2 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
3 * Internal non-public definitions that provide either classic
4 * or preemptible semantics.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, you can access it online at
18 * http://www.gnu.org/licenses/gpl-2.0.html.
20 * Copyright Red Hat, 2009
21 * Copyright IBM Corporation, 2009
23 * Author: Ingo Molnar <mingo@elte.hu>
24 * Paul E. McKenney <paulmck@linux.vnet.ibm.com>
27 #include <linux/delay.h>
28 #include <linux/gfp.h>
29 #include <linux/oom.h>
30 #include <linux/sched/debug.h>
31 #include <linux/smpboot.h>
32 #include <linux/sched/isolation.h>
33 #include <uapi/linux/sched/types.h>
34 #include "../time/tick-internal.h"
36 #ifdef CONFIG_RCU_BOOST
38 #include "../locking/rtmutex_common.h"
41 * Control variables for per-CPU and per-rcu_node kthreads.
43 static DEFINE_PER_CPU(struct task_struct
*, rcu_cpu_kthread_task
);
44 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status
);
45 DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops
);
46 DEFINE_PER_CPU(char, rcu_cpu_has_work
);
48 #else /* #ifdef CONFIG_RCU_BOOST */
51 * Some architectures do not define rt_mutexes, but if !CONFIG_RCU_BOOST,
52 * all uses are in dead code. Provide a definition to keep the compiler
53 * happy, but add WARN_ON_ONCE() to complain if used in the wrong place.
54 * This probably needs to be excluded from -rt builds.
56 #define rt_mutex_owner(a) ({ WARN_ON_ONCE(1); NULL; })
57 #define rt_mutex_futex_unlock(x) WARN_ON_ONCE(1)
59 #endif /* #else #ifdef CONFIG_RCU_BOOST */
61 #ifdef CONFIG_RCU_NOCB_CPU
62 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
63 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
64 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
67 * Check the RCU kernel configuration parameters and print informative
68 * messages about anything out of the ordinary.
70 static void __init
rcu_bootup_announce_oddness(void)
72 if (IS_ENABLED(CONFIG_RCU_TRACE
))
73 pr_info("\tRCU event tracing is enabled.\n");
74 if ((IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 64) ||
75 (!IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 32))
76 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
79 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
80 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ
))
81 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
82 if (IS_ENABLED(CONFIG_PROVE_RCU
))
83 pr_info("\tRCU lockdep checking is enabled.\n");
84 if (RCU_NUM_LVLS
>= 4)
85 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
86 if (RCU_FANOUT_LEAF
!= 16)
87 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
89 if (rcu_fanout_leaf
!= RCU_FANOUT_LEAF
)
90 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
92 if (nr_cpu_ids
!= NR_CPUS
)
93 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS
, nr_cpu_ids
);
94 #ifdef CONFIG_RCU_BOOST
95 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
96 kthread_prio
, CONFIG_RCU_BOOST_DELAY
);
98 if (blimit
!= DEFAULT_RCU_BLIMIT
)
99 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit
);
100 if (qhimark
!= DEFAULT_RCU_QHIMARK
)
101 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark
);
102 if (qlowmark
!= DEFAULT_RCU_QLOMARK
)
103 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark
);
104 if (jiffies_till_first_fqs
!= ULONG_MAX
)
105 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs
);
106 if (jiffies_till_next_fqs
!= ULONG_MAX
)
107 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs
);
108 if (jiffies_till_sched_qs
!= ULONG_MAX
)
109 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs
);
110 if (rcu_kick_kthreads
)
111 pr_info("\tKick kthreads if too-long grace period.\n");
112 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD
))
113 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
114 if (gp_preinit_delay
)
115 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay
);
117 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay
);
118 if (gp_cleanup_delay
)
119 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay
);
120 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
))
121 pr_info("\tRCU debug extended QS entry/exit.\n");
122 rcupdate_announce_bootup_oddness();
125 #ifdef CONFIG_PREEMPT_RCU
127 static void rcu_report_exp_rnp(struct rcu_node
*rnp
, bool wake
);
128 static void rcu_read_unlock_special(struct task_struct
*t
);
131 * Tell them what RCU they are running.
133 static void __init
rcu_bootup_announce(void)
135 pr_info("Preemptible hierarchical RCU implementation.\n");
136 rcu_bootup_announce_oddness();
139 /* Flags for rcu_preempt_ctxt_queue() decision table. */
140 #define RCU_GP_TASKS 0x8
141 #define RCU_EXP_TASKS 0x4
142 #define RCU_GP_BLKD 0x2
143 #define RCU_EXP_BLKD 0x1
146 * Queues a task preempted within an RCU-preempt read-side critical
147 * section into the appropriate location within the ->blkd_tasks list,
148 * depending on the states of any ongoing normal and expedited grace
149 * periods. The ->gp_tasks pointer indicates which element the normal
150 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
151 * indicates which element the expedited grace period is waiting on (again,
152 * NULL if none). If a grace period is waiting on a given element in the
153 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
154 * adding a task to the tail of the list blocks any grace period that is
155 * already waiting on one of the elements. In contrast, adding a task
156 * to the head of the list won't block any grace period that is already
157 * waiting on one of the elements.
159 * This queuing is imprecise, and can sometimes make an ongoing grace
160 * period wait for a task that is not strictly speaking blocking it.
161 * Given the choice, we needlessly block a normal grace period rather than
162 * blocking an expedited grace period.
164 * Note that an endless sequence of expedited grace periods still cannot
165 * indefinitely postpone a normal grace period. Eventually, all of the
166 * fixed number of preempted tasks blocking the normal grace period that are
167 * not also blocking the expedited grace period will resume and complete
168 * their RCU read-side critical sections. At that point, the ->gp_tasks
169 * pointer will equal the ->exp_tasks pointer, at which point the end of
170 * the corresponding expedited grace period will also be the end of the
171 * normal grace period.
173 static void rcu_preempt_ctxt_queue(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
174 __releases(rnp
->lock
) /* But leaves rrupts disabled. */
176 int blkd_state
= (rnp
->gp_tasks
? RCU_GP_TASKS
: 0) +
177 (rnp
->exp_tasks
? RCU_EXP_TASKS
: 0) +
178 (rnp
->qsmask
& rdp
->grpmask
? RCU_GP_BLKD
: 0) +
179 (rnp
->expmask
& rdp
->grpmask
? RCU_EXP_BLKD
: 0);
180 struct task_struct
*t
= current
;
182 raw_lockdep_assert_held_rcu_node(rnp
);
183 WARN_ON_ONCE(rdp
->mynode
!= rnp
);
184 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
185 /* RCU better not be waiting on newly onlined CPUs! */
186 WARN_ON_ONCE(rnp
->qsmaskinitnext
& ~rnp
->qsmaskinit
& rnp
->qsmask
&
190 * Decide where to queue the newly blocked task. In theory,
191 * this could be an if-statement. In practice, when I tried
192 * that, it was quite messy.
194 switch (blkd_state
) {
197 case RCU_EXP_TASKS
+ RCU_GP_BLKD
:
199 case RCU_GP_TASKS
+ RCU_EXP_TASKS
:
202 * Blocking neither GP, or first task blocking the normal
203 * GP but not blocking the already-waiting expedited GP.
204 * Queue at the head of the list to avoid unnecessarily
205 * blocking the already-waiting GPs.
207 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
212 case RCU_GP_BLKD
+ RCU_EXP_BLKD
:
213 case RCU_GP_TASKS
+ RCU_EXP_BLKD
:
214 case RCU_GP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
215 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
218 * First task arriving that blocks either GP, or first task
219 * arriving that blocks the expedited GP (with the normal
220 * GP already waiting), or a task arriving that blocks
221 * both GPs with both GPs already waiting. Queue at the
222 * tail of the list to avoid any GP waiting on any of the
223 * already queued tasks that are not blocking it.
225 list_add_tail(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
228 case RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
229 case RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
230 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
233 * Second or subsequent task blocking the expedited GP.
234 * The task either does not block the normal GP, or is the
235 * first task blocking the normal GP. Queue just after
236 * the first task blocking the expedited GP.
238 list_add(&t
->rcu_node_entry
, rnp
->exp_tasks
);
241 case RCU_GP_TASKS
+ RCU_GP_BLKD
:
242 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
:
245 * Second or subsequent task blocking the normal GP.
246 * The task does not block the expedited GP. Queue just
247 * after the first task blocking the normal GP.
249 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
);
254 /* Yet another exercise in excessive paranoia. */
260 * We have now queued the task. If it was the first one to
261 * block either grace period, update the ->gp_tasks and/or
262 * ->exp_tasks pointers, respectively, to reference the newly
265 if (!rnp
->gp_tasks
&& (blkd_state
& RCU_GP_BLKD
)) {
266 rnp
->gp_tasks
= &t
->rcu_node_entry
;
267 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
);
269 if (!rnp
->exp_tasks
&& (blkd_state
& RCU_EXP_BLKD
))
270 rnp
->exp_tasks
= &t
->rcu_node_entry
;
271 WARN_ON_ONCE(!(blkd_state
& RCU_GP_BLKD
) !=
272 !(rnp
->qsmask
& rdp
->grpmask
));
273 WARN_ON_ONCE(!(blkd_state
& RCU_EXP_BLKD
) !=
274 !(rnp
->expmask
& rdp
->grpmask
));
275 raw_spin_unlock_rcu_node(rnp
); /* interrupts remain disabled. */
278 * Report the quiescent state for the expedited GP. This expedited
279 * GP should not be able to end until we report, so there should be
280 * no need to check for a subsequent expedited GP. (Though we are
281 * still in a quiescent state in any case.)
283 if (blkd_state
& RCU_EXP_BLKD
&& rdp
->deferred_qs
)
284 rcu_report_exp_rdp(rdp
);
286 WARN_ON_ONCE(rdp
->deferred_qs
);
290 * Record a preemptible-RCU quiescent state for the specified CPU.
291 * Note that this does not necessarily mean that the task currently running
292 * on the CPU is in a quiescent state: Instead, it means that the current
293 * grace period need not wait on any RCU read-side critical section that
294 * starts later on this CPU. It also means that if the current task is
295 * in an RCU read-side critical section, it has already added itself to
296 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
297 * current task, there might be any number of other tasks blocked while
298 * in an RCU read-side critical section.
300 * Callers to this function must disable preemption.
