2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include "ecryptfs_kernel.h"
46 * @dst: Buffer to take hex character representation of contents of
47 * src; must be at least of size (src_size * 2)
48 * @src: Buffer to be converted to a hex string representation
49 * @src_size: number of bytes to convert
51 void ecryptfs_to_hex(char *dst
, char *src
, size_t src_size
)
55 for (x
= 0; x
< src_size
; x
++)
56 sprintf(&dst
[x
* 2], "%.2x", (unsigned char)src
[x
]);
61 * @dst: Buffer to take the bytes from src hex; must be at least of
63 * @src: Buffer to be converted from a hex string representation to raw value
64 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
66 void ecryptfs_from_hex(char *dst
, char *src
, int dst_size
)
71 for (x
= 0; x
< dst_size
; x
++) {
73 tmp
[1] = src
[x
* 2 + 1];
74 dst
[x
] = (unsigned char)simple_strtol(tmp
, NULL
, 16);
78 static int ecryptfs_hash_digest(struct crypto_shash
*tfm
,
79 char *src
, int len
, char *dst
)
81 SHASH_DESC_ON_STACK(desc
, tfm
);
85 desc
->flags
= CRYPTO_TFM_REQ_MAY_SLEEP
;
86 err
= crypto_shash_digest(desc
, src
, len
, dst
);
87 shash_desc_zero(desc
);
92 * ecryptfs_calculate_md5 - calculates the md5 of @src
93 * @dst: Pointer to 16 bytes of allocated memory
94 * @crypt_stat: Pointer to crypt_stat struct for the current inode
95 * @src: Data to be md5'd
96 * @len: Length of @src
98 * Uses the allocated crypto context that crypt_stat references to
99 * generate the MD5 sum of the contents of src.
101 static int ecryptfs_calculate_md5(char *dst
,
102 struct ecryptfs_crypt_stat
*crypt_stat
,
105 struct crypto_shash
*tfm
;
108 tfm
= crypt_stat
->hash_tfm
;
109 rc
= ecryptfs_hash_digest(tfm
, src
, len
, dst
);
112 "%s: Error computing crypto hash; rc = [%d]\n",
120 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name
,
122 char *chaining_modifier
)
124 int cipher_name_len
= strlen(cipher_name
);
125 int chaining_modifier_len
= strlen(chaining_modifier
);
126 int algified_name_len
;
129 algified_name_len
= (chaining_modifier_len
+ cipher_name_len
+ 3);
130 (*algified_name
) = kmalloc(algified_name_len
, GFP_KERNEL
);
131 if (!(*algified_name
)) {
135 snprintf((*algified_name
), algified_name_len
, "%s(%s)",
136 chaining_modifier
, cipher_name
);
144 * @iv: destination for the derived iv vale
145 * @crypt_stat: Pointer to crypt_stat struct for the current inode
146 * @offset: Offset of the extent whose IV we are to derive
148 * Generate the initialization vector from the given root IV and page
151 * Returns zero on success; non-zero on error.
153 int ecryptfs_derive_iv(char *iv
, struct ecryptfs_crypt_stat
*crypt_stat
,
157 char dst
[MD5_DIGEST_SIZE
];
158 char src
[ECRYPTFS_MAX_IV_BYTES
+ 16];
160 if (unlikely(ecryptfs_verbosity
> 0)) {
161 ecryptfs_printk(KERN_DEBUG
, "root iv:\n");
162 ecryptfs_dump_hex(crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
164 /* TODO: It is probably secure to just cast the least
165 * significant bits of the root IV into an unsigned long and
166 * add the offset to that rather than go through all this
167 * hashing business. -Halcrow */
168 memcpy(src
, crypt_stat
->root_iv
, crypt_stat
->iv_bytes
);
169 memset((src
+ crypt_stat
->iv_bytes
), 0, 16);
170 snprintf((src
+ crypt_stat
->iv_bytes
), 16, "%lld", offset
);
171 if (unlikely(ecryptfs_verbosity
> 0)) {
172 ecryptfs_printk(KERN_DEBUG
, "source:\n");
173 ecryptfs_dump_hex(src
, (crypt_stat
->iv_bytes
+ 16));
175 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, src
,
176 (crypt_stat
->iv_bytes
+ 16));
178 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
179 "MD5 while generating IV for a page\n");
182 memcpy(iv
, dst
, crypt_stat
->iv_bytes
);
183 if (unlikely(ecryptfs_verbosity
> 0)) {
184 ecryptfs_printk(KERN_DEBUG
, "derived iv:\n");
185 ecryptfs_dump_hex(iv
, crypt_stat
->iv_bytes
);
192 * ecryptfs_init_crypt_stat
193 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
195 * Initialize the crypt_stat structure.
197 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
199 struct crypto_shash
*tfm
;
202 tfm
= crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH
, 0, 0);
205 ecryptfs_printk(KERN_ERR
, "Error attempting to "
206 "allocate crypto context; rc = [%d]\n",
211 memset((void *)crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
212 INIT_LIST_HEAD(&crypt_stat
->keysig_list
);
213 mutex_init(&crypt_stat
->keysig_list_mutex
);
214 mutex_init(&crypt_stat
->cs_mutex
);
215 mutex_init(&crypt_stat
->cs_tfm_mutex
);
216 crypt_stat
->hash_tfm
= tfm
;
217 crypt_stat
->flags
|= ECRYPTFS_STRUCT_INITIALIZED
;
223 * ecryptfs_destroy_crypt_stat
224 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
226 * Releases all memory associated with a crypt_stat struct.
228 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat
*crypt_stat
)
230 struct ecryptfs_key_sig
*key_sig
, *key_sig_tmp
;
232 crypto_free_skcipher(crypt_stat
->tfm
);
233 crypto_free_shash(crypt_stat
->hash_tfm
);
234 list_for_each_entry_safe(key_sig
, key_sig_tmp
,
235 &crypt_stat
->keysig_list
, crypt_stat_list
) {
236 list_del(&key_sig
->crypt_stat_list
);
237 kmem_cache_free(ecryptfs_key_sig_cache
, key_sig
);
239 memset(crypt_stat
, 0, sizeof(struct ecryptfs_crypt_stat
));
242 void ecryptfs_destroy_mount_crypt_stat(
243 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
245 struct ecryptfs_global_auth_tok
*auth_tok
, *auth_tok_tmp
;
247 if (!(mount_crypt_stat
->flags
& ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED
))
249 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
250 list_for_each_entry_safe(auth_tok
, auth_tok_tmp
,
251 &mount_crypt_stat
->global_auth_tok_list
,
252 mount_crypt_stat_list
) {
253 list_del(&auth_tok
->mount_crypt_stat_list
);
254 if (!(auth_tok
->flags
& ECRYPTFS_AUTH_TOK_INVALID
))
255 key_put(auth_tok
->global_auth_tok_key
);
256 kmem_cache_free(ecryptfs_global_auth_tok_cache
, auth_tok
);
258 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
259 memset(mount_crypt_stat
, 0, sizeof(struct ecryptfs_mount_crypt_stat
));
263 * virt_to_scatterlist
264 * @addr: Virtual address
265 * @size: Size of data; should be an even multiple of the block size
266 * @sg: Pointer to scatterlist array; set to NULL to obtain only
267 * the number of scatterlist structs required in array
268 * @sg_size: Max array size
270 * Fills in a scatterlist array with page references for a passed
273 * Returns the number of scatterlist structs in array used
275 int virt_to_scatterlist(const void *addr
, int size
, struct scatterlist
*sg
,
281 int remainder_of_page
;
283 sg_init_table(sg
, sg_size
);
285 while (size
> 0 && i
< sg_size
) {
286 pg
= virt_to_page(addr
);
287 offset
= offset_in_page(addr
);
288 sg_set_page(&sg
[i
], pg
, 0, offset
);
289 remainder_of_page
= PAGE_SIZE
- offset
;
290 if (size
>= remainder_of_page
) {
291 sg
[i
].length
= remainder_of_page
;
292 addr
+= remainder_of_page
;
293 size
-= remainder_of_page
;
306 struct extent_crypt_result
