Linux 4.18.8
[linux/fpc-iii.git] / arch / powerpc / mm / hash_utils_64.c
blob8318716e5075a34b0250f38ced220edbe0609d52
1 /*
2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 * Module name: htab.c
12 * Description:
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
21 #undef DEBUG
22 #undef DEBUG_LOW
24 #define pr_fmt(fmt) "hash-mmu: " fmt
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/sched/mm.h>
28 #include <linux/proc_fs.h>
29 #include <linux/stat.h>
30 #include <linux/sysctl.h>
31 #include <linux/export.h>
32 #include <linux/ctype.h>
33 #include <linux/cache.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/memblock.h>
37 #include <linux/context_tracking.h>
38 #include <linux/libfdt.h>
39 #include <linux/pkeys.h>
41 #include <asm/debugfs.h>
42 #include <asm/processor.h>
43 #include <asm/pgtable.h>
44 #include <asm/mmu.h>
45 #include <asm/mmu_context.h>
46 #include <asm/page.h>
47 #include <asm/types.h>
48 #include <linux/uaccess.h>
49 #include <asm/machdep.h>
50 #include <asm/prom.h>
51 #include <asm/tlbflush.h>
52 #include <asm/io.h>
53 #include <asm/eeh.h>
54 #include <asm/tlb.h>
55 #include <asm/cacheflush.h>
56 #include <asm/cputable.h>
57 #include <asm/sections.h>
58 #include <asm/copro.h>
59 #include <asm/udbg.h>
60 #include <asm/code-patching.h>
61 #include <asm/fadump.h>
62 #include <asm/firmware.h>
63 #include <asm/tm.h>
64 #include <asm/trace.h>
65 #include <asm/ps3.h>
66 #include <asm/pte-walk.h>
67 #include <asm/asm-prototypes.h>
69 #ifdef DEBUG
70 #define DBG(fmt...) udbg_printf(fmt)
71 #else
72 #define DBG(fmt...)
73 #endif
75 #ifdef DEBUG_LOW
76 #define DBG_LOW(fmt...) udbg_printf(fmt)
77 #else
78 #define DBG_LOW(fmt...)
79 #endif
81 #define KB (1024)
82 #define MB (1024*KB)
83 #define GB (1024L*MB)
86 * Note: pte --> Linux PTE
87 * HPTE --> PowerPC Hashed Page Table Entry
89 * Execution context:
90 * htab_initialize is called with the MMU off (of course), but
91 * the kernel has been copied down to zero so it can directly
92 * reference global data. At this point it is very difficult
93 * to print debug info.
97 static unsigned long _SDR1;
98 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
99 EXPORT_SYMBOL_GPL(mmu_psize_defs);
101 u8 hpte_page_sizes[1 << LP_BITS];
102 EXPORT_SYMBOL_GPL(hpte_page_sizes);
104 struct hash_pte *htab_address;
105 unsigned long htab_size_bytes;
106 unsigned long htab_hash_mask;
107 EXPORT_SYMBOL_GPL(htab_hash_mask);
108 int mmu_linear_psize = MMU_PAGE_4K;
109 EXPORT_SYMBOL_GPL(mmu_linear_psize);
110 int mmu_virtual_psize = MMU_PAGE_4K;
111 int mmu_vmalloc_psize = MMU_PAGE_4K;
112 #ifdef CONFIG_SPARSEMEM_VMEMMAP
113 int mmu_vmemmap_psize = MMU_PAGE_4K;
114 #endif
115 int mmu_io_psize = MMU_PAGE_4K;
116 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
117 EXPORT_SYMBOL_GPL(mmu_kernel_ssize);
118 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
119 u16 mmu_slb_size = 64;
120 EXPORT_SYMBOL_GPL(mmu_slb_size);
121 #ifdef CONFIG_PPC_64K_PAGES
122 int mmu_ci_restrictions;
123 #endif
124 #ifdef CONFIG_DEBUG_PAGEALLOC
125 static u8 *linear_map_hash_slots;
126 static unsigned long linear_map_hash_count;
127 static DEFINE_SPINLOCK(linear_map_hash_lock);
128 #endif /* CONFIG_DEBUG_PAGEALLOC */
129 struct mmu_hash_ops mmu_hash_ops;
130 EXPORT_SYMBOL(mmu_hash_ops);
132 /* There are definitions of page sizes arrays to be used when none
133 * is provided by the firmware.
137 * Fallback (4k pages only)
139 static struct mmu_psize_def mmu_psize_defaults[] = {
140 [MMU_PAGE_4K] = {
141 .shift = 12,
142 .sllp = 0,
143 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
144 .avpnm = 0,
145 .tlbiel = 0,
149 /* POWER4, GPUL, POWER5
151 * Support for 16Mb large pages
153 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
154 [MMU_PAGE_4K] = {
155 .shift = 12,
156 .sllp = 0,
157 .penc = {[MMU_PAGE_4K] = 0, [1 ... MMU_PAGE_COUNT - 1] = -1},
158 .avpnm = 0,
159 .tlbiel = 1,
161 [MMU_PAGE_16M] = {
162 .shift = 24,
163 .sllp = SLB_VSID_L,
164 .penc = {[0 ... MMU_PAGE_16M - 1] = -1, [MMU_PAGE_16M] = 0,
165 [MMU_PAGE_16M + 1 ... MMU_PAGE_COUNT - 1] = -1 },
166 .avpnm = 0x1UL,
167 .tlbiel = 0,
172 * 'R' and 'C' update notes:
173 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
174 * create writeable HPTEs without C set, because the hcall H_PROTECT
175 * that we use in that case will not update C
176 * - The above is however not a problem, because we also don't do that
177 * fancy "no flush" variant of eviction and we use H_REMOVE which will
178 * do the right thing and thus we don't have the race I described earlier
180 * - Under bare metal, we do have the race, so we need R and C set
181 * - We make sure R is always set and never lost
182 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
184 unsigned long htab_convert_pte_flags(unsigned long pteflags)
186 unsigned long rflags = 0;
188 /* _PAGE_EXEC -> NOEXEC */
189 if ((pteflags & _PAGE_EXEC) == 0)
190 rflags |= HPTE_R_N;
192 * PPP bits:
193 * Linux uses slb key 0 for kernel and 1 for user.
194 * kernel RW areas are mapped with PPP=0b000
195 * User area is mapped with PPP=0b010 for read/write
196 * or PPP=0b011 for read-only (including writeable but clean pages).
198 if (pteflags & _PAGE_PRIVILEGED) {
200 * Kernel read only mapped with ppp bits 0b110
202 if (!(pteflags & _PAGE_WRITE)) {
203 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
204 rflags |= (HPTE_R_PP0 | 0x2);
205 else
206 rflags |= 0x3;
208 } else {
209 if (pteflags & _PAGE_RWX)
210 rflags |= 0x2;
211 if (!((pteflags & _PAGE_WRITE) && (pteflags & _PAGE_DIRTY)))
212 rflags |= 0x1;
215 * We can't allow hardware to update hpte bits. Hence always
216 * set 'R' bit and set 'C' if it is a write fault
218 rflags |= HPTE_R_R;
220 if (pteflags & _PAGE_DIRTY)
221 rflags |= HPTE_R_C;
223 * Add in WIG bits
226 if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_TOLERANT)
227 rflags |= HPTE_R_I;
228 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)
229 rflags |= (HPTE_R_I | HPTE_R_G);
230 else if ((pteflags & _PAGE_CACHE_CTL) == _PAGE_SAO)
231 rflags |= (HPTE_R_W | HPTE_R_I | HPTE_R_M);
232 else
234 * Add memory coherence if cache inhibited is not set
236 rflags |= HPTE_R_M;
238 rflags |= pte_to_hpte_pkey_bits(pteflags);
239 return rflags;
242 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
243 unsigned long pstart, unsigned long prot,
244 int psize, int ssize)
246 unsigned long vaddr, paddr;
247 unsigned int step, shift;
248 int ret = 0;
250 shift = mmu_psize_defs[psize].shift;
251 step = 1 << shift;
253 prot = htab_convert_pte_flags(prot);
255 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
256 vstart, vend, pstart, prot, psize, ssize);
258 for (vaddr = vstart, paddr = pstart; vaddr < vend;
259 vaddr += step, paddr += step) {
260 unsigned long hash, hpteg;
261 unsigned long vsid = get_kernel_vsid(vaddr, ssize);
262 unsigned long vpn = hpt_vpn(vaddr, vsid, ssize);
263 unsigned long tprot = prot;
266 * If we hit a bad address return error.
