummy
= dmaengine_prep_slave_sg(rspi
->chan_tx
, &sg_dummy
, 1,
625 DMA_TO_DEVICE
, DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
628 goto end_dummy_mapped
;
631 /* prepare receive transfer */
632 if (!rspi_dma_map_sg(&sg
, rx_buf
, len
, rspi
->chan_rx
,
635 goto end_dummy_mapped
;
638 desc
= dmaengine_prep_slave_sg(rspi
->chan_rx
, &sg
, 1, DMA_FROM_DEVICE
,
639 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
645 rspi_receive_init(rspi
);
648 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
649 * called. So, this driver disables the IRQ while DMA transfer.
651 disable_irq(rspi
->tx_irq
);
652 if (rspi
->rx_irq
!= rspi
->tx_irq
)
653 disable_irq(rspi
->rx_irq
);
655 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) & ~SPCR_TXMD
, RSPI_SPCR
);
656 rspi_enable_irq(rspi
, SPCR_SPTIE
| SPCR_SPRIE
);
657 rspi
->dma_callbacked
= 0;
659 desc
->callback
= rspi_dma_complete
;
660 desc
->callback_param
= rspi
;
661 dmaengine_submit(desc
);
662 dma_async_issue_pending(rspi
->chan_rx
);
664 desc_dummy
->callback
= NULL
; /* No callback */
665 dmaengine_submit(desc_dummy
);
666 dma_async_issue_pending(rspi
->chan_tx
);
668 ret
= wait_event_interruptible_timeout(rspi
->wait
,
669 rspi
->dma_callbacked
, HZ
);
670 if (ret
> 0 && rspi
->dma_callbacked
)
674 rspi_disable_irq(rspi
, SPCR_SPTIE
| SPCR_SPRIE
);
676 enable_irq(rspi
->tx_irq
);
677 if (rspi
->rx_irq
!= rspi
->tx_irq
)
678 enable_irq(rspi
->rx_irq
);
681 rspi_dma_unmap_sg(&sg
, rspi
->chan_rx
, DMA_FROM_DEVICE
);
683 rspi_dma_unmap_sg(&sg_dummy
, rspi
->chan_tx
, DMA_TO_DEVICE
);
685 if (rspi
->dma_width_16bit
) {
687 rspi_memory_from_8bit(t
->rx_buf
, rx_buf
, t
->len
);
695 static int rspi_is_dma(const struct rspi_data
*rspi
, struct spi_transfer
*t
)
697 if (t
->tx_buf
&& rspi
->chan_tx
)
699 /* If the module receives data by DMAC, it also needs TX DMAC */
700 if (t
->rx_buf
&& rspi
->chan_tx
&& rspi
->chan_rx
)
706 static int rspi_transfer_out_in(struct rspi_data
*rspi
,
707 struct spi_transfer
*xfer
)
709 int remain
= xfer
->len
, ret
;
710 const u8
*tx_buf
= xfer
->tx_buf
;
711 u8
*rx_buf
= xfer
->rx_buf
;
714 rspi_receive_init(rspi
);
716 spcr
= rspi_read8(rspi
, RSPI_SPCR
);
721 rspi_write8(rspi
, spcr
, RSPI_SPCR
);
724 data
= tx_buf
? *tx_buf
++ : DUMMY_DATA
;
725 ret
= rspi_data_out(rspi
, data
);
729 ret
= rspi_data_in(rspi
);
737 /* Wait for the last transmission */
738 rspi_wait_for_interrupt(rspi
, SPSR_SPTEF
, SPCR_SPTIE
);
743 static int rspi_transfer_one(struct spi_master
*master
, struct spi_device
*spi
,
744 struct spi_transfer
*xfer
)
746 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
749 if (!rspi_is_dma(rspi
, xfer
))
750 return rspi_transfer_out_in(rspi
, xfer
);
753 ret
= rspi_send_dma(rspi
, xfer
);
758 return rspi_receive_dma(rspi
, xfer
);
763 static int rspi_rz_transfer_out_in(struct rspi_data
*rspi
,
764 struct spi_transfer
*xfer
)
766 int remain
= xfer
->len
, ret
;
767 const u8
*tx_buf
= xfer
->tx_buf
;
768 u8
*rx_buf
= xfer
->rx_buf
;
771 rspi_rz_receive_init(rspi
);
774 data
= tx_buf
? *tx_buf
++ : DUMMY_DATA
;
775 ret
= rspi_data_out_in(rspi
, data
);
