4 * (C) Copyright IBM Corporation 2005.
5 * Released under GPL v2.
6 * Author : Ram Pai (linuxram@us.ibm.com)
9 #include <linux/mnt_namespace.h>
10 #include <linux/mount.h>
12 #include <linux/nsproxy.h>
16 /* return the next shared peer mount of @p */
17 static inline struct mount
*next_peer(struct mount
*p
)
19 return list_entry(p
->mnt_share
.next
, struct mount
, mnt_share
);
22 static inline struct mount
*first_slave(struct mount
*p
)
24 return list_entry(p
->mnt_slave_list
.next
, struct mount
, mnt_slave
);
27 static inline struct mount
*next_slave(struct mount
*p
)
29 return list_entry(p
->mnt_slave
.next
, struct mount
, mnt_slave
);
32 static struct mount
*get_peer_under_root(struct mount
*mnt
,
33 struct mnt_namespace
*ns
,
34 const struct path
*root
)
36 struct mount
*m
= mnt
;
39 /* Check the namespace first for optimization */
40 if (m
->mnt_ns
== ns
&& is_path_reachable(m
, m
->mnt
.mnt_root
, root
))
50 * Get ID of closest dominating peer group having a representative
51 * under the given root.
53 * Caller must hold namespace_sem
55 int get_dominating_id(struct mount
*mnt
, const struct path
*root
)
59 for (m
= mnt
->mnt_master
; m
!= NULL
; m
= m
->mnt_master
) {
60 struct mount
*d
= get_peer_under_root(m
, mnt
->mnt_ns
, root
);
62 return d
->mnt_group_id
;
68 static int do_make_slave(struct mount
*mnt
)
70 struct mount
*peer_mnt
= mnt
, *master
= mnt
->mnt_master
;
71 struct mount
*slave_mnt
;
74 * slave 'mnt' to a peer mount that has the
75 * same root dentry. If none is available then
76 * slave it to anything that is available.
78 while ((peer_mnt
= next_peer(peer_mnt
)) != mnt
&&
79 peer_mnt
->mnt
.mnt_root
!= mnt
->mnt
.mnt_root
) ;
81 if (peer_mnt
== mnt
) {
82 peer_mnt
= next_peer(mnt
);
86 if (mnt
->mnt_group_id
&& IS_MNT_SHARED(mnt
) &&
87 list_empty(&mnt
->mnt_share
))
88 mnt_release_group_id(mnt
);
90 list_del_init(&mnt
->mnt_share
);
91 mnt
->mnt_group_id
= 0;
97 list_for_each_entry(slave_mnt
, &mnt
->mnt_slave_list
, mnt_slave
)
98 slave_mnt
->mnt_master
= master
;
99 list_move(&mnt
->mnt_slave
, &master
->mnt_slave_list
);
100 list_splice(&mnt
->mnt_slave_list
, master
->mnt_slave_list
.prev
);
101 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
103 struct list_head
*p
= &mnt
->mnt_slave_list
;
104 while (!list_empty(p
)) {
105 slave_mnt
= list_first_entry(p
,
106 struct mount
, mnt_slave
);
107 list_del_init(&slave_mnt
->mnt_slave
);
108 slave_mnt
->mnt_master
= NULL
;
111 mnt
->mnt_master
= master
;
112 CLEAR_MNT_SHARED(mnt
);
117 * vfsmount lock must be held for write
119 void change_mnt_propagation(struct mount
*mnt
, int type
)
121 if (type
== MS_SHARED
) {
126 if (type
!= MS_SLAVE
) {
127 list_del_init(&mnt
->mnt_slave
);
128 mnt
->mnt_master
= NULL
;
129 if (type
== MS_UNBINDABLE
)
130 mnt
->mnt
.mnt_flags
|= MNT_UNBINDABLE
;
132 mnt
->mnt
.mnt_flags
&= ~MNT_UNBINDABLE
;
137 * get the next mount in the propagation tree.