268 if (!vsid)
269 return -1;
270 /* Make kernel text executable */
271 if (overlaps_kernel_text(vaddr, vaddr + step))
272 tprot &= ~HPTE_R_N;
274 /* Make kvm guest trampolines executable */
275 if (overlaps_kvm_tmp(vaddr, vaddr + step))
276 tprot &= ~HPTE_R_N;
279 * If relocatable, check if it overlaps interrupt vectors that
280 * are copied down to real 0. For relocatable kernel
281 * (e.g. kdump case) we copy interrupt vectors down to real
282 * address 0. Mark that region as executable. This is
283 * because on p8 system with relocation on exception feature
284 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
285 * in order to execute the interrupt handlers in virtual
286 * mode the vector region need to be marked as executable.
288 if ((PHYSICAL_START > MEMORY_START) &&
289 overlaps_interrupt_vector_text(vaddr, vaddr + step))
290 tprot &= ~HPTE_R_N;
292 hash = hpt_hash(vpn, shift, ssize);
293 hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
295 BUG_ON(!mmu_hash_ops.hpte_insert);
296 ret = mmu_hash_ops.hpte_insert(hpteg, vpn, paddr, tprot,
297 HPTE_V_BOLTED, psize, psize,
298 ssize);
300 if (ret < 0)
301 break;
303 #ifdef CONFIG_DEBUG_PAGEALLOC
304 if (debug_pagealloc_enabled() &&
305 (paddr >> PAGE_SHIFT) < linear_map_hash_count)
306 linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
307 #endif /* CONFIG_DEBUG_PAGEALLOC */
309 return ret < 0 ? ret : 0;
312 int htab_remove_mapping(unsigned long vstart, unsigned long vend,
313 int psize, int ssize)
315 unsigned long vaddr;
316 unsigned int step, shift;
317 int rc;
318 int ret = 0;
320 shift = mmu_psize_defs[psize].shift;
321 step = 1 << shift;
323 if (!mmu_hash_ops.hpte_removebolted)
324 return -ENODEV;
326 for (vaddr = vstart; vaddr < vend; vaddr += step) {
327 rc = mmu_hash_ops.hpte_removebolted(vaddr, psize, ssize);
328 if (rc == -ENOENT) {
329 ret = -ENOENT;
330 continue;
332 if (rc < 0)
333 return rc;
336 return ret;
339 static bool disable_1tb_segments = false;
341 static int __init parse_disable_1tb_segments(char *p)
343 disable_1tb_segments = true;
344 return 0;
346 early_param("disable_1tb_segments", parse_disable_1tb_segments);
348 static int __init htab_dt_scan_seg_sizes(unsigned long node,
349 const char *uname, int depth,
350 void *data)
352 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
353 const __be32 *prop;
354 int size = 0;
356 /* We are scanning "cpu" nodes only */
357 if (type == NULL || strcmp(type, "cpu") != 0)
358 return 0;
360 prop = of_get_flat_dt_prop(node, "ibm,processor-segment-sizes", &size);
361 if (prop == NULL)
362 return 0;
363 for (; size >= 4; size -= 4, ++prop) {
364 if (be32_to_cpu(prop[0]) == 40) {
365 DBG("1T segment support detected\n");
367 if (disable_1tb_segments) {
368 DBG("1T segments disabled by command line\n");
369 break;
372 cur_cpu_spec->mmu_features |= MMU_FTR_1T_SEGMENT;
373 return 1;
376 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
377 return 0;
380 static int __init get_idx_from_shift(unsigned int shift)
382 int idx = -1;
384 switch (shift) {
385 case 0xc:
386 idx = MMU_PAGE_4K;
387 break;
388 case 0x10:
389 idx = MMU_PAGE_64K;
390 break;
391 case 0x14:
392 idx = MMU_PAGE_1M;
393 break;
394 case 0x18:
395 idx = MMU_PAGE_16M;
396 break;
397 case 0x22:
398 idx = MMU_PAGE_16G;
399 break;
401 return idx;
404 static int __init htab_dt_scan_page_sizes(unsigned long node,
405 const char *uname, int depth,
406 void *data)
408 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
409 const __be32 *prop;
410 int size = 0;
412 /* We are scanning "cpu" nodes only */
413 if (type == NULL || strcmp(type, "cpu") != 0)
414 return 0;
416 prop = of_get_flat_dt_prop(node, "ibm,segment-page-sizes", &size);
417 if (!prop)
418 return 0;
420 pr_info("Page sizes from device-tree:\n");
421 size /= 4;
422 cur_cpu_spec->mmu_features &= ~(MMU_FTR_16M_PAGE);
423 while(size > 0) {
424 unsigned int base_shift = be32_to_cpu(prop[0]);
425 unsigned int slbenc = be32_to_cpu(prop[1]);
426 unsigned int lpnum = be32_to_cpu(prop[2]);
427 struct mmu_psize_def *def;
428 int idx, base_idx;
430 size -= 3; prop += 3;
431 base_idx = get_idx_from_shift(base_shift);
432 if (base_idx < 0) {
433 /* skip the pte encoding also */
434 prop += lpnum * 2; size -= lpnum * 2;
435 continue;
437 def = &mmu_psize_defs[base_idx];
438 if (base_idx == MMU_PAGE_16M)
439 cur_cpu_spec->mmu_features |= MMU_FTR_16M_PAGE;
441 def->shift = base_shift;
442 if (base_shift <= 23)
443 def->avpnm = 0;
444 else
445 def->avpnm = (1 << (base_shift - 23)) - 1;
446 def->sllp = slbenc;
448 * We don't know for sure what's up with tlbiel, so
449 * for now we only set it for 4K and 64K pages
451 if (base_idx == MMU_PAGE_4K || base_idx == MMU_PAGE_64K)
452 def->tlbiel = 1;
453 else
454 def->tlbiel = 0;
456 while (size > 0 && lpnum) {
457 unsigned int shift = be32_to_cpu(prop[0]);
458 int penc = be32_to_cpu(prop[1]);
460 prop += 2; size -= 2;
461 lpnum--;
463 idx = get_idx_from_shift(shift);
464 if (idx < 0)
465 continue;
467 if (penc == -1)
468 pr_err("Invalid penc for base_shift=%d "
469 "shift=%d\n", base_shift, shift);
471 def->penc[idx] = penc;
472 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
473 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
474 base_shift, shift, def->sllp,
475 def->avpnm, def->tlbiel, def->penc[idx]);
479 return 1;
482 #ifdef CONFIG_HUGETLB_PAGE
483 /* Scan for 16G memory blocks that have been set aside for huge pages
484 * and reserve those blocks for 16G huge pages.
