2 * Page table handling routines for radix page table.
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #define pr_fmt(fmt) "radix-mmu: " fmt
14 #include <linux/kernel.h>
15 #include <linux/sched/mm.h>
16 #include <linux/memblock.h>
17 #include <linux/of_fdt.h>
19 #include <linux/string_helpers.h>
20 #include <linux/stop_machine.h>
22 #include <asm/pgtable.h>
23 #include <asm/pgalloc.h>
24 #include <asm/mmu_context.h>
26 #include <asm/machdep.h>
28 #include <asm/firmware.h>
29 #include <asm/powernv.h>
30 #include <asm/sections.h>
31 #include <asm/trace.h>
33 #include <trace/events/thp.h>
35 unsigned int mmu_pid_bits
;
36 unsigned int mmu_base_pid
;
38 static int native_register_process_table(unsigned long base
, unsigned long pg_sz
,
39 unsigned long table_size
)
41 unsigned long patb0
, patb1
;
43 patb0
= be64_to_cpu(partition_tb
[0].patb0
);
44 patb1
= base
| table_size
| PATB_GR
;
46 mmu_partition_table_set_entry(0, patb0
, patb1
);
51 static __ref
void *early_alloc_pgtable(unsigned long size
, int nid
,
52 unsigned long region_start
, unsigned long region_end
)
57 if (region_start
|| region_end
) /* has region hint */
58 pa
= memblock_alloc_range(size
, size
, region_start
, region_end
,
60 else if (nid
!= -1) /* has node hint */
61 pa
= memblock_alloc_base_nid(size
, size
,
62 MEMBLOCK_ALLOC_ANYWHERE
,
66 pa
= memblock_alloc_base(size
, size
, MEMBLOCK_ALLOC_ANYWHERE
);
76 static int early_map_kernel_page(unsigned long ea
, unsigned long pa
,
78 unsigned int map_page_size
,
80 unsigned long region_start
, unsigned long region_end
)
82 unsigned long pfn
= pa
>> PAGE_SHIFT
;
88 pgdp
= pgd_offset_k(ea
);
89 if (pgd_none(*pgdp
)) {
90 pudp
= early_alloc_pgtable(PUD_TABLE_SIZE
, nid
,
91 region_start
, region_end
);
92 pgd_populate(&init_mm
, pgdp
, pudp
);
94 pudp
= pud_offset(pgdp
, ea
);
95 if (map_page_size
== PUD_SIZE
) {
99 if (pud_none(*pudp
)) {
100 pmdp
= early_alloc_pgtable(PMD_TABLE_SIZE
, nid
,
101 region_start
, region_end
);
102 pud_populate(&init_mm
, pudp
, pmdp
);
104 pmdp
= pmd_offset(pudp
, ea
);
105 if (map_page_size
== PMD_SIZE
) {
106 ptep
= pmdp_ptep(pmdp
);
109 if (!pmd_present(*pmdp
)) {
110 ptep
= early_alloc_pgtable(PAGE_SIZE
, nid
,
111 region_start
, region_end
);
112 pmd_populate_kernel(&init_mm
, pmdp
, ptep
);
114 ptep
= pte_offset_kernel(pmdp
, ea
);
117 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pfn
, flags
));
123 * nid, region_start, and region_end are hints to try to place the page
124 * table memory in the same node or region.
