2 * linux/arch/arm/mm/mmu.c
4 * Copyright (C) 1995-2005 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/bootmem.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
18 #include <asm/mach-types.h>
19 #include <asm/setup.h>
20 #include <asm/sizes.h>
23 #include <asm/mach/arch.h>
24 #include <asm/mach/map.h>
28 DEFINE_PER_CPU(struct mmu_gather
, mmu_gathers
);
30 extern void _stext
, _etext
, __data_start
, _end
;
31 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
34 * empty_zero_page is a special page that is used for
35 * zero-initialized data and COW.
37 struct page
*empty_zero_page
;
40 * The pmd table for the upper-most set of pages.
44 #define CPOLICY_UNCACHED 0
45 #define CPOLICY_BUFFERED 1
46 #define CPOLICY_WRITETHROUGH 2
47 #define CPOLICY_WRITEBACK 3
48 #define CPOLICY_WRITEALLOC 4
50 static unsigned int cachepolicy __initdata
= CPOLICY_WRITEBACK
;
51 static unsigned int ecc_mask __initdata
= 0;
52 pgprot_t pgprot_kernel
;
54 EXPORT_SYMBOL(pgprot_kernel
);
57 const char policy
[16];
63 static struct cachepolicy cache_policies
[] __initdata
= {
67 .pmd
= PMD_SECT_UNCACHED
,
72 .pmd
= PMD_SECT_BUFFERED
,
73 .pte
= PTE_BUFFERABLE
,
75 .policy
= "writethrough",
80 .policy
= "writeback",
83 .pte
= PTE_BUFFERABLE
|PTE_CACHEABLE
,
85 .policy
= "writealloc",
88 .pte
= PTE_BUFFERABLE
|PTE_CACHEABLE
,
93 * These are useful for identifing cache coherency
94 * problems by allowing the cache or the cache and
95 * writebuffer to be turned off. (Note: the write
96 * buffer should not be on and the cache off).
98 static void __init
early_cachepolicy(char **p
)
102 for (i
= 0; i
< ARRAY_SIZE(cache_policies
); i
++) {
103 int len
= strlen(cache_policies
[i
].policy
);
105 if (memcmp(*p
, cache_policies
[i
].policy
, len
) == 0) {
107 cr_alignment
&= ~cache_policies
[i
].cr_mask
;
108 cr_no_alignment
&= ~cache_policies
[i
].cr_mask
;
113 if (i
== ARRAY_SIZE(cache_policies
))
114 printk(KERN_ERR
"ERROR: unknown or unsupported cache policy\n");
116 set_cr(cr_alignment
);
118 __early_param("cachepolicy=", early_cachepolicy
);
120 static void __init
early_nocache(char **__unused
)
122 char *p
= "buffered";
123 printk(KERN_WARNING
"nocache is deprecated; use cachepolicy=%s\n", p
);
124 early_cachepolicy(&p
);
126 __early_param("nocache", early_nocache
);
128 static void __init
early_nowrite(char **__unused
)
130 char *p
= "uncached";
131 printk(KERN_WARNING
"nowb is deprecated; use cachepolicy=%s\n", p
);
132 early_cachepolicy(&p
);
134 __early_param("nowb", early_nowrite
);
136 static void __init
early_ecc(char **p
)
138 if (memcmp(*p
, "on", 2) == 0) {
139 ecc_mask
= PMD_PROTECTION
;
141 } else if (memcmp(*p
, "off", 3) == 0) {
146 __early_param("ecc=", early_ecc
);
148 static int __init
noalign_setup(char *__unused
)
150 cr_alignment
&= ~CR_A
;
151 cr_no_alignment
&= ~CR_A
;
152 set_cr(cr_alignment
);
155 __setup("noalign", noalign_setup
);
158 void adjust_cr(unsigned long mask
, unsigned long set
)
166 local_irq_save(flags
);
168 cr_no_alignment
= (cr_no_alignment
& ~mask
) | set
;
169 cr_alignment
= (cr_alignment
& ~mask
) | set
;
171 set_cr((get_cr() & ~mask
) | set
);
173 local_irq_restore(flags
);
178 unsigned int prot_pte