783 /* Wait for the last transmission */
784 rspi_wait_for_interrupt(rspi
, SPSR_SPTEF
, SPCR_SPTIE
);
789 static int rspi_rz_transfer_one(struct spi_master
*master
,
790 struct spi_device
*spi
,
791 struct spi_transfer
*xfer
)
793 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
795 return rspi_rz_transfer_out_in(rspi
, xfer
);
798 static int qspi_transfer_out_in(struct rspi_data
*rspi
,
799 struct spi_transfer
*xfer
)
801 int remain
= xfer
->len
, ret
;
802 const u8
*tx_buf
= xfer
->tx_buf
;
803 u8
*rx_buf
= xfer
->rx_buf
;
806 qspi_receive_init(rspi
);
809 data
= tx_buf
? *tx_buf
++ : DUMMY_DATA
;
810 ret
= rspi_data_out_in(rspi
, data
);
818 /* Wait for the last transmission */
819 rspi_wait_for_interrupt(rspi
, SPSR_SPTEF
, SPCR_SPTIE
);
824 static int qspi_transfer_out(struct rspi_data
*rspi
, struct spi_transfer
*xfer
)
826 const u8
*buf
= xfer
->tx_buf
;
830 for (i
= 0; i
< xfer
->len
; i
++) {
831 ret
= rspi_data_out(rspi
, *buf
++);
836 /* Wait for the last transmission */
837 rspi_wait_for_interrupt(rspi
, SPSR_SPTEF
, SPCR_SPTIE
);
842 static int qspi_transfer_in(struct rspi_data
*rspi
, struct spi_transfer
*xfer
)
844 u8
*buf
= xfer
->rx_buf
;
848 for (i
= 0; i
< xfer
->len
; i
++) {
849 ret
= rspi_data_in(rspi
);
858 static int qspi_transfer_one(struct spi_master
*master
, struct spi_device
*spi
,
859 struct spi_transfer
*xfer
)
861 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
863 if (spi
->mode
& SPI_LOOP
) {
864 return qspi_transfer_out_in(rspi
, xfer
);
865 } else if (xfer
->tx_buf
&& xfer
->tx_nbits
> SPI_NBITS_SINGLE
) {
866 /* Quad or Dual SPI Write */
867 return qspi_transfer_out(rspi
, xfer
);
868 } else if (xfer
->rx_buf
&& xfer
->rx_nbits
> SPI_NBITS_SINGLE
) {
869 /* Quad or Dual SPI Read */
870 return qspi_transfer_in(rspi
, xfer
);
872 /* Single SPI Transfer */
873 return qspi_transfer_out_in(rspi
, xfer
);
877 static int rspi_setup(struct spi_device
*spi
)
879 struct rspi_data
*rspi
= spi_master_get_devdata(spi
->master
);
881 rspi
->max_speed_hz
= spi
->max_speed_hz
;
883 rspi
->spcmd
= SPCMD_SSLKP
;
884 if (spi
->mode
& SPI_CPOL
)
885 rspi
->spcmd
|= SPCMD_CPOL
;
886 if (spi
->mode
& SPI_CPHA
)
887 rspi
->spcmd
|= SPCMD_CPHA
;
889 /* CMOS output mode and MOSI signal from previous transfer */
891 if (spi
->mode
& SPI_LOOP
)
892 rspi
->sppcr
|= SPPCR_SPLP
;
894 set_config_register(rspi
, 8);
899 static u16
qspi_transfer_mode(const struct spi_transfer
*xfer
)
902 switch (xfer
->tx_nbits
) {
904 return SPCMD_SPIMOD_QUAD
;
906 return SPCMD_SPIMOD_DUAL
;
911 switch (xfer
->rx_nbits
) {
913 return SPCMD_SPIMOD_QUAD
| SPCMD_SPRW
;
915 return SPCMD_SPIMOD_DUAL
| SPCMD_SPRW
;
923 static int qspi_setup_sequencer(struct rspi_data
*rspi
,
924 const struct spi_message
*msg
)
926 const struct spi_transfer
*xfer
;
927 unsigned int i
= 0, len
= 0;
928 u16 current_mode
= 0xffff, mode
;
930 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
931 mode
= qspi_transfer_mode(xfer
);
932 if (mode
== current_mode
) {
937 /* Transfer mode change */
939 /* Set transfer data length of previous transfer */
940 rspi_write32(rspi
, len
, QSPI_SPBMUL(i
- 1));
943 if (i
>= QSPI_NUM_SPCMD