302 static void rcu_qs(void)
304 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
305 if (__this_cpu_read(rcu_data
.cpu_no_qs
.s
)) {
306 trace_rcu_grace_period(TPS("rcu_preempt"),
307 __this_cpu_read(rcu_data
.gp_seq
),
309 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.norm
, false);
310 barrier(); /* Coordinate with rcu_flavor_check_callbacks(). */
311 current
->rcu_read_unlock_special
.b
.need_qs
= false;
316 * We have entered the scheduler, and the current task might soon be
317 * context-switched away from. If this task is in an RCU read-side
318 * critical section, we will no longer be able to rely on the CPU to
319 * record that fact, so we enqueue the task on the blkd_tasks list.
320 * The task will dequeue itself when it exits the outermost enclosing
321 * RCU read-side critical section. Therefore, the current grace period
322 * cannot be permitted to complete until the blkd_tasks list entries
323 * predating the current grace period drain, in other words, until
324 * rnp->gp_tasks becomes NULL.
326 * Caller must disable interrupts.
328 void rcu_note_context_switch(bool preempt
)
330 struct task_struct
*t
= current
;
331 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
332 struct rcu_node
*rnp
;
334 barrier(); /* Avoid RCU read-side critical sections leaking down. */
335 trace_rcu_utilization(TPS("Start context switch"));
336 lockdep_assert_irqs_disabled();
337 WARN_ON_ONCE(!preempt
&& t
->rcu_read_lock_nesting
> 0);
338 if (t
->rcu_read_lock_nesting
> 0 &&
339 !t
->rcu_read_unlock_special
.b
.blocked
) {
341 /* Possibly blocking in an RCU read-side critical section. */
343 raw_spin_lock_rcu_node(rnp
);
344 t
->rcu_read_unlock_special
.b
.blocked
= true;
345 t
->rcu_blocked_node
= rnp
;
348 * Verify the CPU's sanity, trace the preemption, and
349 * then queue the task as required based on the states
350 * of any ongoing and expedited grace periods.
352 WARN_ON_ONCE((rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) == 0);
353 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
354 trace_rcu_preempt_task(rcu_state
.name
,
356 (rnp
->qsmask
& rdp
->grpmask
)
358 : rcu_seq_snap(&rnp
->gp_seq
));
359 rcu_preempt_ctxt_queue(rnp
, rdp
);
360 } else if (t
->rcu_read_lock_nesting
< 0 &&
361 t
->rcu_read_unlock_special
.s
) {
364 * Complete exit from RCU read-side critical section on
365 * behalf of preempted instance of __rcu_read_unlock().
367 rcu_read_unlock_special(t
);
368 rcu_preempt_deferred_qs(t
);
370 rcu_preempt_deferred_qs(t
);
374 * Either we were not in an RCU read-side critical section to
375 * begin with, or we have now recorded that critical section
376 * globally. Either way, we can now note a quiescent state
377 * for this CPU. Again, if we were in an RCU read-side critical
378 * section, and if that critical section was blocking the current
379 * grace period, then the fact that the task has been enqueued
380 * means that we continue to block the current grace period.
383 if (rdp
->deferred_qs
)
384 rcu_report_exp_rdp(rdp
);
385 trace_rcu_utilization(TPS("End context switch"));
386 barrier(); /* Avoid RCU read-side critical sections leaking up. */
388 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
391 * Check for preempted RCU readers blocking the current grace period
392 * for the specified rcu_node structure. If the caller needs a reliable
393 * answer, it must hold the rcu_node's ->lock.
395 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
397 return rnp
->gp_tasks
!= NULL
;
401 * Preemptible RCU implementation for rcu_read_lock().
402 * Just increment ->rcu_read_lock_nesting, shared state will be updated
405 void __rcu_read_lock(void)
407 current
->rcu_read_lock_nesting
++;
408 barrier(); /* critical section after entry code. */
410 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
413 * Preemptible RCU implementation for rcu_read_unlock().
414 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
415 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
416 * invoke rcu_read_unlock_special() to clean up after a context switch
417 * in an RCU read-side critical section and other special cases.
419 void __rcu_read_unlock(void)
421 struct task_struct
*t
= current
;
423 if (t
->rcu_read_lock_nesting
!= 1) {
424 --t
->rcu_read_lock_nesting
;
426 barrier(); /* critical section before exit code. */
427 t
->rcu_read_lock_nesting
= INT_MIN
;
428 barrier(); /* assign before ->rcu_read_unlock_special load */
429 if (unlikely(READ_ONCE(t
->rcu_read_unlock_special
.s
)))
430 rcu_read_unlock_special(t
);
431 barrier(); /* ->rcu_read_unlock_special load before assign */
432 t
->rcu_read_lock_nesting
= 0;
434 #ifdef CONFIG_PROVE_LOCKING
436 int rrln
= READ_ONCE(t
->rcu_read_lock_nesting
);
438 WARN_ON_ONCE(rrln
< 0 && rrln
> INT_MIN
/ 2);
440 #endif /* #ifdef CONFIG_PROVE_LOCKING */
442 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
445 * Advance a ->blkd_tasks-list pointer to the next entry, instead
446 * returning NULL if at the end of the list.
448 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
449 struct rcu_node
*rnp
)
451 struct list_head
*np
;
453 np
= t
->rcu_node_entry
.next
;
454 if (np
== &rnp
->blkd_tasks
)
460 * Return true if the specified rcu_node structure has tasks that were
461 * preempted within an RCU read-side critical section.
463 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
465 return !list_empty(&rnp
->blkd_tasks
);
469 * Report deferred quiescent states. The deferral time can
470 * be quite short, for example, in the case of the call from
471 * rcu_read_unlock_special().
474 rcu_preempt_deferred_qs_irqrestore(struct task_struct
*t
, unsigned long flags
)
479 struct list_head
*np
;
480 bool drop_boost_mutex
= false;
481 struct rcu_data
*rdp
;
482 struct rcu_node
*rnp
;
483 union rcu_special special
;
486 * If RCU core is waiting for this CPU to exit its critical section,
487 * report the fact that it has exited. Because irqs are disabled,
488 * t->rcu_read_unlock_special cannot change.
490 special
= t
->rcu_read_unlock_special
;
491 rdp
= this_cpu_ptr(&rcu_data
);
492 if (!special
.s
&& !rdp
->deferred_qs
) {
493 local_irq_restore(flags
);
496 if (special
.b
.need_qs
) {
498 t
->rcu_read_unlock_special
.b
.need_qs
= false;
499 if (!t
->rcu_read_unlock_special
.s
&& !rdp
->deferred_qs
) {
500 local_irq_restore(flags
);
506 * Respond to a request by an expedited grace period for a
507 * quiescent state from this CPU. Note that requests from
508 * tasks are handled when removing the task from the
509 * blocked-tasks list below.
511 if (rdp
->deferred_qs
) {
512 rcu_report_exp_rdp(rdp
);
513 if (!t
->rcu_read_unlock_special
.s
) {
514 local_irq_restore(flags
);
519 /* Clean up if blocked during RCU read-side critical section. */
520 if (special
.b
.blocked
) {
521 t
->rcu_read_unlock_special
.b
.blocked
= false;
524 * Remove this task from the list it blocked on. The task
525 * now remains queued on the rcu_node corresponding to the
526 * CPU it first blocked on, so there is no longer any need
527 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
529 rnp
= t
->rcu_blocked_node
;
530 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
531 WARN_ON_ONCE(rnp
!= t
->rcu_blocked_node
);
532 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
533 empty_norm
= !rcu_preempt_blocked_readers_cgp(rnp
);
534 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
&&
535 (!empty_norm
|| rnp
->qsmask
));
536 empty_exp
= sync_rcu_preempt_exp_done(rnp
);
537 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
538 np
= rcu_next_node_entry(t
, rnp
);
539 list_del_init(&t
->rcu_node_entry
);
540 t
->rcu_blocked_node
= NULL
;
541 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
542 rnp
->gp_seq
, t
->pid
);
543 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
545 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
547 if (IS_ENABLED(CONFIG_RCU_BOOST
)) {
548 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
549 drop_boost_mutex
= rt_mutex_owner(&rnp
->boost_mtx
) == t
;
550 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
551 rnp
->boost_tasks
= np
;
555 * If this was the last task on the current list, and if
556 * we aren't waiting on any CPUs, report the quiescent state.
557 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
558 * so we must take a snapshot of the expedited state.
560 empty_exp_now
= sync_rcu_preempt_exp_done(rnp
);
561 if (!empty_norm
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
562 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
569 rcu_report_unblock_qs_rnp(rnp
, flags
);
571 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
574 /* Unboost if we were boosted. */
575 if (IS_ENABLED(CONFIG_RCU_BOOST
) && drop_boost_mutex
)
576 rt_mutex_futex_unlock(&rnp
->boost_mtx
);
579 * If this was the last task on the expedited lists,
580 * then we need to report up the rcu_node hierarchy.
582 if (!empty_exp
&& empty_exp_now
)
583 rcu_report_exp_rnp(rnp
, true);
585 local_irq_restore(flags
);
590 * Is a deferred quiescent-state pending, and are we also not in
591 * an RCU read-side critical section? It is the caller's responsibility
592 * to ensure it is otherwise safe to report any deferred quiescent
593 * states. The reason for this is that it is safe to report a
594 * quiescent state during context switch even though preemption
595 * is disabled. This function cannot be expected to understand these
596 * nuances, so the caller must handle them.
598 static bool rcu_preempt_need_deferred_qs(struct task_struct
*t
)
600 return (this_cpu_ptr(&rcu_data
)->deferred_qs
||
601 READ_ONCE(t
->rcu_read_unlock_special
.s
)) &&
602 t
->rcu_read_lock_nesting
<= 0;
606 * Report a deferred quiescent state if needed and safe to do so.
607 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
608 * not being in an RCU read-side critical section. The caller must
609 * evaluate safety in terms of interrupt, softirq, and preemption
612 static void rcu_preempt_deferred_qs(struct task_struct
*t
)
615 bool couldrecurse
= t
->rcu_read_lock_nesting
>= 0;
617 if (!rcu_preempt_need_deferred_qs(t
))
620 t
->rcu_read_lock_nesting
-= INT_MIN
;
621 local_irq_save(flags
);
622 rcu_preempt_deferred_qs_irqrestore(t
, flags
);
624 t
->rcu_read_lock_nesting
+= INT_MIN
;
628 * Handle special cases during rcu_read_unlock(), such as needing to
629 * notify RCU core processing or task having blocked during the RCU
630 * read-side critical section.
