4 * Copyright (C) 2005 David Brownell
5 * Copyright (C) 2008 Secret Lab Technologies Ltd.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 #include <linux/kernel.h>
23 #include <linux/kmod.h>
24 #include <linux/device.h>
25 #include <linux/init.h>
26 #include <linux/cache.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dmaengine.h>
29 #include <linux/mutex.h>
30 #include <linux/of_device.h>
31 #include <linux/of_irq.h>
32 #include <linux/slab.h>
33 #include <linux/mod_devicetable.h>
34 #include <linux/spi/spi.h>
35 #include <linux/of_gpio.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/export.h>
38 #include <linux/sched/rt.h>
39 #include <linux/delay.h>
40 #include <linux/kthread.h>
41 #include <linux/ioport.h>
42 #include <linux/acpi.h>
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/spi.h>
47 static void spidev_release(struct device
*dev
)
49 struct spi_device
*spi
= to_spi_device(dev
);
51 /* spi masters may cleanup for released devices */
52 if (spi
->master
->cleanup
)
53 spi
->master
->cleanup(spi
);
55 spi_master_put(spi
->master
);
60 modalias_show(struct device
*dev
, struct device_attribute
*a
, char *buf
)
62 const struct spi_device
*spi
= to_spi_device(dev
);
65 len
= acpi_device_modalias(dev
, buf
, PAGE_SIZE
- 1);
69 return sprintf(buf
, "%s%s\n", SPI_MODULE_PREFIX
, spi
->modalias
);
71 static DEVICE_ATTR_RO(modalias
);
73 static struct attribute
*spi_dev_attrs
[] = {
74 &dev_attr_modalias
.attr
,
77 ATTRIBUTE_GROUPS(spi_dev
);
79 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
80 * and the sysfs version makes coldplug work too.
83 static const struct spi_device_id
*spi_match_id(const struct spi_device_id
*id
,
84 const struct spi_device
*sdev
)
87 if (!strcmp(sdev
->modalias
, id
->name
))
94 const struct spi_device_id
*spi_get_device_id(const struct spi_device
*sdev
)
96 const struct spi_driver
*sdrv
= to_spi_driver(sdev
->dev
.driver
);
98 return spi_match_id(sdrv
->id_table
, sdev
);
100 EXPORT_SYMBOL_GPL(spi_get_device_id
);
102 static int spi_match_device(struct device
*dev
, struct device_driver
*drv
)
104 const struct spi_device
*spi
= to_spi_device(dev
);
105 const struct spi_driver
*sdrv
= to_spi_driver(drv
);
107 /* Attempt an OF style match */
108 if (of_driver_match_device(dev
, drv
))
112 if (acpi_driver_match_device(dev
, drv
))
116 return !!spi_match_id(sdrv
->id_table
, spi
);
118 return strcmp(spi
->modalias
, drv
->name
) == 0;
121 static int spi_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
123 const struct spi_device
*spi
= to_spi_device(dev
);
126 rc
= acpi_device_uevent_modalias(dev
, env
);
130 add_uevent_var(env
, "MODALIAS=%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
134 #ifdef CONFIG_PM_SLEEP
135 static int spi_legacy_suspend(struct device
*dev
, pm_message_t message
)
138 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
140 /* suspend will stop irqs and dma; no more i/o */
143 value
= drv
->suspend(to_spi_device(dev
), message
);
145 dev_dbg(dev
, "... can't suspend\n");
150 static int spi_legacy_resume(struct device
*dev
)
153 struct spi_driver
*drv
= to_spi_driver(dev
->driver
);
155 /* resume may restart the i/o queue */
158 value
= drv
->resume(to_spi_device(dev
));
160 dev_dbg(dev
, "... can't resume\n");
165 static int spi_pm_suspend(struct device
*dev
)
167 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
170 return pm_generic_suspend(dev
);
172 return spi_legacy_suspend(dev
, PMSG_SUSPEND
);
175 static int spi_pm_resume(struct device
*dev
)
177 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
180 return pm_generic_resume(dev
);
182 return spi_legacy_resume(dev
);
185 static int spi_pm_freeze(struct device
*dev
)
187 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
190 return pm_generic_freeze(dev
);
192 return spi_legacy_suspend(dev
, PMSG_FREEZE
);
195 static int spi_pm_thaw(struct device
*dev
)
197 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
200 return pm_generic_thaw(dev
);
202 return spi_legacy_resume(dev
);
205 static int spi_pm_poweroff(struct device
*dev
)
207 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
210 return pm_generic_poweroff(dev
);
212 return spi_legacy_suspend(dev
, PMSG_HIBERNATE
);
215 static int spi_pm_restore(struct device
*dev
)
217 const struct dev_pm_ops
*pm
= dev
->driver
? dev
->driver
->pm
: NULL
;
220 return pm_generic_restore(dev
);
222 return spi_legacy_resume(dev
);
225 #define spi_pm_suspend NULL
226 #define spi_pm_resume NULL
227 #define spi_pm_freeze NULL
228 #define spi_pm_thaw NULL
229 #define spi_pm_poweroff NULL
230 #define spi_pm_restore NULL
233 static const struct dev_pm_ops spi_pm
= {
234 .suspend
= spi_pm_suspend
,
235 .resume
= spi_pm_resume
,
236 .freeze
= spi_pm_freeze
,
238 .poweroff
= spi_pm_poweroff
,
239 .restore
= spi_pm_restore
,
241 pm_generic_runtime_suspend
,
242 pm_generic_runtime_resume
,
247 struct bus_type spi_bus_type
= {
249 .dev_groups
= spi_dev_groups
,
250 .match
= spi_match_device
,
251 .uevent
= spi_uevent
,
254 EXPORT_SYMBOL_GPL(spi_bus_type
);
257 static int spi_drv_probe(struct device
*dev
)
259 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
262 acpi_dev_pm_attach(dev
, true);
263 ret
= sdrv
->probe(to_spi_device(dev
));
265 acpi_dev_pm_detach(dev
, true);
270 static int spi_drv_remove(struct device
*dev
)
272 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
275 ret
= sdrv
->remove(to_spi_device(dev
));
276 acpi_dev_pm_detach(dev
, true);
281 static void spi_drv_shutdown(struct device
*dev
)
283 const struct spi_driver
*sdrv
= to_spi_driver(dev
->driver
);
285 sdrv
->shutdown(to_spi_device(dev
));
289 * spi_register_driver - register a SPI driver
290 * @sdrv: the driver to register
293 int spi_register_driver(struct spi_driver
*sdrv
)
295 sdrv
->driver
.bus
= &spi_bus_type
;
297 sdrv
->driver
.probe
= spi_drv_probe
;
299 sdrv
->driver
.remove
= spi_drv_remove
;
301 sdrv
->driver
.shutdown
= spi_drv_shutdown
;
302 return driver_register(&sdrv
->driver
);
304 EXPORT_SYMBOL_GPL(spi_register_driver
);
306 /*-------------------------------------------------------------------------*/
308 /* SPI devices should normally not be created by SPI device drivers; that
309 * would make them board-specific. Similarly with SPI master drivers.
310 * Device registration normally goes into like arch/.../mach.../board-YYY.c
311 * with other readonly (flashable) information about mainboard devices.
315 struct list_head list
;
316 struct spi_board_info board_info
;
319 static LIST_HEAD(board_list
);
320 static LIST_HEAD(spi_master_list
);
323 * Used to protect add/del opertion for board_info list and
324 * spi_master list, and their matching process
326 static DEFINE_MUTEX(board_lock
);
329 * spi_alloc_device - Allocate a new SPI device
330 * @master: Controller to which device is connected
333 * Allows a driver to allocate and initialize a spi_device without
334 * registering it immediately. This allows a driver to directly
335 * fill the spi_device with device parameters before calling
336 * spi_add_device() on it.
338 * Caller is responsible to call spi_add_device() on the returned
339 * spi_device structure to add it to the SPI master. If the caller
340 * needs to discard the spi_device without adding it, then it should
341 * call spi_dev_put() on it.
