2 * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3 * {mikejc|engebret}@us.ibm.com
5 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
7 * SMP scalability work:
8 * Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
13 * PowerPC Hashed Page Table functions
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
24 #define pr_fmt(fmt) "hash-mmu: " fmt
25 #include <linux/spinlock.h>
26 #include <linux/errno.h>
27 #include <linux/sched/mm.h>
28 #include <linux/proc_fs.h>
29 #include <linux/stat.h>
30 #include <linux/sysctl.h>
31 #include <linux/export.h>
32 #include <linux/ctype.h>
33 #include <linux/cache.h>
34 #include <linux/init.h>
35 #include <linux/signal.h>
36 #include <linux/memblock.h>
37 #include <linux/context_tracking.h>
38 #include <linux/libfdt.h>
39 #include <linux/pkeys.h>
41 #include <asm/debugfs.h>
42 #include <asm/processor.h>
43 #include <asm/pgtable.h>
45 #include <asm/mmu_context.h>
47 #include <asm/types.h>
48 #include <linux/uaccess.h>
49 #include <asm/machdep.h>
51 #include <asm/tlbflush.h>
55 #include <asm/cacheflush.h>
56 #include <asm/cputable.h>
57 #include <asm/sections.h>
58 #include <asm/copro.h>
60 #include <asm/code-patching.h>
61 #include <asm/fadump.h>
62 #include <asm/firmware.h>
64 #include <asm/trace.h>
66 #include <asm/pte-walk.h>
67 #include <asm/asm-prototypes.h>
70 #define DBG(fmt...) udbg_printf(fmt)
76 #define DBG_LOW(fmt...) udbg_printf(fmt)
78 #define DBG_LOW(fmt...)
86 * Note: pte --> Linux PTE
87 * HPTE --> PowerPC Hashed Page Table Entry
90 * htab_initialize is called with the MMU off (of course), but
91 * the kernel has been copied down to zero so it can directly
92 * reference global data. At this point it is very difficult
93 * to print debug info.
97 static unsigned long _SDR1
;
98 struct mmu_psize_def mmu_psize_defs
[MMU_PAGE_COUNT
];
99 EXPORT_SYMBOL_GPL(mmu_psize_defs
);
101 u8 hpte_page_sizes
[1 << LP_BITS
];
102 EXPORT_SYMBOL_GPL(hpte_page_sizes
);
104 struct hash_pte
*htab_address
;
105 unsigned long htab_size_bytes
;
106 unsigned long htab_hash_mask
;
107 EXPORT_SYMBOL_GPL(htab_hash_mask
);
108 int mmu_linear_psize
= MMU_PAGE_4K
;
109 EXPORT_SYMBOL_GPL(mmu_linear_psize
);
110 int mmu_virtual_psize
= MMU_PAGE_4K
;
111 int mmu_vmalloc_psize
= MMU_PAGE_4K
;
112 #ifdef CONFIG_SPARSEMEM_VMEMMAP
113 int mmu_vmemmap_psize
= MMU_PAGE_4K
;
115 int mmu_io_psize
= MMU_PAGE_4K
;
116 int mmu_kernel_ssize
= MMU_SEGSIZE_256M
;
117 EXPORT_SYMBOL_GPL(mmu_kernel_ssize
);
118 int mmu_highuser_ssize
= MMU_SEGSIZE_256M
;
119 u16 mmu_slb_size
= 64;
120 EXPORT_SYMBOL_GPL(mmu_slb_size
);
121 #ifdef CONFIG_PPC_64K_PAGES
122 int mmu_ci_restrictions
;
124 #ifdef CONFIG_DEBUG_PAGEALLOC
125 static u8
*linear_map_hash_slots
;
126 static unsigned long linear_map_hash_count
;
127 static DEFINE_SPINLOCK(linear_map_hash_lock
);
128 #endif /* CONFIG_DEBUG_PAGEALLOC */
129 struct mmu_hash_ops mmu_hash_ops
;
130 EXPORT_SYMBOL(mmu_hash_ops
);
132 /* There are definitions of page sizes arrays to be used when none
133 * is provided by the firmware.
137 * Fallback (4k pages only)
139 static struct mmu_psize_def mmu_psize_defaults
[] = {
143 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
149 /* POWER4, GPUL, POWER5
151 * Support for 16Mb large pages
153 static struct mmu_psize_def mmu_psize_defaults_gp
[] = {
157 .penc
= {[MMU_PAGE_4K
] = 0, [1 ... MMU_PAGE_COUNT
- 1] = -1},
164 .penc
= {[0 ... MMU_PAGE_16M
- 1] = -1, [MMU_PAGE_16M
] = 0,
165 [MMU_PAGE_16M
+ 1 ... MMU_PAGE_COUNT
- 1] = -1 },
172 * 'R' and 'C' update notes:
173 * - Under pHyp or KVM, the updatepp path will not set C, thus it *will*
174 * create writeable HPTEs without C set, because the hcall H_PROTECT
175 * that we use in that case will not update C
176 * - The above is however not a problem, because we also don't do that
177 * fancy "no flush" variant of eviction and we use H_REMOVE which will
178 * do the right thing and thus we don't have the race I described earlier
180 * - Under bare metal, we do have the race, so we need R and C set
181 * - We make sure R is always set and never lost
182 * - C is _PAGE_DIRTY, and *should* always be set for a writeable mapping
184 unsigned long htab_convert_pte_flags(unsigned long pteflags
)
186 unsigned long rflags
= 0;
188 /* _PAGE_EXEC -> NOEXEC */
189 if ((pteflags
& _PAGE_EXEC
) == 0)
193 * Linux uses slb key 0 for kernel and 1 for user.
194 * kernel RW areas are mapped with PPP=0b000
195 * User area is mapped with PPP=0b010 for read/write
196 * or PPP=0b011 for read-only (including writeable but clean pages).
198 if (pteflags
& _PAGE_PRIVILEGED
) {
200 * Kernel read only mapped with ppp bits 0b110
202 if (!(pteflags
& _PAGE_WRITE
)) {
203 if (mmu_has_feature(MMU_FTR_KERNEL_RO
))
204 rflags
|= (HPTE_R_PP0
| 0x2);
209 if (pteflags
& _PAGE_RWX
)
211 if (!((pteflags
& _PAGE_WRITE
) && (pteflags
& _PAGE_DIRTY
)))
215 * We can't allow hardware to update hpte bits. Hence always
216 * set 'R' bit and set 'C' if it is a write fault
220 if (pteflags
& _PAGE_DIRTY
)
226 if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_TOLERANT
)
228 else if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_NON_IDEMPOTENT
)
229 rflags
|= (HPTE_R_I
| HPTE_R_G
);
230 else if ((pteflags
& _PAGE_CACHE_CTL
) == _PAGE_SAO
)
231 rflags
|= (HPTE_R_W
| HPTE_R_I
| HPTE_R_M
);
234 * Add memory coherence if cache inhibited is not set
238 rflags
|= pte_to_hpte_pkey_bits(pteflags
);
242 int htab_bolt_mapping(unsigned long vstart
, unsigned long vend
,
243 unsigned long pstart
, unsigned long prot
,
244 int psize
, int ssize
)
246 unsigned long vaddr
, paddr
;
247 unsigned int step
, shift
;
250 shift
= mmu_psize_defs
[psize
].shift
;
253 prot
= htab_convert_pte_flags(prot
);
255 DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
256 vstart
, vend
, pstart
, prot
, psize
, ssize
);
258 for (vaddr
= vstart
, paddr
= pstart
; vaddr
< vend
;
259 vaddr
+= step
, paddr
+= step
) {
260 unsigned long hash
, hpteg
;
261 unsigned long vsid
= get_kernel_vsid(vaddr
, ssize
);
262 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, ssize
);
263 unsigned long tprot
= prot
;
266 * If we hit a bad address return error.