) {
944 dev_err(&msg
->spi
->dev
,
945 "Too many different transfer modes");
949 /* Program transfer mode for this transfer */
950 rspi_write16(rspi
, rspi
->spcmd
| mode
, RSPI_SPCMD(i
));
956 /* Set final transfer data length and sequence length */
957 rspi_write32(rspi
, len
, QSPI_SPBMUL(i
- 1));
958 rspi_write8(rspi
, i
- 1, RSPI_SPSCR
);
964 static int rspi_prepare_message(struct spi_master
*master
,
965 struct spi_message
*msg
)
967 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
971 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)) {
972 /* Setup sequencer for messages with multiple transfer modes */
973 ret
= qspi_setup_sequencer(rspi
, msg
);
978 /* Enable SPI function in master mode */
979 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) | SPCR_SPE
, RSPI_SPCR
);
983 static int rspi_unprepare_message(struct spi_master
*master
,
984 struct spi_message
*msg
)
986 struct rspi_data
*rspi
= spi_master_get_devdata(master
);
988 /* Disable SPI function */
989 rspi_write8(rspi
, rspi_read8(rspi
, RSPI_SPCR
) & ~SPCR_SPE
, RSPI_SPCR
);
991 /* Reset sequencer for Single SPI Transfers */
992 rspi_write16(rspi
, rspi
->spcmd
, RSPI_SPCMD0
);
993 rspi_write8(rspi
, 0, RSPI_SPSCR
);
997 static irqreturn_t
rspi_irq_mux(int irq
, void *_sr
)
999 struct rspi_data
*rspi
= _sr
;
1001 irqreturn_t ret
= IRQ_NONE
;
1004 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
1005 if (spsr
& SPSR_SPRF
)
1006 disable_irq
|= SPCR_SPRIE
;
1007 if (spsr
& SPSR_SPTEF
)
1008 disable_irq
|= SPCR_SPTIE
;
1012 rspi_disable_irq(rspi
, disable_irq
);
1013 wake_up(&rspi
->wait
);
1019 static irqreturn_t
rspi_irq_rx(int irq
, void *_sr
)
1021 struct rspi_data
*rspi
= _sr
;
1024 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
1025 if (spsr
& SPSR_SPRF
) {
1026 rspi_disable_irq(rspi
, SPCR_SPRIE
);
1027 wake_up(&rspi
->wait
);
1034 static irqreturn_t
rspi_irq_tx(int irq
, void *_sr
)
1036 struct rspi_data
*rspi
= _sr
;
1039 rspi
->spsr
= spsr
= rspi_read8(rspi
, RSPI_SPSR
);
1040 if (spsr
& SPSR_SPTEF
) {
1041 rspi_disable_irq(rspi
, SPCR_SPTIE
);
1042 wake_up(&rspi
->wait
);
1049 static int rspi_request_dma(struct rspi_data
*rspi
,
1050 struct platform_device
*pdev
)
1052 const struct rspi_plat_data
*rspi_pd
= dev_get_platdata(&pdev
->dev
);
1053 struct resource
*res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1054 dma_cap_mask_t mask
;
1055 struct dma_slave_config cfg
;
1058 if (!res
|| !rspi_pd
)
1059 return 0; /* The driver assumes no error. */
1061 rspi
->dma_width_16bit
= rspi_pd
->dma_width_16bit
;
1063 /* If the module receives data by DMAC, it also needs TX DMAC */
1064 if (rspi_pd
->dma_rx_id
&& rspi_pd
->dma_tx_id
) {
1066 dma_cap_set(DMA_SLAVE
, mask
);
1067 rspi
->chan_rx
= dma_request_channel(mask
, shdma_chan_filter
,
1068 (void *)rspi_pd
->dma_rx_id
);
1069 if (rspi
->chan_rx
) {
1070 cfg
.slave_id
= rspi_pd
->dma_rx_id
;
1071 cfg
.direction
= DMA_DEV_TO_MEM
;
1073 cfg
.src_addr
= res
->start
+ RSPI_SPDR
;
1074 ret
= dmaengine_slave_config(rspi
->chan_rx
, &cfg
);
1076 dev_info(&pdev
->dev
, "Use DMA when rx.\n");
1081 if (rspi_pd
->dma_tx_id
) {