343 * Returns a pointer to the new device, or NULL.
345 struct spi_device
*spi_alloc_device(struct spi_master
*master
)
347 struct spi_device
*spi
;
348 struct device
*dev
= master
->dev
.parent
;
350 if (!spi_master_get(master
))
353 spi
= kzalloc(sizeof(*spi
), GFP_KERNEL
);
355 dev_err(dev
, "cannot alloc spi_device\n");
356 spi_master_put(master
);
360 spi
->master
= master
;
361 spi
->dev
.parent
= &master
->dev
;
362 spi
->dev
.bus
= &spi_bus_type
;
363 spi
->dev
.release
= spidev_release
;
364 spi
->cs_gpio
= -ENOENT
;
365 device_initialize(&spi
->dev
);
368 EXPORT_SYMBOL_GPL(spi_alloc_device
);
370 static void spi_dev_set_name(struct spi_device
*spi
)
372 struct acpi_device
*adev
= ACPI_COMPANION(&spi
->dev
);
375 dev_set_name(&spi
->dev
, "spi-%s", acpi_dev_name(adev
));
379 dev_set_name(&spi
->dev
, "%s.%u", dev_name(&spi
->master
->dev
),
383 static int spi_dev_check(struct device
*dev
, void *data
)
385 struct spi_device
*spi
= to_spi_device(dev
);
386 struct spi_device
*new_spi
= data
;
388 if (spi
->master
== new_spi
->master
&&
389 spi
->chip_select
== new_spi
->chip_select
)
395 * spi_add_device - Add spi_device allocated with spi_alloc_device
396 * @spi: spi_device to register
398 * Companion function to spi_alloc_device. Devices allocated with
399 * spi_alloc_device can be added onto the spi bus with this function.
401 * Returns 0 on success; negative errno on failure
403 int spi_add_device(struct spi_device
*spi
)
405 static DEFINE_MUTEX(spi_add_lock
);
406 struct spi_master
*master
= spi
->master
;
407 struct device
*dev
= master
->dev
.parent
;
410 /* Chipselects are numbered 0..max; validate. */
411 if (spi
->chip_select
>= master
->num_chipselect
) {
412 dev_err(dev
, "cs%d >= max %d\n",
414 master
->num_chipselect
);
418 /* Set the bus ID string */
419 spi_dev_set_name(spi
);
421 /* We need to make sure there's no other device with this
422 * chipselect **BEFORE** we call setup(), else we'll trash
423 * its configuration. Lock against concurrent add() calls.
425 mutex_lock(&spi_add_lock
);
427 status
= bus_for_each_dev(&spi_bus_type
, NULL
, spi
, spi_dev_check
);
429 dev_err(dev
, "chipselect %d already in use\n",
434 if (master
->cs_gpios
)
435 spi
->cs_gpio
= master
->cs_gpios
[spi
->chip_select
];
437 /* Drivers may modify this initial i/o setup, but will
438 * normally rely on the device being setup. Devices
439 * using SPI_CS_HIGH can't coexist well otherwise...
441 status
= spi_setup(spi
);
443 dev_err(dev
, "can't setup %s, status %d\n",
444 dev_name(&spi
->dev
), status
);
448 /* Device may be bound to an active driver when this returns */
449 status
= device_add(&spi
->dev
);
451 dev_err(dev
, "can't add %s, status %d\n",
452 dev_name(&spi
->dev
), status
);
454 dev_dbg(dev
, "registered child %s\n", dev_name(&spi
->dev
));
457 mutex_unlock(&spi_add_lock
);
460 EXPORT_SYMBOL_GPL(spi_add_device
);
463 * spi_new_device - instantiate one new SPI device
464 * @master: Controller to which device is connected
465 * @chip: Describes the SPI device
468 * On typical mainboards, this is purely internal; and it's not needed
469 * after board init creates the hard-wired devices. Some development
470 * platforms may not be able to use spi_register_board_info though, and
471 * this is exported so that for example a USB or parport based adapter
472 * driver could add devices (which it would learn about out-of-band).
474 * Returns the new device, or NULL.
476 struct spi_device
*spi_new_device(struct spi_master
*master
,
477 struct spi_board_info
*chip
)
479 struct spi_device
*proxy
;
482 /* NOTE: caller did any chip->bus_num checks necessary.
484 * Also, unless we change the return value convention to use
485 * error-or-pointer (not NULL-or-pointer), troubleshootability
486 * suggests syslogged diagnostics are best here (ugh).
489 proxy
= spi_alloc_device(master
);
493 WARN_ON(strlen(chip
->modalias
) >= sizeof(proxy
->modalias
));
495 proxy
->chip_select
= chip
->chip_select
;
496 proxy
->max_speed_hz
= chip
->max_speed_hz
;
497 proxy
->mode
= chip
->mode
;
498 proxy
->irq
= chip
->irq
;
499 strlcpy(proxy
->modalias
, chip
->modalias
, sizeof(proxy
->modalias
));
500 proxy
->dev
.platform_data
= (void *) chip
->platform_data
;
501 proxy
->controller_data
= chip
->controller_data
;
502 proxy
->controller_state
= NULL
;
504 status
= spi_add_device(proxy
);
512 EXPORT_SYMBOL_GPL(spi_new_device
);
514 static void spi_match_master_to_boardinfo(struct spi_master
*master
,
515 struct spi_board_info
*bi
)
517 struct spi_device
*dev
;
519 if (master
->bus_num
!= bi
->bus_num
)
522 dev
= spi_new_device(master
, bi
);
524 dev_err(master
->dev
.parent
, "can't create new device for %s\n",
529 * spi_register_board_info - register SPI devices for a given board
530 * @info: array of chip descriptors
531 * @n: how many descriptors are provided
534 * Board-specific early init code calls this (probably during arch_initcall)
535 * with segments of the SPI device table. Any device nodes are created later,
536 * after the relevant parent SPI controller (bus_num) is defined. We keep
537 * this table of devices forever, so that reloading a controller driver will
538 * not make Linux forget about these hard-wired devices.
540 * Other code can also call this, e.g. a particular add-on board might provide
541 * SPI devices through its expansion connector, so code initializing that board
542 * would naturally declare its SPI devices.
544 * The board info passed can safely be __initdata ... but be careful of
545 * any embedded pointers (platform_data, etc), they're copied as-is.