270 /* Make kernel text executable */
271 if (overlaps_kernel_text(vaddr
, vaddr
+ step
))
274 /* Make kvm guest trampolines executable */
275 if (overlaps_kvm_tmp(vaddr
, vaddr
+ step
))
279 * If relocatable, check if it overlaps interrupt vectors that
280 * are copied down to real 0. For relocatable kernel
281 * (e.g. kdump case) we copy interrupt vectors down to real
282 * address 0. Mark that region as executable. This is
283 * because on p8 system with relocation on exception feature
284 * enabled, exceptions are raised with MMU (IR=DR=1) ON. Hence
285 * in order to execute the interrupt handlers in virtual
286 * mode the vector region need to be marked as executable.
288 if ((PHYSICAL_START
> MEMORY_START
) &&
289 overlaps_interrupt_vector_text(vaddr
, vaddr
+ step
))
292 hash
= hpt_hash(vpn
, shift
, ssize
);
293 hpteg
= ((hash
& htab_hash_mask
) * HPTES_PER_GROUP
);
295 BUG_ON(!mmu_hash_ops
.hpte_insert
);
296 ret
= mmu_hash_ops
.hpte_insert(hpteg
, vpn
, paddr
, tprot
,
297 HPTE_V_BOLTED
, psize
, psize
,
303 #ifdef CONFIG_DEBUG_PAGEALLOC
304 if (debug_pagealloc_enabled() &&
305 (paddr
>> PAGE_SHIFT
) < linear_map_hash_count
)
306 linear_map_hash_slots
[paddr
>> PAGE_SHIFT
] = ret
| 0x80;
307 #endif /* CONFIG_DEBUG_PAGEALLOC */
309 return ret
< 0 ? ret
: 0;
312 int htab_remove_mapping(unsigned long vstart
, unsigned long vend
,
313 int psize
, int ssize
)
316 unsigned int step
, shift
;
320 shift
= mmu_psize_defs
[psize
].shift
;
323 if (!mmu_hash_ops
.hpte_removebolted
)
326 for (vaddr
= vstart
; vaddr
< vend
; vaddr
+= step
) {
327 rc
= mmu_hash_ops
.hpte_removebolted(vaddr
, psize
, ssize
);
339 static bool disable_1tb_segments
= false;
341 static int __init
parse_disable_1tb_segments(char *p
)
343 disable_1tb_segments
= true;
346 early_param("disable_1tb_segments", parse_disable_1tb_segments
);
348 static int __init
htab_dt_scan_seg_sizes(unsigned long node
,
349 const char *uname
, int depth
,
352 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
356 /* We are scanning "cpu" nodes only */
357 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
360 prop
= of_get_flat_dt_prop(node
, "ibm,processor-segment-sizes", &size
);
363 for (; size
>= 4; size
-= 4, ++prop
) {
364 if (be32_to_cpu(prop
[0]) == 40) {
365 DBG("1T segment support detected\n");
367 if (disable_1tb_segments
) {
368 DBG("1T segments disabled by command line\n");
372 cur_cpu_spec
->mmu_features
|= MMU_FTR_1T_SEGMENT
;
376 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
380 static int __init
get_idx_from_shift(unsigned int shift
)
404 static int __init
htab_dt_scan_page_sizes(unsigned long node
,
405 const char *uname
, int depth
,
408 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
412 /* We are scanning "cpu" nodes only */
413 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
416 prop
= of_get_flat_dt_prop(node
, "ibm,segment-page-sizes", &size
);
420 pr_info("Page sizes from device-tree:\n");
422 cur_cpu_spec
->mmu_features
&= ~(MMU_FTR_16M_PAGE
);
424 unsigned int base_shift
= be32_to_cpu(prop
[0]);
425 unsigned int slbenc
= be32_to_cpu(prop
[1]);
426 unsigned int lpnum
= be32_to_cpu(prop
[2]);
427 struct mmu_psize_def
*def
;
430 size
-= 3; prop
+= 3;
431 base_idx
= get_idx_from_shift(base_shift
);
433 /* skip the pte encoding also */
434 prop
+= lpnum
* 2; size
-= lpnum
* 2;
437 def
= &mmu_psize_defs
[base_idx
];
438 if (base_idx
== MMU_PAGE_16M
)
439 cur_cpu_spec
->mmu_features
|= MMU_FTR_16M_PAGE
;
441 def
->shift
= base_shift
;
442 if (base_shift
<= 23)
445 def
->avpnm
= (1 << (base_shift
- 23)) - 1;
448 * We don't know for sure what's up with tlbiel, so
449 * for now we only set it for 4K and 64K pages
451 if (base_idx
== MMU_PAGE_4K
|| base_idx
== MMU_PAGE_64K
)
456 while (size
> 0 && lpnum
) {
457 unsigned int shift
= be32_to_cpu(prop
[0]);
458 int penc
= be32_to_cpu(prop
[1]);
460 prop
+= 2; size
-= 2;
463 idx
= get_idx_from_shift(shift
);
468 pr_err("Invalid penc for base_shift=%d "
469 "shift=%d\n", base_shift
, shift
);
471 def
->penc
[idx
] = penc
;
472 pr_info("base_shift=%d: shift=%d, sllp=0x%04lx,"
473 " avpnm=0x%08lx, tlbiel=%d, penc=%d\n",
474 base_shift
, shift
, def
->sllp
,
475 def
->avpnm
, def
->tlbiel
, def
->penc
[idx
]);
482 #ifdef CONFIG_HUGETLB_PAGE
483 /* Scan for 16G memory blocks that have been set aside for huge pages
484 * and reserve those blocks for 16G huge pages.
486 static int __init
htab_dt_scan_hugepage_blocks(unsigned long node
,
487 const char *uname
, int depth
,
489 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
490 const __be64
*addr_prop
;
491 const __be32
*page_count_prop
;
492 unsigned int expected_pages
;
493 long unsigned int phys_addr
;
494 long unsigned int block_size
;
496 /* We are scanning "memory" nodes only */
497 if (type
== NULL
|| strcmp(type
, "memory") != 0)
500 /* This property is the log base 2 of the number of virtual pages that
501 * will represent this memory block. */
502 page_count_prop
= of_get_flat_dt_prop(node
, "ibm,expected#pages", NULL
);
503 if (page_count_prop
== NULL
)
505 expected_pages
= (1 << be32_to_cpu(page_count_prop
[0]));
506 addr_prop
= of_get_flat_dt_prop(node
, "reg", NULL
);
507 if (addr_prop
== NULL
)
509 phys_addr
= be64_to_cpu(addr_prop
[0]);
510 block_size
= be64_to_cpu(addr_prop
[1]);
511 if (block_size
!= (16 * GB
))
513 printk(KERN_INFO
"Huge page(16GB) memory: "
514 "addr = 0x%lX size = 0x%lX pages = %d\n",
515 phys_addr
, block_size
, expected_pages
);
516 if (phys_addr
+ block_size
* expected_pages
<= memblock_end_of_DRAM()) {
517 memblock_reserve(phys_addr
, block_size
* expected_pages
);
518 pseries_add_gpage(phys_addr
, block_size
, expected_pages
);
522 #endif /* CONFIG_HUGETLB_PAGE */
524 static void mmu_psize_set_default_penc(void)
527 for (bpsize
= 0; bpsize
< MMU_PAGE_COUNT
; bpsize
++)
528 for (apsize
= 0; apsize
< MMU_PAGE_COUNT
; apsize
++)
529 mmu_psize_defs
[bpsize
].penc
[apsize
] = -1;
532 #ifdef CONFIG_PPC_64K_PAGES
534 static bool might_have_hea(void)
537 * The HEA ethernet adapter requires awareness of the
538 * GX bus. Without that awareness we can easily assume
539 * we will never see an HEA ethernet device.
