2 * segment.c - NILFS segment constructor.
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * Written by Ryusuke Konishi.
20 #include <linux/pagemap.h>
21 #include <linux/buffer_head.h>
22 #include <linux/writeback.h>
23 #include <linux/bitops.h>
24 #include <linux/bio.h>
25 #include <linux/completion.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/freezer.h>
29 #include <linux/kthread.h>
30 #include <linux/crc32.h>
31 #include <linux/pagevec.h>
32 #include <linux/slab.h>
46 #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
48 #define SC_MAX_SEGDELTA 64 /*
49 * Upper limit of the number of segments
50 * appended in collection retry loop
53 /* Construction mode */
55 SC_LSEG_SR
= 1, /* Make a logical segment having a super root */
57 * Flush data blocks of a given file and make
58 * a logical segment without a super root.
61 * Flush data files, leads to segment writes without
62 * creating a checkpoint.
65 * Flush DAT file. This also creates segments
66 * without a checkpoint.
70 /* Stage numbers of dirty block collection */
73 NILFS_ST_GC
, /* Collecting dirty blocks for GC */
79 NILFS_ST_SR
, /* Super root */
80 NILFS_ST_DSYNC
, /* Data sync blocks */
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/nilfs2.h>
88 * nilfs_sc_cstage_inc(), nilfs_sc_cstage_set(), nilfs_sc_cstage_get() are
89 * wrapper functions of stage count (nilfs_sc_info->sc_stage.scnt). Users of
90 * the variable must use them because transition of stage count must involve
91 * trace events (trace_nilfs2_collection_stage_transition).
93 * nilfs_sc_cstage_get() isn't required for the above purpose because it doesn't
94 * produce tracepoint events. It is provided just for making the intention
97 static inline void nilfs_sc_cstage_inc(struct nilfs_sc_info
*sci
)
100 trace_nilfs2_collection_stage_transition(sci
);
103 static inline void nilfs_sc_cstage_set(struct nilfs_sc_info
*sci
, int next_scnt
)
105 sci
->sc_stage
.scnt
= next_scnt
;
106 trace_nilfs2_collection_stage_transition(sci
);
109 static inline int nilfs_sc_cstage_get(struct nilfs_sc_info
*sci
)
111 return sci
->sc_stage
.scnt
;
114 /* State flags of collection */
115 #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
116 #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
117 #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
118 #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
120 /* Operations depending on the construction mode and file type */
121 struct nilfs_sc_operations
{
122 int (*collect_data
)(struct nilfs_sc_info
*, struct buffer_head
*,
124 int (*collect_node
)(struct nilfs_sc_info
*, struct buffer_head
*,
126 int (*collect_bmap
)(struct nilfs_sc_info
*, struct buffer_head
*,
128 void (*write_data_binfo
)(struct nilfs_sc_info
*,
129 struct nilfs_segsum_pointer
*,
130 union nilfs_binfo
*);
131 void (*write_node_binfo
)(struct nilfs_sc_info
*,
132 struct nilfs_segsum_pointer
*,
133 union nilfs_binfo
*);
139 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*);
140 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*, int);
141 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*);
142 static void nilfs_dispose_list(struct the_nilfs
*, struct list_head
*, int);
144 #define nilfs_cnt32_gt(a, b) \
145 (typecheck(__u32, a) && typecheck(__u32, b) && \
146 ((__s32)(b) - (__s32)(a) < 0))
147 #define nilfs_cnt32_ge(a, b) \
148 (typecheck(__u32, a) && typecheck(__u32, b) && \
149 ((__s32)(a) - (__s32)(b) >= 0))
150 #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
151 #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
153 static int nilfs_prepare_segment_lock(struct super_block
*sb
,
154 struct nilfs_transaction_info
*ti
)
156 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
160 if (cur_ti
->ti_magic
== NILFS_TI_MAGIC
)
161 return ++cur_ti
->ti_count
;
164 * If journal_info field is occupied by other FS,
165 * it is saved and will be restored on
166 * nilfs_transaction_commit().
168 nilfs_msg(sb
, KERN_WARNING
, "journal info from a different FS");
169 save
= current
->journal_info
;
172 ti
= kmem_cache_alloc(nilfs_transaction_cachep
, GFP_NOFS
);
175 ti
->ti_flags
= NILFS_TI_DYNAMIC_ALLOC
;
181 ti
->ti_magic
= NILFS_TI_MAGIC
;
182 current
->journal_info
= ti
;
187 * nilfs_transaction_begin - start indivisible file operations.
189 * @ti: nilfs_transaction_info
190 * @vacancy_check: flags for vacancy rate checks
192 * nilfs_transaction_begin() acquires a reader/writer semaphore, called
193 * the segment semaphore, to make a segment construction and write tasks
194 * exclusive. The function is used with nilfs_transaction_commit() in pairs.
195 * The region enclosed by these two functions can be nested. To avoid a
196 * deadlock, the semaphore is only acquired or released in the outermost call.
198 * This function allocates a nilfs_transaction_info struct to keep context
199 * information on it. It is initialized and hooked onto the current task in
200 * the outermost call. If a pre-allocated struct is given to @ti, it is used
201 * instead; otherwise a new struct is assigned from a slab.
203 * When @vacancy_check flag is set, this function will check the amount of
204 * free space, and will wait for the GC to reclaim disk space if low capacity.
206 * Return Value: On success, 0 is returned. On error, one of the following
207 * negative error code is returned.
209 * %-ENOMEM - Insufficient memory available.
211 * %-ENOSPC - No space left on device
213 int nilfs_transaction_begin(struct super_block
*sb
,
214 struct nilfs_transaction_info
*ti
,
217 struct the_nilfs
*nilfs
;
218 int ret
= nilfs_prepare_segment_lock(sb
, ti
);
219 struct nilfs_transaction_info
*trace_ti
;
221 if (unlikely(ret
< 0))
224 trace_ti
= current
->journal_info
;
226 trace_nilfs2_transaction_transition(sb
, trace_ti
,
227 trace_ti
->ti_count
, trace_ti
->ti_flags
,
228 TRACE_NILFS2_TRANSACTION_BEGIN
);
232 sb_start_intwrite(sb
);
234 nilfs
= sb
->s_fs_info
;
235 down_read(&nilfs
->ns_segctor_sem
);
236 if (vacancy_check
&& nilfs_near_disk_full(nilfs
)) {
237 up_read(&nilfs
->ns_segctor_sem
);
242 trace_ti
= current
->journal_info
;
243 trace_nilfs2_transaction_transition(sb
, trace_ti
, trace_ti
->ti_count
,
245 TRACE_NILFS2_TRANSACTION_BEGIN
);
249 ti
= current
->journal_info
;
250 current
->journal_info
= ti
->ti_save
;
251 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
252 kmem_cache_free(nilfs_transaction_cachep
, ti
);
258 * nilfs_transaction_commit - commit indivisible file operations.
261 * nilfs_transaction_commit() releases the read semaphore which is
262 * acquired by nilfs_transaction_begin(). This is only performed
263 * in outermost call of this function. If a commit flag is set,
264 * nilfs_transaction_commit() sets a timer to start the segment
265 * constructor. If a sync flag is set, it starts construction
268 int nilfs_transaction_commit(struct super_block
*sb
)
270 struct nilfs_transaction_info
*ti
= current
->journal_info
;
271 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
274 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
275 ti
->ti_flags
|= NILFS_TI_COMMIT
;
276 if (ti
->ti_count
> 0) {
278 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
279 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_COMMIT
);
282 if (nilfs
->ns_writer
) {
283 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
285 if (ti
->ti_flags
& NILFS_TI_COMMIT
)
286 nilfs_segctor_start_timer(sci
);
287 if (atomic_read(&nilfs
->ns_ndirtyblks
) > sci
->sc_watermark
)
288 nilfs_segctor_do_flush(sci
, 0);
290 up_read(&nilfs
->ns_segctor_sem
);
291 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
292 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_COMMIT
);
294 current
->journal_info
= ti
->ti_save
;
296 if (ti
->ti_flags
& NILFS_TI_SYNC
)
297 err
= nilfs_construct_segment(sb
);
298 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
299 kmem_cache_free(nilfs_transaction_cachep
, ti
);
304 void nilfs_transaction_abort(struct super_block
*sb
)
306 struct nilfs_transaction_info
*ti
= current
->journal_info
;
307 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
309 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
310 if (ti
->ti_count
> 0) {
312 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
313 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_ABORT
);
316 up_read(&nilfs
->ns_segctor_sem
);
318 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
319 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_ABORT
);
321 current
->journal_info
= ti
->ti_save
;
322 if (ti
->ti_flags
& NILFS_TI_DYNAMIC_ALLOC
)
323 kmem_cache_free(nilfs_transaction_cachep
, ti
);
327 void nilfs_relax_pressure_in_lock(struct super_block
*sb
)
329 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
330 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
332 if (!sci
|| !sci
->sc_flush_request
)
335 set_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
336 up_read(&nilfs
->ns_segctor_sem
);
338 down_write(&nilfs
->ns_segctor_sem
);
339 if (sci
->sc_flush_request
&&
340 test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
)) {
341 struct nilfs_transaction_info
*ti
= current
->journal_info
;
343 ti
->ti_flags
|= NILFS_TI_WRITER
;
344 nilfs_segctor_do_immediate_flush(sci
);
345 ti
->ti_flags
&= ~NILFS_TI_WRITER
;
347 downgrade_write(&nilfs
->ns_segctor_sem
);
350 static void nilfs_transaction_lock(struct super_block
*sb
,
351 struct nilfs_transaction_info
*ti
,
354 struct nilfs_transaction_info
