Linux 4.18.8
[linux/fpc-iii.git] / arch / powerpc / mm / hugetlbpage.c
blob8a9a49c138652ba2b971a265db233988e01aa7b1
1 /*
2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <linux/swap.h>
21 #include <linux/swapops.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/tlb.h>
25 #include <asm/setup.h>
26 #include <asm/hugetlb.h>
27 #include <asm/pte-walk.h>
30 #ifdef CONFIG_HUGETLB_PAGE
32 #define PAGE_SHIFT_64K 16
33 #define PAGE_SHIFT_512K 19
34 #define PAGE_SHIFT_8M 23
35 #define PAGE_SHIFT_16M 24
36 #define PAGE_SHIFT_16G 34
38 bool hugetlb_disabled = false;
40 unsigned int HPAGE_SHIFT;
41 EXPORT_SYMBOL(HPAGE_SHIFT);
43 #define hugepd_none(hpd) (hpd_val(hpd) == 0)
45 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr, unsigned long sz)
48 * Only called for hugetlbfs pages, hence can ignore THP and the
49 * irq disabled walk.
51 return __find_linux_pte(mm->pgd, addr, NULL, NULL);
54 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
55 unsigned long address, unsigned int pdshift,
56 unsigned int pshift, spinlock_t *ptl)
58 struct kmem_cache *cachep;
59 pte_t *new;
60 int i;
61 int num_hugepd;
63 if (pshift >= pdshift) {
64 cachep = hugepte_cache;
65 num_hugepd = 1 << (pshift - pdshift);
66 } else {
67 cachep = PGT_CACHE(pdshift - pshift);
68 num_hugepd = 1;
71 new = kmem_cache_zalloc(cachep, pgtable_gfp_flags(mm, GFP_KERNEL));
73 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
74 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
76 if (! new)
77 return -ENOMEM;
80 * Make sure other cpus find the hugepd set only after a
81 * properly initialized page table is visible to them.
82 * For more details look for comment in __pte_alloc().
84 smp_wmb();
86 spin_lock(ptl);
88 * We have multiple higher-level entries that point to the same
89 * actual pte location. Fill in each as we go and backtrack on error.
90 * We need all of these so the DTLB pgtable walk code can find the
91 * right higher-level entry without knowing if it's a hugepage or not.
93 for (i = 0; i < num_hugepd; i++, hpdp++) {
94 if (unlikely(!hugepd_none(*hpdp)))
95 break;
96 else {
97 #ifdef CONFIG_PPC_BOOK3S_64
98 *hpdp = __hugepd(__pa(new) |
99 (shift_to_mmu_psize(pshift) << 2));
100 #elif defined(CONFIG_PPC_8xx)
101 *hpdp = __hugepd(__pa(new) | _PMD_USER |
102 (pshift == PAGE_SHIFT_8M ? _PMD_PAGE_8M :
103 _PMD_PAGE_512K) | _PMD_PRESENT);
104 #else
105 /* We use the old format for PPC_FSL_BOOK3E */
106 *hpdp = __hugepd(((unsigned long)new & ~PD_HUGE) | pshift);
107 #endif
110 /* If we bailed from the for loop early, an error occurred, clean up */
111 if (i < num_hugepd) {
112 for (i = i - 1 ; i >= 0; i--, hpdp--)
113 *hpdp = __hugepd(0);
114 kmem_cache_free(cachep, new);
116 spin_unlock(ptl);
117 return 0;
121 * These macros define how to determine which level of the page table holds
122 * the hpdp.
124 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
125 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
126 #define HUGEPD_PUD_SHIFT PUD_SHIFT
127 #endif
130 * At this point we do the placement change only for BOOK3S 64. This would
131 * possibly work on other subarchs.