541 #ifdef CONFIG_IBMEBUS
542 return !cpu_has_feature(CPU_FTR_ARCH_207S
) &&
543 firmware_has_feature(FW_FEATURE_SPLPAR
);
549 #endif /* #ifdef CONFIG_PPC_64K_PAGES */
551 static void __init
htab_scan_page_sizes(void)
555 /* se the invalid penc to -1 */
556 mmu_psize_set_default_penc();
558 /* Default to 4K pages only */
559 memcpy(mmu_psize_defs
, mmu_psize_defaults
,
560 sizeof(mmu_psize_defaults
));
563 * Try to find the available page sizes in the device-tree
565 rc
= of_scan_flat_dt(htab_dt_scan_page_sizes
, NULL
);
566 if (rc
== 0 && early_mmu_has_feature(MMU_FTR_16M_PAGE
)) {
568 * Nothing in the device-tree, but the CPU supports 16M pages,
569 * so let's fallback on a known size list for 16M capable CPUs.
571 memcpy(mmu_psize_defs
, mmu_psize_defaults_gp
,
572 sizeof(mmu_psize_defaults_gp
));
575 #ifdef CONFIG_HUGETLB_PAGE
576 if (!hugetlb_disabled
) {
577 /* Reserve 16G huge page memory sections for huge pages */
578 of_scan_flat_dt(htab_dt_scan_hugepage_blocks
, NULL
);
580 #endif /* CONFIG_HUGETLB_PAGE */
584 * Fill in the hpte_page_sizes[] array.
585 * We go through the mmu_psize_defs[] array looking for all the
586 * supported base/actual page size combinations. Each combination
587 * has a unique pagesize encoding (penc) value in the low bits of
588 * the LP field of the HPTE. For actual page sizes less than 1MB,
589 * some of the upper LP bits are used for RPN bits, meaning that
590 * we need to fill in several entries in hpte_page_sizes[].
592 * In diagrammatic form, with r = RPN bits and z = page size bits:
593 * PTE LP actual page size
600 * The zzzz bits are implementation-specific but are chosen so that
601 * no encoding for a larger page size uses the same value in its
602 * low-order N bits as the encoding for the 2^(12+N) byte page size
605 static void init_hpte_page_sizes(void)
608 long int shift
, penc
;
610 for (bp
= 0; bp
< MMU_PAGE_COUNT
; ++bp
) {
611 if (!mmu_psize_defs
[bp
].shift
)
612 continue; /* not a supported page size */
613 for (ap
= bp
; ap
< MMU_PAGE_COUNT
; ++ap
) {
614 penc
= mmu_psize_defs
[bp
].penc
[ap
];
615 if (penc
== -1 || !mmu_psize_defs
[ap
].shift
)
617 shift
= mmu_psize_defs
[ap
].shift
- LP_SHIFT
;
619 continue; /* should never happen */
621 * For page sizes less than 1MB, this loop
622 * replicates the entry for all possible values
625 while (penc
< (1 << LP_BITS
)) {
626 hpte_page_sizes
[penc
] = (ap
<< 4) | bp
;
633 static void __init
htab_init_page_sizes(void)
635 init_hpte_page_sizes();
637 if (!debug_pagealloc_enabled()) {
639 * Pick a size for the linear mapping. Currently, we only
640 * support 16M, 1M and 4K which is the default
642 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
)
643 mmu_linear_psize
= MMU_PAGE_16M
;
644 else if (mmu_psize_defs
[MMU_PAGE_1M
].shift
)
645 mmu_linear_psize
= MMU_PAGE_1M
;
648 #ifdef CONFIG_PPC_64K_PAGES
650 * Pick a size for the ordinary pages. Default is 4K, we support
651 * 64K for user mappings and vmalloc if supported by the processor.
652 * We only use 64k for ioremap if the processor
653 * (and firmware) support cache-inhibited large pages.
654 * If not, we use 4k and set mmu_ci_restrictions so that
655 * hash_page knows to switch processes that use cache-inhibited
656 * mappings to 4k pages.
658 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
) {
659 mmu_virtual_psize
= MMU_PAGE_64K
;
660 mmu_vmalloc_psize
= MMU_PAGE_64K
;
661 if (mmu_linear_psize
== MMU_PAGE_4K
)
662 mmu_linear_psize
= MMU_PAGE_64K
;
663 if (mmu_has_feature(MMU_FTR_CI_LARGE_PAGE
)) {
665 * When running on pSeries using 64k pages for ioremap
666 * would stop us accessing the HEA ethernet. So if we
667 * have the chance of ever seeing one, stay at 4k.
669 if (!might_have_hea())
670 mmu_io_psize
= MMU_PAGE_64K
;
672 mmu_ci_restrictions
= 1;
674 #endif /* CONFIG_PPC_64K_PAGES */
676 #ifdef CONFIG_SPARSEMEM_VMEMMAP
677 /* We try to use 16M pages for vmemmap if that is supported
678 * and we have at least 1G of RAM at boot
680 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
&&
681 memblock_phys_mem_size() >= 0x40000000)
682 mmu_vmemmap_psize
= MMU_PAGE_16M
;
683 else if (mmu_psize_defs
[MMU_PAGE_64K
].shift
)
684 mmu_vmemmap_psize
= MMU_PAGE_64K
;
686 mmu_vmemmap_psize
= MMU_PAGE_4K
;
687 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
689 printk(KERN_DEBUG
"Page orders: linear mapping = %d, "
690 "virtual = %d, io = %d"
691 #ifdef CONFIG_SPARSEMEM_VMEMMAP
695 mmu_psize_defs
[mmu_linear_psize
].shift
,
696 mmu_psize_defs
[mmu_virtual_psize
].shift
,
697 mmu_psize_defs
[mmu_io_psize
].shift
698 #ifdef CONFIG_SPARSEMEM_VMEMMAP
699 ,mmu_psize_defs
[mmu_vmemmap_psize
].shift
704 static int __init
htab_dt_scan_pftsize(unsigned long node
,
705 const char *uname
, int depth
,
708 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
711 /* We are scanning "cpu" nodes only */
712 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
715 prop
= of_get_flat_dt_prop(node
, "ibm,pft-size", NULL
);
717 /* pft_size[0] is the NUMA CEC cookie */
718 ppc64_pft_size
= be32_to_cpu(prop
[1]);
724 unsigned htab_shift_for_mem_size(unsigned long mem_size
)
726 unsigned memshift
= __ilog2(mem_size
);
727 unsigned pshift
= mmu_psize_defs
[mmu_virtual_psize
].shift
;
730 /* round mem_size up to next power of 2 */
731 if ((1UL << memshift
) < mem_size
)
734 /* aim for 2 pages / pteg */
735 pteg_shift
= memshift
- (pshift
+ 1);
738 * 2^11 PTEGS of 128 bytes each, ie. 2^18 bytes is the minimum htab
739 * size permitted by the architecture.
