Linux 4.9.169
[linux/fpc-iii.git] / fs / namei.c
blobeb4626bad88a7c99e7fa30d54628e29787a1c26b
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/slab.h>
21 #include <linux/fs.h>
22 #include <linux/namei.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <linux/posix_acl.h>
37 #include <linux/hash.h>
38 #include <linux/bitops.h>
39 #include <linux/init_task.h>
40 #include <asm/uaccess.h>
42 #include "internal.h"
43 #include "mount.h"
45 /* [Feb-1997 T. Schoebel-Theuer]
46 * Fundamental changes in the pathname lookup mechanisms (namei)
47 * were necessary because of omirr. The reason is that omirr needs
48 * to know the _real_ pathname, not the user-supplied one, in case
49 * of symlinks (and also when transname replacements occur).
51 * The new code replaces the old recursive symlink resolution with
52 * an iterative one (in case of non-nested symlink chains). It does
53 * this with calls to <fs>_follow_link().
54 * As a side effect, dir_namei(), _namei() and follow_link() are now
55 * replaced with a single function lookup_dentry() that can handle all
56 * the special cases of the former code.
58 * With the new dcache, the pathname is stored at each inode, at least as
59 * long as the refcount of the inode is positive. As a side effect, the
60 * size of the dcache depends on the inode cache and thus is dynamic.
62 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
63 * resolution to correspond with current state of the code.
65 * Note that the symlink resolution is not *completely* iterative.
66 * There is still a significant amount of tail- and mid- recursion in
67 * the algorithm. Also, note that <fs>_readlink() is not used in
68 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
69 * may return different results than <fs>_follow_link(). Many virtual
70 * filesystems (including /proc) exhibit this behavior.
73 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
74 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
75 * and the name already exists in form of a symlink, try to create the new
76 * name indicated by the symlink. The old code always complained that the
77 * name already exists, due to not following the symlink even if its target
78 * is nonexistent. The new semantics affects also mknod() and link() when
79 * the name is a symlink pointing to a non-existent name.
81 * I don't know which semantics is the right one, since I have no access
82 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
83 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
84 * "old" one. Personally, I think the new semantics is much more logical.
85 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
86 * file does succeed in both HP-UX and SunOs, but not in Solaris
87 * and in the old Linux semantics.
90 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
91 * semantics. See the comments in "open_namei" and "do_link" below.
93 * [10-Sep-98 Alan Modra] Another symlink change.
96 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
97 * inside the path - always follow.
98 * in the last component in creation/removal/renaming - never follow.
99 * if LOOKUP_FOLLOW passed - follow.
100 * if the pathname has trailing slashes - follow.
101 * otherwise - don't follow.
102 * (applied in that order).
104 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
105 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
106 * During the 2.4 we need to fix the userland stuff depending on it -
107 * hopefully we will be able to get rid of that wart in 2.5. So far only
108 * XEmacs seems to be relying on it...
111 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
112 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
113 * any extra contention...
116 /* In order to reduce some races, while at the same time doing additional
117 * checking and hopefully speeding things up, we copy filenames to the
118 * kernel data space before using them..
120 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
121 * PATH_MAX includes the nul terminator --RR.
124 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
126 struct filename *
127 getname_flags(const char __user *filename, int flags, int *empty)
129 struct filename *result;
130 char *kname;
131 int len;
133 result = audit_reusename(filename);
134 if (result)
135 return result;
137 result = __getname();
138 if (unlikely(!result))
139 return ERR_PTR(-ENOMEM);
142 * First, try to embed the struct filename inside the names_cache
143 * allocation
145 kname = (char *)result->iname;
146 result->name = kname;
148 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
149 if (unlikely(len < 0)) {
150 __putname(result);
151 return ERR_PTR(len);
155 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
156 * separate struct filename so we can dedicate the entire
157 * names_cache allocation for the pathname, and re-do the copy from
158 * userland.
160 if (unlikely(len == EMBEDDED_NAME_MAX)) {
161 const size_t size = offsetof(struct filename, iname[1]);
162 kname = (char *)result;
165 * size is chosen that way we to guarantee that
166 * result->iname[0] is within the same object and that
167 * kname can't be equal to result->iname, no matter what.
169 result = kzalloc(size, GFP_KERNEL);
170 if (unlikely(!result)) {
171 __putname(kname);
172 return ERR_PTR(-ENOMEM);
174 result->name = kname;
175 len = strncpy_from_user(kname, filename, PATH_MAX);
176 if (unlikely(len < 0)) {
177 __putname(kname);
178 kfree(result);
179 return ERR_PTR(len);
181 if (unlikely(len == PATH_MAX)) {
182 __putname(kname);
183 kfree(result);
184 return ERR_PTR(-ENAMETOOLONG);
188 result->refcnt = 1;
189 /* The empty path is special. */
190 if (unlikely(!len)) {
191 if (empty)
192 *empty = 1;
193 if (!(flags & LOOKUP_EMPTY)) {
194 putname(result);
195 return ERR_PTR(-ENOENT);
199 result->uptr = filename;
200 result->aname = NULL;
201 audit_getname(result);
202 return result;
205 struct filename *
206 getname(const char __user * filename)
208 return getname_flags(filename, 0, NULL);
211 struct filename *
212 getname_kernel(const char * filename)
214 struct filename *result;
215 int len = strlen(filename) + 1;
217 result = __getname();
218 if (unlikely(!result))
219 return ERR_PTR(-ENOMEM);
221 if (len <= EMBEDDED_NAME_MAX) {
222 result->name = (char *)result->iname;
223 } else if (len <= PATH_MAX) {
224 const size_t size = offsetof(struct filename, iname[1]);
225 struct filename *tmp;
227 tmp = kmalloc(size, GFP_KERNEL);
228 if (unlikely(!tmp)) {
229 __putname(result);
230 return ERR_PTR(-ENOMEM);
232 tmp->name = (char *)result;
233 result = tmp;
234 } else {
235 __putname(result);
236 return ERR_PTR(-ENAMETOOLONG);
238 memcpy((char *)result->name, filename, len);
239 result->uptr = NULL;
240 result->aname = NULL;
241 result->refcnt = 1;
242 audit_getname(result);
244 return result;
247 void putname(struct filename *name)
249 BUG_ON(name->refcnt <= 0);
251 if (--name->refcnt > 0)
252 return;
254 if (name->name != name->iname) {
255 __putname(name->name);
256 kfree(name);
257 } else
258 __putname(name);
261 static int check_acl(struct inode *inode, int mask)
263 #ifdef CONFIG_FS_POSIX_ACL
264 struct posix_acl *acl;
266 if (mask & MAY_NOT_BLOCK) {
267 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
268 if (!acl)
269 return -EAGAIN;
270 /* no ->get_acl() calls in RCU mode... */
271 if (is_uncached_acl(acl))
272 return -ECHILD;
273 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
276 acl = get_acl(inode, ACL_TYPE_ACCESS);
277 if (IS_ERR(acl))
278 return PTR_ERR(acl);
279 if (acl) {
280 int error = posix_acl_permission(inode, acl, mask);
281 posix_acl_release(acl);
282 return error;
284 #endif
286 return -EAGAIN;
290 * This does the basic permission checking
292 static int acl_permission_check(struct inode *inode, int mask)
294 unsigned int mode = inode->i_mode;
296 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
297 mode >>= 6;
298 else {
299 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
300 int error = check_acl(inode, mask);
301 if (error != -EAGAIN)
302 return error;
305 if (in_group_p(inode->i_gid))
306 mode >>= 3;
310 * If the DACs are ok we don't need any capability check.
312 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
313 return 0;
314 return -EACCES;
318 * generic_permission - check for access rights on a Posix-like filesystem
319 * @inode: inode to check access rights for
320 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
322 * Used to check for read/write/execute permissions on a file.
323 * We use "fsuid" for this, letting us set arbitrary permissions
324 * for filesystem access without changing the "normal" uids which
325 * are used for other things.
327 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
328 * request cannot be satisfied (eg. requires blocking or too much complexity).
329 * It would then be called again in ref-walk mode.
331 int generic_permission(struct inode *inode, int mask)
333 int ret;
336 * Do the basic permission checks.
338 ret = acl_permission_check(inode, mask);
339 if (ret != -EACCES)
340 return ret;
342 if (S_ISDIR(inode->i_mode)) {
343 /* DACs are overridable for directories */
344 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
345 return 0;
346 if (!(mask & MAY_WRITE))
347 if (capable_wrt_inode_uidgid(inode,
348 CAP_DAC_READ_SEARCH))
349 return 0;
350 return -EACCES;
353 * Read/write DACs are always overridable.
354 * Executable DACs are overridable when there is
355 * at least one exec bit set.
357 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
358 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
359 return 0;
362 * Searching includes executable on directories, else just read.
364 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
365 if (mask == MAY_READ)
366 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
367 return 0;
369 return -EACCES;
371 EXPORT_SYMBOL(generic_permission);
374 * We _really_ want to just do "generic_permission()" without
375 * even looking at the inode->i_op values. So we keep a cache
376 * flag in inode->i_opflags, that says "this has not special
377 * permission function, use the fast case".
379 static inline int do_inode_permission(struct inode *inode, int mask)
381 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
382 if (likely(inode->i_op->permission))
383 return inode->i_op->permission(inode, mask);
385 /* This gets set once for the inode lifetime */
386 spin_lock(&inode->i_lock);
387 inode->i_opflags |= IOP_FASTPERM;
388 spin_unlock(&inode->i_lock);
390 return generic_permission(inode, mask);
394 * __inode_permission - Check for access rights to a given inode
395 * @inode: Inode to check permission on
396 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
398 * Check for read/write/execute permissions on an inode.
400 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
402 * This does not check for a read-only file system. You probably want
403 * inode_permission().
405 int __inode_permission(struct inode *inode, int mask)
407 int retval;
409 if (unlikely(mask & MAY_WRITE)) {
411 * Nobody gets write access to an immutable file.
413 if (IS_IMMUTABLE(inode))
414 return -EPERM;
417 * Updating mtime will likely cause i_uid and i_gid to be
418 * written back improperly if their true value is unknown
419 * to the vfs.
421 if (HAS_UNMAPPED_ID(inode))
422 return -EACCES;
425 retval = do_inode_permission(inode, mask);
426 if (retval)
427 return retval;
429 retval = devcgroup_inode_permission(inode, mask);
430 if (retval)
431 return retval;
433 return security_inode_permission(inode, mask);
435 EXPORT_SYMBOL(__inode_permission);
438 * sb_permission - Check superblock-level permissions
439 * @sb: Superblock of inode to check permission on
440 * @inode: Inode to check permission on
441 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
443 * Separate out file-system wide checks from inode-specific permission checks.
445 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
447 if (unlikely(mask & MAY_WRITE)) {
448 umode_t mode = inode->i_mode;
450 /* Nobody gets write access to a read-only fs. */
451 if ((sb->s_flags & MS_RDONLY) &&
452 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
453 return -EROFS;
455 return 0;
459 * inode_permission - Check for access rights to a given inode
460 * @inode: Inode to check permission on
461 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
463 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
464 * this, letting us set arbitrary permissions for filesystem access without
465 * changing the "normal" UIDs which are used for other things.
467 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
469 int inode_permission(struct inode *inode, int mask)
471 int retval;
473 retval = sb_permission(inode->i_sb, inode, mask);
474 if (retval)
475 return retval;
476 return __inode_permission(inode, mask);
478 EXPORT_SYMBOL(inode_permission);
481 * path_get - get a reference to a path
482 * @path: path to get the reference to
484 * Given a path increment the reference count to the dentry and the vfsmount.
486 void path_get(const struct path *path)
488 mntget(path->mnt);
489 dget(path->dentry);
491 EXPORT_SYMBOL(path_get);
494 * path_put - put a reference to a path
495 * @path: path to put the reference to
497 * Given a path decrement the reference count to the dentry and the vfsmount.
499 void path_put(const struct path *path)
501 dput(path->dentry);
502 mntput(path->mnt);
504 EXPORT_SYMBOL(path_put);
506 #define EMBEDDED_LEVELS 2
507 struct nameidata {
508 struct path path;
509 struct qstr last;
510 struct path root;
511 struct inode *inode; /* path.dentry.d_inode */
512 unsigned int flags;
513 unsigned seq, m_seq;
514 int last_type;
515 unsigned depth;
516 int total_link_count;
517 struct saved {
518 struct path link;
519 struct delayed_call done;
520 const char *name;
521 unsigned seq;
522 } *stack, internal[EMBEDDED_LEVELS];
523 struct filename *name;
524 struct nameidata *saved;
525 struct inode *link_inode;
526 unsigned root_seq;
527 int dfd;
530 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
532 struct nameidata *old = current->nameidata;
533 p->stack = p->internal;
534 p->dfd = dfd;
535 p->name = name;
536 p->total_link_count = old ? old->total_link_count : 0;
537 p->saved = old;
538 current->nameidata = p;
541 static void restore_nameidata(void)
543 struct nameidata *now = current->nameidata, *old = now->saved;
545 current->nameidata = old;
546 if (old)
547 old->total_link_count = now->total_link_count;
548 if (now->stack != now->internal)
549 kfree(now->stack);
552 static int __nd_alloc_stack(struct nameidata *nd)
554 struct saved *p;
556 if (nd->flags & LOOKUP_RCU) {
557 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
558 GFP_ATOMIC);
559 if (unlikely(!p))
560 return -ECHILD;
561 } else {
562 p= kmalloc(MAXSYMLINKS * sizeof(struct saved),
563 GFP_KERNEL);
564 if (unlikely(!p))
565 return -ENOMEM;
567 memcpy(p, nd->internal, sizeof(nd->internal));
568 nd->stack = p;
569 return 0;
573 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
574 * @path: nameidate to verify
576 * Rename can sometimes move a file or directory outside of a bind
577 * mount, path_connected allows those cases to be detected.
579 static bool path_connected(const struct path *path)
581 struct vfsmount *mnt = path->mnt;
582 struct super_block *sb = mnt->mnt_sb;
584 /* Bind mounts and multi-root filesystems can have disconnected paths */
585 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
586 return true;
588 return is_subdir(path->dentry, mnt->mnt_root);
591 static inline int nd_alloc_stack(struct nameidata *nd)
593 if (likely(nd->depth != EMBEDDED_LEVELS))
594 return 0;
595 if (likely(nd->stack != nd->internal))
596 return 0;
597 return __nd_alloc_stack(nd);
600 static void drop_links(struct nameidata *nd)
602 int i = nd->depth;
603 while (i--) {
604 struct saved *last = nd->stack + i;
605 do_delayed_call(&last->done);
606 clear_delayed_call(&last->done);
610 static void terminate_walk(struct nameidata *nd)
612 drop_links(nd);
613 if (!(nd->flags & LOOKUP_RCU)) {
614 int i;
615 path_put(&nd->path);
616 for (i = 0; i < nd->depth; i++)
617 path_put(&nd->stack[i].link);
618 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
619 path_put(&nd->root);
620 nd->root.mnt = NULL;
622 } else {
623 nd->flags &= ~LOOKUP_RCU;
624 if (!(nd->flags & LOOKUP_ROOT))
625 nd->root.mnt = NULL;
626 rcu_read_unlock();
628 nd->depth = 0;
631 /* path_put is needed afterwards regardless of success or failure */
632 static bool legitimize_path(struct nameidata *nd,
633 struct path *path, unsigned seq)
635 int res = __legitimize_mnt(path->mnt, nd->m_seq);
636 if (unlikely(res)) {
637 if (res > 0)
638 path->mnt = NULL;
639 path->dentry = NULL;
640 return false;
642 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
643 path->dentry = NULL;
644 return false;
646 return !read_seqcount_retry(&path->dentry->d_seq, seq);
649 static bool legitimize_links(struct nameidata *nd)
651 int i;
652 for (i = 0; i < nd->depth; i++) {
653 struct saved *last = nd->stack + i;
654 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
655 drop_links(nd);
656 nd->depth = i + 1;
657 return false;
660 return true;
664 * Path walking has 2 modes, rcu-walk and ref-walk (see
665 * Documentation/filesystems/path-lookup.txt). In situations when we can't
666 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
667 * normal reference counts on dentries and vfsmounts to transition to ref-walk
668 * mode. Refcounts are grabbed at the last known good point before rcu-walk
669 * got stuck, so ref-walk may continue from there. If this is not successful
670 * (eg. a seqcount has changed), then failure is returned and it's up to caller
671 * to restart the path walk from the beginning in ref-walk mode.
675 * unlazy_walk - try to switch to ref-walk mode.