1083 dma_cap_set(DMA_SLAVE
, mask
);
1084 rspi
->chan_tx
= dma_request_channel(mask
, shdma_chan_filter
,
1085 (void *)rspi_pd
->dma_tx_id
);
1086 if (rspi
->chan_tx
) {
1087 cfg
.slave_id
= rspi_pd
->dma_tx_id
;
1088 cfg
.direction
= DMA_MEM_TO_DEV
;
1089 cfg
.dst_addr
= res
->start
+ RSPI_SPDR
;
1091 ret
= dmaengine_slave_config(rspi
->chan_tx
, &cfg
);
1093 dev_info(&pdev
->dev
, "Use DMA when tx\n");
1102 static void rspi_release_dma(struct rspi_data
*rspi
)
1105 dma_release_channel(rspi
->chan_tx
);
1107 dma_release_channel(rspi
->chan_rx
);
1110 static int rspi_remove(struct platform_device
*pdev
)
1112 struct rspi_data
*rspi
= platform_get_drvdata(pdev
);
1114 rspi_release_dma(rspi
);
1115 pm_runtime_disable(&pdev
->dev
);
1120 static const struct spi_ops rspi_ops
= {
1121 .set_config_register
= rspi_set_config_register
,
1122 .transfer_one
= rspi_transfer_one
,
1123 .mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_LOOP
,
1126 static const struct spi_ops rspi_rz_ops
= {
1127 .set_config_register
= rspi_rz_set_config_register
,
1128 .transfer_one
= rspi_rz_transfer_one
,
1129 .mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_LOOP
,
1132 static const struct spi_ops qspi_ops
= {
1133 .set_config_register
= qspi_set_config_register
,
1134 .transfer_one
= qspi_transfer_one
,
1135 .mode_bits
= SPI_CPHA
| SPI_CPOL
| SPI_LOOP
|
1136 SPI_TX_DUAL
| SPI_TX_QUAD
|
1137 SPI_RX_DUAL
| SPI_RX_QUAD
,
1141 static const struct of_device_id rspi_of_match
[] = {
1142 /* RSPI on legacy SH */
1143 { .compatible
= "renesas,rspi", .data
= &rspi_ops
},
1144 /* RSPI on RZ/A1H */
1145 { .compatible
= "renesas,rspi-rz", .data
= &rspi_rz_ops
},
1146 /* QSPI on R-Car Gen2 */
1147 { .compatible
= "renesas,qspi", .data
= &qspi_ops
},
1151 MODULE_DEVICE_TABLE(of
, rspi_of_match
);
1153 static int rspi_parse_dt(struct device
*dev
, struct spi_master
*master
)
1158 /* Parse DT properties */
1159 error
= of_property_read_u32(dev
->of_node
, "num-cs", &num_cs
);
1161 dev_err(dev
, "of_property_read_u32 num-cs failed %d\n", error
);
1165 master
->num_chipselect
= num_cs
;
1169 #define rspi_of_match NULL
1170 static inline int rspi_parse_dt(struct device
*dev
, struct spi_master
*master
)
1174 #endif /* CONFIG_OF */
1176 static int rspi_request_irq(struct device
*dev
, unsigned int irq
,
1177 irq_handler_t handler
, const char *suffix
,
1180 const char *base
= dev_name(dev
);
1181 size_t len
= strlen(base
) + strlen(suffix
) + 2;
1182 char *name
= devm_kzalloc(dev
, len
, GFP_KERNEL
);
1185 snprintf(name
, len
, "%s:%s", base
, suffix
);
1186 return devm_request_irq(dev
, irq
, handler
, 0, name
, dev_id
);
1189 static int rspi_probe(struct platform_device
*pdev
)
1191 struct resource
*res
;
1192 struct spi_master
*master
;
1193 struct rspi_data
*rspi
;
1195 const struct of_device_id
*of_id
;
1196 const struct rspi_plat_data
*rspi_pd
;
1197 const struct spi_ops
*ops
;
1199 master
= spi_alloc_master(&pdev
->dev
, sizeof(struct rspi_data
));
1200 if (master
== NULL
) {
1201 dev_err(&pdev
->dev
, "spi_alloc_master error.\n");
1205 of_id
= of_match_device(rspi_of_match
, &pdev
->dev
);
1208 ret
= rspi_parse_dt(&pdev