741 return max(pteg_shift
+ 7, 18U);
744 static unsigned long __init
htab_get_table_size(void)
746 /* If hash size isn't already provided by the platform, we try to
747 * retrieve it from the device-tree. If it's not there neither, we
748 * calculate it now based on the total RAM size
750 if (ppc64_pft_size
== 0)
751 of_scan_flat_dt(htab_dt_scan_pftsize
, NULL
);
753 return 1UL << ppc64_pft_size
;
755 return 1UL << htab_shift_for_mem_size(memblock_phys_mem_size());
758 #ifdef CONFIG_MEMORY_HOTPLUG
759 void resize_hpt_for_hotplug(unsigned long new_mem_size
)
761 unsigned target_hpt_shift
;
763 if (!mmu_hash_ops
.resize_hpt
)
766 target_hpt_shift
= htab_shift_for_mem_size(new_mem_size
);
769 * To avoid lots of HPT resizes if memory size is fluctuating
770 * across a boundary, we deliberately have some hysterisis
771 * here: we immediately increase the HPT size if the target
772 * shift exceeds the current shift, but we won't attempt to
773 * reduce unless the target shift is at least 2 below the
776 if ((target_hpt_shift
> ppc64_pft_size
)
777 || (target_hpt_shift
< (ppc64_pft_size
- 1))) {
780 rc
= mmu_hash_ops
.resize_hpt(target_hpt_shift
);
781 if (rc
&& (rc
!= -ENODEV
))
783 "Unable to resize hash page table to target order %d: %d\n",
784 target_hpt_shift
, rc
);
788 int hash__create_section_mapping(unsigned long start
, unsigned long end
, int nid
)
790 int rc
= htab_bolt_mapping(start
, end
, __pa(start
),
791 pgprot_val(PAGE_KERNEL
), mmu_linear_psize
,
795 int rc2
= htab_remove_mapping(start
, end
, mmu_linear_psize
,
797 BUG_ON(rc2
&& (rc2
!= -ENOENT
));
802 int hash__remove_section_mapping(unsigned long start
, unsigned long end
)
804 int rc
= htab_remove_mapping(start
, end
, mmu_linear_psize
,
809 #endif /* CONFIG_MEMORY_HOTPLUG */
811 static void update_hid_for_hash(void)
814 unsigned long rb
= 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
816 asm volatile("ptesync": : :"memory");
817 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
818 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
819 : : "r"(rb
), "i"(0), "i"(0), "i"(2), "r"(0) : "memory");
820 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
821 trace_tlbie(0, 0, rb
, 0, 2, 0, 0);
826 hid0
= mfspr(SPRN_HID0
);
827 hid0
&= ~HID0_POWER9_RADIX
;
828 mtspr(SPRN_HID0
, hid0
);
829 asm volatile("isync": : :"memory");
831 /* Wait for it to happen */
832 while ((mfspr(SPRN_HID0
) & HID0_POWER9_RADIX
))
836 static void __init
hash_init_partition_table(phys_addr_t hash_table
,
837 unsigned long htab_size
)
839 mmu_partition_table_init();
842 * PS field (VRMA page size) is not used for LPID 0, hence set to 0.
843 * For now, UPRT is 0 and we have no segment table.
845 htab_size
= __ilog2(htab_size
) - 18;
846 mmu_partition_table_set_entry(0, hash_table
| htab_size
, 0);
847 pr_info("Partition table %p\n", partition_tb
);
848 if (cpu_has_feature(CPU_FTR_POWER9_DD1
))
849 update_hid_for_hash();
852 static void __init
htab_initialize(void)
855 unsigned long pteg_count
;
857 unsigned long base
= 0, size
= 0;
858 struct memblock_region
*reg
;
860 DBG(" -> htab_initialize()\n");
862 if (mmu_has_feature(MMU_FTR_1T_SEGMENT
)) {
863 mmu_kernel_ssize
= MMU_SEGSIZE_1T
;
864 mmu_highuser_ssize
= MMU_SEGSIZE_1T
;
865 printk(KERN_INFO
"Using 1TB segments\n");
869 * Calculate the required size of the htab. We want the number of
870 * PTEGs to equal one half the number of real pages.
872 htab_size_bytes
= htab_get_table_size();
873 pteg_count
= htab_size_bytes
>> 7;
875 htab_hash_mask
= pteg_count
- 1;
877 if (firmware_has_feature(FW_FEATURE_LPAR
) ||
878 firmware_has_feature(FW_FEATURE_PS3_LV1
)) {
879 /* Using a hypervisor which owns the htab */
883 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
884 * to inform the hypervisor that we wish to use the HPT.
886 if (cpu_has_feature(CPU_FTR_ARCH_300
))
887 register_process_table(0, 0, 0);
888 #ifdef CONFIG_FA_DUMP
890 * If firmware assisted dump is active firmware preserves
891 * the contents of htab along with entire partition memory.
892 * Clear the htab if firmware assisted dump is active so
893 * that we dont end up using old mappings.
895 if (is_fadump_active() && mmu_hash_ops
.hpte_clear_all
)
896 mmu_hash_ops
.hpte_clear_all();
899 unsigned long limit
= MEMBLOCK_ALLOC_ANYWHERE
;
901 #ifdef CONFIG_PPC_CELL
903 * Cell may require the hash table down low when using the
904 * Axon IOMMU in order to fit the dynamic region over it, see
905 * comments in cell/iommu.c
907 if (fdt_subnode_offset(initial_boot_params
, 0, "axon") > 0) {
909 pr_info("Hash table forced below 2G for Axon IOMMU\n");
911 #endif /* CONFIG_PPC_CELL */
913 table
= memblock_alloc_base(htab_size_bytes
, htab_size_bytes
,
916 DBG("Hash table allocated at %lx, size: %lx\n", table
,
919 htab_address
= __va(table
);
921 /* htab absolute addr + encoded htabsize */
922 _SDR1
= table
+ __ilog2(htab_size_bytes
) - 18;
924 /* Initialize the HPT with no entries */
925 memset((void *)table
, 0, htab_size_bytes
);
927 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
929 mtspr(SPRN_SDR1
, _SDR1
);
931 hash_init_partition_table(table
, htab_size_bytes
);
934 prot
= pgprot_val(PAGE_KERNEL
);
936 #ifdef CONFIG_DEBUG_PAGEALLOC
937 if (debug_pagealloc_enabled()) {
938 linear_map_hash_count
= memblock_end_of_DRAM() >> PAGE_SHIFT
;
939 linear_map_hash_slots
= __va(memblock_alloc_base(
940 linear_map_hash_count
, 1, ppc64_rma_size
));
941 memset(linear_map_hash_slots
, 0, linear_map_hash_count
);
943 #endif /* CONFIG_DEBUG_PAGEALLOC */
945 /* create bolted the linear mapping in the hash table */
946 for_each_memblock(memory
, reg
) {
947 base
= (unsigned long)__va(reg
->base
);
950 DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
953 BUG_ON(htab_bolt_mapping(base
, base
+ size
, __pa(base
),
954 prot
, mmu_linear_psize
, mmu_kernel_ssize
));
956 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
959 * If we have a memory_limit and we've allocated TCEs then we need to
960 * explicitly map the TCE area at the top of RAM. We also cope with the
961 * case that the TCEs start below memory_limit.
962 * tce_alloc_start/end are 16MB aligned so the mapping should work
963 * for either 4K or 16MB pages.
965 if (tce_alloc_start
) {
966 tce_alloc_start
= (unsigned long)__va(tce_alloc_start
);
967 tce_alloc_end
= (unsigned long)__va(tce_alloc_end
);
969 if (base
+ size
>= tce_alloc_start
)
970 tce_alloc_start
= base
+ size
+ 1;
972 BUG_ON(htab_bolt_mapping(tce_alloc_start
, tce_alloc_end
,
973 __pa(tce_alloc_start
), prot
,
974 mmu_linear_psize
, mmu_kernel_ssize
));
978 DBG(" <- htab_initialize()\n");
983 void __init
hash__early_init_devtree(void)
985 /* Initialize segment sizes */
986 of_scan_flat_dt(htab_dt_scan_seg_sizes
, NULL
);
988 /* Initialize page sizes */
989 htab_scan_page_sizes();
992 void __init
hash__early_init_mmu(void)
994 #ifndef CONFIG_PPC_64K_PAGES
996 * We have code in __hash_page_4K() and elsewhere, which assumes it can
998 * new_pte |= (slot << H_PAGE_F_GIX_SHIFT) & (H_PAGE_F_SECOND | H_PAGE_F_GIX);
1000 * Where the slot number is between 0-15, and values of 8-15 indicate
1001 * the secondary bucket. For that code to work H_PAGE_F_SECOND and
1002 * H_PAGE_F_GIX must occupy four contiguous bits in the PTE, and
1003 * H_PAGE_F_SECOND must be placed above H_PAGE_F_GIX. Assert that here
1004 * with a BUILD_BUG_ON().