676 * @nd: nameidata pathwalk data
677 * @dentry: child of nd->path.dentry or NULL
678 * @seq: seq number to check dentry against
679 * Returns: 0 on success, -ECHILD on failure
681 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
682 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
683 * @nd or NULL. Must be called from rcu-walk context.
684 * Nothing should touch nameidata between unlazy_walk() failure and
685 * terminate_walk().
687 static int unlazy_walk(struct nameidata *nd, struct dentry *dentry, unsigned seq)
689 struct dentry *parent = nd->path.dentry;
691 BUG_ON(!(nd->flags & LOOKUP_RCU));
693 nd->flags &= ~LOOKUP_RCU;
694 if (unlikely(!legitimize_links(nd)))
695 goto out2;
696 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
697 goto out2;
698 if (unlikely(!lockref_get_not_dead(&parent->d_lockref)))
699 goto out1;
702 * For a negative lookup, the lookup sequence point is the parents
703 * sequence point, and it only needs to revalidate the parent dentry.
705 * For a positive lookup, we need to move both the parent and the
706 * dentry from the RCU domain to be properly refcounted. And the
707 * sequence number in the dentry validates *both* dentry counters,
708 * since we checked the sequence number of the parent after we got
709 * the child sequence number. So we know the parent must still
710 * be valid if the child sequence number is still valid.
712 if (!dentry) {
713 if (read_seqcount_retry(&parent->d_seq, nd->seq))
714 goto out;
715 BUG_ON(nd->inode != parent->d_inode);
716 } else {
717 if (!lockref_get_not_dead(&dentry->d_lockref))
718 goto out;
719 if (read_seqcount_retry(&dentry->d_seq, seq))
720 goto drop_dentry;
724 * Sequence counts matched. Now make sure that the root is
725 * still valid and get it if required.
727 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
728 if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
729 rcu_read_unlock();
730 dput(dentry);
731 return -ECHILD;
735 rcu_read_unlock();
736 return 0;
738 drop_dentry:
739 rcu_read_unlock();
740 dput(dentry);
741 goto drop_root_mnt;
742 out2:
743 nd->path.mnt = NULL;
744 out1:
745 nd->path.dentry = NULL;
746 out:
747 rcu_read_unlock();
748 drop_root_mnt:
749 if (!(nd->flags & LOOKUP_ROOT))
750 nd->root.mnt = NULL;
751 return -ECHILD;
754 static int unlazy_link(struct nameidata *nd, struct path *link, unsigned seq)
756 if (unlikely(!legitimize_path(nd, link, seq))) {
757 drop_links(nd);
758 nd->depth = 0;
759 nd->flags &= ~LOOKUP_RCU;
760 nd->path.mnt = NULL;
761 nd->path.dentry = NULL;
762 if (!(nd->flags & LOOKUP_ROOT))
763 nd->root.mnt = NULL;
764 rcu_read_unlock();
765 } else if (likely(unlazy_walk(nd, NULL, 0)) == 0) {
766 return 0;
768 path_put(link);
769 return -ECHILD;
772 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
774 return dentry->d_op->d_revalidate(dentry, flags);
778 * complete_walk - successful completion of path walk
779 * @nd: pointer nameidata
781 * If we had been in RCU mode, drop out of it and legitimize nd->path.
782 * Revalidate the final result, unless we'd already done that during
783 * the path walk or the filesystem doesn't ask for it. Return 0 on
784 * success, -error on failure. In case of failure caller does not
785 * need to drop nd->path.
787 static int complete_walk(struct nameidata *nd)
789 struct dentry *dentry = nd->path.dentry;
790 int status;
792 if (nd->flags & LOOKUP_RCU) {
793 if (!(nd->flags & LOOKUP_ROOT))
794 nd->root.mnt = NULL;
795 if (unlikely(unlazy_walk(nd, NULL, 0)))
796 return -ECHILD;
799 if (likely(!(nd->flags & LOOKUP_JUMPED)))
800 return 0;
802 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
803 return 0;
805 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
806 if (status > 0)
807 return 0;
809 if (!status)
810 status = -ESTALE;
812 return status;
815 static void set_root(struct nameidata *nd)
817 struct fs_struct *fs = current->fs;
819 if (nd->flags & LOOKUP_RCU) {
820 unsigned seq;
822 do {
823 seq = read_seqcount_begin(&fs->seq);
824 nd->root = fs->root;
825 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
826 } while (read_seqcount_retry(&fs->seq, seq));
827 } else {
828 get_fs_root(fs, &nd->root);
832 static void path_put_conditional(struct path *path, struct nameidata *nd)
834 dput(path->dentry);
835 if (path->mnt != nd->path.mnt)
836 mntput(path->mnt);
839 static inline void path_to_nameidata(const struct path *path,
840 struct nameidata *nd)
842 if (!(nd->flags & LOOKUP_RCU)) {
843 dput(nd->path.dentry);
844 if (nd->path.mnt != path->mnt)
845 mntput(nd->path.mnt);
847 nd->path.mnt = path->mnt;
848 nd->path.dentry = path->dentry;
851 static int nd_jump_root(struct nameidata *nd)
853 if (nd->flags & LOOKUP_RCU) {
854 struct dentry *d;
855 nd->path = nd->root;
856 d = nd->path.dentry;
857 nd->inode = d->d_inode;
858 nd->seq = nd->root_seq;
859 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
860 return -ECHILD;
861 } else {
862 path_put(&nd->path);
863 nd->path = nd->root;
864 path_get(&nd->path);
865 nd->inode = nd->path.dentry->d_inode;
867 nd->flags |= LOOKUP_JUMPED;
868 return 0;
872 * Helper to directly jump to a known parsed path from ->get_link,
873 * caller must have taken a reference to path beforehand.
875 void nd_jump_link(struct path *path)
877 struct nameidata *nd = current->nameidata;
878 path_put(&nd->path);
880 nd->path = *path;
881 nd->inode = nd->path.dentry->d_inode;
882 nd->flags |= LOOKUP_JUMPED;
885 static inline void put_link(struct nameidata *nd)
887 struct saved *last = nd->stack + --nd->depth;
888 do_delayed_call(&last->done);
889 if (!(nd->flags & LOOKUP_RCU))
890 path_put(&last->link);
893 int sysctl_protected_symlinks __read_mostly = 0;
894 int sysctl_protected_hardlinks __read_mostly = 0;
895 int sysctl_protected_fifos __read_mostly;
896 int sysctl_protected_regular __read_mostly;
899 * may_follow_link - Check symlink following for unsafe situations
900 * @nd: nameidata pathwalk data
902 * In the case of the sysctl_protected_symlinks sysctl being enabled,
903 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
904 * in a sticky world-writable directory. This is to protect privileged
905 * processes from failing races against path names that may change out
906 * from under them by way of other users creating malicious symlinks.
907 * It will permit symlinks to be followed only when outside a sticky
908 * world-writable directory, or when the uid of the symlink and follower
909 * match, or when the directory owner matches the symlink's owner.
911 * Returns 0 if following the symlink is allowed, -ve on error.
913 static inline int may_follow_link(struct nameidata *nd)
915 const struct inode *inode;
916 const struct inode *parent;
917 kuid_t puid;
919 if (!sysctl_protected_symlinks)
920 return 0;
922 /* Allowed if owner and follower match. */
923 inode = nd->link_inode;
924 if (uid_eq(current_cred()->fsuid, inode->i_uid))
925 return 0;
927 /* Allowed if parent directory not sticky and world-writable. */
928 parent = nd->inode;
929 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
930 return 0;
932 /* Allowed if parent directory and link owner match. */
933 puid = parent->i_uid;
934 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
935 return 0;
937 if (nd->flags & LOOKUP_RCU)
938 return -ECHILD;
940 audit_log_link_denied("follow_link", &nd->stack[0].link);
941 return -EACCES;
945 * safe_hardlink_source - Check for safe hardlink conditions
946 * @inode: the source inode to hardlink from
948 * Return false if at least one of the following conditions:
949 * - inode is not a regular file
950 * - inode is setuid
951 * - inode is setgid and group-exec
952 * - access failure for read and write
954 * Otherwise returns true.
956 static bool safe_hardlink_source(struct inode *inode)
958 umode_t mode = inode->i_mode;
960 /* Special files should not get pinned to the filesystem. */
961 if (!S_ISREG(mode))
962 return false;
964 /* Setuid files should not get pinned to the filesystem. */
965 if (mode & S_ISUID)
966 return false;
968 /* Executable setgid files should not get pinned to the filesystem. */
969 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
970 return false;
972 /* Hardlinking to unreadable or unwritable sources is dangerous. */
973 if (inode_permission(inode, MAY_READ | MAY_WRITE))
974 return false;
976 return true;
980 * may_linkat - Check permissions for creating a hardlink
981 * @link: the source to hardlink from
983 * Block hardlink when all of:
984 * - sysctl_protected_hardlinks enabled
985 * - fsuid does not match inode
986 * - hardlink source is unsafe (see safe_hardlink_source() above)
987 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
989 * Returns 0 if successful, -ve on error.
991 static int may_linkat(struct path *link)
993 struct inode *inode;
995 if (!sysctl_protected_hardlinks)
996 return 0;
998 inode = link->dentry->d_inode;
1000 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1001 * otherwise, it must be a safe source.
1003 if (inode_owner_or_capable(inode) || safe_hardlink_source(inode))
1004 return 0;
1006 audit_log_link_denied("linkat", link);
1007 return -EPERM;
1011 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1012 * should be allowed, or not, on files that already
1013 * exist.
1014 * @dir: the sticky parent directory
1015 * @inode: the inode of the file to open
1017 * Block an O_CREAT open of a FIFO (or a regular file) when:
1018 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1019 * - the file already exists
1020 * - we are in a sticky directory
1021 * - we don't own the file
1022 * - the owner of the directory doesn't own the file
1023 * - the directory is world writable
1024 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1025 * the directory doesn't have to be world writable: being group writable will
1026 * be enough.
1028 * Returns 0 if the open is allowed, -ve on error.
1030 static int may_create_in_sticky(struct dentry * const dir,
1031 struct inode * const inode)
1033 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1034 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1035 likely(!(dir->d_inode->i_mode & S_ISVTX)) ||
1036 uid_eq(inode->i_uid, dir->d_inode->i_uid) ||
1037 uid_eq(current_fsuid(), inode->i_uid))
1038 return 0;
1040 if (likely(dir->d_inode->i_mode & 0002) ||
1041 (dir->d_inode->i_mode & 0020 &&
1042 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1043 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1044 return -EACCES;
1046 return 0;
1049 static __always_inline
1050 const char *get_link(struct nameidata *nd)
1052 struct saved *last = nd->stack + nd->depth - 1;
1053 struct dentry *dentry = last->link.dentry;
1054 struct inode *inode = nd->link_inode;
1055 int error;
1056 const char *res;
1058 if (!(nd->flags & LOOKUP_RCU)) {
1059 touch_atime(&last->link);
1060 cond_resched();
1061 } else if (atime_needs_update_rcu(&last->link, inode)) {
1062 if (unlikely(unlazy_walk(nd, NULL, 0)))
1063 return ERR_PTR(-ECHILD);
1064 touch_atime(&last->link);
1067 error = security_inode_follow_link(dentry, inode,
1068 nd->flags & LOOKUP_RCU);
1069 if (unlikely(error))
1070 return ERR_PTR(error);
1072 nd->last_type = LAST_BIND;
1073 res = inode->i_link;
1074 if (!res) {
1075 const char * (*get)(struct dentry *, struct inode *,
1076 struct delayed_call *);
1077 get = inode->i_op->get_link;
1078 if (nd->flags & LOOKUP_RCU) {
1079 res = get(NULL, inode, &last->done);
1080 if (res == ERR_PTR(-ECHILD)) {
1081 if (unlikely(unlazy_walk(nd, NULL, 0)))
1082 return ERR_PTR(-ECHILD);
1083 res = get(dentry, inode, &last->done);
1085 } else {
1086 res = get(dentry, inode, &last->done);
1088 if (IS_ERR_OR_NULL(res))
1089 return res;
1091 if (*res == '/') {
1092 if (!nd->root.mnt)
1093 set_root(nd);
1094 if (unlikely(nd_jump_root(nd)))
1095 return ERR_PTR(-ECHILD);
1096 while (unlikely(*++res == '/'))
1099 if (!*res)
1100 res = NULL;
1101 return res;
1105 * follow_up - Find the mountpoint of path's vfsmount
1107 * Given a path, find the mountpoint of its source file system.
1108 * Replace @path with the path of the mountpoint in the parent mount.
1109 * Up is towards /.
1111 * Return 1 if we went up a level and 0 if we were already at the
1112 * root.
1114 int follow_up(struct path *path)
1116 struct mount *mnt = real_mount(path->mnt);
1117 struct mount *parent;
1118 struct dentry *mountpoint;
1120 read_seqlock_excl(&mount_lock);
1121 parent = mnt->mnt_parent;
1122 if (parent == mnt) {
1123 read_sequnlock_excl(&mount_lock);
1124 return 0;
1126 mntget(&parent->mnt);
1127 mountpoint = dget(mnt->mnt_mountpoint);
1128 read_sequnlock_excl(&mount_lock);
1129 dput(path->dentry);
1130 path->dentry = mountpoint;
1131 mntput(path->mnt);
1132 path->mnt = &parent->mnt;
1133 return 1;
1135 EXPORT_SYMBOL(follow_up);
1138 * Perform an automount
1139 * - return -EISDIR to tell follow_managed() to stop and return the path we
1140 * were called with.
1142 static int follow_automount(struct path *path, struct nameidata *nd,
1143 bool *need_mntput)
1145 struct vfsmount *mnt;
1146 int err;
1148 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1149 return -EREMOTE;
1151 /* We don't want to mount if someone's just doing a stat -
1152 * unless they're stat'ing a directory and appended a '/' to
1153 * the name.
1155 * We do, however, want to mount if someone wants to open or
1156 * create a file of any type under the mountpoint, wants to
1157 * traverse through the mountpoint or wants to open the
1158 * mounted directory. Also, autofs may mark negative dentries
1159 * as being automount points. These will need the attentions
1160 * of the daemon to instantiate them before they can be used.
1162 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1163 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1164 path->dentry->d_inode)
1165 return -EISDIR;
1167 nd->total_link_count++;
1168 if (nd->total_link_count >= 40)
1169 return -ELOOP;
1171 mnt = path->dentry->d_op->d_automount(path);
1172 if (IS_ERR(mnt)) {
1174 * The filesystem is allowed to return -EISDIR here to indicate
1175 * it doesn't want to automount. For instance, autofs would do
1176 * this so that its userspace daemon can mount on this dentry.
1178 * However, we can only permit this if it's a terminal point in
1179 * the path being looked up; if it wasn't then the remainder of
1180 * the path is inaccessible and we should say so.
1182 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1183 return -EREMOTE;
1184 return PTR_ERR(mnt);
1187 if (!mnt) /* mount collision */
1188 return 0;
1190 if (!*need_mntput) {
1191 /* lock_mount() may release path->mnt on error */
1192 mntget(path->mnt);
1193 *need_mntput = true;
1195 err = finish_automount(mnt, path);
1197 switch (err) {
1198 case -EBUSY:
1199 /* Someone else made a mount here whilst we were busy */
1200 return 0;
1201 case 0:
1202 path_put(path);
1203 path->mnt = mnt;
1204 path->dentry = dget(mnt->mnt_root);
1205 return 0;
1206 default:
1207 return err;
1213 * Handle a dentry that is managed in some way.
1214 * - Flagged for transit management (autofs)
1215 * - Flagged as mountpoint
1216 * - Flagged as automount point
1218 * This may only be called in refwalk mode.