126 static int __map_kernel_page(unsigned long ea
, unsigned long pa
,
128 unsigned int map_page_size
,
130 unsigned long region_start
, unsigned long region_end
)
132 unsigned long pfn
= pa
>> PAGE_SHIFT
;
138 * Make sure task size is correct as per the max adddr
140 BUILD_BUG_ON(TASK_SIZE_USER64
> RADIX_PGTABLE_RANGE
);
142 if (unlikely(!slab_is_available()))
143 return early_map_kernel_page(ea
, pa
, flags
, map_page_size
,
144 nid
, region_start
, region_end
);
147 * Should make page table allocation functions be able to take a
148 * node, so we can place kernel page tables on the right nodes after
151 pgdp
= pgd_offset_k(ea
);
152 pudp
= pud_alloc(&init_mm
, pgdp
, ea
);
155 if (map_page_size
== PUD_SIZE
) {
156 ptep
= (pte_t
*)pudp
;
159 pmdp
= pmd_alloc(&init_mm
, pudp
, ea
);
162 if (map_page_size
== PMD_SIZE
) {
163 ptep
= pmdp_ptep(pmdp
);
166 ptep
= pte_alloc_kernel(pmdp
, ea
);
171 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pfn
, flags
));
176 int radix__map_kernel_page(unsigned long ea
, unsigned long pa
,
178 unsigned int map_page_size
)
180 return __map_kernel_page(ea
, pa
, flags
, map_page_size
, -1, 0, 0);
183 #ifdef CONFIG_STRICT_KERNEL_RWX
184 void radix__change_memory_range(unsigned long start
, unsigned long end
,
193 start
= ALIGN_DOWN(start
, PAGE_SIZE
);
194 end
= PAGE_ALIGN(end
); // aligns up
196 pr_debug("Changing flags on range %lx-%lx removing 0x%lx\n",
199 for (idx
= start
; idx
< end
; idx
+= PAGE_SIZE
) {
200 pgdp
= pgd_offset_k(idx
);
201 pudp
= pud_alloc(&init_mm
, pgdp
, idx
);
204 if (pud_huge(*pudp
)) {
205 ptep
= (pte_t
*)pudp
;
208 pmdp
= pmd_alloc(&init_mm
, pudp
, idx
);
211 if (pmd_huge(*pmdp
)) {
212 ptep
= pmdp_ptep(pmdp
);
215 ptep
= pte_alloc_kernel(pmdp
, idx
);
219 radix__pte_update(&init_mm
, idx
, ptep
, clear
, 0, 0);
222 radix__flush_tlb_kernel_range(start
, end
);
225 void radix__mark_rodata_ro(void)
227 unsigned long start
, end
;
230 * mark_rodata_ro() will mark itself as !writable at some point.
231 * Due to DD1 workaround in radix__pte_update(), we'll end up with
232 * an invalid pte and the system will crash quite severly.
234 if (cpu_has_feature(CPU_FTR_POWER9_DD1
)) {
235 pr_warn("Warning: Unable to mark rodata read only on P9 DD1\n");
239 start
= (unsigned long)_stext
;
240 end
= (unsigned long)__init_begin
;
242 radix__change_memory_range(start
, end
, _PAGE_WRITE
);
245 void radix__mark_initmem_nx(void)
247 unsigned long start
= (unsigned long)__init_begin
;
248 unsigned long end
= (unsigned long)__init_end
;
250 radix__change_memory_range(start
, end
, _PAGE_EXEC
);
252 #endif /* CONFIG_STRICT_KERNEL_RWX */
254 static inline void __meminit
print_mapping(unsigned long start
,
263 string_get_size(size
, 1, STRING_UNITS_2
, buf
, sizeof(buf
));
265 pr_info("Mapped 0x%016lx-0x%016lx with %s pages\n", start
, end
, buf
);
268 static int __meminit
create_physical_mapping(unsigned long start
,
272 unsigned long vaddr
, addr
, mapping_size
= 0;
274 unsigned long max_mapping_size
;
275 #ifdef CONFIG_STRICT_KERNEL_RWX
276 int split_text_mapping
= 1;
278 int split_text_mapping
= 0;
281 start
= _ALIGN_UP(start
, PAGE_SIZE
);
282 for (addr
= start
; addr
< end
; addr
+= mapping_size
) {
283 unsigned long gap
, previous_size
;
287 previous_size
= mapping_size
;
288 max_mapping_size
= PUD_SIZE
;
291 if (IS_ALIGNED(addr
, PUD_SIZE
) && gap
>= PUD_SIZE
&&
292 mmu_psize_defs
[MMU_PAGE_1G
].shift
&&
293 PUD_SIZE
<= max_mapping_size
)
294 mapping_size