1006 BUILD_BUG_ON(H_PAGE_F_SECOND
!= (1ul << (H_PAGE_F_GIX_SHIFT
+ 3)));
1007 #endif /* CONFIG_PPC_64K_PAGES */
1009 htab_init_page_sizes();
1012 * initialize page table size
1014 __pte_frag_nr
= H_PTE_FRAG_NR
;
1015 __pte_frag_size_shift
= H_PTE_FRAG_SIZE_SHIFT
;
1016 __pmd_frag_nr
= H_PMD_FRAG_NR
;
1017 __pmd_frag_size_shift
= H_PMD_FRAG_SIZE_SHIFT
;
1019 __pte_index_size
= H_PTE_INDEX_SIZE
;
1020 __pmd_index_size
= H_PMD_INDEX_SIZE
;
1021 __pud_index_size
= H_PUD_INDEX_SIZE
;
1022 __pgd_index_size
= H_PGD_INDEX_SIZE
;
1023 __pud_cache_index
= H_PUD_CACHE_INDEX
;
1024 __pte_table_size
= H_PTE_TABLE_SIZE
;
1025 __pmd_table_size
= H_PMD_TABLE_SIZE
;
1026 __pud_table_size
= H_PUD_TABLE_SIZE
;
1027 __pgd_table_size
= H_PGD_TABLE_SIZE
;
1029 * 4k use hugepd format, so for hash set then to
1036 __kernel_virt_start
= H_KERN_VIRT_START
;
1037 __kernel_virt_size
= H_KERN_VIRT_SIZE
;
1038 __vmalloc_start
= H_VMALLOC_START
;
1039 __vmalloc_end
= H_VMALLOC_END
;
1040 __kernel_io_start
= H_KERN_IO_START
;
1041 vmemmap
= (struct page
*)H_VMEMMAP_BASE
;
1042 ioremap_bot
= IOREMAP_BASE
;
1045 pci_io_base
= ISA_IO_BASE
;
1048 /* Select appropriate backend */
1049 if (firmware_has_feature(FW_FEATURE_PS3_LV1
))
1050 ps3_early_mm_init();
1051 else if (firmware_has_feature(FW_FEATURE_LPAR
))
1052 hpte_init_pseries();
1053 else if (IS_ENABLED(CONFIG_PPC_NATIVE
))
1056 if (!mmu_hash_ops
.hpte_insert
)
1057 panic("hash__early_init_mmu: No MMU hash ops defined!\n");
1059 /* Initialize the MMU Hash table and create the linear mapping
1060 * of memory. Has to be done before SLB initialization as this is
1061 * currently where the page size encoding is obtained.
1065 pr_info("Initializing hash mmu with SLB\n");
1066 /* Initialize SLB management */
1069 if (cpu_has_feature(CPU_FTR_ARCH_206
)
1070 && cpu_has_feature(CPU_FTR_HVMODE
))
1075 void hash__early_init_mmu_secondary(void)
1077 /* Initialize hash table for that CPU */
1078 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
1080 if (cpu_has_feature(CPU_FTR_POWER9_DD1
))
1081 update_hid_for_hash();
1083 if (!cpu_has_feature(CPU_FTR_ARCH_300
))
1084 mtspr(SPRN_SDR1
, _SDR1
);
1087 __pa(partition_tb
) | (PATB_SIZE_SHIFT
- 12));
1089 /* Initialize SLB */
1092 if (cpu_has_feature(CPU_FTR_ARCH_206
)
1093 && cpu_has_feature(CPU_FTR_HVMODE
))
1096 #endif /* CONFIG_SMP */
1099 * Called by asm hashtable.S for doing lazy icache flush
1101 unsigned int hash_page_do_lazy_icache(unsigned int pp
, pte_t pte
, int trap
)
1105 if (!pfn_valid(pte_pfn(pte
)))
1108 page
= pte_page(pte
);
1111 if (!test_bit(PG_arch_1
, &page
->flags
) && !PageReserved(page
)) {
1112 if (trap
== 0x400) {
1113 flush_dcache_icache_page(page
);
1114 set_bit(PG_arch_1
, &page
->flags
);
1121 #ifdef CONFIG_PPC_MM_SLICES
1122 static unsigned int get_paca_psize(unsigned long addr
)
1124 unsigned char *psizes
;
1125 unsigned long index
, mask_index
;
1127 if (addr
< SLICE_LOW_TOP
) {
1128 psizes
= get_paca()->mm_ctx_low_slices_psize
;
1129 index
= GET_LOW_SLICE_INDEX(addr
);
1131 psizes
= get_paca()->mm_ctx_high_slices_psize
;
1132 index
= GET_HIGH_SLICE_INDEX(addr
);
1134 mask_index
= index
& 0x1;
1135 return (psizes
[index
>> 1] >> (mask_index
* 4)) & 0xF;
1139 unsigned int get_paca_psize(unsigned long addr
)
1141 return get_paca()->mm_ctx_user_psize
;
1146 * Demote a segment to using 4k pages.
1147 * For now this makes the whole process use 4k pages.
1149 #ifdef CONFIG_PPC_64K_PAGES
1150 void demote_segment_4k(struct mm_struct
*mm
, unsigned long addr
)
1152 if (get_slice_psize(mm
, addr
) == MMU_PAGE_4K
)
1154 slice_set_range_psize(mm
, addr
, 1, MMU_PAGE_4K
);
1155 copro_flush_all_slbs(mm
);
1156 if ((get_paca_psize(addr
) != MMU_PAGE_4K
) && (current
->mm
== mm
)) {
1158 copy_mm_to_paca(mm
);
1159 slb_flush_and_rebolt();
1162 #endif /* CONFIG_PPC_64K_PAGES */
1164 #ifdef CONFIG_PPC_SUBPAGE_PROT
1166 * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
1167 * Userspace sets the subpage permissions using the subpage_prot system call.
1169 * Result is 0: full permissions, _PAGE_RW: read-only,
1170 * _PAGE_RWX: no access.
1172 static int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
1174 struct subpage_prot_table
*spt
= &mm
->context
.spt
;
1178 if (ea
>= spt
->maxaddr
)
1180 if (ea
< 0x100000000UL
) {
1181 /* addresses below 4GB use spt->low_prot */
1182 sbpm
= spt
->low_prot
;
1184 sbpm
= spt
->protptrs
[ea
>> SBP_L3_SHIFT
];
1188 sbpp
= sbpm
[(ea
>> SBP_L2_SHIFT
) & (SBP_L2_COUNT
- 1)];
1191 spp
= sbpp
[(ea
>> PAGE_SHIFT
) & (SBP_L1_COUNT
- 1)];
1193 /* extract 2-bit bitfield for this 4k subpage */
1194 spp
>>= 30 - 2 * ((ea
>> 12) & 0xf);
1197 * 0 -> full premission
1200 * We return the flag that need to be cleared.