;
179 unsigned int prot_l1
;
180 unsigned int prot_sect
;
184 static struct mem_types mem_types
[] __initdata
= {
186 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
188 .prot_l1
= PMD_TYPE_TABLE
,
189 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
| PMD_SECT_UNCACHED
|
194 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
,
195 .domain
= DOMAIN_KERNEL
,
198 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
| PMD_SECT_MINICACHE
,
199 .domain
= DOMAIN_KERNEL
,
202 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
204 .prot_l1
= PMD_TYPE_TABLE
,
205 .domain
= DOMAIN_USER
,
207 [MT_HIGH_VECTORS
] = {
208 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
209 L_PTE_USER
| L_PTE_EXEC
,
210 .prot_l1
= PMD_TYPE_TABLE
,
211 .domain
= DOMAIN_USER
,
214 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
| PMD_SECT_AP_WRITE
,
215 .domain
= DOMAIN_KERNEL
,
218 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
,
219 .domain
= DOMAIN_KERNEL
,
221 [MT_IXP2000_DEVICE
] = { /* IXP2400 requires XCB=101 for on-chip I/O */
222 .prot_pte
= L_PTE_PRESENT
| L_PTE_YOUNG
| L_PTE_DIRTY
|
224 .prot_l1
= PMD_TYPE_TABLE
,
225 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
| PMD_SECT_UNCACHED
|
226 PMD_SECT_AP_WRITE
| PMD_SECT_BUFFERABLE
|
230 [MT_NONSHARED_DEVICE
] = {
231 .prot_l1
= PMD_TYPE_TABLE
,
232 .prot_sect
= PMD_TYPE_SECT
| PMD_BIT4
| PMD_SECT_NONSHARED_DEV
|
239 * Adjust the PMD section entries according to the CPU in use.
241 static void __init
build_mem_type_table(void)
243 struct cachepolicy
*cp
;
244 unsigned int cr
= get_cr();
245 unsigned int user_pgprot
, kern_pgprot
;
246 int cpu_arch
= cpu_architecture();
249 #if defined(CONFIG_CPU_DCACHE_DISABLE)
250 if (cachepolicy
> CPOLICY_BUFFERED
)
251 cachepolicy
= CPOLICY_BUFFERED
;
252 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
253 if (cachepolicy
> CPOLICY_WRITETHROUGH
)
254 cachepolicy
= CPOLICY_WRITETHROUGH
;
256 if (cpu_arch
< CPU_ARCH_ARMv5
) {
257 if (cachepolicy
>= CPOLICY_WRITEALLOC
)
258 cachepolicy
= CPOLICY_WRITEBACK
;
263 * Xscale must not have PMD bit 4 set for section mappings.
266 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
267 mem_types
[i
].prot_sect
&= ~PMD_BIT4
;
270 * ARMv5 and lower, excluding Xscale, bit 4 must be set for
273 if (cpu_arch
< CPU_ARCH_ARMv6
&& !cpu_is_xscale())
274 for (i
= 0; i
< ARRAY_SIZE(mem_types
); i
++)
275 if (mem_types
[i
].prot_l1
)
276 mem_types
[i
].prot_l1
|= PMD_BIT4
;
278 cp
= &cache_policies
[cachepolicy
];
279 kern_pgprot
= user_pgprot
= cp
->pte
;
282 * Enable CPU-specific coherency if supported.
283 * (Only available on XSC3 at the moment.)
285 if (arch_is_coherent()) {
287 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
288 mem_types
[MT_MEMORY
].prot_pte
|= L_PTE_SHARED
;
293 * ARMv6 and above have extended page tables.
295 if (cpu_arch
>= CPU_ARCH_ARMv6
&& (cr
& CR_XP
)) {
297 * bit 4 becomes XN which we must clear for the
298 * kernel memory mapping.
300 mem_types
[MT_MEMORY
].prot_sect
&= ~PMD_SECT_XN
;
301 mem_types
[MT_ROM
].prot_sect
&= ~PMD_SECT_XN
;
304 * Mark cache clean areas and XIP ROM read only
305 * from SVC mode and no access from userspace.