1220 * Serialization is taken care of in namespace.c
1222 static int follow_managed(struct path *path, struct nameidata *nd)
1224 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1225 unsigned managed;
1226 bool need_mntput = false;
1227 int ret = 0;
1229 /* Given that we're not holding a lock here, we retain the value in a
1230 * local variable for each dentry as we look at it so that we don't see
1231 * the components of that value change under us */
1232 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1233 managed &= DCACHE_MANAGED_DENTRY,
1234 unlikely(managed != 0)) {
1235 /* Allow the filesystem to manage the transit without i_mutex
1236 * being held. */
1237 if (managed & DCACHE_MANAGE_TRANSIT) {
1238 BUG_ON(!path->dentry->d_op);
1239 BUG_ON(!path->dentry->d_op->d_manage);
1240 ret = path->dentry->d_op->d_manage(path->dentry, false);
1241 if (ret < 0)
1242 break;
1245 /* Transit to a mounted filesystem. */
1246 if (managed & DCACHE_MOUNTED) {
1247 struct vfsmount *mounted = lookup_mnt(path);
1248 if (mounted) {
1249 dput(path->dentry);
1250 if (need_mntput)
1251 mntput(path->mnt);
1252 path->mnt = mounted;
1253 path->dentry = dget(mounted->mnt_root);
1254 need_mntput = true;
1255 continue;
1258 /* Something is mounted on this dentry in another
1259 * namespace and/or whatever was mounted there in this
1260 * namespace got unmounted before lookup_mnt() could
1261 * get it */
1264 /* Handle an automount point */
1265 if (managed & DCACHE_NEED_AUTOMOUNT) {
1266 ret = follow_automount(path, nd, &need_mntput);
1267 if (ret < 0)
1268 break;
1269 continue;
1272 /* We didn't change the current path point */
1273 break;
1276 if (need_mntput && path->mnt == mnt)
1277 mntput(path->mnt);
1278 if (ret == -EISDIR || !ret)
1279 ret = 1;
1280 if (need_mntput)
1281 nd->flags |= LOOKUP_JUMPED;
1282 if (unlikely(ret < 0))
1283 path_put_conditional(path, nd);
1284 return ret;
1287 int follow_down_one(struct path *path)
1289 struct vfsmount *mounted;
1291 mounted = lookup_mnt(path);
1292 if (mounted) {
1293 dput(path->dentry);
1294 mntput(path->mnt);
1295 path->mnt = mounted;
1296 path->dentry = dget(mounted->mnt_root);
1297 return 1;
1299 return 0;
1301 EXPORT_SYMBOL(follow_down_one);
1303 static inline int managed_dentry_rcu(struct dentry *dentry)
1305 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1306 dentry->d_op->d_manage(dentry, true) : 0;
1310 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1311 * we meet a managed dentry that would need blocking.
1313 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1314 struct inode **inode, unsigned *seqp)
1316 for (;;) {
1317 struct mount *mounted;
1319 * Don't forget we might have a non-mountpoint managed dentry
1320 * that wants to block transit.
1322 switch (managed_dentry_rcu(path->dentry)) {
1323 case -ECHILD:
1324 default:
1325 return false;
1326 case -EISDIR:
1327 return true;
1328 case 0:
1329 break;
1332 if (!d_mountpoint(path->dentry))
1333 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1335 mounted = __lookup_mnt(path->mnt, path->dentry);
1336 if (!mounted)
1337 break;
1338 path->mnt = &mounted->mnt;
1339 path->dentry = mounted->mnt.mnt_root;
1340 nd->flags |= LOOKUP_JUMPED;
1341 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1343 * Update the inode too. We don't need to re-check the
1344 * dentry sequence number here after this d_inode read,
1345 * because a mount-point is always pinned.
1347 *inode = path->dentry->d_inode;
1349 return !read_seqretry(&mount_lock, nd->m_seq) &&
1350 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1353 static int follow_dotdot_rcu(struct nameidata *nd)
1355 struct inode *inode = nd->inode;
1357 while (1) {
1358 if (path_equal(&nd->path, &nd->root))
1359 break;
1360 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1361 struct dentry *old = nd->path.dentry;
1362 struct dentry *parent = old->d_parent;
1363 unsigned seq;
1365 inode = parent->d_inode;
1366 seq = read_seqcount_begin(&parent->d_seq);
1367 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1368 return -ECHILD;
1369 nd->path.dentry = parent;
1370 nd->seq = seq;
1371 if (unlikely(!path_connected(&nd->path)))
1372 return -ENOENT;
1373 break;
1374 } else {
1375 struct mount *mnt = real_mount(nd->path.mnt);
1376 struct mount *mparent = mnt->mnt_parent;
1377 struct dentry *mountpoint = mnt->mnt_mountpoint;
1378 struct inode *inode2 = mountpoint->d_inode;
1379 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1380 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1381 return -ECHILD;
1382 if (&mparent->mnt == nd->path.mnt)
1383 break;
1384 /* we know that mountpoint was pinned */
1385 nd->path.dentry = mountpoint;
1386 nd->path.mnt = &mparent->mnt;
1387 inode = inode2;
1388 nd->seq = seq;
1391 while (unlikely(d_mountpoint(nd->path.dentry))) {
1392 struct mount *mounted;
1393 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1394 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1395 return -ECHILD;
1396 if (!mounted)
1397 break;
1398 nd->path.mnt = &mounted->mnt;
1399 nd->path.dentry = mounted->mnt.mnt_root;
1400 inode = nd->path.dentry->d_inode;
1401 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1403 nd->inode = inode;
1404 return 0;
1408 * Follow down to the covering mount currently visible to userspace. At each
1409 * point, the filesystem owning that dentry may be queried as to whether the
1410 * caller is permitted to proceed or not.
1412 int follow_down(struct path *path)
1414 unsigned managed;
1415 int ret;
1417 while (managed = ACCESS_ONCE(path->dentry->d_flags),
1418 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1419 /* Allow the filesystem to manage the transit without i_mutex
1420 * being held.
1422 * We indicate to the filesystem if someone is trying to mount
1423 * something here. This gives autofs the chance to deny anyone
1424 * other than its daemon the right to mount on its
1425 * superstructure.
1427 * The filesystem may sleep at this point.
1429 if (managed & DCACHE_MANAGE_TRANSIT) {
1430 BUG_ON(!path->dentry->d_op);
1431 BUG_ON(!path->dentry->d_op->d_manage);
1432 ret = path->dentry->d_op->d_manage(
1433 path->dentry, false);
1434 if (ret < 0)
1435 return ret == -EISDIR ? 0 : ret;
1438 /* Transit to a mounted filesystem. */
1439 if (managed & DCACHE_MOUNTED) {
1440 struct vfsmount *mounted = lookup_mnt(path);
1441 if (!mounted)
1442 break;
1443 dput(path->dentry);
1444 mntput(path->mnt);
1445 path->mnt = mounted;
1446 path->dentry = dget(mounted->mnt_root);
1447 continue;
1450 /* Don't handle automount points here */
1451 break;
1453 return 0;
1455 EXPORT_SYMBOL(follow_down);
1458 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1460 static void follow_mount(struct path *path)
1462 while (d_mountpoint(path->dentry)) {
1463 struct vfsmount *mounted = lookup_mnt(path);
1464 if (!mounted)
1465 break;
1466 dput(path->dentry);
1467 mntput(path->mnt);
1468 path->mnt = mounted;
1469 path->dentry = dget(mounted->mnt_root);
1473 static int path_parent_directory(struct path *path)
1475 struct dentry *old = path->dentry;
1476 /* rare case of legitimate dget_parent()... */
1477 path->dentry = dget_parent(path->dentry);
1478 dput(old);
1479 if (unlikely(!path_connected(path)))
1480 return -ENOENT;
1481 return 0;
1484 static int follow_dotdot(struct nameidata *nd)
1486 while(1) {
1487 if (nd->path.dentry == nd->root.dentry &&
1488 nd->path.mnt == nd->root.mnt) {
1489 break;
1491 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1492 int ret = path_parent_directory(&nd->path);
1493 if (ret)
1494 return ret;
1495 break;
1497 if (!follow_up(&nd->path))
1498 break;
1500 follow_mount(&nd->path);
1501 nd->inode = nd->path.dentry->d_inode;
1502 return 0;
1506 * This looks up the name in dcache and possibly revalidates the found dentry.
1507 * NULL is returned if the dentry does not exist in the cache.
1509 static struct dentry *lookup_dcache(const struct qstr *name,
1510 struct dentry *dir,
1511 unsigned int flags)
1513 struct dentry *dentry;
1514 int error;
1516 dentry = d_lookup(dir, name);
1517 if (dentry) {
1518 if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1519 error = d_revalidate(dentry, flags);
1520 if (unlikely(error <= 0)) {
1521 if (!error)
1522 d_invalidate(dentry);
1523 dput(dentry);
1524 return ERR_PTR(error);
1528 return dentry;
1532 * Call i_op->lookup on the dentry. The dentry must be negative and
1533 * unhashed.
1535 * dir->d_inode->i_mutex must be held
1537 static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1538 unsigned int flags)
1540 struct dentry *old;
1542 /* Don't create child dentry for a dead directory. */
1543 if (unlikely(IS_DEADDIR(dir))) {
1544 dput(dentry);
1545 return ERR_PTR(-ENOENT);
1548 old = dir->i_op->lookup(dir, dentry, flags);
1549 if (unlikely(old)) {
1550 dput(dentry);
1551 dentry = old;
1553 return dentry;
1556 static struct dentry *__lookup_hash(const struct qstr *name,
1557 struct dentry *base, unsigned int flags)
1559 struct dentry *dentry = lookup_dcache(name, base, flags);
1561 if (dentry)
1562 return dentry;
1564 dentry = d_alloc(base, name);
1565 if (unlikely(!dentry))
1566 return ERR_PTR(-ENOMEM);
1568 return lookup_real(base->d_inode, dentry, flags);
1571 static int lookup_fast(struct nameidata *nd,
1572 struct path *path, struct inode **inode,
1573 unsigned *seqp)
1575 struct vfsmount *mnt = nd->path.mnt;
1576 struct dentry *dentry, *parent = nd->path.dentry;
1577 int status = 1;
1578 int err;
1581 * Rename seqlock is not required here because in the off chance
1582 * of a false negative due to a concurrent rename, the caller is
1583 * going to fall back to non-racy lookup.
1585 if (nd->flags & LOOKUP_RCU) {
1586 unsigned seq;
1587 bool negative;
1588 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1589 if (unlikely(!dentry)) {
1590 if (unlazy_walk(nd, NULL, 0))
1591 return -ECHILD;
1592 return 0;
1596 * This sequence count validates that the inode matches
1597 * the dentry name information from lookup.
1599 *inode = d_backing_inode(dentry);
1600 negative = d_is_negative(dentry);
1601 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1602 return -ECHILD;
1605 * This sequence count validates that the parent had no
1606 * changes while we did the lookup of the dentry above.
1608 * The memory barrier in read_seqcount_begin of child is
1609 * enough, we can use __read_seqcount_retry here.
1611 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1612 return -ECHILD;
1614 *seqp = seq;
1615 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1616 status = d_revalidate(dentry, nd->flags);
1617 if (unlikely(status <= 0)) {
1618 if (unlazy_walk(nd, dentry, seq))
1619 return -ECHILD;
1620 if (status == -ECHILD)
1621 status = d_revalidate(dentry, nd->flags);
1622 } else {
1624 * Note: do negative dentry check after revalidation in
1625 * case that drops it.
1627 if (unlikely(negative))
1628 return -ENOENT;
1629 path->mnt = mnt;
1630 path->dentry = dentry;
1631 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1632 return 1;
1633 if (unlazy_walk(nd, dentry, seq))
1634 return -ECHILD;
1636 } else {
1637 dentry = __d_lookup(parent, &nd->last);
1638 if (unlikely(!dentry))
1639 return 0;
1640 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
1641 status = d_revalidate(dentry, nd->flags);
1643 if (unlikely(status <= 0)) {
1644 if (!status)
1645 d_invalidate(dentry);
1646 dput(dentry);
1647 return status;
1649 if (unlikely(d_is_negative(dentry))) {
1650 dput(dentry);
1651 return -ENOENT;
1654 path->mnt = mnt;
1655 path->dentry = dentry;
1656 err = follow_managed(path, nd);
1657 if (likely(err > 0))
1658 *inode = d_backing_inode(path->dentry);
1659 return err;
1662 /* Fast lookup failed, do it the slow way */
1663 static struct dentry *lookup_slow(const struct qstr *name,
1664 struct dentry *dir,
1665 unsigned int flags)
1667 struct dentry *dentry = ERR_PTR(-ENOENT), *old;
1668 struct inode *inode = dir->d_inode;
1669 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1671 inode_lock_shared(inode);
1672 /* Don't go there if it's already dead */
1673 if (unlikely(IS_DEADDIR(inode)))
1674 goto out;
1675 again:
1676 dentry = d_alloc_parallel(dir, name, &wq);
1677 if (IS_ERR(dentry))
1678 goto out;
1679 if (unlikely(!d_in_lookup(dentry))) {
1680 if ((dentry->d_flags & DCACHE_OP_REVALIDATE) &&
1681 !(flags & LOOKUP_NO_REVAL)) {
1682 int error = d_revalidate(dentry, flags);
1683 if (unlikely(error <= 0)) {
1684 if (!error) {
1685 d_invalidate(dentry);
1686 dput(dentry);
1687 goto again;
1689 dput(dentry);
1690 dentry = ERR_PTR(error);
1693 } else {
1694 old = inode->i_op->lookup(inode, dentry, flags);
1695 d_lookup_done(dentry);
1696 if (unlikely(old)) {
1697 dput(dentry);
1698 dentry = old;
1701 out:
1702 inode_unlock_shared(inode);
1703 return dentry;
1706 static inline int may_lookup(struct nameidata *nd)
1708 if (nd->flags & LOOKUP_RCU) {
1709 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1710 if (err != -ECHILD)
1711 return err;
1712 if (unlazy_walk(nd, NULL, 0))
1713 return -ECHILD;
1715 return inode_permission(nd->inode, MAY_EXEC);
1718 static inline int handle_dots(struct nameidata *nd, int type)
1720 if (type == LAST_DOTDOT) {
1721 if (!nd->root.mnt)
1722 set_root(nd);
1723 if (nd->flags & LOOKUP_RCU) {
1724 return follow_dotdot_rcu(nd);
1725 } else
1726 return follow_dotdot(nd);
1728 return 0;
1731 static int pick_link(struct nameidata *nd, struct path *link,
1732 struct inode *inode, unsigned seq)
1734 int error;
1735 struct saved *last;
1736 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1737 path_to_nameidata(link, nd);
1738 return -ELOOP;
1740 if (!(nd->flags & LOOKUP_RCU)) {
1741 if (link->mnt == nd->path.mnt)
1742 mntget(link->mnt);
1744 error = nd_alloc_stack(nd);
1745 if (unlikely(error)) {
1746 if (error == -ECHILD) {
1747 if (unlikely(unlazy_link(nd, link, seq)))
1748 return -ECHILD;
1749 error = nd_alloc_stack(nd);
1751 if (error) {
1752 path_put(link);
1753 return error;
1757 last = nd->stack + nd->depth++;
1758 last->link = *link;
1759 clear_delayed_call(&last->done);
1760 nd->link_inode = inode;
1761 last->seq = seq;
1762 return 1;
1766 * Do we need to follow links? We _really_ want to be able
1767 * to do this check without having to look at inode->i_op,
1768 * so we keep a cache of "no, this doesn't need follow_link"
1769 * for the common case.
1771 static inline int should_follow_link(struct nameidata *nd, struct path *link,
1772 int follow,
1773 struct inode *inode, unsigned seq)
1775 if (likely(!d_is_symlink(link->dentry)))
1776 return 0;
1777 if (!follow)
1778 return 0;
1779 /* make sure that d_is_symlink above matches inode */
1780 if (nd->flags & LOOKUP_RCU) {
1781 if (read_seqcount_retry(&link->dentry->d_seq, seq))
1782 return -ECHILD;
1784 return pick_link(nd, link, inode, seq);
1787 enum {WALK_GET = 1, WALK_PUT = 2};
1789 static int walk_component(struct nameidata *nd, int flags)
1791 struct path path;
1792 struct inode *inode;
1793 unsigned seq;
1794 int err;
1796 * "." and ".." are special - ".." especially so because it has
1797 * to be able to know about the current root directory and
1798 * parent relationships.
1800 if (unlikely(nd->last_type != LAST_NORM)) {
1801 err = handle_dots(nd, nd->last_type);
1802 if (flags & WALK_PUT)
1803 put_link(nd);
1804 return err;
1806 err = lookup_fast(nd, &path, &inode, &seq);
1807 if (unlikely(err <= 0)) {
1808 if (err < 0)
1809 return err;
1810 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1811 nd->flags);
1812 if (IS_ERR(path.dentry))
1813 return PTR_ERR(path.dentry);
1815 path.mnt = nd->path.mnt;
1816 err = follow_managed(&path, nd);
1817 if (unlikely(err < 0))
1818 return err;
1820 if (unlikely(d_is_negative(path.dentry))) {
1821 path_to_nameidata(&path, nd);
1822 return -ENOENT;
1825 seq = 0; /* we are already out of RCU mode */
1826 inode = d_backing_inode(path.dentry);
1829 if (flags & WALK_PUT)
1830 put_link(nd);
1831 err = should_follow_link(nd, &path, flags & WALK_GET, inode, seq);
1832 if (unlikely(err))
1833 return err;
1834 path_to_nameidata(&path, nd);
1835 nd->inode = inode;
1836 nd->seq = seq;
1837 return 0;
1841 * We can do the critical dentry name comparison and hashing
1842 * operations one word at a time, but we are limited to:
1844 * - Architectures with fast unaligned word accesses. We could
1845 * do a "get_unaligned()" if this helps and is sufficiently
1846 * fast.