632 static void rcu_read_unlock_special(struct task_struct
*t
)
635 bool preempt_bh_were_disabled
=
636 !!(preempt_count() & (PREEMPT_MASK
| SOFTIRQ_MASK
));
637 bool irqs_were_disabled
;
639 /* NMI handlers cannot block and cannot safely manipulate state. */
643 local_irq_save(flags
);
644 irqs_were_disabled
= irqs_disabled_flags(flags
);
645 if ((preempt_bh_were_disabled
|| irqs_were_disabled
) &&
646 t
->rcu_read_unlock_special
.b
.blocked
) {
647 /* Need to defer quiescent state until everything is enabled. */
648 raise_softirq_irqoff(RCU_SOFTIRQ
);
649 local_irq_restore(flags
);
652 rcu_preempt_deferred_qs_irqrestore(t
, flags
);
656 * Dump detailed information for all tasks blocking the current RCU
657 * grace period on the specified rcu_node structure.
659 static void rcu_print_detail_task_stall_rnp(struct rcu_node
*rnp
)
662 struct task_struct
*t
;
664 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
665 if (!rcu_preempt_blocked_readers_cgp(rnp
)) {
666 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
669 t
= list_entry(rnp
->gp_tasks
->prev
,
670 struct task_struct
, rcu_node_entry
);
671 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
673 * We could be printing a lot while holding a spinlock.
674 * Avoid triggering hard lockup.
676 touch_nmi_watchdog();
679 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
683 * Dump detailed information for all tasks blocking the current RCU
686 static void rcu_print_detail_task_stall(void)
688 struct rcu_node
*rnp
= rcu_get_root();
690 rcu_print_detail_task_stall_rnp(rnp
);
691 rcu_for_each_leaf_node(rnp
)
692 rcu_print_detail_task_stall_rnp(rnp
);
695 static void rcu_print_task_stall_begin(struct rcu_node
*rnp
)
697 pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
698 rnp
->level
, rnp
->grplo
, rnp
->grphi
);
701 static void rcu_print_task_stall_end(void)
707 * Scan the current list of tasks blocked within RCU read-side critical
708 * sections, printing out the tid of each.
710 static int rcu_print_task_stall(struct rcu_node
*rnp
)
712 struct task_struct
*t
;
715 if (!rcu_preempt_blocked_readers_cgp(rnp
))
717 rcu_print_task_stall_begin(rnp
);
718 t
= list_entry(rnp
->gp_tasks
->prev
,
719 struct task_struct
, rcu_node_entry
);
720 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
721 pr_cont(" P%d", t
->pid
);
724 rcu_print_task_stall_end();
729 * Scan the current list of tasks blocked within RCU read-side critical
730 * sections, printing out the tid of each that is blocking the current
731 * expedited grace period.
733 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
735 struct task_struct
*t
;
740 t
= list_entry(rnp
->exp_tasks
->prev
,
741 struct task_struct
, rcu_node_entry
);
742 list_for_each_entry_continue(t
, &rnp
->blkd_tasks
, rcu_node_entry
) {
743 pr_cont(" P%d", t
->pid
);
750 * Check that the list of blocked tasks for the newly completed grace
751 * period is in fact empty. It is a serious bug to complete a grace
752 * period that still has RCU readers blocked! This function must be
753 * invoked -before- updating this rnp's ->gp_seq, and the rnp's ->lock
754 * must be held by the caller.
756 * Also, if there are blocked tasks on the list, they automatically
757 * block the newly created grace period, so set up ->gp_tasks accordingly.
759 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
761 struct task_struct
*t
;
763 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
764 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)))
765 dump_blkd_tasks(rnp
, 10);
766 if (rcu_preempt_has_tasks(rnp
) &&
767 (rnp
->qsmaskinit
|| rnp
->wait_blkd_tasks
)) {
768 rnp
->gp_tasks
= rnp
->blkd_tasks
.next
;
769 t
= container_of(rnp
->gp_tasks
, struct task_struct
,
771 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
772 rnp
->gp_seq
, t
->pid
);
774 WARN_ON_ONCE(rnp
->qsmask
);
778 * Check for a quiescent state from the current CPU. When a task blocks,
779 * the task is recorded in the corresponding CPU's rcu_node structure,
780 * which is checked elsewhere.
782 * Caller must disable hard irqs.
784 static void rcu_flavor_check_callbacks(int user
)
786 struct task_struct
*t
= current
;
788 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
789 rcu_note_voluntary_context_switch(current
);
791 if (t
->rcu_read_lock_nesting
> 0 ||
792 (preempt_count() & (PREEMPT_MASK
| SOFTIRQ_MASK
))) {
793 /* No QS, force context switch if deferred. */
794 if (rcu_preempt_need_deferred_qs(t
)) {
795 set_tsk_need_resched(t
);
796 set_preempt_need_resched();
798 } else if (rcu_preempt_need_deferred_qs(t
)) {
799 rcu_preempt_deferred_qs(t
); /* Report deferred QS. */
801 } else if (!t
->rcu_read_lock_nesting
) {
802 rcu_qs(); /* Report immediate QS. */
806 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
807 if (t
->rcu_read_lock_nesting
> 0 &&
808 __this_cpu_read(rcu_data
.core_needs_qs
) &&
809 __this_cpu_read(rcu_data
.cpu_no_qs
.b
.norm
) &&
810 !t
->rcu_read_unlock_special
.b
.need_qs
&&
811 time_after(jiffies
, rcu_state
.gp_start
+ HZ
))
812 t
->rcu_read_unlock_special
.b
.need_qs
= true;
816 * synchronize_rcu - wait until a grace period has elapsed.
818 * Control will return to the caller some time after a full grace
819 * period has elapsed, in other words after all currently executing RCU
820 * read-side critical sections have completed. Note, however, that
821 * upon return from synchronize_rcu(), the caller might well be executing
822 * concurrently with new RCU read-side critical sections that began while
823 * synchronize_rcu() was waiting. RCU read-side critical sections are
824 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
825 * In addition, regions of code across which interrupts, preemption, or
826 * softirqs have been disabled also serve as RCU read-side critical
827 * sections. This includes hardware interrupt handlers, softirq handlers,
830 * Note that this guarantee implies further memory-ordering guarantees.
831 * On systems with more than one CPU, when synchronize_rcu() returns,
832 * each CPU is guaranteed to have executed a full memory barrier since
833 * the end of its last RCU read-side critical section whose beginning
834 * preceded the call to synchronize_rcu(). In addition, each CPU having
835 * an RCU read-side critical section that extends beyond the return from
836 * synchronize_rcu() is guaranteed to have executed a full memory barrier
837 * after the beginning of synchronize_rcu() and before the beginning of
838 * that RCU read-side critical section. Note that these guarantees include
839 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
840 * that are executing in the kernel.
842 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
843 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
844 * to have executed a full memory barrier during the execution of
845 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
846 * again only if the system has more than one CPU).
848 void synchronize_rcu(void)
850 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
851 lock_is_held(&rcu_lock_map
) ||
852 lock_is_held(&rcu_sched_lock_map
),
853 "Illegal synchronize_rcu() in RCU read-side critical section");
854 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
856 if (rcu_gp_is_expedited())
857 synchronize_rcu_expedited();
859 wait_rcu_gp(call_rcu
);
861 EXPORT_SYMBOL_GPL(synchronize_rcu
);
864 * Check for a task exiting while in a preemptible-RCU read-side
865 * critical section, clean up if so. No need to issue warnings,
866 * as debug_check_no_locks_held() already does this if lockdep
871 struct task_struct
*t
= current
;
873 if (likely(list_empty(¤t
->rcu_node_entry
)))
875 t
->rcu_read_lock_nesting
= 1;
877 t
->rcu_read_unlock_special
.b
.blocked
= true;
879 rcu_preempt_deferred_qs(current
);
883 * Dump the blocked-tasks state, but limit the list dump to the
884 * specified number of elements.
887 dump_blkd_tasks(struct rcu_node
*rnp
, int ncheck
)
891 struct list_head
*lhp
;
893 struct rcu_data
*rdp
;
894 struct rcu_node
*rnp1
;
896 raw_lockdep_assert_held_rcu_node(rnp
);
897 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
898 __func__
, rnp
->grplo
, rnp
->grphi
, rnp
->level
,
899 (long)rnp
->gp_seq
, (long)rnp
->completedqs
);
900 for (rnp1
= rnp
; rnp1
; rnp1
= rnp1
->parent
)
901 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
902 __func__
, rnp1
->grplo
, rnp1
->grphi
, rnp1
->qsmask
, rnp1
->qsmaskinit
, rnp1
->qsmaskinitnext
);
903 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
904 __func__
, rnp
->gp_tasks
, rnp
->boost_tasks
, rnp
->exp_tasks
);
905 pr_info("%s: ->blkd_tasks", __func__
);
907 list_for_each(lhp
, &rnp
->blkd_tasks
) {
913 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++) {
914 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
915 onl
= !!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
));
916 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
918 (long)rdp
->rcu_onl_gp_seq
, rdp
->rcu_onl_gp_flags
,
919 (long)rdp
->rcu_ofl_gp_seq
, rdp
->rcu_ofl_gp_flags
);
923 #else /* #ifdef CONFIG_PREEMPT_RCU */
926 * Tell them what RCU they are running.
928 static void __init
rcu_bootup_announce(void)
930 pr_info("Hierarchical RCU implementation.\n");
931 rcu_bootup_announce_oddness();
935 * Note a quiescent state for PREEMPT=n. Because we do not need to know
936 * how many quiescent states passed, just if there was at least one since
937 * the start of the grace period, this just sets a flag. The caller must
938 * have disabled preemption.
940 static void rcu_qs(void)
942 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
943 if (!__this_cpu_read(rcu_data
.cpu_no_qs
.s
))
945 trace_rcu_grace_period(TPS("rcu_sched"),
946 __this_cpu_read(rcu_data
.gp_seq
), TPS("cpuqs"));
947 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.norm
, false);
948 if (!__this_cpu_read(rcu_data
.cpu_no_qs
.b
.exp
))
950 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.exp
, false);
951 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data
));
955 * Register an urgently needed quiescent state. If there is an
956 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
957 * dyntick-idle quiescent state visible to other CPUs, which will in
958 * some cases serve for expedited as well as normal grace periods.
959 * Either way, register a lightweight quiescent state.