307 mem_types
[MT_ROM
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
308 mem_types
[MT_MINICLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
309 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_APX
|PMD_SECT_AP_WRITE
;
312 * Mark the device area as "shared device"
314 mem_types
[MT_DEVICE
].prot_pte
|= L_PTE_BUFFERABLE
;
315 mem_types
[MT_DEVICE
].prot_sect
|= PMD_SECT_BUFFERED
;
319 * Mark memory with the "shared" attribute for SMP systems
321 user_pgprot
|= L_PTE_SHARED
;
322 kern_pgprot
|= L_PTE_SHARED
;
323 mem_types
[MT_MEMORY
].prot_sect
|= PMD_SECT_S
;
327 for (i
= 0; i
< 16; i
++) {
328 unsigned long v
= pgprot_val(protection_map
[i
]);
329 v
= (v
& ~(L_PTE_BUFFERABLE
|L_PTE_CACHEABLE
)) | user_pgprot
;
330 protection_map
[i
] = __pgprot(v
);
333 mem_types
[MT_LOW_VECTORS
].prot_pte
|= kern_pgprot
;
334 mem_types
[MT_HIGH_VECTORS
].prot_pte
|= kern_pgprot
;
336 if (cpu_arch
>= CPU_ARCH_ARMv5
) {
339 * Only use write-through for non-SMP systems
341 mem_types
[MT_LOW_VECTORS
].prot_pte
&= ~L_PTE_BUFFERABLE
;
342 mem_types
[MT_HIGH_VECTORS
].prot_pte
&= ~L_PTE_BUFFERABLE
;
345 mem_types
[MT_MINICLEAN
].prot_sect
&= ~PMD_SECT_TEX(1);
348 pgprot_kernel
= __pgprot(L_PTE_PRESENT
| L_PTE_YOUNG
|
349 L_PTE_DIRTY
| L_PTE_WRITE
|
350 L_PTE_EXEC
| kern_pgprot
);
352 mem_types
[MT_LOW_VECTORS
].prot_l1
|= ecc_mask
;
353 mem_types
[MT_HIGH_VECTORS
].prot_l1
|= ecc_mask
;
354 mem_types
[MT_MEMORY
].prot_sect
|= ecc_mask
| cp
->pmd
;
355 mem_types
[MT_ROM
].prot_sect
|= cp
->pmd
;
359 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WT
;
363 mem_types
[MT_CACHECLEAN
].prot_sect
|= PMD_SECT_WB
;
366 printk("Memory policy: ECC %sabled, Data cache %s\n",
367 ecc_mask
? "en" : "dis", cp
->policy
);
370 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
373 * Create a SECTION PGD between VIRT and PHYS in domain
374 * DOMAIN with protection PROT. This operates on half-
375 * pgdir entry increments.
378 alloc_init_section(unsigned long virt
, unsigned long phys
, int prot
)
380 pmd_t
*pmdp
= pmd_off_k(virt
);
382 if (virt
& (1 << 20))
385 *pmdp
= __pmd(phys
| prot
);
386 flush_pmd_entry(pmdp
);
390 * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT
393 alloc_init_supersection(unsigned long virt
, unsigned long phys
, int prot
)
397 for (i
= 0; i
< 16; i
+= 1) {
398 alloc_init_section(virt
, phys
, prot
| PMD_SECT_SUPER
);
400 virt
+= (PGDIR_SIZE
/ 2);
405 * Add a PAGE mapping between VIRT and PHYS in domain
406 * DOMAIN with protection PROT. Note that due to the
407 * way we map the PTEs, we must allocate two PTE_SIZE'd
408 * blocks - one for the Linux pte table, and one for
409 * the hardware pte table.