133 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
135 pgd_t *pg;
136 pud_t *pu;
137 pmd_t *pm;
138 hugepd_t *hpdp = NULL;
139 unsigned pshift = __ffs(sz);
140 unsigned pdshift = PGDIR_SHIFT;
141 spinlock_t *ptl;
143 addr &= ~(sz-1);
144 pg = pgd_offset(mm, addr);
146 #ifdef CONFIG_PPC_BOOK3S_64
147 if (pshift == PGDIR_SHIFT)
148 /* 16GB huge page */
149 return (pte_t *) pg;
150 else if (pshift > PUD_SHIFT) {
152 * We need to use hugepd table
154 ptl = &mm->page_table_lock;
155 hpdp = (hugepd_t *)pg;
156 } else {
157 pdshift = PUD_SHIFT;
158 pu = pud_alloc(mm, pg, addr);
159 if (pshift == PUD_SHIFT)
160 return (pte_t *)pu;
161 else if (pshift > PMD_SHIFT) {
162 ptl = pud_lockptr(mm, pu);
163 hpdp = (hugepd_t *)pu;
164 } else {
165 pdshift = PMD_SHIFT;
166 pm = pmd_alloc(mm, pu, addr);
167 if (pshift == PMD_SHIFT)
168 /* 16MB hugepage */
169 return (pte_t *)pm;
170 else {
171 ptl = pmd_lockptr(mm, pm);
172 hpdp = (hugepd_t *)pm;
176 #else
177 if (pshift >= HUGEPD_PGD_SHIFT) {
178 ptl = &mm->page_table_lock;
179 hpdp = (hugepd_t *)pg;
180 } else {
181 pdshift = PUD_SHIFT;
182 pu = pud_alloc(mm, pg, addr);
183 if (pshift >= HUGEPD_PUD_SHIFT) {
184 ptl = pud_lockptr(mm, pu);
185 hpdp = (hugepd_t *)pu;
186 } else {
187 pdshift = PMD_SHIFT;
188 pm = pmd_alloc(mm, pu, addr);
189 ptl = pmd_lockptr(mm, pm);
190 hpdp = (hugepd_t *)pm;
193 #endif
194 if (!hpdp)
195 return NULL;
197 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
199 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr,
200 pdshift, pshift, ptl))
201 return NULL;
203 return hugepte_offset(*hpdp, addr, pdshift);
206 #ifdef CONFIG_PPC_BOOK3S_64
208 * Tracks gpages after the device tree is scanned and before the
209 * huge_boot_pages list is ready on pseries.
211 #define MAX_NUMBER_GPAGES 1024
212 __initdata static u64 gpage_freearray[MAX_NUMBER_GPAGES];
213 __initdata static unsigned nr_gpages;
216 * Build list of addresses of gigantic pages. This function is used in early
217 * boot before the buddy allocator is setup.
219 void __init pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
221 if (!addr)
222 return;
223 while (number_of_pages > 0) {
224 gpage_freearray[nr_gpages] = addr;
225 nr_gpages++;
226 number_of_pages--;
227 addr += page_size;
231 int __init pseries_alloc_bootmem_huge_page(struct hstate *hstate)
233 struct huge_bootmem_page *m;
234 if (nr_gpages == 0)
235 return 0;
236 m = phys_to_virt(gpage_freearray[--nr_gpages]);
237 gpage_freearray[nr_gpages] = 0;
238 list_add(&m->list, &huge_boot_pages);
239 m->hstate = hstate;
240 return 1;
242 #endif
245 int __init alloc_bootmem_huge_page(struct hstate *h)
248 #ifdef CONFIG_PPC_BOOK3S_64
249 if (firmware_has_feature(FW_FEATURE_LPAR) && !radix_enabled())
250 return pseries_alloc_bootmem_huge_page(h);
251 #endif
252 return __alloc_bootmem_huge_page(h);
255 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
256 #define HUGEPD_FREELIST_SIZE \
257 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
259 struct hugepd_freelist {
260 struct rcu_head rcu;
261 unsigned int index;
262 void *ptes[0];
265 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
267 static void hugepd_free_rcu_callback(struct rcu_head *head)
269 struct hugepd_freelist *batch =
270 container_of(head, struct hugepd_freelist, rcu);
271 unsigned int i;
273 for (i = 0; i < batch->index; i++)
274 kmem_cache_free(hugepte_cache, batch->ptes[i]);
276 free_page((unsigned long)batch);
279 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
281 struct hugepd_freelist **batchp;
283 batchp = &get_cpu_var(hugepd_freelist_cur);
285 if (atomic_read(&tlb->mm->mm_users) < 2 ||
286 mm_is_thread_local(tlb->mm)) {
287 kmem_cache_free(hugepte_cache, hugepte);
288 put_cpu_var(hugepd_freelist_cur);
289 return;
292 if (*batchp == NULL) {
293 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
294 (*batchp)->index = 0;
297 (*batchp)->ptes[(*batchp)->index++] = hugepte;
298 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
299 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
300 *batchp = NULL;
302 put_cpu_var(hugepd_freelist_cur);
304 #else
305 static inline void hugepd_free(struct mmu_gather *tlb, void *hugepte) {}
306 #endif