486 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
487 const char *uname, int depth,
488 void *data) {
489 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
490 const __be64 *addr_prop;
491 const __be32 *page_count_prop;
492 unsigned int expected_pages;
493 long unsigned int phys_addr;
494 long unsigned int block_size;
496 /* We are scanning "memory" nodes only */
497 if (type == NULL || strcmp(type, "memory") != 0)
498 return 0;
500 /* This property is the log base 2 of the number of virtual pages that
501 * will represent this memory block. */
502 page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
503 if (page_count_prop == NULL)
504 return 0;
505 expected_pages = (1 << be32_to_cpu(page_count_prop[0]));
506 addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
507 if (addr_prop == NULL)
508 return 0;
509 phys_addr = be64_to_cpu(addr_prop[0]);
510 block_size = be64_to_cpu(addr_prop[1]);
511 if (block_size != (16 * GB))
512 return 0;
513 printk(KERN_INFO "Huge page(16GB) memory: "
514 "addr = 0x%lX size = 0x%lX pages = %d\n",
515 phys_addr, block_size, expected_pages);
516 if (phys_addr + block_size * expected_pages <= memblock_end_of_DRAM()) {
517 memblock_reserve(phys_addr, block_size * expected_pages);
518 pseries_add_gpage(phys_addr, block_size, expected_pages);
520 return 0;
522 #endif /* CONFIG_HUGETLB_PAGE */
524 static void mmu_psize_set_default_penc(void)
526 int bpsize, apsize;
527 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
528 for (apsize = 0; apsize < MMU_PAGE_COUNT; apsize++)
529 mmu_psize_defs[bpsize].penc[apsize] = -1;
532 #ifdef CONFIG_PPC_64K_PAGES
534 static bool might_have_hea(void)
537 * The HEA ethernet adapter requires awareness of the
538 * GX bus. Without that awareness we can easily assume
539 * we will never see an HEA ethernet device.
541 #ifdef CONFIG_IBMEBUS
542 return !cpu_has_feature(CPU_FTR_ARCH_207S) &&
543 firmware_has_feature(FW_FEATURE_SPLPAR);
544 #else
545 return false;
546 #endif
549 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
551 static void __init htab_scan_page_sizes(void)
553 int rc;
555 /* se the invalid penc to -1 */
556 mmu_psize_set_default_penc();
558 /* Default to 4K pages only */
559 memcpy(mmu_psize_defs, mmu_psize_defaults,
560 sizeof(mmu_psize_defaults));
563 * Try to find the available page sizes in the device-tree
565 rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
566 if (rc == 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE)) {
568 * Nothing in the device-tree, but the CPU supports 16M pages,
569 * so let's fallback on a known size list for 16M capable CPUs.
571 memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
572 sizeof(mmu_psize_defaults_gp));
575 #ifdef CONFIG_HUGETLB_PAGE
576 if (!hugetlb_disabled) {
577 /* Reserve 16G huge page memory sections for huge pages */
578 of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
580 #endif /* CONFIG_HUGETLB_PAGE */
584 * Fill in the hpte_page_sizes[] array.
585 * We go through the mmu_psize_defs[] array looking for all the
586 * supported base/actual page size combinations. Each combination
587 * has a unique pagesize encoding (penc) value in the low bits of
588 * the LP field of the HPTE. For actual page sizes less than 1MB,
589 * some of the upper LP bits are used for RPN bits, meaning that
590 * we need to fill in several entries in hpte_page_sizes[].
592 * In diagrammatic form, with r = RPN bits and z = page size bits:
593 * PTE LP actual page size
594 * rrrr rrrz >=8KB
595 * rrrr rrzz >=16KB
596 * rrrr rzzz >=32KB
597 * rrrr zzzz >=64KB
598 * ...
600 * The zzzz bits are implementation-specific but are chosen so that
601 * no encoding for a larger page size uses the same value in its
602 * low-order N bits as the encoding for the 2^(12+N) byte page size
603 * (if it exists).
605 static void init_hpte_page_sizes(void)
607 long int ap, bp;
608 long int shift, penc;
610 for (bp = 0; bp < MMU_PAGE_COUNT; ++bp) {
611 if (!mmu_psize_defs[bp].shift)
612 continue; /* not a supported page size */
613 for (ap = bp; ap < MMU_PAGE_COUNT; ++ap) {
614 penc = mmu_psize_defs[bp].penc[ap];
615 if (penc == -1 || !mmu_psize_defs[ap].shift)
616 continue;
617 shift = mmu_psize_defs[ap].shift - LP_SHIFT;
618 if (shift <= 0)
619 continue; /* should never happen */
621 * For page sizes less than 1MB, this loop
622 * replicates the entry for all possible values
623 * of the rrrr bits.
625 while (penc < (1 << LP_BITS)) {
626 hpte_page_sizes[penc] = (ap << 4) | bp;
627 penc += 1 << shift;
633 static void __init htab_init_page_sizes(void)
635 init_hpte_page_sizes();
637 if (!debug_pagealloc_enabled()) {
639 * Pick a size for the linear mapping. Currently, we only
640 * support 16M, 1M and 4K which is the default
642 if (mmu_psize_defs[MMU_PAGE_16M].shift)
643 mmu_linear_psize = MMU_PAGE_16M;
644 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
645 mmu_linear_psize = MMU_PAGE_1M;
648 #ifdef CONFIG_PPC_64K_PAGES
650 * Pick a size for the ordinary pages. Default is 4K, we support
651 * 64K for user mappings and vmalloc if supported by the processor.
652 * We only use 64k for ioremap if the processor
653 * (and firmware) support cache-inhibited large pages.
654 * If not, we use 4k and set mmu_ci_restrictions so that
655 * hash_page knows to switch processes that use cache-inhibited
656 * mappings to 4k pages.
658 if (mmu_psize_defs[MMU_PAGE_64K].shift) {
659 mmu_virtual_psize = MMU_PAGE_64K;
660 mmu_vmalloc_psize = MMU_PAGE_64K;
661 if (mmu_linear_psize == MMU_PAGE_4K)
662 mmu_linear_psize = MMU_PAGE_64K;
663 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE)) {
665 * When running on pSeries using 64k pages for ioremap
666 * would stop us accessing the HEA ethernet. So if we
667 * have the chance of ever seeing one, stay at 4k.
669 if (!might_have_hea())
670 mmu_io_psize = MMU_PAGE_64K;
671 } else
672 mmu_ci_restrictions = 1;
674 #endif /* CONFIG_PPC_64K_PAGES */
676 #ifdef CONFIG_SPARSEMEM_VMEMMAP
677 /* We try to use 16M pages for vmemmap if that is supported
678 * and we have at least 1G of RAM at boot
680 if (mmu_psize_defs[MMU_PAGE_16M].shift &&
681 memblock_phys_mem_size() >= 0x40000000)
682 mmu_vmemmap_psize = MMU_PAGE_16M;
683 else if (mmu_psize_defs[MMU_PAGE_64K].shift)
684 mmu_vmemmap_psize = MMU_PAGE_64K;
685 else
686 mmu_vmemmap_psize = MMU_PAGE_4K;
687 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
689 printk(KERN_DEBUG "Page orders: linear mapping = %d, "
690 "virtual = %d, io = %d"
691 #ifdef CONFIG_SPARSEMEM_VMEMMAP
692 ", vmemmap = %d"
693 #endif
694 "\n",
695 mmu_psize_defs[mmu_linear_psize].shift,
696 mmu_psize_defs[mmu_virtual_psize].shift,
697 mmu_psize_defs[mmu_io_psize].shift
698 #ifdef CONFIG_SPARSEMEM_VMEMMAP
699 ,mmu_psize_defs[mmu_vmemmap_psize].shift
700 #endif
704 static int __init htab_dt_scan_pftsize(unsigned long node,
705 const char *uname, int depth,
706 void *data)
708 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
709 const __be32 *prop;
711 /* We are scanning "cpu" nodes only */
712 if (type == NULL || strcmp(type, "cpu") != 0)
713 return 0;
715 prop = of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
716 if (prop != NULL) {
717 /* pft_size[0] is the NUMA CEC cookie */
718 ppc64_pft_size = be32_to_cpu(prop[1]);
719 return 1;
721 return 0;
724 unsigned htab_shift_for_mem_size(unsigned long mem_size)
726 unsigned memshift = __ilog2(mem_size);
727 unsigned pshift = mmu_psize_defs[mmu_virtual_psize].shift;
728 unsigned pteg_shift;
730 /* round mem_size up to next power of 2 */
731 if ((1UL << memshift) < mem_size)
732 memshift += 1;
734 /* aim for 2 pages / pteg */
735 pteg_shift = memshift - (pshift + 1);
738 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
739 * size permitted by the architecture.
741 return max(pteg_shift + 7, 18U);
744 static unsigned long __init htab_get_table_size(void)
746 /* If hash size isn't already provided by the platform, we try to
747 * retrieve it from the device-tree. If it's not there neither, we
748 * calculate it now based on the total RAM size
750 if (ppc64_pft_size == 0)
751 of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
752 if (ppc64_pft_size)
753 return 1UL << ppc64_pft_size;
755 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
758 #ifdef CONFIG_MEMORY_HOTPLUG
759 void resize_hpt_for_hotplug(unsigned long new_mem_size)
761 unsigned target_hpt_shift;
763 if (!mmu_hash_ops.resize_hpt)
764 return;
766 target_hpt_shift = htab_shift_for_mem_size(new_mem_size);
769 * To avoid lots of HPT resizes if memory size is fluctuating
770 * across a boundary, we deliberately have some hysterisis
771 * here: we immediately increase the HPT size if the target
772 * shift exceeds the current shift, but we won't attempt to
773 * reduce unless the target shift is at least 2 below the
774 * current shift
776 if ((target_hpt_shift > ppc64_pft_size)
777 || (target_hpt_shift < (ppc64_pft_size - 1))) {
778 int rc;
780 rc = mmu_hash_ops.resize_hpt(target_hpt_shift);
781 if (rc && (rc != -ENODEV))
782 printk(KERN_WARNING
783 "Unable to resize hash page table to target order %d: %d\n",
784 target_hpt_shift, rc);
788 int hash__create_section_mapping(unsigned long start, unsigned long end, int nid)
790 int rc = htab_bolt_mapping(start, end, __pa(start),
791 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
792 mmu_kernel_ssize);
794 if (rc < 0) {
795 int rc2 = htab_remove_mapping(start, end, mmu_linear_psize,
796 mmu_kernel_ssize);
797 BUG_ON(rc2 && (rc2 != -ENOENT));
799 return rc;
802 int hash__remove_section_mapping(unsigned long start, unsigned long end)
804 int rc = htab_remove_mapping(start, end, mmu_linear_psize,
805 mmu_kernel_ssize);
806 WARN_ON(rc < 0);
807 return rc;
809 #endif /* CONFIG_MEMORY_HOTPLUG */
811 static void update_hid_for_hash(void)
813 unsigned long hid0;
814 unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
816 asm volatile("ptesync": : :"memory");
817 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
818 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
819 : : "r"(rb), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
820 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
821 trace_tlbie(0, 0, rb, 0, 2, 0, 0);
824 * now switch the HID
826 hid0 = mfspr(SPRN_HID0);
827 hid0 &= ~HID0_POWER9_RADIX;
828 mtspr(SPRN_HID0, hid0);
829 asm volatile("isync": : :"memory");
831 /* Wait for it to happen */
832 while ((mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
833 cpu_relax();
836 static void __init hash_init_partition_table(phys_addr_t hash_table,
837 unsigned long htab_size)
839 mmu_partition_table_init();
842 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
843 * For now, UPRT is 0 and we have no segment table.
845 htab_size = __ilog2(htab_size) - 18;
846 mmu_partition_table_set_entry(0, hash_table | htab_size, 0);
847 pr_info("Partition table %p\n", partition_tb);
848 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
849 update_hid_for_hash();
852 static void __init htab_initialize(void)
854 unsigned long table;
855 unsigned long pteg_count;
856 unsigned long prot;
857 unsigned long base = 0, size = 0;
858 struct memblock_region *reg;
860 DBG(" -> htab_initialize()\n");
862 if (mmu_has_feature(MMU_FTR_1T_SEGMENT)) {
863 mmu_kernel_ssize = MMU_SEGSIZE_1T;
864 mmu_highuser_ssize = MMU_SEGSIZE_1T;
865 printk(KERN_INFO "Using 1TB segments\n");
869 * Calculate the required size of the htab. We want the number of
870 * PTEGs to equal one half the number of real pages.
872 htab_size_bytes = htab_get_table_size();
873 pteg_count = htab_size_bytes >> 7;
875 htab_hash_mask = pteg_count - 1;
877 if (firmware_has_feature(FW_FEATURE_LPAR) ||
878 firmware_has_feature(FW_FEATURE_PS3_LV1)) {
879 /* Using a hypervisor which owns the htab */
880 htab_address = NULL;
881 _SDR1 = 0;
883 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
884 * to inform the hypervisor that we wish to use the HPT.
886 if (cpu_has_feature(CPU_FTR_ARCH_300))
887 register_process_table(0, 0, 0);
888 #ifdef CONFIG_FA_DUMP
890 * If firmware assisted dump is active firmware preserves
891 * the contents of htab along with entire partition memory.
892 * Clear the htab if firmware assisted dump is active so
893 * that we dont end up using old mappings.
895 if (is_fadump_active() && mmu_hash_ops.hpte_clear_all)
896 mmu_hash_ops.hpte_clear_all();
897 #endif
898 } else {
899 unsigned long limit = MEMBLOCK_ALLOC_ANYWHERE;
901 #ifdef CONFIG_PPC_CELL
903 * Cell may require the hash table down low when using the
904 * Axon IOMMU in order to fit the dynamic region over it, see
905 * comments in cell/iommu.c
907 if (fdt_subnode_offset(initial_boot_params, 0, "axon") > 0) {
908 limit = 0x80000000;
909 pr_info("Hash table forced below 2G for Axon IOMMU\n");
911 #endif /* CONFIG_PPC_CELL */
913 table = memblock_alloc_base(htab_size_bytes, htab_size_bytes,
914 limit);
916 DBG("Hash table allocated at %lx, size: %lx\n", table,
917 htab_size_bytes);
919 htab_address = __va(table);
921 /* htab absolute addr + encoded htabsize */
922 _SDR1 = table + __ilog2(htab_size_bytes) - 18;
924 /* Initialize the HPT with no entries */
925 memset((void *)table, 0, htab_size_bytes);
927 if (!cpu_has_feature(CPU_FTR_ARCH_300))
928 /* Set SDR1 */
929 mtspr(SPRN_SDR1, _SDR1);
930 else
931 hash_init_partition_table(table, htab_size_bytes);
934 prot = pgprot_val(PAGE_KERNEL);
936 #ifdef CONFIG_DEBUG_PAGEALLOC
937 if (debug_pagealloc_enabled()) {
938 linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
939 linear_map_hash_slots = __va(memblock_alloc_base(
940 linear_map_hash_count, 1, ppc64_rma_size));
941 memset(linear_map_hash_slots, 0, linear_map_hash_count);
943 #endif /* CONFIG_DEBUG_PAGEALLOC */
945 /* create bolted the linear mapping in the hash table */
946 for_each_memblock(memory, reg) {
947 base = (unsigned long)__va(reg->base);
948 size = reg->size;
950 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
951 base, size, prot);
953 BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
954 prot, mmu_linear_psize, mmu_kernel_ssize));
956 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
959 * If we have a memory_limit and we've allocated TCEs then we need to
960 * explicitly map the TCE area at the top of RAM. We also cope with the
961 * case that the TCEs start below memory_limit.
962 * tce_alloc_start/end are 16MB aligned so the mapping should work
963 * for either 4K or 16MB pages.
965 if (tce_alloc_start) {
966 tce_alloc_start = (unsigned long)__va(tce_alloc_start);
967 tce_alloc_end = (unsigned long)__va(tce_alloc_end);
969 if (base + size >= tce_alloc_start)
970 tce_alloc_start = base + size + 1;
972 BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
973 __pa(tce_alloc_start), prot,
974 mmu_linear_psize, mmu_kernel_ssize));
978 DBG(" <- htab_initialize()\n");
980 #undef KB
981 #undef MB
983 void __init hash__early_init_devtree(void)
985 /* Initialize segment sizes */
986 of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
988 /* Initialize page sizes */
989 htab_scan_page_sizes();
992 void __init hash__early_init_mmu(void)
994 #ifndef CONFIG_PPC_64K_PAGES
996 * We have code in __hash_page_4K() and elsewhere, which assumes it can
997 * do the following:
998 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1000 * Where the slot number is between 0-15, and values of 8-15 indicate
1001 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1002 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1003 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1004 * with a BUILD_BUG_ON().
1006 BUILD_BUG_ON(H_PAGE_F_SECOND != (1ul << (H_PAGE_F_GIX_SHIFT + 3)));
1007 #endif /* CONFIG_PPC_64K_PAGES */
1009 htab_init_page_sizes();
1012 * initialize page table size
1014 __pte_frag_nr = H_PTE_FRAG_NR;
1015 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
1016 __pmd_frag_nr = H_PMD_FRAG_NR;
1017 __pmd_frag_size_shift = H_PMD_FRAG_SIZE_SHIFT;
1019 __pte_index_size = H_PTE_INDEX_SIZE;
1020 __pmd_index_size = H_PMD_INDEX_SIZE;
1021 __pud_index_size = H_PUD_INDEX_SIZE;
1022 __pgd_index_size = H_PGD_INDEX_SIZE;
1023 __pud_cache_index = H_PUD_CACHE_INDEX;
1024 __pte_table_size = H_PTE_TABLE_SIZE;
1025 __pmd_table_size = H_PMD_TABLE_SIZE;
1026 __pud_table_size = H_PUD_TABLE_SIZE;
1027 __pgd_table_size = H_PGD_TABLE_SIZE;
1029 * 4k use hugepd format, so for hash set then to
1030 * zero
1032 __pmd_val_bits = 0;
1033 __pud_val_bits = 0;
1034 __pgd_val_bits = 0;
1036 __kernel_virt_start = H_KERN_VIRT_START;
1037 __kernel_virt_size = H_KERN_VIRT_SIZE;
1038 __vmalloc_start = H_VMALLOC_START;
1039 __vmalloc_end = H_VMALLOC_END;
1040 __kernel_io_start = H_KERN_IO_START;
1041 vmemmap = (struct page *)H_VMEMMAP_BASE;
1042 ioremap_bot = IOREMAP_BASE;
1044 #ifdef CONFIG_PCI
1045 pci_io_base = ISA_IO_BASE;
1046 #endif
1048 /* Select appropriate backend */
1049 if (firmware_has_feature(FW_FEATURE_PS3_LV1))
1050 ps3_early_mm_init();
1051 else if (firmware_has_feature(FW_FEATURE_LPAR))
1052 hpte_init_pseries();
1053 else if (IS_ENABLED(CONFIG_PPC_NATIVE))
1054 hpte_init_native();
1056 if (!mmu_hash_ops.hpte_insert)
1057 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1059 /* Initialize the MMU Hash table and create the linear mapping
1060 * of memory. Has to be done before SLB initialization as this is
1061 * currently where the page size encoding is obtained.
1063 htab_initialize();
1065 pr_info("Initializing hash mmu with SLB\n");
1066 /* Initialize SLB management */
1067 slb_initialize();
1069 if (cpu_has_feature(CPU_FTR_ARCH_206)
1070 && cpu_has_feature(CPU_FTR_HVMODE))
1071 tlbiel_all();
1074 #ifdef CONFIG_SMP
1075 void hash__early_init_mmu_secondary(void)
1077 /* Initialize hash table for that CPU */
1078 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1080 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
1081 update_hid_for_hash();
1083 if (!cpu_has_feature(CPU_FTR_ARCH_300))
1084 mtspr(SPRN_SDR1, _SDR1);
1085 else
1086 mtspr(SPRN_PTCR,
1087 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
1089 /* Initialize SLB */
1090 slb_initialize();
1092 if (cpu_has_feature(CPU_FTR_ARCH_206)
1093 && cpu_has_feature(CPU_FTR_HVMODE))
1094 tlbiel_all();
1096 #endif /* CONFIG_SMP */
1099 * Called by asm hashtable.S for doing lazy icache flush
1101 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
1103 struct page *page;
1105 if (!pfn_valid(pte_pfn(pte)))
1106 return pp;
1108 page = pte_page(pte);
1110 /* page is dirty */
1111 if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
1112 if (trap == 0x400) {
1113 flush_dcache_icache_page(page);
1114 set_bit(PG_arch_1, &page->flags);
1115 } else
1116 pp |= HPTE_R_N;
1118 return pp;
1121 #ifdef CONFIG_PPC_MM_SLICES
1122 static unsigned int get_paca_psize(unsigned long addr)
1124 unsigned char *psizes;
1125 unsigned long index, mask_index;
1127 if (addr < SLICE_LOW_TOP) {
1128 psizes = get_paca()->mm_ctx_low_slices_psize;
1129 index = GET_LOW_SLICE_INDEX(addr);
1130 } else {
1131 psizes = get_paca()->mm_ctx_high_slices_psize;
1132 index = GET_HIGH_SLICE_INDEX(addr);
1134 mask_index = index & 0x1;
1135 return (psizes[index >> 1] >> (mask_index * 4)) & 0xF;
1138 #else
1139 unsigned int get_paca_psize(unsigned long addr)
1141 return get_paca()->mm_ctx_user_psize;
1143 #endif
1146 * Demote a segment to using 4k pages.
1147 * For now this makes the whole process use 4k pages.
1149 #ifdef CONFIG_PPC_64K_PAGES
1150 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
1152 if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
1153 return;
1154 slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
1155 copro_flush_all_slbs(mm);
1156 if ((get_paca_psize(addr) != MMU_PAGE_4K) && (current->mm == mm)) {
1158 copy_mm_to_paca(mm);
1159 slb_flush_and_rebolt();
1162 #endif /* CONFIG_PPC_64K_PAGES */
1164 #ifdef CONFIG_PPC_SUBPAGE_PROT
1166 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1167 * Userspace sets the subpage permissions using the subpage_prot system call.
1169 * Result is 0: full permissions, _PAGE_RW: read-only,
1170 * _PAGE_RWX: no access.
1172 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
1174 struct subpage_prot_table *spt = &mm->context.spt;
1175 u32 spp = 0;
1176 u32 **sbpm, *sbpp;
1178 if (ea >= spt->maxaddr)
1179 return 0;
1180 if (ea < 0x100000000UL) {
1181 /* addresses below 4GB use spt->low_prot */
1182 sbpm = spt->low_prot;
1183 } else {
1184 sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
1185 if (!sbpm)
1186 return 0;
1188 sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
1189 if (!sbpp)
1190 return 0;
1191 spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
1193 /* extract 2-bit bitfield for this 4k subpage */
1194 spp >>= 30 - 2 * ((ea >> 12) & 0xf);
1197 * 0 -> full premission
1198 * 1 -> Read only
1199 * 2 -> no access.
1200 * We return the flag that need to be cleared.
1202 spp = ((spp & 2) ? _PAGE_RWX : 0) | ((spp & 1) ? _PAGE_WRITE : 0);
1203 return spp;
1206 #else /* CONFIG_PPC_SUBPAGE_PROT */
1207 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
1209 return 0;
1211 #endif
1213 void hash_failure_debug(unsigned long ea, unsigned long access,
1214 unsigned long vsid, unsigned long trap,
1215 int ssize, int psize, int lpsize, unsigned long pte)
1217 if (!printk_ratelimit())
1218 return;
1219 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1220 ea, access, current->comm);
1221 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1222 trap, vsid, ssize, psize, lpsize, pte);
1225 static void check_paca_psize(unsigned long ea, struct mm_struct *mm,
1226 int psize, bool user_region)
1228 if (user_region) {
1229 if (psize != get_paca_psize(ea)) {
1230 copy_mm_to_paca(mm);
1231 slb_flush_and_rebolt();
1233 } else if (get_paca()->vmalloc_sllp !=
1234 mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1235 get_paca()->vmalloc_sllp =
1236 mmu_psize_defs[mmu_vmalloc_psize].sllp;
1237 slb_vmalloc_update();
1241 /* Result code is:
1242 * 0 - handled
1243 * 1 - normal page fault
1244 * -1 - critical hash insertion error
1245 * -2 - access not permitted by subpage protection mechanism
1247 int hash_page_mm(struct mm_struct *mm, unsigned long ea,
1248 unsigned long access, unsigned long trap,
1249 unsigned long flags)
1251 bool is_thp;
1252 enum ctx_state prev_state = exception_enter();
1253 pgd_t *pgdir;
1254 unsigned long vsid;
1255 pte_t *ptep;
1256 unsigned hugeshift;
1257 int rc, user_region = 0;
1258 int psize, ssize;
1260 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1261 ea, access, trap);
1262 trace_hash_fault(ea, access, trap);
1264 /* Get region & vsid */
1265 switch (REGION_ID(ea)) {
1266 case USER_REGION_ID:
1267 user_region = 1;
1268 if (! mm) {
1269 DBG_LOW(" user region with no mm !\n");
1270 rc = 1;
1271 goto bail;
1273 psize = get_slice_psize(mm, ea);
1274 ssize = user_segment_size(ea);
1275 vsid = get_user_vsid(&mm->context, ea, ssize);
1276 break;
1277 case VMALLOC_REGION_ID:
1278 vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
1279 if (ea < VMALLOC_END)
1280 psize = mmu_vmalloc_psize;
1281 else
1282 psize = mmu_io_psize;
1283 ssize = mmu_kernel_ssize;
1284 break;
1285 default:
1286 /* Not a valid range
1287 * Send the problem up to do_page_fault
1289 rc = 1;
1290 goto bail;
1292 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
1294 /* Bad address. */
1295 if (!vsid) {
1296 DBG_LOW("Bad address!\n");
1297 rc = 1;
1298 goto bail;
1300 /* Get pgdir */
1301 pgdir = mm->pgd;
1302 if (pgdir == NULL) {
1303 rc = 1;
1304 goto bail;
1307 /* Check CPU locality */
1308 if (user_region && mm_is_thread_local(mm))
1309 flags |= HPTE_LOCAL_UPDATE;
1311 #ifndef CONFIG_PPC_64K_PAGES
1312 /* If we use 4K pages and our psize is not 4K, then we might
1313 * be hitting a special driver mapping, and need to align the
1314 * address before we fetch the PTE.
1316 * It could also be a hugepage mapping, in which case this is
1317 * not necessary, but it's not harmful, either.
1319 if (psize != MMU_PAGE_4K)
1320 ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
1321 #endif /* CONFIG_PPC_64K_PAGES */
1323 /* Get PTE and page size from page tables */
1324 ptep = find_linux_pte(pgdir, ea, &is_thp, &hugeshift);
1325 if (ptep == NULL || !pte_present(*ptep)) {
1326 DBG_LOW(" no PTE !\n");
1327 rc = 1;
1328 goto bail;
1331 /* Add _PAGE_PRESENT to the required access perm */
1332 access |= _PAGE_PRESENT;
1334 /* Pre-check access permissions (will be re-checked atomically
1335 * in __hash_page_XX but this pre-check is a fast path
1337 if (!check_pte_access(access, pte_val(*ptep))) {
1338 DBG_LOW(" no access !\n");
1339 rc = 1;
1340 goto bail;
1343 if (hugeshift) {
1344 if (is_thp)
1345 rc = __hash_page_thp(ea, access, vsid, (pmd_t *)ptep,
1346 trap, flags, ssize, psize);
1347 #ifdef CONFIG_HUGETLB_PAGE
1348 else
1349 rc = __hash_page_huge(ea, access, vsid, ptep, trap,
1350 flags, ssize, hugeshift, psize);
1351 #else
1352 else {
1354 * if we have hugeshift, and is not transhuge with
1355 * hugetlb disabled, something is really wrong.
1357 rc = 1;
1358 WARN_ON(1);
1360 #endif
1361 if (current->mm == mm)
1362 check_paca_psize(ea, mm, psize, user_region);
1364 goto bail;
1367 #ifndef CONFIG_PPC_64K_PAGES
1368 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
1369 #else
1370 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
1371 pte_val(*(ptep + PTRS_PER_PTE)));
1372 #endif
1373 /* Do actual hashing */
1374 #ifdef CONFIG_PPC_64K_PAGES
1375 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1376 if ((pte_val(*ptep) & H_PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
1377 demote_segment_4k(mm, ea);
1378 psize = MMU_PAGE_4K;
1381 /* If this PTE is non-cacheable and we have restrictions on
1382 * using non cacheable large pages, then we switch to 4k
1384 if (mmu_ci_restrictions && psize == MMU_PAGE_64K && pte_ci(*ptep)) {
1385 if (user_region) {
1386 demote_segment_4k(mm, ea);
1387 psize = MMU_PAGE_4K;
1388 } else if (ea < VMALLOC_END) {
1390 * some driver did a non-cacheable mapping
1391 * in vmalloc space, so switch vmalloc
1392 * to 4k pages
1394 printk(KERN_ALERT "Reducing vmalloc segment "
1395 "to 4kB pages because of "
1396 "non-cacheable mapping\n");
1397 psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1398 copro_flush_all_slbs(mm);
1402 #endif /* CONFIG_PPC_64K_PAGES */
1404 if (current->mm == mm)
1405 check_paca_psize(ea, mm, psize, user_region);
1407 #ifdef CONFIG_PPC_64K_PAGES
1408 if (psize == MMU_PAGE_64K)
1409 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1410 flags, ssize);
1411 else
1412 #endif /* CONFIG_PPC_64K_PAGES */
1414 int spp = subpage_protection(mm, ea);
1415 if (access & spp)
1416 rc = -2;
1417 else
1418 rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1419 flags, ssize, spp);
1422 /* Dump some info in case of hash insertion failure, they should
1423 * never happen so it is really useful to know if/when they do
1425 if (rc == -1)
1426 hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1427 psize, pte_val(*ptep));
1428 #ifndef CONFIG_PPC_64K_PAGES
1429 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1430 #else
1431 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1432 pte_val(*(ptep + PTRS_PER_PTE)));
1433 #endif
1434 DBG_LOW(" -> rc=%d\n", rc);
1436 bail:
1437 exception_exit(prev_state);
1438 return rc;
1440 EXPORT_SYMBOL_GPL(hash_page_mm);
1442 int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
1443 unsigned long dsisr)
1445 unsigned long flags = 0;
1446 struct mm_struct *mm = current->mm;
1448 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1449 mm = &init_mm;
1451 if (dsisr & DSISR_NOHPTE)
1452 flags |= HPTE_NOHPTE_UPDATE;
1454 return hash_page_mm(mm, ea, access, trap, flags);
1456 EXPORT_SYMBOL_GPL(hash_page);
1458 int __hash_page(unsigned long ea, unsigned long msr, unsigned long trap,
1459 unsigned long dsisr)
1461 unsigned long access = _PAGE_PRESENT | _PAGE_READ;
1462 unsigned long flags = 0;
1463 struct mm_struct *mm = current->mm;
1465 if (REGION_ID(ea) == VMALLOC_REGION_ID)
1466 mm = &init_mm;
1468 if (dsisr & DSISR_NOHPTE)
1469 flags |= HPTE_NOHPTE_UPDATE;
1471 if (dsisr & DSISR_ISSTORE)
1472 access |= _PAGE_WRITE;
1474 * We set _PAGE_PRIVILEGED only when
1475 * kernel mode access kernel space.
1477 * _PAGE_PRIVILEGED is NOT set
1478 * 1) when kernel mode access user space
1479 * 2) user space access kernel space.
1481 access |= _PAGE_PRIVILEGED;
1482 if ((msr & MSR_PR) || (REGION_ID(ea) == USER_REGION_ID))
1483 access &= ~_PAGE_PRIVILEGED;
1485 if (trap == 0x400)
1486 access |= _PAGE_EXEC;
1488 return hash_page_mm(mm, ea, access, trap, flags);
1491 #ifdef CONFIG_PPC_MM_SLICES
1492 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1494 int psize = get_slice_psize(mm, ea);
1496 /* We only prefault standard pages for now */
1497 if (unlikely(psize != mm->context.user_psize))
1498 return false;
1501 * Don't prefault if subpage protection is enabled for the EA.
1503 if (unlikely((psize == MMU_PAGE_4K) && subpage_protection(mm, ea)))
1504 return false;
1506 return true;
1508 #else
1509 static bool should_hash_preload(struct mm_struct *mm, unsigned long ea)
1511 return true;
1513 #endif
1515 void hash_preload(struct mm_struct *mm, unsigned long ea,
1516 unsigned long access, unsigned long trap)
1518 int hugepage_shift;
1519 unsigned long vsid;
1520 pgd_t *pgdir;
1521 pte_t *ptep;
1522 unsigned long flags;
1523 int rc, ssize, update_flags = 0;
1525 BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1527 if (!should_hash_preload(mm, ea))
1528 return;
1530 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1531 " trap=%lx\n", mm, mm->pgd, ea, access, trap);
1533 /* Get Linux PTE if available */
1534 pgdir = mm->pgd;
1535 if (pgdir == NULL)
1536 return;
1538 /* Get VSID */
1539 ssize = user_segment_size(ea);
1540 vsid = get_user_vsid(&mm->context, ea, ssize);
1541 if (!vsid)
1542 return;
1544 * Hash doesn't like irqs. Walking linux page table with irq disabled
1545 * saves us from holding multiple locks.
1547 local_irq_save(flags);
1550 * THP pages use update_mmu_cache_pmd. We don't do
1551 * hash preload there. Hence can ignore THP here
1553 ptep = find_current_mm_pte(pgdir, ea, NULL, &hugepage_shift);
1554 if (!ptep)
1555 goto out_exit;
1557 WARN_ON(hugepage_shift);
1558 #ifdef CONFIG_PPC_64K_PAGES
1559 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1560 * a 64K kernel), then we don't preload, hash_page() will take
1561 * care of it once we actually try to access the page.
1562 * That way we don't have to duplicate all of the logic for segment
1563 * page size demotion here
1565 if ((pte_val(*ptep) & H_PAGE_4K_PFN) || pte_ci(*ptep))
1566 goto out_exit;
1567 #endif /* CONFIG_PPC_64K_PAGES */
1569 /* Is that local to this CPU ? */
1570 if (mm_is_thread_local(mm))
1571 update_flags |= HPTE_LOCAL_UPDATE;
1573 /* Hash it in */
1574 #ifdef CONFIG_PPC_64K_PAGES
1575 if (mm->context.user_psize == MMU_PAGE_64K)
1576 rc = __hash_page_64K(ea, access, vsid, ptep, trap,
1577 update_flags, ssize);
1578 else
1579 #endif /* CONFIG_PPC_64K_PAGES */
1580 rc = __hash_page_4K(ea, access, vsid, ptep, trap, update_flags,
1581 ssize, subpage_protection(mm, ea));
1583 /* Dump some info in case of hash insertion failure, they should
1584 * never happen so it is really useful to know if/when they do
1586 if (rc == -1)
1587 hash_failure_debug(ea, access, vsid, trap, ssize,
1588 mm->context.user_psize,
1589 mm->context.user_psize,
1590 pte_val(*ptep));
1591 out_exit:
1592 local_irq_restore(flags);
1595 #ifdef CONFIG_PPC_MEM_KEYS
1597 * Return the protection key associated with the given address and the
1598 * mm_struct.
1600 u16 get_mm_addr_key(struct mm_struct *mm, unsigned long address)
1602 pte_t *ptep;
1603 u16 pkey = 0;
1604 unsigned long flags;
1606 if (!mm || !mm->pgd)
1607 return 0;
1609 local_irq_save(flags);
1610 ptep = find_linux_pte(mm->pgd, address, NULL, NULL);
1611 if (ptep)
1612 pkey = pte_to_pkey_bits(pte_val(READ_ONCE(*ptep)));
1613 local_irq_restore(flags);
1615 return pkey;
1617 #endif /* CONFIG_PPC_MEM_KEYS */
1619 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1620 static inline void tm_flush_hash_page(int local)
1623 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1624 * page back to a block device w/PIO could pick up transactional data
1625 * (bad!) so we force an abort here. Before the sync the page will be
1626 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1627 * kernel uses a page from userspace without unmapping it first, it may
1628 * see the speculated version.
1630 if (local && cpu_has_feature(CPU_FTR_TM) && current->thread.regs &&
1631 MSR_TM_ACTIVE(current->thread.regs->msr)) {
1632 tm_enable();
1633 tm_abort(TM_CAUSE_TLBI);
1636 #else
1637 static inline void tm_flush_hash_page(int local)
1640 #endif
1643 * Return the global hash slot, corresponding to the given PTE, which contains
1644 * the HPTE.
1646 unsigned long pte_get_hash_gslot(unsigned long vpn, unsigned long shift,
1647 int ssize, real_pte_t rpte, unsigned int subpg_index)
1649 unsigned long hash, gslot, hidx;
1651 hash = hpt_hash(vpn, shift, ssize);
1652 hidx = __rpte_to_hidx(rpte, subpg_index);
1653 if (hidx & _PTEIDX_SECONDARY)
1654 hash = ~hash;
1655 gslot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1656 gslot += hidx & _PTEIDX_GROUP_IX;
1657 return gslot;
1660 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1661 * do not forget to update the assembly call site !
1663 void flush_hash_page(unsigned long vpn, real_pte_t pte, int psize, int ssize,
1664 unsigned long flags)
1666 unsigned long index, shift, gslot;
1667 int local = flags & HPTE_LOCAL_UPDATE;
1669 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn);
1670 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1671 gslot = pte_get_hash_gslot(vpn, shift, ssize, pte, index);
1672 DBG_LOW(" sub %ld: gslot=%lx\n", index, gslot);
1674 * We use same base page size and actual psize, because we don't
1675 * use these functions for hugepage
1677 mmu_hash_ops.hpte_invalidate(gslot, vpn, psize, psize,
1678 ssize, local);
1679 } pte_iterate_hashed_end();
1681 tm_flush_hash_page(local);
1684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1685 void flush_hash_hugepage(unsigned long vsid, unsigned long addr,
1686 pmd_t *pmdp, unsigned int psize, int ssize,
1687 unsigned long flags)
1689 int i, max_hpte_count, valid;
1690 unsigned long s_addr;
1691 unsigned char *hpte_slot_array;
1692 unsigned long hidx, shift, vpn, hash, slot;
1693 int local = flags & HPTE_LOCAL_UPDATE;
1695 s_addr = addr & HPAGE_PMD_MASK;
1696 hpte_slot_array = get_hpte_slot_array(pmdp);
1698 * IF we try to do a HUGE PTE update after a withdraw is done.
1699 * we will find the below NULL. This happens when we do
1700 * split_huge_page_pmd
1702 if (!hpte_slot_array)
1703 return;
1705 if (mmu_hash_ops.hugepage_invalidate) {
1706 mmu_hash_ops.hugepage_invalidate(vsid, s_addr, hpte_slot_array,
1707 psize, ssize, local);
1708 goto tm_abort;
1711 * No bluk hpte removal support, invalidate each entry
1713 shift = mmu_psize_defs[psize].shift;
1714 max_hpte_count = HPAGE_PMD_SIZE >> shift;
1715 for (i = 0; i < max_hpte_count; i++) {
1717 * 8 bits per each hpte entries
1718 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1720 valid = hpte_valid(hpte_slot_array, i);
1721 if (!valid)
1722 continue;
1723 hidx = hpte_hash_index(hpte_slot_array, i);
1725 /* get the vpn */
1726 addr = s_addr + (i * (1ul << shift));
1727 vpn = hpt_vpn(addr, vsid, ssize);
1728 hash = hpt_hash(vpn, shift, ssize);
1729 if (hidx & _PTEIDX_SECONDARY)
1730 hash = ~hash;
1732 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1733 slot += hidx & _PTEIDX_GROUP_IX;
1734 mmu_hash_ops.hpte_invalidate(slot, vpn, psize,
1735 MMU_PAGE_16M, ssize, local);
1737 tm_abort:
1738 tm_flush_hash_page(local);
1740 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1742 void flush_hash_range(unsigned long number, int local)
1744 if (mmu_hash_ops.flush_hash_range)
1745 mmu_hash_ops.flush_hash_range(number, local);
1746 else {
1747 int i;
1748 struct ppc64_tlb_batch *batch =
1749 this_cpu_ptr(&ppc64_tlb_batch);
1751 for (i = 0; i < number; i++)
1752 flush_hash_page(batch->vpn[i], batch->pte[i],
1753 batch->psize, batch->ssize, local);
1758 * low_hash_fault is called when we the low level hash code failed
1759 * to instert a PTE due to an hypervisor error
1761 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1763 enum ctx_state prev_state = exception_enter();
1765 if (user_mode(regs)) {
1766 #ifdef CONFIG_PPC_SUBPAGE_PROT
1767 if (rc == -2)
1768 _exception(SIGSEGV, regs, SEGV_ACCERR, address);
1769 else
1770 #endif
1771 _exception(SIGBUS, regs, BUS_ADRERR, address);
1772 } else
1773 bad_page_fault(regs, address, SIGBUS);
1775 exception_exit(prev_state);
1778 long hpte_insert_repeating(unsigned long hash, unsigned long vpn,
1779 unsigned long pa, unsigned long rflags,
1780 unsigned long vflags, int psize, int ssize)
1782 unsigned long hpte_group;
1783 long slot;
1785 repeat:
1786 hpte_group = ((hash & htab_hash_mask) *
1787 HPTES_PER_GROUP) & ~0x7UL;
1789 /* Insert into the hash table, primary slot */
1790 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags, vflags,
1791 psize, psize, ssize);
1793 /* Primary is full, try the secondary */
1794 if (unlikely(slot == -1)) {
1795 hpte_group = ((~hash & htab_hash_mask) *
1796 HPTES_PER_GROUP) & ~0x7UL;
1797 slot = mmu_hash_ops.hpte_insert(hpte_group, vpn, pa, rflags,
1798 vflags | HPTE_V_SECONDARY,
1799 psize, psize, ssize);
1800 if (slot == -1) {
1801 if (mftb() & 0x1)
1802 hpte_group = ((hash & htab_hash_mask) *
1803 HPTES_PER_GROUP)&~0x7UL;
1805 mmu_hash_ops.hpte_remove(hpte_group);
1806 goto repeat;
1810 return slot;
1813 #ifdef CONFIG_DEBUG_PAGEALLOC
1814 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1816 unsigned long hash;
1817 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1818 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1819 unsigned long mode = htab_convert_pte_flags(pgprot_val(PAGE_KERNEL));
1820 long ret;
1822 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1824 /* Don't create HPTE entries for bad address */
1825 if (!vsid)
1826 return;
1828 ret = hpte_insert_repeating(hash, vpn, __pa(vaddr), mode,
1829 HPTE_V_BOLTED,
1830 mmu_linear_psize, mmu_kernel_ssize);
1832 BUG_ON (ret < 0);
1833 spin_lock(&linear_map_hash_lock);
1834 BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1835 linear_map_hash_slots[lmi] = ret | 0x80;
1836 spin_unlock(&linear_map_hash_lock);
1839 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1841 unsigned long hash, hidx, slot;
1842 unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1843 unsigned long vpn = hpt_vpn(vaddr, vsid, mmu_kernel_ssize);
1845 hash = hpt_hash(vpn, PAGE_SHIFT, mmu_kernel_ssize);
1846 spin_lock(&linear_map_hash_lock);
1847 BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1848 hidx = linear_map_hash_slots[lmi] & 0x7f;
1849 linear_map_hash_slots[lmi] = 0;
1850 spin_unlock(&linear_map_hash_lock);
1851 if (hidx & _PTEIDX_SECONDARY)
1852 hash = ~hash;
1853 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1854 slot += hidx & _PTEIDX_GROUP_IX;
1855 mmu_hash_ops.hpte_invalidate(slot, vpn, mmu_linear_psize,
1856 mmu_linear_psize,
1857 mmu_kernel_ssize, 0);
1860 void __kernel_map_pages(struct page *page, int numpages, int enable)
1862 unsigned long flags, vaddr, lmi;
1863 int i;
1865 local_irq_save(flags);
1866 for (i = 0; i < numpages; i++, page++) {
1867 vaddr = (unsigned long)page_address(page);
1868 lmi = __pa(vaddr) >> PAGE_SHIFT;
1869 if (lmi >= linear_map_hash_count)
1870 continue;
1871 if (enable)
1872 kernel_map_linear_page(vaddr, lmi);
1873 else
1874 kernel_unmap_linear_page(vaddr, lmi);
1876 local_irq_restore(flags);
1878 #endif /* CONFIG_DEBUG_PAGEALLOC */
1880 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base,
1881 phys_addr_t first_memblock_size)
1883 /* We don't currently support the first MEMBLOCK not mapping 0
1884 * physical on those processors
1886 BUG_ON(first_memblock_base != 0);
1889 * On virtualized systems the first entry is our RMA region aka VRMA,
1890 * non-virtualized 64-bit hash MMU systems don't have a limitation
1891 * on real mode access.
1893 * For guests on platforms before POWER9, we clamp the it limit to 1G
1894 * to avoid some funky things such as RTAS bugs etc...
1896 if (!early_cpu_has_feature(CPU_FTR_HVMODE)) {
1897 ppc64_rma_size = first_memblock_size;
1898 if (!early_cpu_has_feature(CPU_FTR_ARCH_300))
1899 ppc64_rma_size = min_t(u64, ppc64_rma_size, 0x40000000);
1901 /* Finally limit subsequent allocations */
1902 memblock_set_current_limit(ppc64_rma_size);
1903 } else {
1904 ppc64_rma_size = ULONG_MAX;
1908 #ifdef CONFIG_DEBUG_FS
1910 static int hpt_order_get(void *data, u64 *val)
1912 *val = ppc64_pft_size;
1913 return 0;
1916 static int hpt_order_set(void *data, u64 val)
1918 if (!mmu_hash_ops.resize_hpt)
1919 return -ENODEV;
1921 return mmu_hash_ops.resize_hpt(val);
1924 DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order, hpt_order_get, hpt_order_set, "%llu\n");
1926 static int __init hash64_debugfs(void)
1928 if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root,
1929 NULL, &fops_hpt_order)) {
1930 pr_err("lpar: unable to create hpt_order debugsfs file\n");
1933 return 0;
1935 machine_device_initcall(pseries, hash64_debugfs);
1936 #endif /* CONFIG_DEBUG_FS */