{
307 struct completion completion
;
311 static void extent_crypt_complete(struct crypto_async_request
*req
, int rc
)
313 struct extent_crypt_result
*ecr
= req
->data
;
315 if (rc
== -EINPROGRESS
)
319 complete(&ecr
->completion
);
324 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
325 * @dst_sg: Destination of the data after performing the crypto operation
326 * @src_sg: Data to be encrypted or decrypted
327 * @size: Length of data
329 * @op: ENCRYPT or DECRYPT to indicate the desired operation
331 * Returns the number of bytes encrypted or decrypted; negative value on error
333 static int crypt_scatterlist(struct ecryptfs_crypt_stat
*crypt_stat
,
334 struct scatterlist
*dst_sg
,
335 struct scatterlist
*src_sg
, int size
,
336 unsigned char *iv
, int op
)
338 struct skcipher_request
*req
= NULL
;
339 struct extent_crypt_result ecr
;
342 if (!crypt_stat
|| !crypt_stat
->tfm
343 || !(crypt_stat
->flags
& ECRYPTFS_STRUCT_INITIALIZED
))
346 if (unlikely(ecryptfs_verbosity
> 0)) {
347 ecryptfs_printk(KERN_DEBUG
, "Key size [%zd]; key:\n",
348 crypt_stat
->key_size
);
349 ecryptfs_dump_hex(crypt_stat
->key
,
350 crypt_stat
->key_size
);
353 init_completion(&ecr
.completion
);
355 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
356 req
= skcipher_request_alloc(crypt_stat
->tfm
, GFP_NOFS
);
358 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
363 skcipher_request_set_callback(req
,
364 CRYPTO_TFM_REQ_MAY_BACKLOG
| CRYPTO_TFM_REQ_MAY_SLEEP
,
365 extent_crypt_complete
, &ecr
);
366 /* Consider doing this once, when the file is opened */
367 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_SET
)) {
368 rc
= crypto_skcipher_setkey(crypt_stat
->tfm
, crypt_stat
->key
,
369 crypt_stat
->key_size
);
371 ecryptfs_printk(KERN_ERR
,
372 "Error setting key; rc = [%d]\n",
374 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
378 crypt_stat
->flags
|= ECRYPTFS_KEY_SET
;
380 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
381 skcipher_request_set_crypt(req
, src_sg
, dst_sg
, size
, iv
);
382 rc
= op
== ENCRYPT
? crypto_skcipher_encrypt(req
) :
383 crypto_skcipher_decrypt(req
);
384 if (rc
== -EINPROGRESS
|| rc
== -EBUSY
) {
385 struct extent_crypt_result
*ecr
= req
->base
.data
;
387 wait_for_completion(&ecr
->completion
);
389 reinit_completion(&ecr
->completion
);
392 skcipher_request_free(req
);
397 * lower_offset_for_page
399 * Convert an eCryptfs page index into a lower byte offset
401 static loff_t
lower_offset_for_page(struct ecryptfs_crypt_stat
*crypt_stat
,
404 return ecryptfs_lower_header_size(crypt_stat
) +
405 ((loff_t
)page
->index
<< PAGE_SHIFT
);
410 * @crypt_stat: crypt_stat containing cryptographic context for the
411 * encryption operation
412 * @dst_page: The page to write the result into
413 * @src_page: The page to read from
414 * @extent_offset: Page extent offset for use in generating IV
415 * @op: ENCRYPT or DECRYPT to indicate the desired operation
417 * Encrypts or decrypts one extent of data.