961 * The barrier() calls are redundant in the common case when this is
962 * called externally, but just in case this is called from within this
966 void rcu_all_qs(void)
970 if (!raw_cpu_read(rcu_data
.rcu_urgent_qs
))
973 /* Load rcu_urgent_qs before other flags. */
974 if (!smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
))) {
978 this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
979 barrier(); /* Avoid RCU read-side critical sections leaking down. */
980 if (unlikely(raw_cpu_read(rcu_data
.rcu_need_heavy_qs
))) {
981 local_irq_save(flags
);
982 rcu_momentary_dyntick_idle();
983 local_irq_restore(flags
);
986 barrier(); /* Avoid RCU read-side critical sections leaking up. */
989 EXPORT_SYMBOL_GPL(rcu_all_qs
);
992 * Note a PREEMPT=n context switch. The caller must have disabled interrupts.
994 void rcu_note_context_switch(bool preempt
)
996 barrier(); /* Avoid RCU read-side critical sections leaking down. */
997 trace_rcu_utilization(TPS("Start context switch"));
999 /* Load rcu_urgent_qs before other flags. */
1000 if (!smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
)))
1002 this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
1003 if (unlikely(raw_cpu_read(rcu_data
.rcu_need_heavy_qs
)))
1004 rcu_momentary_dyntick_idle();
1006 rcu_tasks_qs(current
);
1008 trace_rcu_utilization(TPS("End context switch"));
1009 barrier(); /* Avoid RCU read-side critical sections leaking up. */
1011 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
1014 * Because preemptible RCU does not exist, there are never any preempted
1017 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
1023 * Because there is no preemptible RCU, there can be no readers blocked.
1025 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
1031 * Because there is no preemptible RCU, there can be no deferred quiescent
1034 static bool rcu_preempt_need_deferred_qs(struct task_struct
*t
)
1038 static void rcu_preempt_deferred_qs(struct task_struct
*t
) { }
1041 * Because preemptible RCU does not exist, we never have to check for
1042 * tasks blocked within RCU read-side critical sections.
1044 static void rcu_print_detail_task_stall(void)
1049 * Because preemptible RCU does not exist, we never have to check for
1050 * tasks blocked within RCU read-side critical sections.
1052 static int rcu_print_task_stall(struct rcu_node
*rnp
)
1058 * Because preemptible RCU does not exist, we never have to check for
1059 * tasks blocked within RCU read-side critical sections that are
1060 * blocking the current expedited grace period.
1062 static int rcu_print_task_exp_stall(struct rcu_node
*rnp
)
1068 * Because there is no preemptible RCU, there can be no readers blocked,
1069 * so there is no need to check for blocked tasks. So check only for
1070 * bogus qsmask values.
1072 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
1074 WARN_ON_ONCE(rnp
->qsmask
);
1078 * Check to see if this CPU is in a non-context-switch quiescent state
1079 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
1080 * Also schedule RCU core processing.
1082 * This function must be called from hardirq context. It is normally
1083 * invoked from the scheduling-clock interrupt.
1085 static void rcu_flavor_check_callbacks(int user
)
1087 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
1090 * Get here if this CPU took its interrupt from user
1091 * mode or from the idle loop, and if this is not a
1092 * nested interrupt. In this case, the CPU is in
1093 * a quiescent state, so note it.
1095 * No memory barrier is required here because rcu_qs()
1096 * references only CPU-local variables that other CPUs
1097 * neither access nor modify, at least not while the
1098 * corresponding CPU is online.
1105 /* PREEMPT=n implementation of synchronize_rcu(). */
1106 void synchronize_rcu(void)
1108 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
1109 lock_is_held(&rcu_lock_map
) ||
1110 lock_is_held(&rcu_sched_lock_map
),
1111 "Illegal synchronize_rcu() in RCU read-side critical section");
1112 if (rcu_blocking_is_gp())
1114 if (rcu_gp_is_expedited())
1115 synchronize_rcu_expedited();
1117 wait_rcu_gp(call_rcu
);
1119 EXPORT_SYMBOL_GPL(synchronize_rcu
);
1122 * Because preemptible RCU does not exist, tasks cannot possibly exit
1123 * while in preemptible RCU read-side critical sections.
1130 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
1133 dump_blkd_tasks(struct rcu_node
*rnp
, int ncheck
)
1135 WARN_ON_ONCE(!list_empty(&rnp
->blkd_tasks
));
1138 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1140 #ifdef CONFIG_RCU_BOOST
1142 static void rcu_wake_cond(struct task_struct
*t
, int status
)
1145 * If the thread is yielding, only wake it when this
1146 * is invoked from idle
1148 if (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
))
1153 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1154 * or ->boost_tasks, advancing the pointer to the next task in the
1155 * ->blkd_tasks list.
1157 * Note that irqs must be enabled: boosting the task can block.
1158 * Returns 1 if there are more tasks needing to be boosted.
1160 static int rcu_boost(struct rcu_node
*rnp
)
1162 unsigned long flags
;
1163 struct task_struct
*t
;
1164 struct list_head
*tb
;
1166 if (READ_ONCE(rnp
->exp_tasks
) == NULL
&&
1167 READ_ONCE(rnp
->boost_tasks
) == NULL
)
1168 return 0; /* Nothing left to boost. */
1170 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1173 * Recheck under the lock: all tasks in need of boosting
1174 * might exit their RCU read-side critical sections on their own.
1176 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
1177 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1182 * Preferentially boost tasks blocking expedited grace periods.
1183 * This cannot starve the normal grace periods because a second
1184 * expedited grace period must boost all blocked tasks, including
1185 * those blocking the pre-existing normal grace period.
1187 if (rnp
->exp_tasks
!= NULL
)
1188 tb
= rnp
->exp_tasks
;
1190 tb
= rnp
->boost_tasks
;
1193 * We boost task t by manufacturing an rt_mutex that appears to
1194 * be held by task t. We leave a pointer to that rt_mutex where
1195 * task t can find it, and task t will release the mutex when it
1196 * exits its outermost RCU read-side critical section. Then
1197 * simply acquiring this artificial rt_mutex will boost task
1198 * t's priority. (Thanks to tglx for suggesting this approach!)
1200 * Note that task t must acquire rnp->lock to remove itself from
1201 * the ->blkd_tasks list, which it will do from exit() if from
1202 * nowhere else. We therefore are guaranteed that task t will
1203 * stay around at least until we drop rnp->lock. Note that
1204 * rnp->lock also resolves races between our priority boosting
1205 * and task t's exiting its outermost RCU read-side critical
1208 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1209 rt_mutex_init_proxy_locked(&rnp
->boost_mtx
, t
);
1210 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1211 /* Lock only for side effect: boosts task t's priority. */
1212 rt_mutex_lock(&rnp
->boost_mtx
);
1213 rt_mutex_unlock(&rnp
->boost_mtx
); /* Then keep lockdep happy. */
1215 return READ_ONCE(rnp
->exp_tasks
) != NULL
||
1216 READ_ONCE(rnp
->boost_tasks
) != NULL
;
1220 * Priority-boosting kthread, one per leaf rcu_node.
1222 static int rcu_boost_kthread(void *arg
)
1224 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1228 trace_rcu_utilization(TPS("Start boost kthread@init"));
1230 rnp
->boost_kthread_status
= RCU_KTHREAD_WAITING
;
1231 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1232 rcu_wait(rnp
->boost_tasks
|| rnp
->exp_tasks
);
1233 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1234 rnp
->boost_kthread_status
= RCU_KTHREAD_RUNNING
;
1235 more2boost
= rcu_boost(rnp
);
1241 rnp
->boost_kthread_status
= RCU_KTHREAD_YIELDING
;
1242 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1243 schedule_timeout_interruptible(2);
1244 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1249 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1254 * Check to see if it is time to start boosting RCU readers that are
1255 * blocking the current grace period, and, if so, tell the per-rcu_node
1256 * kthread to start boosting them. If there is an expedited grace
1257 * period in progress, it is always time to boost.
1259 * The caller must hold rnp->lock, which this function releases.
1260 * The ->boost_kthread_task is immortal, so we don't need to worry
1261 * about it going away.
1263 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1264 __releases(rnp
->lock
)
1266 struct task_struct
*t
;
1268 raw_lockdep_assert_held_rcu_node(rnp
);
1269 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1270 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1273 if (rnp
->exp_tasks
!= NULL
||
1274 (rnp
->gp_tasks
!= NULL
&&
1275 rnp
->boost_tasks
== NULL
&&
1277 ULONG_CMP_GE(jiffies
, rnp
->boost_time
))) {
1278 if (rnp
->exp_tasks
== NULL
)
1279 rnp
->boost_tasks
= rnp
->gp_tasks
;
1280 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1281 t
= rnp
->boost_kthread_task
;
1283 rcu_wake_cond(t
, rnp
->boost_kthread_status
);
1285 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1290 * Wake up the per-CPU kthread to invoke RCU callbacks.
1292 static void invoke_rcu_callbacks_kthread(void)
1294 unsigned long flags
;
1296 local_irq_save(flags
);
1297 __this_cpu_write(rcu_cpu_has_work
, 1);
1298 if (__this_cpu_read(rcu_cpu_kthread_task
) != NULL
&&
1299 current
!= __this_cpu_read(rcu_cpu_kthread_task
)) {
1300 rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task
),
1301 __this_cpu_read(rcu_cpu_kthread_status
));
1303 local_irq_restore(flags
);
1307 * Is the current CPU running the RCU-callbacks kthread?
1308 * Caller must have preemption disabled.
1310 static bool rcu_is_callbacks_kthread(void)
1312 return __this_cpu_read(rcu_cpu_kthread_task
) == current
;
1315 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1318 * Do priority-boost accounting for the start of a new grace period.
1320 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1322 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1326 * Create an RCU-boost kthread for the specified node if one does not
1327 * already exist. We only create this kthread for preemptible RCU.
1328 * Returns zero if all is well, a negated errno otherwise.
1330 static int rcu_spawn_one_boost_kthread(struct rcu_node
*rnp
)
1332 int rnp_index
= rnp
- rcu_get_root();
1333 unsigned long flags
;
1334 struct sched_param sp
;
1335 struct task_struct
*t
;
1337 if (!IS_ENABLED(CONFIG_PREEMPT_RCU
))
1340 if (!rcu_scheduler_fully_active
|| rcu_rnp_online_cpus(rnp
) == 0)
1343 rcu_state
.boost
= 1;
1344 if (rnp
->boost_kthread_task
!= NULL
)
1346 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1347 "rcub/%d", rnp_index
);
1350 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1351 rnp
->boost_kthread_task
= t
;
1352 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1353 sp
.sched_priority
= kthread_prio
;
1354 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1355 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1359 static void rcu_kthread_do_work(void)
1361 rcu_do_batch(this_cpu_ptr(&rcu_data
));
1364 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1366 struct sched_param sp
;
1368 sp
.sched_priority
= kthread_prio
;
1369 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1372 static void rcu_cpu_kthread_park(unsigned int cpu
)
1374 per_cpu(rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
1377 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
1379 return __this_cpu_read(rcu_cpu_has_work
);
1383 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
1384 * the RCU softirq used in configurations of RCU that do not support RCU
1385 * priority boosting.