547 int spi_register_board_info(struct spi_board_info
const *info
, unsigned n
)
549 struct boardinfo
*bi
;
552 bi
= kzalloc(n
* sizeof(*bi
), GFP_KERNEL
);
556 for (i
= 0; i
< n
; i
++, bi
++, info
++) {
557 struct spi_master
*master
;
559 memcpy(&bi
->board_info
, info
, sizeof(*info
));
560 mutex_lock(&board_lock
);
561 list_add_tail(&bi
->list
, &board_list
);
562 list_for_each_entry(master
, &spi_master_list
, list
)
563 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
564 mutex_unlock(&board_lock
);
570 /*-------------------------------------------------------------------------*/
572 static void spi_set_cs(struct spi_device
*spi
, bool enable
)
574 if (spi
->mode
& SPI_CS_HIGH
)
577 if (spi
->cs_gpio
>= 0)
578 gpio_set_value(spi
->cs_gpio
, !enable
);
579 else if (spi
->master
->set_cs
)
580 spi
->master
->set_cs(spi
, !enable
);
583 static int spi_map_buf(struct spi_master
*master
, struct device
*dev
,
584 struct sg_table
*sgt
, void *buf
, size_t len
,
585 enum dma_data_direction dir
)
587 const bool vmalloced_buf
= is_vmalloc_addr(buf
);
588 const int desc_len
= vmalloced_buf
? PAGE_SIZE
: master
->max_dma_len
;
589 const int sgs
= DIV_ROUND_UP(len
, desc_len
);
590 struct page
*vm_page
;
595 ret
= sg_alloc_table(sgt
, sgs
, GFP_KERNEL
);
599 for (i
= 0; i
< sgs
; i
++) {
600 min
= min_t(size_t, len
, desc_len
);
603 vm_page
= vmalloc_to_page(buf
);
608 sg_buf
= page_address(vm_page
) +
609 ((size_t)buf
& ~PAGE_MASK
);
614 sg_set_buf(&sgt
->sgl
[i
], sg_buf
, min
);
620 ret
= dma_map_sg(dev
, sgt
->sgl
, sgt
->nents
, dir
);
631 static void spi_unmap_buf(struct spi_master
*master
, struct device
*dev
,
632 struct sg_table
*sgt
, enum dma_data_direction dir
)
634 if (sgt
->orig_nents
) {
635 dma_unmap_sg(dev
, sgt
->sgl
, sgt
->orig_nents
, dir
);
640 static int spi_map_msg(struct spi_master
*master
, struct spi_message
*msg
)
642 struct device
*tx_dev
, *rx_dev
;
643 struct spi_transfer
*xfer
;
645 unsigned int max_tx
, max_rx
;
648 if (master
->flags
& (SPI_MASTER_MUST_RX
| SPI_MASTER_MUST_TX
)) {
652 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
653 if ((master
->flags
& SPI_MASTER_MUST_TX
) &&
655 max_tx
= max(xfer
->len
, max_tx
);
656 if ((master
->flags
& SPI_MASTER_MUST_RX
) &&
658 max_rx
= max(xfer
->len
, max_rx
);
662 tmp
= krealloc(master
->dummy_tx
, max_tx
,
663 GFP_KERNEL
| GFP_DMA
);
666 master
->dummy_tx
= tmp
;
667 memset(tmp
, 0, max_tx
);
671 tmp
= krealloc(master
->dummy_rx
, max_rx
,
672 GFP_KERNEL
| GFP_DMA
);
675 master
->dummy_rx
= tmp
;
678 if (max_tx
|| max_rx
) {
679 list_for_each_entry(xfer
, &msg
->transfers
,
682 xfer
->tx_buf
= master
->dummy_tx
;
684 xfer
->rx_buf
= master
->dummy_rx
;
689 if (!master
->can_dma
)
692 tx_dev
= &master
->dma_tx
->dev
->device
;
693 rx_dev
= &master
->dma_rx
->dev
->device
;
695 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
696 if (!master
->can_dma(master
, msg
->spi
, xfer
))
699 if (xfer
->tx_buf
!= NULL
) {
700 ret
= spi_map_buf(master
, tx_dev
, &xfer
->tx_sg
,
701 (void *)xfer
->tx_buf
, xfer
->len
,
707 if (xfer
->rx_buf
!= NULL
) {
708 ret
= spi_map_buf(master
, rx_dev
, &xfer
->rx_sg
,
709 xfer
->rx_buf
, xfer
->len
,
712 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
,
719 master
->cur_msg_mapped
= true;
724 static int spi_unmap_msg(struct spi_master
*master
, struct spi_message
*msg
)
726 struct spi_transfer
*xfer
;
727 struct device
*tx_dev
, *rx_dev
;
729 if (!master
->cur_msg_mapped
|| !master
->can_dma
)
732 tx_dev
= &master
->dma_tx
->dev
->device
;
733 rx_dev
= &master
->dma_rx
->dev
->device
;
735 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
736 if (!master
->can_dma(master
, msg
->spi
, xfer
))
739 spi_unmap_buf(master
, rx_dev
, &xfer
->rx_sg
, DMA_FROM_DEVICE
);
740 spi_unmap_buf(master
, tx_dev
, &xfer
->tx_sg
, DMA_TO_DEVICE
);
747 * spi_transfer_one_message - Default implementation of transfer_one_message()
749 * This is a standard implementation of transfer_one_message() for
750 * drivers which impelment a transfer_one() operation. It provides
751 * standard handling of delays and chip select management.
753 static int spi_transfer_one_message(struct spi_master
*master
,
754 struct spi_message
*msg
)
756 struct spi_transfer
*xfer
;
757 bool keep_cs
= false;
761 spi_set_cs(msg
->spi
, true);
763 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
764 trace_spi_transfer_start(msg
, xfer
);
766 reinit_completion(&master
->xfer_completion
);
768 ret
= master
->transfer_one(master
, msg
->spi
, xfer
);
770 dev_err(&msg
->spi
->dev
,
771 "SPI transfer failed: %d\n", ret
);
777 ms
= xfer
->len
* 8 * 1000 / xfer
->speed_hz
;
778 ms
+= 10; /* some tolerance */
780 ms
= wait_for_completion_timeout(&master
->xfer_completion
,
781 msecs_to_jiffies(ms
));
785 dev_err(&msg
->spi
->dev
, "SPI transfer timed out\n");
786 msg
->status
= -ETIMEDOUT
;
789 trace_spi_transfer_stop(msg
, xfer
);
791 if (msg
->status
!= -EINPROGRESS
)
794 if (xfer
->delay_usecs
)
795 udelay(xfer
->delay_usecs
);
797 if (xfer
->cs_change
) {
798 if (list_is_last(&xfer
->transfer_list
,
802 spi_set_cs(msg
->spi
, false);
804 spi_set_cs(msg
->spi
, true);
808 msg
->actual_length
+= xfer
->len
;
812 if (ret
!= 0 || !keep_cs
)
813 spi_set_cs(msg
->spi
, false);
815 if (msg
->status
== -EINPROGRESS
)
818 spi_finalize_current_message(master
);
824 * spi_finalize_current_transfer - report completion of a transfer
826 * Called by SPI drivers using the core transfer_one_message()
827 * implementation to notify it that the current interrupt driven
828 * transfer has finished and the next one may be scheduled.
830 void spi_finalize_current_transfer(struct spi_master
*master
)
832 complete(&master
->xfer_completion
);
834 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer
);
837 * spi_pump_messages - kthread work function which processes spi message queue
838 * @work: pointer to kthread work struct contained in the master struct
840 * This function checks if there is any spi message in the queue that
841 * needs processing and if so call out to the driver to initialize hardware
842 * and transfer each message.
845 static void spi_pump_messages(struct kthread_work
*work
)
847 struct spi_master
*master
=
848 container_of(work
, struct spi_master
, pump_messages
);
850 bool was_busy
= false;
853 /* Lock queue and check for queue work */
854 spin_lock_irqsave(&master
->queue_lock
, flags
);
855 if (list_empty(&master
->queue
) || !master
->running
) {
857 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
860 master
->busy
= false;
861 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
862 kfree(master
->dummy_rx
);
863 master
->dummy_rx
= NULL
;
864 kfree(master
->dummy_tx
);
865 master
->dummy_tx
= NULL
;
866 if (master
->unprepare_transfer_hardware
&&
867 master
->unprepare_transfer_hardware(master
))
868 dev_err(&master
->dev
,
869 "failed to unprepare transfer hardware\n");
870 if (master
->auto_runtime_pm
) {
871 pm_runtime_mark_last_busy(master
->dev
.parent
);
872 pm_runtime_put_autosuspend(master
->dev
.parent
);
874 trace_spi_master_idle(master
);
878 /* Make sure we are not already running a message */
879 if (master
->cur_msg
) {
880 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
883 /* Extract head of queue */
885 list_first_entry(&master
->queue
, struct spi_message
, queue
);
887 list_del_init(&master
->cur_msg
->queue
);
892 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
894 if (!was_busy
&& master
->auto_runtime_pm
) {
895 ret
= pm_runtime_get_sync(master
->dev
.parent
);
897 dev_err(&master
->dev
, "Failed to power device: %d\n",
904 trace_spi_master_busy(master
);
906 if (!was_busy
&& master
->prepare_transfer_hardware
) {
907 ret
= master
->prepare_transfer_hardware(master
);
909 dev_err(&master
->dev
,
910 "failed to prepare transfer hardware\n");
912 if (master
->auto_runtime_pm
)
913 pm_runtime_put(master
->dev
.parent
);
918 trace_spi_message_start(master
->cur_msg
);
920 if (master
->prepare_message
) {
921 ret
= master
->prepare_message(master
, master
->cur_msg
);
923 dev_err(&master
->dev
,
924 "failed to prepare message: %d\n", ret
);
925 master
->cur_msg
->status
= ret
;
926 spi_finalize_current_message(master
);
929 master
->cur_msg_prepared
= true;
932 ret
= spi_map_msg(master
, master
->cur_msg
);
934 master
->cur_msg
->status
= ret
;
935 spi_finalize_current_message(master
);
939 ret
= master
->transfer_one_message(master
, master
->cur_msg
);
941 dev_err(&master
->dev
,
942 "failed to transfer one message from queue\n");
947 static int spi_init_queue(struct spi_master
*master
)
949 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
- 1 };
951 INIT_LIST_HEAD(&master
->queue
);
952 spin_lock_init(&master
->queue_lock
);
954 master
->running
= false;
955 master
->busy
= false;
957 init_kthread_worker(&master
->kworker
);
958 master
->kworker_task
= kthread_run(kthread_worker_fn
,
959 &master
->kworker
, "%s",
960 dev_name(&master
->dev
));
961 if (IS_ERR(master
->kworker_task
)) {
962 dev_err(&master
->dev
, "failed to create message pump task\n");
965 init_kthread_work(&master
->pump_messages
, spi_pump_messages
);
968 * Master config will indicate if this controller should run the
969 * message pump with high (realtime) priority to reduce the transfer
970 * latency on the bus by minimising the delay between a transfer
971 * request and the scheduling of the message pump thread. Without this
972 * setting the message pump thread will remain at default priority.