419 * Return zero on success; non-zero otherwise
421 static int crypt_extent(struct ecryptfs_crypt_stat
*crypt_stat
,
422 struct page
*dst_page
,
423 struct page
*src_page
,
424 unsigned long extent_offset
, int op
)
426 pgoff_t page_index
= op
== ENCRYPT
? src_page
->index
: dst_page
->index
;
428 char extent_iv
[ECRYPTFS_MAX_IV_BYTES
];
429 struct scatterlist src_sg
, dst_sg
;
430 size_t extent_size
= crypt_stat
->extent_size
;
433 extent_base
= (((loff_t
)page_index
) * (PAGE_SIZE
/ extent_size
));
434 rc
= ecryptfs_derive_iv(extent_iv
, crypt_stat
,
435 (extent_base
+ extent_offset
));
437 ecryptfs_printk(KERN_ERR
, "Error attempting to derive IV for "
438 "extent [0x%.16llx]; rc = [%d]\n",
439 (unsigned long long)(extent_base
+ extent_offset
), rc
);
443 sg_init_table(&src_sg
, 1);
444 sg_init_table(&dst_sg
, 1);
446 sg_set_page(&src_sg
, src_page
, extent_size
,
447 extent_offset
* extent_size
);
448 sg_set_page(&dst_sg
, dst_page
, extent_size
,
449 extent_offset
* extent_size
);
451 rc
= crypt_scatterlist(crypt_stat
, &dst_sg
, &src_sg
, extent_size
,
454 printk(KERN_ERR
"%s: Error attempting to crypt page with "
455 "page_index = [%ld], extent_offset = [%ld]; "
456 "rc = [%d]\n", __func__
, page_index
, extent_offset
, rc
);
465 * ecryptfs_encrypt_page
466 * @page: Page mapped from the eCryptfs inode for the file; contains
467 * decrypted content that needs to be encrypted (to a temporary
468 * page; not in place) and written out to the lower file
470 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
471 * that eCryptfs pages may straddle the lower pages -- for instance,
472 * if the file was created on a machine with an 8K page size
473 * (resulting in an 8K header), and then the file is copied onto a
474 * host with a 32K page size, then when reading page 0 of the eCryptfs
475 * file, 24K of page 0 of the lower file will be read and decrypted,
476 * and then 8K of page 1 of the lower file will be read and decrypted.
478 * Returns zero on success; negative on error
480 int ecryptfs_encrypt_page(struct page
*page
)
482 struct inode
*ecryptfs_inode
;
483 struct ecryptfs_crypt_stat
*crypt_stat
;
484 char *enc_extent_virt
;
485 struct page
*enc_extent_page
= NULL
;
486 loff_t extent_offset
;
490 ecryptfs_inode
= page
->mapping
->host
;
492 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
493 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
494 enc_extent_page
= alloc_page(GFP_USER
);
495 if (!enc_extent_page
) {
497 ecryptfs_printk(KERN_ERR
, "Error allocating memory for "
498 "encrypted extent\n");
502 for (extent_offset
= 0;
503 extent_offset
< (PAGE_SIZE
/ crypt_stat
->extent_size
);
505 rc
= crypt_extent(crypt_stat
, enc_extent_page
, page
,
506 extent_offset
, ENCRYPT
);
508 printk(KERN_ERR
"%s: Error encrypting extent; "
509 "rc = [%d]\n", __func__
, rc
);
514 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
515 enc_extent_virt
= kmap(enc_extent_page
);
516 rc
= ecryptfs_write_lower(ecryptfs_inode
, enc_extent_virt
, lower_offset
,
518 kunmap(enc_extent_page
);
520 ecryptfs_printk(KERN_ERR
,
521 "Error attempting to write lower page; rc = [%d]\n",
527 if (enc_extent_page
) {
528 __free_page(enc_extent_page
);
534 * ecryptfs_decrypt_page
535 * @page: Page mapped from the eCryptfs inode for the file; data read
536 * and decrypted from the lower file will be written into this
539 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
540 * that eCryptfs pages may straddle the lower pages -- for instance,
541 * if the file was created on a machine with an 8K page size
542 * (resulting in an 8K header), and then the file is copied onto a
543 * host with a 32K page size, then when reading page 0 of the eCryptfs
544 * file, 24K of page 0 of the lower file will be read and decrypted,
545 * and then 8K of page 1 of the lower file will be read and decrypted.
