4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
34 * 4MB minimal write chunk size
36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10))
38 struct wb_completion
{
43 * Passed into wb_writeback(), essentially a subset of writeback_control
45 struct wb_writeback_work
{
47 struct super_block
*sb
;
48 unsigned long *older_than_this
;
49 enum writeback_sync_modes sync_mode
;
50 unsigned int tagged_writepages
:1;
51 unsigned int for_kupdate
:1;
52 unsigned int range_cyclic
:1;
53 unsigned int for_background
:1;
54 unsigned int for_sync
:1; /* sync(2) WB_SYNC_ALL writeback */
55 unsigned int auto_free
:1; /* free on completion */
56 unsigned int single_wait
:1;
57 unsigned int single_done
:1;
58 enum wb_reason reason
; /* why was writeback initiated? */
60 struct list_head list
; /* pending work list */
61 struct wb_completion
*done
; /* set if the caller waits */
65 * If one wants to wait for one or more wb_writeback_works, each work's
66 * ->done should be set to a wb_completion defined using the following
67 * macro. Once all work items are issued with wb_queue_work(), the caller
68 * can wait for the completion of all using wb_wait_for_completion(). Work
69 * items which are waited upon aren't freed automatically on completion.
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \
72 struct wb_completion cmpl = { \
73 .cnt = ATOMIC_INIT(1), \
78 * If an inode is constantly having its pages dirtied, but then the
79 * updates stop dirtytime_expire_interval seconds in the past, it's
80 * possible for the worst case time between when an inode has its
81 * timestamps updated and when they finally get written out to be two
82 * dirtytime_expire_intervals. We set the default to 12 hours (in
83 * seconds), which means most of the time inodes will have their
84 * timestamps written to disk after 12 hours, but in the worst case a
85 * few inodes might not their timestamps updated for 24 hours.
87 unsigned int dirtytime_expire_interval
= 12 * 60 * 60;
89 static inline struct inode
*wb_inode(struct list_head
*head
)
91 return list_entry(head
, struct inode
, i_wb_list
);
95 * Include the creation of the trace points after defining the
96 * wb_writeback_work structure and inline functions so that the definition
97 * remains local to this file.
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage
);
104 static bool wb_io_lists_populated(struct bdi_writeback
*wb
)
106 if (wb_has_dirty_io(wb
)) {
109 set_bit(WB_has_dirty_io
, &wb
->state
);
110 WARN_ON_ONCE(!wb
->avg_write_bandwidth
);
111 atomic_long_add(wb
->avg_write_bandwidth
,
112 &wb
->bdi
->tot_write_bandwidth
);
117 static void wb_io_lists_depopulated(struct bdi_writeback
*wb
)
119 if (wb_has_dirty_io(wb
) && list_empty(&wb
->b_dirty
) &&
120 list_empty(&wb
->b_io
) && list_empty(&wb
->b_more_io
)) {
121 clear_bit(WB_has_dirty_io
, &wb
->state
);
122 WARN_ON_ONCE(atomic_long_sub_return(wb
->avg_write_bandwidth
,
123 &wb
->bdi
->tot_write_bandwidth
) < 0);
128 * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129 * @inode: inode to be moved
130 * @wb: target bdi_writeback
131 * @head: one of @wb->b_{dirty|io|more_io}
133 * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134 * Returns %true if @inode is the first occupant of the !dirty_time IO
135 * lists; otherwise, %false.
137 static bool inode_wb_list_move_locked(struct inode
*inode
,
138 struct bdi_writeback
*wb
,
139 struct list_head
*head
)
141 assert_spin_locked(&wb
->list_lock
);
143 list_move(&inode
->i_wb_list
, head
);
145 /* dirty_time doesn't count as dirty_io until expiration */
146 if (head
!= &wb
->b_dirty_time
)
147 return wb_io_lists_populated(wb
);
149 wb_io_lists_depopulated(wb
);
154 * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155 * @inode: inode to be removed
156 * @wb: bdi_writeback @inode is being removed from
158 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159 * clear %WB_has_dirty_io if all are empty afterwards.
161 static void inode_wb_list_del_locked(struct inode
*inode
,
162 struct bdi_writeback
*wb
)
164 assert_spin_locked(&wb
->list_lock
);
166 list_del_init(&inode
->i_wb_list
);
167 wb_io_lists_depopulated(wb
);
170 static void wb_wakeup(struct bdi_writeback
*wb
)
172 spin_lock_bh(&wb
->work_lock
);
173 if (test_bit(WB_registered
, &wb
->state
))
174 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
175 spin_unlock_bh(&wb
->work_lock
);
178 static void wb_queue_work(struct bdi_writeback
*wb
,
179 struct wb_writeback_work
*work
)
181 trace_writeback_queue(wb
->bdi
, work
);
183 spin_lock_bh(&wb
->work_lock
);
184 if (!test_bit(WB_registered
, &wb
->state
)) {
185 if (work
->single_wait
)
186 work
->single_done
= 1;
190 atomic_inc(&work
->done
->cnt
);
191 list_add_tail(&work
->list
, &wb
->work_list
);
192 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
194 spin_unlock_bh(&wb
->work_lock
);
198 * wb_wait_for_completion - wait for completion of bdi_writeback_works
199 * @bdi: bdi work items were issued to
200 * @done: target wb_completion
202 * Wait for one or more work items issued to @bdi with their ->done field
203 * set to @done, which should have been defined with
204 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such
205 * work items are completed. Work items which are waited upon aren't freed
206 * automatically on completion.
208 static void wb_wait_for_completion(struct backing_dev_info
*bdi
,
209 struct wb_completion
*done
)
211 atomic_dec(&done
->cnt
); /* put down the initial count */
212 wait_event(bdi
->wb_waitq
, !atomic_read(&done
->cnt
));
215 #ifdef CONFIG_CGROUP_WRITEBACK
217 /* parameters for foreign inode detection, see wb_detach_inode() */
218 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
219 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
220 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */
221 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
223 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
224 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 /* each slot's duration is 2s / 16 */
226 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
227 /* if foreign slots >= 8, switch */
228 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 /* one round can affect upto 5 slots */
231 void __inode_attach_wb(struct inode
*inode
, struct page
*page
)
233 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
234 struct bdi_writeback
*wb
= NULL
;
236 if (inode_cgwb_enabled(inode
)) {
237 struct cgroup_subsys_state
*memcg_css
;
240 memcg_css
= mem_cgroup_css_from_page(page
);
241 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
243 /* must pin memcg_css, see wb_get_create() */
244 memcg_css
= task_get_css(current
, memory_cgrp_id
);
245 wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
254 * There may be multiple instances of this function racing to
255 * update the same inode. Use cmpxchg() to tell the winner.
257 if (unlikely(cmpxchg(&inode
->i_wb
, NULL
, wb
)))
262 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263 * @inode: inode of interest with i_lock held
265 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
266 * held on entry and is released on return. The returned wb is guaranteed
267 * to stay @inode's associated wb until its list_lock is released.
269 static struct bdi_writeback
*
270 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
271 __releases(&inode
->i_lock
)
272 __acquires(&wb
->list_lock
)
275 struct bdi_writeback
*wb
= inode_to_wb(inode
);
278 * inode_to_wb() association is protected by both
279 * @inode->i_lock and @wb->list_lock but list_lock nests
280 * outside i_lock. Drop i_lock and verify that the
281 * association hasn't changed after acquiring list_lock.
284 spin_unlock(&inode
->i_lock
);
285 spin_lock(&wb
->list_lock
);
286 wb_put(wb
); /* not gonna deref it anymore */
288 /* i_wb may have changed inbetween, can't use inode_to_wb() */
289 if (likely(wb
== inode
->i_wb
))
290 return wb
; /* @inode already has ref */
292 spin_unlock(&wb
->list_lock
);
294 spin_lock(&inode
->i_lock
);
299 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300 * @inode: inode of interest
302 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
305 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
306 __acquires(&wb
->list_lock
)
308 spin_lock(&inode
->i_lock
);
309 return locked_inode_to_wb_and_lock_list(inode
);
312 struct inode_switch_wbs_context
{
314 struct bdi_writeback
*new_wb
;
316 struct rcu_head rcu_head
;
317 struct work_struct work
;
320 static void inode_switch_wbs_work_fn(struct work_struct
*work
)
322 struct inode_switch_wbs_context
*isw
=
323 container_of(work
, struct inode_switch_wbs_context
, work
);
324 struct inode
*inode
= isw
->inode
;
325 struct address_space
*mapping
= inode
->i_mapping
;
326 struct bdi_writeback
*old_wb
= inode
->i_wb
;
327 struct bdi_writeback
*new_wb
= isw
->new_wb
;
328 struct radix_tree_iter iter
;
329 bool switched
= false;
333 * By the time control reaches here, RCU grace period has passed
334 * since I_WB_SWITCH assertion and all wb stat update transactions
335 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 * synchronizing against mapping->tree_lock.