= PUD_SIZE
;
295 else if (IS_ALIGNED(addr
, PMD_SIZE
) && gap
>= PMD_SIZE
&&
296 mmu_psize_defs
[MMU_PAGE_2M
].shift
)
297 mapping_size
= PMD_SIZE
;
299 mapping_size
= PAGE_SIZE
;
301 if (split_text_mapping
&& (mapping_size
== PUD_SIZE
) &&
302 (addr
<= __pa_symbol(__init_begin
)) &&
303 (addr
+ mapping_size
) >= __pa_symbol(_stext
)) {
304 max_mapping_size
= PMD_SIZE
;
308 if (split_text_mapping
&& (mapping_size
== PMD_SIZE
) &&
309 (addr
<= __pa_symbol(__init_begin
)) &&
310 (addr
+ mapping_size
) >= __pa_symbol(_stext
))
311 mapping_size
= PAGE_SIZE
;
313 if (mapping_size
!= previous_size
) {
314 print_mapping(start
, addr
, previous_size
);
318 vaddr
= (unsigned long)__va(addr
);
320 if (overlaps_kernel_text(vaddr
, vaddr
+ mapping_size
) ||
321 overlaps_interrupt_vector_text(vaddr
, vaddr
+ mapping_size
))
322 prot
= PAGE_KERNEL_X
;
326 rc
= __map_kernel_page(vaddr
, addr
, prot
, mapping_size
, nid
, start
, end
);
331 print_mapping(start
, addr
, mapping_size
);
335 void __init
radix_init_pgtable(void)
337 unsigned long rts_field
;
338 struct memblock_region
*reg
;
340 /* We don't support slb for radix */
343 * Create the linear mapping, using standard page size for now
345 for_each_memblock(memory
, reg
) {
347 * The memblock allocator is up at this point, so the
348 * page tables will be allocated within the range. No
349 * need or a node (which we don't have yet).
351 WARN_ON(create_physical_mapping(reg
->base
,
352 reg
->base
+ reg
->size
,
356 /* Find out how many PID bits are supported */
357 if (cpu_has_feature(CPU_FTR_HVMODE
)) {
360 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
362 * When KVM is possible, we only use the top half of the
363 * PID space to avoid collisions between host and guest PIDs
364 * which can cause problems due to prefetch when exiting the
367 mmu_base_pid
= 1 << (mmu_pid_bits
- 1);
372 /* The guest uses the bottom half of the PID space */
379 * Allocate Partition table and process table for the
382 BUG_ON(PRTB_SIZE_SHIFT
> 36);
383 process_tb
= early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT
, -1, 0, 0);
385 * Fill in the process table.
387 rts_field
= radix__get_tree_size();
388 process_tb
->prtb0
= cpu_to_be64(rts_field
| __pa(init_mm
.pgd
) | RADIX_PGD_INDEX_SIZE
);
390 * Fill in the partition table. We are suppose to use effective address
391 * of process table here. But our linear mapping also enable us to use
392 * physical address here.
394 register_process_table(__pa(process_tb
), 0, PRTB_SIZE_SHIFT
- 12);
395 pr_info("Process table %p and radix root for kernel: %p\n", process_tb
, init_mm
.pgd
);
396 asm volatile("ptesync" : : : "memory");
397 asm volatile(PPC_TLBIE_5(%0,%1,2,1,1) : :
398 "r" (TLBIEL_INVAL_SET_LPID
), "r" (0));
399 asm volatile("eieio; tlbsync; ptesync" : : : "memory");
400 trace_tlbie(0, 0, TLBIEL_INVAL_SET_LPID
, 0, 2, 1, 1);
403 * The init_mm context is given the first available (non-zero) PID,
404 * which is the "guard PID" and contains no page table. PIDR should
405 * never be set to zero because that duplicates the kernel address
406 * space at the 0x0... offset (quadrant 0)!
408 * An arbitrary PID that may later be allocated by the PID allocator
409 * for userspace processes must not be used either, because that
410 * would cause stale user mappings for that PID on CPUs outside of
411 * the TLB invalidation scheme (because it won't be in mm_cpumask).
413 * So permanently carve out one PID for the purpose of a guard PID.