1848 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1849 * do not trap on the (extremely unlikely) case of a page
1850 * crossing operation.
1852 * - Furthermore, we need an efficient 64-bit compile for the
1853 * 64-bit case in order to generate the "number of bytes in
1854 * the final mask". Again, that could be replaced with a
1855 * efficient population count instruction or similar.
1857 #ifdef CONFIG_DCACHE_WORD_ACCESS
1859 #include <asm/word-at-a-time.h>
1861 #ifdef HASH_MIX
1863 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1865 #elif defined(CONFIG_64BIT)
1867 * Register pressure in the mixing function is an issue, particularly
1868 * on 32-bit x86, but almost any function requires one state value and
1869 * one temporary. Instead, use a function designed for two state values
1870 * and no temporaries.
1872 * This function cannot create a collision in only two iterations, so
1873 * we have two iterations to achieve avalanche. In those two iterations,
1874 * we have six layers of mixing, which is enough to spread one bit's
1875 * influence out to 2^6 = 64 state bits.
1877 * Rotate constants are scored by considering either 64 one-bit input
1878 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1879 * probability of that delta causing a change to each of the 128 output
1880 * bits, using a sample of random initial states.
1882 * The Shannon entropy of the computed probabilities is then summed
1883 * to produce a score. Ideally, any input change has a 50% chance of
1884 * toggling any given output bit.
1886 * Mixing scores (in bits) for (12,45):
1887 * Input delta: 1-bit 2-bit
1888 * 1 round: 713.3 42542.6
1889 * 2 rounds: 2753.7 140389.8
1890 * 3 rounds: 5954.1 233458.2
1891 * 4 rounds: 7862.6 256672.2
1892 * Perfect: 8192 258048
1893 * (64*128) (64*63/2 * 128)
1895 #define HASH_MIX(x, y, a) \
1896 ( x ^= (a), \
1897 y ^= x, x = rol64(x,12),\
1898 x += y, y = rol64(y,45),\
1899 y *= 9 )
1902 * Fold two longs into one 32-bit hash value. This must be fast, but
1903 * latency isn't quite as critical, as there is a fair bit of additional
1904 * work done before the hash value is used.
1906 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1908 y ^= x * GOLDEN_RATIO_64;
1909 y *= GOLDEN_RATIO_64;
1910 return y >> 32;
1913 #else /* 32-bit case */
1916 * Mixing scores (in bits) for (7,20):
1917 * Input delta: 1-bit 2-bit
1918 * 1 round: 330.3 9201.6
1919 * 2 rounds: 1246.4 25475.4
1920 * 3 rounds: 1907.1 31295.1
1921 * 4 rounds: 2042.3 31718.6
1922 * Perfect: 2048 31744
1923 * (32*64) (32*31/2 * 64)
1925 #define HASH_MIX(x, y, a) \
1926 ( x ^= (a), \
1927 y ^= x, x = rol32(x, 7),\
1928 x += y, y = rol32(y,20),\
1929 y *= 9 )
1931 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1933 /* Use arch-optimized multiply if one exists */
1934 return __hash_32(y ^ __hash_32(x));
1937 #endif
1940 * Return the hash of a string of known length. This is carfully
1941 * designed to match hash_name(), which is the more critical function.
1942 * In particular, we must end by hashing a final word containing 0..7
1943 * payload bytes, to match the way that hash_name() iterates until it
1944 * finds the delimiter after the name.
1946 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1948 unsigned long a, x = 0, y = (unsigned long)salt;
1950 for (;;) {
1951 if (!len)
1952 goto done;
1953 a = load_unaligned_zeropad(name);
1954 if (len < sizeof(unsigned long))
1955 break;
1956 HASH_MIX(x, y, a);
1957 name += sizeof(unsigned long);
1958 len -= sizeof(unsigned long);
1960 x ^= a & bytemask_from_count(len);
1961 done:
1962 return fold_hash(x, y);
1964 EXPORT_SYMBOL(full_name_hash);
1966 /* Return the "hash_len" (hash and length) of a null-terminated string */
1967 u64 hashlen_string(const void *salt, const char *name)
1969 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1970 unsigned long adata, mask, len;
1971 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1973 len = 0;
1974 goto inside;
1976 do {
1977 HASH_MIX(x, y, a);
1978 len += sizeof(unsigned long);
1979 inside:
1980 a = load_unaligned_zeropad(name+len);
1981 } while (!has_zero(a, &adata, &constants));
1983 adata = prep_zero_mask(a, adata, &constants);
1984 mask = create_zero_mask(adata);
1985 x ^= a & zero_bytemask(mask);
1987 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1989 EXPORT_SYMBOL(hashlen_string);
1992 * Calculate the length and hash of the path component, and
1993 * return the "hash_len" as the result.
1995 static inline u64 hash_name(const void *salt, const char *name)
1997 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1998 unsigned long adata, bdata, mask, len;
1999 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2001 len = 0;
2002 goto inside;
2004 do {
2005 HASH_MIX(x, y, a);
2006 len += sizeof(unsigned long);
2007 inside:
2008 a = load_unaligned_zeropad(name+len);
2009 b = a ^ REPEAT_BYTE('/');
2010 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2012 adata = prep_zero_mask(a, adata, &constants);
2013 bdata = prep_zero_mask(b, bdata, &constants);
2014 mask = create_zero_mask(adata | bdata);
2015 x ^= a & zero_bytemask(mask);
2017 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2020 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2022 /* Return the hash of a string of known length */
2023 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2025 unsigned long hash = init_name_hash(salt);
2026 while (len--)
2027 hash = partial_name_hash((unsigned char)*name++, hash);
2028 return end_name_hash(hash);
2030 EXPORT_SYMBOL(full_name_hash);
2032 /* Return the "hash_len" (hash and length) of a null-terminated string */
2033 u64 hashlen_string(const void *salt, const char *name)
2035 unsigned long hash = init_name_hash(salt);
2036 unsigned long len = 0, c;
2038 c = (unsigned char)*name;
2039 while (c) {
2040 len++;
2041 hash = partial_name_hash(c, hash);
2042 c = (unsigned char)name[len];
2044 return hashlen_create(end_name_hash(hash), len);
2046 EXPORT_SYMBOL(hashlen_string);
2049 * We know there's a real path component here of at least
2050 * one character.
2052 static inline u64 hash_name(const void *salt, const char *name)
2054 unsigned long hash = init_name_hash(salt);
2055 unsigned long len = 0, c;
2057 c = (unsigned char)*name;
2058 do {
2059 len++;
2060 hash = partial_name_hash(c, hash);
2061 c = (unsigned char)name[len];
2062 } while (c && c != '/');
2063 return hashlen_create(end_name_hash(hash), len);
2066 #endif
2069 * Name resolution.
2070 * This is the basic name resolution function, turning a pathname into
2071 * the final dentry. We expect 'base' to be positive and a directory.
2073 * Returns 0 and nd will have valid dentry and mnt on success.
2074 * Returns error and drops reference to input namei data on failure.
2076 static int link_path_walk(const char *name, struct nameidata *nd)
2078 int err;
2080 while (*name=='/')
2081 name++;
2082 if (!*name)
2083 return 0;
2085 /* At this point we know we have a real path component. */
2086 for(;;) {
2087 u64 hash_len;
2088 int type;
2090 err = may_lookup(nd);
2091 if (err)
2092 return err;
2094 hash_len = hash_name(nd->path.dentry, name);
2096 type = LAST_NORM;
2097 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2098 case 2:
2099 if (name[1] == '.') {
2100 type = LAST_DOTDOT;
2101 nd->flags |= LOOKUP_JUMPED;
2103 break;
2104 case 1:
2105 type = LAST_DOT;
2107 if (likely(type == LAST_NORM)) {
2108 struct dentry *parent = nd->path.dentry;
2109 nd->flags &= ~LOOKUP_JUMPED;
2110 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2111 struct qstr this = { { .hash_len = hash_len }, .name = name };
2112 err = parent->d_op->d_hash(parent, &this);
2113 if (err < 0)
2114 return err;
2115 hash_len = this.hash_len;
2116 name = this.name;
2120 nd->last.hash_len = hash_len;
2121 nd->last.name = name;
2122 nd->last_type = type;
2124 name += hashlen_len(hash_len);
2125 if (!*name)
2126 goto OK;
2128 * If it wasn't NUL, we know it was '/'. Skip that
2129 * slash, and continue until no more slashes.
2131 do {
2132 name++;
2133 } while (unlikely(*name == '/'));
2134 if (unlikely(!*name)) {
2136 /* pathname body, done */
2137 if (!nd->depth)
2138 return 0;
2139 name = nd->stack[nd->depth - 1].name;
2140 /* trailing symlink, done */
2141 if (!name)
2142 return 0;
2143 /* last component of nested symlink */
2144 err = walk_component(nd, WALK_GET | WALK_PUT);
2145 } else {
2146 err = walk_component(nd, WALK_GET);
2148 if (err < 0)
2149 return err;
2151 if (err) {
2152 const char *s = get_link(nd);
2154 if (IS_ERR(s))
2155 return PTR_ERR(s);
2156 err = 0;
2157 if (unlikely(!s)) {
2158 /* jumped */
2159 put_link(nd);
2160 } else {
2161 nd->stack[nd->depth - 1].name = name;
2162 name = s;
2163 continue;
2166 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2167 if (nd->flags & LOOKUP_RCU) {
2168 if (unlazy_walk(nd, NULL, 0))
2169 return -ECHILD;
2171 return -ENOTDIR;
2176 static const char *path_init(struct nameidata *nd, unsigned flags)
2178 int retval = 0;
2179 const char *s = nd->name->name;
2181 if (!*s)
2182 flags &= ~LOOKUP_RCU;
2184 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2185 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2186 nd->depth = 0;
2187 if (flags & LOOKUP_ROOT) {
2188 struct dentry *root = nd->root.dentry;
2189 struct inode *inode = root->d_inode;
2190 if (*s) {
2191 if (!d_can_lookup(root))
2192 return ERR_PTR(-ENOTDIR);
2193 retval = inode_permission(inode, MAY_EXEC);
2194 if (retval)
2195 return ERR_PTR(retval);
2197 nd->path = nd->root;
2198 nd->inode = inode;
2199 if (flags & LOOKUP_RCU) {
2200 rcu_read_lock();
2201 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2202 nd->root_seq = nd->seq;
2203 nd->m_seq = read_seqbegin(&mount_lock);
2204 } else {
2205 path_get(&nd->path);
2207 return s;
2210 nd->root.mnt = NULL;
2211 nd->path.mnt = NULL;
2212 nd->path.dentry = NULL;
2214 nd->m_seq = read_seqbegin(&mount_lock);
2215 if (*s == '/') {
2216 if (flags & LOOKUP_RCU)
2217 rcu_read_lock();
2218 set_root(nd);
2219 if (likely(!nd_jump_root(nd)))
2220 return s;
2221 nd->root.mnt = NULL;
2222 rcu_read_unlock();
2223 return ERR_PTR(-ECHILD);
2224 } else if (nd->dfd == AT_FDCWD) {
2225 if (flags & LOOKUP_RCU) {
2226 struct fs_struct *fs = current->fs;
2227 unsigned seq;
2229 rcu_read_lock();
2231 do {
2232 seq = read_seqcount_begin(&fs->seq);
2233 nd->path = fs->pwd;
2234 nd->inode = nd->path.dentry->d_inode;
2235 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2236 } while (read_seqcount_retry(&fs->seq, seq));
2237 } else {
2238 get_fs_pwd(current->fs, &nd->path);
2239 nd->inode = nd->path.dentry->d_inode;
2241 return s;
2242 } else {
2243 /* Caller must check execute permissions on the starting path component */
2244 struct fd f = fdget_raw(nd->dfd);
2245 struct dentry *dentry;
2247 if (!f.file)
2248 return ERR_PTR(-EBADF);
2250 dentry = f.file->f_path.dentry;
2252 if (*s) {
2253 if (!d_can_lookup(dentry)) {
2254 fdput(f);
2255 return ERR_PTR(-ENOTDIR);
2259 nd->path = f.file->f_path;
2260 if (flags & LOOKUP_RCU) {
2261 rcu_read_lock();
2262 nd->inode = nd->path.dentry->d_inode;
2263 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2264 } else {
2265 path_get(&nd->path);
2266 nd->inode = nd->path.dentry->d_inode;
2268 fdput(f);
2269 return s;
2273 static const char *trailing_symlink(struct nameidata *nd)
2275 const char *s;
2276 int error = may_follow_link(nd);
2277 if (unlikely(error))
2278 return ERR_PTR(error);
2279 nd->flags |= LOOKUP_PARENT;
2280 nd->stack[0].name = NULL;
2281 s = get_link(nd);
2282 return s ? s : "";
2285 static inline int lookup_last(struct nameidata *nd)
2287 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2288 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2290 nd->flags &= ~LOOKUP_PARENT;
2291 return walk_component(nd,
2292 nd->flags & LOOKUP_FOLLOW
2293 ? nd->depth
2294 ? WALK_PUT | WALK_GET
2295 : WALK_GET
2296 : 0);
2299 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2300 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2302 const char *s = path_init(nd, flags);
2303 int err;
2305 if (IS_ERR(s))
2306 return PTR_ERR(s);
2307 while (!(err = link_path_walk(s, nd))
2308 && ((err = lookup_last(nd)) > 0)) {
2309 s = trailing_symlink(nd);
2310 if (IS_ERR(s)) {
2311 err = PTR_ERR(s);
2312 break;
2315 if (!err)
2316 err = complete_walk(nd);
2318 if (!err && nd->flags & LOOKUP_DIRECTORY)
2319 if (!d_can_lookup(nd->path.dentry))
2320 err = -ENOTDIR;
2321 if (!err) {
2322 *path = nd->path;
2323 nd->path.mnt = NULL;
2324 nd->path.dentry = NULL;
2326 terminate_walk(nd);
2327 return err;
2330 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2331 struct path *path, struct path *root)
2333 int retval;
2334 struct nameidata nd;
2335 if (IS_ERR(name))
2336 return PTR_ERR(name);
2337 if (unlikely(root)) {
2338 nd.root = *root;
2339 flags |= LOOKUP_ROOT;
2341 set_nameidata(&nd, dfd, name);
2342 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2343 if (unlikely(retval == -ECHILD))
2344 retval = path_lookupat(&nd, flags, path);
2345 if (unlikely(retval == -ESTALE))
2346 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2348 if (likely(!retval))
2349 audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2350 restore_nameidata();
2351 putname(name);
2352 return retval;
2355 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2356 static int path_parentat(struct nameidata *nd, unsigned flags,
2357 struct path *parent)
2359 const char *s = path_init(nd, flags);
2360 int err;
2361 if (IS_ERR(s))
2362 return PTR_ERR(s);
2363 err = link_path_walk(s, nd);
2364 if (!err)
2365 err = complete_walk(nd);
2366 if (!err) {
2367 *parent = nd->path;
2368 nd->path.mnt = NULL;
2369 nd->path.dentry = NULL;
2371 terminate_walk(nd);
2372 return err;
2375 static struct filename *filename_parentat(int dfd, struct filename *name,
2376 unsigned int flags, struct path *parent,
2377 struct qstr *last, int *type)
2379 int retval;
2380 struct nameidata nd;
2382 if (IS_ERR(name))
2383 return name;
2384 set_nameidata(&nd, dfd, name);
2385 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2386 if (unlikely(retval == -ECHILD))
2387 retval = path_parentat(&nd, flags, parent);
2388 if (unlikely(retval == -ESTALE))
2389 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2390 if (likely(!retval)) {
2391 *last = nd.last;
2392 *type = nd.last_type;
2393 audit_inode(name, parent->dentry, LOOKUP_PARENT);
2394 } else {
2395 putname(name);
2396 name = ERR_PTR(retval);
2398 restore_nameidata();
2399 return name;
2402 /* does lookup, returns the object with parent locked */
2403 struct dentry *kern_path_locked(const char *name, struct path *path)
2405 struct filename *filename;
2406 struct dentry *d;
2407 struct qstr last;
2408 int type;
2410 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2411 &last, &type);
2412 if (IS_ERR(filename))
2413 return ERR_CAST(filename);
2414 if (unlikely(type != LAST_NORM)) {
2415 path_put(path);
2416 putname(filename);
2417 return ERR_PTR(-EINVAL);
2419 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2420 d = __lookup_hash(&last, path->dentry, 0);
2421 if (IS_ERR(d)) {
2422 inode_unlock(path->dentry->d_inode);
2423 path_put(path);
2425 putname(filename);
2426 return d;
2429 int kern_path(const char *name, unsigned int flags, struct path *path)
2431 return filename_lookup(AT_FDCWD, getname_kernel(name),
2432 flags, path, NULL);
2434 EXPORT_SYMBOL(kern_path);
2437 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2438 * @dentry: pointer to dentry of the base directory
2439 * @mnt: pointer to vfs mount of the base directory
2440 * @name: pointer to file name
2441 * @flags: lookup flags
2442 * @path: pointer to struct path to fill
2444 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2445 const char *name, unsigned int flags,
2446 struct path *path)
2448 struct path root = {.mnt = mnt, .dentry = dentry};
2449 /* the first argument of filename_lookup() is ignored with root */
2450 return filename_lookup(AT_FDCWD, getname_kernel(name),
2451 flags , path, &root);
2453 EXPORT_SYMBOL(vfs_path_lookup);
2456 * lookup_one_len - filesystem helper to lookup single pathname component
2457 * @name: pathname component to lookup
2458 * @base: base directory to lookup from
2459 * @len: maximum length @len should be interpreted to
2461 * Note that this routine is purely a helper for filesystem usage and should
2462 * not be called by generic code.