338 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 * gives us exclusion against all wb related operations on @inode
340 * including IO list manipulations and stat updates.
342 if (old_wb
< new_wb
) {
343 spin_lock(&old_wb
->list_lock
);
344 spin_lock_nested(&new_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
346 spin_lock(&new_wb
->list_lock
);
347 spin_lock_nested(&old_wb
->list_lock
, SINGLE_DEPTH_NESTING
);
349 spin_lock(&inode
->i_lock
);
350 spin_lock_irq(&mapping
->tree_lock
);
353 * Once I_FREEING is visible under i_lock, the eviction path owns
354 * the inode and we shouldn't modify ->i_wb_list.
356 if (unlikely(inode
->i_state
& I_FREEING
))
360 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
361 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 * pages actually under underwriteback.
364 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
365 PAGECACHE_TAG_DIRTY
) {
366 struct page
*page
= radix_tree_deref_slot_protected(slot
,
367 &mapping
->tree_lock
);
368 if (likely(page
) && PageDirty(page
)) {
369 __dec_wb_stat(old_wb
, WB_RECLAIMABLE
);
370 __inc_wb_stat(new_wb
, WB_RECLAIMABLE
);
374 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
, &iter
, 0,
375 PAGECACHE_TAG_WRITEBACK
) {
376 struct page
*page
= radix_tree_deref_slot_protected(slot
,
377 &mapping
->tree_lock
);
379 WARN_ON_ONCE(!PageWriteback(page
));
380 __dec_wb_stat(old_wb
, WB_WRITEBACK
);
381 __inc_wb_stat(new_wb
, WB_WRITEBACK
);
388 * Transfer to @new_wb's IO list if necessary. The specific list
389 * @inode was on is ignored and the inode is put on ->b_dirty which
390 * is always correct including from ->b_dirty_time. The transfer
391 * preserves @inode->dirtied_when ordering.
393 if (!list_empty(&inode
->i_wb_list
)) {
396 inode_wb_list_del_locked(inode
, old_wb
);
397 inode
->i_wb
= new_wb
;
398 list_for_each_entry(pos
, &new_wb
->b_dirty
, i_wb_list
)
399 if (time_after_eq(inode
->dirtied_when
,
402 inode_wb_list_move_locked(inode
, new_wb
, pos
->i_wb_list
.prev
);
404 inode
->i_wb
= new_wb
;
407 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 inode
->i_wb_frn_winner
= 0;
409 inode
->i_wb_frn_avg_time
= 0;
410 inode
->i_wb_frn_history
= 0;
414 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 * ensures that the new wb is visible if they see !I_WB_SWITCH.
417 smp_store_release(&inode
->i_state
, inode
->i_state
& ~I_WB_SWITCH
);
419 spin_unlock_irq(&mapping
->tree_lock
);
420 spin_unlock(&inode
->i_lock
);
421 spin_unlock(&new_wb
->list_lock
);
422 spin_unlock(&old_wb
->list_lock
);
434 static void inode_switch_wbs_rcu_fn(struct rcu_head
*rcu_head
)
436 struct inode_switch_wbs_context
*isw
= container_of(rcu_head
,
437 struct inode_switch_wbs_context
, rcu_head
);
439 /* needs to grab bh-unsafe locks, bounce to work item */
440 INIT_WORK(&isw
->work
, inode_switch_wbs_work_fn
);
441 schedule_work(&isw
->work
);
445 * inode_switch_wbs - change the wb association of an inode
446 * @inode: target inode
447 * @new_wb_id: ID of the new wb
449 * Switch @inode's wb association to the wb identified by @new_wb_id. The
450 * switching is performed asynchronously and may fail silently.
452 static void inode_switch_wbs(struct inode
*inode
, int new_wb_id
)
454 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
455 struct cgroup_subsys_state
*memcg_css
;
456 struct inode_switch_wbs_context
*isw
;
458 /* noop if seems to be already in progress */
459 if (inode
->i_state
& I_WB_SWITCH
)
462 isw
= kzalloc(sizeof(*isw
), GFP_ATOMIC
);
466 /* find and pin the new wb */
468 memcg_css
= css_from_id(new_wb_id
, &memory_cgrp_subsys
);
470 isw
->new_wb
= wb_get_create(bdi
, memcg_css
, GFP_ATOMIC
);
475 /* while holding I_WB_SWITCH, no one else can update the association */
476 spin_lock(&inode
->i_lock
);
477 if (inode
->i_state
& (I_WB_SWITCH
| I_FREEING
) ||
478 inode_to_wb(inode
) == isw
->new_wb
) {
479 spin_unlock(&inode
->i_lock
);
482 inode
->i_state
|= I_WB_SWITCH
;
483 spin_unlock(&inode
->i_lock
);
489 * In addition to synchronizing among switchers, I_WB_SWITCH tells
490 * the RCU protected stat update paths to grab the mapping's
491 * tree_lock so that stat transfer can synchronize against them.
492 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
494 call_rcu(&isw
->rcu_head
, inode_switch_wbs_rcu_fn
);
504 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
505 * @wbc: writeback_control of interest
506 * @inode: target inode
508 * @inode is locked and about to be written back under the control of @wbc.
509 * Record @inode's writeback context into @wbc and unlock the i_lock. On
510 * writeback completion, wbc_detach_inode() should be called. This is used
511 * to track the cgroup writeback context.
513 void wbc_attach_and_unlock_inode(struct writeback_control
*wbc
,
516 if (!inode_cgwb_enabled(inode
)) {
517 spin_unlock(&inode
->i_lock
);
521 wbc
->wb
= inode_to_wb(inode
);
524 wbc
->wb_id
= wbc
->wb
->memcg_css
->id
;
525 wbc
->wb_lcand_id
= inode
->i_wb_frn_winner
;
526 wbc
->wb_tcand_id
= 0;
528 wbc
->wb_lcand_bytes
= 0;
529 wbc
->wb_tcand_bytes
= 0;
532 spin_unlock(&inode
->i_lock
);
535 * A dying wb indicates that the memcg-blkcg mapping has changed
536 * and a new wb is already serving the memcg. Switch immediately.
538 if (unlikely(wb_dying(wbc
->wb
)))
539 inode_switch_wbs(inode
, wbc
->wb_id
);
543 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
544 * @wbc: writeback_control of the just finished writeback
546 * To be called after a writeback attempt of an inode finishes and undoes
547 * wbc_attach_and_unlock_inode(). Can be called under any context.
549 * As concurrent write sharing of an inode is expected to be very rare and
550 * memcg only tracks page ownership on first-use basis severely confining
551 * the usefulness of such sharing, cgroup writeback tracks ownership
552 * per-inode. While the support for concurrent write sharing of an inode
553 * is deemed unnecessary, an inode being written to by different cgroups at
554 * different points in time is a lot more common, and, more importantly,
555 * charging only by first-use can too readily lead to grossly incorrect
556 * behaviors (single foreign page can lead to gigabytes of writeback to be
557 * incorrectly attributed).
559 * To resolve this issue, cgroup writeback detects the majority dirtier of
560 * an inode and transfers the ownership to it. To avoid unnnecessary
561 * oscillation, the detection mechanism keeps track of history and gives
562 * out the switch verdict only if the foreign usage pattern is stable over
563 * a certain amount of time and/or writeback attempts.
565 * On each writeback attempt, @wbc tries to detect the majority writer
566 * using Boyer-Moore majority vote algorithm. In addition to the byte
567 * count from the majority voting, it also counts the bytes written for the
568 * current wb and the last round's winner wb (max of last round's current
569 * wb, the winner from two rounds ago, and the last round's majority
570 * candidate). Keeping track of the historical winner helps the algorithm
571 * to semi-reliably detect the most active writer even when it's not the
574 * Once the winner of the round is determined, whether the winner is
575 * foreign or not and how much IO time the round consumed is recorded in
576 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
577 * over a certain threshold, the switch verdict is given.
579 void wbc_detach_inode(struct writeback_control
*wbc
)
581 struct bdi_writeback
*wb
= wbc
->wb
;
582 struct inode
*inode
= wbc
->inode
;
583 unsigned long avg_time
, max_bytes
, max_time
;
590 history
= inode
->i_wb_frn_history
;
591 avg_time
= inode
->i_wb_frn_avg_time
;
593 /* pick the winner of this round */
594 if (wbc
->wb_bytes
>= wbc
->wb_lcand_bytes
&&
595 wbc
->wb_bytes
>= wbc
->wb_tcand_bytes
) {
597 max_bytes
= wbc
->wb_bytes
;
598 } else if (wbc
->wb_lcand_bytes
>= wbc
->wb_tcand_bytes
) {
599 max_id
= wbc
->wb_lcand_id
;
600 max_bytes
= wbc
->wb_lcand_bytes
;
602 max_id
= wbc
->wb_tcand_id
;
603 max_bytes
= wbc
->wb_tcand_bytes
;
607 * Calculate the amount of IO time the winner consumed and fold it
608 * into the running average kept per inode. If the consumed IO
609 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
610 * deciding whether to switch or not. This is to prevent one-off
611 * small dirtiers from skewing the verdict.