*cur_ti
= current
->journal_info
;
355 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
356 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
359 ti
->ti_flags
= NILFS_TI_WRITER
;
361 ti
->ti_save
= cur_ti
;
362 ti
->ti_magic
= NILFS_TI_MAGIC
;
363 current
->journal_info
= ti
;
366 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
367 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_TRYLOCK
);
369 down_write(&nilfs
->ns_segctor_sem
);
370 if (!test_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
))
373 nilfs_segctor_do_immediate_flush(sci
);
375 up_write(&nilfs
->ns_segctor_sem
);
379 ti
->ti_flags
|= NILFS_TI_GC
;
381 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
382 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_LOCK
);
385 static void nilfs_transaction_unlock(struct super_block
*sb
)
387 struct nilfs_transaction_info
*ti
= current
->journal_info
;
388 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
390 BUG_ON(ti
== NULL
|| ti
->ti_magic
!= NILFS_TI_MAGIC
);
391 BUG_ON(ti
->ti_count
> 0);
393 up_write(&nilfs
->ns_segctor_sem
);
394 current
->journal_info
= ti
->ti_save
;
396 trace_nilfs2_transaction_transition(sb
, ti
, ti
->ti_count
,
397 ti
->ti_flags
, TRACE_NILFS2_TRANSACTION_UNLOCK
);
400 static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info
*sci
,
401 struct nilfs_segsum_pointer
*ssp
,
404 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
405 unsigned int blocksize
= sci
->sc_super
->s_blocksize
;
408 if (unlikely(ssp
->offset
+ bytes
> blocksize
)) {
410 BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp
->bh
,
411 &segbuf
->sb_segsum_buffers
));
412 ssp
->bh
= NILFS_SEGBUF_NEXT_BH(ssp
->bh
);
414 p
= ssp
->bh
->b_data
+ ssp
->offset
;
415 ssp
->offset
+= bytes
;
420 * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
421 * @sci: nilfs_sc_info
423 static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info
*sci
)
425 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
426 struct buffer_head
*sumbh
;
427 unsigned int sumbytes
;
428 unsigned int flags
= 0;
431 if (nilfs_doing_gc())
433 err
= nilfs_segbuf_reset(segbuf
, flags
, sci
->sc_seg_ctime
, sci
->sc_cno
);
437 sumbh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
438 sumbytes
= segbuf
->sb_sum
.sumbytes
;
439 sci
->sc_finfo_ptr
.bh
= sumbh
; sci
->sc_finfo_ptr
.offset
= sumbytes
;
440 sci
->sc_binfo_ptr
.bh
= sumbh
; sci
->sc_binfo_ptr
.offset
= sumbytes
;
441 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
445 static int nilfs_segctor_feed_segment(struct nilfs_sc_info
*sci
)
447 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
448 if (NILFS_SEGBUF_IS_LAST(sci
->sc_curseg
, &sci
->sc_segbufs
))
450 * The current segment is filled up
453 sci
->sc_curseg
= NILFS_NEXT_SEGBUF(sci
->sc_curseg
);
454 return nilfs_segctor_reset_segment_buffer(sci
);
457 static int nilfs_segctor_add_super_root(struct nilfs_sc_info
*sci
)
459 struct nilfs_segment_buffer
*segbuf
= sci
->sc_curseg
;
462 if (segbuf
->sb_sum
.nblocks
>= segbuf
->sb_rest_blocks
) {
463 err
= nilfs_segctor_feed_segment(sci
);
466 segbuf
= sci
->sc_curseg
;
468 err
= nilfs_segbuf_extend_payload(segbuf
, &segbuf
->sb_super_root
);
470 segbuf
->sb_sum
.flags
|= NILFS_SS_SR
;
475 * Functions for making segment summary and payloads
477 static int nilfs_segctor_segsum_block_required(
478 struct nilfs_sc_info
*sci
, const struct nilfs_segsum_pointer
*ssp
,
479 unsigned int binfo_size
)
481 unsigned int blocksize
= sci
->sc_super
->s_blocksize
;
482 /* Size of finfo and binfo is enough small against blocksize */
484 return ssp
->offset
+ binfo_size
+
485 (!sci
->sc_blk_cnt
? sizeof(struct nilfs_finfo
) : 0) >
489 static void nilfs_segctor_begin_finfo(struct nilfs_sc_info
*sci
,
492 sci
->sc_curseg
->sb_sum
.nfinfo
++;
493 sci
->sc_binfo_ptr
= sci
->sc_finfo_ptr
;
494 nilfs_segctor_map_segsum_entry(
495 sci
, &sci
->sc_binfo_ptr
, sizeof(struct nilfs_finfo
));
497 if (NILFS_I(inode
)->i_root
&&
498 !test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
499 set_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
503 static void nilfs_segctor_end_finfo(struct nilfs_sc_info
*sci
,
506 struct nilfs_finfo
*finfo
;
507 struct nilfs_inode_info
*ii
;
508 struct nilfs_segment_buffer
*segbuf
;
511 if (sci
->sc_blk_cnt
== 0)
516 if (test_bit(NILFS_I_GCINODE
, &ii
->i_state
))
518 else if (NILFS_ROOT_METADATA_FILE(inode
->i_ino
))
523 finfo
= nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_finfo_ptr
,
525 finfo
->fi_ino
= cpu_to_le64(inode
->i_ino
);
526 finfo
->fi_nblocks
= cpu_to_le32(sci
->sc_blk_cnt
);
527 finfo
->fi_ndatablk
= cpu_to_le32(sci
->sc_datablk_cnt
);
528 finfo
->fi_cno
= cpu_to_le64(cno
);
530 segbuf
= sci
->sc_curseg
;
531 segbuf
->sb_sum
.sumbytes
= sci
->sc_binfo_ptr
.offset
+
532 sci
->sc_super
->s_blocksize
* (segbuf
->sb_sum
.nsumblk
- 1);
533 sci
->sc_finfo_ptr
= sci
->sc_binfo_ptr
;
534 sci
->sc_blk_cnt
= sci
->sc_datablk_cnt
= 0;
537 static int nilfs_segctor_add_file_block(struct nilfs_sc_info
*sci
,
538 struct buffer_head
*bh
,
540 unsigned int binfo_size
)
542 struct nilfs_segment_buffer
*segbuf
;
543 int required
, err
= 0;
546 segbuf
= sci
->sc_curseg
;
547 required
= nilfs_segctor_segsum_block_required(
548 sci
, &sci
->sc_binfo_ptr
, binfo_size
);
549 if (segbuf
->sb_sum
.nblocks
+ required
+ 1 > segbuf
->sb_rest_blocks
) {
550 nilfs_segctor_end_finfo(sci
, inode
);
551 err
= nilfs_segctor_feed_segment(sci
);
556 if (unlikely(required
)) {
557 err
= nilfs_segbuf_extend_segsum(segbuf
);
561 if (sci
->sc_blk_cnt
== 0)
562 nilfs_segctor_begin_finfo(sci
, inode
);
564 nilfs_segctor_map_segsum_entry(sci
, &sci
->sc_binfo_ptr
, binfo_size
);
565 /* Substitution to vblocknr is delayed until update_blocknr() */
566 nilfs_segbuf_add_file_buffer(segbuf
, bh
);
573 * Callback functions that enumerate, mark, and collect dirty blocks
575 static int nilfs_collect_file_data(struct nilfs_sc_info
*sci
,
576 struct buffer_head
*bh
, struct inode
*inode
)
580 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
584 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
,
585 sizeof(struct nilfs_binfo_v
));
587 sci
->sc_datablk_cnt
++;
591 static int nilfs_collect_file_node(struct nilfs_sc_info
*sci
,
592 struct buffer_head
*bh
,
595 return nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
598 static int nilfs_collect_file_bmap(struct nilfs_sc_info
*sci
,
599 struct buffer_head
*bh
,
602 WARN_ON(!buffer_dirty(bh
));
603 return nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
606 static void nilfs_write_file_data_binfo(struct nilfs_sc_info
*sci
,
607 struct nilfs_segsum_pointer
*ssp
,
608 union nilfs_binfo
*binfo
)
610 struct nilfs_binfo_v
*binfo_v
= nilfs_segctor_map_segsum_entry(
611 sci
, ssp
, sizeof(*binfo_v
));
612 *binfo_v
= binfo
->bi_v
;
615 static void nilfs_write_file_node_binfo(struct nilfs_sc_info
*sci
,
616 struct nilfs_segsum_pointer
*ssp
,
617 union nilfs_binfo
*binfo
)
619 __le64
*vblocknr
= nilfs_segctor_map_segsum_entry(
620 sci
, ssp
, sizeof(*vblocknr
));
621 *vblocknr
= binfo
->bi_v
.bi_vblocknr
;
624 static const struct nilfs_sc_operations nilfs_sc_file_ops
= {
625 .collect_data
= nilfs_collect_file_data
,
626 .collect_node
= nilfs_collect_file_node
,
627 .collect_bmap
= nilfs_collect_file_bmap
,
628 .write_data_binfo
= nilfs_write_file_data_binfo
,
629 .write_node_binfo
= nilfs_write_file_node_binfo
,
632 static int nilfs_collect_dat_data(struct nilfs_sc_info
*sci
,
633 struct buffer_head
*bh
, struct inode
*inode
)
637 err
= nilfs_bmap_propagate(NILFS_I(inode
)->i_bmap
, bh
);
641 err
= nilfs_segctor_add_file_block(sci
, bh
, inode
, sizeof(__le64
));
643 sci
->sc_datablk_cnt
++;
647 static int nilfs_collect_dat_bmap(struct nilfs_sc_info
*sci
,
648 struct buffer_head
*bh
, struct inode
*inode
)
650 WARN_ON(!buffer_dirty(bh
));
651 return nilfs_segctor_add_file_block(sci
, bh
, inode
,
652 sizeof(struct nilfs_binfo_dat
));
655 static void nilfs_write_dat_data_binfo(struct nilfs_sc_info
*sci
,
656 struct nilfs_segsum_pointer
*ssp
,
657 union nilfs_binfo
*binfo
)
659 __le64
*blkoff
= nilfs_segctor_map_segsum_entry(sci
, ssp
,
661 *blkoff
= binfo
->bi_dat
.bi_blkoff
;
664 static void nilfs_write_dat_node_binfo(struct nilfs_sc_info
*sci
,
665 struct nilfs_segsum_pointer
*ssp
,
666 union nilfs_binfo
*binfo
)
668 struct nilfs_binfo_dat
*binfo_dat
=
669 nilfs_segctor_map_segsum_entry(sci
, ssp
, sizeof(*binfo_dat
));
670 *binfo_dat
= binfo
->bi_dat
;
673 static const struct nilfs_sc_operations nilfs_sc_dat_ops
= {
674 .collect_data
= nilfs_collect_dat_data
,
675 .collect_node
= nilfs_collect_file_node
,
676 .collect_bmap
= nilfs_collect_dat_bmap
,
677 .write_data_binfo
= nilfs_write_dat_data_binfo
,
678 .write_node_binfo
= nilfs_write_dat_node_binfo
,
681 static const struct nilfs_sc_operations nilfs_sc_dsync_ops
= {
682 .collect_data
= nilfs_collect_file_data
,
683 .collect_node
= NULL
,
684 .collect_bmap
= NULL
,
685 .write_data_binfo
= nilfs_write_file_data_binfo
,
686 .write_node_binfo
= NULL
,
689 static size_t nilfs_lookup_dirty_data_buffers(struct inode
*inode
,
690 struct list_head
*listp
,
692 loff_t start
, loff_t end
)
694 struct address_space
*mapping
= inode
->i_mapping
;
696 pgoff_t index
= 0, last
= ULONG_MAX
;
700 if (unlikely(start
!= 0 || end
!= LLONG_MAX
)) {
702 * A valid range is given for sync-ing data pages. The
703 * range is rounded to per-page; extra dirty buffers
704 * may be included if blocksize < pagesize.