975 dev_info(&master
->dev
,
976 "will run message pump with realtime priority\n");
977 sched_setscheduler(master
->kworker_task
, SCHED_FIFO
, ¶m
);
984 * spi_get_next_queued_message() - called by driver to check for queued
986 * @master: the master to check for queued messages
988 * If there are more messages in the queue, the next message is returned from
991 struct spi_message
*spi_get_next_queued_message(struct spi_master
*master
)
993 struct spi_message
*next
;
996 /* get a pointer to the next message, if any */
997 spin_lock_irqsave(&master
->queue_lock
, flags
);
998 next
= list_first_entry_or_null(&master
->queue
, struct spi_message
,
1000 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1004 EXPORT_SYMBOL_GPL(spi_get_next_queued_message
);
1007 * spi_finalize_current_message() - the current message is complete
1008 * @master: the master to return the message to
1010 * Called by the driver to notify the core that the message in the front of the
1011 * queue is complete and can be removed from the queue.
1013 void spi_finalize_current_message(struct spi_master
*master
)
1015 struct spi_message
*mesg
;
1016 unsigned long flags
;
1019 spin_lock_irqsave(&master
->queue_lock
, flags
);
1020 mesg
= master
->cur_msg
;
1021 master
->cur_msg
= NULL
;
1023 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1024 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1026 spi_unmap_msg(master
, mesg
);
1028 if (master
->cur_msg_prepared
&& master
->unprepare_message
) {
1029 ret
= master
->unprepare_message(master
, mesg
);
1031 dev_err(&master
->dev
,
1032 "failed to unprepare message: %d\n", ret
);
1035 master
->cur_msg_prepared
= false;
1039 mesg
->complete(mesg
->context
);
1041 trace_spi_message_done(mesg
);
1043 EXPORT_SYMBOL_GPL(spi_finalize_current_message
);
1045 static int spi_start_queue(struct spi_master
*master
)
1047 unsigned long flags
;
1049 spin_lock_irqsave(&master
->queue_lock
, flags
);
1051 if (master
->running
|| master
->busy
) {
1052 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1056 master
->running
= true;
1057 master
->cur_msg
= NULL
;
1058 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1060 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1065 static int spi_stop_queue(struct spi_master
*master
)
1067 unsigned long flags
;
1068 unsigned limit
= 500;
1071 spin_lock_irqsave(&master
->queue_lock
, flags
);
1074 * This is a bit lame, but is optimized for the common execution path.
1075 * A wait_queue on the master->busy could be used, but then the common
1076 * execution path (pump_messages) would be required to call wake_up or
1077 * friends on every SPI message. Do this instead.
1079 while ((!list_empty(&master
->queue
) || master
->busy
) && limit
--) {
1080 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1081 usleep_range(10000, 11000);
1082 spin_lock_irqsave(&master
->queue_lock
, flags
);
1085 if (!list_empty(&master
->queue
) || master
->busy
)
1088 master
->running
= false;
1090 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1093 dev_warn(&master
->dev
,
1094 "could not stop message queue\n");
1100 static int spi_destroy_queue(struct spi_master
*master
)
1104 ret
= spi_stop_queue(master
);
1107 * flush_kthread_worker will block until all work is done.
1108 * If the reason that stop_queue timed out is that the work will never
1109 * finish, then it does no good to call flush/stop thread, so
1113 dev_err(&master
->dev
, "problem destroying queue\n");
1117 flush_kthread_worker(&master
->kworker
);
1118 kthread_stop(master
->kworker_task
);
1124 * spi_queued_transfer - transfer function for queued transfers
1125 * @spi: spi device which is requesting transfer
1126 * @msg: spi message which is to handled is queued to driver queue
1128 static int spi_queued_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1130 struct spi_master
*master
= spi
->master
;
1131 unsigned long flags
;
1133 spin_lock_irqsave(&master
->queue_lock
, flags
);
1135 if (!master
->running
) {
1136 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1139 msg
->actual_length
= 0;
1140 msg
->status
= -EINPROGRESS
;
1142 list_add_tail(&msg
->queue
, &master
->queue
);
1144 queue_kthread_work(&master
->kworker
, &master
->pump_messages
);
1146 spin_unlock_irqrestore(&master
->queue_lock
, flags
);
1150 static int spi_master_initialize_queue(struct spi_master
*master
)
1154 master
->queued
= true;
1155 master
->transfer
= spi_queued_transfer
;
1156 if (!master
->transfer_one_message
)
1157 master
->transfer_one_message
= spi_transfer_one_message
;
1159 /* Initialize and start queue */
1160 ret
= spi_init_queue(master
);
1162 dev_err(&master
->dev
, "problem initializing queue\n");
1163 goto err_init_queue
;
1165 ret
= spi_start_queue(master
);
1167 dev_err(&master
->dev
, "problem starting queue\n");
1168 goto err_start_queue
;
1175 spi_destroy_queue(master
);
1179 /*-------------------------------------------------------------------------*/
1181 #if defined(CONFIG_OF)
1183 * of_register_spi_devices() - Register child devices onto the SPI bus
1184 * @master: Pointer to spi_master device
1186 * Registers an spi_device for each child node of master node which has a 'reg'
1189 static void of_register_spi_devices(struct spi_master
*master
)
1191 struct spi_device
*spi
;
1192 struct device_node
*nc
;
1196 if (!master
->dev
.of_node
)
1199 for_each_available_child_of_node(master
->dev
.of_node
, nc
) {
1200 /* Alloc an spi_device */
1201 spi
= spi_alloc_device(master
);
1203 dev_err(&master
->dev
, "spi_device alloc error for %s\n",
1209 /* Select device driver */
1210 if (of_modalias_node(nc
, spi
->modalias
,
1211 sizeof(spi
->modalias
)) < 0) {
1212 dev_err(&master
->dev
, "cannot find modalias for %s\n",
1218 /* Device address */
1219 rc
= of_property_read_u32(nc
, "reg", &value
);
1221 dev_err(&master
->dev
, "%s has no valid 'reg' property (%d)\n",
1226 spi
->chip_select
= value
;
1228 /* Mode (clock phase/polarity/etc.) */
1229 if (of_find_property(nc
, "spi-cpha", NULL
))
1230 spi
->mode
|= SPI_CPHA
;
1231 if (of_find_property(nc
, "spi-cpol", NULL
))
1232 spi
->mode
|= SPI_CPOL
;
1233 if (of_find_property(nc
, "spi-cs-high", NULL
))
1234 spi
->mode
|= SPI_CS_HIGH
;
1235 if (of_find_property(nc
, "spi-3wire", NULL
))
1236 spi
->mode
|= SPI_3WIRE
;
1238 /* Device DUAL/QUAD mode */
1239 if (!of_property_read_u32(nc
, "spi-tx-bus-width", &value
)) {
1244 spi
->mode