613 max_time
= DIV_ROUND_UP((max_bytes
>> PAGE_SHIFT
) << WB_FRN_TIME_SHIFT
,
614 wb
->avg_write_bandwidth
);
616 avg_time
+= (max_time
>> WB_FRN_TIME_AVG_SHIFT
) -
617 (avg_time
>> WB_FRN_TIME_AVG_SHIFT
);
619 avg_time
= max_time
; /* immediate catch up on first run */
621 if (max_time
>= avg_time
/ WB_FRN_TIME_CUT_DIV
) {
625 * The switch verdict is reached if foreign wb's consume
626 * more than a certain proportion of IO time in a
627 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
628 * history mask where each bit represents one sixteenth of
629 * the period. Determine the number of slots to shift into
630 * history from @max_time.
632 slots
= min(DIV_ROUND_UP(max_time
, WB_FRN_HIST_UNIT
),
633 (unsigned long)WB_FRN_HIST_MAX_SLOTS
);
635 if (wbc
->wb_id
!= max_id
)
636 history
|= (1U << slots
) - 1;
639 * Switch if the current wb isn't the consistent winner.
640 * If there are multiple closely competing dirtiers, the
641 * inode may switch across them repeatedly over time, which
642 * is okay. The main goal is avoiding keeping an inode on
643 * the wrong wb for an extended period of time.
645 if (hweight32(history
) > WB_FRN_HIST_THR_SLOTS
)
646 inode_switch_wbs(inode
, max_id
);
650 * Multiple instances of this function may race to update the
651 * following fields but we don't mind occassional inaccuracies.
653 inode
->i_wb_frn_winner
= max_id
;
654 inode
->i_wb_frn_avg_time
= min(avg_time
, (unsigned long)U16_MAX
);
655 inode
->i_wb_frn_history
= history
;
662 * wbc_account_io - account IO issued during writeback
663 * @wbc: writeback_control of the writeback in progress
664 * @page: page being written out
665 * @bytes: number of bytes being written out
667 * @bytes from @page are about to written out during the writeback
668 * controlled by @wbc. Keep the book for foreign inode detection. See
669 * wbc_detach_inode().
671 void wbc_account_io(struct writeback_control
*wbc
, struct page
*page
,
677 * pageout() path doesn't attach @wbc to the inode being written
678 * out. This is intentional as we don't want the function to block
679 * behind a slow cgroup. Ultimately, we want pageout() to kick off
680 * regular writeback instead of writing things out itself.
686 id
= mem_cgroup_css_from_page(page
)->id
;
689 if (id
== wbc
->wb_id
) {
690 wbc
->wb_bytes
+= bytes
;
694 if (id
== wbc
->wb_lcand_id
)
695 wbc
->wb_lcand_bytes
+= bytes
;
697 /* Boyer-Moore majority vote algorithm */
698 if (!wbc
->wb_tcand_bytes
)
699 wbc
->wb_tcand_id
= id
;
700 if (id
== wbc
->wb_tcand_id
)
701 wbc
->wb_tcand_bytes
+= bytes
;
703 wbc
->wb_tcand_bytes
-= min(bytes
, wbc
->wb_tcand_bytes
);
707 * inode_congested - test whether an inode is congested
708 * @inode: inode to test for congestion
709 * @cong_bits: mask of WB_[a]sync_congested bits to test
711 * Tests whether @inode is congested. @cong_bits is the mask of congestion
712 * bits to test and the return value is the mask of set bits.
714 * If cgroup writeback is enabled for @inode, the congestion state is
715 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
716 * associated with @inode is congested; otherwise, the root wb's congestion
719 int inode_congested(struct inode
*inode
, int cong_bits
)
722 * Once set, ->i_wb never becomes NULL while the inode is alive.
723 * Start transaction iff ->i_wb is visible.
725 if (inode
&& inode_to_wb_is_valid(inode
)) {
726 struct bdi_writeback
*wb
;
727 bool locked
, congested
;
729 wb
= unlocked_inode_to_wb_begin(inode
, &locked
);
730 congested
= wb_congested(wb
, cong_bits
);
731 unlocked_inode_to_wb_end(inode
, locked
);
735 return wb_congested(&inode_to_bdi(inode
)->wb
, cong_bits
);
737 EXPORT_SYMBOL_GPL(inode_congested
);
740 * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
741 * @bdi: bdi the work item was issued to
742 * @work: work item to wait for
744 * Wait for the completion of @work which was issued to one of @bdi's
745 * bdi_writeback's. The caller must have set @work->single_wait before
746 * issuing it. This wait operates independently fo
747 * wb_wait_for_completion() and also disables automatic freeing of @work.
749 static void wb_wait_for_single_work(struct backing_dev_info
*bdi
,
750 struct wb_writeback_work
*work
)
752 if (WARN_ON_ONCE(!work
->single_wait
))
755 wait_event(bdi
->wb_waitq
, work
->single_done
);
758 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
759 * modifications to @work prior to assertion of ->single_done is
760 * visible to the caller once this function returns.
766 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
767 * @wb: target bdi_writeback to split @nr_pages to
768 * @nr_pages: number of pages to write for the whole bdi
770 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
771 * relation to the total write bandwidth of all wb's w/ dirty inodes on
774 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
776 unsigned long this_bw
= wb
->avg_write_bandwidth
;
777 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
779 if (nr_pages
== LONG_MAX
)
783 * This may be called on clean wb's and proportional distribution
784 * may not make sense, just use the original @nr_pages in those
785 * cases. In general, we wanna err on the side of writing more.
787 if (!tot_bw
|| this_bw
>= tot_bw
)
790 return DIV_ROUND_UP_ULL((u64
)nr_pages
* this_bw
, tot_bw
);
794 * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
795 * @wb: target bdi_writeback
796 * @base_work: source wb_writeback_work
798 * Try to make a clone of @base_work and issue it to @wb. If cloning
799 * succeeds, %true is returned; otherwise, @base_work is issued directly
800 * and %false is returned. In the latter case, the caller is required to
801 * wait for @base_work's completion using wb_wait_for_single_work().
803 * A clone is auto-freed on completion. @base_work never is.
805 static bool wb_clone_and_queue_work(struct bdi_writeback
*wb
,
806 struct wb_writeback_work
*base_work
)
808 struct wb_writeback_work
*work
;
810 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
814 work
->single_wait
= 0;
818 work
->single_wait
= 1;
820 work
->single_done
= 0;
821 wb_queue_work(wb
, work
);
822 return work
!= base_work
;
826 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
827 * @bdi: target backing_dev_info
828 * @base_work: wb_writeback_work to issue
829 * @skip_if_busy: skip wb's which already have writeback in progress
831 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
832 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
833 * distributed to the busy wbs according to each wb's proportion in the
834 * total active write bandwidth of @bdi.
836 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
837 struct wb_writeback_work
*base_work
,
840 long nr_pages
= base_work
->nr_pages
;
841 int next_blkcg_id
= 0;
842 struct bdi_writeback
*wb
;
847 if (!bdi_has_dirty_io(bdi
))
851 bdi_for_each_wb(wb
, bdi
, &iter
, next_blkcg_id
) {
852 if (!wb_has_dirty_io(wb
) ||
853 (skip_if_busy
&& writeback_in_progress(wb
)))
856 base_work
->nr_pages
= wb_split_bdi_pages(wb
, nr_pages
);
857 if (!wb_clone_and_queue_work(wb
, base_work
)) {
858 next_blkcg_id
= wb
->blkcg_css
->id
+ 1;
860 wb_wait_for_single_work(bdi
, base_work
);
867 #else /* CONFIG_CGROUP_WRITEBACK */
869 static struct bdi_writeback
*
870 locked_inode_to_wb_and_lock_list(struct inode
*inode
)
871 __releases(&inode
->i_lock
)
872 __acquires(&wb
->list_lock
)
874 struct bdi_writeback
*wb
= inode_to_wb(inode
);
876 spin_unlock(&inode
->i_lock
);
877 spin_lock(&wb
->list_lock
);
881 static struct bdi_writeback
*inode_to_wb_and_lock_list(struct inode
*inode
)
882 __acquires(&wb
->list_lock
)
884 struct bdi_writeback
*wb
= inode_to_wb(inode
);
886 spin_lock(&wb
->list_lock
);
890 static long wb_split_bdi_pages(struct bdi_writeback
*wb
, long nr_pages
)
895 static void bdi_split_work_to_wbs(struct backing_dev_info
*bdi
,
896 struct wb_writeback_work
*base_work
,
901 if (bdi_has_dirty_io(bdi
) &&
902 (!skip_if_busy
|| !writeback_in_progress(&bdi
->wb
))) {
903 base_work
->auto_free
= 0;
904 base_work
->single_wait
= 0;
905 base_work
->single_done
= 0;
906 wb_queue_work(&bdi
->wb
, base_work
);
910 #endif /* CONFIG_CGROUP_WRITEBACK */
912 void wb_start_writeback(struct bdi_writeback
*wb
, long nr_pages
,
913 bool range_cyclic
, enum wb_reason reason
)
915 struct wb_writeback_work
*work
;
917 if (!wb_has_dirty_io(wb
))
921 * This is WB_SYNC_NONE writeback, so if allocation fails just
922 * wakeup the thread for old dirty data writeback
924 work
= kzalloc(sizeof(*work
), GFP_ATOMIC
);
926 trace_writeback_nowork(wb
->bdi
);
931 work
->sync_mode
= WB_SYNC_NONE
;
932 work
->nr_pages
= nr_pages
;
933 work
->range_cyclic
= range_cyclic
;
934 work
->reason
= reason
;
937 wb_queue_work(wb
, work
);
941 * wb_start_background_writeback - start background writeback
942 * @wb: bdi_writback to write from
945 * This makes sure WB_SYNC_NONE background writeback happens. When
946 * this function returns, it is only guaranteed that for given wb
947 * some IO is happening if we are over background dirty threshold.
