2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Authors: Rusty Russell <rusty@rustcorp.com.au>
4 * Christoffer Dall <c.dall@virtualopensystems.com>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License, version 2, as
8 * published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
20 #include <linux/bsearch.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
33 #include "../vfp/vfpinstr.h"
35 #define CREATE_TRACE_POINTS
40 /******************************************************************************
41 * Co-processor emulation
42 *****************************************************************************/
44 static bool write_to_read_only(struct kvm_vcpu
*vcpu
,
45 const struct coproc_params
*params
)
47 WARN_ONCE(1, "CP15 write to read-only register\n");
48 print_cp_instr(params
);
49 kvm_inject_undefined(vcpu
);
53 static bool read_from_write_only(struct kvm_vcpu
*vcpu
,
54 const struct coproc_params
*params
)
56 WARN_ONCE(1, "CP15 read to write-only register\n");
57 print_cp_instr(params
);
58 kvm_inject_undefined(vcpu
);
62 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
63 static u32 cache_levels
;
65 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
69 * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
70 * of cp15 registers can be viewed either as couple of two u32 registers
71 * or one u64 register. Current u64 register encoding is that least
72 * significant u32 word is followed by most significant u32 word.
74 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu
*vcpu
,
75 const struct coproc_reg
*r
,
78 vcpu_cp15(vcpu
, r
->reg
) = val
& 0xffffffff;
79 vcpu_cp15(vcpu
, r
->reg
+ 1) = val
>> 32;
82 static inline u64
vcpu_cp15_reg64_get(struct kvm_vcpu
*vcpu
,
83 const struct coproc_reg
*r
)
87 val
= vcpu_cp15(vcpu
, r
->reg
+ 1);
89 val
= val
| vcpu_cp15(vcpu
, r
->reg
);
93 int kvm_handle_cp10_id(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
95 kvm_inject_undefined(vcpu
);
99 int kvm_handle_cp_0_13_access(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
102 * We can get here, if the host has been built without VFPv3 support,
103 * but the guest attempted a floating point operation.
105 kvm_inject_undefined(vcpu
);
109 int kvm_handle_cp14_load_store(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
111 kvm_inject_undefined(vcpu
);
115 static void reset_mpidr(struct kvm_vcpu
*vcpu
, const struct coproc_reg
*r
)
118 * Compute guest MPIDR. We build a virtual cluster out of the
119 * vcpu_id, but we read the 'U' bit from the underlying
122 vcpu_cp15(vcpu
, c0_MPIDR
) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK
) |
123 ((vcpu
->vcpu_id
>> 2) << MPIDR_LEVEL_BITS
) |
124 (vcpu
->vcpu_id
& 3));
127 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
128 static bool access_actlr(struct kvm_vcpu
*vcpu
,
129 const struct coproc_params
*p
,
130 const struct coproc_reg
*r
)
133 return ignore_write(vcpu
, p
);
135 *vcpu_reg(vcpu
, p
->Rt1
) = vcpu_cp15(vcpu
, c1_ACTLR
);
139 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
140 static bool access_cbar(struct kvm_vcpu
*vcpu
,
141 const struct coproc_params
*p
,
142 const struct coproc_reg
*r
)
145 return write_to_read_only(vcpu
, p
);
146 return read_zero(vcpu
, p
);
149 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
150 static bool access_l2ctlr(struct kvm_vcpu
*vcpu
,
151 const struct coproc_params
*p
,
152 const struct coproc_reg
*r
)
155 return ignore_write(vcpu
, p
);
157 *vcpu_reg(vcpu
, p
->Rt1
) = vcpu_cp15(vcpu
, c9_L2CTLR
);
161 static void reset_l2ctlr(struct kvm_vcpu
*vcpu
, const struct coproc_reg
*r
)
165 asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr
));
166 l2ctlr
&= ~(3 << 24);
167 ncores
= atomic_read(&vcpu
->kvm
->online_vcpus
) - 1;
168 /* How many cores in the current cluster and the next ones */
169 ncores
-= (vcpu
->vcpu_id
& ~3);
170 /* Cap it to the maximum number of cores in a single cluster */
171 ncores
= min(ncores
, 3U);
172 l2ctlr
|= (ncores
& 3) << 24;
174 vcpu_cp15(vcpu
, c9_L2CTLR
) = l2ctlr
;
177 static void reset_actlr(struct kvm_vcpu
*vcpu
, const struct coproc_reg
*r
)
181 /* ACTLR contains SMP bit: make sure you create all cpus first! */
182 asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr
));
183 /* Make the SMP bit consistent with the guest configuration */
184 if (atomic_read(&vcpu
->kvm
->online_vcpus
) > 1)
189 vcpu_cp15(vcpu
, c1_ACTLR
) = actlr
;
193 * TRM entries: A7:4.3.50, A15:4.3.49
194 * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
196 static bool access_l2ectlr(struct kvm_vcpu
*vcpu
,
197 const struct coproc_params
*p
,
198 const struct coproc_reg
*r
)
201 return ignore_write(vcpu
, p
);
203 *vcpu_reg(vcpu
, p
->Rt1
) = 0;
208 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
210 static bool access_dcsw(struct kvm_vcpu
*vcpu
,
211 const struct coproc_params
*p
,
212 const struct coproc_reg
*r
)
215 return read_from_write_only(vcpu
, p
);
217 kvm_set_way_flush(vcpu
);
222 * Generic accessor for VM registers. Only called as long as HCR_TVM
223 * is set. If the guest enables the MMU, we stop trapping the VM
224 * sys_regs and leave it in complete control of the caches.