1387 static void rcu_cpu_kthread(unsigned int cpu
)
1389 unsigned int *statusp
= this_cpu_ptr(&rcu_cpu_kthread_status
);
1390 char work
, *workp
= this_cpu_ptr(&rcu_cpu_has_work
);
1393 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
1394 trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
1396 *statusp
= RCU_KTHREAD_RUNNING
;
1397 this_cpu_inc(rcu_cpu_kthread_loops
);
1398 local_irq_disable();
1403 rcu_kthread_do_work();
1406 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
1407 *statusp
= RCU_KTHREAD_WAITING
;
1411 *statusp
= RCU_KTHREAD_YIELDING
;
1412 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
1413 schedule_timeout_interruptible(2);
1414 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
1415 *statusp
= RCU_KTHREAD_WAITING
;
1419 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1420 * served by the rcu_node in question. The CPU hotplug lock is still
1421 * held, so the value of rnp->qsmaskinit will be stable.
1423 * We don't include outgoingcpu in the affinity set, use -1 if there is
1424 * no outgoing CPU. If there are no CPUs left in the affinity set,
1425 * this function allows the kthread to execute on any CPU.
1427 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1429 struct task_struct
*t
= rnp
->boost_kthread_task
;
1430 unsigned long mask
= rcu_rnp_online_cpus(rnp
);
1436 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1438 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1439 if ((mask
& leaf_node_cpu_bit(rnp
, cpu
)) &&
1441 cpumask_set_cpu(cpu
, cm
);
1442 if (cpumask_weight(cm
) == 0)
1444 set_cpus_allowed_ptr(t
, cm
);
1445 free_cpumask_var(cm
);
1448 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
1449 .store
= &rcu_cpu_kthread_task
,
1450 .thread_should_run
= rcu_cpu_kthread_should_run
,
1451 .thread_fn
= rcu_cpu_kthread
,
1452 .thread_comm
= "rcuc/%u",
1453 .setup
= rcu_cpu_kthread_setup
,
1454 .park
= rcu_cpu_kthread_park
,
1458 * Spawn boost kthreads -- called as soon as the scheduler is running.
1460 static void __init
rcu_spawn_boost_kthreads(void)
1462 struct rcu_node
*rnp
;
1465 for_each_possible_cpu(cpu
)
1466 per_cpu(rcu_cpu_has_work
, cpu
) = 0;
1467 BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
));
1468 rcu_for_each_leaf_node(rnp
)
1469 (void)rcu_spawn_one_boost_kthread(rnp
);
1472 static void rcu_prepare_kthreads(int cpu
)
1474 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
1475 struct rcu_node
*rnp
= rdp
->mynode
;
1477 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1478 if (rcu_scheduler_fully_active
)
1479 (void)rcu_spawn_one_boost_kthread(rnp
);
1482 #else /* #ifdef CONFIG_RCU_BOOST */
1484 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1485 __releases(rnp
->lock
)
1487 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1490 static void invoke_rcu_callbacks_kthread(void)
1495 static bool rcu_is_callbacks_kthread(void)
1500 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1504 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1508 static void __init
rcu_spawn_boost_kthreads(void)
1512 static void rcu_prepare_kthreads(int cpu
)
1516 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1518 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1521 * Check to see if any future RCU-related work will need to be done
1522 * by the current CPU, even if none need be done immediately, returning
1523 * 1 if so. This function is part of the RCU implementation; it is -not-
1524 * an exported member of the RCU API.
1526 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1527 * CPU has RCU callbacks queued.
1529 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1531 *nextevt
= KTIME_MAX
;
1532 return rcu_cpu_has_callbacks(NULL
);
1536 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1539 static void rcu_cleanup_after_idle(void)
1544 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1547 static void rcu_prepare_for_idle(void)
1552 * Don't bother keeping a running count of the number of RCU callbacks
1553 * posted because CONFIG_RCU_FAST_NO_HZ=n.
1555 static void rcu_idle_count_callbacks_posted(void)
1559 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1562 * This code is invoked when a CPU goes idle, at which point we want
1563 * to have the CPU do everything required for RCU so that it can enter
1564 * the energy-efficient dyntick-idle mode. This is handled by a
1565 * state machine implemented by rcu_prepare_for_idle() below.
1567 * The following three proprocessor symbols control this state machine:
1569 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1570 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1571 * is sized to be roughly one RCU grace period. Those energy-efficiency
1572 * benchmarkers who might otherwise be tempted to set this to a large
1573 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1574 * system. And if you are -that- concerned about energy efficiency,
1575 * just power the system down and be done with it!
1576 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
1577 * permitted to sleep in dyntick-idle mode with only lazy RCU
1578 * callbacks pending. Setting this too high can OOM your system.
1580 * The values below work well in practice. If future workloads require
1581 * adjustment, they can be converted into kernel config parameters, though
1582 * making the state machine smarter might be a better option.
1584 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1585 #define RCU_IDLE_LAZY_GP_DELAY (6 * HZ) /* Roughly six seconds. */
1587 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1588 module_param(rcu_idle_gp_delay
, int, 0644);
1589 static int rcu_idle_lazy_gp_delay
= RCU_IDLE_LAZY_GP_DELAY
;
1590 module_param(rcu_idle_lazy_gp_delay
, int, 0644);
1593 * Try to advance callbacks on the current CPU, but only if it has been
1594 * awhile since the last time we did so. Afterwards, if there are any
1595 * callbacks ready for immediate invocation, return true.
1597 static bool __maybe_unused
rcu_try_advance_all_cbs(void)
1599 bool cbs_ready
= false;
1600 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1601 struct rcu_node
*rnp
;
1603 /* Exit early if we advanced recently. */
1604 if (jiffies
== rdp
->last_advance_all
)
1606 rdp
->last_advance_all
= jiffies
;
1611 * Don't bother checking unless a grace period has
1612 * completed since we last checked and there are
1613 * callbacks not yet ready to invoke.
1615 if ((rcu_seq_completed_gp(rdp
->gp_seq
,
1616 rcu_seq_current(&rnp
->gp_seq
)) ||
1617 unlikely(READ_ONCE(rdp
->gpwrap
))) &&
1618 rcu_segcblist_pend_cbs(&rdp
->cblist
))
1619 note_gp_changes(rdp
);
1621 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
1627 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1628 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1629 * caller to set the timeout based on whether or not there are non-lazy
1632 * The caller must have disabled interrupts.
1634 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1636 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1639 lockdep_assert_irqs_disabled();
1641 /* Snapshot to detect later posting of non-lazy callback. */
1642 rdp
->nonlazy_posted_snap
= rdp
->nonlazy_posted
;
1644 /* If no callbacks, RCU doesn't need the CPU. */
1645 if (!rcu_cpu_has_callbacks(&rdp
->all_lazy
)) {
1646 *nextevt
= KTIME_MAX
;
1650 /* Attempt to advance callbacks. */
1651 if (rcu_try_advance_all_cbs()) {
1652 /* Some ready to invoke, so initiate later invocation. */
1656 rdp
->last_accelerate
= jiffies
;
1658 /* Request timer delay depending on laziness, and round. */
1659 if (!rdp
->all_lazy
) {
1660 dj
= round_up(rcu_idle_gp_delay
+ jiffies
,
1661 rcu_idle_gp_delay
) - jiffies
;
1663 dj
= round_jiffies(rcu_idle_lazy_gp_delay
+ jiffies
) - jiffies
;
1665 *nextevt
= basemono
+ dj
* TICK_NSEC
;
1670 * Prepare a CPU for idle from an RCU perspective. The first major task
1671 * is to sense whether nohz mode has been enabled or disabled via sysfs.
1672 * The second major task is to check to see if a non-lazy callback has
1673 * arrived at a CPU that previously had only lazy callbacks. The third
1674 * major task is to accelerate (that is, assign grace-period numbers to)
1675 * any recently arrived callbacks.
1677 * The caller must have disabled interrupts.
1679 static void rcu_prepare_for_idle(void)
1682 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1683 struct rcu_node
*rnp
;
1686 lockdep_assert_irqs_disabled();
1687 if (rcu_is_nocb_cpu(smp_processor_id()))
1690 /* Handle nohz enablement switches conservatively. */
1691 tne
= READ_ONCE(tick_nohz_active
);
1692 if (tne
!= rdp
->tick_nohz_enabled_snap
) {
1693 if (rcu_cpu_has_callbacks(NULL
))
1694 invoke_rcu_core(); /* force nohz to see update. */
1695 rdp
->tick_nohz_enabled_snap
= tne
;
1702 * If a non-lazy callback arrived at a CPU having only lazy
1703 * callbacks, invoke RCU core for the side-effect of recalculating
1704 * idle duration on re-entry to idle.
1706 if (rdp
->all_lazy
&&
1707 rdp
->nonlazy_posted
!= rdp
->nonlazy_posted_snap
) {
1708 rdp
->all_lazy
= false;
1709 rdp
->nonlazy_posted_snap
= rdp
->nonlazy_posted
;
1715 * If we have not yet accelerated this jiffy, accelerate all
1716 * callbacks on this CPU.
1718 if (rdp
->last_accelerate
== jiffies
)
1720 rdp
->last_accelerate
= jiffies
;
1721 if (rcu_segcblist_pend_cbs(&rdp
->cblist
)) {
1723 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1724 needwake
= rcu_accelerate_cbs(rnp
, rdp
);
1725 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1727 rcu_gp_kthread_wake();
1732 * Clean up for exit from idle. Attempt to advance callbacks based on
1733 * any grace periods that elapsed while the CPU was idle, and if any
1734 * callbacks are now ready to invoke, initiate invocation.
1736 static void rcu_cleanup_after_idle(void)
1738 lockdep_assert_irqs_disabled();
1739 if (rcu_is_nocb_cpu(smp_processor_id()))
1741 if (rcu_try_advance_all_cbs())
1746 * Keep a running count of the number of non-lazy callbacks posted
1747 * on this CPU. This running counter (which is never decremented) allows
1748 * rcu_prepare_for_idle() to detect when something out of the idle loop
1749 * posts a callback, even if an equal number of callbacks are invoked.
1750 * Of course, callbacks should only be posted from within a trace event
1751 * designed to be called from idle or from within RCU_NONIDLE().
