mtd: nand: add "page" argument for read_subpage hook
[linux/fpc-iii.git] / mm / compaction.c
blobb48c5259ea33dfed9e4c08c956d8e30a36480c42
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
24 count_vm_event(item);
27 static inline void count_compact_events(enum vm_event_item item, long delta)
29 count_vm_events(item, delta);
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
41 static unsigned long release_freepages(struct list_head *freelist)
43 struct page *page, *next;
44 unsigned long count = 0;
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
52 return count;
55 static void map_pages(struct list_head *list)
57 struct page *page;
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
65 static inline bool migrate_async_suitable(int migratetype)
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 struct page *page)
75 if (cc->ignore_skip_hint)
76 return true;
78 return !get_pageblock_skip(page);
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
86 static void __reset_isolation_suitable(struct zone *zone)
88 unsigned long start_pfn = zone->zone_start_pfn;
89 unsigned long end_pfn = zone_end_pfn(zone);
90 unsigned long pfn;
92 zone->compact_cached_migrate_pfn = start_pfn;
93 zone->compact_cached_free_pfn = end_pfn;
94 zone->compact_blockskip_flush = false;
96 /* Walk the zone and mark every pageblock as suitable for isolation */
97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
98 struct page *page;
100 cond_resched();
102 if (!pfn_valid(pfn))
103 continue;
105 page = pfn_to_page(pfn);
106 if (zone != page_zone(page))
107 continue;
109 clear_pageblock_skip(page);
113 void reset_isolation_suitable(pg_data_t *pgdat)
115 int zoneid;
117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
118 struct zone *zone = &pgdat->node_zones[zoneid];
119 if (!populated_zone(zone))
120 continue;
122 /* Only flush if a full compaction finished recently */
123 if (zone->compact_blockskip_flush)
124 __reset_isolation_suitable(zone);
129 * If no pages were isolated then mark this pageblock to be skipped in the
130 * future. The information is later cleared by __reset_isolation_suitable().
132 static void update_pageblock_skip(struct compact_control *cc,
133 struct page *page, unsigned long nr_isolated,
134 bool migrate_scanner)
136 struct zone *zone = cc->zone;
138 if (cc->ignore_skip_hint)
139 return;
141 if (!page)
142 return;
144 if (!nr_isolated) {
145 unsigned long pfn = page_to_pfn(page);
146 set_pageblock_skip(page);
148 /* Update where compaction should restart */
149 if (migrate_scanner) {
150 if (!cc->finished_update_migrate &&
151 pfn > zone->compact_cached_migrate_pfn)
152 zone->compact_cached_migrate_pfn = pfn;
153 } else {
154 if (!cc->finished_update_free &&
155 pfn < zone->compact_cached_free_pfn)
156 zone->compact_cached_free_pfn = pfn;
160 #else
161 static inline bool isolation_suitable(struct compact_control *cc,
162 struct page *page)
164 return true;
167 static void update_pageblock_skip(struct compact_control *cc,
168 struct page *page, unsigned long nr_isolated,
169 bool migrate_scanner)
172 #endif /* CONFIG_COMPACTION */
174 static inline bool should_release_lock(spinlock_t *lock)
176 return need_resched() || spin_is_contended(lock);
180 * Compaction requires the taking of some coarse locks that are potentially
181 * very heavily contended. Check if the process needs to be scheduled or
182 * if the lock is contended. For async compaction, back out in the event
183 * if contention is severe. For sync compaction, schedule.
185 * Returns true if the lock is held.