2464 * The caller must hold base->i_mutex.
2466 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2468 struct qstr this;
2469 unsigned int c;
2470 int err;
2472 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2474 this.name = name;
2475 this.len = len;
2476 this.hash = full_name_hash(base, name, len);
2477 if (!len)
2478 return ERR_PTR(-EACCES);
2480 if (unlikely(name[0] == '.')) {
2481 if (len < 2 || (len == 2 && name[1] == '.'))
2482 return ERR_PTR(-EACCES);
2485 while (len--) {
2486 c = *(const unsigned char *)name++;
2487 if (c == '/' || c == '\0')
2488 return ERR_PTR(-EACCES);
2491 * See if the low-level filesystem might want
2492 * to use its own hash..
2494 if (base->d_flags & DCACHE_OP_HASH) {
2495 int err = base->d_op->d_hash(base, &this);
2496 if (err < 0)
2497 return ERR_PTR(err);
2500 err = inode_permission(base->d_inode, MAY_EXEC);
2501 if (err)
2502 return ERR_PTR(err);
2504 return __lookup_hash(&this, base, 0);
2506 EXPORT_SYMBOL(lookup_one_len);
2509 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2510 * @name: pathname component to lookup
2511 * @base: base directory to lookup from
2512 * @len: maximum length @len should be interpreted to
2514 * Note that this routine is purely a helper for filesystem usage and should
2515 * not be called by generic code.
2517 * Unlike lookup_one_len, it should be called without the parent
2518 * i_mutex held, and will take the i_mutex itself if necessary.
2520 struct dentry *lookup_one_len_unlocked(const char *name,
2521 struct dentry *base, int len)
2523 struct qstr this;
2524 unsigned int c;
2525 int err;
2526 struct dentry *ret;
2528 this.name = name;
2529 this.len = len;
2530 this.hash = full_name_hash(base, name, len);
2531 if (!len)
2532 return ERR_PTR(-EACCES);
2534 if (unlikely(name[0] == '.')) {
2535 if (len < 2 || (len == 2 && name[1] == '.'))
2536 return ERR_PTR(-EACCES);
2539 while (len--) {
2540 c = *(const unsigned char *)name++;
2541 if (c == '/' || c == '\0')
2542 return ERR_PTR(-EACCES);
2545 * See if the low-level filesystem might want
2546 * to use its own hash..
2548 if (base->d_flags & DCACHE_OP_HASH) {
2549 int err = base->d_op->d_hash(base, &this);
2550 if (err < 0)
2551 return ERR_PTR(err);
2554 err = inode_permission(base->d_inode, MAY_EXEC);
2555 if (err)
2556 return ERR_PTR(err);
2558 ret = lookup_dcache(&this, base, 0);
2559 if (!ret)
2560 ret = lookup_slow(&this, base, 0);
2561 return ret;
2563 EXPORT_SYMBOL(lookup_one_len_unlocked);
2565 #ifdef CONFIG_UNIX98_PTYS
2566 int path_pts(struct path *path)
2568 /* Find something mounted on "pts" in the same directory as
2569 * the input path.
2571 struct dentry *child, *parent;
2572 struct qstr this;
2573 int ret;
2575 ret = path_parent_directory(path);
2576 if (ret)
2577 return ret;
2579 parent = path->dentry;
2580 this.name = "pts";
2581 this.len = 3;
2582 child = d_hash_and_lookup(parent, &this);
2583 if (!child)
2584 return -ENOENT;
2586 path->dentry = child;
2587 dput(parent);
2588 follow_mount(path);
2589 return 0;
2591 #endif
2593 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2594 struct path *path, int *empty)
2596 return filename_lookup(dfd, getname_flags(name, flags, empty),
2597 flags, path, NULL);
2599 EXPORT_SYMBOL(user_path_at_empty);
2602 * NB: most callers don't do anything directly with the reference to the
2603 * to struct filename, but the nd->last pointer points into the name string
2604 * allocated by getname. So we must hold the reference to it until all
2605 * path-walking is complete.
2607 static inline struct filename *
2608 user_path_parent(int dfd, const char __user *path,
2609 struct path *parent,
2610 struct qstr *last,
2611 int *type,
2612 unsigned int flags)
2614 /* only LOOKUP_REVAL is allowed in extra flags */
2615 return filename_parentat(dfd, getname(path), flags & LOOKUP_REVAL,
2616 parent, last, type);
2620 * mountpoint_last - look up last component for umount
2621 * @nd: pathwalk nameidata - currently pointing at parent directory of "last"
2622 * @path: pointer to container for result
2624 * This is a special lookup_last function just for umount. In this case, we
2625 * need to resolve the path without doing any revalidation.
2627 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2628 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2629 * in almost all cases, this lookup will be served out of the dcache. The only
2630 * cases where it won't are if nd->last refers to a symlink or the path is
2631 * bogus and it doesn't exist.
2633 * Returns:
2634 * -error: if there was an error during lookup. This includes -ENOENT if the
2635 * lookup found a negative dentry. The nd->path reference will also be
2636 * put in this case.
2638 * 0: if we successfully resolved nd->path and found it to not to be a
2639 * symlink that needs to be followed. "path" will also be populated.
2640 * The nd->path reference will also be put.
2642 * 1: if we successfully resolved nd->last and found it to be a symlink
2643 * that needs to be followed. "path" will be populated with the path
2644 * to the link, and nd->path will *not* be put.
2646 static int
2647 mountpoint_last(struct nameidata *nd, struct path *path)
2649 int error = 0;
2650 struct dentry *dentry;
2651 struct dentry *dir = nd->path.dentry;
2653 /* If we're in rcuwalk, drop out of it to handle last component */
2654 if (nd->flags & LOOKUP_RCU) {
2655 if (unlazy_walk(nd, NULL, 0))
2656 return -ECHILD;
2659 nd->flags &= ~LOOKUP_PARENT;
2661 if (unlikely(nd->last_type != LAST_NORM)) {
2662 error = handle_dots(nd, nd->last_type);
2663 if (error)
2664 return error;
2665 dentry = dget(nd->path.dentry);
2666 } else {
2667 dentry = d_lookup(dir, &nd->last);
2668 if (!dentry) {
2670 * No cached dentry. Mounted dentries are pinned in the
2671 * cache, so that means that this dentry is probably
2672 * a symlink or the path doesn't actually point
2673 * to a mounted dentry.
2675 dentry = lookup_slow(&nd->last, dir,
2676 nd->flags | LOOKUP_NO_REVAL);
2677 if (IS_ERR(dentry))
2678 return PTR_ERR(dentry);
2681 if (d_is_negative(dentry)) {
2682 dput(dentry);
2683 return -ENOENT;
2685 if (nd->depth)
2686 put_link(nd);
2687 path->dentry = dentry;
2688 path->mnt = nd->path.mnt;
2689 error = should_follow_link(nd, path, nd->flags & LOOKUP_FOLLOW,
2690 d_backing_inode(dentry), 0);
2691 if (unlikely(error))
2692 return error;
2693 mntget(path->mnt);
2694 follow_mount(path);
2695 return 0;
2699 * path_mountpoint - look up a path to be umounted
2700 * @nd: lookup context
2701 * @flags: lookup flags
2702 * @path: pointer to container for result
2704 * Look up the given name, but don't attempt to revalidate the last component.
2705 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2707 static int
2708 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2710 const char *s = path_init(nd, flags);
2711 int err;
2712 if (IS_ERR(s))
2713 return PTR_ERR(s);
2714 while (!(err = link_path_walk(s, nd)) &&
2715 (err = mountpoint_last(nd, path)) > 0) {
2716 s = trailing_symlink(nd);
2717 if (IS_ERR(s)) {
2718 err = PTR_ERR(s);
2719 break;
2722 terminate_walk(nd);
2723 return err;
2726 static int
2727 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2728 unsigned int flags)
2730 struct nameidata nd;
2731 int error;
2732 if (IS_ERR(name))
2733 return PTR_ERR(name);
2734 set_nameidata(&nd, dfd, name);
2735 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2736 if (unlikely(error == -ECHILD))
2737 error = path_mountpoint(&nd, flags, path);
2738 if (unlikely(error == -ESTALE))
2739 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2740 if (likely(!error))
2741 audit_inode(name, path->dentry, 0);
2742 restore_nameidata();
2743 putname(name);
2744 return error;
2748 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2749 * @dfd: directory file descriptor
2750 * @name: pathname from userland
2751 * @flags: lookup flags
2752 * @path: pointer to container to hold result
2754 * A umount is a special case for path walking. We're not actually interested
2755 * in the inode in this situation, and ESTALE errors can be a problem. We
2756 * simply want track down the dentry and vfsmount attached at the mountpoint
2757 * and avoid revalidating the last component.
2759 * Returns 0 and populates "path" on success.
2762 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2763 struct path *path)
2765 return filename_mountpoint(dfd, getname(name), path, flags);
2769 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2770 unsigned int flags)
2772 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2774 EXPORT_SYMBOL(kern_path_mountpoint);
2776 int __check_sticky(struct inode *dir, struct inode *inode)
2778 kuid_t fsuid = current_fsuid();
2780 if (uid_eq(inode->i_uid, fsuid))
2781 return 0;
2782 if (uid_eq(dir->i_uid, fsuid))
2783 return 0;
2784 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2786 EXPORT_SYMBOL(__check_sticky);
2789 * Check whether we can remove a link victim from directory dir, check
2790 * whether the type of victim is right.
2791 * 1. We can't do it if dir is read-only (done in permission())
2792 * 2. We should have write and exec permissions on dir
2793 * 3. We can't remove anything from append-only dir
2794 * 4. We can't do anything with immutable dir (done in permission())
2795 * 5. If the sticky bit on dir is set we should either
2796 * a. be owner of dir, or
2797 * b. be owner of victim, or
2798 * c. have CAP_FOWNER capability
2799 * 6. If the victim is append-only or immutable we can't do antyhing with
2800 * links pointing to it.
2801 * 7. If the victim has an unknown uid or gid we can't change the inode.
2802 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2803 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2804 * 10. We can't remove a root or mountpoint.
2805 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2806 * nfs_async_unlink().
2808 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2810 struct inode *inode = d_backing_inode(victim);
2811 int error;
2813 if (d_is_negative(victim))
2814 return -ENOENT;
2815 BUG_ON(!inode);
2817 BUG_ON(victim->d_parent->d_inode != dir);
2818 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2820 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2821 if (error)
2822 return error;
2823 if (IS_APPEND(dir))
2824 return -EPERM;
2826 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2827 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2828 return -EPERM;
2829 if (isdir) {
2830 if (!d_is_dir(victim))
2831 return -ENOTDIR;
2832 if (IS_ROOT(victim))
2833 return -EBUSY;
2834 } else if (d_is_dir(victim))
2835 return -EISDIR;
2836 if (IS_DEADDIR(dir))
2837 return -ENOENT;
2838 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2839 return -EBUSY;
2840 return 0;
2843 /* Check whether we can create an object with dentry child in directory
2844 * dir.
2845 * 1. We can't do it if child already exists (open has special treatment for
2846 * this case, but since we are inlined it's OK)
2847 * 2. We can't do it if dir is read-only (done in permission())
2848 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2849 * 4. We should have write and exec permissions on dir
2850 * 5. We can't do it if dir is immutable (done in permission())
2852 static inline int may_create(struct inode *dir, struct dentry *child)
2854 struct user_namespace *s_user_ns;
2855 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2856 if (child->d_inode)
2857 return -EEXIST;
2858 if (IS_DEADDIR(dir))
2859 return -ENOENT;
2860 s_user_ns = dir->i_sb->s_user_ns;
2861 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2862 !kgid_has_mapping(s_user_ns, current_fsgid()))
2863 return -EOVERFLOW;
2864 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2868 * p1 and p2 should be directories on the same fs.
2870 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2872 struct dentry *p;
2874 if (p1 == p2) {
2875 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2876 return NULL;
2879 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2881 p = d_ancestor(p2, p1);
2882 if (p) {
2883 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2884 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2885 return p;
2888 p = d_ancestor(p1, p2);
2889 if (p) {
2890 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2891 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2892 return p;
2895 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2896 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2897 return NULL;
2899 EXPORT_SYMBOL(lock_rename);
2901 void unlock_rename(struct dentry *p1, struct dentry *p2)
2903 inode_unlock(p1->d_inode);
2904 if (p1 != p2) {
2905 inode_unlock(p2->d_inode);
2906 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2909 EXPORT_SYMBOL(unlock_rename);
2911 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2912 bool want_excl)
2914 int error = may_create(dir, dentry);
2915 if (error)
2916 return error;
2918 if (!dir->i_op->create)
2919 return -EACCES; /* shouldn't it be ENOSYS? */
2920 mode &= S_IALLUGO;
2921 mode |= S_IFREG;
2922 error = security_inode_create(dir, dentry, mode);
2923 if (error)
2924 return error;
2925 error = dir->i_op->create(dir, dentry, mode, want_excl);
2926 if (!error)
2927 fsnotify_create(dir, dentry);
2928 return error;
2930 EXPORT_SYMBOL(vfs_create);
2932 bool may_open_dev(const struct path *path)
2934 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2935 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2938 static int may_open(struct path *path, int acc_mode, int flag)
2940 struct dentry *dentry = path->dentry;
2941 struct inode *inode = dentry->d_inode;
2942 int error;
2944 if (!inode)
2945 return -ENOENT;
2947 switch (inode->i_mode & S_IFMT) {
2948 case S_IFLNK:
2949 return -ELOOP;
2950 case S_IFDIR:
2951 if (acc_mode & MAY_WRITE)
2952 return -EISDIR;
2953 break;
2954 case S_IFBLK:
2955 case S_IFCHR:
2956 if (!may_open_dev(path))
2957 return -EACCES;
2958 /*FALLTHRU*/
2959 case S_IFIFO:
2960 case S_IFSOCK:
2961 flag &= ~O_TRUNC;
2962 break;
2965 error = inode_permission(inode, MAY_OPEN | acc_mode);
2966 if (error)
2967 return error;
2970 * An append-only file must be opened in append mode for writing.
2972 if (IS_APPEND(inode)) {
2973 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2974 return -EPERM;
2975 if (flag & O_TRUNC)
2976 return -EPERM;
2979 /* O_NOATIME can only be set by the owner or superuser */
2980 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2981 return -EPERM;
2983 return 0;
2986 static int handle_truncate(struct file *filp)
2988 struct path *path = &filp->f_path;
2989 struct inode *inode = path->dentry->d_inode;
2990 int error = get_write_access(inode);
2991 if (error)
2992 return error;
2994 * Refuse to truncate files with mandatory locks held on them.
2996 error = locks_verify_locked(filp);
2997 if (!error)
2998 error = security_path_truncate(path);
2999 if (!error) {
3000 error = do_truncate(path->dentry, 0,
3001 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3002 filp);
3004 put_write_access(inode);
3005 return error;
3008 static inline int open_to_namei_flags(int flag)
3010 if ((flag & O_ACCMODE) == 3)
3011 flag--;
3012 return flag;
3015 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3017 struct user_namespace *s_user_ns;
3018 int error = security_path_mknod(dir, dentry, mode, 0);
3019 if (error)
3020 return error;
3022 s_user_ns = dir->dentry->d_sb->s_user_ns;
3023 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3024 !kgid_has_mapping(s_user_ns, current_fsgid()))
3025 return -EOVERFLOW;
3027 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3028 if (error)
3029 return error;
3031 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3035 * Attempt to atomically look up, create and open a file from a negative
3036 * dentry.