1753 static void rcu_idle_count_callbacks_posted(void)
1755 __this_cpu_add(rcu_data
.nonlazy_posted
, 1);
1758 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1760 #ifdef CONFIG_RCU_FAST_NO_HZ
1762 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1764 struct rcu_data
*rdp
= &per_cpu(rcu_data
, cpu
);
1765 unsigned long nlpd
= rdp
->nonlazy_posted
- rdp
->nonlazy_posted_snap
;
1767 sprintf(cp
, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
1768 rdp
->last_accelerate
& 0xffff, jiffies
& 0xffff,
1770 rdp
->all_lazy
? 'L' : '.',
1771 rdp
->tick_nohz_enabled_snap
? '.' : 'D');
1774 #else /* #ifdef CONFIG_RCU_FAST_NO_HZ */
1776 static void print_cpu_stall_fast_no_hz(char *cp
, int cpu
)
1781 #endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */
1783 /* Initiate the stall-info list. */
1784 static void print_cpu_stall_info_begin(void)
1790 * Print out diagnostic information for the specified stalled CPU.
1792 * If the specified CPU is aware of the current RCU grace period, then
1793 * print the number of scheduling clock interrupts the CPU has taken
1794 * during the time that it has been aware. Otherwise, print the number
1795 * of RCU grace periods that this CPU is ignorant of, for example, "1"
1796 * if the CPU was aware of the previous grace period.
1798 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
1800 static void print_cpu_stall_info(int cpu
)
1802 unsigned long delta
;
1803 char fast_no_hz
[72];
1804 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
1806 unsigned long ticks_value
;
1809 * We could be printing a lot while holding a spinlock. Avoid
1810 * triggering hard lockup.
1812 touch_nmi_watchdog();
1814 ticks_value
= rcu_seq_ctr(rcu_state
.gp_seq
- rdp
->gp_seq
);
1816 ticks_title
= "GPs behind";
1818 ticks_title
= "ticks this GP";
1819 ticks_value
= rdp
->ticks_this_gp
;
1821 print_cpu_stall_fast_no_hz(fast_no_hz
, cpu
);
1822 delta
= rcu_seq_ctr(rdp
->mynode
->gp_seq
- rdp
->rcu_iw_gp_seq
);
1823 pr_err("\t%d-%c%c%c%c: (%lu %s) idle=%03x/%ld/%#lx softirq=%u/%u fqs=%ld %s\n",
1825 "O."[!!cpu_online(cpu
)],
1826 "o."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinit
)],
1827 "N."[!!(rdp
->grpmask
& rdp
->mynode
->qsmaskinitnext
)],
1828 !IS_ENABLED(CONFIG_IRQ_WORK
) ? '?' :
1829 rdp
->rcu_iw_pending
? (int)min(delta
, 9UL) + '0' :
1831 ticks_value
, ticks_title
,
1832 rcu_dynticks_snap(rdp
) & 0xfff,
1833 rdp
->dynticks_nesting
, rdp
->dynticks_nmi_nesting
,
1834 rdp
->softirq_snap
, kstat_softirqs_cpu(RCU_SOFTIRQ
, cpu
),
1835 READ_ONCE(rcu_state
.n_force_qs
) - rcu_state
.n_force_qs_gpstart
,
1839 /* Terminate the stall-info list. */
1840 static void print_cpu_stall_info_end(void)
1845 /* Zero ->ticks_this_gp and snapshot the number of RCU softirq handlers. */
1846 static void zero_cpu_stall_ticks(struct rcu_data
*rdp
)
1848 rdp
->ticks_this_gp
= 0;
1849 rdp
->softirq_snap
= kstat_softirqs_cpu(RCU_SOFTIRQ
, smp_processor_id());
1850 WRITE_ONCE(rdp
->last_fqs_resched
, jiffies
);
1853 #ifdef CONFIG_RCU_NOCB_CPU
1856 * Offload callback processing from the boot-time-specified set of CPUs
1857 * specified by rcu_nocb_mask. For each CPU in the set, there is a
1858 * kthread created that pulls the callbacks from the corresponding CPU,
1859 * waits for a grace period to elapse, and invokes the callbacks.
1860 * The no-CBs CPUs do a wake_up() on their kthread when they insert
1861 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
1862 * has been specified, in which case each kthread actively polls its
1863 * CPU. (Which isn't so great for energy efficiency, but which does
1864 * reduce RCU's overhead on that CPU.)
1866 * This is intended to be used in conjunction with Frederic Weisbecker's
1867 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1868 * running CPU-bound user-mode computations.
1870 * Offloading of callback processing could also in theory be used as
1871 * an energy-efficiency measure because CPUs with no RCU callbacks
1872 * queued are more aggressive about entering dyntick-idle mode.
1876 /* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
1877 static int __init
rcu_nocb_setup(char *str
)
1879 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
1880 cpulist_parse(str
, rcu_nocb_mask
);
1883 __setup("rcu_nocbs=", rcu_nocb_setup
);
1885 static int __init
parse_rcu_nocb_poll(char *arg
)
1887 rcu_nocb_poll
= true;
1890 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
1893 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1896 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
1901 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
1903 return &rnp
->nocb_gp_wq
[rcu_seq_ctr(rnp
->gp_seq
) & 0x1];
1906 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
1908 init_swait_queue_head(&rnp
->nocb_gp_wq
[0]);
1909 init_swait_queue_head(&rnp
->nocb_gp_wq
[1]);
1912 /* Is the specified CPU a no-CBs CPU? */
1913 bool rcu_is_nocb_cpu(int cpu
)
1915 if (cpumask_available(rcu_nocb_mask
))
1916 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
1921 * Kick the leader kthread for this NOCB group. Caller holds ->nocb_lock
1922 * and this function releases it.
1924 static void __wake_nocb_leader(struct rcu_data
*rdp
, bool force
,
1925 unsigned long flags
)
1926 __releases(rdp
->nocb_lock
)
1928 struct rcu_data
*rdp_leader
= rdp
->nocb_leader
;
1930 lockdep_assert_held(&rdp
->nocb_lock
);
1931 if (!READ_ONCE(rdp_leader
->nocb_kthread
)) {
1932 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1935 if (rdp_leader
->nocb_leader_sleep
|| force
) {
1936 /* Prior smp_mb__after_atomic() orders against prior enqueue. */
1937 WRITE_ONCE(rdp_leader
->nocb_leader_sleep
, false);
1938 del_timer(&rdp
->nocb_timer
);
1939 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1940 smp_mb(); /* ->nocb_leader_sleep before swake_up_one(). */
1941 swake_up_one(&rdp_leader
->nocb_wq
);
1943 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1948 * Kick the leader kthread for this NOCB group, but caller has not
1951 static void wake_nocb_leader(struct rcu_data
*rdp
, bool force
)
1953 unsigned long flags
;
1955 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
1956 __wake_nocb_leader(rdp
, force
, flags
);
1960 * Arrange to wake the leader kthread for this NOCB group at some
1961 * future time when it is safe to do so.
1963 static void wake_nocb_leader_defer(struct rcu_data
*rdp
, int waketype
,
1966 unsigned long flags
;
1968 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
1969 if (rdp
->nocb_defer_wakeup
== RCU_NOCB_WAKE_NOT
)
1970 mod_timer(&rdp
->nocb_timer
, jiffies
+ 1);
1971 WRITE_ONCE(rdp
->nocb_defer_wakeup
, waketype
);
1972 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, reason
);
1973 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1977 * Does the specified CPU need an RCU callback for this invocation
1980 static bool rcu_nocb_cpu_needs_barrier(int cpu
)
1982 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
1984 #ifdef CONFIG_PROVE_RCU
1985 struct rcu_head
*rhp
;
1986 #endif /* #ifdef CONFIG_PROVE_RCU */
1989 * Check count of all no-CBs callbacks awaiting invocation.
1990 * There needs to be a barrier before this function is called,
1991 * but associated with a prior determination that no more
1992 * callbacks would be posted. In the worst case, the first
1993 * barrier in rcu_barrier() suffices (but the caller cannot
1994 * necessarily rely on this, not a substitute for the caller
1995 * getting the concurrency design right!). There must also be
1996 * a barrier between the following load an posting of a callback
1997 * (if a callback is in fact needed). This is associated with an
1998 * atomic_inc() in the caller.
2000 ret
= atomic_long_read(&rdp
->nocb_q_count
);
2002 #ifdef CONFIG_PROVE_RCU
2003 rhp
= READ_ONCE(rdp
->nocb_head
);
2005 rhp
= READ_ONCE(rdp
->nocb_gp_head
);
2007 rhp
= READ_ONCE(rdp
->nocb_follower_head
);
2009 /* Having no rcuo kthread but CBs after scheduler starts is bad! */
2010 if (!READ_ONCE(rdp
->nocb_kthread
) && rhp
&&
2011 rcu_scheduler_fully_active
) {
2012 /* RCU callback enqueued before CPU first came online??? */
2013 pr_err("RCU: Never-onlined no-CBs CPU %d has CB %p\n",
2017 #endif /* #ifdef CONFIG_PROVE_RCU */
2023 * Enqueue the specified string of rcu_head structures onto the specified
2024 * CPU's no-CBs lists. The CPU is specified by rdp, the head of the
2025 * string by rhp, and the tail of the string by rhtp. The non-lazy/lazy
2026 * counts are supplied by rhcount and rhcount_lazy.
2028 * If warranted, also wake up the kthread servicing this CPUs queues.