948 * Caller need not hold sb s_umount semaphore.
950 void wb_start_background_writeback(struct bdi_writeback
*wb
)
953 * We just wake up the flusher thread. It will perform background
954 * writeback as soon as there is no other work to do.
956 trace_writeback_wake_background(wb
->bdi
);
961 * Remove the inode from the writeback list it is on.
963 void inode_wb_list_del(struct inode
*inode
)
965 struct bdi_writeback
*wb
;
967 wb
= inode_to_wb_and_lock_list(inode
);
968 inode_wb_list_del_locked(inode
, wb
);
969 spin_unlock(&wb
->list_lock
);
973 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
974 * furthest end of its superblock's dirty-inode list.
976 * Before stamping the inode's ->dirtied_when, we check to see whether it is
977 * already the most-recently-dirtied inode on the b_dirty list. If that is
978 * the case then the inode must have been redirtied while it was being written
979 * out and we don't reset its dirtied_when.
981 static void redirty_tail(struct inode
*inode
, struct bdi_writeback
*wb
)
983 if (!list_empty(&wb
->b_dirty
)) {
986 tail
= wb_inode(wb
->b_dirty
.next
);
987 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
988 inode
->dirtied_when
= jiffies
;
990 inode_wb_list_move_locked(inode
, wb
, &wb
->b_dirty
);
994 * requeue inode for re-scanning after bdi->b_io list is exhausted.
996 static void requeue_io(struct inode
*inode
, struct bdi_writeback
*wb
)
998 inode_wb_list_move_locked(inode
, wb
, &wb
->b_more_io
);
1001 static void inode_sync_complete(struct inode
*inode
)
1003 inode
->i_state
&= ~I_SYNC
;
1004 /* If inode is clean an unused, put it into LRU now... */
1005 inode_add_lru(inode
);
1006 /* Waiters must see I_SYNC cleared before being woken up */
1008 wake_up_bit(&inode
->i_state
, __I_SYNC
);
1011 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
1013 bool ret
= time_after(inode
->dirtied_when
, t
);
1014 #ifndef CONFIG_64BIT
1016 * For inodes being constantly redirtied, dirtied_when can get stuck.
1017 * It _appears_ to be in the future, but is actually in distant past.
1018 * This test is necessary to prevent such wrapped-around relative times
1019 * from permanently stopping the whole bdi writeback.
1021 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
1026 #define EXPIRE_DIRTY_ATIME 0x0001
1029 * Move expired (dirtied before work->older_than_this) dirty inodes from
1030 * @delaying_queue to @dispatch_queue.
1032 static int move_expired_inodes(struct list_head
*delaying_queue
,
1033 struct list_head
*dispatch_queue
,
1035 struct wb_writeback_work
*work
)
1037 unsigned long *older_than_this
= NULL
;
1038 unsigned long expire_time
;
1040 struct list_head
*pos
, *node
;
1041 struct super_block
*sb
= NULL
;
1042 struct inode
*inode
;
1046 if ((flags
& EXPIRE_DIRTY_ATIME
) == 0)
1047 older_than_this
= work
->older_than_this
;
1048 else if (!work
->for_sync
) {
1049 expire_time
= jiffies
- (dirtytime_expire_interval
* HZ
);
1050 older_than_this
= &expire_time
;
1052 while (!list_empty(delaying_queue
)) {
1053 inode
= wb_inode(delaying_queue
->prev
);
1054 if (older_than_this
&&
1055 inode_dirtied_after(inode
, *older_than_this
))
1057 list_move(&inode
->i_wb_list
, &tmp
);
1059 if (flags
& EXPIRE_DIRTY_ATIME
)
1060 set_bit(__I_DIRTY_TIME_EXPIRED
, &inode
->i_state
);
1061 if (sb_is_blkdev_sb(inode
->i_sb
))
1063 if (sb
&& sb
!= inode
->i_sb
)
1068 /* just one sb in list, splice to dispatch_queue and we're done */
1070 list_splice(&tmp
, dispatch_queue
);
1074 /* Move inodes from one superblock together */
1075 while (!list_empty(&tmp
)) {
1076 sb
= wb_inode(tmp
.prev
)->i_sb
;
1077 list_for_each_prev_safe(pos
, node
, &tmp
) {
1078 inode
= wb_inode(pos
);
1079 if (inode
->i_sb
== sb
)
1080 list_move(&inode
->i_wb_list
, dispatch_queue
);
1088 * Queue all expired dirty inodes for io, eldest first.
1090 * newly dirtied b_dirty b_io b_more_io
1091 * =============> gf edc BA
1093 * newly dirtied b_dirty b_io b_more_io
1094 * =============> g fBAedc
1096 * +--> dequeue for IO
1098 static void queue_io(struct bdi_writeback
*wb
, struct wb_writeback_work
*work
)
1102 assert_spin_locked(&wb
->list_lock
);
1103 list_splice_init(&wb
->b_more_io
, &wb
->b_io
);
1104 moved
= move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, 0, work
);
1105 moved
+= move_expired_inodes(&wb
->b_dirty_time
, &wb
->b_io
,
1106 EXPIRE_DIRTY_ATIME
, work
);
1108 wb_io_lists_populated(wb
);
1109 trace_writeback_queue_io(wb
, work
, moved
);
1112 static int write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1116 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
)) {
1117 trace_writeback_write_inode_start(inode
, wbc
);
1118 ret
= inode
->i_sb
->s_op
->write_inode(inode
, wbc
);
1119 trace_writeback_write_inode(inode
, wbc
);
1126 * Wait for writeback on an inode to complete. Called with i_lock held.
1127 * Caller must make sure inode cannot go away when we drop i_lock.
1129 static void __inode_wait_for_writeback(struct inode
*inode
)
1130 __releases(inode
->i_lock
)
1131 __acquires(inode
->i_lock
)
1133 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
1134 wait_queue_head_t
*wqh
;
1136 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1137 while (inode
->i_state
& I_SYNC
) {
1138 spin_unlock(&inode
->i_lock
);
1139 __wait_on_bit(wqh
, &wq
, bit_wait
,
1140 TASK_UNINTERRUPTIBLE
);
1141 spin_lock(&inode
->i_lock
);
1146 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1148 void inode_wait_for_writeback(struct inode
*inode
)
1150 spin_lock(&inode
->i_lock
);
1151 __inode_wait_for_writeback(inode
);
1152 spin_unlock(&inode
->i_lock
);
1156 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1157 * held and drops it. It is aimed for callers not holding any inode reference
1158 * so once i_lock is dropped, inode can go away.
1160 static void inode_sleep_on_writeback(struct inode
*inode
)
1161 __releases(inode
->i_lock
)
1164 wait_queue_head_t
*wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
1167 prepare_to_wait(wqh
, &wait
, TASK_UNINTERRUPTIBLE
);
1168 sleep
= inode
->i_state
& I_SYNC
;
1169 spin_unlock(&inode
->i_lock
);
1172 finish_wait(wqh
, &wait
);
1176 * Find proper writeback list for the inode depending on its current state and
1177 * possibly also change of its state while we were doing writeback. Here we
1178 * handle things such as livelock prevention or fairness of writeback among
1179 * inodes. This function can be called only by flusher thread - noone else
1180 * processes all inodes in writeback lists and requeueing inodes behind flusher
1181 * thread's back can have unexpected consequences.
1183 static void requeue_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1184 struct writeback_control
*wbc
)
1186 if (inode
->i_state
& I_FREEING
)
1190 * Sync livelock prevention. Each inode is tagged and synced in one
1191 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1192 * the dirty time to prevent enqueue and sync it again.
1194 if ((inode
->i_state
& I_DIRTY
) &&
1195 (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
))
1196 inode
->dirtied_when
= jiffies
;
1198 if (wbc
->pages_skipped
) {
1200 * writeback is not making progress due to locked
1201 * buffers. Skip this inode for now.
1203 redirty_tail(inode
, wb
);
1207 if (mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_DIRTY
)) {
1209 * We didn't write back all the pages. nfs_writepages()
1210 * sometimes bales out without doing anything.
1212 if (wbc
->nr_to_write
<= 0) {
1213 /* Slice used up. Queue for next turn. */
1214 requeue_io(inode
, wb
);
1217 * Writeback blocked by something other than
1218 * congestion. Delay the inode for some time to
1219 * avoid spinning on the CPU (100% iowait)
1220 * retrying writeback of the dirty page/inode
1221 * that cannot be performed immediately.
1223 redirty_tail(inode
, wb
);
1225 } else if (inode
->i_state
& I_DIRTY
) {
1227 * Filesystems can dirty the inode during writeback operations,
1228 * such as delayed allocation during submission or metadata
1229 * updates after data IO completion.
1231 redirty_tail(inode
, wb
);
1232 } else if (inode
->i_state
& I_DIRTY_TIME
) {
1233 inode
->dirtied_when
= jiffies
;
1234 inode_wb_list_move_locked(inode
, wb
, &wb
->b_dirty_time
);
1236 /* The inode is clean. Remove from writeback lists. */
1237 inode_wb_list_del_locked(inode
, wb
);
1242 * Write out an inode and its dirty pages. Do not update the writeback list
1243 * linkage. That is left to the caller. The caller is also responsible for
1244 * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1247 __writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1249 struct address_space
*mapping
= inode
->i_mapping
;
1250 long nr_to_write
= wbc
->nr_to_write
;
1254 WARN_ON(!(inode
->i_state
& I_SYNC
));
1256 trace_writeback_single_inode_start(inode
, wbc
, nr_to_write
);
1258 ret
= do_writepages(mapping
, wbc
);
1261 * Make sure to wait on the data before writing out the metadata.
1262 * This is important for filesystems that modify metadata on data
1263 * I/O completion. We don't do it for sync(2) writeback because it has a
1264 * separate, external IO completion path and ->sync_fs for guaranteeing
1265 * inode metadata is written back correctly.
1267 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
) {
1268 int err
= filemap_fdatawait(mapping
);
1274 * Some filesystems may redirty the inode during the writeback
1275 * due to delalloc, clear dirty metadata flags right before
1278 spin_lock(&inode
->i_lock
);
1280 dirty
= inode
->i_state
& I_DIRTY
;
1281 if (inode
->i_state
& I_DIRTY_TIME
) {
1282 if ((dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
1283 unlikely(inode
->i_state
& I_DIRTY_TIME_EXPIRED
) ||
1284 unlikely(time_after(jiffies
,
1285 (inode
->dirtied_time_when
+
1286 dirtytime_expire_interval
* HZ
)))) {
1287 dirty
|= I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
;
1288 trace_writeback_lazytime(inode
);
1291 inode
->i_state
&= ~I_DIRTY_TIME_EXPIRED
;
1292 inode
->i_state
&= ~dirty
;
1295 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1296 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1297 * either they see the I_DIRTY bits cleared or we see the dirtied
1300 * I_DIRTY_PAGES is always cleared together above even if @mapping
1301 * still has dirty pages. The flag is reinstated after smp_mb() if
1302 * necessary. This guarantees that either __mark_inode_dirty()
1303 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1307 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
1308 inode
->i_state
|= I_DIRTY_PAGES
;
1310 spin_unlock(&inode
->i_lock
);
1312 if (dirty
& I_DIRTY_TIME
)
1313 mark_inode_dirty_sync(inode
);
1314 /* Don't write the inode if only I_DIRTY_PAGES was set */
1315 if (dirty
& ~I_DIRTY_PAGES
) {
1316 int err
= write_inode(inode
, wbc
);
1320 trace_writeback_single_inode(inode
, wbc
, nr_to_write
);
1325 * Write out an inode's dirty pages. Either the caller has an active reference
1326 * on the inode or the inode has I_WILL_FREE set.
1328 * This function is designed to be called for writing back one inode which
1329 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1330 * and does more profound writeback list handling in writeback_sb_inodes().
1333 writeback_single_inode(struct inode
*inode
, struct bdi_writeback
*wb
,
1334 struct writeback_control
*wbc
)
1338 spin_lock(&inode
->i_lock
);
1339 if (!atomic_read(&inode
->i_count
))
1340 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
1342 WARN_ON(inode
->i_state
& I_WILL_FREE
);
1344 if (inode
->i_state
& I_SYNC
) {
1345 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
1348 * It's a data-integrity sync. We must wait. Since callers hold
1349 * inode reference or inode has I_WILL_FREE set, it cannot go
1352 __inode_wait_for_writeback(inode
);
1354 WARN_ON(inode
->i_state
& I_SYNC
);
1356 * Skip inode if it is clean and we have no outstanding writeback in
1357 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1358 * function since flusher thread may be doing for example sync in
1359 * parallel and if we move the inode, it could get skipped. So here we
1360 * make sure inode is on some writeback list and leave it there unless
1361 * we have completely cleaned the inode.
1363 if (!(inode
->i_state
& I_DIRTY_ALL
) &&
1364 (wbc
->sync_mode
!= WB_SYNC_ALL
||
1365 !mapping_tagged(inode
->i_mapping
, PAGECACHE_TAG_WRITEBACK
)))
1367 inode
->i_state
|= I_SYNC
;
1368 wbc_attach_and_unlock_inode(wbc
, inode
);
1370 ret
= __writeback_single_inode(inode
, wbc
);
1372 wbc_detach_inode(wbc
);
1373 spin_lock(&wb
->list_lock
);
1374 spin_lock(&inode
->i_lock
);
1376 * If inode is clean, remove it from writeback lists. Otherwise don't
1377 * touch it. See comment above for explanation.
1379 if (!(inode
->i_state
& I_DIRTY_ALL
))
1380 inode_wb_list_del_locked(inode
, wb
);
1381 spin_unlock(&wb
->list_lock
);
1382 inode_sync_complete(inode
);
1384 spin_unlock(&inode
->i_lock
);
1388 static long writeback_chunk_size(struct bdi_writeback
*wb
,
1389 struct wb_writeback_work
*work
)
1394 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1395 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1396 * here avoids calling into writeback_inodes_wb() more than once.
1398 * The intended call sequence for WB_SYNC_ALL writeback is:
1401 * writeback_sb_inodes() <== called only once
1402 * write_cache_pages() <== called once for each inode
1403 * (quickly) tag currently dirty pages
1404 * (maybe slowly) sync all tagged pages
1406 if (work
->sync_mode
== WB_SYNC_ALL
|| work
->tagged_writepages
)
1409 pages
= min(wb
->avg_write_bandwidth
/ 2,
1410 global_wb_domain
.dirty_limit
/ DIRTY_SCOPE
);
1411 pages
= min(pages
, work
->nr_pages
);
1412 pages
= round_down(pages
+ MIN_WRITEBACK_PAGES
,
1413 MIN_WRITEBACK_PAGES
);
1420 * Write a portion of b_io inodes which belong to @sb.
1422 * Return the number of pages and/or inodes written.
1424 static long writeback_sb_inodes(struct super_block
*sb
,
1425 struct bdi_writeback
*wb
,
1426 struct wb_writeback_work
*work
)
1428 struct writeback_control wbc
= {
1429 .sync_mode
= work
->sync_mode
,
1430 .tagged_writepages
= work
->tagged_writepages
,
1431 .for_kupdate
= work
->for_kupdate
,
1432 .for_background
= work
->for_background
,
1433 .for_sync
= work
->for_sync
,
1434 .range_cyclic
= work
->range_cyclic
,
1436 .range_end
= LLONG_MAX
,
1438 unsigned long start_time
= jiffies
;
1440 long wrote
= 0; /* count both pages and inodes */
1442 while (!list_empty(&wb
->b_io
)) {
1443 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1445 if (inode
->i_sb
!= sb
) {
1448 * We only want to write back data for this
1449 * superblock, move all inodes not belonging
1450 * to it back onto the dirty list.
1452 redirty_tail(inode
, wb
);
1457 * The inode belongs to a different superblock.
1458 * Bounce back to the caller to unpin this and
1459 * pin the next superblock.
1465 * Don't bother with new inodes or inodes being freed, first
1466 * kind does not need periodic writeout yet, and for the latter
1467 * kind writeout is handled by the freer.
1469 spin_lock(&inode
->i_lock
);
1470 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
1471 spin_unlock(&inode
->i_lock
);
1472 redirty_tail(inode
, wb
);
1475 if ((inode
->i_state
& I_SYNC
) && wbc
.sync_mode
!= WB_SYNC_ALL
) {
1477 * If this inode is locked for writeback and we are not
1478 * doing writeback-for-data-integrity, move it to
1479 * b_more_io so that writeback can proceed with the
1480 * other inodes on s_io.
1482 * We'll have another go at writing back this inode
1483 * when we completed a full scan of b_io.
1485 spin_unlock(&inode
->i_lock
);
1486 requeue_io(inode
, wb
);
1487 trace_writeback_sb_inodes_requeue(inode
);
1490 spin_unlock(&wb
->list_lock
);
1493 * We already requeued the inode if it had I_SYNC set and we
1494 * are doing WB_SYNC_NONE writeback. So this catches only the
1497 if (inode
->i_state
& I_SYNC
) {
1498 /* Wait for I_SYNC. This function drops i_lock... */
1499 inode_sleep_on_writeback(inode
);
1500 /* Inode may be gone, start again */
1501 spin_lock(&wb
->list_lock
);
1504 inode
->i_state
|= I_SYNC
;
1505 wbc_attach_and_unlock_inode(&wbc
, inode
);
1507 write_chunk
= writeback_chunk_size(wb
, work
);
1508 wbc
.nr_to_write
= write_chunk
;
1509 wbc
.pages_skipped
= 0;
1512 * We use I_SYNC to pin the inode in memory. While it is set
1513 * evict_inode() will wait so the inode cannot be freed.
1515 __writeback_single_inode(inode
, &wbc
);
1517 wbc_detach_inode(&wbc
);
1518 work
->nr_pages
-= write_chunk
- wbc
.nr_to_write
;
1519 wrote
+= write_chunk
- wbc
.nr_to_write
;
1520 spin_lock(&wb
->list_lock
);
1521 spin_lock(&inode
->i_lock
);
1522 if (!(inode
->i_state
& I_DIRTY_ALL
))
1524 requeue_inode(inode
, wb
, &wbc
);
1525 inode_sync_complete(inode
);
1526 spin_unlock(&inode
->i_lock
);
1527 cond_resched_lock(&wb
->list_lock
);
1529 * bail out to wb_writeback() often enough to check
1530 * background threshold and other termination conditions.
1533 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1535 if (work
->nr_pages
<= 0)
1542 static long __writeback_inodes_wb(struct bdi_writeback
*wb
,
1543 struct wb_writeback_work
*work
)
1545 unsigned long start_time
= jiffies
;
1548 while (!list_empty(&wb
->b_io
)) {
1549 struct inode
*inode
= wb_inode(wb
->b_io
.prev
);
1550 struct super_block
*sb
= inode
->i_sb
;
1552 if (!trylock_super(sb
)) {
1554 * trylock_super() may fail consistently due to
1555 * s_umount being grabbed by someone else. Don't use
1556 * requeue_io() to avoid busy retrying the inode/sb.
1558 redirty_tail(inode
, wb
);
1561 wrote
+= writeback_sb_inodes(sb
, wb
, work
);
1562 up_read(&sb
->s_umount
);
1564 /* refer to the same tests at the end of writeback_sb_inodes */
1566 if (time_is_before_jiffies(start_time
+ HZ
/ 10UL))
1568 if (work
->nr_pages
<= 0)
1572 /* Leave any unwritten inodes on b_io */
1576 static long writeback_inodes_wb(struct bdi_writeback
*wb
, long nr_pages
,
1577 enum wb_reason reason
)
1579 struct wb_writeback_work work
= {
1580 .nr_pages
= nr_pages
,
1581 .sync_mode
= WB_SYNC_NONE
,
1586 spin_lock(&wb
->list_lock
);
1587 if (list_empty(&wb
->b_io
))
1588 queue_io(wb
, &work
);
1589 __writeback_inodes_wb(wb
, &work
);
1590 spin_unlock(&wb
->list_lock
);
1592 return nr_pages
- work
.nr_pages
;
1596 * Explicit flushing or periodic writeback of "old" data.
1598 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1599 * dirtying-time in the inode's address_space. So this periodic writeback code
1600 * just walks the superblock inode list, writing back any inodes which are
1601 * older than a specific point in time.
1603 * Try to run once per dirty_writeback_interval. But if a writeback event
1604 * takes longer than a dirty_writeback_interval interval, then leave a
1607 * older_than_this takes precedence over nr_to_write. So we'll only write back
1608 * all dirty pages if they are all attached to "old" mappings.
1610 static long wb_writeback(struct bdi_writeback
*wb
,
1611 struct wb_writeback_work
*work
)
1613 unsigned long wb_start
= jiffies
;
1614 long nr_pages
= work
->nr_pages
;
1615 unsigned long oldest_jif
;
1616 struct inode
*inode
;
1619 oldest_jif
= jiffies
;
1620 work
->older_than_this
= &oldest_jif
;
1622 spin_lock(&wb
->list_lock
);
1625 * Stop writeback when nr_pages has been consumed
1627 if (work
->nr_pages
<= 0)
1631 * Background writeout and kupdate-style writeback may
1632 * run forever. Stop them if there is other work to do
1633 * so that e.g. sync can proceed. They'll be restarted
1634 * after the other works are all done.
1636 if ((work
->for_background
|| work
->for_kupdate
) &&
1637 !list_empty(&wb
->work_list
))
1641 * For background writeout, stop when we are below the
1642 * background dirty threshold
1644 if (work
->for_background
&& !wb_over_bg_thresh(wb
))
1648 * Kupdate and background works are special and we want to
1649 * include all inodes that need writing. Livelock avoidance is
1650 * handled by these works yielding to any other work so we are
1653 if (work
->for_kupdate
) {
1654 oldest_jif
= jiffies
-
1655 msecs_to_jiffies(dirty_expire_interval
* 10);
1656 } else if (work
->for_background
)
1657 oldest_jif
= jiffies
;
1659 trace_writeback_start(wb
->bdi
, work
);
1660 if (list_empty(&wb
->b_io
))
1663 progress
= writeback_sb_inodes(work
->sb
, wb
, work
);
1665 progress
= __writeback_inodes_wb(wb
, work
);
1666 trace_writeback_written(wb
->bdi
, work
);
1668 wb_update_bandwidth(wb
, wb_start
);
1671 * Did we write something? Try for more
1673 * Dirty inodes are moved to b_io for writeback in batches.
1674 * The completion of the current batch does not necessarily
1675 * mean the overall work is done. So we keep looping as long
1676 * as made some progress on cleaning pages or inodes.
1681 * No more inodes for IO, bail
1683 if (list_empty(&wb
->b_more_io
))
1686 * Nothing written. Wait for some inode to
1687 * become available for writeback. Otherwise
1688 * we'll just busyloop.
1690 if (!list_empty(&wb
->b_more_io
)) {
1691 trace_writeback_wait(wb
->bdi
, work
);
1692 inode
= wb_inode(wb
->b_more_io
.prev
);
1693 spin_lock(&inode
->i_lock
);
1694 spin_unlock(&wb
->list_lock
);
1695 /* This function drops i_lock... */
1696 inode_sleep_on_writeback(inode
);
1697 spin_lock(&wb
->list_lock
);
1700 spin_unlock(&wb
->list_lock
);
1702 return nr_pages
- work
->nr_pages
;
1706 * Return the next wb_writeback_work struct that hasn't been processed yet.
1708 static struct wb_writeback_work
*get_next_work_item(struct bdi_writeback
*wb
)
1710 struct wb_writeback_work
*work
= NULL
;
1712 spin_lock_bh(&wb
->work_lock
);
1713 if (!list_empty(&wb
->work_list
)) {
1714 work
= list_entry(wb
->work_list
.next
,
1715 struct wb_writeback_work
, list
);
1716 list_del_init(&work
->list
);
1718 spin_unlock_bh(&wb
->work_lock
);
1723 * Add in the number of potentially dirty inodes, because each inode
1724 * write can dirty pagecache in the underlying blockdev.