3038 * Returns 0 if successful. The file will have been created and attached to
3039 * @file by the filesystem calling finish_open().
3041 * Returns 1 if the file was looked up only or didn't need creating. The
3042 * caller will need to perform the open themselves. @path will have been
3043 * updated to point to the new dentry. This may be negative.
3045 * Returns an error code otherwise.
3047 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3048 struct path *path, struct file *file,
3049 const struct open_flags *op,
3050 int open_flag, umode_t mode,
3051 int *opened)
3053 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3054 struct inode *dir = nd->path.dentry->d_inode;
3055 int error;
3057 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3058 open_flag &= ~O_TRUNC;
3060 if (nd->flags & LOOKUP_DIRECTORY)
3061 open_flag |= O_DIRECTORY;
3063 file->f_path.dentry = DENTRY_NOT_SET;
3064 file->f_path.mnt = nd->path.mnt;
3065 error = dir->i_op->atomic_open(dir, dentry, file,
3066 open_to_namei_flags(open_flag),
3067 mode, opened);
3068 d_lookup_done(dentry);
3069 if (!error) {
3071 * We didn't have the inode before the open, so check open
3072 * permission here.
3074 int acc_mode = op->acc_mode;
3075 if (*opened & FILE_CREATED) {
3076 WARN_ON(!(open_flag & O_CREAT));
3077 fsnotify_create(dir, dentry);
3078 acc_mode = 0;
3080 error = may_open(&file->f_path, acc_mode, open_flag);
3081 if (WARN_ON(error > 0))
3082 error = -EINVAL;
3083 } else if (error > 0) {
3084 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3085 error = -EIO;
3086 } else {
3087 if (file->f_path.dentry) {
3088 dput(dentry);
3089 dentry = file->f_path.dentry;
3091 if (*opened & FILE_CREATED)
3092 fsnotify_create(dir, dentry);
3093 if (unlikely(d_is_negative(dentry))) {
3094 error = -ENOENT;
3095 } else {
3096 path->dentry = dentry;
3097 path->mnt = nd->path.mnt;
3098 return 1;
3102 dput(dentry);
3103 return error;
3107 * Look up and maybe create and open the last component.
3109 * Must be called with i_mutex held on parent.
3111 * Returns 0 if the file was successfully atomically created (if necessary) and
3112 * opened. In this case the file will be returned attached to @file.
3114 * Returns 1 if the file was not completely opened at this time, though lookups
3115 * and creations will have been performed and the dentry returned in @path will
3116 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't
3117 * specified then a negative dentry may be returned.
3119 * An error code is returned otherwise.
3121 * FILE_CREATE will be set in @*opened if the dentry was created and will be
3122 * cleared otherwise prior to returning.
3124 static int lookup_open(struct nameidata *nd, struct path *path,
3125 struct file *file,
3126 const struct open_flags *op,
3127 bool got_write, int *opened)
3129 struct dentry *dir = nd->path.dentry;
3130 struct inode *dir_inode = dir->d_inode;
3131 int open_flag = op->open_flag;
3132 struct dentry *dentry;
3133 int error, create_error = 0;
3134 umode_t mode = op->mode;
3135 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3137 if (unlikely(IS_DEADDIR(dir_inode)))
3138 return -ENOENT;
3140 *opened &= ~FILE_CREATED;
3141 dentry = d_lookup(dir, &nd->last);
3142 for (;;) {
3143 if (!dentry) {
3144 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3145 if (IS_ERR(dentry))
3146 return PTR_ERR(dentry);
3148 if (d_in_lookup(dentry))
3149 break;
3151 if (!(dentry->d_flags & DCACHE_OP_REVALIDATE))
3152 break;
3154 error = d_revalidate(dentry, nd->flags);
3155 if (likely(error > 0))
3156 break;
3157 if (error)
3158 goto out_dput;
3159 d_invalidate(dentry);
3160 dput(dentry);
3161 dentry = NULL;
3163 if (dentry->d_inode) {
3164 /* Cached positive dentry: will open in f_op->open */
3165 goto out_no_open;
3169 * Checking write permission is tricky, bacuse we don't know if we are
3170 * going to actually need it: O_CREAT opens should work as long as the
3171 * file exists. But checking existence breaks atomicity. The trick is
3172 * to check access and if not granted clear O_CREAT from the flags.
3174 * Another problem is returing the "right" error value (e.g. for an
3175 * O_EXCL open we want to return EEXIST not EROFS).
3177 if (open_flag & O_CREAT) {
3178 if (!IS_POSIXACL(dir->d_inode))
3179 mode &= ~current_umask();
3180 if (unlikely(!got_write)) {
3181 create_error = -EROFS;
3182 open_flag &= ~O_CREAT;
3183 if (open_flag & (O_EXCL | O_TRUNC))
3184 goto no_open;
3185 /* No side effects, safe to clear O_CREAT */
3186 } else {
3187 create_error = may_o_create(&nd->path, dentry, mode);
3188 if (create_error) {
3189 open_flag &= ~O_CREAT;
3190 if (open_flag & O_EXCL)
3191 goto no_open;
3194 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3195 unlikely(!got_write)) {
3197 * No O_CREATE -> atomicity not a requirement -> fall
3198 * back to lookup + open
3200 goto no_open;
3203 if (dir_inode->i_op->atomic_open) {
3204 error = atomic_open(nd, dentry, path, file, op, open_flag,
3205 mode, opened);
3206 if (unlikely(error == -ENOENT) && create_error)
3207 error = create_error;
3208 return error;
3211 no_open:
3212 if (d_in_lookup(dentry)) {
3213 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3214 nd->flags);
3215 d_lookup_done(dentry);
3216 if (unlikely(res)) {
3217 if (IS_ERR(res)) {
3218 error = PTR_ERR(res);
3219 goto out_dput;
3221 dput(dentry);
3222 dentry = res;
3226 /* Negative dentry, just create the file */
3227 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3228 *opened |= FILE_CREATED;
3229 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3230 if (!dir_inode->i_op->create) {
3231 error = -EACCES;
3232 goto out_dput;
3234 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3235 open_flag & O_EXCL);
3236 if (error)
3237 goto out_dput;
3238 fsnotify_create(dir_inode, dentry);
3240 if (unlikely(create_error) && !dentry->d_inode) {
3241 error = create_error;
3242 goto out_dput;
3244 out_no_open:
3245 path->dentry = dentry;
3246 path->mnt = nd->path.mnt;
3247 return 1;
3249 out_dput:
3250 dput(dentry);
3251 return error;
3255 * Handle the last step of open()
3257 static int do_last(struct nameidata *nd,
3258 struct file *file, const struct open_flags *op,
3259 int *opened)
3261 struct dentry *dir = nd->path.dentry;
3262 int open_flag = op->open_flag;
3263 bool will_truncate = (open_flag & O_TRUNC) != 0;
3264 bool got_write = false;
3265 int acc_mode = op->acc_mode;
3266 unsigned seq;
3267 struct inode *inode;
3268 struct path path;
3269 int error;
3271 nd->flags &= ~LOOKUP_PARENT;
3272 nd->flags |= op->intent;
3274 if (nd->last_type != LAST_NORM) {
3275 error = handle_dots(nd, nd->last_type);
3276 if (unlikely(error))
3277 return error;
3278 goto finish_open;
3281 if (!(open_flag & O_CREAT)) {
3282 if (nd->last.name[nd->last.len])
3283 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3284 /* we _can_ be in RCU mode here */
3285 error = lookup_fast(nd, &path, &inode, &seq);
3286 if (likely(error > 0))
3287 goto finish_lookup;
3289 if (error < 0)
3290 return error;
3292 BUG_ON(nd->inode != dir->d_inode);
3293 BUG_ON(nd->flags & LOOKUP_RCU);
3294 } else {
3295 /* create side of things */
3297 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3298 * has been cleared when we got to the last component we are
3299 * about to look up
3301 error = complete_walk(nd);
3302 if (error)
3303 return error;
3305 audit_inode(nd->name, dir, LOOKUP_PARENT);
3306 /* trailing slashes? */
3307 if (unlikely(nd->last.name[nd->last.len]))
3308 return -EISDIR;
3311 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3312 error = mnt_want_write(nd->path.mnt);
3313 if (!error)
3314 got_write = true;
3316 * do _not_ fail yet - we might not need that or fail with
3317 * a different error; let lookup_open() decide; we'll be
3318 * dropping this one anyway.
3321 if (open_flag & O_CREAT)
3322 inode_lock(dir->d_inode);
3323 else
3324 inode_lock_shared(dir->d_inode);
3325 error = lookup_open(nd, &path, file, op, got_write, opened);
3326 if (open_flag & O_CREAT)
3327 inode_unlock(dir->d_inode);
3328 else
3329 inode_unlock_shared(dir->d_inode);
3331 if (error <= 0) {
3332 if (error)
3333 goto out;
3335 if ((*opened & FILE_CREATED) ||
3336 !S_ISREG(file_inode(file)->i_mode))
3337 will_truncate = false;
3339 audit_inode(nd->name, file->f_path.dentry, 0);
3340 goto opened;
3343 if (*opened & FILE_CREATED) {
3344 /* Don't check for write permission, don't truncate */
3345 open_flag &= ~O_TRUNC;
3346 will_truncate = false;
3347 acc_mode = 0;
3348 path_to_nameidata(&path, nd);
3349 goto finish_open_created;
3353 * If atomic_open() acquired write access it is dropped now due to
3354 * possible mount and symlink following (this might be optimized away if
3355 * necessary...)
3357 if (got_write) {
3358 mnt_drop_write(nd->path.mnt);
3359 got_write = false;
3362 error = follow_managed(&path, nd);
3363 if (unlikely(error < 0))
3364 return error;
3366 if (unlikely(d_is_negative(path.dentry))) {
3367 path_to_nameidata(&path, nd);
3368 return -ENOENT;
3372 * create/update audit record if it already exists.
3374 audit_inode(nd->name, path.dentry, 0);
3376 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3377 path_to_nameidata(&path, nd);
3378 return -EEXIST;
3381 seq = 0; /* out of RCU mode, so the value doesn't matter */
3382 inode = d_backing_inode(path.dentry);
3383 finish_lookup:
3384 if (nd->depth)
3385 put_link(nd);
3386 error = should_follow_link(nd, &path, nd->flags & LOOKUP_FOLLOW,
3387 inode, seq);
3388 if (unlikely(error))
3389 return error;
3391 path_to_nameidata(&path, nd);
3392 nd->inode = inode;
3393 nd->seq = seq;
3394 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3395 finish_open:
3396 error = complete_walk(nd);
3397 if (error)
3398 return error;
3399 audit_inode(nd->name, nd->path.dentry, 0);
3400 if (open_flag & O_CREAT) {
3401 error = -EISDIR;
3402 if (d_is_dir(nd->path.dentry))
3403 goto out;
3404 error = may_create_in_sticky(dir,
3405 d_backing_inode(nd->path.dentry));
3406 if (unlikely(error))
3407 goto out;
3409 error = -ENOTDIR;
3410 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3411 goto out;
3412 if (!d_is_reg(nd->path.dentry))
3413 will_truncate = false;
3415 if (will_truncate) {
3416 error = mnt_want_write(nd->path.mnt);
3417 if (error)
3418 goto out;
3419 got_write = true;
3421 finish_open_created:
3422 error = may_open(&nd->path, acc_mode, open_flag);
3423 if (error)
3424 goto out;
3425 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3426 error = vfs_open(&nd->path, file, current_cred());
3427 if (error)
3428 goto out;
3429 *opened |= FILE_OPENED;
3430 opened:
3431 error = open_check_o_direct(file);
3432 if (!error)
3433 error = ima_file_check(file, op->acc_mode, *opened);
3434 if (!error && will_truncate)
3435 error = handle_truncate(file);
3436 out:
3437 if (unlikely(error) && (*opened & FILE_OPENED))
3438 fput(file);
3439 if (unlikely(error > 0)) {
3440 WARN_ON(1);
3441 error = -EINVAL;
3443 if (got_write)
3444 mnt_drop_write(nd->path.mnt);
3445 return error;
3448 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3449 const struct open_flags *op,
3450 struct file *file, int *opened)
3452 static const struct qstr name = QSTR_INIT("/", 1);
3453 struct dentry *child;
3454 struct inode *dir;
3455 struct path path;
3456 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3457 if (unlikely(error))
3458 return error;
3459 error = mnt_want_write(path.mnt);
3460 if (unlikely(error))
3461 goto out;
3462 dir = path.dentry->d_inode;
3463 /* we want directory to be writable */
3464 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3465 if (error)
3466 goto out2;
3467 if (!dir->i_op->tmpfile) {
3468 error = -EOPNOTSUPP;
3469 goto out2;
3471 child = d_alloc(path.dentry, &name);
3472 if (unlikely(!child)) {
3473 error = -ENOMEM;
3474 goto out2;
3476 dput(path.dentry);
3477 path.dentry = child;
3478 error = dir->i_op->tmpfile(dir, child, op->mode);
3479 if (error)
3480 goto out2;
3481 audit_inode(nd->name, child, 0);
3482 /* Don't check for other permissions, the inode was just created */
3483 error = may_open(&path, 0, op->open_flag);
3484 if (error)
3485 goto out2;
3486 file->f_path.mnt = path.mnt;
3487 error = finish_open(file, child, NULL, opened);
3488 if (error)
3489 goto out2;
3490 error = open_check_o_direct(file);
3491 if (error) {
3492 fput(file);
3493 } else if (!(op->open_flag & O_EXCL)) {
3494 struct inode *inode = file_inode(file);
3495 spin_lock(&inode->i_lock);
3496 inode->i_state |= I_LINKABLE;
3497 spin_unlock(&inode->i_lock);
3499 out2:
3500 mnt_drop_write(path.mnt);
3501 out:
3502 path_put(&path);
3503 return error;
3506 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3508 struct path path;
3509 int error = path_lookupat(nd, flags, &path);
3510 if (!error) {
3511 audit_inode(nd->name, path.dentry, 0);
3512 error = vfs_open(&path, file, current_cred());
3513 path_put(&path);
3515 return error;
3518 static struct file *path_openat(struct nameidata *nd,
3519 const struct open_flags *op, unsigned flags)
3521 const char *s;
3522 struct file *file;
3523 int opened = 0;
3524 int error;
3526 file = get_empty_filp();
3527 if (IS_ERR(file))
3528 return file;
3530 file->f_flags = op->open_flag;
3532 if (unlikely(file->f_flags & __O_TMPFILE)) {
3533 error = do_tmpfile(nd, flags, op, file, &opened);
3534 goto out2;
3537 if (unlikely(file->f_flags & O_PATH)) {
3538 error = do_o_path(nd, flags, file);
3539 if (!error)
3540 opened |= FILE_OPENED;
3541 goto out2;
3544 s = path_init(nd, flags);
3545 if (IS_ERR(s)) {
3546 put_filp(file);
3547 return ERR_CAST(s);
3549 while (!(error = link_path_walk(s, nd)) &&
3550 (error = do_last(nd, file, op, &opened)) > 0) {
3551 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3552 s = trailing_symlink(nd);
3553 if (IS_ERR(s)) {
3554 error = PTR_ERR(s);
3555 break;
3558 terminate_walk(nd);
3559 out2:
3560 if (!(opened & FILE_OPENED)) {
3561 BUG_ON(!error);
3562 put_filp(file);
3564 if (unlikely(error)) {
3565 if (error == -EOPENSTALE) {
3566 if (flags & LOOKUP_RCU)
3567 error = -ECHILD;
3568 else
3569 error = -ESTALE;
3571 file = ERR_PTR(error);
3573 return file;
3576 struct file *do_filp_open(int dfd, struct filename *pathname,
3577 const struct open_flags *op)
3579 struct nameidata nd;
3580 int flags = op->lookup_flags;
3581 struct file *filp;
3583 set_nameidata(&nd, dfd, pathname);
3584 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3585 if (unlikely(filp == ERR_PTR(-ECHILD)))
3586 filp = path_openat(&nd, op, flags);
3587 if (unlikely(filp == ERR_PTR(-ESTALE)))
3588 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3589 restore_nameidata();
3590 return filp;
3593 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3594 const char *name, const struct open_flags *op)
3596 struct nameidata nd;
3597 struct file *file;
3598 struct filename *filename;
3599 int flags = op->lookup_flags | LOOKUP_ROOT;
3601 nd.root.mnt = mnt;
3602 nd.root.dentry = dentry;
3604 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3605 return ERR_PTR(-ELOOP);
3607 filename = getname_kernel(name);
3608 if (IS_ERR(filename))
3609 return ERR_CAST(filename);
3611 set_nameidata(&nd, -1, filename);
3612 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3613 if (unlikely(file == ERR_PTR(-ECHILD)))
3614 file = path_openat(&nd, op, flags);
3615 if (unlikely(file == ERR_PTR(-ESTALE)))
3616 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3617 restore_nameidata();
3618 putname(filename);
3619 return file;
3622 static struct dentry *filename_create(int dfd, struct filename *name,
3623 struct path *path, unsigned int lookup_flags)
3625 struct dentry *dentry = ERR_PTR(-EEXIST);
3626 struct qstr last;
3627 int type;
3628 int err2;
3629 int error;
3630 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3633 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3634 * other flags passed in are ignored!