226 * Used by the cpu-specific code.
228 bool access_vm_reg(struct kvm_vcpu
*vcpu
,
229 const struct coproc_params
*p
,
230 const struct coproc_reg
*r
)
232 bool was_enabled
= vcpu_has_cache_enabled(vcpu
);
234 BUG_ON(!p
->is_write
);
236 vcpu_cp15(vcpu
, r
->reg
) = *vcpu_reg(vcpu
, p
->Rt1
);
238 vcpu_cp15(vcpu
, r
->reg
+ 1) = *vcpu_reg(vcpu
, p
->Rt2
);
240 kvm_toggle_cache(vcpu
, was_enabled
);
244 static bool access_gic_sgi(struct kvm_vcpu
*vcpu
,
245 const struct coproc_params
*p
,
246 const struct coproc_reg
*r
)
251 return read_from_write_only(vcpu
, p
);
253 reg
= (u64
)*vcpu_reg(vcpu
, p
->Rt2
) << 32;
254 reg
|= *vcpu_reg(vcpu
, p
->Rt1
) ;
256 vgic_v3_dispatch_sgi(vcpu
, reg
);
261 static bool access_gic_sre(struct kvm_vcpu
*vcpu
,
262 const struct coproc_params
*p
,
263 const struct coproc_reg
*r
)
266 return ignore_write(vcpu
, p
);
268 *vcpu_reg(vcpu
, p
->Rt1
) = vcpu
->arch
.vgic_cpu
.vgic_v3
.vgic_sre
;
274 * We could trap ID_DFR0 and tell the guest we don't support performance
275 * monitoring. Unfortunately the patch to make the kernel check ID_DFR0 was
276 * NAKed, so it will read the PMCR anyway.
278 * Therefore we tell the guest we have 0 counters. Unfortunately, we
279 * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
280 * all PM registers, which doesn't crash the guest kernel at least.
282 static bool trap_raz_wi(struct kvm_vcpu
*vcpu
,
283 const struct coproc_params
*p
,
284 const struct coproc_reg
*r
)
287 return ignore_write(vcpu
, p
);
289 return read_zero(vcpu
, p
);
292 #define access_pmcr trap_raz_wi
293 #define access_pmcntenset trap_raz_wi
294 #define access_pmcntenclr trap_raz_wi
295 #define access_pmovsr trap_raz_wi
296 #define access_pmselr trap_raz_wi
297 #define access_pmceid0 trap_raz_wi
298 #define access_pmceid1 trap_raz_wi
299 #define access_pmccntr trap_raz_wi
300 #define access_pmxevtyper trap_raz_wi
301 #define access_pmxevcntr trap_raz_wi
302 #define access_pmuserenr trap_raz_wi
303 #define access_pmintenset trap_raz_wi
304 #define access_pmintenclr trap_raz_wi
306 /* Architected CP15 registers.
307 * CRn denotes the primary register number, but is copied to the CRm in the
308 * user space API for 64-bit register access in line with the terminology used
310 * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
311 * registers preceding 32-bit ones.
313 static const struct coproc_reg cp15_regs
[] = {
314 /* MPIDR: we use VMPIDR for guest access. */
315 { CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32
,
316 NULL
, reset_mpidr
, c0_MPIDR
},
318 /* CSSELR: swapped by interrupt.S. */
319 { CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32
,
320 NULL
, reset_unknown
, c0_CSSELR
},
322 /* ACTLR: trapped by HCR.TAC bit. */
323 { CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32
,
324 access_actlr
, reset_actlr
, c1_ACTLR
},
326 /* CPACR: swapped by interrupt.S. */
327 { CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32
,
328 NULL
, reset_val
, c1_CPACR
, 0x00000000 },
330 /* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
331 { CRm64( 2), Op1( 0), is64
, access_vm_reg
, reset_unknown64
, c2_TTBR0
},
332 { CRn(2), CRm( 0), Op1( 0), Op2( 0), is32
,
333 access_vm_reg
, reset_unknown
, c2_TTBR0
},
334 { CRn(2), CRm( 0), Op1( 0), Op2( 1), is32
,
335 access_vm_reg
, reset_unknown
, c2_TTBR1
},
336 { CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32
,
337 access_vm_reg
, reset_val
, c2_TTBCR
, 0x00000000 },
338 { CRm64( 2), Op1( 1), is64
, access_vm_reg
, reset_unknown64
, c2_TTBR1
},
341 /* DACR: swapped by interrupt.S. */
342 { CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32
,
343 access_vm_reg
, reset_unknown
, c3_DACR
},
345 /* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
346 { CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32
,
347 access_vm_reg
, reset_unknown
, c5_DFSR
},
348 { CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32
,
349 access_vm_reg
, reset_unknown
, c5_IFSR
},
350 { CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32
,
351 access_vm_reg
, reset_unknown
, c5_ADFSR
},
352 { CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32
,
353 access_vm_reg
, reset_unknown
, c5_AIFSR
},
355 /* DFAR/IFAR: swapped by interrupt.S. */
356 { CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32
,
357 access_vm_reg
, reset_unknown
, c6_DFAR
},
358 { CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32
,
359 access_vm_reg
, reset_unknown
, c6_IFAR
},
361 /* PAR swapped by interrupt.S */
362 { CRm64( 7), Op1( 0), is64
, NULL
, reset_unknown64
, c7_PAR
},
365 * DC{C,I,CI}SW operations:
367 { CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32
, access_dcsw
},
368 { CRn( 7), CRm(10), Op1( 0), Op2( 2), is32
, access_dcsw
},
369 { CRn( 7), CRm(14), Op1( 0), Op2( 2), is32
, access_dcsw
},
371 * L2CTLR access (guest wants to know #CPUs).