1726 static unsigned long get_nr_dirty_pages(void)
1728 return global_page_state(NR_FILE_DIRTY
) +
1729 global_page_state(NR_UNSTABLE_NFS
) +
1730 get_nr_dirty_inodes();
1733 static long wb_check_background_flush(struct bdi_writeback
*wb
)
1735 if (wb_over_bg_thresh(wb
)) {
1737 struct wb_writeback_work work
= {
1738 .nr_pages
= LONG_MAX
,
1739 .sync_mode
= WB_SYNC_NONE
,
1740 .for_background
= 1,
1742 .reason
= WB_REASON_BACKGROUND
,
1745 return wb_writeback(wb
, &work
);
1751 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
1753 unsigned long expired
;
1757 * When set to zero, disable periodic writeback
1759 if (!dirty_writeback_interval
)
1762 expired
= wb
->last_old_flush
+
1763 msecs_to_jiffies(dirty_writeback_interval
* 10);
1764 if (time_before(jiffies
, expired
))
1767 wb
->last_old_flush
= jiffies
;
1768 nr_pages
= get_nr_dirty_pages();
1771 struct wb_writeback_work work
= {
1772 .nr_pages
= nr_pages
,
1773 .sync_mode
= WB_SYNC_NONE
,
1776 .reason
= WB_REASON_PERIODIC
,
1779 return wb_writeback(wb
, &work
);
1786 * Retrieve work items and do the writeback they describe
1788 static long wb_do_writeback(struct bdi_writeback
*wb
)
1790 struct wb_writeback_work
*work
;
1793 set_bit(WB_writeback_running
, &wb
->state
);
1794 while ((work
= get_next_work_item(wb
)) != NULL
) {
1795 struct wb_completion
*done
= work
->done
;
1796 bool need_wake_up
= false;
1798 trace_writeback_exec(wb
->bdi
, work
);
1800 wrote
+= wb_writeback(wb
, work
);
1802 if (work
->single_wait
) {
1803 WARN_ON_ONCE(work
->auto_free
);
1804 /* paired w/ rmb in wb_wait_for_single_work() */
1806 work
->single_done
= 1;
1807 need_wake_up
= true;
1808 } else if (work
->auto_free
) {
1812 if (done
&& atomic_dec_and_test(&done
->cnt
))
1813 need_wake_up
= true;
1816 wake_up_all(&wb
->bdi
->wb_waitq
);
1820 * Check for periodic writeback, kupdated() style
1822 wrote
+= wb_check_old_data_flush(wb
);
1823 wrote
+= wb_check_background_flush(wb
);
1824 clear_bit(WB_writeback_running
, &wb
->state
);
1830 * Handle writeback of dirty data for the device backed by this bdi. Also
1831 * reschedules periodically and does kupdated style flushing.
1833 void wb_workfn(struct work_struct
*work
)
1835 struct bdi_writeback
*wb
= container_of(to_delayed_work(work
),
1836 struct bdi_writeback
, dwork
);
1839 set_worker_desc("flush-%s", dev_name(wb
->bdi
->dev
));
1840 current
->flags
|= PF_SWAPWRITE
;
1842 if (likely(!current_is_workqueue_rescuer() ||
1843 !test_bit(WB_registered
, &wb
->state
))) {
1845 * The normal path. Keep writing back @wb until its
1846 * work_list is empty. Note that this path is also taken
1847 * if @wb is shutting down even when we're running off the
1848 * rescuer as work_list needs to be drained.
1851 pages_written
= wb_do_writeback(wb
);
1852 trace_writeback_pages_written(pages_written
);
1853 } while (!list_empty(&wb
->work_list
));
1856 * bdi_wq can't get enough workers and we're running off
1857 * the emergency worker. Don't hog it. Hopefully, 1024 is
1858 * enough for efficient IO.
1860 pages_written
= writeback_inodes_wb(wb
, 1024,
1861 WB_REASON_FORKER_THREAD
);
1862 trace_writeback_pages_written(pages_written
);
1865 if (!list_empty(&wb
->work_list
))
1866 mod_delayed_work(bdi_wq
, &wb
->dwork
, 0);
1867 else if (wb_has_dirty_io(wb
) && dirty_writeback_interval
)
1868 wb_wakeup_delayed(wb
);
1870 current
->flags
&= ~PF_SWAPWRITE
;
1874 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
1877 void wakeup_flusher_threads(long nr_pages
, enum wb_reason reason
)
1879 struct backing_dev_info
*bdi
;
1882 nr_pages
= get_nr_dirty_pages();
1885 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1886 struct bdi_writeback
*wb
;
1887 struct wb_iter iter
;
1889 if (!bdi_has_dirty_io(bdi
))
1892 bdi_for_each_wb(wb
, bdi
, &iter
, 0)
1893 wb_start_writeback(wb
, wb_split_bdi_pages(wb
, nr_pages
),
1900 * Wake up bdi's periodically to make sure dirtytime inodes gets
1901 * written back periodically. We deliberately do *not* check the
1902 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1903 * kernel to be constantly waking up once there are any dirtytime
1904 * inodes on the system. So instead we define a separate delayed work
1905 * function which gets called much more rarely. (By default, only
1906 * once every 12 hours.)
1908 * If there is any other write activity going on in the file system,
1909 * this function won't be necessary. But if the only thing that has
1910 * happened on the file system is a dirtytime inode caused by an atime
1911 * update, we need this infrastructure below to make sure that inode
1912 * eventually gets pushed out to disk.
1914 static void wakeup_dirtytime_writeback(struct work_struct
*w
);
1915 static DECLARE_DELAYED_WORK(dirtytime_work
, wakeup_dirtytime_writeback
);
1917 static void wakeup_dirtytime_writeback(struct work_struct
*w
)
1919 struct backing_dev_info
*bdi
;
1922 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
1923 struct bdi_writeback
*wb
;
1924 struct wb_iter iter
;
1926 bdi_for_each_wb(wb
, bdi
, &iter
, 0)
1927 if (!list_empty(&bdi
->wb
.b_dirty_time
))
1928 wb_wakeup(&bdi
->wb
);
1931 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
1934 static int __init
start_dirtytime_writeback(void)
1936 schedule_delayed_work(&dirtytime_work
, dirtytime_expire_interval
* HZ
);
1939 __initcall(start_dirtytime_writeback
);
1941 int dirtytime_interval_handler(struct ctl_table
*table
, int write
,
1942 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
1946 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
1947 if (ret
== 0 && write
)
1948 mod_delayed_work(system_wq
, &dirtytime_work
, 0);
1952 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
1954 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
1955 struct dentry
*dentry
;
1956 const char *name
= "?";
1958 dentry
= d_find_alias(inode
);
1960 spin_lock(&dentry
->d_lock
);
1961 name
= (const char *) dentry
->d_name
.name
;
1964 "%s(%d): dirtied inode %lu (%s) on %s\n",
1965 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
1966 name
, inode
->i_sb
->s_id
);
1968 spin_unlock(&dentry
->d_lock
);
1975 * __mark_inode_dirty - internal function
1976 * @inode: inode to mark
1977 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1978 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1979 * mark_inode_dirty_sync.
1981 * Put the inode on the super block's dirty list.
1983 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1984 * dirty list only if it is hashed or if it refers to a blockdev.
1985 * If it was not hashed, it will never be added to the dirty list
1986 * even if it is later hashed, as it will have been marked dirty already.
1988 * In short, make sure you hash any inodes _before_ you start marking
1991 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1992 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1993 * the kernel-internal blockdev inode represents the dirtying time of the
1994 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1995 * page->mapping->host, so the page-dirtying time is recorded in the internal
1998 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1999 void __mark_inode_dirty(struct inode
*inode
, int flags
)
2001 struct super_block
*sb
= inode
->i_sb
;
2004 trace_writeback_mark_inode_dirty(inode
, flags
);
2007 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2008 * dirty the inode itself
2010 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
| I_DIRTY_TIME
)) {
2011 trace_writeback_dirty_inode_start(inode
, flags
);
2013 if (sb
->s_op
->dirty_inode
)
2014 sb
->s_op
->dirty_inode(inode
, flags
);
2016 trace_writeback_dirty_inode(inode
, flags
);
2018 if (flags
& I_DIRTY_INODE
)
2019 flags
&= ~I_DIRTY_TIME
;
2020 dirtytime
= flags
& I_DIRTY_TIME
;
2023 * Paired with smp_mb() in __writeback_single_inode() for the
2024 * following lockless i_state test. See there for details.
2028 if (((inode
->i_state
& flags
) == flags
) ||
2029 (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
)))
2032 if (unlikely(block_dump
))
2033 block_dump___mark_inode_dirty(inode
);
2035 spin_lock(&inode
->i_lock
);
2036 if (dirtytime
&& (inode
->i_state
& I_DIRTY_INODE
))
2037 goto out_unlock_inode
;
2038 if ((inode
->i_state
& flags
) != flags
) {
2039 const int was_dirty
= inode
->i_state
& I_DIRTY
;
2041 inode_attach_wb(inode
, NULL
);
2043 if (flags
& I_DIRTY_INODE
)
2044 inode
->i_state
&= ~I_DIRTY_TIME
;
2045 inode
->i_state
|= flags
;
2048 * If the inode is being synced, just update its dirty state.
2049 * The unlocker will place the inode on the appropriate
2050 * superblock list, based upon its state.