706 index
= start
>> PAGE_SHIFT
;
707 last
= end
>> PAGE_SHIFT
;
709 pagevec_init(&pvec
, 0);
711 if (unlikely(index
> last
) ||
712 !pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
713 min_t(pgoff_t
, last
- index
,
714 PAGEVEC_SIZE
- 1) + 1))
717 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
718 struct buffer_head
*bh
, *head
;
719 struct page
*page
= pvec
.pages
[i
];
721 if (unlikely(page
->index
> last
))
725 if (!page_has_buffers(page
))
726 create_empty_buffers(page
, i_blocksize(inode
), 0);
729 bh
= head
= page_buffers(page
);
731 if (!buffer_dirty(bh
) || buffer_async_write(bh
))
734 list_add_tail(&bh
->b_assoc_buffers
, listp
);
736 if (unlikely(ndirties
>= nlimit
)) {
737 pagevec_release(&pvec
);
741 } while (bh
= bh
->b_this_page
, bh
!= head
);
743 pagevec_release(&pvec
);
748 static void nilfs_lookup_dirty_node_buffers(struct inode
*inode
,
749 struct list_head
*listp
)
751 struct nilfs_inode_info
*ii
= NILFS_I(inode
);
752 struct address_space
*mapping
= &ii
->i_btnode_cache
;
754 struct buffer_head
*bh
, *head
;
758 pagevec_init(&pvec
, 0);
760 while (pagevec_lookup_tag(&pvec
, mapping
, &index
, PAGECACHE_TAG_DIRTY
,
762 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
763 bh
= head
= page_buffers(pvec
.pages
[i
]);
765 if (buffer_dirty(bh
) &&
766 !buffer_async_write(bh
)) {
768 list_add_tail(&bh
->b_assoc_buffers
,
771 bh
= bh
->b_this_page
;
772 } while (bh
!= head
);
774 pagevec_release(&pvec
);
779 static void nilfs_dispose_list(struct the_nilfs
*nilfs
,
780 struct list_head
*head
, int force
)
782 struct nilfs_inode_info
*ii
, *n
;
783 struct nilfs_inode_info
*ivec
[SC_N_INODEVEC
], **pii
;
786 while (!list_empty(head
)) {
787 spin_lock(&nilfs
->ns_inode_lock
);
788 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
789 list_del_init(&ii
->i_dirty
);
791 if (unlikely(ii
->i_bh
)) {
795 } else if (test_bit(NILFS_I_DIRTY
, &ii
->i_state
)) {
796 set_bit(NILFS_I_QUEUED
, &ii
->i_state
);
797 list_add_tail(&ii
->i_dirty
,
798 &nilfs
->ns_dirty_files
);
802 if (nv
== SC_N_INODEVEC
)
805 spin_unlock(&nilfs
->ns_inode_lock
);
807 for (pii
= ivec
; nv
> 0; pii
++, nv
--)
808 iput(&(*pii
)->vfs_inode
);
812 static void nilfs_iput_work_func(struct work_struct
*work
)
814 struct nilfs_sc_info
*sci
= container_of(work
, struct nilfs_sc_info
,
816 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
818 nilfs_dispose_list(nilfs
, &sci
->sc_iput_queue
, 0);
821 static int nilfs_test_metadata_dirty(struct the_nilfs
*nilfs
,
822 struct nilfs_root
*root
)
826 if (nilfs_mdt_fetch_dirty(root
->ifile
))
828 if (nilfs_mdt_fetch_dirty(nilfs
->ns_cpfile
))
830 if (nilfs_mdt_fetch_dirty(nilfs
->ns_sufile
))
832 if ((ret
|| nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs
->ns_dat
))
837 static int nilfs_segctor_clean(struct nilfs_sc_info
*sci
)
839 return list_empty(&sci
->sc_dirty_files
) &&
840 !test_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
) &&
841 sci
->sc_nfreesegs
== 0 &&
842 (!nilfs_doing_gc() || list_empty(&sci
->sc_gc_inodes
));
845 static int nilfs_segctor_confirm(struct nilfs_sc_info
*sci
)
847 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
850 if (nilfs_test_metadata_dirty(nilfs
, sci
->sc_root
))
851 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
853 spin_lock(&nilfs
->ns_inode_lock
);
854 if (list_empty(&nilfs
->ns_dirty_files
) && nilfs_segctor_clean(sci
))
857 spin_unlock(&nilfs
->ns_inode_lock
);
861 static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info
*sci
)
863 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
865 nilfs_mdt_clear_dirty(sci
->sc_root
->ifile
);
866 nilfs_mdt_clear_dirty(nilfs
->ns_cpfile
);
867 nilfs_mdt_clear_dirty(nilfs
->ns_sufile
);
868 nilfs_mdt_clear_dirty(nilfs
->ns_dat
);
871 static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info
*sci
)
873 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
874 struct buffer_head
*bh_cp
;
875 struct nilfs_checkpoint
*raw_cp
;
878 /* XXX: this interface will be changed */
879 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 1,
883 * The following code is duplicated with cpfile. But, it is
884 * needed to collect the checkpoint even if it was not newly
887 mark_buffer_dirty(bh_cp
);
888 nilfs_mdt_mark_dirty(nilfs
->ns_cpfile
);
889 nilfs_cpfile_put_checkpoint(
890 nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
892 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
897 static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info
*sci
)
899 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
900 struct buffer_head
*bh_cp
;
901 struct nilfs_checkpoint
*raw_cp
;
904 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, 0,
907 WARN_ON(err
== -EINVAL
|| err
== -ENOENT
);
910 raw_cp
->cp_snapshot_list
.ssl_next
= 0;
911 raw_cp
->cp_snapshot_list
.ssl_prev
= 0;
912 raw_cp
->cp_inodes_count
=
913 cpu_to_le64(atomic64_read(&sci
->sc_root
->inodes_count
));
914 raw_cp
->cp_blocks_count
=
915 cpu_to_le64(atomic64_read(&sci
->sc_root
->blocks_count
));
916 raw_cp
->cp_nblk_inc
=
917 cpu_to_le64(sci
->sc_nblk_inc
+ sci
->sc_nblk_this_inc
);
918 raw_cp
->cp_create
= cpu_to_le64(sci
->sc_seg_ctime
);
919 raw_cp
->cp_cno
= cpu_to_le64(nilfs
->ns_cno
);
921 if (test_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
))
922 nilfs_checkpoint_clear_minor(raw_cp
);
924 nilfs_checkpoint_set_minor(raw_cp
);
926 nilfs_write_inode_common(sci
->sc_root
->ifile
,
927 &raw_cp
->cp_ifile_inode
, 1);
928 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, nilfs
->ns_cno
, bh_cp
);
935 static void nilfs_fill_in_file_bmap(struct inode
*ifile
,
936 struct nilfs_inode_info
*ii
)
939 struct buffer_head
*ibh
;
940 struct nilfs_inode
*raw_inode
;
942 if (test_bit(NILFS_I_BMAP
, &ii
->i_state
)) {
945 raw_inode
= nilfs_ifile_map_inode(ifile
, ii
->vfs_inode
.i_ino
,
947 nilfs_bmap_write(ii
->i_bmap
, raw_inode
);
948 nilfs_ifile_unmap_inode(ifile
, ii
->vfs_inode
.i_ino
, ibh
);
952 static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info
*sci
)
954 struct nilfs_inode_info
*ii
;
956 list_for_each_entry(ii
, &sci
->sc_dirty_files
, i_dirty
) {
957 nilfs_fill_in_file_bmap(sci
->sc_root
->ifile
, ii
);
958 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
962 static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info
*sci
,
963 struct the_nilfs
*nilfs
)
965 struct buffer_head
*bh_sr
;
966 struct nilfs_super_root
*raw_sr
;
967 unsigned int isz
, srsz
;
969 bh_sr
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
)->sb_super_root
;
970 raw_sr
= (struct nilfs_super_root
*)bh_sr
->b_data
;
971 isz
= nilfs
->ns_inode_size
;
972 srsz
= NILFS_SR_BYTES(isz
);
974 raw_sr
->sr_bytes
= cpu_to_le16(srsz
);
975 raw_sr
->sr_nongc_ctime
976 = cpu_to_le64(nilfs_doing_gc() ?
977 nilfs
->ns_nongc_ctime
: sci
->sc_seg_ctime
);
978 raw_sr
->sr_flags
= 0;
980 nilfs_write_inode_common(nilfs
->ns_dat
, (void *)raw_sr
+
981 NILFS_SR_DAT_OFFSET(isz
), 1);
982 nilfs_write_inode_common(nilfs
->ns_cpfile
, (void *)raw_sr
+
983 NILFS_SR_CPFILE_OFFSET(isz
), 1);
984 nilfs_write_inode_common(nilfs
->ns_sufile
, (void *)raw_sr
+
985 NILFS_SR_SUFILE_OFFSET(isz
), 1);
986 memset((void *)raw_sr
+ srsz
, 0, nilfs
->ns_blocksize
- srsz
);
989 static void nilfs_redirty_inodes(struct list_head
*head
)
991 struct nilfs_inode_info
*ii
;
993 list_for_each_entry(ii
, head
, i_dirty
) {
994 if (test_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
995 clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
999 static void nilfs_drop_collected_inodes(struct list_head
*head
)
1001 struct nilfs_inode_info
*ii
;
1003 list_for_each_entry(ii
, head
, i_dirty
) {
1004 if (!test_and_clear_bit(NILFS_I_COLLECTED
, &ii
->i_state
))
1007 clear_bit(NILFS_I_INODE_SYNC
, &ii
->i_state
);
1008 set_bit(NILFS_I_UPDATED
, &ii
->i_state
);
1012 static int nilfs_segctor_apply_buffers(struct nilfs_sc_info
*sci
,
1013 struct inode
*inode
,
1014 struct list_head
*listp
,
1015 int (*collect
)(struct nilfs_sc_info
*,
1016 struct buffer_head
*,
1019 struct buffer_head
*bh
, *n
;
1023 list_for_each_entry_safe(bh
, n
, listp
, b_assoc_buffers
) {
1024 list_del_init(&bh
->b_assoc_buffers
);
1025 err
= collect(sci
, bh
, inode
);
1028 goto dispose_buffers
;
1034 while (!list_empty(listp
)) {
1035 bh
= list_first_entry(listp
, struct buffer_head
,
1037 list_del_init(&bh
->b_assoc_buffers
);
1043 static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info
*sci
)
1045 /* Remaining number of blocks within segment buffer */
1046 return sci
->sc_segbuf_nblocks
-
1047 (sci
->sc_nblk_this_inc
+ sci
->sc_curseg
->sb_sum
.nblocks
);
1050 static int nilfs_segctor_scan_file(struct nilfs_sc_info
*sci
,
1051 struct inode
*inode
,
1052 const struct nilfs_sc_operations
*sc_ops
)
1054 LIST_HEAD(data_buffers
);
1055 LIST_HEAD(node_buffers
);
1058 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1059 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1061 n
= nilfs_lookup_dirty_data_buffers(
1062 inode
, &data_buffers
, rest
+ 1, 0, LLONG_MAX
);
1064 err
= nilfs_segctor_apply_buffers(
1065 sci
, inode
, &data_buffers
,
1066 sc_ops
->collect_data
);
1067 BUG_ON(!err
); /* always receive -E2BIG or true error */
1071 nilfs_lookup_dirty_node_buffers(inode
, &node_buffers
);
1073 if (!(sci
->sc_stage
.flags
& NILFS_CF_NODE
)) {
1074 err
= nilfs_segctor_apply_buffers(
1075 sci
, inode