412 alloc_init_page(unsigned long virt
, unsigned long phys
, unsigned int prot_l1
, pgprot_t prot
)
414 pmd_t
*pmdp
= pmd_off_k(virt
);
417 if (pmd_none(*pmdp
)) {
418 ptep
= alloc_bootmem_low_pages(2 * PTRS_PER_PTE
*
421 __pmd_populate(pmdp
, __pa(ptep
) | prot_l1
);
423 ptep
= pte_offset_kernel(pmdp
, virt
);
425 set_pte_ext(ptep
, pfn_pte(phys
>> PAGE_SHIFT
, prot
), 0);
429 * Create the page directory entries and any necessary
430 * page tables for the mapping specified by `md'. We
431 * are able to cope here with varying sizes and address
432 * offsets, and we take full advantage of sections and
435 void __init
create_mapping(struct map_desc
*md
)
437 unsigned long virt
, length
;
438 int prot_sect
, prot_l1
, domain
;
440 unsigned long off
= (u32
)__pfn_to_phys(md
->pfn
);
442 if (md
->virtual != vectors_base() && md
->virtual < TASK_SIZE
) {
443 printk(KERN_WARNING
"BUG: not creating mapping for "
444 "0x%08llx at 0x%08lx in user region\n",
445 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
449 if ((md
->type
== MT_DEVICE
|| md
->type
== MT_ROM
) &&
450 md
->virtual >= PAGE_OFFSET
&& md
->virtual < VMALLOC_END
) {
451 printk(KERN_WARNING
"BUG: mapping for 0x%08llx at 0x%08lx "
452 "overlaps vmalloc space\n",
453 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
456 domain
= mem_types
[md
->type
].domain
;
457 prot_pte
= __pgprot(mem_types
[md
->type
].prot_pte
);
458 prot_l1
= mem_types
[md
->type
].prot_l1
| PMD_DOMAIN(domain
);
459 prot_sect
= mem_types
[md
->type
].prot_sect
| PMD_DOMAIN(domain
);
462 * Catch 36-bit addresses
464 if(md
->pfn
>= 0x100000) {
466 printk(KERN_ERR
"MM: invalid domain in supersection "
467 "mapping for 0x%08llx at 0x%08lx\n",
468 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
471 if((md
->virtual | md
->length
| __pfn_to_phys(md
->pfn
))
472 & ~SUPERSECTION_MASK
) {
473 printk(KERN_ERR
"MM: cannot create mapping for "
474 "0x%08llx at 0x%08lx invalid alignment\n",
475 __pfn_to_phys((u64
)md
->pfn
), md
->virtual);
480 * Shift bits [35:32] of address into bits [23:20] of PMD
483 off
|= (((md
->pfn
>> (32 - PAGE_SHIFT
)) & 0xF) << 20);
490 if (mem_types
[md
->type
].prot_l1
== 0 &&
491 (virt
& 0xfffff || (virt
+ off
) & 0xfffff || (virt
+ length
) & 0xfffff)) {
492 printk(KERN_WARNING
"BUG: map for 0x%08lx at 0x%08lx can not "
493 "be mapped using pages, ignoring.\n",
494 __pfn_to_phys(md
->pfn
), md
->virtual);
498 while ((virt
& 0xfffff || (virt
+ off
) & 0xfffff) && length
>= PAGE_SIZE
) {
499 alloc_init_page(virt
, virt
+ off
, prot_l1
, prot_pte
);
505 /* N.B. ARMv6 supersections are only defined to work with domain 0.
506 * Since domain assignments can in fact be arbitrary, the
507 * 'domain == 0' check below is required to insure that ARMv6
508 * supersections are only allocated for domain 0 regardless
509 * of the actual domain assignments in use.
511 if ((cpu_architecture() >= CPU_ARCH_ARMv6
|| cpu_is_xsc3())
514 * Align to supersection boundary if !high pages.
515 * High pages have already been checked for proper
516 * alignment above and they will fail the SUPSERSECTION_MASK
517 * check because of the way the address is encoded into
520 if (md
->pfn
<= 0x100000) {
521 while ((virt
& ~SUPERSECTION_MASK
||
522 (virt
+ off
) & ~SUPERSECTION_MASK
) &&
523 length
>= (PGDIR_SIZE
/ 2)) {
524 alloc_init_section(virt
, virt
+ off
, prot_sect
);
526 virt
+= (PGDIR_SIZE
/ 2);
527 length
-= (PGDIR_SIZE
/ 2);
531 while (length
>= SUPERSECTION_SIZE
) {
532 alloc_init_supersection(virt
, virt
+ off
, prot_sect
);
534 virt
+= SUPERSECTION_SIZE
;
535 length
-= SUPERSECTION_SIZE
;
540 * A section mapping covers half a "pgdir" entry.
542 while (length
>= (PGDIR_SIZE
/ 2)) {
543 alloc_init_section(virt
, virt
+ off
, prot_sect
);
545 virt
+= (PGDIR_SIZE
/ 2);
546 length
-= (PGDIR_SIZE
/ 2);
549 while (length
>= PAGE_SIZE
) {
550 alloc_init_page(virt
, virt
+ off
, prot_l1
, prot_pte
);
558 * Create the architecture specific mappings
560 void __init
iotable_init(struct map_desc
*io_desc
, int nr
)
564 for (i
= 0; i
< nr
; i
++)
565 create_mapping(io_desc
+ i
);
568 static inline void prepare_page_table(struct meminfo
*mi
)
573 * Clear out all the mappings below the kernel image.
575 for (addr
= 0; addr
< MODULE_START
; addr
+= PGDIR_SIZE
)
576 pmd_clear(pmd_off_k(addr
));
578 #ifdef CONFIG_XIP_KERNEL
579 /* The XIP kernel is mapped in the module area -- skip over it */
580 addr
= ((unsigned long)&_etext
+ PGDIR_SIZE
- 1) & PGDIR_MASK
;
582 for ( ; addr
< PAGE_OFFSET
; addr
+= PGDIR_SIZE
)
583 pmd_clear(pmd_off_k(addr
));
586 * Clear out all the kernel space mappings, except for the first
587 * memory bank, up to the end of the vmalloc region.
589 for (addr
= __phys_to_virt(mi
->bank
[0].start
+ mi
->bank
[0].size
);
590 addr
< VMALLOC_END
; addr
+= PGDIR_SIZE
)
591 pmd_clear(pmd_off_k(addr
));
595 * Reserve the various regions of node 0
597 void __init
reserve_node_zero(pg_data_t
*pgdat
)
599 unsigned long res_size
= 0;
602 * Register the kernel text and data with bootmem.
603 * Note that this can only be in node 0.
605 #ifdef CONFIG_XIP_KERNEL
606 reserve_bootmem_node(pgdat
, __pa(&__data_start
), &_end
- &__data_start
);
608 reserve_bootmem_node(pgdat
, __pa(&_stext
), &_end
- &_stext
);
612 * Reserve the page tables. These are already in use,
613 * and can only be in node 0.
615 reserve_bootmem_node(pgdat
, __pa(swapper_pg_dir
),
616 PTRS_PER_PGD
* sizeof(pgd_t
));
619 * Hmm... This should go elsewhere, but we really really need to
620 * stop things allocating the low memory; ideally we need a better
621 * implementation of GFP_DMA which does not assume that DMA-able
622 * memory starts at zero.
624 if (machine_is_integrator() || machine_is_cintegrator())
625 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
628 * These should likewise go elsewhere. They pre-reserve the
629 * screen memory region at the start of main system memory.
631 if (machine_is_edb7211())
632 res_size
= 0x00020000;
633 if (machine_is_p720t())
634 res_size
= 0x00014000;
636 /* H1940 and RX3715 need to reserve this for suspend */
638 if (machine_is_h1940() || machine_is_rx3715()) {
639 reserve_bootmem_node(pgdat
, 0x30003000, 0x1000);
640 reserve_bootmem_node(pgdat
, 0x30081000, 0x1000);
645 * Because of the SA1111 DMA bug, we want to preserve our
646 * precious DMA-able memory...
648 res_size
= __pa(swapper_pg_dir
) - PHYS_OFFSET
;
651 reserve_bootmem_node(pgdat
, PHYS_OFFSET
, res_size
);
655 * Set up device the mappings. Since we clear out the page tables for all
656 * mappings above VMALLOC_END, we will remove any debug device mappings.
657 * This means you have to be careful how you debug this function, or any
658 * called function. This means you can't use any function or debugging
659 * method which may touch any device, otherwise the kernel _will_ crash.
661 static void __init
devicemaps_init(struct machine_desc
*mdesc
)
668 * Allocate the vector page early.
670 vectors
= alloc_bootmem_low_pages(PAGE_SIZE
);
673 for (addr
= VMALLOC_END
; addr
; addr
+= PGDIR_SIZE
)
674 pmd_clear(pmd_off_k(addr
));
677 * Map the kernel if it is XIP.
678 * It is always first in the modulearea.
680 #ifdef CONFIG_XIP_KERNEL
681 map
.pfn
= __phys_to_pfn(CONFIG_XIP_PHYS_ADDR
& SECTION_MASK
);
682 map
.virtual = MODULE_START
;
683 map
.length
= ((unsigned long)&_etext
- map
.virtual + ~SECTION_MASK
) & SECTION_MASK
;
685 create_mapping(&map
);
689 * Map the cache flushing regions.
692 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
);
693 map
.virtual = FLUSH_BASE
;
695 map
.type
= MT_CACHECLEAN
;
696 create_mapping(&map
);
698 #ifdef FLUSH_BASE_MINICACHE
699 map
.pfn
= __phys_to_pfn(FLUSH_BASE_PHYS
+ SZ_1M
);
700 map
.virtual = FLUSH_BASE_MINICACHE
;
702 map
.type
= MT_MINICLEAN
;
703 create_mapping(&map
);
707 * Create a mapping for the machine vectors at the high-vectors
708 * location (0xffff0000). If we aren't using high-vectors, also
709 * create a mapping at the low-vectors virtual address.
711 map
.pfn
= __phys_to_pfn(virt_to_phys(vectors
));
712 map
.virtual = 0xffff0000;
713 map
.length
= PAGE_SIZE
;
714 map
.type
= MT_HIGH_VECTORS
;
715 create_mapping(&map
);
717 if (!vectors_high()) {
719 map
.type
= MT_LOW_VECTORS
;
720 create_mapping(&map
);
724 * Ask the machine support to map in the statically mapped devices.
730 * Finally flush the caches and tlb to ensure that we're in a
731 * consistent state wrt the writebuffer. This also ensures that
732 * any write-allocated cache lines in the vector page are written
733 * back. After this point, we can start to touch devices again.
735 local_flush_tlb_all();
740 * paging_init() sets up the page tables, initialises the zone memory
741 * maps, and sets up the zero page, bad page and bad page tables.
743 void __init
paging_init(struct meminfo
*mi
, struct machine_desc
*mdesc
)
747 build_mem_type_table();
748 prepare_page_table(mi
);
750 devicemaps_init(mdesc
);
752 top_pmd
= pmd_off_k(0xffff0000);
755 * allocate the zero page. Note that we count on this going ok.
757 zero_page
= alloc_bootmem_low_pages(PAGE_SIZE
);
758 memzero(zero_page
, PAGE_SIZE
);
759 empty_zero_page
= virt_to_page(zero_page
);
760 flush_dcache_page(empty_zero_page
);
764 * In order to soft-boot, we need to insert a 1:1 mapping in place of
765 * the user-mode pages. This will then ensure that we have predictable
766 * results when turning the mmu off
768 void setup_mm_for_reboot(char mode
)
770 unsigned long base_pmdval
;
774 if (current
->mm
&& current
->mm
->pgd
)
775 pgd
= current
->mm
->pgd
;
779 base_pmdval
= PMD_SECT_AP_WRITE
| PMD_SECT_AP_READ
| PMD_TYPE_SECT
;
780 if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ
&& !cpu_is_xscale())
781 base_pmdval
|= PMD_BIT4
;
783 for (i
= 0; i
< FIRST_USER_PGD_NR
+ USER_PTRS_PER_PGD
; i
++, pgd
++) {
784 unsigned long pmdval
= (i
<< PGDIR_SHIFT
) | base_pmdval
;
787 pmd
= pmd_off(pgd
, i
<< PGDIR_SHIFT
);
788 pmd
[0] = __pmd(pmdval
);
789 pmd
[1] = __pmd(pmdval
+ (1 << (PGDIR_SHIFT
- 1)));
790 flush_pmd_entry(pmd
);