|= SPI_TX_DUAL
;
1247 spi
->mode
|= SPI_TX_QUAD
;
1250 dev_err(&master
->dev
,
1251 "spi-tx-bus-width %d not supported\n",
1258 if (!of_property_read_u32(nc
, "spi-rx-bus-width", &value
)) {
1263 spi
->mode
|= SPI_RX_DUAL
;
1266 spi
->mode
|= SPI_RX_QUAD
;
1269 dev_err(&master
->dev
,
1270 "spi-rx-bus-width %d not supported\n",
1278 rc
= of_property_read_u32(nc
, "spi-max-frequency", &value
);
1280 dev_err(&master
->dev
, "%s has no valid 'spi-max-frequency' property (%d)\n",
1285 spi
->max_speed_hz
= value
;
1288 spi
->irq
= irq_of_parse_and_map(nc
, 0);
1290 /* Store a pointer to the node in the device structure */
1292 spi
->dev
.of_node
= nc
;
1294 /* Register the new device */
1295 request_module("%s%s", SPI_MODULE_PREFIX
, spi
->modalias
);
1296 rc
= spi_add_device(spi
);
1298 dev_err(&master
->dev
, "spi_device register error %s\n",
1306 static void of_register_spi_devices(struct spi_master
*master
) { }
1310 static int acpi_spi_add_resource(struct acpi_resource
*ares
, void *data
)
1312 struct spi_device
*spi
= data
;
1314 if (ares
->type
== ACPI_RESOURCE_TYPE_SERIAL_BUS
) {
1315 struct acpi_resource_spi_serialbus
*sb
;
1317 sb
= &ares
->data
.spi_serial_bus
;
1318 if (sb
->type
== ACPI_RESOURCE_SERIAL_TYPE_SPI
) {
1319 spi
->chip_select
= sb
->device_selection
;
1320 spi
->max_speed_hz
= sb
->connection_speed
;
1322 if (sb
->clock_phase
== ACPI_SPI_SECOND_PHASE
)
1323 spi
->mode
|= SPI_CPHA
;
1324 if (sb
->clock_polarity
== ACPI_SPI_START_HIGH
)
1325 spi
->mode
|= SPI_CPOL
;
1326 if (sb
->device_polarity
== ACPI_SPI_ACTIVE_HIGH
)
1327 spi
->mode
|= SPI_CS_HIGH
;
1329 } else if (spi
->irq
< 0) {
1332 if (acpi_dev_resource_interrupt(ares
, 0, &r
))
1336 /* Always tell the ACPI core to skip this resource */
1340 static acpi_status
acpi_spi_add_device(acpi_handle handle
, u32 level
,
1341 void *data
, void **return_value
)
1343 struct spi_master
*master
= data
;
1344 struct list_head resource_list
;
1345 struct acpi_device
*adev
;
1346 struct spi_device
*spi
;
1349 if (acpi_bus_get_device(handle
, &adev
))
1351 if (acpi_bus_get_status(adev
) || !adev
->status
.present
)
1354 spi
= spi_alloc_device(master
);
1356 dev_err(&master
->dev
, "failed to allocate SPI device for %s\n",
1357 dev_name(&adev
->dev
));
1358 return AE_NO_MEMORY
;
1361 ACPI_COMPANION_SET(&spi
->dev
, adev
);
1364 INIT_LIST_HEAD(&resource_list
);
1365 ret
= acpi_dev_get_resources(adev
, &resource_list
,
1366 acpi_spi_add_resource
, spi
);
1367 acpi_dev_free_resource_list(&resource_list
);
1369 if (ret
< 0 || !spi
->max_speed_hz
) {
1374 adev
->power
.flags
.ignore_parent
= true;
1375 strlcpy(spi
->modalias
, acpi_device_hid(adev
), sizeof(spi
->modalias
));
1376 if (spi_add_device(spi
)) {
1377 adev
->power
.flags
.ignore_parent
= false;
1378 dev_err(&master
->dev
, "failed to add SPI device %s from ACPI\n",
1379 dev_name(&adev
->dev
));
1386 static void acpi_register_spi_devices(struct spi_master
*master
)
1391 handle
= ACPI_HANDLE(master
->dev
.parent
);
1395 status
= acpi_walk_namespace(ACPI_TYPE_DEVICE
, handle
, 1,
1396 acpi_spi_add_device
, NULL
,
1398 if (ACPI_FAILURE(status
))
1399 dev_warn(&master
->dev
, "failed to enumerate SPI slaves\n");
1402 static inline void acpi_register_spi_devices(struct spi_master
*master
) {}
1403 #endif /* CONFIG_ACPI */
1405 static void spi_master_release(struct device
*dev
)
1407 struct spi_master
*master
;
1409 master
= container_of(dev
, struct spi_master
, dev
);
1413 static struct class spi_master_class
= {
1414 .name
= "spi_master",
1415 .owner
= THIS_MODULE
,
1416 .dev_release
= spi_master_release
,
1422 * spi_alloc_master - allocate SPI master controller
1423 * @dev: the controller, possibly using the platform_bus
1424 * @size: how much zeroed driver-private data to allocate; the pointer to this
1425 * memory is in the driver_data field of the returned device,
1426 * accessible with spi_master_get_devdata().
1427 * Context: can sleep
1429 * This call is used only by SPI master controller drivers, which are the
1430 * only ones directly touching chip registers. It's how they allocate
1431 * an spi_master structure, prior to calling spi_register_master().
1433 * This must be called from context that can sleep. It returns the SPI
1434 * master structure on success, else NULL.
1436 * The caller is responsible for assigning the bus number and initializing
1437 * the master's methods before calling spi_register_master(); and (after errors
1438 * adding the device) calling spi_master_put() and kfree() to prevent a memory
1441 struct spi_master
*spi_alloc_master(struct device
*dev
, unsigned size
)
1443 struct spi_master
*master
;
1448 master
= kzalloc(size
+ sizeof(*master
), GFP_KERNEL
);
1452 device_initialize(&master
->dev
);
1453 master
->bus_num
= -1;
1454 master
->num_chipselect
= 1;
1455 master
->dev
.class = &spi_master_class
;
1456 master
->dev
.parent
= get_device(dev
);
1457 spi_master_set_devdata(master
, &master
[1]);
1461 EXPORT_SYMBOL_GPL(spi_alloc_master
);
1464 static int of_spi_register_master(struct spi_master
*master
)
1467 struct device_node
*np
= master
->dev
.of_node
;
1472 nb
= of_gpio_named_count(np
, "cs-gpios");
1473 master
->num_chipselect
= max_t(int, nb
, master
->num_chipselect
);
1475 /* Return error only for an incorrectly formed cs-gpios property */
1476 if (nb
== 0 || nb
== -ENOENT
)
1481 cs
= devm_kzalloc(&master
->dev
,
1482 sizeof(int) * master
->num_chipselect
,
1484 master
->cs_gpios
= cs
;
1486 if (!master
->cs_gpios
)
1489 for (i
= 0; i
< master
->num_chipselect
; i
++)
1492 for (i
= 0; i
< nb
; i
++)
1493 cs
[i
] = of_get_named_gpio(np
, "cs-gpios", i
);
1498 static int of_spi_register_master(struct spi_master
*master
)
1505 * spi_register_master - register SPI master controller
1506 * @master: initialized master, originally from spi_alloc_master()
1507 * Context: can sleep
1509 * SPI master controllers connect to their drivers using some non-SPI bus,
1510 * such as the platform bus. The final stage of probe() in that code
1511 * includes calling spi_register_master() to hook up to this SPI bus glue.
1513 * SPI controllers use board specific (often SOC specific) bus numbers,
1514 * and board-specific addressing for SPI devices combines those numbers
1515 * with chip select numbers. Since SPI does not directly support dynamic
1516 * device identification, boards need configuration tables telling which
1517 * chip is at which address.