308 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
309 unsigned long start, unsigned long end,
310 unsigned long floor, unsigned long ceiling)
312 pte_t *hugepte = hugepd_page(*hpdp);
313 int i;
315 unsigned long pdmask = ~((1UL << pdshift) - 1);
316 unsigned int num_hugepd = 1;
317 unsigned int shift = hugepd_shift(*hpdp);
319 /* Note: On fsl the hpdp may be the first of several */
320 if (shift > pdshift)
321 num_hugepd = 1 << (shift - pdshift);
323 start &= pdmask;
324 if (start < floor)
325 return;
326 if (ceiling) {
327 ceiling &= pdmask;
328 if (! ceiling)
329 return;
331 if (end - 1 > ceiling - 1)
332 return;
334 for (i = 0; i < num_hugepd; i++, hpdp++)
335 *hpdp = __hugepd(0);
337 if (shift >= pdshift)
338 hugepd_free(tlb, hugepte);
339 else
340 pgtable_free_tlb(tlb, hugepte,
341 get_hugepd_cache_index(pdshift - shift));
344 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
345 unsigned long addr, unsigned long end,
346 unsigned long floor, unsigned long ceiling)
348 pmd_t *pmd;
349 unsigned long next;
350 unsigned long start;
352 start = addr;
353 do {
354 unsigned long more;
356 pmd = pmd_offset(pud, addr);
357 next = pmd_addr_end(addr, end);
358 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
360 * if it is not hugepd pointer, we should already find
361 * it cleared.
363 WARN_ON(!pmd_none_or_clear_bad(pmd));
364 continue;
367 * Increment next by the size of the huge mapping since
368 * there may be more than one entry at this level for a
369 * single hugepage, but all of them point to
370 * the same kmem cache that holds the hugepte.
372 more = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
373 if (more > next)
374 next = more;
376 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
377 addr, next, floor, ceiling);
378 } while (addr = next, addr != end);
380 start &= PUD_MASK;
381 if (start < floor)
382 return;
383 if (ceiling) {
384 ceiling &= PUD_MASK;
385 if (!ceiling)
386 return;
388 if (end - 1 > ceiling - 1)
389 return;
391 pmd = pmd_offset(pud, start);
392 pud_clear(pud);
393 pmd_free_tlb(tlb, pmd, start);
394 mm_dec_nr_pmds(tlb->mm);
397 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
398 unsigned long addr, unsigned long end,
399 unsigned long floor, unsigned long ceiling)
401 pud_t *pud;
402 unsigned long next;
403 unsigned long start;
405 start = addr;
406 do {
407 pud = pud_offset(pgd, addr);
408 next = pud_addr_end(addr, end);
409 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
410 if (pud_none_or_clear_bad(pud))
411 continue;
412 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
413 ceiling);
414 } else {
415 unsigned long more;
417 * Increment next by the size of the huge mapping since
418 * there may be more than one entry at this level for a
419 * single hugepage, but all of them point to
420 * the same kmem cache that holds the hugepte.
422 more = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
423 if (more > next)
424 next = more;
426 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
427 addr, next, floor, ceiling);
429 } while (addr = next, addr != end);
431 start &= PGDIR_MASK;
432 if (start < floor)
433 return;
434 if (ceiling) {
435 ceiling &= PGDIR_MASK;
436 if (!ceiling)
437 return;
439 if (end - 1 > ceiling - 1)
440 return;
442 pud = pud_offset(pgd, start);
443 pgd_clear(pgd);
444 pud_free_tlb(tlb, pud, start);
445 mm_dec_nr_puds(tlb->mm);
449 * This function frees user-level page tables of a process.
451 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
452 unsigned long addr, unsigned long end,
453 unsigned long floor, unsigned long ceiling)
455 pgd_t *pgd;
456 unsigned long next;
459 * Because there are a number of different possible pagetable
460 * layouts for hugepage ranges, we limit knowledge of how
461 * things should be laid out to the allocation path
462 * (huge_pte_alloc(), above). Everything else works out the
463 * structure as it goes from information in the hugepd
464 * pointers. That means that we can't here use the
465 * optimization used in the normal page free_pgd_range(), of
466 * checking whether we're actually covering a large enough
467 * range to have to do anything at the top level of the walk
468 * instead of at the bottom.