415 init_mm
.context
.id
= mmu_base_pid
;
419 static void __init
radix_init_partition_table(void)
421 unsigned long rts_field
, dw0
;
423 mmu_partition_table_init();
424 rts_field
= radix__get_tree_size();
425 dw0
= rts_field
| __pa(init_mm
.pgd
) | RADIX_PGD_INDEX_SIZE
| PATB_HR
;
426 mmu_partition_table_set_entry(0, dw0
, 0);
428 pr_info("Initializing Radix MMU\n");
429 pr_info("Partition table %p\n", partition_tb
);
432 void __init
radix_init_native(void)
434 register_process_table
= native_register_process_table
;
437 static int __init
get_idx_from_shift(unsigned int shift
)
458 static int __init
radix_dt_scan_page_sizes(unsigned long node
,
459 const char *uname
, int depth
,
466 const char *type
= of_get_flat_dt_prop(node
, "device_type", NULL
);
468 /* We are scanning "cpu" nodes only */
469 if (type
== NULL
|| strcmp(type
, "cpu") != 0)
472 /* Find MMU PID size */
473 prop
= of_get_flat_dt_prop(node
, "ibm,mmu-pid-bits", &size
);
474 if (prop
&& size
== 4)
475 mmu_pid_bits
= be32_to_cpup(prop
);
477 /* Grab page size encodings */
478 prop
= of_get_flat_dt_prop(node
, "ibm,processor-radix-AP-encodings", &size
);
482 pr_info("Page sizes from device-tree:\n");
483 for (; size
>= 4; size
-= 4, ++prop
) {
485 struct mmu_psize_def
*def
;
487 /* top 3 bit is AP encoding */
488 shift
= be32_to_cpu(prop
[0]) & ~(0xe << 28);
489 ap
= be32_to_cpu(prop
[0]) >> 29;
490 pr_info("Page size shift = %d AP=0x%x\n", shift
, ap
);
492 idx
= get_idx_from_shift(shift
);
496 def
= &mmu_psize_defs
[idx
];
502 cur_cpu_spec
->mmu_features
&= ~MMU_FTR_NO_SLBIE_B
;
506 void __init
radix__early_init_devtree(void)
511 * Try to find the available page sizes in the device-tree
513 rc
= of_scan_flat_dt(radix_dt_scan_page_sizes
, NULL
);
514 if (rc
!= 0) /* Found */
517 * let's assume we have page 4k and 64k support
519 mmu_psize_defs
[MMU_PAGE_4K
].shift
= 12;
520 mmu_psize_defs
[MMU_PAGE_4K
].ap
= 0x0;
522 mmu_psize_defs
[MMU_PAGE_64K
].shift
= 16;
523 mmu_psize_defs
[MMU_PAGE_64K
].ap
= 0x5;
525 #ifdef CONFIG_SPARSEMEM_VMEMMAP
526 if (mmu_psize_defs
[MMU_PAGE_2M
].shift
) {
528 * map vmemmap using 2M if available
530 mmu_vmemmap_psize
= MMU_PAGE_2M
;
532 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
536 static void update_hid_for_radix(void)
539 unsigned long rb
= 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
541 asm volatile("ptesync": : :"memory");
542 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
543 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
544 : : "r"(rb
), "i"(1), "i"(0), "i"(2), "r"(0) : "memory");
545 /* prs = 1, ric = 2, rs = 0, r = 1 is = 3 */
546 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
547 : : "r"(rb
), "i"(1), "i"(1), "i"(2), "r"(0) : "memory");
548 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
549 trace_tlbie(0, 0, rb
, 0, 2, 0, 1);
550 trace_tlbie(0, 0, rb
, 0, 2, 1, 1);
555 hid0
= mfspr(SPRN_HID0
);
556 hid0
|= HID0_POWER9_RADIX
;
557 mtspr(SPRN_HID0
, hid0
);
558 asm volatile("isync": : :"memory");
560 /* Wait for it to happen */
561 while (!(mfspr(SPRN_HID0
) & HID0_POWER9_RADIX
))
565 static void radix_init_amor(void)
568 * In HV mode, we init AMOR (Authority Mask Override Register) so that
569 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
570 * Register), enable key 0 and set it to 1.