1519 * This must be called from context that can sleep. It returns zero on
1520 * success, else a negative error code (dropping the master's refcount).
1521 * After a successful return, the caller is responsible for calling
1522 * spi_unregister_master().
1524 int spi_register_master(struct spi_master
*master
)
1526 static atomic_t dyn_bus_id
= ATOMIC_INIT((1<<15) - 1);
1527 struct device
*dev
= master
->dev
.parent
;
1528 struct boardinfo
*bi
;
1529 int status
= -ENODEV
;
1535 status
= of_spi_register_master(master
);
1539 /* even if it's just one always-selected device, there must
1540 * be at least one chipselect
1542 if (master
->num_chipselect
== 0)
1545 if ((master
->bus_num
< 0) && master
->dev
.of_node
)
1546 master
->bus_num
= of_alias_get_id(master
->dev
.of_node
, "spi");
1548 /* convention: dynamically assigned bus IDs count down from the max */
1549 if (master
->bus_num
< 0) {
1550 /* FIXME switch to an IDR based scheme, something like
1551 * I2C now uses, so we can't run out of "dynamic" IDs
1553 master
->bus_num
= atomic_dec_return(&dyn_bus_id
);
1557 spin_lock_init(&master
->bus_lock_spinlock
);
1558 mutex_init(&master
->bus_lock_mutex
);
1559 master
->bus_lock_flag
= 0;
1560 init_completion(&master
->xfer_completion
);
1561 if (!master
->max_dma_len
)
1562 master
->max_dma_len
= INT_MAX
;
1564 /* register the device, then userspace will see it.
1565 * registration fails if the bus ID is in use.
1567 dev_set_name(&master
->dev
, "spi%u", master
->bus_num
);
1568 status
= device_add(&master
->dev
);
1571 dev_dbg(dev
, "registered master %s%s\n", dev_name(&master
->dev
),
1572 dynamic
? " (dynamic)" : "");
1574 /* If we're using a queued driver, start the queue */
1575 if (master
->transfer
)
1576 dev_info(dev
, "master is unqueued, this is deprecated\n");
1578 status
= spi_master_initialize_queue(master
);
1580 device_del(&master
->dev
);
1585 mutex_lock(&board_lock
);
1586 list_add_tail(&master
->list
, &spi_master_list
);
1587 list_for_each_entry(bi
, &board_list
, list
)
1588 spi_match_master_to_boardinfo(master
, &bi
->board_info
);
1589 mutex_unlock(&board_lock
);
1591 /* Register devices from the device tree and ACPI */
1592 of_register_spi_devices(master
);
1593 acpi_register_spi_devices(master
);
1597 EXPORT_SYMBOL_GPL(spi_register_master
);
1599 static void devm_spi_unregister(struct device
*dev
, void *res
)
1601 spi_unregister_master(*(struct spi_master
**)res
);
1605 * dev_spi_register_master - register managed SPI master controller
1606 * @dev: device managing SPI master
1607 * @master: initialized master, originally from spi_alloc_master()
1608 * Context: can sleep
1610 * Register a SPI device as with spi_register_master() which will
1611 * automatically be unregister
1613 int devm_spi_register_master(struct device
*dev
, struct spi_master
*master
)
1615 struct spi_master
**ptr
;
1618 ptr
= devres_alloc(devm_spi_unregister
, sizeof(*ptr
), GFP_KERNEL
);
1622 ret
= spi_register_master(master
);
1625 devres_add(dev
, ptr
);
1632 EXPORT_SYMBOL_GPL(devm_spi_register_master
);
1634 static int __unregister(struct device
*dev
, void *null
)
1636 spi_unregister_device(to_spi_device(dev
));
1641 * spi_unregister_master - unregister SPI master controller
1642 * @master: the master being unregistered
1643 * Context: can sleep
1645 * This call is used only by SPI master controller drivers, which are the
1646 * only ones directly touching chip registers.
1648 * This must be called from context that can sleep.
1650 void spi_unregister_master(struct spi_master
*master
)
1654 if (master
->queued
) {
1655 if (spi_destroy_queue(master
))
1656 dev_err(&master
->dev
, "queue remove failed\n");
1659 mutex_lock(&board_lock
);
1660 list_del(&master
->list
);
1661 mutex_unlock(&board_lock
);
1663 dummy
= device_for_each_child(&master
->dev
, NULL
, __unregister
);
1664 device_unregister(&master
->dev
);
1666 EXPORT_SYMBOL_GPL(spi_unregister_master
);
1668 int spi_master_suspend(struct spi_master
*master
)
1672 /* Basically no-ops for non-queued masters */
1673 if (!master
->queued
)
1676 ret
= spi_stop_queue(master
);
1678 dev_err(&master
->dev
, "queue stop failed\n");
1682 EXPORT_SYMBOL_GPL(spi_master_suspend
);
1684 int spi_master_resume(struct spi_master
*master
)
1688 if (!master
->queued
)
1691 ret
= spi_start_queue(master
);
1693 dev_err(&master
->dev
, "queue restart failed\n");
1697 EXPORT_SYMBOL_GPL(spi_master_resume
);
1699 static int __spi_master_match(struct device
*dev
, const void *data
)
1701 struct spi_master
*m
;
1702 const u16
*bus_num
= data
;
1704 m
= container_of(dev
, struct spi_master
, dev
);
1705 return m
->bus_num
== *bus_num
;
1709 * spi_busnum_to_master - look up master associated with bus_num
1710 * @bus_num: the master's bus number
1711 * Context: can sleep
1713 * This call may be used with devices that are registered after
1714 * arch init time. It returns a refcounted pointer to the relevant
1715 * spi_master (which the caller must release), or NULL if there is
1716 * no such master registered.
1718 struct spi_master
*spi_busnum_to_master(u16 bus_num
)
1721 struct spi_master
*master
= NULL
;
1723 dev
= class_find_device(&spi_master_class
, NULL
, &bus_num
,
1724 __spi_master_match
);
1726 master
= container_of(dev
, struct spi_master
, dev
);
1727 /* reference got in class_find_device */
1730 EXPORT_SYMBOL_GPL(spi_busnum_to_master
);
1733 /*-------------------------------------------------------------------------*/
1735 /* Core methods for SPI master protocol drivers. Some of the
1736 * other core methods are currently defined as inline functions.
1740 * spi_setup - setup SPI mode and clock rate
1741 * @spi: the device whose settings are being modified
1742 * Context: can sleep, and no requests are queued to the device
1744 * SPI protocol drivers may need to update the transfer mode if the
1745 * device doesn't work with its default. They may likewise need
1746 * to update clock rates or word sizes from initial values. This function
1747 * changes those settings, and must be called from a context that can sleep.
1748 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
1749 * effect the next time the device is selected and data is transferred to
1750 * or from it. When this function returns, the spi device is deselected.
1752 * Note that this call will fail if the protocol driver specifies an option
1753 * that the underlying controller or its driver does not support. For
1754 * example, not all hardware supports wire transfers using nine bit words,
1755 * LSB-first wire encoding, or active-high chipselects.
1757 int spi_setup(struct spi_device
*spi
)
1762 /* check mode to prevent that DUAL and QUAD set at the same time
1764 if (((spi
->mode
& SPI_TX_DUAL
) && (spi
->mode
& SPI_TX_QUAD
)) ||
1765 ((spi
->mode
& SPI_RX_DUAL
) && (spi
->mode
& SPI_RX_QUAD
))) {
1767 "setup: can not select dual and quad at the same time\n");
1770 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
1772 if ((spi
->mode
& SPI_3WIRE
) && (spi
->mode
&
1773 (SPI_TX_DUAL
| SPI_TX_QUAD
| SPI_RX_DUAL
| SPI_RX_QUAD
)))
1775 /* help drivers fail *cleanly* when they need options
1776 * that aren't supported with their current master
1778 bad_bits
= spi
->mode
& ~spi
->master
->mode_bits
;
1780 dev_err(&spi
->dev
, "setup: unsupported mode bits %x\n",
1785 if (!spi
->bits_per_word
)
1786 spi
->bits_per_word
= 8;
1788 if (!spi
->max_speed_hz
)
1789 spi
->max_speed_hz
= spi
->master
->max_speed_hz
;
1791 if (spi
->master
->setup
)
1792 status
= spi
->master
->setup(spi
);
1794 dev_dbg(&spi
->dev
, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
1795 (int) (spi
->mode
& (SPI_CPOL
| SPI_CPHA
)),
1796 (spi
->mode
& SPI_CS_HIGH
) ? "cs_high, " : "",
1797 (spi
->mode
& SPI_LSB_FIRST
) ? "lsb, " : "",
1798 (spi
->mode
& SPI_3WIRE
) ? "3wire, " : "",
1799 (spi
->mode
& SPI_LOOP
) ? "loopback, " : "",
1800 spi
->bits_per_word
, spi
->max_speed_hz
,
1805 EXPORT_SYMBOL_GPL(spi_setup
);
1807 static int __spi_validate(struct spi_device
*spi
, struct spi_message
*message
)
1809 struct spi_master
*master
= spi
->master
;
1810 struct spi_transfer
*xfer
;
1813 if (list_empty(&message
->transfers
))
1816 /* Half-duplex links include original MicroWire, and ones with
1817 * only one data pin like SPI_3WIRE (switches direction) or where
1818 * either MOSI or MISO is missing. They can also be caused by
1819 * software limitations.
1821 if ((master
->flags
& SPI_MASTER_HALF_DUPLEX
)
1822 || (spi
->mode
& SPI_3WIRE
)) {
1823 unsigned flags
= master
->flags
;
1825 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1826 if (xfer
->rx_buf
&& xfer
->tx_buf
)
1828 if ((flags
& SPI_MASTER_NO_TX
) && xfer
->tx_buf
)
1830 if ((flags
& SPI_MASTER_NO_RX
) && xfer
->rx_buf
)
1836 * Set transfer bits_per_word and max speed as spi device default if
1837 * it is not set for this transfer.
1838 * Set transfer tx_nbits and rx_nbits as single transfer default
1839 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
1841 list_for_each_entry(xfer
, &message
->transfers
, transfer_list
) {
1842 message
->frame_length
+= xfer
->len
;
1843 if (!xfer
->bits_per_word
)
1844 xfer
->bits_per_word
= spi
->bits_per_word
;
1846 if (!xfer
->speed_hz
)
1847 xfer
->speed_hz
= spi
->max_speed_hz
;
1849 if (master
->max_speed_hz
&&
1850 xfer
->speed_hz
> master
->max_speed_hz
)
1851 xfer
->speed_hz
= master
->max_speed_hz
;
1853 if (master
->bits_per_word_mask
) {
1854 /* Only 32 bits fit in the mask */
1855 if (xfer
->bits_per_word
> 32)
1857 if (!(master
->bits_per_word_mask
&
1858 BIT(xfer
->bits_per_word
- 1)))
1863 * SPI transfer length should be multiple of SPI word size
1864 * where SPI word size should be power-of-two multiple
1866 if (xfer
->bits_per_word
<= 8)
1868 else if (xfer
->bits_per_word
<= 16)
1873 /* No partial transfers accepted */
1874 if (xfer
->len
% w_size
)
1877 if (xfer
->speed_hz
&& master
->min_speed_hz
&&
1878 xfer
->speed_hz
< master
->min_speed_hz
)
1881 if (xfer
->tx_buf
&& !xfer
->tx_nbits
)
1882 xfer
->tx_nbits
= SPI_NBITS_SINGLE
;
1883 if (xfer
->rx_buf
&& !xfer
->rx_nbits
)
1884 xfer
->rx_nbits
= SPI_NBITS_SINGLE
;
1885 /* check transfer tx/rx_nbits:
1886 * 1. check the value matches one of single, dual and quad
1887 * 2. check tx/rx_nbits match the mode in spi_device
1890 if (xfer
->tx_nbits
!= SPI_NBITS_SINGLE
&&
1891 xfer
->tx_nbits
!= SPI_NBITS_DUAL
&&
1892 xfer
->tx_nbits
!= SPI_NBITS_QUAD
)
1894 if ((xfer
->tx_nbits
== SPI_NBITS_DUAL
) &&
1895 !(spi
->mode
& (SPI_TX_DUAL
| SPI_TX_QUAD
)))
1897 if ((xfer
->tx_nbits
== SPI_NBITS_QUAD
) &&
1898 !(spi
->mode
& SPI_TX_QUAD
))
1901 /* check transfer rx_nbits */
1903 if (xfer
->rx_nbits
!= SPI_NBITS_SINGLE
&&
1904 xfer
->rx_nbits
!= SPI_NBITS_DUAL
&&
1905 xfer
->rx_nbits
!= SPI_NBITS_QUAD
)
1907 if ((xfer
->rx_nbits
== SPI_NBITS_DUAL
) &&
1908 !(spi
->mode
& (SPI_RX_DUAL
| SPI_RX_QUAD
)))
1910 if ((xfer
->rx_nbits
== SPI_NBITS_QUAD
) &&
1911 !(spi
->mode
& SPI_RX_QUAD
))
1916 message
->status
= -EINPROGRESS
;
1921 static int __spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1923 struct spi_master
*master
= spi
->master
;
1927 trace_spi_message_submit(message
);
1929 return master
->transfer(spi
, message
);
1933 * spi_async - asynchronous SPI transfer
1934 * @spi: device with which data will be exchanged
1935 * @message: describes the data transfers, including completion callback
1936 * Context: any (irqs may be blocked, etc)
1938 * This call may be used in_irq and other contexts which can't sleep,
1939 * as well as from task contexts which can sleep.
1941 * The completion callback is invoked in a context which can't sleep.
1942 * Before that invocation, the value of message->status is undefined.
1943 * When the callback is issued, message->status holds either zero (to
1944 * indicate complete success) or a negative error code. After that
1945 * callback returns, the driver which issued the transfer request may
1946 * deallocate the associated memory; it's no longer in use by any SPI
1947 * core or controller driver code.
1949 * Note that although all messages to a spi_device are handled in
1950 * FIFO order, messages may go to different devices in other orders.
1951 * Some device might be higher priority, or have various "hard" access
1952 * time requirements, for example.
1954 * On detection of any fault during the transfer, processing of
1955 * the entire message is aborted, and the device is deselected.
1956 * Until returning from the associated message completion callback,
1957 * no other spi_message queued to that device will be processed.
1958 * (This rule applies equally to all the synchronous transfer calls,
1959 * which are wrappers around this core asynchronous primitive.)
1961 int spi_async(struct spi_device
*spi
, struct spi_message
*message
)
1963 struct spi_master
*master
= spi
->master
;
1965 unsigned long flags
;
1967 ret
= __spi_validate(spi
, message
);
1971 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
1973 if (master
->bus_lock_flag
)
1976 ret
= __spi_async(spi
, message
);
1978 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
1982 EXPORT_SYMBOL_GPL(spi_async
);
1985 * spi_async_locked - version of spi_async with exclusive bus usage
1986 * @spi: device with which data will be exchanged
1987 * @message: describes the data transfers, including completion callback
1988 * Context: any (irqs may be blocked, etc)
1990 * This call may be used in_irq and other contexts which can't sleep,
1991 * as well as from task contexts which can sleep.
1993 * The completion callback is invoked in a context which can't sleep.
1994 * Before that invocation, the value of message->status is undefined.
1995 * When the callback is issued, message->status holds either zero (to
1996 * indicate complete success) or a negative error code. After that
1997 * callback returns, the driver which issued the transfer request may
1998 * deallocate the associated memory; it's no longer in use by any SPI
1999 * core or controller driver code.
2001 * Note that although all messages to a spi_device are handled in
2002 * FIFO order, messages may go to different devices in other orders.
2003 * Some device might be higher priority, or have various "hard" access
2004 * time requirements, for example.
2006 * On detection of any fault during the transfer, processing of
2007 * the entire message is aborted, and the device is deselected.
2008 * Until returning from the associated message completion callback,
2009 * no other spi_message queued to that device will be processed.
2010 * (This rule applies equally to all the synchronous transfer calls,
2011 * which are wrappers around this core asynchronous primitive.)
2013 int spi_async_locked(struct spi_device
*spi
, struct spi_message
*message
)
2015 struct spi_master
*master
= spi
->master
;
2017 unsigned long flags
;
2019 ret
= __spi_validate(spi
, message
);
2023 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2025 ret
= __spi_async(spi
, message
);
2027 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2032 EXPORT_SYMBOL_GPL(spi_async_locked
);
2035 /*-------------------------------------------------------------------------*/
2037 /* Utility methods for SPI master protocol drivers, layered on
2038 * top of the core. Some other utility methods are defined as
2042 static void spi_complete(void *arg
)
2047 static int __spi_sync(struct spi_device
*spi
, struct spi_message
*message
,
2050 DECLARE_COMPLETION_ONSTACK(done
);
2052 struct spi_master
*master
= spi
->master
;
2054 message
->complete
= spi_complete
;
2055 message
->context
= &done
;
2058 mutex_lock(&master
->bus_lock_mutex
);
2060 status
= spi_async_locked(spi
, message
);
2063 mutex_unlock(&master
->bus_lock_mutex
);
2066 wait_for_completion(&done
);
2067 status
= message
->status
;
2069 message
->context
= NULL
;
2074 * spi_sync - blocking/synchronous SPI data transfers
2075 * @spi: device with which data will be exchanged
2076 * @message: describes the data transfers
2077 * Context: can sleep
2079 * This call may only be used from a context that may sleep. The sleep
2080 * is non-interruptible, and has no timeout. Low-overhead controller
2081 * drivers may DMA directly into and out of the message buffers.
2083 * Note that the SPI device's chip select is active during the message,
2084 * and then is normally disabled between messages. Drivers for some
2085 * frequently-used devices may want to minimize costs of selecting a chip,
2086 * by leaving it selected in anticipation that the next message will go
2087 * to the same chip. (That may increase power usage.)
2089 * Also, the caller is guaranteeing that the memory associated with the
2090 * message will not be freed before this call returns.
2092 * It returns zero on success, else a negative error code.
2094 int spi_sync(struct spi_device
*spi
, struct spi_message
*message
)
2096 return __spi_sync(spi
, message
, 0);
2098 EXPORT_SYMBOL_GPL(spi_sync
);
2101 * spi_sync_locked - version of spi_sync with exclusive bus usage
2102 * @spi: device with which data will be exchanged
2103 * @message: describes the data transfers
2104 * Context: can sleep
2106 * This call may only be used from a context that may sleep. The sleep
2107 * is non-interruptible, and has no timeout. Low-overhead controller
2108 * drivers may DMA directly into and out of the message buffers.
2110 * This call should be used by drivers that require exclusive access to the
2111 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2112 * be released by a spi_bus_unlock call when the exclusive access is over.
2114 * It returns zero on success, else a negative error code.
2116 int spi_sync_locked(struct spi_device
*spi
, struct spi_message
*message
)
2118 return __spi_sync(spi
, message
, 1);
2120 EXPORT_SYMBOL_GPL(spi_sync_locked
);
2123 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2124 * @master: SPI bus master that should be locked for exclusive bus access
2125 * Context: can sleep
2127 * This call may only be used from a context that may sleep. The sleep
2128 * is non-interruptible, and has no timeout.
2130 * This call should be used by drivers that require exclusive access to the
2131 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2132 * exclusive access is over. Data transfer must be done by spi_sync_locked
2133 * and spi_async_locked calls when the SPI bus lock is held.
2135 * It returns zero on success, else a negative error code.
2137 int spi_bus_lock(struct spi_master
*master
)
2139 unsigned long flags
;
2141 mutex_lock(&master
->bus_lock_mutex
);
2143 spin_lock_irqsave(&master
->bus_lock_spinlock
, flags
);
2144 master
->bus_lock_flag
= 1;
2145 spin_unlock_irqrestore(&master
->bus_lock_spinlock
, flags
);
2147 /* mutex remains locked until spi_bus_unlock is called */
2151 EXPORT_SYMBOL_GPL(spi_bus_lock
);
2154 * spi_bus_unlock - release the lock for exclusive SPI bus usage
2155 * @master: SPI bus master that was locked for exclusive bus access
2156 * Context: can sleep
2158 * This call may only be used from a context that may sleep. The sleep
2159 * is non-interruptible, and has no timeout.
2161 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2164 * It returns zero on success, else a negative error code.
2166 int spi_bus_unlock(struct spi_master
*master
)
2168 master
->bus_lock_flag
= 0;
2170 mutex_unlock(&master
->bus_lock_mutex
);
2174 EXPORT_SYMBOL_GPL(spi_bus_unlock
);
2176 /* portable code must never pass more than 32 bytes */
2177 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
2182 * spi_write_then_read - SPI synchronous write followed by read
2183 * @spi: device with which data will be exchanged
2184 * @txbuf: data to be written (need not be dma-safe)
2185 * @n_tx: size of txbuf, in bytes
2186 * @rxbuf: buffer into which data will be read (need not be dma-safe)
2187 * @n_rx: size of rxbuf, in bytes
2188 * Context: can sleep
2190 * This performs a half duplex MicroWire style transaction with the
2191 * device, sending txbuf and then reading rxbuf. The return value
2192 * is zero for success, else a negative errno status code.
2193 * This call may only be used from a context that may sleep.
2195 * Parameters to this routine are always copied using a small buffer;
2196 * portable code should never use this for more than 32 bytes.
2197 * Performance-sensitive or bulk transfer code should instead use
2198 * spi_{async,sync}() calls with dma-safe buffers.
2200 int spi_write_then_read(struct spi_device
*spi
,
2201 const void *txbuf
, unsigned n_tx
,
2202 void *rxbuf
, unsigned n_rx
)
2204 static DEFINE_MUTEX(lock
);
2207 struct spi_message message
;
2208 struct spi_transfer x
[2];
2211 /* Use preallocated DMA-safe buffer if we can. We can't avoid
2212 * copying here, (as a pure convenience thing), but we can
2213 * keep heap costs out of the hot path unless someone else is
2214 * using the pre-allocated buffer or the transfer is too large.
2216 if ((n_tx
+ n_rx
) > SPI_BUFSIZ
|| !mutex_trylock(&lock
)) {
2217 local_buf
= kmalloc(max((unsigned)SPI_BUFSIZ
, n_tx
+ n_rx
),
2218 GFP_KERNEL
| GFP_DMA
);
2225 spi_message_init(&message
);
2226 memset(x
, 0, sizeof(x
));
2229 spi_message_add_tail(&x
[0], &message
);
2233 spi_message_add_tail(&x
[1], &message
);
2236 memcpy(local_buf
, txbuf
, n_tx
);
2237 x
[0].tx_buf
= local_buf
;
2238 x
[1].rx_buf
= local_buf
+ n_tx
;
2241 status
= spi_sync(spi
, &message
);
2243 memcpy(rxbuf
, x
[1].rx_buf
, n_rx
);
2245 if (x
[0].tx_buf
== buf
)
2246 mutex_unlock(&lock
);
2252 EXPORT_SYMBOL_GPL(spi_write_then_read
);
2254 /*-------------------------------------------------------------------------*/
2256 static int __init
spi_init(void)
2260 buf
= kmalloc(SPI_BUFSIZ
, GFP_KERNEL
);
2266 status
= bus_register(&spi_bus_type
);
2270 status
= class_register(&spi_master_class
);
2276 bus_unregister(&spi_bus_type
);
2284 /* board_info is normally registered in arch_initcall(),
2285 * but even essential drivers wait till later
2287 * REVISIT only boardinfo really needs static linking. the rest (device and
2288 * driver registration) _could_ be dynamically linked (modular) ... costs
2289 * include needing to have boardinfo data structures be much more public.
2291 postcore_initcall(spi_init
);