3636 lookup_flags &= LOOKUP_REVAL;
3638 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3639 if (IS_ERR(name))
3640 return ERR_CAST(name);
3643 * Yucky last component or no last component at all?
3644 * (foo/., foo/.., /////)
3646 if (unlikely(type != LAST_NORM))
3647 goto out;
3649 /* don't fail immediately if it's r/o, at least try to report other errors */
3650 err2 = mnt_want_write(path->mnt);
3652 * Do the final lookup.
3654 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3655 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3656 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3657 if (IS_ERR(dentry))
3658 goto unlock;
3660 error = -EEXIST;
3661 if (d_is_positive(dentry))
3662 goto fail;
3665 * Special case - lookup gave negative, but... we had foo/bar/
3666 * From the vfs_mknod() POV we just have a negative dentry -
3667 * all is fine. Let's be bastards - you had / on the end, you've
3668 * been asking for (non-existent) directory. -ENOENT for you.
3670 if (unlikely(!is_dir && last.name[last.len])) {
3671 error = -ENOENT;
3672 goto fail;
3674 if (unlikely(err2)) {
3675 error = err2;
3676 goto fail;
3678 putname(name);
3679 return dentry;
3680 fail:
3681 dput(dentry);
3682 dentry = ERR_PTR(error);
3683 unlock:
3684 inode_unlock(path->dentry->d_inode);
3685 if (!err2)
3686 mnt_drop_write(path->mnt);
3687 out:
3688 path_put(path);
3689 putname(name);
3690 return dentry;
3693 struct dentry *kern_path_create(int dfd, const char *pathname,
3694 struct path *path, unsigned int lookup_flags)
3696 return filename_create(dfd, getname_kernel(pathname),
3697 path, lookup_flags);
3699 EXPORT_SYMBOL(kern_path_create);
3701 void done_path_create(struct path *path, struct dentry *dentry)
3703 dput(dentry);
3704 inode_unlock(path->dentry->d_inode);
3705 mnt_drop_write(path->mnt);
3706 path_put(path);
3708 EXPORT_SYMBOL(done_path_create);
3710 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3711 struct path *path, unsigned int lookup_flags)
3713 return filename_create(dfd, getname(pathname), path, lookup_flags);
3715 EXPORT_SYMBOL(user_path_create);
3717 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3719 int error = may_create(dir, dentry);
3721 if (error)
3722 return error;
3724 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3725 return -EPERM;
3727 if (!dir->i_op->mknod)
3728 return -EPERM;
3730 error = devcgroup_inode_mknod(mode, dev);
3731 if (error)
3732 return error;
3734 error = security_inode_mknod(dir, dentry, mode, dev);
3735 if (error)
3736 return error;
3738 error = dir->i_op->mknod(dir, dentry, mode, dev);
3739 if (!error)
3740 fsnotify_create(dir, dentry);
3741 return error;
3743 EXPORT_SYMBOL(vfs_mknod);
3745 static int may_mknod(umode_t mode)
3747 switch (mode & S_IFMT) {
3748 case S_IFREG:
3749 case S_IFCHR:
3750 case S_IFBLK:
3751 case S_IFIFO:
3752 case S_IFSOCK:
3753 case 0: /* zero mode translates to S_IFREG */
3754 return 0;
3755 case S_IFDIR:
3756 return -EPERM;
3757 default:
3758 return -EINVAL;
3762 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3763 unsigned, dev)
3765 struct dentry *dentry;
3766 struct path path;
3767 int error;
3768 unsigned int lookup_flags = 0;
3770 error = may_mknod(mode);
3771 if (error)
3772 return error;
3773 retry:
3774 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3775 if (IS_ERR(dentry))
3776 return PTR_ERR(dentry);
3778 if (!IS_POSIXACL(path.dentry->d_inode))
3779 mode &= ~current_umask();
3780 error = security_path_mknod(&path, dentry, mode, dev);
3781 if (error)
3782 goto out;
3783 switch (mode & S_IFMT) {
3784 case 0: case S_IFREG:
3785 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3786 if (!error)
3787 ima_post_path_mknod(dentry);
3788 break;
3789 case S_IFCHR: case S_IFBLK:
3790 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3791 new_decode_dev(dev));
3792 break;
3793 case S_IFIFO: case S_IFSOCK:
3794 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3795 break;
3797 out:
3798 done_path_create(&path, dentry);
3799 if (retry_estale(error, lookup_flags)) {
3800 lookup_flags |= LOOKUP_REVAL;
3801 goto retry;
3803 return error;
3806 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3808 return sys_mknodat(AT_FDCWD, filename, mode, dev);
3811 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3813 int error = may_create(dir, dentry);
3814 unsigned max_links = dir->i_sb->s_max_links;
3816 if (error)
3817 return error;
3819 if (!dir->i_op->mkdir)
3820 return -EPERM;
3822 mode &= (S_IRWXUGO|S_ISVTX);
3823 error = security_inode_mkdir(dir, dentry, mode);
3824 if (error)
3825 return error;
3827 if (max_links && dir->i_nlink >= max_links)
3828 return -EMLINK;
3830 error = dir->i_op->mkdir(dir, dentry, mode);
3831 if (!error)
3832 fsnotify_mkdir(dir, dentry);
3833 return error;
3835 EXPORT_SYMBOL(vfs_mkdir);
3837 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3839 struct dentry *dentry;
3840 struct path path;
3841 int error;
3842 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3844 retry:
3845 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3846 if (IS_ERR(dentry))
3847 return PTR_ERR(dentry);
3849 if (!IS_POSIXACL(path.dentry->d_inode))
3850 mode &= ~current_umask();
3851 error = security_path_mkdir(&path, dentry, mode);
3852 if (!error)
3853 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3854 done_path_create(&path, dentry);
3855 if (retry_estale(error, lookup_flags)) {
3856 lookup_flags |= LOOKUP_REVAL;
3857 goto retry;
3859 return error;
3862 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3864 return sys_mkdirat(AT_FDCWD, pathname, mode);
3867 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3869 int error = may_delete(dir, dentry, 1);
3871 if (error)
3872 return error;
3874 if (!dir->i_op->rmdir)
3875 return -EPERM;
3877 dget(dentry);
3878 inode_lock(dentry->d_inode);
3880 error = -EBUSY;
3881 if (is_local_mountpoint(dentry))
3882 goto out;
3884 error = security_inode_rmdir(dir, dentry);
3885 if (error)
3886 goto out;
3888 shrink_dcache_parent(dentry);
3889 error = dir->i_op->rmdir(dir, dentry);
3890 if (error)
3891 goto out;
3893 dentry->d_inode->i_flags |= S_DEAD;
3894 dont_mount(dentry);
3895 detach_mounts(dentry);
3897 out:
3898 inode_unlock(dentry->d_inode);
3899 dput(dentry);
3900 if (!error)
3901 d_delete(dentry);
3902 return error;
3904 EXPORT_SYMBOL(vfs_rmdir);
3906 static long do_rmdir(int dfd, const char __user *pathname)
3908 int error = 0;
3909 struct filename *name;
3910 struct dentry *dentry;
3911 struct path path;
3912 struct qstr last;
3913 int type;
3914 unsigned int lookup_flags = 0;
3915 retry:
3916 name = user_path_parent(dfd, pathname,
3917 &path, &last, &type, lookup_flags);
3918 if (IS_ERR(name))
3919 return PTR_ERR(name);
3921 switch (type) {
3922 case LAST_DOTDOT:
3923 error = -ENOTEMPTY;
3924 goto exit1;
3925 case LAST_DOT:
3926 error = -EINVAL;
3927 goto exit1;
3928 case LAST_ROOT:
3929 error = -EBUSY;
3930 goto exit1;
3933 error = mnt_want_write(path.mnt);
3934 if (error)
3935 goto exit1;
3937 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3938 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3939 error = PTR_ERR(dentry);
3940 if (IS_ERR(dentry))
3941 goto exit2;
3942 if (!dentry->d_inode) {
3943 error = -ENOENT;
3944 goto exit3;
3946 error = security_path_rmdir(&path, dentry);
3947 if (error)
3948 goto exit3;
3949 error = vfs_rmdir(path.dentry->d_inode, dentry);
3950 exit3:
3951 dput(dentry);
3952 exit2:
3953 inode_unlock(path.dentry->d_inode);
3954 mnt_drop_write(path.mnt);
3955 exit1:
3956 path_put(&path);
3957 putname(name);
3958 if (retry_estale(error, lookup_flags)) {
3959 lookup_flags |= LOOKUP_REVAL;
3960 goto retry;
3962 return error;
3965 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3967 return do_rmdir(AT_FDCWD, pathname);
3971 * vfs_unlink - unlink a filesystem object
3972 * @dir: parent directory
3973 * @dentry: victim
3974 * @delegated_inode: returns victim inode, if the inode is delegated.
3976 * The caller must hold dir->i_mutex.
3978 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3979 * return a reference to the inode in delegated_inode. The caller
3980 * should then break the delegation on that inode and retry. Because
3981 * breaking a delegation may take a long time, the caller should drop
3982 * dir->i_mutex before doing so.
3984 * Alternatively, a caller may pass NULL for delegated_inode. This may
3985 * be appropriate for callers that expect the underlying filesystem not
3986 * to be NFS exported.
3988 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3990 struct inode *target = dentry->d_inode;
3991 int error = may_delete(dir, dentry, 0);
3993 if (error)
3994 return error;
3996 if (!dir->i_op->unlink)
3997 return -EPERM;
3999 inode_lock(target);
4000 if (is_local_mountpoint(dentry))
4001 error = -EBUSY;
4002 else {
4003 error = security_inode_unlink(dir, dentry);
4004 if (!error) {
4005 error = try_break_deleg(target, delegated_inode);
4006 if (error)
4007 goto out;
4008 error = dir->i_op->unlink(dir, dentry);
4009 if (!error) {
4010 dont_mount(dentry);
4011 detach_mounts(dentry);
4015 out:
4016 inode_unlock(target);
4018 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4019 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4020 fsnotify_link_count(target);
4021 d_delete(dentry);
4024 return error;
4026 EXPORT_SYMBOL(vfs_unlink);
4029 * Make sure that the actual truncation of the file will occur outside its
4030 * directory's i_mutex. Truncate can take a long time if there is a lot of
4031 * writeout happening, and we don't want to prevent access to the directory
4032 * while waiting on the I/O.
4034 static long do_unlinkat(int dfd, const char __user *pathname)
4036 int error;
4037 struct filename *name;
4038 struct dentry *dentry;
4039 struct path path;
4040 struct qstr last;
4041 int type;
4042 struct inode *inode = NULL;
4043 struct inode *delegated_inode = NULL;
4044 unsigned int lookup_flags = 0;
4045 retry:
4046 name = user_path_parent(dfd, pathname,
4047 &path, &last, &type, lookup_flags);
4048 if (IS_ERR(name))
4049 return PTR_ERR(name);
4051 error = -EISDIR;
4052 if (type != LAST_NORM)
4053 goto exit1;
4055 error = mnt_want_write(path.mnt);
4056 if (error)
4057 goto exit1;
4058 retry_deleg:
4059 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4060 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4061 error = PTR_ERR(dentry);
4062 if (!IS_ERR(dentry)) {
4063 /* Why not before? Because we want correct error value */
4064 if (last.name[last.len])
4065 goto slashes;
4066 inode = dentry->d_inode;
4067 if (d_is_negative(dentry))
4068 goto slashes;
4069 ihold(inode);
4070 error = security_path_unlink(&path, dentry);
4071 if (error)
4072 goto exit2;
4073 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4074 exit2:
4075 dput(dentry);
4077 inode_unlock(path.dentry->d_inode);
4078 if (inode)
4079 iput(inode); /* truncate the inode here */
4080 inode = NULL;
4081 if (delegated_inode) {
4082 error = break_deleg_wait(&delegated_inode);
4083 if (!error)
4084 goto retry_deleg;
4086 mnt_drop_write(path.mnt);
4087 exit1:
4088 path_put(&path);
4089 putname(name);
4090 if (retry_estale(error, lookup_flags)) {
4091 lookup_flags |= LOOKUP_REVAL;
4092 inode = NULL;
4093 goto retry;
4095 return error;
4097 slashes:
4098 if (d_is_negative(dentry))
4099 error = -ENOENT;
4100 else if (d_is_dir(dentry))
4101 error = -EISDIR;
4102 else
4103 error = -ENOTDIR;
4104 goto exit2;
4107 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4109 if ((flag & ~AT_REMOVEDIR) != 0)
4110 return -EINVAL;
4112 if (flag & AT_REMOVEDIR)
4113 return do_rmdir(dfd, pathname);
4115 return do_unlinkat(dfd, pathname);
4118 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4120 return do_unlinkat(AT_FDCWD, pathname);
4123 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4125 int error = may_create(dir, dentry);
4127 if (error)
4128 return error;
4130 if (!dir->i_op->symlink)
4131 return -EPERM;
4133 error = security_inode_symlink(dir, dentry, oldname);
4134 if (error)
4135 return error;
4137 error = dir->i_op->symlink(dir, dentry, oldname);
4138 if (!error)
4139 fsnotify_create(dir, dentry);
4140 return error;
4142 EXPORT_SYMBOL(vfs_symlink);
4144 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4145 int, newdfd, const char __user *, newname)
4147 int error;
4148 struct filename *from;
4149 struct dentry *dentry;
4150 struct path path;
4151 unsigned int lookup_flags = 0;
4153 from = getname(oldname);
4154 if (IS_ERR(from))
4155 return PTR_ERR(from);
4156 retry:
4157 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4158 error = PTR_ERR(dentry);
4159 if (IS_ERR(dentry))
4160 goto out_putname;
4162 error = security_path_symlink(&path, dentry, from->name);
4163 if (!error)
4164 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4165 done_path_create(&path, dentry);
4166 if (retry_estale(error, lookup_flags)) {
4167 lookup_flags |= LOOKUP_REVAL;
4168 goto retry;
4170 out_putname:
4171 putname(from);
4172 return error;
4175 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4177 return sys_symlinkat(oldname, AT_FDCWD, newname);
4181 * vfs_link - create a new link
4182 * @old_dentry: object to be linked
4183 * @dir: new parent
4184 * @new_dentry: where to create the new link
4185 * @delegated_inode: returns inode needing a delegation break
4187 * The caller must hold dir->i_mutex
4189 * If vfs_link discovers a delegation on the to-be-linked file in need
4190 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4191 * inode in delegated_inode. The caller should then break the delegation
4192 * and retry. Because breaking a delegation may take a long time, the
4193 * caller should drop the i_mutex before doing so.
4195 * Alternatively, a caller may pass NULL for delegated_inode. This may
4196 * be appropriate for callers that expect the underlying filesystem not
4197 * to be NFS exported.
4199 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4201 struct inode *inode = old_dentry->d_inode;
4202 unsigned max_links = dir->i_sb->s_max_links;
4203 int error;
4205 if (!inode)
4206 return -ENOENT;
4208 error = may_create(dir, new_dentry);
4209 if (error)
4210 return error;
4212 if (dir->i_sb != inode->i_sb)
4213 return -EXDEV;
4216 * A link to an append-only or immutable file cannot be created.
4218 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4219 return -EPERM;
4221 * Updating the link count will likely cause i_uid and i_gid to
4222 * be writen back improperly if their true value is unknown to
4223 * the vfs.