572 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
574 mtspr(SPRN_AMOR
, (3ul << 62));
577 static void radix_init_iamr(void)
582 * The IAMR should set to 0 on DD1.
584 if (cpu_has_feature(CPU_FTR_POWER9_DD1
))
590 * Radix always uses key0 of the IAMR to determine if an access is
591 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
594 mtspr(SPRN_IAMR
, iamr
);
597 void __init
radix__early_init_mmu(void)
601 #ifdef CONFIG_PPC_64K_PAGES
602 /* PAGE_SIZE mappings */
603 mmu_virtual_psize
= MMU_PAGE_64K
;
605 mmu_virtual_psize
= MMU_PAGE_4K
;
608 #ifdef CONFIG_SPARSEMEM_VMEMMAP
609 /* vmemmap mapping */
610 mmu_vmemmap_psize
= mmu_virtual_psize
;
613 * initialize page table size
615 __pte_index_size
= RADIX_PTE_INDEX_SIZE
;
616 __pmd_index_size
= RADIX_PMD_INDEX_SIZE
;
617 __pud_index_size
= RADIX_PUD_INDEX_SIZE
;
618 __pgd_index_size
= RADIX_PGD_INDEX_SIZE
;
619 __pud_cache_index
= RADIX_PUD_INDEX_SIZE
;
620 __pte_table_size
= RADIX_PTE_TABLE_SIZE
;
621 __pmd_table_size
= RADIX_PMD_TABLE_SIZE
;
622 __pud_table_size
= RADIX_PUD_TABLE_SIZE
;
623 __pgd_table_size
= RADIX_PGD_TABLE_SIZE
;
625 __pmd_val_bits
= RADIX_PMD_VAL_BITS
;
626 __pud_val_bits
= RADIX_PUD_VAL_BITS
;
627 __pgd_val_bits
= RADIX_PGD_VAL_BITS
;
629 __kernel_virt_start
= RADIX_KERN_VIRT_START
;
630 __kernel_virt_size
= RADIX_KERN_VIRT_SIZE
;
631 __vmalloc_start
= RADIX_VMALLOC_START
;
632 __vmalloc_end
= RADIX_VMALLOC_END
;
633 __kernel_io_start
= RADIX_KERN_IO_START
;
634 vmemmap
= (struct page
*)RADIX_VMEMMAP_BASE
;
635 ioremap_bot
= IOREMAP_BASE
;
638 pci_io_base
= ISA_IO_BASE
;
640 __pte_frag_nr
= RADIX_PTE_FRAG_NR
;
641 __pte_frag_size_shift
= RADIX_PTE_FRAG_SIZE_SHIFT
;
642 __pmd_frag_nr
= RADIX_PMD_FRAG_NR
;
643 __pmd_frag_size_shift
= RADIX_PMD_FRAG_SIZE_SHIFT
;
645 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
647 if (cpu_has_feature(CPU_FTR_POWER9_DD1
))
648 update_hid_for_radix();
649 lpcr
= mfspr(SPRN_LPCR
);
650 mtspr(SPRN_LPCR
, lpcr
| LPCR_UPRT
| LPCR_HR
);
651 radix_init_partition_table();
654 radix_init_pseries();
657 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE
);
660 radix_init_pgtable();
661 /* Switch to the guard PID before turning on MMU */
662 radix__switch_mmu_context(NULL
, &init_mm
);
663 if (cpu_has_feature(CPU_FTR_HVMODE
))
667 void radix__early_init_mmu_secondary(void)
671 * update partition table control register and UPRT
673 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
675 if (cpu_has_feature(CPU_FTR_POWER9_DD1
))
676 update_hid_for_radix();
678 lpcr
= mfspr(SPRN_LPCR
);
679 mtspr(SPRN_LPCR
, lpcr
| LPCR_UPRT
| LPCR_HR
);
682 __pa(partition_tb
) | (PATB_SIZE_SHIFT
- 12));
687 radix__switch_mmu_context(NULL
, &init_mm
);
688 if (cpu_has_feature(CPU_FTR_HVMODE
))
692 void radix__mmu_cleanup_all(void)
696 if (!firmware_has_feature(FW_FEATURE_LPAR
)) {
697 lpcr
= mfspr(SPRN_LPCR
);
698 mtspr(SPRN_LPCR
, lpcr
& ~LPCR_UPRT
);
700 powernv_set_nmmu_ptcr(0);
701 radix__flush_tlb_all();
705 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base
,
706 phys_addr_t first_memblock_size
)
708 /* We don't currently support the first MEMBLOCK not mapping 0
709 * physical on those processors
711 BUG_ON(first_memblock_base
!= 0);
714 * Radix mode is not limited by RMA / VRMA addressing.
716 ppc64_rma_size
= ULONG_MAX
;
719 #ifdef CONFIG_MEMORY_HOTPLUG
720 static void free_pte_table(pte_t
*pte_start
, pmd_t
*pmd
)
725 for (i
= 0; i
< PTRS_PER_PTE
; i
++) {
731 pte_free_kernel(&init_mm
, pte_start
);
735 static void free_pmd_table(pmd_t
*pmd_start
, pud_t
*pud
)
740 for (i
= 0; i
< PTRS_PER_PMD
; i
++) {
746 pmd_free(&init_mm
, pmd_start
);
750 struct change_mapping_params
{
754 unsigned long aligned_start
;
755 unsigned long aligned_end
;
758 static int __meminit
stop_machine_change_mapping(void *data
)
760 struct change_mapping_params
*params
=
761 (struct change_mapping_params
*)data
;
766 spin_unlock(&init_mm
.page_table_lock
);
767 pte_clear(&init_mm
, params
->aligned_start
, params
->pte
);
768 create_physical_mapping(params
->aligned_start
, params
->start
, -1);
769 create_physical_mapping(params
->end
, params
->aligned_end
, -1);
770 spin_lock(&init_mm
.page_table_lock
);
774 static void remove_pte_table(pte_t
*pte_start
, unsigned long addr
,
780 pte
= pte_start
+ pte_index(addr
);
781 for (; addr
< end
; addr
= next
, pte
++) {
782 next
= (addr
+ PAGE_SIZE
) & PAGE_MASK
;
786 if (!pte_present(*pte
))
789 if (!PAGE_ALIGNED(addr
) || !PAGE_ALIGNED(next
)) {
791 * The vmemmap_free() and remove_section_mapping()
792 * codepaths call us with aligned addresses.
794 WARN_ONCE(1, "%s: unaligned range\n", __func__
);
798 pte_clear(&init_mm
, addr
, pte
);
803 * clear the pte and potentially split the mapping helper
805 static void __meminit
split_kernel_mapping(unsigned long addr
, unsigned long end
,
806 unsigned long size
, pte_t
*pte
)
808 unsigned long mask
= ~(size
- 1);
809 unsigned long aligned_start
= addr
& mask
;
810 unsigned long aligned_end
= addr
+ size
;
811 struct change_mapping_params params
;
812 bool split_region
= false;
814 if ((end
- addr
) < size
) {
816 * We're going to clear the PTE, but not flushed
817 * the mapping, time to remap and flush. The
818 * effects if visible outside the processor or
819 * if we are running in code close to the
820 * mapping we cleared, we are in trouble.