, &data_buffers
, sc_ops
->collect_data
);
1076 if (unlikely(err
)) {
1077 /* dispose node list */
1078 nilfs_segctor_apply_buffers(
1079 sci
, inode
, &node_buffers
, NULL
);
1082 sci
->sc_stage
.flags
|= NILFS_CF_NODE
;
1085 err
= nilfs_segctor_apply_buffers(
1086 sci
, inode
, &node_buffers
, sc_ops
->collect_node
);
1090 nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode
)->i_bmap
, &node_buffers
);
1091 err
= nilfs_segctor_apply_buffers(
1092 sci
, inode
, &node_buffers
, sc_ops
->collect_bmap
);
1096 nilfs_segctor_end_finfo(sci
, inode
);
1097 sci
->sc_stage
.flags
&= ~NILFS_CF_NODE
;
1103 static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info
*sci
,
1104 struct inode
*inode
)
1106 LIST_HEAD(data_buffers
);
1107 size_t n
, rest
= nilfs_segctor_buffer_rest(sci
);
1110 n
= nilfs_lookup_dirty_data_buffers(inode
, &data_buffers
, rest
+ 1,
1111 sci
->sc_dsync_start
,
1114 err
= nilfs_segctor_apply_buffers(sci
, inode
, &data_buffers
,
1115 nilfs_collect_file_data
);
1117 nilfs_segctor_end_finfo(sci
, inode
);
1119 /* always receive -E2BIG or true error if n > rest */
1124 static int nilfs_segctor_collect_blocks(struct nilfs_sc_info
*sci
, int mode
)
1126 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
1127 struct list_head
*head
;
1128 struct nilfs_inode_info
*ii
;
1132 switch (nilfs_sc_cstage_get(sci
)) {
1135 sci
->sc_stage
.flags
= 0;
1137 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
)) {
1138 sci
->sc_nblk_inc
= 0;
1139 sci
->sc_curseg
->sb_sum
.flags
= NILFS_SS_LOGBGN
;
1140 if (mode
== SC_LSEG_DSYNC
) {
1141 nilfs_sc_cstage_set(sci
, NILFS_ST_DSYNC
);
1146 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1147 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1148 if (mode
== SC_FLUSH_DAT
) {
1149 nilfs_sc_cstage_set(sci
, NILFS_ST_DAT
);
1152 nilfs_sc_cstage_inc(sci
); /* Fall through */
1154 if (nilfs_doing_gc()) {
1155 head
= &sci
->sc_gc_inodes
;
1156 ii
= list_prepare_entry(sci
->sc_stage
.gc_inode_ptr
,
1158 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1159 err
= nilfs_segctor_scan_file(
1160 sci
, &ii
->vfs_inode
,
1161 &nilfs_sc_file_ops
);
1162 if (unlikely(err
)) {
1163 sci
->sc_stage
.gc_inode_ptr
= list_entry(
1165 struct nilfs_inode_info
,
1169 set_bit(NILFS_I_COLLECTED
, &ii
->i_state
);
1171 sci
->sc_stage
.gc_inode_ptr
= NULL
;
1173 nilfs_sc_cstage_inc(sci
); /* Fall through */
1175 head
= &sci
->sc_dirty_files
;
1176 ii
= list_prepare_entry(sci
->sc_stage
.dirty_file_ptr
, head
,
1178 list_for_each_entry_continue(ii
, head
, i_dirty
) {
1179 clear_bit(NILFS_I_DIRTY
, &ii
->i_state
);
1181 err
= nilfs_segctor_scan_file(sci
, &ii
->vfs_inode
,
1182 &nilfs_sc_file_ops
);
1183 if (unlikely(err
)) {
1184 sci
->sc_stage
.dirty_file_ptr
=
1185 list_entry(ii
->i_dirty
.prev
,
1186 struct nilfs_inode_info
,
1190 /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
1191 /* XXX: required ? */
1193 sci
->sc_stage
.dirty_file_ptr
= NULL
;
1194 if (mode
== SC_FLUSH_FILE
) {
1195 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1198 nilfs_sc_cstage_inc(sci
);
1199 sci
->sc_stage
.flags
|= NILFS_CF_IFILE_STARTED
;
1201 case NILFS_ST_IFILE
:
1202 err
= nilfs_segctor_scan_file(sci
, sci
->sc_root
->ifile
,
1203 &nilfs_sc_file_ops
);
1206 nilfs_sc_cstage_inc(sci
);
1207 /* Creating a checkpoint */
1208 err
= nilfs_segctor_create_checkpoint(sci
);
1212 case NILFS_ST_CPFILE
:
1213 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_cpfile
,
1214 &nilfs_sc_file_ops
);
1217 nilfs_sc_cstage_inc(sci
); /* Fall through */
1218 case NILFS_ST_SUFILE
:
1219 err
= nilfs_sufile_freev(nilfs
->ns_sufile
, sci
->sc_freesegs
,
1220 sci
->sc_nfreesegs
, &ndone
);
1221 if (unlikely(err
)) {
1222 nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1223 sci
->sc_freesegs
, ndone
,
1227 sci
->sc_stage
.flags
|= NILFS_CF_SUFREED
;
1229 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_sufile
,
1230 &nilfs_sc_file_ops
);
1233 nilfs_sc_cstage_inc(sci
); /* Fall through */
1236 err
= nilfs_segctor_scan_file(sci
, nilfs
->ns_dat
,
1240 if (mode
== SC_FLUSH_DAT
) {
1241 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1244 nilfs_sc_cstage_inc(sci
); /* Fall through */
1246 if (mode
== SC_LSEG_SR
) {
1247 /* Appending a super root */
1248 err
= nilfs_segctor_add_super_root(sci
);
1252 /* End of a logical segment */
1253 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1254 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1256 case NILFS_ST_DSYNC
:
1258 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_SYNDT
;
1259 ii
= sci
->sc_dsync_inode
;
1260 if (!test_bit(NILFS_I_BUSY
, &ii
->i_state
))
1263 err
= nilfs_segctor_scan_file_dsync(sci
, &ii
->vfs_inode
);
1266 sci
->sc_curseg
->sb_sum
.flags
|= NILFS_SS_LOGEND
;
1267 nilfs_sc_cstage_set(sci
, NILFS_ST_DONE
);
1280 * nilfs_segctor_begin_construction - setup segment buffer to make a new log
1281 * @sci: nilfs_sc_info
1282 * @nilfs: nilfs object
1284 static int nilfs_segctor_begin_construction(struct nilfs_sc_info
*sci
,
1285 struct the_nilfs
*nilfs
)
1287 struct nilfs_segment_buffer
*segbuf
, *prev
;
1291 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1292 if (unlikely(!segbuf
))
1295 if (list_empty(&sci
->sc_write_logs
)) {
1296 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
,
1297 nilfs
->ns_pseg_offset
, nilfs
);
1298 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1299 nilfs_shift_to_next_segment(nilfs
);
1300 nilfs_segbuf_map(segbuf
, nilfs
->ns_segnum
, 0, nilfs
);
1303 segbuf
->sb_sum
.seg_seq
= nilfs
->ns_seg_seq
;
1304 nextnum
= nilfs
->ns_nextnum
;
1306 if (nilfs
->ns_segnum
== nilfs
->ns_nextnum
)
1307 /* Start from the head of a new full segment */
1311 prev
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1312 nilfs_segbuf_map_cont(segbuf
, prev
);
1313 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
;
1314 nextnum
= prev
->sb_nextnum
;
1316 if (segbuf
->sb_rest_blocks
< NILFS_PSEG_MIN_BLOCKS
) {
1317 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1318 segbuf
->sb_sum
.seg_seq
++;
1323 err
= nilfs_sufile_mark_dirty(nilfs
->ns_sufile
, segbuf
->sb_segnum
);
1328 err
= nilfs_sufile_alloc(nilfs
->ns_sufile
, &nextnum
);
1332 nilfs_segbuf_set_next_segnum(segbuf
, nextnum
, nilfs
);
1334 BUG_ON(!list_empty(&sci
->sc_segbufs
));
1335 list_add_tail(&segbuf
->sb_list
, &sci
->sc_segbufs
);
1336 sci
->sc_segbuf_nblocks
= segbuf
->sb_rest_blocks
;
1340 nilfs_segbuf_free(segbuf
);
1344 static int nilfs_segctor_extend_segments(struct nilfs_sc_info
*sci
,
1345 struct the_nilfs
*nilfs
, int nadd
)
1347 struct nilfs_segment_buffer
*segbuf
, *prev
;
1348 struct inode
*sufile
= nilfs
->ns_sufile
;
1353 prev
= NILFS_LAST_SEGBUF(&sci
->sc_segbufs
);
1355 * Since the segment specified with nextnum might be allocated during
1356 * the previous construction, the buffer including its segusage may
1357 * not be dirty. The following call ensures that the buffer is dirty
1358 * and will pin the buffer on memory until the sufile is written.
1360 err
= nilfs_sufile_mark_dirty(sufile
, prev
->sb_nextnum
);
1364 for (i
= 0; i
< nadd
; i
++) {
1365 /* extend segment info */
1367 segbuf
= nilfs_segbuf_new(sci
->sc_super
);
1368 if (unlikely(!segbuf
))
1371 /* map this buffer to region of segment on-disk */
1372 nilfs_segbuf_map(segbuf
, prev
->sb_nextnum
, 0, nilfs
);
1373 sci
->sc_segbuf_nblocks
+= segbuf
->sb_rest_blocks
;
1375 /* allocate the next next full segment */
1376 err
= nilfs_sufile_alloc(sufile
, &nextnextnum
);
1380 segbuf
->sb_sum
.seg_seq
= prev
->sb_sum
.seg_seq
+ 1;
1381 nilfs_segbuf_set_next_segnum(segbuf
, nextnextnum
, nilfs
);
1383 list_add_tail(&segbuf
->sb_list
, &list
);
1386 list_splice_tail(&list
, &sci
->sc_segbufs
);
1390 nilfs_segbuf_free(segbuf
);
1392 list_for_each_entry(segbuf
, &list
, sb_list
) {
1393 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1394 WARN_ON(ret
); /* never fails */
1396 nilfs_destroy_logs(&list
);
1400 static void nilfs_free_incomplete_logs(struct list_head
*logs
,
1401 struct the_nilfs
*nilfs
)
1403 struct nilfs_segment_buffer
*segbuf
, *prev
;
1404 struct inode
*sufile
= nilfs
->ns_sufile
;
1407 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1408 if (nilfs
->ns_nextnum
!= segbuf
->sb_nextnum
) {
1409 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1410 WARN_ON(ret
); /* never fails */
1412 if (atomic_read(&segbuf
->sb_err
)) {
1413 /* Case 1: The first segment failed */
1414 if (segbuf
->sb_pseg_start
!= segbuf
->sb_fseg_start
)
1416 * Case 1a: Partial segment appended into an existing
1419 nilfs_terminate_segment(nilfs
, segbuf
->sb_fseg_start
,
1420 segbuf
->sb_fseg_end
);
1421 else /* Case 1b: New full segment */
1422 set_nilfs_discontinued(nilfs
);
1426 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1427 if (prev
->sb_nextnum
!= segbuf
->sb_nextnum
) {
1428 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1429 WARN_ON(ret
); /* never fails */
1431 if (atomic_read(&segbuf
->sb_err
) &&
1432 segbuf
->sb_segnum
!= nilfs
->ns_nextnum
)
1433 /* Case 2: extended segment (!= next) failed */
1434 nilfs_sufile_set_error(sufile
, segbuf
->sb_segnum
);
1439 static void nilfs_segctor_update_segusage(struct nilfs_sc_info
*sci
,
1440 struct inode
*sufile
)
1442 struct nilfs_segment_buffer
*segbuf
;
1443 unsigned long live_blocks
;
1446 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1447 live_blocks