4225 if (HAS_UNMAPPED_ID(inode))
4226 return -EPERM;
4227 if (!dir->i_op->link)
4228 return -EPERM;
4229 if (S_ISDIR(inode->i_mode))
4230 return -EPERM;
4232 error = security_inode_link(old_dentry, dir, new_dentry);
4233 if (error)
4234 return error;
4236 inode_lock(inode);
4237 /* Make sure we don't allow creating hardlink to an unlinked file */
4238 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4239 error = -ENOENT;
4240 else if (max_links && inode->i_nlink >= max_links)
4241 error = -EMLINK;
4242 else {
4243 error = try_break_deleg(inode, delegated_inode);
4244 if (!error)
4245 error = dir->i_op->link(old_dentry, dir, new_dentry);
4248 if (!error && (inode->i_state & I_LINKABLE)) {
4249 spin_lock(&inode->i_lock);
4250 inode->i_state &= ~I_LINKABLE;
4251 spin_unlock(&inode->i_lock);
4253 inode_unlock(inode);
4254 if (!error)
4255 fsnotify_link(dir, inode, new_dentry);
4256 return error;
4258 EXPORT_SYMBOL(vfs_link);
4261 * Hardlinks are often used in delicate situations. We avoid
4262 * security-related surprises by not following symlinks on the
4263 * newname. --KAB
4265 * We don't follow them on the oldname either to be compatible
4266 * with linux 2.0, and to avoid hard-linking to directories
4267 * and other special files. --ADM
4269 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4270 int, newdfd, const char __user *, newname, int, flags)
4272 struct dentry *new_dentry;
4273 struct path old_path, new_path;
4274 struct inode *delegated_inode = NULL;
4275 int how = 0;
4276 int error;
4278 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4279 return -EINVAL;
4281 * To use null names we require CAP_DAC_READ_SEARCH
4282 * This ensures that not everyone will be able to create
4283 * handlink using the passed filedescriptor.
4285 if (flags & AT_EMPTY_PATH) {
4286 if (!capable(CAP_DAC_READ_SEARCH))
4287 return -ENOENT;
4288 how = LOOKUP_EMPTY;
4291 if (flags & AT_SYMLINK_FOLLOW)
4292 how |= LOOKUP_FOLLOW;
4293 retry:
4294 error = user_path_at(olddfd, oldname, how, &old_path);
4295 if (error)
4296 return error;
4298 new_dentry = user_path_create(newdfd, newname, &new_path,
4299 (how & LOOKUP_REVAL));
4300 error = PTR_ERR(new_dentry);
4301 if (IS_ERR(new_dentry))
4302 goto out;
4304 error = -EXDEV;
4305 if (old_path.mnt != new_path.mnt)
4306 goto out_dput;
4307 error = may_linkat(&old_path);
4308 if (unlikely(error))
4309 goto out_dput;
4310 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4311 if (error)
4312 goto out_dput;
4313 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4314 out_dput:
4315 done_path_create(&new_path, new_dentry);
4316 if (delegated_inode) {
4317 error = break_deleg_wait(&delegated_inode);
4318 if (!error) {
4319 path_put(&old_path);
4320 goto retry;
4323 if (retry_estale(error, how)) {
4324 path_put(&old_path);
4325 how |= LOOKUP_REVAL;
4326 goto retry;
4328 out:
4329 path_put(&old_path);
4331 return error;
4334 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4336 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4340 * vfs_rename - rename a filesystem object
4341 * @old_dir: parent of source
4342 * @old_dentry: source
4343 * @new_dir: parent of destination
4344 * @new_dentry: destination
4345 * @delegated_inode: returns an inode needing a delegation break
4346 * @flags: rename flags
4348 * The caller must hold multiple mutexes--see lock_rename()).
4350 * If vfs_rename discovers a delegation in need of breaking at either
4351 * the source or destination, it will return -EWOULDBLOCK and return a
4352 * reference to the inode in delegated_inode. The caller should then
4353 * break the delegation and retry. Because breaking a delegation may
4354 * take a long time, the caller should drop all locks before doing
4355 * so.
4357 * Alternatively, a caller may pass NULL for delegated_inode. This may
4358 * be appropriate for callers that expect the underlying filesystem not
4359 * to be NFS exported.
4361 * The worst of all namespace operations - renaming directory. "Perverted"
4362 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4363 * Problems:
4364 * a) we can get into loop creation.
4365 * b) race potential - two innocent renames can create a loop together.
4366 * That's where 4.4 screws up. Current fix: serialization on
4367 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4368 * story.
4369 * c) we have to lock _four_ objects - parents and victim (if it exists),
4370 * and source (if it is not a directory).
4371 * And that - after we got ->i_mutex on parents (until then we don't know
4372 * whether the target exists). Solution: try to be smart with locking
4373 * order for inodes. We rely on the fact that tree topology may change
4374 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4375 * move will be locked. Thus we can rank directories by the tree
4376 * (ancestors first) and rank all non-directories after them.
4377 * That works since everybody except rename does "lock parent, lookup,
4378 * lock child" and rename is under ->s_vfs_rename_mutex.
4379 * HOWEVER, it relies on the assumption that any object with ->lookup()
4380 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4381 * we'd better make sure that there's no link(2) for them.
4382 * d) conversion from fhandle to dentry may come in the wrong moment - when
4383 * we are removing the target. Solution: we will have to grab ->i_mutex
4384 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4385 * ->i_mutex on parents, which works but leads to some truly excessive
4386 * locking].
4388 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4389 struct inode *new_dir, struct dentry *new_dentry,
4390 struct inode **delegated_inode, unsigned int flags)
4392 int error;
4393 bool is_dir = d_is_dir(old_dentry);
4394 struct inode *source = old_dentry->d_inode;
4395 struct inode *target = new_dentry->d_inode;
4396 bool new_is_dir = false;
4397 unsigned max_links = new_dir->i_sb->s_max_links;
4398 struct name_snapshot old_name;
4401 * Check source == target.
4402 * On overlayfs need to look at underlying inodes.
4404 if (d_real_inode(old_dentry) == d_real_inode(new_dentry))
4405 return 0;
4407 error = may_delete(old_dir, old_dentry, is_dir);
4408 if (error)
4409 return error;
4411 if (!target) {
4412 error = may_create(new_dir, new_dentry);
4413 } else {
4414 new_is_dir = d_is_dir(new_dentry);
4416 if (!(flags & RENAME_EXCHANGE))
4417 error = may_delete(new_dir, new_dentry, is_dir);
4418 else
4419 error = may_delete(new_dir, new_dentry, new_is_dir);
4421 if (error)
4422 return error;
4424 if (!old_dir->i_op->rename)
4425 return -EPERM;
4428 * If we are going to change the parent - check write permissions,
4429 * we'll need to flip '..'.
4431 if (new_dir != old_dir) {
4432 if (is_dir) {
4433 error = inode_permission(source, MAY_WRITE);
4434 if (error)
4435 return error;
4437 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4438 error = inode_permission(target, MAY_WRITE);
4439 if (error)
4440 return error;
4444 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4445 flags);
4446 if (error)
4447 return error;
4449 take_dentry_name_snapshot(&old_name, old_dentry);
4450 dget(new_dentry);
4451 if (!is_dir || (flags & RENAME_EXCHANGE))
4452 lock_two_nondirectories(source, target);
4453 else if (target)
4454 inode_lock(target);
4456 error = -EBUSY;
4457 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4458 goto out;
4460 if (max_links && new_dir != old_dir) {
4461 error = -EMLINK;
4462 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4463 goto out;
4464 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4465 old_dir->i_nlink >= max_links)
4466 goto out;
4468 if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4469 shrink_dcache_parent(new_dentry);
4470 if (!is_dir) {
4471 error = try_break_deleg(source, delegated_inode);
4472 if (error)
4473 goto out;
4475 if (target && !new_is_dir) {
4476 error = try_break_deleg(target, delegated_inode);
4477 if (error)
4478 goto out;
4480 error = old_dir->i_op->rename(old_dir, old_dentry,
4481 new_dir, new_dentry, flags);
4482 if (error)
4483 goto out;
4485 if (!(flags & RENAME_EXCHANGE) && target) {
4486 if (is_dir)
4487 target->i_flags |= S_DEAD;
4488 dont_mount(new_dentry);
4489 detach_mounts(new_dentry);
4491 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4492 if (!(flags & RENAME_EXCHANGE))
4493 d_move(old_dentry, new_dentry);
4494 else
4495 d_exchange(old_dentry, new_dentry);
4497 out:
4498 if (!is_dir || (flags & RENAME_EXCHANGE))
4499 unlock_two_nondirectories(source, target);
4500 else if (target)
4501 inode_unlock(target);
4502 dput(new_dentry);
4503 if (!error) {
4504 fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4505 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4506 if (flags & RENAME_EXCHANGE) {
4507 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4508 new_is_dir, NULL, new_dentry);
4511 release_dentry_name_snapshot(&old_name);
4513 return error;
4515 EXPORT_SYMBOL(vfs_rename);
4517 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4518 int, newdfd, const char __user *, newname, unsigned int, flags)
4520 struct dentry *old_dentry, *new_dentry;
4521 struct dentry *trap;
4522 struct path old_path, new_path;
4523 struct qstr old_last, new_last;
4524 int old_type, new_type;
4525 struct inode *delegated_inode = NULL;
4526 struct filename *from;
4527 struct filename *to;
4528 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4529 bool should_retry = false;
4530 int error;
4532 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4533 return -EINVAL;
4535 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4536 (flags & RENAME_EXCHANGE))
4537 return -EINVAL;
4539 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4540 return -EPERM;
4542 if (flags & RENAME_EXCHANGE)
4543 target_flags = 0;
4545 retry:
4546 from = user_path_parent(olddfd, oldname,
4547 &old_path, &old_last, &old_type, lookup_flags);
4548 if (IS_ERR(from)) {
4549 error = PTR_ERR(from);
4550 goto exit;
4553 to = user_path_parent(newdfd, newname,
4554 &new_path, &new_last, &new_type, lookup_flags);
4555 if (IS_ERR(to)) {
4556 error = PTR_ERR(to);
4557 goto exit1;
4560 error = -EXDEV;
4561 if (old_path.mnt != new_path.mnt)
4562 goto exit2;
4564 error = -EBUSY;
4565 if (old_type != LAST_NORM)
4566 goto exit2;
4568 if (flags & RENAME_NOREPLACE)
4569 error = -EEXIST;
4570 if (new_type != LAST_NORM)
4571 goto exit2;
4573 error = mnt_want_write(old_path.mnt);
4574 if (error)
4575 goto exit2;
4577 retry_deleg:
4578 trap = lock_rename(new_path.dentry, old_path.dentry);
4580 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4581 error = PTR_ERR(old_dentry);
4582 if (IS_ERR(old_dentry))
4583 goto exit3;
4584 /* source must exist */
4585 error = -ENOENT;
4586 if (d_is_negative(old_dentry))
4587 goto exit4;
4588 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4589 error = PTR_ERR(new_dentry);
4590 if (IS_ERR(new_dentry))
4591 goto exit4;
4592 error = -EEXIST;
4593 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4594 goto exit5;
4595 if (flags & RENAME_EXCHANGE) {
4596 error = -ENOENT;
4597 if (d_is_negative(new_dentry))
4598 goto exit5;
4600 if (!d_is_dir(new_dentry)) {
4601 error = -ENOTDIR;
4602 if (new_last.name[new_last.len])
4603 goto exit5;
4606 /* unless the source is a directory trailing slashes give -ENOTDIR */
4607 if (!d_is_dir(old_dentry)) {
4608 error = -ENOTDIR;
4609 if (old_last.name[old_last.len])
4610 goto exit5;
4611 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4612 goto exit5;
4614 /* source should not be ancestor of target */
4615 error = -EINVAL;
4616 if (old_dentry == trap)
4617 goto exit5;
4618 /* target should not be an ancestor of source */
4619 if (!(flags & RENAME_EXCHANGE))
4620 error = -ENOTEMPTY;
4621 if (new_dentry == trap)
4622 goto exit5;
4624 error = security_path_rename(&old_path, old_dentry,
4625 &new_path, new_dentry, flags);
4626 if (error)
4627 goto exit5;
4628 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4629 new_path.dentry->d_inode, new_dentry,
4630 &delegated_inode, flags);
4631 exit5:
4632 dput(new_dentry);
4633 exit4:
4634 dput(old_dentry);
4635 exit3:
4636 unlock_rename(new_path.dentry, old_path.dentry);
4637 if (delegated_inode) {
4638 error = break_deleg_wait(&delegated_inode);
4639 if (!error)
4640 goto retry_deleg;
4642 mnt_drop_write(old_path.mnt);
4643 exit2:
4644 if (retry_estale(error, lookup_flags))
4645 should_retry = true;
4646 path_put(&new_path);
4647 putname(to);
4648 exit1:
4649 path_put(&old_path);
4650 putname(from);
4651 if (should_retry) {
4652 should_retry = false;
4653 lookup_flags |= LOOKUP_REVAL;
4654 goto retry;
4656 exit:
4657 return error;
4660 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4661 int, newdfd, const char __user *, newname)
4663 return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4666 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4668 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4671 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4673 int error = may_create(dir, dentry);
4674 if (error)
4675 return error;
4677 if (!dir->i_op->mknod)
4678 return -EPERM;
4680 return dir->i_op->mknod(dir, dentry,
4681 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4683 EXPORT_SYMBOL(vfs_whiteout);
4685 int readlink_copy(char __user *buffer, int buflen, const char *link)
4687 int len = PTR_ERR(link);
4688 if (IS_ERR(link))
4689 goto out;
4691 len = strlen(link);
4692 if (len > (unsigned) buflen)
4693 len = buflen;
4694 if (copy_to_user(buffer, link, len))
4695 len = -EFAULT;
4696 out:
4697 return len;
4701 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
4702 * have ->get_link() not calling nd_jump_link(). Using (or not using) it
4703 * for any given inode is up to filesystem.
4705 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4707 DEFINE_DELAYED_CALL(done);
4708 struct inode *inode = d_inode(dentry);
4709 const char *link = inode->i_link;
4710 int res;
4712 if (!link) {
4713 link = inode->i_op->get_link(dentry, inode, &done);
4714 if (IS_ERR(link))
4715 return PTR_ERR(link);
4717 res = readlink_copy(buffer, buflen, link);
4718 do_delayed_call(&done);
4719 return res;
4721 EXPORT_SYMBOL(generic_readlink);
4724 * vfs_get_link - get symlink body
4725 * @dentry: dentry on which to get symbolic link
4726 * @done: caller needs to free returned data with this
4728 * Calls security hook and i_op->get_link() on the supplied inode.
4730 * It does not touch atime. That's up to the caller if necessary.
4732 * Does not work on "special" symlinks like /proc/$$/fd/N
4734 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4736 const char *res = ERR_PTR(-EINVAL);
4737 struct inode *inode = d_inode(dentry);
4739 if (d_is_symlink(dentry)) {
4740 res = ERR_PTR(security_inode_readlink(dentry));
4741 if (!res)
4742 res = inode->i_op->get_link(dentry, inode, done);
4744 return res;
4746 EXPORT_SYMBOL(vfs_get_link);
4748 /* get the link contents into pagecache */
4749 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4750 struct delayed_call *callback)
4752 char *kaddr;
4753 struct page *page;
4754 struct address_space *mapping = inode->i_mapping;
4756 if (!dentry) {
4757 page = find_get_page(mapping, 0);
4758 if (!page)
4759 return ERR_PTR(-ECHILD);
4760 if (!PageUptodate(page)) {
4761 put_page(page);
4762 return ERR_PTR(-ECHILD);
4764 } else {
4765 page = read_mapping_page(mapping, 0, NULL);
4766 if (IS_ERR(page))
4767 return (char*)page;
4769 set_delayed_call(callback, page_put_link, page);
4770 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4771 kaddr = page_address(page);
4772 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4773 return kaddr;
4776 EXPORT_SYMBOL(page_get_link);
4778 void page_put_link(void *arg)
4780 put_page(arg);
4782 EXPORT_SYMBOL(page_put_link);
4784 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4786 DEFINE_DELAYED_CALL(done);
4787 int res = readlink_copy(buffer, buflen,
4788 page_get_link(dentry, d_inode(dentry),
4789 &done));
4790 do_delayed_call(&done);
4791 return res;
4793 EXPORT_SYMBOL(page_readlink);
4796 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4798 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4800 struct address_space *mapping = inode->i_mapping;
4801 struct page *page;
4802 void *fsdata;
4803 int err;
4804 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4805 if (nofs)
4806 flags |= AOP_FLAG_NOFS;
4808 retry:
4809 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4810 flags, &page, &fsdata);
4811 if (err)
4812 goto fail;
4814 memcpy(page_address(page), symname, len-1);
4816 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4817 page, fsdata);
4818 if (err < 0)
4819 goto fail;
4820 if (err < len-1)
4821 goto retry;
4823 mark_inode_dirty(inode);
4824 return 0;
4825 fail:
4826 return err;
4828 EXPORT_SYMBOL(__page_symlink);
4830 int page_symlink(struct inode *inode, const char *symname, int len)
4832 return __page_symlink(inode, symname, len,
4833 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4835 EXPORT_SYMBOL(page_symlink);
4837 const struct inode_operations page_symlink_inode_operations = {
4838 .readlink = generic_readlink,
4839 .get_link = page_get_link,
4841 EXPORT_SYMBOL(page_symlink_inode_operations);