186 * Returns false if the lock is released and compaction should abort
188 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
189 bool locked, struct compact_control *cc)
191 if (should_release_lock(lock)) {
192 if (locked) {
193 spin_unlock_irqrestore(lock, *flags);
194 locked = false;
197 /* async aborts if taking too long or contended */
198 if (!cc->sync) {
199 cc->contended = true;
200 return false;
203 cond_resched();
206 if (!locked)
207 spin_lock_irqsave(lock, *flags);
208 return true;
211 static inline bool compact_trylock_irqsave(spinlock_t *lock,
212 unsigned long *flags, struct compact_control *cc)
214 return compact_checklock_irqsave(lock, flags, false, cc);
217 /* Returns true if the page is within a block suitable for migration to */
218 static bool suitable_migration_target(struct page *page)
220 int migratetype = get_pageblock_migratetype(page);
222 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
223 if (migratetype == MIGRATE_RESERVE)
224 return false;
226 if (is_migrate_isolate(migratetype))
227 return false;
229 /* If the page is a large free page, then allow migration */
230 if (PageBuddy(page) && page_order(page) >= pageblock_order)
231 return true;
233 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
234 if (migrate_async_suitable(migratetype))
235 return true;
237 /* Otherwise skip the block */
238 return false;
242 * Isolate free pages onto a private freelist. If @strict is true, will abort
243 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
244 * (even though it may still end up isolating some pages).
246 static unsigned long isolate_freepages_block(struct compact_control *cc,
247 unsigned long blockpfn,
248 unsigned long end_pfn,
249 struct list_head *freelist,
250 bool strict)
252 int nr_scanned = 0, total_isolated = 0;
253 struct page *cursor, *valid_page = NULL;
254 unsigned long nr_strict_required = end_pfn - blockpfn;
255 unsigned long flags;
256 bool locked = false;
258 cursor = pfn_to_page(blockpfn);
260 /* Isolate free pages. */
261 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
262 int isolated, i;
263 struct page *page = cursor;
265 nr_scanned++;
266 if (!pfn_valid_within(blockpfn))
267 continue;
268 if (!valid_page)
269 valid_page = page;
270 if (!PageBuddy(page))
271 continue;
274 * The zone lock must be held to isolate freepages.
275 * Unfortunately this is a very coarse lock and can be
276 * heavily contended if there are parallel allocations
277 * or parallel compactions. For async compaction do not
278 * spin on the lock and we acquire the lock as late as
279 * possible.
281 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
282 locked, cc);
283 if (!locked)
284 break;
286 /* Recheck this is a suitable migration target under lock */
287 if (!strict && !suitable_migration_target(page))
288 break;
290 /* Recheck this is a buddy page under lock */
291 if (!PageBuddy(page))
292 continue;
294 /* Found a free page, break it into order-0 pages */
295 isolated = split_free_page(page);
296 if (!isolated && strict)
297 break;
298 total_isolated += isolated;
299 for (i = 0; i < isolated; i++) {
300 list_add(&page->lru, freelist);
301 page++;
304 /* If a page was split, advance to the end of it */
305 if (isolated) {
306 blockpfn += isolated - 1;
307 cursor += isolated - 1;
311 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
314 * If strict isolation is requested by CMA then check that all the
315 * pages requested were isolated. If there were any failures, 0 is
316 * returned and CMA will fail.
318 if (strict && nr_strict_required > total_isolated)
319 total_isolated = 0;
321 if (locked)
322 spin_unlock_irqrestore(&cc->zone->lock, flags);
324 /* Update the pageblock-skip if the whole pageblock was scanned */
325 if (blockpfn == end_pfn)
326 update_pageblock_skip(cc, valid_page, total_isolated, false);
328 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
329 if (total_isolated)
330 count_compact_events(COMPACTISOLATED, total_isolated);
331 return total_isolated;
335 * isolate_freepages_range() - isolate free pages.
336 * @start_pfn: The first PFN to start isolating.
337 * @end_pfn: The one-past-last PFN.
339 * Non-free pages, invalid PFNs, or zone boundaries within the
340 * [start_pfn, end_pfn) range are considered errors, cause function to
341 * undo its actions and return zero.
343 * Otherwise, function returns one-past-the-last PFN of isolated page
344 * (which may be greater then end_pfn if end fell in a middle of
345 * a free page).
347 unsigned long
348 isolate_freepages_range(struct compact_control *cc,
349 unsigned long start_pfn, unsigned long end_pfn)
351 unsigned long isolated, pfn, block_end_pfn;
352 LIST_HEAD(freelist);
354 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
355 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
356 break;
359 * On subsequent iterations ALIGN() is actually not needed,
360 * but we keep it that we not to complicate the code.
362 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
363 block_end_pfn = min(block_end_pfn, end_pfn);
365 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
366 &freelist, true);
369 * In strict mode, isolate_freepages_block() returns 0 if
370 * there are any holes in the block (ie. invalid PFNs or
371 * non-free pages).
373 if (!isolated)
374 break;
377 * If we managed to isolate pages, it is always (1 << n) *
378 * pageblock_nr_pages for some non-negative n. (Max order
379 * page may span two pageblocks).
383 /* split_free_page does not map the pages */
384 map_pages(&freelist);
386 if (pfn < end_pfn) {
387 /* Loop terminated early, cleanup. */
388 release_freepages(&freelist);
389 return 0;
392 /* We don't use freelists for anything. */
393 return pfn;
396 /* Update the number of anon and file isolated pages in the zone */
397 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
399 struct page *page;
400 unsigned int count[2] = { 0, };
402 list_for_each_entry(page, &cc->migratepages, lru)
403 count[!!page_is_file_cache(page)]++;
405 /* If locked we can use the interrupt unsafe versions */
406 if (locked) {
407 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
408 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
409 } else {
410 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
411 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
415 /* Similar to reclaim, but different enough that they don't share logic */
416 static bool too_many_isolated(struct zone *zone)
418 unsigned long active, inactive, isolated;
420 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
421 zone_page_state(zone, NR_INACTIVE_ANON);
422 active = zone_page_state(zone, NR_ACTIVE_FILE) +
423 zone_page_state(zone, NR_ACTIVE_ANON);
424 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
425 zone_page_state(zone, NR_ISOLATED_ANON);
427 return isolated > (inactive + active) / 2;
431 * isolate_migratepages_range() - isolate all migrate-able pages in range.
432 * @zone: Zone pages are in.
433 * @cc: Compaction control structure.
434 * @low_pfn: The first PFN of the range.
435 * @end_pfn: The one-past-the-last PFN of the range.
436 * @unevictable: true if it allows to isolate unevictable pages
438 * Isolate all pages that can be migrated from the range specified by
439 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
440 * pending), otherwise PFN of the first page that was not scanned
441 * (which may be both less, equal to or more then end_pfn).
443 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
444 * zero.
446 * Apart from cc->migratepages and cc->nr_migratetypes this function
447 * does not modify any cc's fields, in particular it does not modify
448 * (or read for that matter) cc->migrate_pfn.
450 unsigned long
451 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
452 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
454 unsigned long last_pageblock_nr = 0, pageblock_nr;
455 unsigned long nr_scanned = 0, nr_isolated = 0;
456 struct list_head *migratelist = &cc->migratepages;
457 isolate_mode_t mode = 0;
458 struct lruvec *lruvec;
459 unsigned long flags;
460 bool locked = false;
461 struct page *page = NULL, *valid_page = NULL;
462 bool skipped_async_unsuitable = false;
465 * Ensure that there are not too many pages isolated from the LRU
466 * list by either parallel reclaimers or compaction. If there are,
467 * delay for some time until fewer pages are isolated
469 while (unlikely(too_many_isolated(zone))) {
470 /* async migration should just abort */
471 if (!cc->sync)
472 return 0;
474 congestion_wait(BLK_RW_ASYNC, HZ/10);
476 if (fatal_signal_pending(current))
477 return 0;
480 /* Time to isolate some pages for migration */
481 cond_resched();
482 for (; low_pfn < end_pfn; low_pfn++) {
483 /* give a chance to irqs before checking need_resched() */
484 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
485 if (should_release_lock(&zone->lru_lock)) {
486 spin_unlock_irqrestore(&zone->lru_lock, flags);
487 locked = false;
492 * migrate_pfn does not necessarily start aligned to a
493 * pageblock. Ensure that pfn_valid is called when moving
494 * into a new MAX_ORDER_NR_PAGES range in case of large
495 * memory holes within the zone
497 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
498 if (!pfn_valid(low_pfn)) {
499 low_pfn += MAX_ORDER_NR_PAGES - 1;
500 continue;
504 if (!pfn_valid_within(low_pfn))
505 continue;
506 nr_scanned++;
509 * Get the page and ensure the page is within the same zone.
510 * See the comment in isolate_freepages about overlapping
511 * nodes. It is deliberate that the new zone lock is not taken
512 * as memory compaction should not move pages between nodes.
514 page = pfn_to_page(low_pfn);
515 if (page_zone(page) != zone)
516 continue;
518 if (!valid_page)
519 valid_page = page;
521 /* If isolation recently failed, do not retry */
522 pageblock_nr = low_pfn >> pageblock_order;
523 if (!isolation_suitable(cc, page))
524 goto next_pageblock;
527 * Skip if free. page_order cannot be used without zone->lock
528 * as nothing prevents parallel allocations or buddy merging.
530 if (PageBuddy(page))
531 continue;
534 * For async migration, also only scan in MOVABLE blocks. Async
535 * migration is optimistic to see if the minimum amount of work
536 * satisfies the allocation
538 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
539 !migrate_async_suitable(get_pageblock_migratetype(page))) {
540 cc->finished_update_migrate = true;
541 skipped_async_unsuitable = true;
542 goto next_pageblock;
546 * Check may be lockless but that's ok as we recheck later.
547 * It's possible to migrate LRU pages and balloon pages
548 * Skip any other type of page
550 if (!PageLRU(page)) {
551 if (unlikely(balloon_page_movable(page))) {
552 if (locked && balloon_page_isolate(page)) {
553 /* Successfully isolated */
554 cc->finished_update_migrate = true;
555 list_add(&page->lru, migratelist);
556 cc->nr_migratepages++;
557 nr_isolated++;
558 goto check_compact_cluster;
561 continue;
565 * PageLRU is set. lru_lock normally excludes isolation
566 * splitting and collapsing (collapsing has already happened
567 * if PageLRU is set) but the lock is not necessarily taken
568 * here and it is wasteful to take it just to check transhuge.
569 * Check TransHuge without lock and skip the whole pageblock if
570 * it's either a transhuge or hugetlbfs page, as calling
571 * compound_order() without preventing THP from splitting the
572 * page underneath us may return surprising results.
574 if (PageTransHuge(page)) {
575 if (!locked)
576 goto next_pageblock;
577 low_pfn += (1 << compound_order(page)) - 1;
578 continue;
581 /* Check if it is ok to still hold the lock */
582 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
583 locked, cc);
584 if (!locked || fatal_signal_pending(current))
585 break;
587 /* Recheck PageLRU and PageTransHuge under lock */
588 if (!PageLRU(page))
589 continue;
590 if (PageTransHuge(page)) {
591 low_pfn += (1 << compound_order(page)) - 1;
592 continue;
595 if (!cc->sync)
596 mode |= ISOLATE_ASYNC_MIGRATE;
598 if (unevictable)
599 mode |= ISOLATE_UNEVICTABLE;
601 lruvec = mem_cgroup_page_lruvec(page, zone);
603 /* Try isolate the page */
604 if (__isolate_lru_page(page, mode) != 0)
605 continue;
607 VM_BUG_ON_PAGE(PageTransCompound(page), page);
609 /* Successfully isolated */
610 cc->finished_update_migrate = true;
611 del_page_from_lru_list(page, lruvec, page_lru(page));
612 list_add(&page->lru, migratelist);
613 cc->nr_migratepages++;
614 nr_isolated++;
616 check_compact_cluster:
617 /* Avoid isolating too much */
618 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
619 ++low_pfn;
620 break;
623 continue;
625 next_pageblock:
626 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
627 last_pageblock_nr = pageblock_nr;
630 acct_isolated(zone, locked, cc);
632 if (locked)
633 spin_unlock_irqrestore(&zone->lru_lock, flags);
636 * Update the pageblock-skip information and cached scanner pfn,
637 * if the whole pageblock was scanned without isolating any page.
638 * This is not done when pageblock was skipped due to being unsuitable
639 * for async compaction, so that eventual sync compaction can try.
641 if (low_pfn == end_pfn && !skipped_async_unsuitable)
642 update_pageblock_skip(cc, valid_page, nr_isolated, true);
644 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
646 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
647 if (nr_isolated)
648 count_compact_events(COMPACTISOLATED, nr_isolated);
650 return low_pfn;
653 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
654 #ifdef CONFIG_COMPACTION
656 * Based on information in the current compact_control, find blocks
657 * suitable for isolating free pages from and then isolate them.
659 static void isolate_freepages(struct zone *zone,
660 struct compact_control *cc)
662 struct page *page;
663 unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
664 int nr_freepages = cc->nr_freepages;
665 struct list_head *freelist = &cc->freepages;
668 * Initialise the free scanner. The starting point is where we last
669 * scanned from (or the end of the zone if starting). The low point
670 * is the end of the pageblock the migration scanner is using.
672 pfn = cc->free_pfn;
673 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
676 * Take care that if the migration scanner is at the end of the zone
677 * that the free scanner does not accidentally move to the next zone
678 * in the next isolation cycle.
680 high_pfn = min(low_pfn, pfn);
682 z_end_pfn = zone_end_pfn(zone);
685 * Isolate free pages until enough are available to migrate the
686 * pages on cc->migratepages. We stop searching if the migrate
687 * and free page scanners meet or enough free pages are isolated.
689 for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
690 pfn -= pageblock_nr_pages) {
691 unsigned long isolated;
694 * This can iterate a massively long zone without finding any
695 * suitable migration targets, so periodically check if we need
696 * to schedule.
698 cond_resched();
700 if (!pfn_valid(pfn))
701 continue;
704 * Check for overlapping nodes/zones. It's possible on some
705 * configurations to have a setup like
706 * node0 node1 node0
707 * i.e. it's possible that all pages within a zones range of
708 * pages do not belong to a single zone.
710 page = pfn_to_page(pfn);
711 if (page_zone(page) != zone)
712 continue;
714 /* Check the block is suitable for migration */
715 if (!suitable_migration_target(page))
716 continue;
718 /* If isolation recently failed, do not retry */
719 if (!isolation_suitable(cc, page))
720 continue;
722 /* Found a block suitable for isolating free pages from */
723 isolated = 0;
726 * As pfn may not start aligned, pfn+pageblock_nr_page
727 * may cross a MAX_ORDER_NR_PAGES boundary and miss
728 * a pfn_valid check. Ensure isolate_freepages_block()
729 * only scans within a pageblock
731 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
732 end_pfn = min(end_pfn, z_end_pfn);
733 isolated = isolate_freepages_block(cc, pfn, end_pfn,
734 freelist, false);
735 nr_freepages += isolated;
738 * Record the highest PFN we isolated pages from. When next
739 * looking for free pages, the search will restart here as
740 * page migration may have returned some pages to the allocator
742 if (isolated) {
743 cc->finished_update_free = true;
744 high_pfn = max(high_pfn, pfn);
748 /* split_free_page does not map the pages */
749 map_pages(freelist);
752 * If we crossed the migrate scanner, we want to keep it that way
753 * so that compact_finished() may detect this
755 if (pfn < low_pfn)
756 cc->free_pfn = max(pfn, zone->zone_start_pfn);
757 else
758 cc->free_pfn = high_pfn;
759 cc->nr_freepages = nr_freepages;
763 * This is a migrate-callback that "allocates" freepages by taking pages
764 * from the isolated freelists in the block we are migrating to.
766 static struct page *compaction_alloc(struct page *migratepage,
767 unsigned long data,
768 int **result)
770 struct compact_control *cc = (struct compact_control *)data;
771 struct page *freepage;
773 /* Isolate free pages if necessary */
774 if (list_empty(&cc->freepages)) {
775 isolate_freepages(cc->zone, cc);
777 if (list_empty(&cc->freepages))
778 return NULL;
781 freepage = list_entry(cc->freepages.next, struct page, lru);
782 list_del(&freepage->lru);
783 cc->nr_freepages--;
785 return freepage;
789 * We cannot control nr_migratepages and nr_freepages fully when migration is
790 * running as migrate_pages() has no knowledge of compact_control. When
791 * migration is complete, we count the number of pages on the lists by hand.
793 static void update_nr_listpages(struct compact_control *cc)
795 int nr_migratepages = 0;
796 int nr_freepages = 0;
797 struct page *page;
799 list_for_each_entry(page, &cc->migratepages, lru)
800 nr_migratepages++;
801 list_for_each_entry(page, &cc->freepages, lru)
802 nr_freepages++;
804 cc->nr_migratepages = nr_migratepages;
805 cc->nr_freepages = nr_freepages;
808 /* possible outcome of isolate_migratepages */
809 typedef enum {
810 ISOLATE_ABORT, /* Abort compaction now */
811 ISOLATE_NONE, /* No pages isolated, continue scanning */
812 ISOLATE_SUCCESS, /* Pages isolated, migrate */
813 } isolate_migrate_t;
816 * Isolate all pages that can be migrated from the block pointed to by
817 * the migrate scanner within compact_control.
819 static isolate_migrate_t isolate_migratepages(struct zone *zone,
820 struct compact_control *cc)
822 unsigned long low_pfn, end_pfn;
824 /* Do not scan outside zone boundaries */
825 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
827 /* Only scan within a pageblock boundary */
828 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
830 /* Do not cross the free scanner or scan within a memory hole */
831 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
832 cc->migrate_pfn = end_pfn;
833 return ISOLATE_NONE;
836 /* Perform the isolation */
837 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
838 if (!low_pfn || cc->contended)
839 return ISOLATE_ABORT;
841 cc->migrate_pfn = low_pfn;
843 return ISOLATE_SUCCESS;
846 static int compact_finished(struct zone *zone,
847 struct compact_control *cc)
849 unsigned int order;
850 unsigned long watermark;
852 if (fatal_signal_pending(current))
853 return COMPACT_PARTIAL;
855 /* Compaction run completes if the migrate and free scanner meet */
856 if (cc->free_pfn <= cc->migrate_pfn) {
857 /* Let the next compaction start anew. */
858 zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
859 zone->compact_cached_free_pfn = zone_end_pfn(zone);
862 * Mark that the PG_migrate_skip information should be cleared
863 * by kswapd when it goes to sleep. kswapd does not set the
864 * flag itself as the decision to be clear should be directly
865 * based on an allocation request.
867 if (!current_is_kswapd())
868 zone->compact_blockskip_flush = true;
870 return COMPACT_COMPLETE;
874 * order == -1 is expected when compacting via
875 * /proc/sys/vm/compact_memory
877 if (cc->order == -1)
878 return COMPACT_CONTINUE;
880 /* Compaction run is not finished if the watermark is not met */
881 watermark = low_wmark_pages(zone);
882 watermark += (1 << cc->order);
884 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
885 return COMPACT_CONTINUE;
887 /* Direct compactor: Is a suitable page free? */
888 for (order = cc->order; order < MAX_ORDER; order++) {
889 struct free_area *area = &zone->free_area[order];
891 /* Job done if page is free of the right migratetype */
892 if (!list_empty(&area->free_list[cc->migratetype]))
893 return COMPACT_PARTIAL;
895 /* Job done if allocation would set block type */
896 if (cc->order >= pageblock_order && area->nr_free)
897 return COMPACT_PARTIAL;
900 return COMPACT_CONTINUE;
904 * compaction_suitable: Is this suitable to run compaction on this zone now?
905 * Returns
906 * COMPACT_SKIPPED - If there are too few free pages for compaction
907 * COMPACT_PARTIAL - If the allocation would succeed without compaction
908 * COMPACT_CONTINUE - If compaction should run now
910 unsigned long compaction_suitable(struct zone *zone, int order)
912 int fragindex;
913 unsigned long watermark;
916 * order == -1 is expected when compacting via
917 * /proc/sys/vm/compact_memory
919 if (order == -1)
920 return COMPACT_CONTINUE;
923 * Watermarks for order-0 must be met for compaction. Note the 2UL.
924 * This is because during migration, copies of pages need to be
925 * allocated and for a short time, the footprint is higher
927 watermark = low_wmark_pages(zone) + (2UL << order);
928 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
929 return COMPACT_SKIPPED;
932 * fragmentation index determines if allocation failures are due to
933 * low memory or external fragmentation
935 * index of -1000 implies allocations might succeed depending on
936 * watermarks
937 * index towards 0 implies failure is due to lack of memory
938 * index towards 1000 implies failure is due to fragmentation
940 * Only compact if a failure would be due to fragmentation.
942 fragindex = fragmentation_index(zone, order);
943 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
944 return COMPACT_SKIPPED;
946 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
947 0, 0))
948 return COMPACT_PARTIAL;
950 return COMPACT_CONTINUE;
953 static int compact_zone(struct zone *zone, struct compact_control *cc)
955 int ret;
956 unsigned long start_pfn = zone->zone_start_pfn;
957 unsigned long end_pfn = zone_end_pfn(zone);
959 ret = compaction_suitable(zone, cc->order);
960 switch (ret) {
961 case COMPACT_PARTIAL:
962 case COMPACT_SKIPPED:
963 /* Compaction is likely to fail */
964 return ret;
965 case COMPACT_CONTINUE:
966 /* Fall through to compaction */
971 * Clear pageblock skip if there were failures recently and compaction
972 * is about to be retried after being deferred. kswapd does not do
973 * this reset as it'll reset the cached information when going to sleep.
975 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
976 __reset_isolation_suitable(zone);
979 * Setup to move all movable pages to the end of the zone. Used cached
980 * information on where the scanners should start but check that it
981 * is initialised by ensuring the values are within zone boundaries.
983 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
984 cc->free_pfn = zone->compact_cached_free_pfn;
985 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
986 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
987 zone->compact_cached_free_pfn = cc->free_pfn;
989 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
990 cc->migrate_pfn = start_pfn;
991 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
994 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
996 migrate_prep_local();
998 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
999 unsigned long nr_migrate, nr_remaining;
1000 int err;
1002 switch (isolate_migratepages(zone, cc)) {
1003 case ISOLATE_ABORT:
1004 ret = COMPACT_PARTIAL;
1005 putback_movable_pages(&cc->migratepages);
1006 cc->nr_migratepages = 0;
1007 goto out;
1008 case ISOLATE_NONE:
1009 continue;
1010 case ISOLATE_SUCCESS:
1014 nr_migrate = cc->nr_migratepages;
1015 err = migrate_pages(&cc->migratepages, compaction_alloc,
1016 (unsigned long)cc,
1017 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1018 MR_COMPACTION);
1019 update_nr_listpages(cc);
1020 nr_remaining = cc->nr_migratepages;
1022 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1023 nr_remaining);
1025 /* Release isolated pages not migrated */
1026 if (err) {
1027 putback_movable_pages(&cc->migratepages);
1028 cc->nr_migratepages = 0;
1030 * migrate_pages() may return -ENOMEM when scanners meet
1031 * and we want compact_finished() to detect it
1033 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1034 ret = COMPACT_PARTIAL;
1035 goto out;
1040 out:
1041 /* Release free pages and check accounting */
1042 cc->nr_freepages -= release_freepages(&cc->freepages);
1043 VM_BUG_ON(cc->nr_freepages != 0);
1045 trace_mm_compaction_end(ret);
1047 return ret;
1050 static unsigned long compact_zone_order(struct zone *zone,
1051 int order, gfp_t gfp_mask,
1052 bool sync, bool *contended)
1054 unsigned long ret;
1055 struct compact_control cc = {
1056 .nr_freepages = 0,
1057 .nr_migratepages = 0,
1058 .order = order,
1059 .migratetype = allocflags_to_migratetype(gfp_mask),
1060 .zone = zone,
1061 .sync = sync,
1063 INIT_LIST_HEAD(&cc.freepages);
1064 INIT_LIST_HEAD(&cc.migratepages);
1066 ret = compact_zone(zone, &cc);
1068 VM_BUG_ON(!list_empty(&cc.freepages));
1069 VM_BUG_ON(!list_empty(&cc.migratepages));
1071 *contended = cc.contended;
1072 return ret;
1075 int sysctl_extfrag_threshold = 500;
1078 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1079 * @zonelist: The zonelist used for the current allocation
1080 * @order: The order of the current allocation
1081 * @gfp_mask: The GFP mask of the current allocation
1082 * @nodemask: The allowed nodes to allocate from
1083 * @sync: Whether migration is synchronous or not
1084 * @contended: Return value that is true if compaction was aborted due to lock contention
1085 * @page: Optionally capture a free page of the requested order during compaction
1087 * This is the main entry point for direct page compaction.
1089 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1090 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1091 bool sync, bool *contended)
1093 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1094 int may_enter_fs = gfp_mask & __GFP_FS;
1095 int may_perform_io = gfp_mask & __GFP_IO;
1096 struct zoneref *z;
1097 struct zone *zone;
1098 int rc = COMPACT_SKIPPED;
1099 int alloc_flags = 0;
1101 /* Check if the GFP flags allow compaction */
1102 if (!order || !may_enter_fs || !may_perform_io)
1103 return rc;
1105 count_compact_event(COMPACTSTALL);
1107 #ifdef CONFIG_CMA
1108 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1109 alloc_flags |= ALLOC_CMA;
1110 #endif
1111 /* Compact each zone in the list */
1112 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1113 nodemask) {
1114 int status;
1116 status = compact_zone_order(zone, order, gfp_mask, sync,
1117 contended);
1118 rc = max(status, rc);
1120 /* If a normal allocation would succeed, stop compacting */
1121 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1122 alloc_flags))
1123 break;
1126 return rc;
1130 /* Compact all zones within a node */
1131 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1133 int zoneid;
1134 struct zone *zone;
1136 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1138 zone = &pgdat->node_zones[zoneid];
1139 if (!populated_zone(zone))
1140 continue;
1142 cc->nr_freepages = 0;
1143 cc->nr_migratepages = 0;
1144 cc->zone = zone;
1145 INIT_LIST_HEAD(&cc->freepages);
1146 INIT_LIST_HEAD(&cc->migratepages);
1148 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1149 compact_zone(zone, cc);
1151 if (cc->order > 0) {
1152 if (zone_watermark_ok(zone, cc->order,
1153 low_wmark_pages(zone), 0, 0))
1154 compaction_defer_reset(zone, cc->order, false);
1155 /* Currently async compaction is never deferred. */
1156 else if (cc->sync)
1157 defer_compaction(zone, cc->order);
1160 VM_BUG_ON(!list_empty(&cc->freepages));
1161 VM_BUG_ON(!list_empty(&cc->migratepages));
1165 void compact_pgdat(pg_data_t *pgdat, int order)
1167 struct compact_control cc = {
1168 .order = order,
1169 .sync = false,
1172 if (!order)
1173 return;
1175 __compact_pgdat(pgdat, &cc);
1178 static void compact_node(int nid)
1180 struct compact_control cc = {
1181 .order = -1,
1182 .sync = true,
1185 __compact_pgdat(NODE_DATA(nid), &cc);
1188 /* Compact all nodes in the system */
1189 static void compact_nodes(void)
1191 int nid;
1193 /* Flush pending updates to the LRU lists */
1194 lru_add_drain_all();
1196 for_each_online_node(nid)
1197 compact_node(nid);
1200 /* The written value is actually unused, all memory is compacted */
1201 int sysctl_compact_memory;
1203 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1204 int sysctl_compaction_handler(struct ctl_table *table, int write,
1205 void __user *buffer, size_t *length, loff_t *ppos)
1207 if (write)
1208 compact_nodes();
1210 return 0;
1213 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1214 void __user *buffer, size_t *length, loff_t *ppos)
1216 proc_dointvec_minmax(table, write, buffer, length, ppos);
1218 return 0;
1221 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1222 ssize_t sysfs_compact_node(struct device *dev,
1223 struct device_attribute *attr,
1224 const char *buf, size_t count)
1226 int nid = dev->id;
1228 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1229 /* Flush pending updates to the LRU lists */
1230 lru_add_drain_all();
1232 compact_node(nid);
1235 return count;
1237 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1239 int compaction_register_node(struct node *node)
1241 return device_create_file(&node->dev, &dev_attr_compact);
1244 void compaction_unregister_node(struct node *node)
1246 return device_remove_file(&node->dev, &dev_attr_compact);
1248 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1250 #endif /* CONFIG_COMPACTION */