373 { CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32
,
374 access_l2ctlr
, reset_l2ctlr
, c9_L2CTLR
},
375 { CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32
, access_l2ectlr
},
378 * Dummy performance monitor implementation.
380 { CRn( 9), CRm(12), Op1( 0), Op2( 0), is32
, access_pmcr
},
381 { CRn( 9), CRm(12), Op1( 0), Op2( 1), is32
, access_pmcntenset
},
382 { CRn( 9), CRm(12), Op1( 0), Op2( 2), is32
, access_pmcntenclr
},
383 { CRn( 9), CRm(12), Op1( 0), Op2( 3), is32
, access_pmovsr
},
384 { CRn( 9), CRm(12), Op1( 0), Op2( 5), is32
, access_pmselr
},
385 { CRn( 9), CRm(12), Op1( 0), Op2( 6), is32
, access_pmceid0
},
386 { CRn( 9), CRm(12), Op1( 0), Op2( 7), is32
, access_pmceid1
},
387 { CRn( 9), CRm(13), Op1( 0), Op2( 0), is32
, access_pmccntr
},
388 { CRn( 9), CRm(13), Op1( 0), Op2( 1), is32
, access_pmxevtyper
},
389 { CRn( 9), CRm(13), Op1( 0), Op2( 2), is32
, access_pmxevcntr
},
390 { CRn( 9), CRm(14), Op1( 0), Op2( 0), is32
, access_pmuserenr
},
391 { CRn( 9), CRm(14), Op1( 0), Op2( 1), is32
, access_pmintenset
},
392 { CRn( 9), CRm(14), Op1( 0), Op2( 2), is32
, access_pmintenclr
},
394 /* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
395 { CRn(10), CRm( 2), Op1( 0), Op2( 0), is32
,
396 access_vm_reg
, reset_unknown
, c10_PRRR
},
397 { CRn(10), CRm( 2), Op1( 0), Op2( 1), is32
,
398 access_vm_reg
, reset_unknown
, c10_NMRR
},
400 /* AMAIR0/AMAIR1: swapped by interrupt.S. */
401 { CRn(10), CRm( 3), Op1( 0), Op2( 0), is32
,
402 access_vm_reg
, reset_unknown
, c10_AMAIR0
},
403 { CRn(10), CRm( 3), Op1( 0), Op2( 1), is32
,
404 access_vm_reg
, reset_unknown
, c10_AMAIR1
},
407 { CRm64(12), Op1( 0), is64
, access_gic_sgi
},
409 /* VBAR: swapped by interrupt.S. */
410 { CRn(12), CRm( 0), Op1( 0), Op2( 0), is32
,
411 NULL
, reset_val
, c12_VBAR
, 0x00000000 },
414 { CRn(12), CRm(12), Op1( 0), Op2(5), is32
, access_gic_sre
},
416 /* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
417 { CRn(13), CRm( 0), Op1( 0), Op2( 1), is32
,
418 access_vm_reg
, reset_val
, c13_CID
, 0x00000000 },
419 { CRn(13), CRm( 0), Op1( 0), Op2( 2), is32
,
420 NULL
, reset_unknown
, c13_TID_URW
},
421 { CRn(13), CRm( 0), Op1( 0), Op2( 3), is32
,
422 NULL
, reset_unknown
, c13_TID_URO
},
423 { CRn(13), CRm( 0), Op1( 0), Op2( 4), is32
,
424 NULL
, reset_unknown
, c13_TID_PRIV
},
426 /* CNTKCTL: swapped by interrupt.S. */
427 { CRn(14), CRm( 1), Op1( 0), Op2( 0), is32
,
428 NULL
, reset_val
, c14_CNTKCTL
, 0x00000000 },
430 /* The Configuration Base Address Register. */
431 { CRn(15), CRm( 0), Op1( 4), Op2( 0), is32
, access_cbar
},
434 static int check_reg_table(const struct coproc_reg
*table
, unsigned int n
)
438 for (i
= 1; i
< n
; i
++) {
439 if (cmp_reg(&table
[i
-1], &table
[i
]) >= 0) {
440 kvm_err("reg table %p out of order (%d)\n", table
, i
- 1);
448 /* Target specific emulation tables */
449 static struct kvm_coproc_target_table
*target_tables
[KVM_ARM_NUM_TARGETS
];
451 void kvm_register_target_coproc_table(struct kvm_coproc_target_table
*table
)
453 BUG_ON(check_reg_table(table
->table
, table
->num
));
454 target_tables
[table
->target
] = table
;
457 /* Get specific register table for this target. */
458 static const struct coproc_reg
*get_target_table(unsigned target
, size_t *num
)
460 struct kvm_coproc_target_table
*table
;
462 table
= target_tables
[target
];
467 #define reg_to_match_value(x) \
470 val = (x)->CRn << 11; \
471 val |= (x)->CRm << 7; \
472 val |= (x)->Op1 << 4; \
473 val |= (x)->Op2 << 1; \
474 val |= !(x)->is_64bit; \
478 static int match_reg(const void *key
, const void *elt
)
480 const unsigned long pval
= (unsigned long)key
;
481 const struct coproc_reg
*r
= elt
;
483 return pval
- reg_to_match_value(r
);
486 static const struct coproc_reg
*find_reg(const struct coproc_params
*params
,
487 const struct coproc_reg table
[],
490 unsigned long pval
= reg_to_match_value(params
);
492 return bsearch((void *)pval
, table
, num
, sizeof(table
[0]), match_reg
);
495 static int emulate_cp15(struct kvm_vcpu
*vcpu
,
496 const struct coproc_params
*params
)
499 const struct coproc_reg
*table
, *r
;
501 trace_kvm_emulate_cp15_imp(params
->Op1
, params
->Rt1
, params
->CRn
,
502 params
->CRm
, params
->Op2
, params
->is_write
);
504 table
= get_target_table(vcpu
->arch
.target
, &num
);
506 /* Search target-specific then generic table. */
507 r
= find_reg(params
, table
, num
);
509 r
= find_reg(params
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
512 /* If we don't have an accessor, we should never get here! */
515 if (likely(r
->access(vcpu
, params
, r
))) {
516 /* Skip instruction, since it was emulated */
517 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