138 * @m: the mount seen last
139 * @origin: the original mount from where the tree walk initiated
141 * Note that peer groups form contiguous segments of slave lists.
142 * We rely on that in get_source() to be able to find out if
143 * vfsmount found while iterating with propagation_next() is
144 * a peer of one we'd found earlier.
146 static struct mount
*propagation_next(struct mount
*m
,
147 struct mount
*origin
)
149 /* are there any slaves of this mount? */
150 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
151 return first_slave(m
);
154 struct mount
*master
= m
->mnt_master
;
156 if (master
== origin
->mnt_master
) {
157 struct mount
*next
= next_peer(m
);
158 return (next
== origin
) ? NULL
: next
;
159 } else if (m
->mnt_slave
.next
!= &master
->mnt_slave_list
)
160 return next_slave(m
);
167 static struct mount
*next_group(struct mount
*m
, struct mount
*origin
)
172 if (!IS_MNT_NEW(m
) && !list_empty(&m
->mnt_slave_list
))
173 return first_slave(m
);
175 if (m
->mnt_group_id
== origin
->mnt_group_id
) {
178 } else if (m
->mnt_slave
.next
!= &next
->mnt_slave
)
182 /* m is the last peer */
184 struct mount
*master
= m
->mnt_master
;
185 if (m
->mnt_slave
.next
!= &master
->mnt_slave_list
)
186 return next_slave(m
);
187 m
= next_peer(master
);
188 if (master
->mnt_group_id
== origin
->mnt_group_id
)
190 if (master
->mnt_slave
.next
== &m
->mnt_slave
)
199 /* all accesses are serialized by namespace_sem */
200 static struct user_namespace
*user_ns
;
201 static struct mount
*last_dest
, *last_source
, *dest_master
;
202 static struct mountpoint
*mp
;
203 static struct hlist_head
*list
;
205 static int propagate_one(struct mount
*m
)
209 /* skip ones added by this propagate_mnt() */
212 /* skip if mountpoint isn't covered by it */
213 if (!is_subdir(mp
->m_dentry
, m
->mnt
.mnt_root
))
215 if (m
->mnt_group_id
== last_dest
->mnt_group_id
) {
216 type
= CL_MAKE_SHARED
;
219 for (n
= m
; ; n
= p
) {
221 if (p
== dest_master
|| IS_MNT_MARKED(p
)) {
222 while (last_dest
->mnt_master
!= p
) {
223 last_source
= last_source
->mnt_master
;
224 last_dest
= last_source
->mnt_parent
;
226 if (n
->mnt_group_id
!= last_dest
->mnt_group_id
) {
227 last_source
= last_source
->mnt_master
;
228 last_dest
= last_source
->mnt_parent
;
234 /* beginning of peer group among the slaves? */
235 if (IS_MNT_SHARED(m
))
236 type
|= CL_MAKE_SHARED
;
239 /* Notice when we are propagating across user namespaces */
240 if (m
->mnt_ns
->user_ns
!= user_ns
)
241 type
|= CL_UNPRIVILEGED
;
242 child
= copy_tree(last_source
, last_source
->mnt
.mnt_root
, type
);
244 return PTR_ERR(child
);
245 mnt_set_mountpoint(m
, mp
, child
);
248 if (m
->mnt_master
!= dest_master
) {
249 read_seqlock_excl(&mount_lock
);
250 SET_MNT_MARK(m
->mnt_master
);
251 read_sequnlock_excl(&mount_lock
);
253 hlist_add_head(&child
->mnt_hash
, list
);
258 * mount 'source_mnt' under the destination 'dest_mnt' at
259 * dentry 'dest_dentry'. And propagate that mount to
260 * all the peer and slave mounts of 'dest_mnt'.
261 * Link all the new mounts into a propagation tree headed at
262 * source_mnt. Also link all the new mounts using ->mnt_list
263 * headed at source_mnt's ->mnt_list
265 * @dest_mnt: destination mount.
266 * @dest_dentry: destination dentry.