822 if (overlaps_kernel_text(aligned_start
, addr
) ||
823 overlaps_kernel_text(end
, aligned_end
)) {
825 * Hack, just return, don't pte_clear
827 WARN_ONCE(1, "Linear mapping %lx->%lx overlaps kernel "
828 "text, not splitting\n", addr
, end
);
838 params
.aligned_start
= addr
& ~(size
- 1);
839 params
.aligned_end
= min_t(unsigned long, aligned_end
,
840 (unsigned long)__va(memblock_end_of_DRAM()));
841 stop_machine(stop_machine_change_mapping
, ¶ms
, NULL
);
845 pte_clear(&init_mm
, addr
, pte
);
848 static void remove_pmd_table(pmd_t
*pmd_start
, unsigned long addr
,
855 pmd
= pmd_start
+ pmd_index(addr
);
856 for (; addr
< end
; addr
= next
, pmd
++) {
857 next
= pmd_addr_end(addr
, end
);
859 if (!pmd_present(*pmd
))
862 if (pmd_huge(*pmd
)) {
863 split_kernel_mapping(addr
, end
, PMD_SIZE
, (pte_t
*)pmd
);
867 pte_base
= (pte_t
*)pmd_page_vaddr(*pmd
);
868 remove_pte_table(pte_base
, addr
, next
);
869 free_pte_table(pte_base
, pmd
);
873 static void remove_pud_table(pud_t
*pud_start
, unsigned long addr
,
880 pud
= pud_start
+ pud_index(addr
);
881 for (; addr
< end
; addr
= next
, pud
++) {
882 next
= pud_addr_end(addr
, end
);
884 if (!pud_present(*pud
))
887 if (pud_huge(*pud
)) {
888 split_kernel_mapping(addr
, end
, PUD_SIZE
, (pte_t
*)pud
);
892 pmd_base
= (pmd_t
*)pud_page_vaddr(*pud
);
893 remove_pmd_table(pmd_base
, addr
, next
);
894 free_pmd_table(pmd_base
, pud
);
898 static void __meminit
remove_pagetable(unsigned long start
, unsigned long end
)
900 unsigned long addr
, next
;
904 spin_lock(&init_mm
.page_table_lock
);
906 for (addr
= start
; addr
< end
; addr
= next
) {
907 next
= pgd_addr_end(addr
, end
);
909 pgd
= pgd_offset_k(addr
);
910 if (!pgd_present(*pgd
))
913 if (pgd_huge(*pgd
)) {
914 split_kernel_mapping(addr
, end
, PGDIR_SIZE
, (pte_t
*)pgd
);
918 pud_base
= (pud_t
*)pgd_page_vaddr(*pgd
);
919 remove_pud_table(pud_base
, addr
, next
);
922 spin_unlock(&init_mm
.page_table_lock
);
923 radix__flush_tlb_kernel_range(start
, end
);
926 int __meminit
radix__create_section_mapping(unsigned long start
, unsigned long end
, int nid
)
928 return create_physical_mapping(start
, end
, nid
);
931 int __meminit
radix__remove_section_mapping(unsigned long start
, unsigned long end
)
933 remove_pagetable(start
, end
);
936 #endif /* CONFIG_MEMORY_HOTPLUG */
938 #ifdef CONFIG_SPARSEMEM_VMEMMAP
939 static int __map_kernel_page_nid(unsigned long ea
, unsigned long pa
,
940 pgprot_t flags
, unsigned int map_page_size
,
943 return __map_kernel_page(ea
, pa
, flags
, map_page_size
, nid
, 0, 0);
946 int __meminit
radix__vmemmap_create_mapping(unsigned long start
,
947 unsigned long page_size
,
950 /* Create a PTE encoding */
951 unsigned long flags
= _PAGE_PRESENT
| _PAGE_ACCESSED
| _PAGE_KERNEL_RW
;
952 int nid
= early_pfn_to_nid(phys
>> PAGE_SHIFT
);
955 ret
= __map_kernel_page_nid(start
, phys
, __pgprot(flags
), page_size
, nid
);
961 #ifdef CONFIG_MEMORY_HOTPLUG
962 void __meminit
radix__vmemmap_remove_mapping(unsigned long start
, unsigned long page_size
)
964 remove_pagetable(start
, start
+ page_size
);
969 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
971 unsigned long radix__pmd_hugepage_update(struct mm_struct
*mm
, unsigned long addr
,
972 pmd_t
*pmdp
, unsigned long clr
,
977 #ifdef CONFIG_DEBUG_VM
978 WARN_ON(!radix__pmd_trans_huge(*pmdp
) && !pmd_devmap(*pmdp
));
979 assert_spin_locked(pmd_lockptr(mm
, pmdp
));
982 old
= radix__pte_update(mm
, addr
, (pte_t
*)pmdp
, clr
, set
, 1);
983 trace_hugepage_update(addr
, old
, clr
, set
);
988 pmd_t
radix__pmdp_collapse_flush(struct vm_area_struct
*vma
, unsigned long address
,
994 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
995 VM_BUG_ON(radix__pmd_trans_huge(*pmdp
));
996 VM_BUG_ON(pmd_devmap(*pmdp
));
998 * khugepaged calls this for normal pmd
1003 /*FIXME!! Verify whether we need this kick below */
1004 serialize_against_pte_lookup(vma
->vm_mm
);
1006 radix__flush_tlb_collapsed_pmd(vma
->vm_mm
, address
);
1012 * For us pgtable_t is pte_t *. Inorder to save the deposisted
1013 * page table, we consider the allocated page table as a list
1014 * head. On withdraw we need to make sure we zero out the used
1015 * list_head memory area.