520 /* If access function fails, it should complain. */
521 kvm_err("Unsupported guest CP15 access at: %08lx\n",
523 print_cp_instr(params
);
524 kvm_inject_undefined(vcpu
);
530 static struct coproc_params
decode_64bit_hsr(struct kvm_vcpu
*vcpu
)
532 struct coproc_params params
;
534 params
.CRn
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
535 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
536 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
537 params
.is_64bit
= true;
539 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 16) & 0xf;
541 params
.Rt2
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
548 * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
549 * @vcpu: The VCPU pointer
550 * @run: The kvm_run struct
552 int kvm_handle_cp15_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
554 struct coproc_params params
= decode_64bit_hsr(vcpu
);
556 return emulate_cp15(vcpu
, ¶ms
);
560 * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
561 * @vcpu: The VCPU pointer
562 * @run: The kvm_run struct
564 int kvm_handle_cp14_64(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
566 struct coproc_params params
= decode_64bit_hsr(vcpu
);
569 trap_raz_wi(vcpu
, ¶ms
, NULL
);
572 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
576 static void reset_coproc_regs(struct kvm_vcpu
*vcpu
,
577 const struct coproc_reg
*table
, size_t num
)
581 for (i
= 0; i
< num
; i
++)
583 table
[i
].reset(vcpu
, &table
[i
]);
586 static struct coproc_params
decode_32bit_hsr(struct kvm_vcpu
*vcpu
)
588 struct coproc_params params
;
590 params
.CRm
= (kvm_vcpu_get_hsr(vcpu
) >> 1) & 0xf;
591 params
.Rt1
= (kvm_vcpu_get_hsr(vcpu
) >> 5) & 0xf;
592 params
.is_write
= ((kvm_vcpu_get_hsr(vcpu
) & 1) == 0);
593 params
.is_64bit
= false;
595 params
.CRn
= (kvm_vcpu_get_hsr(vcpu
) >> 10) & 0xf;
596 params
.Op1
= (kvm_vcpu_get_hsr(vcpu
) >> 14) & 0x7;
597 params
.Op2
= (kvm_vcpu_get_hsr(vcpu
) >> 17) & 0x7;
604 * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
605 * @vcpu: The VCPU pointer
606 * @run: The kvm_run struct
608 int kvm_handle_cp15_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
610 struct coproc_params params
= decode_32bit_hsr(vcpu
);
611 return emulate_cp15(vcpu
, ¶ms
);
615 * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
616 * @vcpu: The VCPU pointer
617 * @run: The kvm_run struct
619 int kvm_handle_cp14_32(struct kvm_vcpu
*vcpu
, struct kvm_run
*run
)
621 struct coproc_params params
= decode_32bit_hsr(vcpu
);
624 trap_raz_wi(vcpu
, ¶ms
, NULL
);
627 kvm_skip_instr(vcpu
, kvm_vcpu_trap_il_is32bit(vcpu
));
631 /******************************************************************************
633 *****************************************************************************/
635 static bool index_to_params(u64 id
, struct coproc_params
*params
)
637 switch (id
& KVM_REG_SIZE_MASK
) {
638 case KVM_REG_SIZE_U32
:
639 /* Any unused index bits means it's not valid. */
640 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
641 | KVM_REG_ARM_COPROC_MASK
642 | KVM_REG_ARM_32_CRN_MASK
643 | KVM_REG_ARM_CRM_MASK
644 | KVM_REG_ARM_OPC1_MASK
645 | KVM_REG_ARM_32_OPC2_MASK
))
648 params
->is_64bit
= false;
649 params
->CRn
= ((id
& KVM_REG_ARM_32_CRN_MASK
)
650 >> KVM_REG_ARM_32_CRN_SHIFT
);
651 params
->CRm
= ((id
& KVM_REG_ARM_CRM_MASK
)
652 >> KVM_REG_ARM_CRM_SHIFT
);
653 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
654 >> KVM_REG_ARM_OPC1_SHIFT
);
655 params
->Op2
= ((id
& KVM_REG_ARM_32_OPC2_MASK
)
656 >> KVM_REG_ARM_32_OPC2_SHIFT
);
658 case KVM_REG_SIZE_U64
:
659 /* Any unused index bits means it's not valid. */
660 if (id
& ~(KVM_REG_ARCH_MASK
| KVM_REG_SIZE_MASK
661 | KVM_REG_ARM_COPROC_MASK
662 | KVM_REG_ARM_CRM_MASK
663 | KVM_REG_ARM_OPC1_MASK
))
665 params
->is_64bit
= true;
666 /* CRm to CRn: see cp15_to_index for details */
667 params
->CRn
= ((id
& KVM_REG_ARM_CRM_MASK
)
668 >> KVM_REG_ARM_CRM_SHIFT
);
669 params
->Op1
= ((id
& KVM_REG_ARM_OPC1_MASK
)
670 >> KVM_REG_ARM_OPC1_SHIFT
);
679 /* Decode an index value, and find the cp15 coproc_reg entry. */
680 static const struct coproc_reg
*index_to_coproc_reg(struct kvm_vcpu
*vcpu
,
684 const struct coproc_reg
*table
, *r
;
685 struct coproc_params params
;
687 /* We only do cp15 for now. */
688 if ((id
& KVM_REG_ARM_COPROC_MASK
) >> KVM_REG_ARM_COPROC_SHIFT
!= 15)
691 if (!index_to_params(id
, ¶ms
))
694 table
= get_target_table(vcpu
->arch
.target
, &num
);
695 r
= find_reg(¶ms
, table
, num
);
697 r
= find_reg(¶ms
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
699 /* Not saved in the cp15 array? */
707 * These are the invariant cp15 registers: we let the guest see the host
708 * versions of these, so they're part of the guest state.