267 * @source_mnt: source mount.
268 * @tree_list : list of heads of trees to be attached.
270 int propagate_mnt(struct mount
*dest_mnt
, struct mountpoint
*dest_mp
,
271 struct mount
*source_mnt
, struct hlist_head
*tree_list
)
277 * we don't want to bother passing tons of arguments to
278 * propagate_one(); everything is serialized by namespace_sem,
279 * so globals will do just fine.
281 user_ns
= current
->nsproxy
->mnt_ns
->user_ns
;
282 last_dest
= dest_mnt
;
283 last_source
= source_mnt
;
286 dest_master
= dest_mnt
->mnt_master
;
288 /* all peers of dest_mnt, except dest_mnt itself */
289 for (n
= next_peer(dest_mnt
); n
!= dest_mnt
; n
= next_peer(n
)) {
290 ret
= propagate_one(n
);
295 /* all slave groups */
296 for (m
= next_group(dest_mnt
, dest_mnt
); m
;
297 m
= next_group(m
, dest_mnt
)) {
298 /* everything in that slave group */
301 ret
= propagate_one(n
);
308 read_seqlock_excl(&mount_lock
);
309 hlist_for_each_entry(n
, tree_list
, mnt_hash
) {
311 if (m
->mnt_master
!= dest_mnt
->mnt_master
)
312 CLEAR_MNT_MARK(m
->mnt_master
);
314 read_sequnlock_excl(&mount_lock
);
319 * return true if the refcount is greater than count
321 static inline int do_refcount_check(struct mount
*mnt
, int count
)
323 return mnt_get_count(mnt
) > count
;
327 * check if the mount 'mnt' can be unmounted successfully.
328 * @mnt: the mount to be checked for unmount
329 * NOTE: unmounting 'mnt' would naturally propagate to all
330 * other mounts its parent propagates to.
331 * Check if any of these mounts that **do not have submounts**
332 * have more references than 'refcnt'. If so return busy.
334 * vfsmount lock must be held for write
336 int propagate_mount_busy(struct mount
*mnt
, int refcnt
)
338 struct mount
*m
, *child
;
339 struct mount
*parent
= mnt
->mnt_parent
;
343 return do_refcount_check(mnt
, refcnt
);
346 * quickly check if the current mount can be unmounted.
347 * If not, we don't have to go checking for all other
350 if (!list_empty(&mnt
->mnt_mounts
) || do_refcount_check(mnt
, refcnt
))
353 for (m
= propagation_next(parent
, parent
); m
;
354 m
= propagation_next(m
, parent
)) {
355 child
= __lookup_mnt_last(&m
->mnt
, mnt
->mnt_mountpoint
);
356 if (child
&& list_empty(&child
->mnt_mounts
) &&
357 (ret
= do_refcount_check(child
, 1)))
364 * NOTE: unmounting 'mnt' naturally propagates to all other mounts its
365 * parent propagates to.
367 static void __propagate_umount(struct mount
*mnt
)
369 struct mount
*parent
= mnt
->mnt_parent
;
372 BUG_ON(parent
== mnt
);
374 for (m
= propagation_next(parent
, parent
); m
;
375 m
= propagation_next(m
, parent
)) {
377 struct mount
*child
= __lookup_mnt_last(&m
->mnt
,
378 mnt
->mnt_mountpoint
);
380 * umount the child only if the child has no
383 if (child
&& list_empty(&child
->mnt_mounts
)) {
384 hlist_del_init_rcu(&child
->mnt_hash
);
385 hlist_add_before_rcu(&child
->mnt_hash
, &mnt
->mnt_hash
);
391 * collect all mounts that receive propagation from the mount in @list,
392 * and return these additional mounts in the same list.
393 * @list: the list of mounts to be unmounted.
395 * vfsmount lock must be held for write
397 int propagate_umount(struct hlist_head
*list
)
401 hlist_for_each_entry(mnt
, list
, mnt_hash
)
402 __propagate_umount(mnt
);