470 * To make sense of this, you should probably go read the big
471 * block comment at the top of the normal free_pgd_range(),
472 * too.
475 do {
476 next = pgd_addr_end(addr, end);
477 pgd = pgd_offset(tlb->mm, addr);
478 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
479 if (pgd_none_or_clear_bad(pgd))
480 continue;
481 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
482 } else {
483 unsigned long more;
485 * Increment next by the size of the huge mapping since
486 * there may be more than one entry at the pgd level
487 * for a single hugepage, but all of them point to the
488 * same kmem cache that holds the hugepte.
490 more = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
491 if (more > next)
492 next = more;
494 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
495 addr, next, floor, ceiling);
497 } while (addr = next, addr != end);
500 struct page *follow_huge_pd(struct vm_area_struct *vma,
501 unsigned long address, hugepd_t hpd,
502 int flags, int pdshift)
504 pte_t *ptep;
505 spinlock_t *ptl;
506 struct page *page = NULL;
507 unsigned long mask;
508 int shift = hugepd_shift(hpd);
509 struct mm_struct *mm = vma->vm_mm;
511 retry:
513 * hugepage directory entries are protected by mm->page_table_lock
514 * Use this instead of huge_pte_lockptr
516 ptl = &mm->page_table_lock;
517 spin_lock(ptl);
519 ptep = hugepte_offset(hpd, address, pdshift);
520 if (pte_present(*ptep)) {
521 mask = (1UL << shift) - 1;
522 page = pte_page(*ptep);
523 page += ((address & mask) >> PAGE_SHIFT);
524 if (flags & FOLL_GET)
525 get_page(page);
526 } else {
527 if (is_hugetlb_entry_migration(*ptep)) {
528 spin_unlock(ptl);
529 __migration_entry_wait(mm, ptep, ptl);
530 goto retry;
533 spin_unlock(ptl);
534 return page;
537 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
538 unsigned long sz)
540 unsigned long __boundary = (addr + sz) & ~(sz-1);
541 return (__boundary - 1 < end - 1) ? __boundary : end;
544 int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
545 unsigned long end, int write, struct page **pages, int *nr)
547 pte_t *ptep;
548 unsigned long sz = 1UL << hugepd_shift(hugepd);
549 unsigned long next;
551 ptep = hugepte_offset(hugepd, addr, pdshift);
552 do {
553 next = hugepte_addr_end(addr, end, sz);
554 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
555 return 0;
556 } while (ptep++, addr = next, addr != end);
558 return 1;
561 #ifdef CONFIG_PPC_MM_SLICES
562 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
563 unsigned long len, unsigned long pgoff,
564 unsigned long flags)
566 struct hstate *hstate = hstate_file(file);
567 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
569 #ifdef CONFIG_PPC_RADIX_MMU
570 if (radix_enabled())
571 return radix__hugetlb_get_unmapped_area(file, addr, len,
572 pgoff, flags);
573 #endif
574 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
576 #endif
578 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
580 #ifdef CONFIG_PPC_MM_SLICES
581 /* With radix we don't use slice, so derive it from vma*/
582 if (!radix_enabled()) {
583 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
585 return 1UL << mmu_psize_to_shift(psize);
587 #endif
588 return vma_kernel_pagesize(vma);
591 static inline bool is_power_of_4(unsigned long x)
593 if (is_power_of_2(x))
594 return (__ilog2(x) % 2) ? false : true;
595 return false;
598 static int __init add_huge_page_size(unsigned long long size)
600 int shift = __ffs(size);
601 int mmu_psize;
603 /* Check that it is a page size supported by the hardware and
604 * that it fits within pagetable and slice limits. */
605 if (size <= PAGE_SIZE)
606 return -EINVAL;
607 #if defined(CONFIG_PPC_FSL_BOOK3E)
608 if (!is_power_of_4(size))
609 return -EINVAL;
610 #elif !defined(CONFIG_PPC_8xx)
611 if (!is_power_of_2(size) || (shift > SLICE_HIGH_SHIFT))
612 return -EINVAL;
613 #endif
615 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
616 return -EINVAL;
618 #ifdef CONFIG_PPC_BOOK3S_64
620 * We need to make sure that for different page sizes reported by
621 * firmware we only add hugetlb support for page sizes that can be
622 * supported by linux page table layout.
623 * For now we have
624 * Radix: 2M
625 * Hash: 16M and 16G
627 if (radix_enabled()) {
628 if (mmu_psize != MMU_PAGE_2M) {
629 if (cpu_has_feature(CPU_FTR_POWER9_DD1) ||
630 (mmu_psize != MMU_PAGE_1G))
631 return -EINVAL;
633 } else {
634 if (mmu_psize != MMU_PAGE_16M && mmu_psize != MMU_PAGE_16G)
635 return -EINVAL;
637 #endif
639 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
641 /* Return if huge page size has already been setup */
642 if (size_to_hstate(size))
643 return 0;
645 hugetlb_add_hstate(shift - PAGE_SHIFT);
647 return 0;
650 static int __init hugepage_setup_sz(char *str)
652 unsigned long long size;
654 size = memparse(str, &str);
656 if (add_huge_page_size(size) != 0) {
657 hugetlb_bad_size();
658 pr_err("Invalid huge page size specified(%llu)\n", size);
661 return 1;
663 __setup("hugepagesz=", hugepage_setup_sz);
665 struct kmem_cache *hugepte_cache;
666 static int __init hugetlbpage_init(void)
668 int psize;
670 if (hugetlb_disabled) {
671 pr_info("HugeTLB support is disabled!\n");
672 return 0;
675 #if !defined(CONFIG_PPC_FSL_BOOK3E) && !defined(CONFIG_PPC_8xx)
676 if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
677 return -ENODEV;
678 #endif
679 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
680 unsigned shift;
681 unsigned pdshift;
683 if (!mmu_psize_defs[psize].shift)
684 continue;
686 shift = mmu_psize_to_shift(psize);
688 #ifdef CONFIG_PPC_BOOK3S_64
689 if (shift > PGDIR_SHIFT)
690 continue;
691 else if (shift > PUD_SHIFT)
692 pdshift = PGDIR_SHIFT;
693 else if (shift > PMD_SHIFT)
694 pdshift = PUD_SHIFT;
695 else
696 pdshift = PMD_SHIFT;
697 #else
698 if (shift < HUGEPD_PUD_SHIFT)
699 pdshift = PMD_SHIFT;
700 else if (shift < HUGEPD_PGD_SHIFT)
701 pdshift = PUD_SHIFT;
702 else
703 pdshift = PGDIR_SHIFT;
704 #endif
706 if (add_huge_page_size(1ULL << shift) < 0)
707 continue;
709 * if we have pdshift and shift value same, we don't
710 * use pgt cache for hugepd.
712 if (pdshift > shift)
713 pgtable_cache_add(pdshift - shift, NULL);
714 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
715 else if (!hugepte_cache) {
717 * Create a kmem cache for hugeptes. The bottom bits in
718 * the pte have size information encoded in them, so
719 * align them to allow this
721 hugepte_cache = kmem_cache_create("hugepte-cache",
722 sizeof(pte_t),
723 HUGEPD_SHIFT_MASK + 1,
724 0, NULL);
725 if (hugepte_cache == NULL)
726 panic("%s: Unable to create kmem cache "
727 "for hugeptes\n", __func__);
730 #endif
733 #if defined(CONFIG_PPC_FSL_BOOK3E) || defined(CONFIG_PPC_8xx)
734 /* Default hpage size = 4M on FSL_BOOK3E and 512k on 8xx */
735 if (mmu_psize_defs[MMU_PAGE_4M].shift)
736 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
737 else if (mmu_psize_defs[MMU_PAGE_512K].shift)
738 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_512K].shift;
739 #else
740 /* Set default large page size. Currently, we pick 16M or 1M
741 * depending on what is available
743 if (mmu_psize_defs[MMU_PAGE_16M].shift)
744 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
745 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
746 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
747 else if (mmu_psize_defs[MMU_PAGE_2M].shift)
748 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
749 #endif
750 return 0;
753 arch_initcall(hugetlbpage_init);
755 void flush_dcache_icache_hugepage(struct page *page)
757 int i;
758 void *start;
760 BUG_ON(!PageCompound(page));
762 for (i = 0; i < (1UL << compound_order(page)); i++) {
763 if (!PageHighMem(page)) {
764 __flush_dcache_icache(page_address(page+i));
765 } else {
766 start = kmap_atomic(page+i);
767 __flush_dcache_icache(start);
768 kunmap_atomic(start);
773 #endif /* CONFIG_HUGETLB_PAGE */
776 * We have 4 cases for pgds and pmds:
777 * (1) invalid (all zeroes)
778 * (2) pointer to next table, as normal; bottom 6 bits == 0
779 * (3) leaf pte for huge page _PAGE_PTE set
780 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
782 * So long as we atomically load page table pointers we are safe against teardown,
783 * we can follow the address down to the the page and take a ref on it.
784 * This function need to be called with interrupts disabled. We use this variant
785 * when we have MSR[EE] = 0 but the paca->irq_soft_mask = IRQS_ENABLED
787 pte_t *__find_linux_pte(pgd_t *pgdir, unsigned long ea,
788 bool *is_thp, unsigned *hpage_shift)
790 pgd_t pgd, *pgdp;
791 pud_t pud, *pudp;
792 pmd_t pmd, *pmdp;
793 pte_t *ret_pte;
794 hugepd_t *hpdp = NULL;
795 unsigned pdshift = PGDIR_SHIFT;
797 if (hpage_shift)
798 *hpage_shift = 0;
800 if (is_thp)
801 *is_thp = false;
803 pgdp = pgdir + pgd_index(ea);
804 pgd = READ_ONCE(*pgdp);
806 * Always operate on the local stack value. This make sure the
807 * value don't get updated by a parallel THP split/collapse,
808 * page fault or a page unmap. The return pte_t * is still not
809 * stable. So should be checked there for above conditions.
811 if (pgd_none(pgd))
812 return NULL;
813 else if (pgd_huge(pgd)) {
814 ret_pte = (pte_t *) pgdp;
815 goto out;
816 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
817 hpdp = (hugepd_t *)&pgd;
818 else {
820 * Even if we end up with an unmap, the pgtable will not
821 * be freed, because we do an rcu free and here we are
822 * irq disabled
824 pdshift = PUD_SHIFT;
825 pudp = pud_offset(&pgd, ea);
826 pud = READ_ONCE(*pudp);
828 if (pud_none(pud))
829 return NULL;
830 else if (pud_huge(pud)) {
831 ret_pte = (pte_t *) pudp;
832 goto out;
833 } else if (is_hugepd(__hugepd(pud_val(pud))))
834 hpdp = (hugepd_t *)&pud;
835 else {
836 pdshift = PMD_SHIFT;
837 pmdp = pmd_offset(&pud, ea);
838 pmd = READ_ONCE(*pmdp);
840 * A hugepage collapse is captured by pmd_none, because
841 * it mark the pmd none and do a hpte invalidate.
843 if (pmd_none(pmd))
844 return NULL;
846 if (pmd_trans_huge(pmd) || pmd_devmap(pmd)) {
847 if (is_thp)
848 *is_thp = true;
849 ret_pte = (pte_t *) pmdp;
850 goto out;
853 if (pmd_huge(pmd)) {
854 ret_pte = (pte_t *) pmdp;
855 goto out;
856 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
857 hpdp = (hugepd_t *)&pmd;
858 else
859 return pte_offset_kernel(&pmd, ea);
862 if (!hpdp)
863 return NULL;
865 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
866 pdshift = hugepd_shift(*hpdp);
867 out:
868 if (hpage_shift)
869 *hpage_shift = pdshift;
870 return ret_pte;
872 EXPORT_SYMBOL_GPL(__find_linux_pte);
874 int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
875 unsigned long end, int write, struct page **pages, int *nr)
877 unsigned long pte_end;
878 struct page *head, *page;
879 pte_t pte;
880 int refs;
882 pte_end = (addr + sz) & ~(sz-1);
883 if (pte_end < end)
884 end = pte_end;
886 pte = READ_ONCE(*ptep);
888 if (!pte_access_permitted(pte, write))
889 return 0;
891 /* hugepages are never "special" */
892 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
894 refs = 0;
895 head = pte_page(pte);
897 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
898 do {
899 VM_BUG_ON(compound_head(page) != head);
900 pages[*nr] = page;
901 (*nr)++;
902 page++;
903 refs++;
904 } while (addr += PAGE_SIZE, addr != end);
906 if (!page_cache_add_speculative(head, refs)) {
907 *nr -= refs;
908 return 0;
911 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
912 /* Could be optimized better */
913 *nr -= refs;
914 while (refs--)
915 put_page(head);
916 return 0;
919 return 1;