1017 void radix__pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
1020 struct list_head
*lh
= (struct list_head
*) pgtable
;
1022 assert_spin_locked(pmd_lockptr(mm
, pmdp
));
1025 if (!pmd_huge_pte(mm
, pmdp
))
1028 list_add(lh
, (struct list_head
*) pmd_huge_pte(mm
, pmdp
));
1029 pmd_huge_pte(mm
, pmdp
) = pgtable
;
1032 pgtable_t
radix__pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
)
1036 struct list_head
*lh
;
1038 assert_spin_locked(pmd_lockptr(mm
, pmdp
));
1041 pgtable
= pmd_huge_pte(mm
, pmdp
);
1042 lh
= (struct list_head
*) pgtable
;
1044 pmd_huge_pte(mm
, pmdp
) = NULL
;
1046 pmd_huge_pte(mm
, pmdp
) = (pgtable_t
) lh
->next
;
1049 ptep
= (pte_t
*) pgtable
;
1057 pmd_t
radix__pmdp_huge_get_and_clear(struct mm_struct
*mm
,
1058 unsigned long addr
, pmd_t
*pmdp
)
1063 old
= radix__pmd_hugepage_update(mm
, addr
, pmdp
, ~0UL, 0);
1064 old_pmd
= __pmd(old
);
1066 * Serialize against find_current_mm_pte which does lock-less
1067 * lookup in page tables with local interrupts disabled. For huge pages
1068 * it casts pmd_t to pte_t. Since format of pte_t is different from
1069 * pmd_t we want to prevent transit from pmd pointing to page table
1070 * to pmd pointing to huge page (and back) while interrupts are disabled.
1071 * We clear pmd to possibly replace it with page table pointer in
1072 * different code paths. So make sure we wait for the parallel
1073 * find_current_mm_pte to finish.
1075 serialize_against_pte_lookup(mm
);
1079 int radix__has_transparent_hugepage(void)
1081 /* For radix 2M at PMD level means thp */
1082 if (mmu_psize_defs
[MMU_PAGE_2M
].shift
== PMD_SHIFT
)
1086 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1088 void radix__ptep_set_access_flags(struct vm_area_struct
*vma
, pte_t
*ptep
,
1089 pte_t entry
, unsigned long address
, int psize
)
1091 struct mm_struct
*mm
= vma
->vm_mm
;
1092 unsigned long set
= pte_val(entry
) & (_PAGE_DIRTY
| _PAGE_ACCESSED
|
1093 _PAGE_RW
| _PAGE_EXEC
);
1095 * To avoid NMMU hang while relaxing access, we need mark
1096 * the pte invalid in between.
1098 if (cpu_has_feature(CPU_FTR_POWER9_DD1
) ||
1099 atomic_read(&mm
->context
.copros
) > 0) {
1100 unsigned long old_pte
, new_pte
;
1102 old_pte
= __radix_pte_update(ptep
, ~0, 0);
1106 new_pte
= old_pte
| set
;
1107 radix__flush_tlb_page_psize(mm
, address
, psize
);
1108 __radix_pte_update(ptep
, 0, new_pte
);
1110 __radix_pte_update(ptep
, 0, set
);
1112 * Book3S does not require a TLB flush when relaxing access
1113 * restrictions when the address space is not attached to a
1114 * NMMU, because the core MMU will reload the pte after taking
1115 * an access fault, which is defined by the architectue.
1118 /* See ptesync comment in radix__set_pte_at */