2052 if (inode
->i_state
& I_SYNC
)
2053 goto out_unlock_inode
;
2056 * Only add valid (hashed) inodes to the superblock's
2057 * dirty list. Add blockdev inodes as well.
2059 if (!S_ISBLK(inode
->i_mode
)) {
2060 if (inode_unhashed(inode
))
2061 goto out_unlock_inode
;
2063 if (inode
->i_state
& I_FREEING
)
2064 goto out_unlock_inode
;
2067 * If the inode was already on b_dirty/b_io/b_more_io, don't
2068 * reposition it (that would break b_dirty time-ordering).
2071 struct bdi_writeback
*wb
;
2072 struct list_head
*dirty_list
;
2073 bool wakeup_bdi
= false;
2075 wb
= locked_inode_to_wb_and_lock_list(inode
);
2077 WARN(bdi_cap_writeback_dirty(wb
->bdi
) &&
2078 !test_bit(WB_registered
, &wb
->state
),
2079 "bdi-%s not registered\n", wb
->bdi
->name
);
2081 inode
->dirtied_when
= jiffies
;
2083 inode
->dirtied_time_when
= jiffies
;
2085 if (inode
->i_state
& (I_DIRTY_INODE
| I_DIRTY_PAGES
))
2086 dirty_list
= &wb
->b_dirty
;
2088 dirty_list
= &wb
->b_dirty_time
;
2090 wakeup_bdi
= inode_wb_list_move_locked(inode
, wb
,
2093 spin_unlock(&wb
->list_lock
);
2094 trace_writeback_dirty_inode_enqueue(inode
);
2097 * If this is the first dirty inode for this bdi,
2098 * we have to wake-up the corresponding bdi thread
2099 * to make sure background write-back happens
2102 if (bdi_cap_writeback_dirty(wb
->bdi
) && wakeup_bdi
)
2103 wb_wakeup_delayed(wb
);
2108 spin_unlock(&inode
->i_lock
);
2111 EXPORT_SYMBOL(__mark_inode_dirty
);
2113 static void wait_sb_inodes(struct super_block
*sb
)
2115 struct inode
*inode
, *old_inode
= NULL
;
2118 * We need to be protected against the filesystem going from
2119 * r/o to r/w or vice versa.
2121 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2123 spin_lock(&inode_sb_list_lock
);
2126 * Data integrity sync. Must wait for all pages under writeback,
2127 * because there may have been pages dirtied before our sync
2128 * call, but which had writeout started before we write it out.
2129 * In which case, the inode may not be on the dirty list, but
2130 * we still have to wait for that writeout.
2132 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
2133 struct address_space
*mapping
= inode
->i_mapping
;
2135 spin_lock(&inode
->i_lock
);
2136 if ((inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
)) ||
2137 (mapping
->nrpages
== 0)) {
2138 spin_unlock(&inode
->i_lock
);
2142 spin_unlock(&inode
->i_lock
);
2143 spin_unlock(&inode_sb_list_lock
);
2146 * We hold a reference to 'inode' so it couldn't have been
2147 * removed from s_inodes list while we dropped the
2148 * inode_sb_list_lock. We cannot iput the inode now as we can
2149 * be holding the last reference and we cannot iput it under
2150 * inode_sb_list_lock. So we keep the reference and iput it
2156 filemap_fdatawait(mapping
);
2160 spin_lock(&inode_sb_list_lock
);
2162 spin_unlock(&inode_sb_list_lock
);
2166 static void __writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2167 enum wb_reason reason
, bool skip_if_busy
)
2169 DEFINE_WB_COMPLETION_ONSTACK(done
);
2170 struct wb_writeback_work work
= {
2172 .sync_mode
= WB_SYNC_NONE
,
2173 .tagged_writepages
= 1,
2178 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2180 if (!bdi_has_dirty_io(bdi
) || bdi
== &noop_backing_dev_info
)
2182 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2184 bdi_split_work_to_wbs(sb
->s_bdi
, &work
, skip_if_busy
);
2185 wb_wait_for_completion(bdi
, &done
);
2189 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2190 * @sb: the superblock
2191 * @nr: the number of pages to write
2192 * @reason: reason why some writeback work initiated
2194 * Start writeback on some inodes on this super_block. No guarantees are made
2195 * on how many (if any) will be written, and this function does not wait
2196 * for IO completion of submitted IO.
2198 void writeback_inodes_sb_nr(struct super_block
*sb
,
2200 enum wb_reason reason
)
2202 __writeback_inodes_sb_nr(sb
, nr
, reason
, false);
2204 EXPORT_SYMBOL(writeback_inodes_sb_nr
);
2207 * writeback_inodes_sb - writeback dirty inodes from given super_block
2208 * @sb: the superblock
2209 * @reason: reason why some writeback work was initiated
2211 * Start writeback on some inodes on this super_block. No guarantees are made
2212 * on how many (if any) will be written, and this function does not wait
2213 * for IO completion of submitted IO.
2215 void writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2217 return writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2219 EXPORT_SYMBOL(writeback_inodes_sb
);
2222 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2223 * @sb: the superblock
2224 * @nr: the number of pages to write
2225 * @reason: the reason of writeback
2227 * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2228 * Returns 1 if writeback was started, 0 if not.
2230 bool try_to_writeback_inodes_sb_nr(struct super_block
*sb
, unsigned long nr
,
2231 enum wb_reason reason
)
2233 if (!down_read_trylock(&sb
->s_umount
))
2236 __writeback_inodes_sb_nr(sb
, nr
, reason
, true);
2237 up_read(&sb
->s_umount
);
2240 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr
);
2243 * try_to_writeback_inodes_sb - try to start writeback if none underway
2244 * @sb: the superblock
2245 * @reason: reason why some writeback work was initiated
2247 * Implement by try_to_writeback_inodes_sb_nr()
2248 * Returns 1 if writeback was started, 0 if not.
2250 bool try_to_writeback_inodes_sb(struct super_block
*sb
, enum wb_reason reason
)
2252 return try_to_writeback_inodes_sb_nr(sb
, get_nr_dirty_pages(), reason
);
2254 EXPORT_SYMBOL(try_to_writeback_inodes_sb
);
2257 * sync_inodes_sb - sync sb inode pages
2258 * @sb: the superblock
2260 * This function writes and waits on any dirty inode belonging to this
2263 void sync_inodes_sb(struct super_block
*sb
)
2265 DEFINE_WB_COMPLETION_ONSTACK(done
);
2266 struct wb_writeback_work work
= {
2268 .sync_mode
= WB_SYNC_ALL
,
2269 .nr_pages
= LONG_MAX
,
2272 .reason
= WB_REASON_SYNC
,
2275 struct backing_dev_info
*bdi
= sb
->s_bdi
;
2277 /* Nothing to do? */
2278 if (!bdi_has_dirty_io(bdi
) || bdi
== &noop_backing_dev_info
)
2280 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
2282 bdi_split_work_to_wbs(bdi
, &work
, false);
2283 wb_wait_for_completion(bdi
, &done
);
2287 EXPORT_SYMBOL(sync_inodes_sb
);
2290 * write_inode_now - write an inode to disk
2291 * @inode: inode to write to disk
2292 * @sync: whether the write should be synchronous or not
2294 * This function commits an inode to disk immediately if it is dirty. This is
2295 * primarily needed by knfsd.
2297 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2299 int write_inode_now(struct inode
*inode
, int sync
)
2301 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
2302 struct writeback_control wbc
= {
2303 .nr_to_write
= LONG_MAX
,
2304 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2306 .range_end
= LLONG_MAX
,
2309 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
2310 wbc
.nr_to_write
= 0;
2313 return writeback_single_inode(inode
, wb
, &wbc
);
2315 EXPORT_SYMBOL(write_inode_now
);
2318 * sync_inode - write an inode and its pages to disk.
2319 * @inode: the inode to sync
2320 * @wbc: controls the writeback mode
2322 * sync_inode() will write an inode and its pages to disk. It will also
2323 * correctly update the inode on its superblock's dirty inode lists and will
2324 * update inode->i_state.
2326 * The caller must have a ref on the inode.
2328 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
2330 return writeback_single_inode(inode
, &inode_to_bdi(inode
)->wb
, wbc
);
2332 EXPORT_SYMBOL(sync_inode
);
2335 * sync_inode_metadata - write an inode to disk
2336 * @inode: the inode to sync
2337 * @wait: wait for I/O to complete.
2339 * Write an inode to disk and adjust its dirty state after completion.
2341 * Note: only writes the actual inode, no associated data or other metadata.
2343 int sync_inode_metadata(struct inode
*inode
, int wait
)
2345 struct writeback_control wbc
= {
2346 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
2347 .nr_to_write
= 0, /* metadata-only */
2350 return sync_inode(inode
, &wbc
);
2352 EXPORT_SYMBOL(sync_inode_metadata
);