= segbuf
->sb_sum
.nblocks
+
1448 (segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
);
1449 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1452 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1456 static void nilfs_cancel_segusage(struct list_head
*logs
, struct inode
*sufile
)
1458 struct nilfs_segment_buffer
*segbuf
;
1461 segbuf
= NILFS_FIRST_SEGBUF(logs
);
1462 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1463 segbuf
->sb_pseg_start
-
1464 segbuf
->sb_fseg_start
, 0);
1465 WARN_ON(ret
); /* always succeed because the segusage is dirty */
1467 list_for_each_entry_continue(segbuf
, logs
, sb_list
) {
1468 ret
= nilfs_sufile_set_segment_usage(sufile
, segbuf
->sb_segnum
,
1470 WARN_ON(ret
); /* always succeed */
1474 static void nilfs_segctor_truncate_segments(struct nilfs_sc_info
*sci
,
1475 struct nilfs_segment_buffer
*last
,
1476 struct inode
*sufile
)
1478 struct nilfs_segment_buffer
*segbuf
= last
;
1481 list_for_each_entry_continue(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1482 sci
->sc_segbuf_nblocks
-= segbuf
->sb_rest_blocks
;
1483 ret
= nilfs_sufile_free(sufile
, segbuf
->sb_nextnum
);
1486 nilfs_truncate_logs(&sci
->sc_segbufs
, last
);
1490 static int nilfs_segctor_collect(struct nilfs_sc_info
*sci
,
1491 struct the_nilfs
*nilfs
, int mode
)
1493 struct nilfs_cstage prev_stage
= sci
->sc_stage
;
1496 /* Collection retry loop */
1498 sci
->sc_nblk_this_inc
= 0;
1499 sci
->sc_curseg
= NILFS_FIRST_SEGBUF(&sci
->sc_segbufs
);
1501 err
= nilfs_segctor_reset_segment_buffer(sci
);
1505 err
= nilfs_segctor_collect_blocks(sci
, mode
);
1506 sci
->sc_nblk_this_inc
+= sci
->sc_curseg
->sb_sum
.nblocks
;
1510 if (unlikely(err
!= -E2BIG
))
1513 /* The current segment is filled up */
1514 if (mode
!= SC_LSEG_SR
||
1515 nilfs_sc_cstage_get(sci
) < NILFS_ST_CPFILE
)
1518 nilfs_clear_logs(&sci
->sc_segbufs
);
1520 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1521 err
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1525 WARN_ON(err
); /* do not happen */
1526 sci
->sc_stage
.flags
&= ~NILFS_CF_SUFREED
;
1529 err
= nilfs_segctor_extend_segments(sci
, nilfs
, nadd
);
1533 nadd
= min_t(int, nadd
<< 1, SC_MAX_SEGDELTA
);
1534 sci
->sc_stage
= prev_stage
;
1536 nilfs_segctor_truncate_segments(sci
, sci
->sc_curseg
, nilfs
->ns_sufile
);
1543 static void nilfs_list_replace_buffer(struct buffer_head
*old_bh
,
1544 struct buffer_head
*new_bh
)
1546 BUG_ON(!list_empty(&new_bh
->b_assoc_buffers
));
1548 list_replace_init(&old_bh
->b_assoc_buffers
, &new_bh
->b_assoc_buffers
);
1549 /* The caller must release old_bh */
1553 nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info
*sci
,
1554 struct nilfs_segment_buffer
*segbuf
,
1557 struct inode
*inode
= NULL
;
1559 unsigned long nfinfo
= segbuf
->sb_sum
.nfinfo
;
1560 unsigned long nblocks
= 0, ndatablk
= 0;
1561 const struct nilfs_sc_operations
*sc_op
= NULL
;
1562 struct nilfs_segsum_pointer ssp
;
1563 struct nilfs_finfo
*finfo
= NULL
;
1564 union nilfs_binfo binfo
;
1565 struct buffer_head
*bh
, *bh_org
;
1572 blocknr
= segbuf
->sb_pseg_start
+ segbuf
->sb_sum
.nsumblk
;
1573 ssp
.bh
= NILFS_SEGBUF_FIRST_BH(&segbuf
->sb_segsum_buffers
);
1574 ssp
.offset
= sizeof(struct nilfs_segment_summary
);
1576 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
, b_assoc_buffers
) {
1577 if (bh
== segbuf
->sb_super_root
)
1580 finfo
= nilfs_segctor_map_segsum_entry(
1581 sci
, &ssp
, sizeof(*finfo
));
1582 ino
= le64_to_cpu(finfo
->fi_ino
);
1583 nblocks
= le32_to_cpu(finfo
->fi_nblocks
);
1584 ndatablk
= le32_to_cpu(finfo
->fi_ndatablk
);
1586 inode
= bh
->b_page
->mapping
->host
;
1588 if (mode
== SC_LSEG_DSYNC
)
1589 sc_op
= &nilfs_sc_dsync_ops
;
1590 else if (ino
== NILFS_DAT_INO
)
1591 sc_op
= &nilfs_sc_dat_ops
;
1592 else /* file blocks */
1593 sc_op
= &nilfs_sc_file_ops
;
1597 err
= nilfs_bmap_assign(NILFS_I(inode
)->i_bmap
, &bh
, blocknr
,
1600 nilfs_list_replace_buffer(bh_org
, bh
);
1606 sc_op
->write_data_binfo(sci
, &ssp
, &binfo
);
1608 sc_op
->write_node_binfo(sci
, &ssp
, &binfo
);
1611 if (--nblocks
== 0) {
1615 } else if (ndatablk
> 0)
1625 static int nilfs_segctor_assign(struct nilfs_sc_info
*sci
, int mode
)
1627 struct nilfs_segment_buffer
*segbuf
;
1630 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1631 err
= nilfs_segctor_update_payload_blocknr(sci
, segbuf
, mode
);
1634 nilfs_segbuf_fill_in_segsum(segbuf
);
1639 static void nilfs_begin_page_io(struct page
*page
)
1641 if (!page
|| PageWriteback(page
))
1643 * For split b-tree node pages, this function may be called
1644 * twice. We ignore the 2nd or later calls by this check.
1649 clear_page_dirty_for_io(page
);
1650 set_page_writeback(page
);
1654 static void nilfs_segctor_prepare_write(struct nilfs_sc_info
*sci
)
1656 struct nilfs_segment_buffer
*segbuf
;
1657 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1659 list_for_each_entry(segbuf
, &sci
->sc_segbufs
, sb_list
) {
1660 struct buffer_head
*bh
;
1662 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1664 if (bh
->b_page
!= bd_page
) {
1667 clear_page_dirty_for_io(bd_page
);
1668 set_page_writeback(bd_page
);
1669 unlock_page(bd_page
);
1671 bd_page
= bh
->b_page
;
1675 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1677 set_buffer_async_write(bh
);
1678 if (bh
== segbuf
->sb_super_root
) {
1679 if (bh
->b_page
!= bd_page
) {
1681 clear_page_dirty_for_io(bd_page
);
1682 set_page_writeback(bd_page
);
1683 unlock_page(bd_page
);
1684 bd_page
= bh
->b_page
;
1688 if (bh
->b_page
!= fs_page
) {
1689 nilfs_begin_page_io(fs_page
);
1690 fs_page
= bh
->b_page
;
1696 clear_page_dirty_for_io(bd_page
);
1697 set_page_writeback(bd_page
);
1698 unlock_page(bd_page
);
1700 nilfs_begin_page_io(fs_page
);
1703 static int nilfs_segctor_write(struct nilfs_sc_info
*sci
,
1704 struct the_nilfs
*nilfs
)
1708 ret
= nilfs_write_logs(&sci
->sc_segbufs
, nilfs
);
1709 list_splice_tail_init(&sci
->sc_segbufs
, &sci
->sc_write_logs
);
1713 static void nilfs_end_page_io(struct page
*page
, int err
)
1718 if (buffer_nilfs_node(page_buffers(page
)) && !PageWriteback(page
)) {
1720 * For b-tree node pages, this function may be called twice
1721 * or more because they might be split in a segment.
1723 if (PageDirty(page
)) {
1725 * For pages holding split b-tree node buffers, dirty
1726 * flag on the buffers may be cleared discretely.
1727 * In that case, the page is once redirtied for
1728 * remaining buffers, and it must be cancelled if
1729 * all the buffers get cleaned later.
1732 if (nilfs_page_buffers_clean(page
))
1733 __nilfs_clear_page_dirty(page
);
1740 if (!nilfs_page_buffers_clean(page
))
1741 __set_page_dirty_nobuffers(page
);
1742 ClearPageError(page
);
1744 __set_page_dirty_nobuffers(page
);
1748 end_page_writeback(page
);
1751 static void nilfs_abort_logs(struct list_head
*logs
, int err
)
1753 struct nilfs_segment_buffer
*segbuf
;
1754 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1755 struct buffer_head
*bh
;
1757 if (list_empty(logs
))
1760 list_for_each_entry(segbuf
, logs
, sb_list
) {
1761 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1763 if (bh
->b_page
!= bd_page
) {
1765 end_page_writeback(bd_page
);
1766 bd_page
= bh
->b_page
;
1770 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1772 clear_buffer_async_write(bh
);
1773 if (bh
== segbuf
->sb_super_root
) {
1774 if (bh
->b_page
!= bd_page
) {
1775 end_page_writeback(bd_page
);
1776 bd_page
= bh
->b_page
;
1780 if (bh
->b_page
!= fs_page
) {
1781 nilfs_end_page_io(fs_page
, err
);
1782 fs_page
= bh
->b_page
;
1787 end_page_writeback(bd_page
);
1789 nilfs_end_page_io(fs_page
, err
);
1792 static void nilfs_segctor_abort_construction(struct nilfs_sc_info
*sci
,
1793 struct the_nilfs
*nilfs
, int err
)
1798 list_splice_tail_init(&sci
->sc_write_logs
, &logs
);
1799 ret
= nilfs_wait_on_logs(&logs
);
1800 nilfs_abort_logs(&logs
, ret
? : err
);
1802 list_splice_tail_init(&sci
->sc_segbufs
, &logs
);
1803 nilfs_cancel_segusage(&logs
, nilfs
->ns_sufile
);
1804 nilfs_free_incomplete_logs(&logs
, nilfs
);
1806 if (sci
->sc_stage
.flags
& NILFS_CF_SUFREED
) {
1807 ret
= nilfs_sufile_cancel_freev(nilfs
->ns_sufile
,
1811 WARN_ON(ret
); /* do not happen */
1814 nilfs_destroy_logs(&logs
);
1817 static void nilfs_set_next_segment(struct the_nilfs
*nilfs
,
1818 struct nilfs_segment_buffer
*segbuf
)
1820 nilfs
->ns_segnum
= segbuf
->sb_segnum
;
1821 nilfs
->ns_nextnum
= segbuf
->sb_nextnum
;
1822 nilfs
->ns_pseg_offset
= segbuf
->sb_pseg_start
- segbuf
->sb_fseg_start
1823 + segbuf
->sb_sum
.nblocks
;
1824 nilfs
->ns_seg_seq
= segbuf
->sb_sum
.seg_seq
;
1825 nilfs
->ns_ctime
= segbuf
->sb_sum
.ctime
;
1828 static void nilfs_segctor_complete_write(struct nilfs_sc_info
*sci
)
1830 struct nilfs_segment_buffer
*segbuf
;
1831 struct page
*bd_page
= NULL
, *fs_page
= NULL
;
1832 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
1833 int update_sr
= false;
1835 list_for_each_entry(segbuf
, &sci
->sc_write_logs
, sb_list
) {
1836 struct buffer_head
*bh
;
1838 list_for_each_entry(bh
, &segbuf
->sb_segsum_buffers
,
1840 set_buffer_uptodate(bh
);
1841 clear_buffer_dirty(bh
);
1842 if (bh
->b_page
!= bd_page
) {
1844 end_page_writeback(bd_page
);
1845 bd_page
= bh
->b_page
;
1849 * We assume that the buffers which belong to the same page
1850 * continue over the buffer list.