2030 static void __call_rcu_nocb_enqueue(struct rcu_data
*rdp
,
2031 struct rcu_head
*rhp
,
2032 struct rcu_head
**rhtp
,
2033 int rhcount
, int rhcount_lazy
,
2034 unsigned long flags
)
2037 struct rcu_head
**old_rhpp
;
2038 struct task_struct
*t
;
2040 /* Enqueue the callback on the nocb list and update counts. */
2041 atomic_long_add(rhcount
, &rdp
->nocb_q_count
);
2042 /* rcu_barrier() relies on ->nocb_q_count add before xchg. */
2043 old_rhpp
= xchg(&rdp
->nocb_tail
, rhtp
);
2044 WRITE_ONCE(*old_rhpp
, rhp
);
2045 atomic_long_add(rhcount_lazy
, &rdp
->nocb_q_count_lazy
);
2046 smp_mb__after_atomic(); /* Store *old_rhpp before _wake test. */
2048 /* If we are not being polled and there is a kthread, awaken it ... */
2049 t
= READ_ONCE(rdp
->nocb_kthread
);
2050 if (rcu_nocb_poll
|| !t
) {
2051 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
2052 TPS("WakeNotPoll"));
2055 len
= atomic_long_read(&rdp
->nocb_q_count
);
2056 if (old_rhpp
== &rdp
->nocb_head
) {
2057 if (!irqs_disabled_flags(flags
)) {
2058 /* ... if queue was empty ... */
2059 wake_nocb_leader(rdp
, false);
2060 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
2063 wake_nocb_leader_defer(rdp
, RCU_NOCB_WAKE
,
2064 TPS("WakeEmptyIsDeferred"));
2066 rdp
->qlen_last_fqs_check
= 0;
2067 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
2068 /* ... or if many callbacks queued. */
2069 if (!irqs_disabled_flags(flags
)) {
2070 wake_nocb_leader(rdp
, true);
2071 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
2074 wake_nocb_leader_defer(rdp
, RCU_NOCB_WAKE_FORCE
,
2075 TPS("WakeOvfIsDeferred"));
2077 rdp
->qlen_last_fqs_check
= LONG_MAX
/ 2;
2079 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("WakeNot"));
2085 * This is a helper for __call_rcu(), which invokes this when the normal
2086 * callback queue is inoperable. If this is not a no-CBs CPU, this
2087 * function returns failure back to __call_rcu(), which can complain
2090 * Otherwise, this function queues the callback where the corresponding
2091 * "rcuo" kthread can find it.
2093 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2094 bool lazy
, unsigned long flags
)
2097 if (!rcu_is_nocb_cpu(rdp
->cpu
))
2099 __call_rcu_nocb_enqueue(rdp
, rhp
, &rhp
->next
, 1, lazy
, flags
);
2100 if (__is_kfree_rcu_offset((unsigned long)rhp
->func
))
2101 trace_rcu_kfree_callback(rcu_state
.name
, rhp
,
2102 (unsigned long)rhp
->func
,
2103 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
2104 -atomic_long_read(&rdp
->nocb_q_count
));
2106 trace_rcu_callback(rcu_state
.name
, rhp
,
2107 -atomic_long_read(&rdp
->nocb_q_count_lazy
),
2108 -atomic_long_read(&rdp
->nocb_q_count
));
2111 * If called from an extended quiescent state with interrupts
2112 * disabled, invoke the RCU core in order to allow the idle-entry
2113 * deferred-wakeup check to function.
2115 if (irqs_disabled_flags(flags
) &&
2116 !rcu_is_watching() &&
2117 cpu_online(smp_processor_id()))
2124 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
2127 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_data
*my_rdp
,
2128 struct rcu_data
*rdp
,
2129 unsigned long flags
)
2131 lockdep_assert_irqs_disabled();
2132 if (!rcu_is_nocb_cpu(smp_processor_id()))
2133 return false; /* Not NOCBs CPU, caller must migrate CBs. */
2134 __call_rcu_nocb_enqueue(my_rdp
, rcu_segcblist_head(&rdp
->cblist
),
2135 rcu_segcblist_tail(&rdp
->cblist
),
2136 rcu_segcblist_n_cbs(&rdp
->cblist
),
2137 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
), flags
);
2138 rcu_segcblist_init(&rdp
->cblist
);
2139 rcu_segcblist_disable(&rdp
->cblist
);
2144 * If necessary, kick off a new grace period, and either way wait
2145 * for a subsequent grace period to complete.
2147 static void rcu_nocb_wait_gp(struct rcu_data
*rdp
)
2151 unsigned long flags
;
2153 struct rcu_node
*rnp
= rdp
->mynode
;
2155 local_irq_save(flags
);
2156 c
= rcu_seq_snap(&rcu_state
.gp_seq
);
2157 if (!rdp
->gpwrap
&& ULONG_CMP_GE(rdp
->gp_seq_needed
, c
)) {
2158 local_irq_restore(flags
);
2160 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2161 needwake
= rcu_start_this_gp(rnp
, rdp
, c
);
2162 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2164 rcu_gp_kthread_wake();
2168 * Wait for the grace period. Do so interruptibly to avoid messing
2169 * up the load average.
2171 trace_rcu_this_gp(rnp
, rdp
, c
, TPS("StartWait"));
2173 swait_event_interruptible_exclusive(
2174 rnp
->nocb_gp_wq
[rcu_seq_ctr(c
) & 0x1],
2175 (d
= rcu_seq_done(&rnp
->gp_seq
, c
)));
2178 WARN_ON(signal_pending(current
));
2179 trace_rcu_this_gp(rnp
, rdp
, c
, TPS("ResumeWait"));
2181 trace_rcu_this_gp(rnp
, rdp
, c
, TPS("EndWait"));
2182 smp_mb(); /* Ensure that CB invocation happens after GP end. */
2186 * Leaders come here to wait for additional callbacks to show up.
2187 * This function does not return until callbacks appear.
2189 static void nocb_leader_wait(struct rcu_data
*my_rdp
)
2191 bool firsttime
= true;
2192 unsigned long flags
;
2194 struct rcu_data
*rdp
;
2195 struct rcu_head
**tail
;
2199 /* Wait for callbacks to appear. */
2200 if (!rcu_nocb_poll
) {
2201 trace_rcu_nocb_wake(rcu_state
.name
, my_rdp
->cpu
, TPS("Sleep"));
2202 swait_event_interruptible_exclusive(my_rdp
->nocb_wq
,
2203 !READ_ONCE(my_rdp
->nocb_leader_sleep
));
2204 raw_spin_lock_irqsave(&my_rdp
->nocb_lock
, flags
);
2205 my_rdp
->nocb_leader_sleep
= true;
2206 WRITE_ONCE(my_rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_NOT
);
2207 del_timer(&my_rdp
->nocb_timer
);
2208 raw_spin_unlock_irqrestore(&my_rdp
->nocb_lock
, flags
);
2209 } else if (firsttime
) {
2210 firsttime
= false; /* Don't drown trace log with "Poll"! */
2211 trace_rcu_nocb_wake(rcu_state
.name
, my_rdp
->cpu
, TPS("Poll"));
2215 * Each pass through the following loop checks a follower for CBs.
2216 * We are our own first follower. Any CBs found are moved to
2217 * nocb_gp_head, where they await a grace period.
2220 smp_mb(); /* wakeup and _sleep before ->nocb_head reads. */
2221 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2222 rdp
->nocb_gp_head
= READ_ONCE(rdp
->nocb_head
);
2223 if (!rdp
->nocb_gp_head
)
2224 continue; /* No CBs here, try next follower. */
2226 /* Move callbacks to wait-for-GP list, which is empty. */
2227 WRITE_ONCE(rdp
->nocb_head
, NULL
);
2228 rdp
->nocb_gp_tail
= xchg(&rdp
->nocb_tail
, &rdp
->nocb_head
);
2232 /* No callbacks? Sleep a bit if polling, and go retry. */
2233 if (unlikely(!gotcbs
)) {
2234 WARN_ON(signal_pending(current
));
2235 if (rcu_nocb_poll
) {
2236 schedule_timeout_interruptible(1);
2238 trace_rcu_nocb_wake(rcu_state
.name
, my_rdp
->cpu
,
2244 /* Wait for one grace period. */
2245 rcu_nocb_wait_gp(my_rdp
);
2247 /* Each pass through the following loop wakes a follower, if needed. */
2248 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_follower
) {
2249 if (!rcu_nocb_poll
&&
2250 READ_ONCE(rdp
->nocb_head
) &&
2251 READ_ONCE(my_rdp
->nocb_leader_sleep
)) {
2252 raw_spin_lock_irqsave(&my_rdp
->nocb_lock
, flags
);
2253 my_rdp
->nocb_leader_sleep
= false;/* No need to sleep.*/
2254 raw_spin_unlock_irqrestore(&my_rdp
->nocb_lock
, flags
);
2256 if (!rdp
->nocb_gp_head
)
2257 continue; /* No CBs, so no need to wake follower. */
2259 /* Append callbacks to follower's "done" list. */
2260 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
2261 tail
= rdp
->nocb_follower_tail
;
2262 rdp
->nocb_follower_tail
= rdp
->nocb_gp_tail
;
2263 *tail
= rdp
->nocb_gp_head
;
2264 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
2265 if (rdp
!= my_rdp
&& tail
== &rdp
->nocb_follower_head
) {
2266 /* List was empty, so wake up the follower. */
2267 swake_up_one(&rdp
->nocb_wq
);
2271 /* If we (the leader) don't have CBs, go wait some more. */
2272 if (!my_rdp
->nocb_follower_head
)
2277 * Followers come here to wait for additional callbacks to show up.
2278 * This function does not return until callbacks appear.
2280 static void nocb_follower_wait(struct rcu_data
*rdp
)
2283 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("FollowerSleep"));
2284 swait_event_interruptible_exclusive(rdp
->nocb_wq
,
2285 READ_ONCE(rdp
->nocb_follower_head
));
2286 if (smp_load_acquire(&rdp
->nocb_follower_head
)) {
2287 /* ^^^ Ensure CB invocation follows _head test. */
2290 WARN_ON(signal_pending(current
));
2291 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("WokeEmpty"));
2296 * Per-rcu_data kthread, but only for no-CBs CPUs. Each kthread invokes
2297 * callbacks queued by the corresponding no-CBs CPU, however, there is
2298 * an optional leader-follower relationship so that the grace-period
2299 * kthreads don't have to do quite so many wakeups.