->dev
, master
);
1212 ops
= (struct spi_ops
*)pdev
->id_entry
->driver_data
;
1213 rspi_pd
= dev_get_platdata(&pdev
->dev
);
1214 if (rspi_pd
&& rspi_pd
->num_chipselect
)
1215 master
->num_chipselect
= rspi_pd
->num_chipselect
;
1217 master
->num_chipselect
= 2; /* default */
1220 /* ops parameter check */
1221 if (!ops
->set_config_register
) {
1222 dev_err(&pdev
->dev
, "there is no set_config_register\n");
1227 rspi
= spi_master_get_devdata(master
);
1228 platform_set_drvdata(pdev
, rspi
);
1230 rspi
->master
= master
;
1232 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1233 rspi
->addr
= devm_ioremap_resource(&pdev
->dev
, res
);
1234 if (IS_ERR(rspi
->addr
)) {
1235 ret
= PTR_ERR(rspi
->addr
);
1239 rspi
->clk
= devm_clk_get(&pdev
->dev
, NULL
);
1240 if (IS_ERR(rspi
->clk
)) {
1241 dev_err(&pdev
->dev
, "cannot get clock\n");
1242 ret
= PTR_ERR(rspi
->clk
);
1246 pm_runtime_enable(&pdev
->dev
);
1248 init_waitqueue_head(&rspi
->wait
);
1250 master
->bus_num
= pdev
->id
;
1251 master
->setup
= rspi_setup
;
1252 master
->auto_runtime_pm
= true;
1253 master
->transfer_one
= ops
->transfer_one
;
1254 master
->prepare_message
= rspi_prepare_message
;
1255 master
->unprepare_message
= rspi_unprepare_message
;
1256 master
->mode_bits
= ops
->mode_bits
;
1257 master
->dev
.of_node
= pdev
->dev
.of_node
;
1259 ret
= platform_get_irq_byname(pdev
, "rx");
1261 ret
= platform_get_irq_byname(pdev
, "mux");
1263 ret
= platform_get_irq(pdev
, 0);
1265 rspi
->rx_irq
= rspi
->tx_irq
= ret
;
1268 ret
= platform_get_irq_byname(pdev
, "tx");
1273 dev_err(&pdev
->dev
, "platform_get_irq error\n");
1277 if (rspi
->rx_irq
== rspi
->tx_irq
) {
1278 /* Single multiplexed interrupt */
1279 ret
= rspi_request_irq(&pdev
->dev
, rspi
->rx_irq
, rspi_irq_mux
,
1282 /* Multi-interrupt mode, only SPRI and SPTI are used */
1283 ret
= rspi_request_irq(&pdev
->dev
, rspi
->rx_irq
, rspi_irq_rx
,
1286 ret
= rspi_request_irq(&pdev
->dev
, rspi
->tx_irq
,
1287 rspi_irq_tx
, "tx", rspi
);
1290 dev_err(&pdev
->dev
, "request_irq error\n");
1294 ret
= rspi_request_dma(rspi
, pdev
);
1296 dev_err(&pdev
->dev
, "rspi_request_dma failed.\n");
1300 ret
= devm_spi_register_master(&pdev
->dev
, master
);
1302 dev_err(&pdev
->dev
, "spi_register_master error.\n");
1306 dev_info(&pdev
->dev
, "probed\n");
1311 rspi_release_dma(rspi
);
1313 pm_runtime_disable(&pdev
->dev
);
1315 spi_master_put(master
);
1320 static struct platform_device_id spi_driver_ids
[] = {
1321 { "rspi", (kernel_ulong_t
)&rspi_ops
},
1322 { "rspi-rz", (kernel_ulong_t
)&rspi_rz_ops
},
1323 { "qspi", (kernel_ulong_t
)&qspi_ops
},
1327 MODULE_DEVICE_TABLE(platform
, spi_driver_ids
);
1329 static struct platform_driver rspi_driver
= {
1330 .probe
= rspi_probe
,
1331 .remove
= rspi_remove
,
1332 .id_table
= spi_driver_ids
,
1334 .name
= "renesas_spi",
1335 .owner
= THIS_MODULE
,
1336 .of_match_table
= of_match_ptr(rspi_of_match
),
1339 module_platform_driver(rspi_driver
);
1341 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1342 MODULE_LICENSE("GPL v2");
1343 MODULE_AUTHOR("Yoshihiro Shimoda");
1344 MODULE_ALIAS("platform:rspi");