710 * A future CPU may provide a mechanism to present different values to
711 * the guest, or a future kvm may trap them.
713 /* Unfortunately, there's no register-argument for mrc, so generate. */
714 #define FUNCTION_FOR32(crn, crm, op1, op2, name) \
715 static void get_##name(struct kvm_vcpu *v, \
716 const struct coproc_reg *r) \
720 asm volatile("mrc p15, " __stringify(op1) \
721 ", %0, c" __stringify(crn) \
722 ", c" __stringify(crm) \
723 ", " __stringify(op2) "\n" : "=r" (val)); \
724 ((struct coproc_reg *)r)->val = val; \
727 FUNCTION_FOR32(0, 0, 0, 0, MIDR
)
728 FUNCTION_FOR32(0, 0, 0, 1, CTR
)
729 FUNCTION_FOR32(0, 0, 0, 2, TCMTR
)
730 FUNCTION_FOR32(0, 0, 0, 3, TLBTR
)
731 FUNCTION_FOR32(0, 0, 0, 6, REVIDR
)
732 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0
)
733 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1
)
734 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0
)
735 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0
)
736 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0
)
737 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1
)
738 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2
)
739 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3
)
740 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0
)
741 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1
)
742 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2
)
743 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3
)
744 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4
)
745 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5
)
746 FUNCTION_FOR32(0, 0, 1, 1, CLIDR
)
747 FUNCTION_FOR32(0, 0, 1, 7, AIDR
)
749 /* ->val is filled in by kvm_invariant_coproc_table_init() */
750 static struct coproc_reg invariant_cp15
[] = {
751 { CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32
, NULL
, get_MIDR
},
752 { CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32
, NULL
, get_CTR
},
753 { CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32
, NULL
, get_TCMTR
},
754 { CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32
, NULL
, get_TLBTR
},
755 { CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32
, NULL
, get_REVIDR
},
757 { CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32
, NULL
, get_CLIDR
},
758 { CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32
, NULL
, get_AIDR
},
760 { CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32
, NULL
, get_ID_PFR0
},
761 { CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32
, NULL
, get_ID_PFR1
},
762 { CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32
, NULL
, get_ID_DFR0
},
763 { CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32
, NULL
, get_ID_AFR0
},
764 { CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32
, NULL
, get_ID_MMFR0
},
765 { CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32
, NULL
, get_ID_MMFR1
},
766 { CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32
, NULL
, get_ID_MMFR2
},
767 { CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32
, NULL
, get_ID_MMFR3
},
769 { CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32
, NULL
, get_ID_ISAR0
},
770 { CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32
, NULL
, get_ID_ISAR1
},
771 { CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32
, NULL
, get_ID_ISAR2
},
772 { CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32
, NULL
, get_ID_ISAR3
},
773 { CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32
, NULL
, get_ID_ISAR4
},
774 { CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32
, NULL
, get_ID_ISAR5
},
778 * Reads a register value from a userspace address to a kernel
779 * variable. Make sure that register size matches sizeof(*__val).
781 static int reg_from_user(void *val
, const void __user
*uaddr
, u64 id
)
783 if (copy_from_user(val
, uaddr
, KVM_REG_SIZE(id
)) != 0)
789 * Writes a register value to a userspace address from a kernel variable.
790 * Make sure that register size matches sizeof(*__val).
792 static int reg_to_user(void __user
*uaddr
, const void *val
, u64 id
)
794 if (copy_to_user(uaddr
, val
, KVM_REG_SIZE(id
)) != 0)
799 static int get_invariant_cp15(u64 id
, void __user
*uaddr
)
801 struct coproc_params params
;
802 const struct coproc_reg
*r
;
805 if (!index_to_params(id
, ¶ms
))
808 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
813 if (KVM_REG_SIZE(id
) == 4) {
816 ret
= reg_to_user(uaddr
, &val
, id
);
817 } else if (KVM_REG_SIZE(id
) == 8) {
818 ret
= reg_to_user(uaddr
, &r
->val
, id
);
823 static int set_invariant_cp15(u64 id
, void __user
*uaddr
)
825 struct coproc_params params
;
826 const struct coproc_reg
*r
;
830 if (!index_to_params(id
, ¶ms
))
832 r
= find_reg(¶ms
, invariant_cp15
, ARRAY_SIZE(invariant_cp15
));
837 if (KVM_REG_SIZE(id
) == 4) {
840 err
= reg_from_user(&val32
, uaddr
, id
);
843 } else if (KVM_REG_SIZE(id
) == 8) {
844 err
= reg_from_user(&val
, uaddr
, id
);
849 /* This is what we mean by invariant: you can't change it. */
856 static bool is_valid_cache(u32 val
)
860 if (val
>= CSSELR_MAX
)
863 /* Bottom bit is Instruction or Data bit. Next 3 bits are level. */
865 ctype
= (cache_levels
>> (level
* 3)) & 7;
868 case 0: /* No cache */
870 case 1: /* Instruction cache only */
872 case 2: /* Data cache only */
873 case 4: /* Unified cache */
875 case 3: /* Separate instruction and data caches */
877 default: /* Reserved: we can't know instruction or data. */
882 /* Which cache CCSIDR represents depends on CSSELR value. */
883 static u32
get_ccsidr(u32 csselr
)
887 /* Make sure noone else changes CSSELR during this! */
889 /* Put value into CSSELR */
890 asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr
));
892 /* Read result out of CCSIDR */
893 asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr
));
899 static int demux_c15_get(u64 id
, void __user
*uaddr
)
902 u32 __user
*uval
= uaddr
;
904 /* Fail if we have unknown bits set. */
905 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
906 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
909 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
910 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
911 if (KVM_REG_SIZE(id
) != 4)
913 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
914 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
915 if (!is_valid_cache(val
))
918 return put_user(get_ccsidr(val
), uval
);
924 static int demux_c15_set(u64 id
, void __user
*uaddr
)
927 u32 __user
*uval
= uaddr
;
929 /* Fail if we have unknown bits set. */
930 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
931 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
934 switch (id
& KVM_REG_ARM_DEMUX_ID_MASK
) {
935 case KVM_REG_ARM_DEMUX_ID_CCSIDR
:
936 if (KVM_REG_SIZE(id
) != 4)
938 val
= (id
& KVM_REG_ARM_DEMUX_VAL_MASK
)
939 >> KVM_REG_ARM_DEMUX_VAL_SHIFT
;
940 if (!is_valid_cache(val
))
943 if (get_user(newval
, uval
))
946 /* This is also invariant: you can't change it. */
947 if (newval
!= get_ccsidr(val
))
956 static const int vfp_sysregs
[] = { KVM_REG_ARM_VFP_FPEXC
,
957 KVM_REG_ARM_VFP_FPSCR
,
958 KVM_REG_ARM_VFP_FPINST
,
959 KVM_REG_ARM_VFP_FPINST2
,
960 KVM_REG_ARM_VFP_MVFR0
,
961 KVM_REG_ARM_VFP_MVFR1
,
962 KVM_REG_ARM_VFP_FPSID
};
964 static unsigned int num_fp_regs(void)
966 if (((fmrx(MVFR0
) & MVFR0_A_SIMD_MASK
) >> MVFR0_A_SIMD_BIT
) == 2)
972 static unsigned int num_vfp_regs(void)
974 /* Normal FP regs + control regs. */
975 return num_fp_regs() + ARRAY_SIZE(vfp_sysregs
);
978 static int copy_vfp_regids(u64 __user
*uindices
)
981 const u64 u32reg
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_VFP
;
982 const u64 u64reg
= KVM_REG_ARM
| KVM_REG_SIZE_U64
| KVM_REG_ARM_VFP
;
984 for (i
= 0; i
< num_fp_regs(); i
++) {
985 if (put_user((u64reg
| KVM_REG_ARM_VFP_BASE_REG
) + i
,
991 for (i
= 0; i
< ARRAY_SIZE(vfp_sysregs
); i
++) {
992 if (put_user(u32reg
| vfp_sysregs
[i
], uindices
))
997 return num_vfp_regs();
1000 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
1002 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
1005 /* Fail if we have unknown bits set. */
1006 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
1007 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
1010 if (vfpid
< num_fp_regs()) {
1011 if (KVM_REG_SIZE(id
) != 8)
1013 return reg_to_user(uaddr
, &vcpu
->arch
.ctxt
.vfp
.fpregs
[vfpid
],
1017 /* FP control registers are all 32 bit. */
1018 if (KVM_REG_SIZE(id
) != 4)
1022 case KVM_REG_ARM_VFP_FPEXC
:
1023 return reg_to_user(uaddr
, &vcpu
->arch
.ctxt
.vfp
.fpexc
, id
);
1024 case KVM_REG_ARM_VFP_FPSCR
:
1025 return reg_to_user(uaddr
, &vcpu
->arch
.ctxt
.vfp
.fpscr
, id
);
1026 case KVM_REG_ARM_VFP_FPINST
:
1027 return reg_to_user(uaddr
, &vcpu
->arch
.ctxt
.vfp
.fpinst
, id
);
1028 case KVM_REG_ARM_VFP_FPINST2
:
1029 return reg_to_user(uaddr
, &vcpu
->arch
.ctxt
.vfp
.fpinst2
, id
);
1030 case KVM_REG_ARM_VFP_MVFR0
:
1032 return reg_to_user(uaddr
, &val
, id
);
1033 case KVM_REG_ARM_VFP_MVFR1
:
1035 return reg_to_user(uaddr
, &val
, id
);
1036 case KVM_REG_ARM_VFP_FPSID
:
1038 return reg_to_user(uaddr
, &val
, id
);
1044 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
1046 u32 vfpid
= (id
& KVM_REG_ARM_VFP_MASK
);
1049 /* Fail if we have unknown bits set. */
1050 if (id
& ~(KVM_REG_ARCH_MASK
|KVM_REG_SIZE_MASK
|KVM_REG_ARM_COPROC_MASK
1051 | ((1 << KVM_REG_ARM_COPROC_SHIFT
)-1)))
1054 if (vfpid
< num_fp_regs()) {
1055 if (KVM_REG_SIZE(id
) != 8)
1057 return reg_from_user(&vcpu
->arch
.ctxt
.vfp
.fpregs
[vfpid
],
1061 /* FP control registers are all 32 bit. */
1062 if (KVM_REG_SIZE(id
) != 4)
1066 case KVM_REG_ARM_VFP_FPEXC
:
1067 return reg_from_user(&vcpu
->arch
.ctxt
.vfp
.fpexc
, uaddr
, id
);
1068 case KVM_REG_ARM_VFP_FPSCR
:
1069 return reg_from_user(&vcpu
->arch
.ctxt
.vfp
.fpscr
, uaddr
, id
);
1070 case KVM_REG_ARM_VFP_FPINST
:
1071 return reg_from_user(&vcpu
->arch
.ctxt
.vfp
.fpinst
, uaddr
, id
);
1072 case KVM_REG_ARM_VFP_FPINST2
:
1073 return reg_from_user(&vcpu
->arch
.ctxt
.vfp
.fpinst2
, uaddr
, id
);
1074 /* These are invariant. */
1075 case KVM_REG_ARM_VFP_MVFR0
:
1076 if (reg_from_user(&val
, uaddr
, id
))
1078 if (val
!= fmrx(MVFR0
))
1081 case KVM_REG_ARM_VFP_MVFR1
:
1082 if (reg_from_user(&val
, uaddr
, id
))
1084 if (val
!= fmrx(MVFR1
))
1087 case KVM_REG_ARM_VFP_FPSID
:
1088 if (reg_from_user(&val
, uaddr
, id
))
1090 if (val
!= fmrx(FPSID
))
1097 #else /* !CONFIG_VFPv3 */
1098 static unsigned int num_vfp_regs(void)
1103 static int copy_vfp_regids(u64 __user
*uindices
)
1108 static int vfp_get_reg(const struct kvm_vcpu
*vcpu
, u64 id
, void __user
*uaddr
)
1113 static int vfp_set_reg(struct kvm_vcpu
*vcpu
, u64 id
, const void __user
*uaddr
)
1117 #endif /* !CONFIG_VFPv3 */
1119 int kvm_arm_coproc_get_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1121 const struct coproc_reg
*r
;
1122 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
1125 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1126 return demux_c15_get(reg
->id
, uaddr
);
1128 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
1129 return vfp_get_reg(vcpu
, reg
->id
, uaddr
);
1131 r
= index_to_coproc_reg(vcpu
, reg
->id
);
1133 return get_invariant_cp15(reg
->id
, uaddr
);
1136 if (KVM_REG_SIZE(reg
->id
) == 8) {
1139 val
= vcpu_cp15_reg64_get(vcpu
, r
);
1140 ret
= reg_to_user(uaddr
, &val
, reg
->id
);
1141 } else if (KVM_REG_SIZE(reg
->id
) == 4) {
1142 ret
= reg_to_user(uaddr
, &vcpu_cp15(vcpu
, r
->reg
), reg
->id
);
1148 int kvm_arm_coproc_set_reg(struct kvm_vcpu
*vcpu
, const struct kvm_one_reg
*reg
)
1150 const struct coproc_reg
*r
;
1151 void __user
*uaddr
= (void __user
*)(long)reg
->addr
;
1154 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_DEMUX
)
1155 return demux_c15_set(reg
->id
, uaddr
);
1157 if ((reg
->id
& KVM_REG_ARM_COPROC_MASK
) == KVM_REG_ARM_VFP
)
1158 return vfp_set_reg(vcpu
, reg
->id
, uaddr
);
1160 r
= index_to_coproc_reg(vcpu
, reg
->id
);
1162 return set_invariant_cp15(reg
->id
, uaddr
);
1165 if (KVM_REG_SIZE(reg
->id
) == 8) {
1168 ret
= reg_from_user(&val
, uaddr
, reg
->id
);
1170 vcpu_cp15_reg64_set(vcpu
, r
, val
);
1171 } else if (KVM_REG_SIZE(reg
->id
) == 4) {
1172 ret
= reg_from_user(&vcpu_cp15(vcpu
, r
->reg
), uaddr
, reg
->id
);
1178 static unsigned int num_demux_regs(void)
1180 unsigned int i
, count
= 0;
1182 for (i
= 0; i
< CSSELR_MAX
; i
++)
1183 if (is_valid_cache(i
))
1189 static int write_demux_regids(u64 __user
*uindices
)
1191 u64 val
= KVM_REG_ARM
| KVM_REG_SIZE_U32
| KVM_REG_ARM_DEMUX
;
1194 val
|= KVM_REG_ARM_DEMUX_ID_CCSIDR
;
1195 for (i
= 0; i
< CSSELR_MAX
; i
++) {
1196 if (!is_valid_cache(i
))
1198 if (put_user(val
| i
, uindices
))
1205 static u64
cp15_to_index(const struct coproc_reg
*reg
)
1207 u64 val
= KVM_REG_ARM
| (15 << KVM_REG_ARM_COPROC_SHIFT
);
1208 if (reg
->is_64bit
) {
1209 val
|= KVM_REG_SIZE_U64
;
1210 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
1212 * CRn always denotes the primary coproc. reg. nr. for the
1213 * in-kernel representation, but the user space API uses the
1214 * CRm for the encoding, because it is modelled after the
1215 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1218 val
|= (reg
->CRn
<< KVM_REG_ARM_CRM_SHIFT
);
1220 val
|= KVM_REG_SIZE_U32
;
1221 val
|= (reg
->Op1
<< KVM_REG_ARM_OPC1_SHIFT
);
1222 val
|= (reg
->Op2
<< KVM_REG_ARM_32_OPC2_SHIFT
);
1223 val
|= (reg
->CRm
<< KVM_REG_ARM_CRM_SHIFT
);
1224 val
|= (reg
->CRn
<< KVM_REG_ARM_32_CRN_SHIFT
);
1229 static bool copy_reg_to_user(const struct coproc_reg
*reg
, u64 __user
**uind
)
1234 if (put_user(cp15_to_index(reg
), *uind
))
1241 /* Assumed ordered tables, see kvm_coproc_table_init. */
1242 static int walk_cp15(struct kvm_vcpu
*vcpu
, u64 __user
*uind
)
1244 const struct coproc_reg
*i1
, *i2
, *end1
, *end2
;
1245 unsigned int total
= 0;
1248 /* We check for duplicates here, to allow arch-specific overrides. */
1249 i1
= get_target_table(vcpu
->arch
.target
, &num
);
1252 end2
= cp15_regs
+ ARRAY_SIZE(cp15_regs
);
1254 BUG_ON(i1
== end1
|| i2
== end2
);
1256 /* Walk carefully, as both tables may refer to the same register. */
1258 int cmp
= cmp_reg(i1
, i2
);
1259 /* target-specific overrides generic entry. */
1261 /* Ignore registers we trap but don't save. */
1263 if (!copy_reg_to_user(i1
, &uind
))
1268 /* Ignore registers we trap but don't save. */
1270 if (!copy_reg_to_user(i2
, &uind
))
1276 if (cmp
<= 0 && ++i1
== end1
)
1278 if (cmp
>= 0 && ++i2
== end2
)
1284 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu
*vcpu
)
1286 return ARRAY_SIZE(invariant_cp15
)
1289 + walk_cp15(vcpu
, (u64 __user
*)NULL
);
1292 int kvm_arm_copy_coproc_indices(struct kvm_vcpu
*vcpu
, u64 __user
*uindices
)
1297 /* Then give them all the invariant registers' indices. */
1298 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++) {
1299 if (put_user(cp15_to_index(&invariant_cp15
[i
]), uindices
))
1304 err
= walk_cp15(vcpu
, uindices
);
1309 err
= copy_vfp_regids(uindices
);
1314 return write_demux_regids(uindices
);
1317 void kvm_coproc_table_init(void)
1321 /* Make sure tables are unique and in order. */
1322 BUG_ON(check_reg_table(cp15_regs
, ARRAY_SIZE(cp15_regs
)));
1323 BUG_ON(check_reg_table(invariant_cp15
, ARRAY_SIZE(invariant_cp15
)));
1325 /* We abuse the reset function to overwrite the table itself. */
1326 for (i
= 0; i
< ARRAY_SIZE(invariant_cp15
); i
++)
1327 invariant_cp15
[i
].reset(NULL
, &invariant_cp15
[i
]);
1330 * CLIDR format is awkward, so clean it up. See ARM B4.1.20:
1332 * If software reads the Cache Type fields from Ctype1
1333 * upwards, once it has seen a value of 0b000, no caches
1334 * exist at further-out levels of the hierarchy. So, for
1335 * example, if Ctype3 is the first Cache Type field with a
1336 * value of 0b000, the values of Ctype4 to Ctype7 must be
1339 asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels
));
1340 for (i
= 0; i
< 7; i
++)
1341 if (((cache_levels
>> (i
*3)) & 7) == 0)
1343 /* Clear all higher bits. */
1344 cache_levels
&= (1 << (i
*3))-1;
1348 * kvm_reset_coprocs - sets cp15 registers to reset value
1349 * @vcpu: The VCPU pointer
1351 * This function finds the right table above and sets the registers on the
1352 * virtual CPU struct to their architecturally defined reset values.
1354 void kvm_reset_coprocs(struct kvm_vcpu
*vcpu
)
1357 const struct coproc_reg
*table
;
1359 /* Catch someone adding a register without putting in reset entry. */
1360 memset(vcpu
->arch
.ctxt
.cp15
, 0x42, sizeof(vcpu
->arch
.ctxt
.cp15
));
1362 /* Generic chip reset first (so target could override). */
1363 reset_coproc_regs(vcpu
, cp15_regs
, ARRAY_SIZE(cp15_regs
));
1365 table
= get_target_table(vcpu
->arch
.target
, &num
);
1366 reset_coproc_regs(vcpu
, table
, num
);
1368 for (num
= 1; num
< NR_CP15_REGS
; num
++)
1369 if (vcpu_cp15(vcpu
, num
) == 0x42424242)
1370 panic("Didn't reset vcpu_cp15(vcpu, %zi)", num
);