2301 static int rcu_nocb_kthread(void *arg
)
2304 unsigned long flags
;
2305 struct rcu_head
*list
;
2306 struct rcu_head
*next
;
2307 struct rcu_head
**tail
;
2308 struct rcu_data
*rdp
= arg
;
2310 /* Each pass through this loop invokes one batch of callbacks */
2312 /* Wait for callbacks. */
2313 if (rdp
->nocb_leader
== rdp
)
2314 nocb_leader_wait(rdp
);
2316 nocb_follower_wait(rdp
);
2318 /* Pull the ready-to-invoke callbacks onto local list. */
2319 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
2320 list
= rdp
->nocb_follower_head
;
2321 rdp
->nocb_follower_head
= NULL
;
2322 tail
= rdp
->nocb_follower_tail
;
2323 rdp
->nocb_follower_tail
= &rdp
->nocb_follower_head
;
2324 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
2326 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("WokeNonEmpty"));
2328 /* Each pass through the following loop invokes a callback. */
2329 trace_rcu_batch_start(rcu_state
.name
,
2330 atomic_long_read(&rdp
->nocb_q_count_lazy
),
2331 atomic_long_read(&rdp
->nocb_q_count
), -1);
2335 /* Wait for enqueuing to complete, if needed. */
2336 while (next
== NULL
&& &list
->next
!= tail
) {
2337 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
2339 schedule_timeout_interruptible(1);
2340 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
2344 debug_rcu_head_unqueue(list
);
2346 if (__rcu_reclaim(rcu_state
.name
, list
))
2350 cond_resched_tasks_rcu_qs();
2353 trace_rcu_batch_end(rcu_state
.name
, c
, !!list
, 0, 0, 1);
2354 smp_mb__before_atomic(); /* _add after CB invocation. */
2355 atomic_long_add(-c
, &rdp
->nocb_q_count
);
2356 atomic_long_add(-cl
, &rdp
->nocb_q_count_lazy
);
2361 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2362 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2364 return READ_ONCE(rdp
->nocb_defer_wakeup
);
2367 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2368 static void do_nocb_deferred_wakeup_common(struct rcu_data
*rdp
)
2370 unsigned long flags
;
2373 raw_spin_lock_irqsave(&rdp
->nocb_lock
, flags
);
2374 if (!rcu_nocb_need_deferred_wakeup(rdp
)) {
2375 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
2378 ndw
= READ_ONCE(rdp
->nocb_defer_wakeup
);
2379 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_NOT
);
2380 __wake_nocb_leader(rdp
, ndw
== RCU_NOCB_WAKE_FORCE
, flags
);
2381 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("DeferredWake"));
2384 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2385 static void do_nocb_deferred_wakeup_timer(struct timer_list
*t
)
2387 struct rcu_data
*rdp
= from_timer(rdp
, t
, nocb_timer
);
2389 do_nocb_deferred_wakeup_common(rdp
);
2393 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2394 * This means we do an inexact common-case check. Note that if
2395 * we miss, ->nocb_timer will eventually clean things up.
2397 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2399 if (rcu_nocb_need_deferred_wakeup(rdp
))
2400 do_nocb_deferred_wakeup_common(rdp
);
2403 void __init
rcu_init_nohz(void)
2406 bool need_rcu_nocb_mask
= false;
2408 #if defined(CONFIG_NO_HZ_FULL)
2409 if (tick_nohz_full_running
&& cpumask_weight(tick_nohz_full_mask
))
2410 need_rcu_nocb_mask
= true;
2411 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2413 if (!cpumask_available(rcu_nocb_mask
) && need_rcu_nocb_mask
) {
2414 if (!zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
)) {
2415 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2419 if (!cpumask_available(rcu_nocb_mask
))
2422 #if defined(CONFIG_NO_HZ_FULL)
2423 if (tick_nohz_full_running
)
2424 cpumask_or(rcu_nocb_mask
, rcu_nocb_mask
, tick_nohz_full_mask
);
2425 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2427 if (!cpumask_subset(rcu_nocb_mask
, cpu_possible_mask
)) {
2428 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2429 cpumask_and(rcu_nocb_mask
, cpu_possible_mask
,
2432 if (cpumask_empty(rcu_nocb_mask
))
2433 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2435 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2436 cpumask_pr_args(rcu_nocb_mask
));
2438 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2440 for_each_cpu(cpu
, rcu_nocb_mask
)
2441 init_nocb_callback_list(per_cpu_ptr(&rcu_data
, cpu
));
2442 rcu_organize_nocb_kthreads();
2445 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2446 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2448 rdp
->nocb_tail
= &rdp
->nocb_head
;
2449 init_swait_queue_head(&rdp
->nocb_wq
);
2450 rdp
->nocb_follower_tail
= &rdp
->nocb_follower_head
;
2451 raw_spin_lock_init(&rdp
->nocb_lock
);
2452 timer_setup(&rdp
->nocb_timer
, do_nocb_deferred_wakeup_timer
, 0);
2456 * If the specified CPU is a no-CBs CPU that does not already have its
2457 * rcuo kthread, spawn it. If the CPUs are brought online out of order,
2458 * this can require re-organizing the leader-follower relationships.
2460 static void rcu_spawn_one_nocb_kthread(int cpu
)
2462 struct rcu_data
*rdp
;
2463 struct rcu_data
*rdp_last
;
2464 struct rcu_data
*rdp_old_leader
;
2465 struct rcu_data
*rdp_spawn
= per_cpu_ptr(&rcu_data
, cpu
);
2466 struct task_struct
*t
;
2469 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2470 * then nothing to do.
2472 if (!rcu_is_nocb_cpu(cpu
) || rdp_spawn
->nocb_kthread
)
2475 /* If we didn't spawn the leader first, reorganize! */
2476 rdp_old_leader
= rdp_spawn
->nocb_leader
;
2477 if (rdp_old_leader
!= rdp_spawn
&& !rdp_old_leader
->nocb_kthread
) {
2479 rdp
= rdp_old_leader
;
2481 rdp
->nocb_leader
= rdp_spawn
;
2482 if (rdp_last
&& rdp
!= rdp_spawn
)
2483 rdp_last
->nocb_next_follower
= rdp
;
2484 if (rdp
== rdp_spawn
) {
2485 rdp
= rdp
->nocb_next_follower
;
2488 rdp
= rdp
->nocb_next_follower
;
2489 rdp_last
->nocb_next_follower
= NULL
;
2492 rdp_spawn
->nocb_next_follower
= rdp_old_leader
;
2495 /* Spawn the kthread for this CPU. */
2496 t
= kthread_run(rcu_nocb_kthread
, rdp_spawn
,
2497 "rcuo%c/%d", rcu_state
.abbr
, cpu
);
2499 WRITE_ONCE(rdp_spawn
->nocb_kthread
, t
);
2503 * If the specified CPU is a no-CBs CPU that does not already have its
2504 * rcuo kthreads, spawn them.
2506 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2508 if (rcu_scheduler_fully_active
)
2509 rcu_spawn_one_nocb_kthread(cpu
);
2513 * Once the scheduler is running, spawn rcuo kthreads for all online
2514 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2515 * non-boot CPUs come online -- if this changes, we will need to add
2516 * some mutual exclusion.
2518 static void __init
rcu_spawn_nocb_kthreads(void)
2522 for_each_online_cpu(cpu
)
2523 rcu_spawn_all_nocb_kthreads(cpu
);
2526 /* How many follower CPU IDs per leader? Default of -1 for sqrt(nr_cpu_ids). */
2527 static int rcu_nocb_leader_stride
= -1;
2528 module_param(rcu_nocb_leader_stride
, int, 0444);
2531 * Initialize leader-follower relationships for all no-CBs CPU.
2533 static void __init
rcu_organize_nocb_kthreads(void)
2536 int ls
= rcu_nocb_leader_stride
;
2537 int nl
= 0; /* Next leader. */
2538 struct rcu_data
*rdp
;
2539 struct rcu_data
*rdp_leader
= NULL
; /* Suppress misguided gcc warn. */
2540 struct rcu_data
*rdp_prev
= NULL
;
2542 if (!cpumask_available(rcu_nocb_mask
))
2545 ls
= int_sqrt(nr_cpu_ids
);
2546 rcu_nocb_leader_stride
= ls
;
2550 * Each pass through this loop sets up one rcu_data structure.
2551 * Should the corresponding CPU come online in the future, then
2552 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2554 for_each_cpu(cpu
, rcu_nocb_mask
) {
2555 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2556 if (rdp
->cpu
>= nl
) {
2557 /* New leader, set up for followers & next leader. */
2558 nl
= DIV_ROUND_UP(rdp
->cpu
+ 1, ls
) * ls
;
2559 rdp
->nocb_leader
= rdp
;
2562 /* Another follower, link to previous leader. */
2563 rdp
->nocb_leader
= rdp_leader
;
2564 rdp_prev
->nocb_next_follower
= rdp
;
2570 /* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
2571 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2573 if (!rcu_is_nocb_cpu(rdp
->cpu
))
2576 /* If there are early-boot callbacks, move them to nocb lists. */
2577 if (!rcu_segcblist_empty(&rdp
->cblist
)) {
2578 rdp
->nocb_head
= rcu_segcblist_head(&rdp
->cblist
);
2579 rdp
->nocb_tail
= rcu_segcblist_tail(&rdp
->cblist
);
2580 atomic_long_set(&rdp
->nocb_q_count
,
2581 rcu_segcblist_n_cbs(&rdp
->cblist
));
2582 atomic_long_set(&rdp
->nocb_q_count_lazy
,
2583 rcu_segcblist_n_lazy_cbs(&rdp
->cblist
));
2584 rcu_segcblist_init(&rdp
->cblist
);
2586 rcu_segcblist_disable(&rdp
->cblist
);
2590 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2592 static bool rcu_nocb_cpu_needs_barrier(int cpu
)
2594 WARN_ON_ONCE(1); /* Should be dead code. */
2598 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
2602 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
2607 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2611 static bool __call_rcu_nocb(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2612 bool lazy
, unsigned long flags
)
2617 static bool __maybe_unused
rcu_nocb_adopt_orphan_cbs(struct rcu_data
*my_rdp
,
2618 struct rcu_data
*rdp
,
2619 unsigned long flags
)
2624 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2628 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2633 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2637 static void rcu_spawn_all_nocb_kthreads(int cpu
)
2641 static void __init
rcu_spawn_nocb_kthreads(void)
2645 static bool init_nocb_callback_list(struct rcu_data
*rdp
)
2650 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2653 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2654 * grace-period kthread will do force_quiescent_state() processing?
2655 * The idea is to avoid waking up RCU core processing on such a
2656 * CPU unless the grace period has extended for too long.
2658 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2659 * CONFIG_RCU_NOCB_CPU CPUs.
2661 static bool rcu_nohz_full_cpu(void)
2663 #ifdef CONFIG_NO_HZ_FULL
2664 if (tick_nohz_full_cpu(smp_processor_id()) &&
2665 (!rcu_gp_in_progress() ||
2666 ULONG_CMP_LT(jiffies
, READ_ONCE(rcu_state
.gp_start
) + HZ
)))
2668 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2673 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2675 static void rcu_bind_gp_kthread(void)
2677 if (!tick_nohz_full_enabled())
2679 housekeeping_affine(current
, HK_FLAG_RCU
);
2682 /* Record the current task on dyntick-idle entry. */
2683 static void rcu_dynticks_task_enter(void)
2685 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2686 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, smp_processor_id());
2687 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2690 /* Record no current task on dyntick-idle exit. */
2691 static void rcu_dynticks_task_exit(void)
2693 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2694 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, -1);
2695 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */