Linux 4.15.10
[linux/fpc-iii.git] / arch / cris / arch-v32 / mach-fs / arbiter.c
blobc4750d97e46c5793ec1f01c47e7115ef27d5b18d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Memory arbiter functions. Allocates bandwidth through the
4 * arbiter and sets up arbiter breakpoints.
6 * The algorithm first assigns slots to the clients that has specified
7 * bandwidth (e.g. ethernet) and then the remaining slots are divided
8 * on all the active clients.
10 * Copyright (c) 2004-2007 Axis Communications AB.
13 #include <hwregs/reg_map.h>
14 #include <hwregs/reg_rdwr.h>
15 #include <hwregs/marb_defs.h>
16 #include <arbiter.h>
17 #include <hwregs/intr_vect.h>
18 #include <linux/interrupt.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/spinlock.h>
22 #include <asm/io.h>
23 #include <asm/irq_regs.h>
25 struct crisv32_watch_entry {
26 unsigned long instance;
27 watch_callback *cb;
28 unsigned long start;
29 unsigned long end;
30 int used;
33 #define NUMBER_OF_BP 4
34 #define NBR_OF_CLIENTS 14
35 #define NBR_OF_SLOTS 64
36 #define SDRAM_BANDWIDTH 100000000 /* Some kind of expected value */
37 #define INTMEM_BANDWIDTH 400000000
38 #define NBR_OF_REGIONS 2
40 static struct crisv32_watch_entry watches[NUMBER_OF_BP] = {
41 {regi_marb_bp0},
42 {regi_marb_bp1},
43 {regi_marb_bp2},
44 {regi_marb_bp3}
47 static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
48 static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
49 static int max_bandwidth[NBR_OF_REGIONS] =
50 { SDRAM_BANDWIDTH, INTMEM_BANDWIDTH };
52 DEFINE_SPINLOCK(arbiter_lock);
54 static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id);
57 * "I'm the arbiter, I know the score.
58 * From square one I'll be watching all 64."
59 * (memory arbiter slots, that is)
61 * Or in other words:
62 * Program the memory arbiter slots for "region" according to what's
63 * in requested_slots[] and active_clients[], while minimizing
64 * latency. A caller may pass a non-zero positive amount for
65 * "unused_slots", which must then be the unallocated, remaining
66 * number of slots, free to hand out to any client.
69 static void crisv32_arbiter_config(int region, int unused_slots)
71 int slot;
72 int client;
73 int interval = 0;
76 * This vector corresponds to the hardware arbiter slots (see
77 * the hardware documentation for semantics). We initialize
78 * each slot with a suitable sentinel value outside the valid
79 * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
80 * client indexes. Then it's fed to the hardware.
82 s8 val[NBR_OF_SLOTS];
84 for (slot = 0; slot < NBR_OF_SLOTS; slot++)
85 val[slot] = -1;
87 for (client = 0; client < NBR_OF_CLIENTS; client++) {
88 int pos;
89 /* Allocate the requested non-zero number of slots, but
90 * also give clients with zero-requests one slot each
91 * while stocks last. We do the latter here, in client
92 * order. This makes sure zero-request clients are the
93 * first to get to any spare slots, else those slots
94 * could, when bandwidth is allocated close to the limit,
95 * all be allocated to low-index non-zero-request clients
96 * in the default-fill loop below. Another positive but
97 * secondary effect is a somewhat better spread of the
98 * zero-bandwidth clients in the vector, avoiding some of
99 * the latency that could otherwise be caused by the
100 * partitioning of non-zero-bandwidth clients at low
101 * indexes and zero-bandwidth clients at high
102 * indexes. (Note that this spreading can only affect the
103 * unallocated bandwidth.) All the above only matters for
104 * memory-intensive situations, of course.
106 if (!requested_slots[region][client]) {
108 * Skip inactive clients. Also skip zero-slot
109 * allocations in this pass when there are no known
110 * free slots.
112 if (!active_clients[region][client]
113 || unused_slots <= 0)
114 continue;
116 unused_slots--;
118 /* Only allocate one slot for this client. */
119 interval = NBR_OF_SLOTS;
120 } else
121 interval =
122 NBR_OF_SLOTS / requested_slots[region][client];
124 pos = 0;
125 while (pos < NBR_OF_SLOTS) {
126 if (val[pos] >= 0)
127 pos++;
128 else {
129 val[pos] = client;
130 pos += interval;
135 client = 0;
136 for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
138 * Allocate remaining slots in round-robin
139 * client-number order for active clients. For this
140 * pass, we ignore requested bandwidth and previous
141 * allocations.
143 if (val[slot] < 0) {
144 int first = client;
145 while (!active_clients[region][client]) {
146 client = (client + 1) % NBR_OF_CLIENTS;
147 if (client == first)
148 break;
150 val[slot] = client;
151 client = (client + 1) % NBR_OF_CLIENTS;
153 if (region == EXT_REGION)
154 REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot,
155 val[slot]);
156 else if (region == INT_REGION)
157 REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot,
158 val[slot]);
162 extern char _stext[], _etext[];
164 static void crisv32_arbiter_init(void)
166 static int initialized;
168 if (initialized)
169 return;
171 initialized = 1;
174 * CPU caches are always set to active, but with zero
175 * bandwidth allocated. It should be ok to allocate zero
176 * bandwidth for the caches, because DMA for other channels
177 * will supposedly finish, once their programmed amount is
178 * done, and then the caches will get access according to the
179 * "fixed scheme" for unclaimed slots. Though, if for some
180 * use-case somewhere, there's a maximum CPU latency for
181 * e.g. some interrupt, we have to start allocating specific
182 * bandwidth for the CPU caches too.
184 active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
185 crisv32_arbiter_config(EXT_REGION, 0);
186 crisv32_arbiter_config(INT_REGION, 0);
188 if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, 0,
189 "arbiter", NULL))
190 printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
192 #ifndef CONFIG_ETRAX_KGDB
193 /* Global watch for writes to kernel text segment. */
194 crisv32_arbiter_watch(virt_to_phys(_stext), _etext - _stext,
195 arbiter_all_clients, arbiter_all_write, NULL);
196 #endif
199 /* Main entry for bandwidth allocation. */
201 int crisv32_arbiter_allocate_bandwidth(int client, int region,
202 unsigned long bandwidth)
204 int i;
205 int total_assigned = 0;
206 int total_clients = 0;
207 int req;
209 crisv32_arbiter_init();
211 for (i = 0; i < NBR_OF_CLIENTS; i++) {
212 total_assigned += requested_slots[region][i];
213 total_clients += active_clients[region][i];
216 /* Avoid division by 0 for 0-bandwidth requests. */
217 req = bandwidth == 0
218 ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
221 * We make sure that there are enough slots only for non-zero
222 * requests. Requesting 0 bandwidth *may* allocate slots,
223 * though if all bandwidth is allocated, such a client won't
224 * get any and will have to rely on getting memory access
225 * according to the fixed scheme that's the default when one
226 * of the slot-allocated clients doesn't claim their slot.
228 if (total_assigned + req > NBR_OF_SLOTS)
229 return -ENOMEM;
231 active_clients[region][client] = 1;
232 requested_slots[region][client] = req;
233 crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
235 return 0;
239 * Main entry for bandwidth deallocation.
241 * Strictly speaking, for a somewhat constant set of clients where
242 * each client gets a constant bandwidth and is just enabled or
243 * disabled (somewhat dynamically), no action is necessary here to
244 * avoid starvation for non-zero-allocation clients, as the allocated
245 * slots will just be unused. However, handing out those unused slots
246 * to active clients avoids needless latency if the "fixed scheme"
247 * would give unclaimed slots to an eager low-index client.
250 void crisv32_arbiter_deallocate_bandwidth(int client, int region)
252 int i;
253 int total_assigned = 0;
255 requested_slots[region][client] = 0;
256 active_clients[region][client] = 0;
258 for (i = 0; i < NBR_OF_CLIENTS; i++)
259 total_assigned += requested_slots[region][i];
261 crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
264 int crisv32_arbiter_watch(unsigned long start, unsigned long size,
265 unsigned long clients, unsigned long accesses,
266 watch_callback *cb)
268 int i;
270 crisv32_arbiter_init();
272 if (start > 0x80000000) {
273 printk(KERN_ERR "Arbiter: %lX doesn't look like a "
274 "physical address", start);
275 return -EFAULT;
278 spin_lock(&arbiter_lock);
280 for (i = 0; i < NUMBER_OF_BP; i++) {
281 if (!watches[i].used) {
282 reg_marb_rw_intr_mask intr_mask =
283 REG_RD(marb, regi_marb, rw_intr_mask);
285 watches[i].used = 1;
286 watches[i].start = start;
287 watches[i].end = start + size;
288 watches[i].cb = cb;
290 REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr,
291 watches[i].start);
292 REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr,
293 watches[i].end);
294 REG_WR_INT(marb_bp, watches[i].instance, rw_op,
295 accesses);
296 REG_WR_INT(marb_bp, watches[i].instance, rw_clients,
297 clients);
299 if (i == 0)
300 intr_mask.bp0 = regk_marb_yes;
301 else if (i == 1)
302 intr_mask.bp1 = regk_marb_yes;
303 else if (i == 2)
304 intr_mask.bp2 = regk_marb_yes;
305 else if (i == 3)
306 intr_mask.bp3 = regk_marb_yes;
308 REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
309 spin_unlock(&arbiter_lock);
311 return i;
314 spin_unlock(&arbiter_lock);
315 return -ENOMEM;
318 int crisv32_arbiter_unwatch(int id)
320 reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
322 crisv32_arbiter_init();
324 spin_lock(&arbiter_lock);
326 if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
327 spin_unlock(&arbiter_lock);
328 return -EINVAL;
331 memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
333 if (id == 0)
334 intr_mask.bp0 = regk_marb_no;
335 else if (id == 1)
336 intr_mask.bp1 = regk_marb_no;
337 else if (id == 2)
338 intr_mask.bp2 = regk_marb_no;
339 else if (id == 3)
340 intr_mask.bp3 = regk_marb_no;
342 REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
344 spin_unlock(&arbiter_lock);
345 return 0;
348 extern void show_registers(struct pt_regs *regs);
350 static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id)
352 reg_marb_r_masked_intr masked_intr =
353 REG_RD(marb, regi_marb, r_masked_intr);
354 reg_marb_bp_r_brk_clients r_clients;
355 reg_marb_bp_r_brk_addr r_addr;
356 reg_marb_bp_r_brk_op r_op;
357 reg_marb_bp_r_brk_first_client r_first;
358 reg_marb_bp_r_brk_size r_size;
359 reg_marb_bp_rw_ack ack = { 0 };
360 reg_marb_rw_ack_intr ack_intr = {
361 .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
363 struct crisv32_watch_entry *watch;
365 if (masked_intr.bp0) {
366 watch = &watches[0];
367 ack_intr.bp0 = regk_marb_yes;
368 } else if (masked_intr.bp1) {
369 watch = &watches[1];
370 ack_intr.bp1 = regk_marb_yes;
371 } else if (masked_intr.bp2) {
372 watch = &watches[2];
373 ack_intr.bp2 = regk_marb_yes;
374 } else if (masked_intr.bp3) {
375 watch = &watches[3];
376 ack_intr.bp3 = regk_marb_yes;
377 } else {
378 return IRQ_NONE;
381 /* Retrieve all useful information and print it. */
382 r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
383 r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
384 r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
385 r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
386 r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
388 printk(KERN_INFO "Arbiter IRQ\n");
389 printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n",
390 REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
391 REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
392 REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
393 REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
394 REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
396 REG_WR(marb_bp, watch->instance, rw_ack, ack);
397 REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
399 printk(KERN_INFO "IRQ occurred at %lX\n", get_irq_regs()->erp);
401 if (watch->cb)
402 watch->cb();
404 return IRQ_HANDLED;