1202 spp
= ((spp
& 2) ? _PAGE_RWX
: 0) | ((spp
& 1) ? _PAGE_WRITE
: 0);
1206 #else /* CONFIG_PPC_SUBPAGE_PROT */
1207 static inline int subpage_protection(struct mm_struct
*mm
, unsigned long ea
)
1213 void hash_failure_debug(unsigned long ea
, unsigned long access
,
1214 unsigned long vsid
, unsigned long trap
,
1215 int ssize
, int psize
, int lpsize
, unsigned long pte
)
1217 if (!printk_ratelimit())
1219 pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
1220 ea
, access
, current
->comm
);
1221 pr_info(" trap=0x%lx vsid=0x%lx ssize=%d base psize=%d psize %d pte=0x%lx\n",
1222 trap
, vsid
, ssize
, psize
, lpsize
, pte
);
1225 static void check_paca_psize(unsigned long ea
, struct mm_struct
*mm
,
1226 int psize
, bool user_region
)
1229 if (psize
!= get_paca_psize(ea
)) {
1230 copy_mm_to_paca(mm
);
1231 slb_flush_and_rebolt();
1233 } else if (get_paca()->vmalloc_sllp
!=
1234 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
) {
1235 get_paca()->vmalloc_sllp
=
1236 mmu_psize_defs
[mmu_vmalloc_psize
].sllp
;
1237 slb_vmalloc_update();
1243 * 1 - normal page fault
1244 * -1 - critical hash insertion error
1245 * -2 - access not permitted by subpage protection mechanism
1247 int hash_page_mm(struct mm_struct
*mm
, unsigned long ea
,
1248 unsigned long access
, unsigned long trap
,
1249 unsigned long flags
)
1252 enum ctx_state prev_state
= exception_enter();
1257 int rc
, user_region
= 0;
1260 DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
1262 trace_hash_fault(ea
, access
, trap
);
1264 /* Get region & vsid */
1265 switch (REGION_ID(ea
)) {
1266 case USER_REGION_ID
:
1269 DBG_LOW(" user region with no mm !\n");
1273 psize
= get_slice_psize(mm
, ea
);
1274 ssize
= user_segment_size(ea
);
1275 vsid
= get_user_vsid(&mm
->context
, ea
, ssize
);
1277 case VMALLOC_REGION_ID
:
1278 vsid
= get_kernel_vsid(ea
, mmu_kernel_ssize
);
1279 if (ea
< VMALLOC_END
)
1280 psize
= mmu_vmalloc_psize
;
1282 psize
= mmu_io_psize
;
1283 ssize
= mmu_kernel_ssize
;
1286 /* Not a valid range
1287 * Send the problem up to do_page_fault
1292 DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm
, mm
->pgd
, vsid
);
1296 DBG_LOW("Bad address!\n");
1302 if (pgdir
== NULL
) {
1307 /* Check CPU locality */
1308 if (user_region
&& mm_is_thread_local(mm
))
1309 flags
|= HPTE_LOCAL_UPDATE
;
1311 #ifndef CONFIG_PPC_64K_PAGES
1312 /* If we use 4K pages and our psize is not 4K, then we might
1313 * be hitting a special driver mapping, and need to align the
1314 * address before we fetch the PTE.
1316 * It could also be a hugepage mapping, in which case this is
1317 * not necessary, but it's not harmful, either.
1319 if (psize
!= MMU_PAGE_4K
)
1320 ea
&= ~((1ul << mmu_psize_defs
[psize
].shift
) - 1);
1321 #endif /* CONFIG_PPC_64K_PAGES */
1323 /* Get PTE and page size from page tables */
1324 ptep
= find_linux_pte(pgdir
, ea
, &is_thp
, &hugeshift
);
1325 if (ptep
== NULL
|| !pte_present(*ptep
)) {
1326 DBG_LOW(" no PTE !\n");
1331 /* Add _PAGE_PRESENT to the required access perm */
1332 access
|= _PAGE_PRESENT
;
1334 /* Pre-check access permissions (will be re-checked atomically
1335 * in __hash_page_XX but this pre-check is a fast path
1337 if (!check_pte_access(access
, pte_val(*ptep
))) {
1338 DBG_LOW(" no access !\n");
1345 rc
= __hash_page_thp(ea
, access
, vsid
, (pmd_t
*)ptep
,
1346 trap
, flags
, ssize
, psize
);
1347 #ifdef CONFIG_HUGETLB_PAGE
1349 rc
= __hash_page_huge(ea
, access
, vsid
, ptep
, trap
,
1350 flags
, ssize
, hugeshift
, psize
);
1354 * if we have hugeshift, and is not transhuge with
1355 * hugetlb disabled, something is really wrong.
1361 if (current
->mm
== mm
)
1362 check_paca_psize(ea
, mm
, psize
, user_region
);
1367 #ifndef CONFIG_PPC_64K_PAGES
1368 DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep
));
1370 DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep
),
1371 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1373 /* Do actual hashing */
1374 #ifdef CONFIG_PPC_64K_PAGES
1375 /* If H_PAGE_4K_PFN is set, make sure this is a 4k segment */
1376 if ((pte_val(*ptep
) & H_PAGE_4K_PFN
) && psize
== MMU_PAGE_64K
) {
1377 demote_segment_4k(mm
, ea
);
1378 psize
= MMU_PAGE_4K
;
1381 /* If this PTE is non-cacheable and we have restrictions on
1382 * using non cacheable large pages, then we switch to 4k
1384 if (mmu_ci_restrictions
&& psize
== MMU_PAGE_64K
&& pte_ci(*ptep
)) {
1386 demote_segment_4k(mm
, ea
);
1387 psize
= MMU_PAGE_4K
;
1388 } else if (ea
< VMALLOC_END
) {
1390 * some driver did a non-cacheable mapping
1391 * in vmalloc space, so switch vmalloc
1394 printk(KERN_ALERT
"Reducing vmalloc segment "
1395 "to 4kB pages because of "
1396 "non-cacheable mapping\n");
1397 psize
= mmu_vmalloc_psize
= MMU_PAGE_4K
;
1398 copro_flush_all_slbs(mm
);
1402 #endif /* CONFIG_PPC_64K_PAGES */
1404 if (current
->mm
== mm
)
1405 check_paca_psize(ea
, mm
, psize
, user_region
);
1407 #ifdef CONFIG_PPC_64K_PAGES
1408 if (psize
== MMU_PAGE_64K
)
1409 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
,
1412 #endif /* CONFIG_PPC_64K_PAGES */
1414 int spp
= subpage_protection(mm
, ea
);
1418 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
,
1422 /* Dump some info in case of hash insertion failure, they should
1423 * never happen so it is really useful to know if/when they do
1426 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
, psize
,
1427 psize
, pte_val(*ptep
));
1428 #ifndef CONFIG_PPC_64K_PAGES
1429 DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep
));
1431 DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep
),
1432 pte_val(*(ptep
+ PTRS_PER_PTE
)));
1434 DBG_LOW(" -> rc=%d\n", rc
);
1437 exception_exit(prev_state
);
1440 EXPORT_SYMBOL_GPL(hash_page_mm
);
1442 int hash_page(unsigned long ea
, unsigned long access
, unsigned long trap
,
1443 unsigned long dsisr
)
1445 unsigned long flags
= 0;
1446 struct mm_struct
*mm
= current
->mm
;
1448 if (REGION_ID(ea
) == VMALLOC_REGION_ID
)
1451 if (dsisr
& DSISR_NOHPTE
)
1452 flags
|= HPTE_NOHPTE_UPDATE
;
1454 return hash_page_mm(mm
, ea
, access
, trap
, flags
);
1456 EXPORT_SYMBOL_GPL(hash_page
);
1458 int __hash_page(unsigned long ea
, unsigned long msr
, unsigned long trap
,
1459 unsigned long dsisr
)
1461 unsigned long access
= _PAGE_PRESENT
| _PAGE_READ
;
1462 unsigned long flags
= 0;
1463 struct mm_struct
*mm
= current
->mm
;
1465 if (REGION_ID(ea
) == VMALLOC_REGION_ID
)
1468 if (dsisr
& DSISR_NOHPTE
)
1469 flags
|= HPTE_NOHPTE_UPDATE
;
1471 if (dsisr
& DSISR_ISSTORE
)
1472 access
|= _PAGE_WRITE
;
1474 * We set _PAGE_PRIVILEGED only when
1475 * kernel mode access kernel space.
1477 * _PAGE_PRIVILEGED is NOT set
1478 * 1) when kernel mode access user space
1479 * 2) user space access kernel space.
1481 access
|= _PAGE_PRIVILEGED
;
1482 if ((msr
& MSR_PR
) || (REGION_ID(ea
) == USER_REGION_ID
))
1483 access
&= ~_PAGE_PRIVILEGED
;
1486 access
|= _PAGE_EXEC
;
1488 return hash_page_mm(mm
, ea
, access
, trap
, flags
);
1491 #ifdef CONFIG_PPC_MM_SLICES
1492 static bool should_hash_preload(struct mm_struct
*mm
, unsigned long ea
)
1494 int psize
= get_slice_psize(mm
, ea
);
1496 /* We only prefault standard pages for now */
1497 if (unlikely(psize
!= mm
->context
.user_psize
))
1501 * Don't prefault if subpage protection is enabled for the EA.
1503 if (unlikely((psize
== MMU_PAGE_4K
) && subpage_protection(mm
, ea
)))
1509 static bool should_hash_preload(struct mm_struct
*mm
, unsigned long ea
)
1515 void hash_preload(struct mm_struct
*mm
, unsigned long ea
,
1516 unsigned long access
, unsigned long trap
)
1522 unsigned long flags
;
1523 int rc
, ssize
, update_flags
= 0;
1525 BUG_ON(REGION_ID(ea
) != USER_REGION_ID
);
1527 if (!should_hash_preload(mm
, ea
))
1530 DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1531 " trap=%lx\n", mm
, mm
->pgd
, ea
, access
, trap
);
1533 /* Get Linux PTE if available */
1539 ssize
= user_segment_size(ea
);
1540 vsid
= get_user_vsid(&mm
->context
, ea
, ssize
);
1544 * Hash doesn't like irqs. Walking linux page table with irq disabled
1545 * saves us from holding multiple locks.
1547 local_irq_save(flags
);
1550 * THP pages use update_mmu_cache_pmd. We don't do
1551 * hash preload there. Hence can ignore THP here
1553 ptep
= find_current_mm_pte(pgdir
, ea
, NULL
, &hugepage_shift
);
1557 WARN_ON(hugepage_shift
);
1558 #ifdef CONFIG_PPC_64K_PAGES
1559 /* If either H_PAGE_4K_PFN or cache inhibited is set (and we are on
1560 * a 64K kernel), then we don't preload, hash_page() will take
1561 * care of it once we actually try to access the page.
1562 * That way we don't have to duplicate all of the logic for segment
1563 * page size demotion here
1565 if ((pte_val(*ptep
) & H_PAGE_4K_PFN
) || pte_ci(*ptep
))
1567 #endif /* CONFIG_PPC_64K_PAGES */
1569 /* Is that local to this CPU ? */
1570 if (mm_is_thread_local(mm
))
1571 update_flags
|= HPTE_LOCAL_UPDATE
;
1574 #ifdef CONFIG_PPC_64K_PAGES
1575 if (mm
->context
.user_psize
== MMU_PAGE_64K
)
1576 rc
= __hash_page_64K(ea
, access
, vsid
, ptep
, trap
,
1577 update_flags
, ssize
);
1579 #endif /* CONFIG_PPC_64K_PAGES */
1580 rc
= __hash_page_4K(ea
, access
, vsid
, ptep
, trap
, update_flags
,
1581 ssize
, subpage_protection(mm
, ea
));
1583 /* Dump some info in case of hash insertion failure, they should
1584 * never happen so it is really useful to know if/when they do
1587 hash_failure_debug(ea
, access
, vsid
, trap
, ssize
,
1588 mm
->context
.user_psize
,
1589 mm
->context
.user_psize
,
1592 local_irq_restore(flags
);
1595 #ifdef CONFIG_PPC_MEM_KEYS
1597 * Return the protection key associated with the given address and the
1600 u16
get_mm_addr_key(struct mm_struct
*mm
, unsigned long address
)
1604 unsigned long flags
;
1606 if (!mm
|| !mm
->pgd
)
1609 local_irq_save(flags
);
1610 ptep
= find_linux_pte(mm
->pgd
, address
, NULL
, NULL
);
1612 pkey
= pte_to_pkey_bits(pte_val(READ_ONCE(*ptep
)));
1613 local_irq_restore(flags
);
1617 #endif /* CONFIG_PPC_MEM_KEYS */
1619 #ifdef CONFIG_PPC_TRANSACTIONAL_MEM
1620 static inline void tm_flush_hash_page(int local
)
1623 * Transactions are not aborted by tlbiel, only tlbie. Without, syncing a
1624 * page back to a block device w/PIO could pick up transactional data
1625 * (bad!) so we force an abort here. Before the sync the page will be
1626 * made read-only, which will flush_hash_page. BIG ISSUE here: if the
1627 * kernel uses a page from userspace without unmapping it first, it may
1628 * see the speculated version.
1630 if (local
&& cpu_has_feature(CPU_FTR_TM
) && current
->thread
.regs
&&
1631 MSR_TM_ACTIVE(current
->thread
.regs
->msr
)) {
1633 tm_abort(TM_CAUSE_TLBI
);
1637 static inline void tm_flush_hash_page(int local
)
1643 * Return the global hash slot, corresponding to the given PTE, which contains
1646 unsigned long pte_get_hash_gslot(unsigned long vpn
, unsigned long shift
,
1647 int ssize
, real_pte_t rpte
, unsigned int subpg_index
)
1649 unsigned long hash
, gslot
, hidx
;
1651 hash
= hpt_hash(vpn
, shift
, ssize
);
1652 hidx
= __rpte_to_hidx(rpte
, subpg_index
);
1653 if (hidx
& _PTEIDX_SECONDARY
)
1655 gslot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1656 gslot
+= hidx
& _PTEIDX_GROUP_IX
;
1660 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1661 * do not forget to update the assembly call site !
1663 void flush_hash_page(unsigned long vpn
, real_pte_t pte
, int psize
, int ssize
,
1664 unsigned long flags
)
1666 unsigned long index
, shift
, gslot
;
1667 int local
= flags
& HPTE_LOCAL_UPDATE
;
1669 DBG_LOW("flush_hash_page(vpn=%016lx)\n", vpn
);
1670 pte_iterate_hashed_subpages(pte
, psize
, vpn
, index
, shift
) {
1671 gslot
= pte_get_hash_gslot(vpn
, shift
, ssize
, pte
, index
);
1672 DBG_LOW(" sub %ld: gslot=%lx\n", index
, gslot
);
1674 * We use same base page size and actual psize, because we don't
1675 * use these functions for hugepage
1677 mmu_hash_ops
.hpte_invalidate(gslot
, vpn
, psize
, psize
,
1679 } pte_iterate_hashed_end();
1681 tm_flush_hash_page(local
);
1684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1685 void flush_hash_hugepage(unsigned long vsid
, unsigned long addr
,
1686 pmd_t
*pmdp
, unsigned int psize
, int ssize
,
1687 unsigned long flags
)
1689 int i
, max_hpte_count
, valid
;
1690 unsigned long s_addr
;
1691 unsigned char *hpte_slot_array
;
1692 unsigned long hidx
, shift
, vpn
, hash
, slot
;
1693 int local
= flags
& HPTE_LOCAL_UPDATE
;
1695 s_addr
= addr
& HPAGE_PMD_MASK
;
1696 hpte_slot_array
= get_hpte_slot_array(pmdp
);
1698 * IF we try to do a HUGE PTE update after a withdraw is done.
1699 * we will find the below NULL. This happens when we do
1700 * split_huge_page_pmd
1702 if (!hpte_slot_array
)
1705 if (mmu_hash_ops
.hugepage_invalidate
) {
1706 mmu_hash_ops
.hugepage_invalidate(vsid
, s_addr
, hpte_slot_array
,
1707 psize
, ssize
, local
);
1711 * No bluk hpte removal support, invalidate each entry
1713 shift
= mmu_psize_defs
[psize
].shift
;
1714 max_hpte_count
= HPAGE_PMD_SIZE
>> shift
;
1715 for (i
= 0; i
< max_hpte_count
; i
++) {
1717 * 8 bits per each hpte entries
1718 * 000| [ secondary group (one bit) | hidx (3 bits) | valid bit]
1720 valid
= hpte_valid(hpte_slot_array
, i
);
1723 hidx
= hpte_hash_index(hpte_slot_array
, i
);
1726 addr
= s_addr
+ (i
* (1ul << shift
));
1727 vpn
= hpt_vpn(addr
, vsid
, ssize
);
1728 hash
= hpt_hash(vpn
, shift
, ssize
);
1729 if (hidx
& _PTEIDX_SECONDARY
)
1732 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1733 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1734 mmu_hash_ops
.hpte_invalidate(slot
, vpn
, psize
,
1735 MMU_PAGE_16M
, ssize
, local
);
1738 tm_flush_hash_page(local
);
1740 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1742 void flush_hash_range(unsigned long number
, int local
)
1744 if (mmu_hash_ops
.flush_hash_range
)
1745 mmu_hash_ops
.flush_hash_range(number
, local
);
1748 struct ppc64_tlb_batch
*batch
=
1749 this_cpu_ptr(&ppc64_tlb_batch
);
1751 for (i
= 0; i
< number
; i
++)
1752 flush_hash_page(batch
->vpn
[i
], batch
->pte
[i
],
1753 batch
->psize
, batch
->ssize
, local
);
1758 * low_hash_fault is called when we the low level hash code failed
1759 * to instert a PTE due to an hypervisor error
1761 void low_hash_fault(struct pt_regs
*regs
, unsigned long address
, int rc
)
1763 enum ctx_state prev_state
= exception_enter();
1765 if (user_mode(regs
)) {
1766 #ifdef CONFIG_PPC_SUBPAGE_PROT
1768 _exception(SIGSEGV
, regs
, SEGV_ACCERR
, address
);
1771 _exception(SIGBUS
, regs
, BUS_ADRERR
, address
);
1773 bad_page_fault(regs
, address
, SIGBUS
);
1775 exception_exit(prev_state
);
1778 long hpte_insert_repeating(unsigned long hash
, unsigned long vpn
,
1779 unsigned long pa
, unsigned long rflags
,
1780 unsigned long vflags
, int psize
, int ssize
)
1782 unsigned long hpte_group
;
1786 hpte_group
= ((hash
& htab_hash_mask
) *
1787 HPTES_PER_GROUP
) & ~0x7UL
;
1789 /* Insert into the hash table, primary slot */
1790 slot
= mmu_hash_ops
.hpte_insert(hpte_group
, vpn
, pa
, rflags
, vflags
,
1791 psize
, psize
, ssize
);
1793 /* Primary is full, try the secondary */
1794 if (unlikely(slot
== -1)) {
1795 hpte_group
= ((~hash
& htab_hash_mask
) *
1796 HPTES_PER_GROUP
) & ~0x7UL
;
1797 slot
= mmu_hash_ops
.hpte_insert(hpte_group
, vpn
, pa
, rflags
,
1798 vflags
| HPTE_V_SECONDARY
,
1799 psize
, psize
, ssize
);
1802 hpte_group
= ((hash
& htab_hash_mask
) *
1803 HPTES_PER_GROUP
)&~0x7UL
;
1805 mmu_hash_ops
.hpte_remove(hpte_group
);
1813 #ifdef CONFIG_DEBUG_PAGEALLOC
1814 static void kernel_map_linear_page(unsigned long vaddr
, unsigned long lmi
)
1817 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1818 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1819 unsigned long mode
= htab_convert_pte_flags(pgprot_val(PAGE_KERNEL
));
1822 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1824 /* Don't create HPTE entries for bad address */
1828 ret
= hpte_insert_repeating(hash
, vpn
, __pa(vaddr
), mode
,
1830 mmu_linear_psize
, mmu_kernel_ssize
);
1833 spin_lock(&linear_map_hash_lock
);
1834 BUG_ON(linear_map_hash_slots
[lmi
] & 0x80);
1835 linear_map_hash_slots
[lmi
] = ret
| 0x80;
1836 spin_unlock(&linear_map_hash_lock
);
1839 static void kernel_unmap_linear_page(unsigned long vaddr
, unsigned long lmi
)
1841 unsigned long hash
, hidx
, slot
;
1842 unsigned long vsid
= get_kernel_vsid(vaddr
, mmu_kernel_ssize
);
1843 unsigned long vpn
= hpt_vpn(vaddr
, vsid
, mmu_kernel_ssize
);
1845 hash
= hpt_hash(vpn
, PAGE_SHIFT
, mmu_kernel_ssize
);
1846 spin_lock(&linear_map_hash_lock
);
1847 BUG_ON(!(linear_map_hash_slots
[lmi
] & 0x80));
1848 hidx
= linear_map_hash_slots
[lmi
] & 0x7f;
1849 linear_map_hash_slots
[lmi
] = 0;
1850 spin_unlock(&linear_map_hash_lock
);
1851 if (hidx
& _PTEIDX_SECONDARY
)
1853 slot
= (hash
& htab_hash_mask
) * HPTES_PER_GROUP
;
1854 slot
+= hidx
& _PTEIDX_GROUP_IX
;
1855 mmu_hash_ops
.hpte_invalidate(slot
, vpn
, mmu_linear_psize
,
1857 mmu_kernel_ssize
, 0);
1860 void __kernel_map_pages(struct page
*page
, int numpages
, int enable
)
1862 unsigned long flags
, vaddr
, lmi
;
1865 local_irq_save(flags
);
1866 for (i
= 0; i
< numpages
; i
++, page
++) {
1867 vaddr
= (unsigned long)page_address(page
);
1868 lmi
= __pa(vaddr
) >> PAGE_SHIFT
;
1869 if (lmi
>= linear_map_hash_count
)
1872 kernel_map_linear_page(vaddr
, lmi
);
1874 kernel_unmap_linear_page(vaddr
, lmi
);
1876 local_irq_restore(flags
);
1878 #endif /* CONFIG_DEBUG_PAGEALLOC */
1880 void hash__setup_initial_memory_limit(phys_addr_t first_memblock_base
,
1881 phys_addr_t first_memblock_size
)
1883 /* We don't currently support the first MEMBLOCK not mapping 0
1884 * physical on those processors
1886 BUG_ON(first_memblock_base
!= 0);
1889 * On virtualized systems the first entry is our RMA region aka VRMA,
1890 * non-virtualized 64-bit hash MMU systems don't have a limitation
1891 * on real mode access.
1893 * For guests on platforms before POWER9, we clamp the it limit to 1G
1894 * to avoid some funky things such as RTAS bugs etc...
1896 if (!early_cpu_has_feature(CPU_FTR_HVMODE
)) {
1897 ppc64_rma_size
= first_memblock_size
;
1898 if (!early_cpu_has_feature(CPU_FTR_ARCH_300
))
1899 ppc64_rma_size
= min_t(u64
, ppc64_rma_size
, 0x40000000);
1901 /* Finally limit subsequent allocations */
1902 memblock_set_current_limit(ppc64_rma_size
);
1904 ppc64_rma_size
= ULONG_MAX
;
1908 #ifdef CONFIG_DEBUG_FS
1910 static int hpt_order_get(void *data
, u64
*val
)
1912 *val
= ppc64_pft_size
;
1916 static int hpt_order_set(void *data
, u64 val
)
1918 if (!mmu_hash_ops
.resize_hpt
)
1921 return mmu_hash_ops
.resize_hpt(val
);
1924 DEFINE_SIMPLE_ATTRIBUTE(fops_hpt_order
, hpt_order_get
, hpt_order_set
, "%llu\n");
1926 static int __init
hash64_debugfs(void)
1928 if (!debugfs_create_file("hpt_order", 0600, powerpc_debugfs_root
,
1929 NULL
, &fops_hpt_order
)) {
1930 pr_err("lpar: unable to create hpt_order debugsfs file\n");
1935 machine_device_initcall(pseries
, hash64_debugfs
);
1936 #endif /* CONFIG_DEBUG_FS */