1851 * Under this assumption, the last BHs of pages is
1852 * identifiable by the discontinuity of bh->b_page
1853 * (page != fs_page).
1855 * For B-tree node blocks, however, this assumption is not
1856 * guaranteed. The cleanup code of B-tree node pages needs
1859 list_for_each_entry(bh
, &segbuf
->sb_payload_buffers
,
1861 const unsigned long set_bits
= BIT(BH_Uptodate
);
1862 const unsigned long clear_bits
=
1863 (BIT(BH_Dirty
) | BIT(BH_Async_Write
) |
1864 BIT(BH_Delay
) | BIT(BH_NILFS_Volatile
) |
1865 BIT(BH_NILFS_Redirected
));
1867 set_mask_bits(&bh
->b_state
, clear_bits
, set_bits
);
1868 if (bh
== segbuf
->sb_super_root
) {
1869 if (bh
->b_page
!= bd_page
) {
1870 end_page_writeback(bd_page
);
1871 bd_page
= bh
->b_page
;
1876 if (bh
->b_page
!= fs_page
) {
1877 nilfs_end_page_io(fs_page
, 0);
1878 fs_page
= bh
->b_page
;
1882 if (!nilfs_segbuf_simplex(segbuf
)) {
1883 if (segbuf
->sb_sum
.flags
& NILFS_SS_LOGBGN
) {
1884 set_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1885 sci
->sc_lseg_stime
= jiffies
;
1887 if (segbuf
->sb_sum
.flags
& NILFS_SS_LOGEND
)
1888 clear_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
);
1892 * Since pages may continue over multiple segment buffers,
1893 * end of the last page must be checked outside of the loop.
1896 end_page_writeback(bd_page
);
1898 nilfs_end_page_io(fs_page
, 0);
1900 nilfs_drop_collected_inodes(&sci
->sc_dirty_files
);
1902 if (nilfs_doing_gc())
1903 nilfs_drop_collected_inodes(&sci
->sc_gc_inodes
);
1905 nilfs
->ns_nongc_ctime
= sci
->sc_seg_ctime
;
1907 sci
->sc_nblk_inc
+= sci
->sc_nblk_this_inc
;
1909 segbuf
= NILFS_LAST_SEGBUF(&sci
->sc_write_logs
);
1910 nilfs_set_next_segment(nilfs
, segbuf
);
1913 nilfs
->ns_flushed_device
= 0;
1914 nilfs_set_last_segment(nilfs
, segbuf
->sb_pseg_start
,
1915 segbuf
->sb_sum
.seg_seq
, nilfs
->ns_cno
++);
1917 clear_bit(NILFS_SC_HAVE_DELTA
, &sci
->sc_flags
);
1918 clear_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
1919 set_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
1920 nilfs_segctor_clear_metadata_dirty(sci
);
1922 clear_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
);
1925 static int nilfs_segctor_wait(struct nilfs_sc_info
*sci
)
1929 ret
= nilfs_wait_on_logs(&sci
->sc_write_logs
);
1931 nilfs_segctor_complete_write(sci
);
1932 nilfs_destroy_logs(&sci
->sc_write_logs
);
1937 static int nilfs_segctor_collect_dirty_files(struct nilfs_sc_info
*sci
,
1938 struct the_nilfs
*nilfs
)
1940 struct nilfs_inode_info
*ii
, *n
;
1941 struct inode
*ifile
= sci
->sc_root
->ifile
;
1943 spin_lock(&nilfs
->ns_inode_lock
);
1945 list_for_each_entry_safe(ii
, n
, &nilfs
->ns_dirty_files
, i_dirty
) {
1947 struct buffer_head
*ibh
;
1950 spin_unlock(&nilfs
->ns_inode_lock
);
1951 err
= nilfs_ifile_get_inode_block(
1952 ifile
, ii
->vfs_inode
.i_ino
, &ibh
);
1953 if (unlikely(err
)) {
1954 nilfs_msg(sci
->sc_super
, KERN_WARNING
,
1955 "log writer: error %d getting inode block (ino=%lu)",
1956 err
, ii
->vfs_inode
.i_ino
);
1959 spin_lock(&nilfs
->ns_inode_lock
);
1960 if (likely(!ii
->i_bh
))
1967 // Always redirty the buffer to avoid race condition
1968 mark_buffer_dirty(ii
->i_bh
);
1969 nilfs_mdt_mark_dirty(ifile
);
1971 clear_bit(NILFS_I_QUEUED
, &ii
->i_state
);
1972 set_bit(NILFS_I_BUSY
, &ii
->i_state
);
1973 list_move_tail(&ii
->i_dirty
, &sci
->sc_dirty_files
);
1975 spin_unlock(&nilfs
->ns_inode_lock
);
1980 static void nilfs_segctor_drop_written_files(struct nilfs_sc_info
*sci
,
1981 struct the_nilfs
*nilfs
)
1983 struct nilfs_inode_info
*ii
, *n
;
1984 int during_mount
= !(sci
->sc_super
->s_flags
& MS_ACTIVE
);
1985 int defer_iput
= false;
1987 spin_lock(&nilfs
->ns_inode_lock
);
1988 list_for_each_entry_safe(ii
, n
, &sci
->sc_dirty_files
, i_dirty
) {
1989 if (!test_and_clear_bit(NILFS_I_UPDATED
, &ii
->i_state
) ||
1990 test_bit(NILFS_I_DIRTY
, &ii
->i_state
))
1993 clear_bit(NILFS_I_BUSY
, &ii
->i_state
);
1996 list_del_init(&ii
->i_dirty
);
1997 if (!ii
->vfs_inode
.i_nlink
|| during_mount
) {
1999 * Defer calling iput() to avoid deadlocks if
2000 * i_nlink == 0 or mount is not yet finished.
2002 list_add_tail(&ii
->i_dirty
, &sci
->sc_iput_queue
);
2005 spin_unlock(&nilfs
->ns_inode_lock
);
2006 iput(&ii
->vfs_inode
);
2007 spin_lock(&nilfs
->ns_inode_lock
);
2010 spin_unlock(&nilfs
->ns_inode_lock
);
2013 schedule_work(&sci
->sc_iput_work
);
2017 * Main procedure of segment constructor
2019 static int nilfs_segctor_do_construct(struct nilfs_sc_info
*sci
, int mode
)
2021 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2024 nilfs_sc_cstage_set(sci
, NILFS_ST_INIT
);
2025 sci
->sc_cno
= nilfs
->ns_cno
;
2027 err
= nilfs_segctor_collect_dirty_files(sci
, nilfs
);
2031 if (nilfs_test_metadata_dirty(nilfs
, sci
->sc_root
))
2032 set_bit(NILFS_SC_DIRTY
, &sci
->sc_flags
);
2034 if (nilfs_segctor_clean(sci
))
2038 sci
->sc_stage
.flags
&= ~NILFS_CF_HISTORY_MASK
;
2040 err
= nilfs_segctor_begin_construction(sci
, nilfs
);
2044 /* Update time stamp */
2045 sci
->sc_seg_ctime
= get_seconds();
2047 err
= nilfs_segctor_collect(sci
, nilfs
, mode
);
2051 /* Avoid empty segment */
2052 if (nilfs_sc_cstage_get(sci
) == NILFS_ST_DONE
&&
2053 nilfs_segbuf_empty(sci
->sc_curseg
)) {
2054 nilfs_segctor_abort_construction(sci
, nilfs
, 1);
2058 err
= nilfs_segctor_assign(sci
, mode
);
2062 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2063 nilfs_segctor_fill_in_file_bmap(sci
);
2065 if (mode
== SC_LSEG_SR
&&
2066 nilfs_sc_cstage_get(sci
) >= NILFS_ST_CPFILE
) {
2067 err
= nilfs_segctor_fill_in_checkpoint(sci
);
2069 goto failed_to_write
;
2071 nilfs_segctor_fill_in_super_root(sci
, nilfs
);
2073 nilfs_segctor_update_segusage(sci
, nilfs
->ns_sufile
);
2075 /* Write partial segments */
2076 nilfs_segctor_prepare_write(sci
);
2078 nilfs_add_checksums_on_logs(&sci
->sc_segbufs
,
2079 nilfs
->ns_crc_seed
);
2081 err
= nilfs_segctor_write(sci
, nilfs
);
2083 goto failed_to_write
;
2085 if (nilfs_sc_cstage_get(sci
) == NILFS_ST_DONE
||
2086 nilfs
->ns_blocksize_bits
!= PAGE_SHIFT
) {
2088 * At this point, we avoid double buffering
2089 * for blocksize < pagesize because page dirty
2090 * flag is turned off during write and dirty
2091 * buffers are not properly collected for
2092 * pages crossing over segments.
2094 err
= nilfs_segctor_wait(sci
);
2096 goto failed_to_write
;
2098 } while (nilfs_sc_cstage_get(sci
) != NILFS_ST_DONE
);
2101 nilfs_segctor_drop_written_files(sci
, nilfs
);
2105 if (sci
->sc_stage
.flags
& NILFS_CF_IFILE_STARTED
)
2106 nilfs_redirty_inodes(&sci
->sc_dirty_files
);
2109 if (nilfs_doing_gc())
2110 nilfs_redirty_inodes(&sci
->sc_gc_inodes
);
2111 nilfs_segctor_abort_construction(sci
, nilfs
, err
);
2116 * nilfs_segctor_start_timer - set timer of background write
2117 * @sci: nilfs_sc_info
2119 * If the timer has already been set, it ignores the new request.
2120 * This function MUST be called within a section locking the segment
2123 static void nilfs_segctor_start_timer(struct nilfs_sc_info
*sci
)
2125 spin_lock(&sci
->sc_state_lock
);
2126 if (!(sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)) {
2127 sci
->sc_timer
.expires
= jiffies
+ sci
->sc_interval
;
2128 add_timer(&sci
->sc_timer
);
2129 sci
->sc_state
|= NILFS_SEGCTOR_COMMIT
;
2131 spin_unlock(&sci
->sc_state_lock
);
2134 static void nilfs_segctor_do_flush(struct nilfs_sc_info
*sci
, int bn
)
2136 spin_lock(&sci
->sc_state_lock
);
2137 if (!(sci
->sc_flush_request
& BIT(bn
))) {
2138 unsigned long prev_req
= sci
->sc_flush_request
;
2140 sci
->sc_flush_request
|= BIT(bn
);
2142 wake_up(&sci
->sc_wait_daemon
);
2144 spin_unlock(&sci
->sc_state_lock
);
2148 * nilfs_flush_segment - trigger a segment construction for resource control
2150 * @ino: inode number of the file to be flushed out.
2152 void nilfs_flush_segment(struct super_block
*sb
, ino_t ino
)
2154 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2155 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2157 if (!sci
|| nilfs_doing_construction())
2159 nilfs_segctor_do_flush(sci
, NILFS_MDT_INODE(sb
, ino
) ? ino
: 0);
2160 /* assign bit 0 to data files */
2163 struct nilfs_segctor_wait_request
{
2170 static int nilfs_segctor_sync(struct nilfs_sc_info
*sci
)
2172 struct nilfs_segctor_wait_request wait_req
;
2175 spin_lock(&sci
->sc_state_lock
);
2176 init_wait(&wait_req
.wq
);
2178 atomic_set(&wait_req
.done
, 0);
2179 wait_req
.seq
= ++sci
->sc_seq_request
;
2180 spin_unlock(&sci
->sc_state_lock
);
2182 init_waitqueue_entry(&wait_req
.wq
, current
);
2183 add_wait_queue(&sci
->sc_wait_request
, &wait_req
.wq
);
2184 set_current_state(TASK_INTERRUPTIBLE
);
2185 wake_up(&sci
->sc_wait_daemon
);
2188 if (atomic_read(&wait_req
.done
)) {
2192 if (!signal_pending(current
)) {
2199 finish_wait(&sci
->sc_wait_request
, &wait_req
.wq
);
2203 static void nilfs_segctor_wakeup(struct nilfs_sc_info
*sci
, int err
)
2205 struct nilfs_segctor_wait_request
*wrq
, *n
;
2206 unsigned long flags
;
2208 spin_lock_irqsave(&sci
->sc_wait_request
.lock
, flags
);
2209 list_for_each_entry_safe(wrq
, n
, &sci
->sc_wait_request
.task_list
,
2211 if (!atomic_read(&wrq
->done
) &&
2212 nilfs_cnt32_ge(sci
->sc_seq_done
, wrq
->seq
)) {
2214 atomic_set(&wrq
->done
, 1);
2216 if (atomic_read(&wrq
->done
)) {
2217 wrq
->wq
.func(&wrq
->wq
,
2218 TASK_UNINTERRUPTIBLE
| TASK_INTERRUPTIBLE
,
2222 spin_unlock_irqrestore(&sci
->sc_wait_request
.lock
, flags
);
2226 * nilfs_construct_segment - construct a logical segment
2229 * Return Value: On success, 0 is retured. On errors, one of the following
2230 * negative error code is returned.
2232 * %-EROFS - Read only filesystem.
2236 * %-ENOSPC - No space left on device (only in a panic state).
2238 * %-ERESTARTSYS - Interrupted.
2240 * %-ENOMEM - Insufficient memory available.
2242 int nilfs_construct_segment(struct super_block
*sb
)
2244 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2245 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2246 struct nilfs_transaction_info
*ti
;
2252 /* A call inside transactions causes a deadlock. */
2253 BUG_ON((ti
= current
->journal_info
) && ti
->ti_magic
== NILFS_TI_MAGIC
);
2255 err
= nilfs_segctor_sync(sci
);
2260 * nilfs_construct_dsync_segment - construct a data-only logical segment
2262 * @inode: inode whose data blocks should be written out
2263 * @start: start byte offset
2264 * @end: end byte offset (inclusive)
2266 * Return Value: On success, 0 is retured. On errors, one of the following
2267 * negative error code is returned.
2269 * %-EROFS - Read only filesystem.
2273 * %-ENOSPC - No space left on device (only in a panic state).
2275 * %-ERESTARTSYS - Interrupted.
2277 * %-ENOMEM - Insufficient memory available.
2279 int nilfs_construct_dsync_segment(struct super_block
*sb
, struct inode
*inode
,
2280 loff_t start
, loff_t end
)
2282 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2283 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2284 struct nilfs_inode_info
*ii
;
2285 struct nilfs_transaction_info ti
;
2291 nilfs_transaction_lock(sb
, &ti
, 0);
2293 ii
= NILFS_I(inode
);
2294 if (test_bit(NILFS_I_INODE_SYNC
, &ii
->i_state
) ||
2295 nilfs_test_opt(nilfs
, STRICT_ORDER
) ||
2296 test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2297 nilfs_discontinued(nilfs
)) {
2298 nilfs_transaction_unlock(sb
);
2299 err
= nilfs_segctor_sync(sci
);
2303 spin_lock(&nilfs
->ns_inode_lock
);
2304 if (!test_bit(NILFS_I_QUEUED
, &ii
->i_state
) &&
2305 !test_bit(NILFS_I_BUSY
, &ii
->i_state
)) {
2306 spin_unlock(&nilfs
->ns_inode_lock
);
2307 nilfs_transaction_unlock(sb
);
2310 spin_unlock(&nilfs
->ns_inode_lock
);
2311 sci
->sc_dsync_inode
= ii
;
2312 sci
->sc_dsync_start
= start
;
2313 sci
->sc_dsync_end
= end
;
2315 err
= nilfs_segctor_do_construct(sci
, SC_LSEG_DSYNC
);
2317 nilfs
->ns_flushed_device
= 0;
2319 nilfs_transaction_unlock(sb
);
2323 #define FLUSH_FILE_BIT (0x1) /* data file only */
2324 #define FLUSH_DAT_BIT BIT(NILFS_DAT_INO) /* DAT only */
2327 * nilfs_segctor_accept - record accepted sequence count of log-write requests
2328 * @sci: segment constructor object
2330 static void nilfs_segctor_accept(struct nilfs_sc_info
*sci
)
2332 spin_lock(&sci
->sc_state_lock
);
2333 sci
->sc_seq_accepted
= sci
->sc_seq_request
;
2334 spin_unlock(&sci
->sc_state_lock
);
2335 del_timer_sync(&sci
->sc_timer
);
2339 * nilfs_segctor_notify - notify the result of request to caller threads
2340 * @sci: segment constructor object
2341 * @mode: mode of log forming
2342 * @err: error code to be notified
2344 static void nilfs_segctor_notify(struct nilfs_sc_info
*sci
, int mode
, int err
)
2346 /* Clear requests (even when the construction failed) */
2347 spin_lock(&sci
->sc_state_lock
);
2349 if (mode
== SC_LSEG_SR
) {
2350 sci
->sc_state
&= ~NILFS_SEGCTOR_COMMIT
;
2351 sci
->sc_seq_done
= sci
->sc_seq_accepted
;
2352 nilfs_segctor_wakeup(sci
, err
);
2353 sci
->sc_flush_request
= 0;
2355 if (mode
== SC_FLUSH_FILE
)
2356 sci
->sc_flush_request
&= ~FLUSH_FILE_BIT
;
2357 else if (mode
== SC_FLUSH_DAT
)
2358 sci
->sc_flush_request
&= ~FLUSH_DAT_BIT
;
2360 /* re-enable timer if checkpoint creation was not done */
2361 if ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2362 time_before(jiffies
, sci
->sc_timer
.expires
))
2363 add_timer(&sci
->sc_timer
);
2365 spin_unlock(&sci
->sc_state_lock
);
2369 * nilfs_segctor_construct - form logs and write them to disk
2370 * @sci: segment constructor object
2371 * @mode: mode of log forming
2373 static int nilfs_segctor_construct(struct nilfs_sc_info
*sci
, int mode
)
2375 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2376 struct nilfs_super_block
**sbp
;
2379 nilfs_segctor_accept(sci
);
2381 if (nilfs_discontinued(nilfs
))
2383 if (!nilfs_segctor_confirm(sci
))
2384 err
= nilfs_segctor_do_construct(sci
, mode
);
2387 if (mode
!= SC_FLUSH_DAT
)
2388 atomic_set(&nilfs
->ns_ndirtyblks
, 0);
2389 if (test_bit(NILFS_SC_SUPER_ROOT
, &sci
->sc_flags
) &&
2390 nilfs_discontinued(nilfs
)) {
2391 down_write(&nilfs
->ns_sem
);
2393 sbp
= nilfs_prepare_super(sci
->sc_super
,
2394 nilfs_sb_will_flip(nilfs
));
2396 nilfs_set_log_cursor(sbp
[0], nilfs
);
2397 err
= nilfs_commit_super(sci
->sc_super
,
2400 up_write(&nilfs
->ns_sem
);
2404 nilfs_segctor_notify(sci
, mode
, err
);
2408 static void nilfs_construction_timeout(unsigned long data
)
2410 struct task_struct
*p
= (struct task_struct
*)data
;
2416 nilfs_remove_written_gcinodes(struct the_nilfs
*nilfs
, struct list_head
*head
)
2418 struct nilfs_inode_info
*ii
, *n
;
2420 list_for_each_entry_safe(ii
, n
, head
, i_dirty
) {
2421 if (!test_bit(NILFS_I_UPDATED
, &ii
->i_state
))
2423 list_del_init(&ii
->i_dirty
);
2424 truncate_inode_pages(&ii
->vfs_inode
.i_data
, 0);
2425 nilfs_btnode_cache_clear(&ii
->i_btnode_cache
);
2426 iput(&ii
->vfs_inode
);
2430 int nilfs_clean_segments(struct super_block
*sb
, struct nilfs_argv
*argv
,
2433 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2434 struct nilfs_sc_info
*sci
= nilfs
->ns_writer
;
2435 struct nilfs_transaction_info ti
;
2441 nilfs_transaction_lock(sb
, &ti
, 1);
2443 err
= nilfs_mdt_save_to_shadow_map(nilfs
->ns_dat
);
2447 err
= nilfs_ioctl_prepare_clean_segments(nilfs
, argv
, kbufs
);
2448 if (unlikely(err
)) {
2449 nilfs_mdt_restore_from_shadow_map(nilfs
->ns_dat
);
2453 sci
->sc_freesegs
= kbufs
[4];
2454 sci
->sc_nfreesegs
= argv
[4].v_nmembs
;
2455 list_splice_tail_init(&nilfs
->ns_gc_inodes
, &sci
->sc_gc_inodes
);
2458 err
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2459 nilfs_remove_written_gcinodes(nilfs
, &sci
->sc_gc_inodes
);
2464 nilfs_msg(sb
, KERN_WARNING
, "error %d cleaning segments", err
);
2465 set_current_state(TASK_INTERRUPTIBLE
);
2466 schedule_timeout(sci
->sc_interval
);
2468 if (nilfs_test_opt(nilfs
, DISCARD
)) {
2469 int ret
= nilfs_discard_segments(nilfs
, sci
->sc_freesegs
,
2472 nilfs_msg(sb
, KERN_WARNING
,
2473 "error %d on discard request, turning discards off for the device",
2475 nilfs_clear_opt(nilfs
, DISCARD
);
2480 sci
->sc_freesegs
= NULL
;
2481 sci
->sc_nfreesegs
= 0;
2482 nilfs_mdt_clear_shadow_map(nilfs
->ns_dat
);
2483 nilfs_transaction_unlock(sb
);
2487 static void nilfs_segctor_thread_construct(struct nilfs_sc_info
*sci
, int mode
)
2489 struct nilfs_transaction_info ti
;
2491 nilfs_transaction_lock(sci
->sc_super
, &ti
, 0);
2492 nilfs_segctor_construct(sci
, mode
);
2495 * Unclosed segment should be retried. We do this using sc_timer.
2496 * Timeout of sc_timer will invoke complete construction which leads
2497 * to close the current logical segment.
2499 if (test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
))
2500 nilfs_segctor_start_timer(sci
);
2502 nilfs_transaction_unlock(sci
->sc_super
);
2505 static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info
*sci
)
2509 spin_lock(&sci
->sc_state_lock
);
2510 mode
= (sci
->sc_flush_request
& FLUSH_DAT_BIT
) ?
2511 SC_FLUSH_DAT
: SC_FLUSH_FILE
;
2512 spin_unlock(&sci
->sc_state_lock
);
2515 nilfs_segctor_do_construct(sci
, mode
);
2517 spin_lock(&sci
->sc_state_lock
);
2518 sci
->sc_flush_request
&= (mode
== SC_FLUSH_FILE
) ?
2519 ~FLUSH_FILE_BIT
: ~FLUSH_DAT_BIT
;
2520 spin_unlock(&sci
->sc_state_lock
);
2522 clear_bit(NILFS_SC_PRIOR_FLUSH
, &sci
->sc_flags
);
2525 static int nilfs_segctor_flush_mode(struct nilfs_sc_info
*sci
)
2527 if (!test_bit(NILFS_SC_UNCLOSED
, &sci
->sc_flags
) ||
2528 time_before(jiffies
, sci
->sc_lseg_stime
+ sci
->sc_mjcp_freq
)) {
2529 if (!(sci
->sc_flush_request
& ~FLUSH_FILE_BIT
))
2530 return SC_FLUSH_FILE
;
2531 else if (!(sci
->sc_flush_request
& ~FLUSH_DAT_BIT
))
2532 return SC_FLUSH_DAT
;
2538 * nilfs_segctor_thread - main loop of the segment constructor thread.
2539 * @arg: pointer to a struct nilfs_sc_info.
2541 * nilfs_segctor_thread() initializes a timer and serves as a daemon
2542 * to execute segment constructions.
2544 static int nilfs_segctor_thread(void *arg
)
2546 struct nilfs_sc_info
*sci
= (struct nilfs_sc_info
*)arg
;
2547 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2550 sci
->sc_timer
.data
= (unsigned long)current
;
2551 sci
->sc_timer
.function
= nilfs_construction_timeout
;
2554 sci
->sc_task
= current
;
2555 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_start_thread() */
2556 nilfs_msg(sci
->sc_super
, KERN_INFO
,
2557 "segctord starting. Construction interval = %lu seconds, CP frequency < %lu seconds",
2558 sci
->sc_interval
/ HZ
, sci
->sc_mjcp_freq
/ HZ
);
2560 spin_lock(&sci
->sc_state_lock
);
2565 if (sci
->sc_state
& NILFS_SEGCTOR_QUIT
)
2568 if (timeout
|| sci
->sc_seq_request
!= sci
->sc_seq_done
)
2570 else if (sci
->sc_flush_request
)
2571 mode
= nilfs_segctor_flush_mode(sci
);
2575 spin_unlock(&sci
->sc_state_lock
);
2576 nilfs_segctor_thread_construct(sci
, mode
);
2577 spin_lock(&sci
->sc_state_lock
);
2582 if (freezing(current
)) {
2583 spin_unlock(&sci
->sc_state_lock
);
2585 spin_lock(&sci
->sc_state_lock
);
2588 int should_sleep
= 1;
2590 prepare_to_wait(&sci
->sc_wait_daemon
, &wait
,
2591 TASK_INTERRUPTIBLE
);
2593 if (sci
->sc_seq_request
!= sci
->sc_seq_done
)
2595 else if (sci
->sc_flush_request
)
2597 else if (sci
->sc_state
& NILFS_SEGCTOR_COMMIT
)
2598 should_sleep
= time_before(jiffies
,
2599 sci
->sc_timer
.expires
);
2602 spin_unlock(&sci
->sc_state_lock
);
2604 spin_lock(&sci
->sc_state_lock
);
2606 finish_wait(&sci
->sc_wait_daemon
, &wait
);
2607 timeout
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) &&
2608 time_after_eq(jiffies
, sci
->sc_timer
.expires
));
2610 if (nilfs_sb_dirty(nilfs
) && nilfs_sb_need_update(nilfs
))
2611 set_nilfs_discontinued(nilfs
);
2616 spin_unlock(&sci
->sc_state_lock
);
2619 sci
->sc_task
= NULL
;
2620 wake_up(&sci
->sc_wait_task
); /* for nilfs_segctor_kill_thread() */
2624 static int nilfs_segctor_start_thread(struct nilfs_sc_info
*sci
)
2626 struct task_struct
*t
;
2628 t
= kthread_run(nilfs_segctor_thread
, sci
, "segctord");
2630 int err
= PTR_ERR(t
);
2632 nilfs_msg(sci
->sc_super
, KERN_ERR
,
2633 "error %d creating segctord thread", err
);
2636 wait_event(sci
->sc_wait_task
, sci
->sc_task
!= NULL
);
2640 static void nilfs_segctor_kill_thread(struct nilfs_sc_info
*sci
)
2641 __acquires(&sci
->sc_state_lock
)
2642 __releases(&sci
->sc_state_lock
)
2644 sci
->sc_state
|= NILFS_SEGCTOR_QUIT
;
2646 while (sci
->sc_task
) {
2647 wake_up(&sci
->sc_wait_daemon
);
2648 spin_unlock(&sci
->sc_state_lock
);
2649 wait_event(sci
->sc_wait_task
, sci
->sc_task
== NULL
);
2650 spin_lock(&sci
->sc_state_lock
);
2655 * Setup & clean-up functions
2657 static struct nilfs_sc_info
*nilfs_segctor_new(struct super_block
*sb
,
2658 struct nilfs_root
*root
)
2660 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2661 struct nilfs_sc_info
*sci
;
2663 sci
= kzalloc(sizeof(*sci
), GFP_KERNEL
);
2669 nilfs_get_root(root
);
2670 sci
->sc_root
= root
;
2672 init_waitqueue_head(&sci
->sc_wait_request
);
2673 init_waitqueue_head(&sci
->sc_wait_daemon
);
2674 init_waitqueue_head(&sci
->sc_wait_task
);
2675 spin_lock_init(&sci
->sc_state_lock
);
2676 INIT_LIST_HEAD(&sci
->sc_dirty_files
);
2677 INIT_LIST_HEAD(&sci
->sc_segbufs
);
2678 INIT_LIST_HEAD(&sci
->sc_write_logs
);
2679 INIT_LIST_HEAD(&sci
->sc_gc_inodes
);
2680 INIT_LIST_HEAD(&sci
->sc_iput_queue
);
2681 INIT_WORK(&sci
->sc_iput_work
, nilfs_iput_work_func
);
2682 init_timer(&sci
->sc_timer
);
2684 sci
->sc_interval
= HZ
* NILFS_SC_DEFAULT_TIMEOUT
;
2685 sci
->sc_mjcp_freq
= HZ
* NILFS_SC_DEFAULT_SR_FREQ
;
2686 sci
->sc_watermark
= NILFS_SC_DEFAULT_WATERMARK
;
2688 if (nilfs
->ns_interval
)
2689 sci
->sc_interval
= HZ
* nilfs
->ns_interval
;
2690 if (nilfs
->ns_watermark
)
2691 sci
->sc_watermark
= nilfs
->ns_watermark
;
2695 static void nilfs_segctor_write_out(struct nilfs_sc_info
*sci
)
2697 int ret
, retrycount
= NILFS_SC_CLEANUP_RETRY
;
2700 * The segctord thread was stopped and its timer was removed.
2701 * But some tasks remain.
2704 struct nilfs_transaction_info ti
;
2706 nilfs_transaction_lock(sci
->sc_super
, &ti
, 0);
2707 ret
= nilfs_segctor_construct(sci
, SC_LSEG_SR
);
2708 nilfs_transaction_unlock(sci
->sc_super
);
2710 flush_work(&sci
->sc_iput_work
);
2712 } while (ret
&& retrycount
-- > 0);
2716 * nilfs_segctor_destroy - destroy the segment constructor.
2717 * @sci: nilfs_sc_info
2719 * nilfs_segctor_destroy() kills the segctord thread and frees
2720 * the nilfs_sc_info struct.
2721 * Caller must hold the segment semaphore.
2723 static void nilfs_segctor_destroy(struct nilfs_sc_info
*sci
)
2725 struct the_nilfs
*nilfs
= sci
->sc_super
->s_fs_info
;
2728 up_write(&nilfs
->ns_segctor_sem
);
2730 spin_lock(&sci
->sc_state_lock
);
2731 nilfs_segctor_kill_thread(sci
);
2732 flag
= ((sci
->sc_state
& NILFS_SEGCTOR_COMMIT
) || sci
->sc_flush_request
2733 || sci
->sc_seq_request
!= sci
->sc_seq_done
);
2734 spin_unlock(&sci
->sc_state_lock
);
2736 if (flush_work(&sci
->sc_iput_work
))
2739 if (flag
|| !nilfs_segctor_confirm(sci
))
2740 nilfs_segctor_write_out(sci
);
2742 if (!list_empty(&sci
->sc_dirty_files
)) {
2743 nilfs_msg(sci
->sc_super
, KERN_WARNING
,
2744 "disposed unprocessed dirty file(s) when stopping log writer");
2745 nilfs_dispose_list(nilfs
, &sci
->sc_dirty_files
, 1);
2748 if (!list_empty(&sci
->sc_iput_queue
)) {
2749 nilfs_msg(sci
->sc_super
, KERN_WARNING
,
2750 "disposed unprocessed inode(s) in iput queue when stopping log writer");
2751 nilfs_dispose_list(nilfs
, &sci
->sc_iput_queue
, 1);
2754 WARN_ON(!list_empty(&sci
->sc_segbufs
));
2755 WARN_ON(!list_empty(&sci
->sc_write_logs
));
2757 nilfs_put_root(sci
->sc_root
);
2759 down_write(&nilfs
->ns_segctor_sem
);
2761 del_timer_sync(&sci
->sc_timer
);
2766 * nilfs_attach_log_writer - attach log writer
2767 * @sb: super block instance
2768 * @root: root object of the current filesystem tree
2770 * This allocates a log writer object, initializes it, and starts the
2773 * Return Value: On success, 0 is returned. On error, one of the following
2774 * negative error code is returned.
2776 * %-ENOMEM - Insufficient memory available.
2778 int nilfs_attach_log_writer(struct super_block
*sb
, struct nilfs_root
*root
)
2780 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2783 if (nilfs
->ns_writer
) {
2785 * This happens if the filesystem was remounted
2786 * read/write after nilfs_error degenerated it into a
2789 nilfs_detach_log_writer(sb
);
2792 nilfs
->ns_writer
= nilfs_segctor_new(sb
, root
);
2793 if (!nilfs
->ns_writer
)
2796 err
= nilfs_segctor_start_thread(nilfs
->ns_writer
);
2798 kfree(nilfs
->ns_writer
);
2799 nilfs
->ns_writer
= NULL
;
2805 * nilfs_detach_log_writer - destroy log writer
2806 * @sb: super block instance
2808 * This kills log writer daemon, frees the log writer object, and
2809 * destroys list of dirty files.
2811 void nilfs_detach_log_writer(struct super_block
*sb
)
2813 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
2814 LIST_HEAD(garbage_list
);
2816 down_write(&nilfs
->ns_segctor_sem
);
2817 if (nilfs
->ns_writer
) {
2818 nilfs_segctor_destroy(nilfs
->ns_writer
);
2819 nilfs
->ns_writer
= NULL
;
2822 /* Force to free the list of dirty files */
2823 spin_lock(&nilfs
->ns_inode_lock
);
2824 if (!list_empty(&nilfs
->ns_dirty_files
)) {
2825 list_splice_init(&nilfs
->ns_dirty_files
, &garbage_list
);
2826 nilfs_msg(sb
, KERN_WARNING
,
2827 "disposed unprocessed dirty file(s) when detaching log writer");
2829 spin_unlock(&nilfs
->ns_inode_lock
);
2830 up_write(&nilfs
->ns_segctor_sem
);
2832 nilfs_dispose_list(nilfs
, &garbage_list
, 1);