547 * Returns zero on success; negative on error
549 int ecryptfs_decrypt_page(struct page
*page
)
551 struct inode
*ecryptfs_inode
;
552 struct ecryptfs_crypt_stat
*crypt_stat
;
554 unsigned long extent_offset
;
558 ecryptfs_inode
= page
->mapping
->host
;
560 &(ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
);
561 BUG_ON(!(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
));
563 lower_offset
= lower_offset_for_page(crypt_stat
, page
);
564 page_virt
= kmap(page
);
565 rc
= ecryptfs_read_lower(page_virt
, lower_offset
, PAGE_SIZE
,
569 ecryptfs_printk(KERN_ERR
,
570 "Error attempting to read lower page; rc = [%d]\n",
575 for (extent_offset
= 0;
576 extent_offset
< (PAGE_SIZE
/ crypt_stat
->extent_size
);
578 rc
= crypt_extent(crypt_stat
, page
, page
,
579 extent_offset
, DECRYPT
);
581 printk(KERN_ERR
"%s: Error encrypting extent; "
582 "rc = [%d]\n", __func__
, rc
);
590 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
593 * ecryptfs_init_crypt_ctx
594 * @crypt_stat: Uninitialized crypt stats structure
596 * Initialize the crypto context.
598 * TODO: Performance: Keep a cache of initialized cipher contexts;
599 * only init if needed
601 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat
*crypt_stat
)
606 ecryptfs_printk(KERN_DEBUG
,
607 "Initializing cipher [%s]; strlen = [%d]; "
608 "key_size_bits = [%zd]\n",
609 crypt_stat
->cipher
, (int)strlen(crypt_stat
->cipher
),
610 crypt_stat
->key_size
<< 3);
611 mutex_lock(&crypt_stat
->cs_tfm_mutex
);
612 if (crypt_stat
->tfm
) {
616 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
,
617 crypt_stat
->cipher
, "cbc");
620 crypt_stat
->tfm
= crypto_alloc_skcipher(full_alg_name
, 0, 0);
621 if (IS_ERR(crypt_stat
->tfm
)) {
622 rc
= PTR_ERR(crypt_stat
->tfm
);
623 crypt_stat
->tfm
= NULL
;
624 ecryptfs_printk(KERN_ERR
, "cryptfs: init_crypt_ctx(): "
625 "Error initializing cipher [%s]\n",
629 crypto_skcipher_set_flags(crypt_stat
->tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
632 kfree(full_alg_name
);
634 mutex_unlock(&crypt_stat
->cs_tfm_mutex
);
638 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat
*crypt_stat
)
642 crypt_stat
->extent_mask
= 0xFFFFFFFF;
643 crypt_stat
->extent_shift
= 0;
644 if (crypt_stat
->extent_size
== 0)
646 extent_size_tmp
= crypt_stat
->extent_size
;
647 while ((extent_size_tmp
& 0x01) == 0) {
648 extent_size_tmp
>>= 1;
649 crypt_stat
->extent_mask
<<= 1;
650 crypt_stat
->extent_shift
++;
654 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat
*crypt_stat
)
656 /* Default values; may be overwritten as we are parsing the
658 crypt_stat
->extent_size
= ECRYPTFS_DEFAULT_EXTENT_SIZE
;
659 set_extent_mask_and_shift(crypt_stat
);
660 crypt_stat
->iv_bytes
= ECRYPTFS_DEFAULT_IV_BYTES
;
661 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
662 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
664 if (PAGE_SIZE
<= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)
665 crypt_stat
->metadata_size
=
666 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
668 crypt_stat
->metadata_size
= PAGE_SIZE
;
673 * ecryptfs_compute_root_iv
676 * On error, sets the root IV to all 0's.
678 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat
*crypt_stat
)
681 char dst
[MD5_DIGEST_SIZE
];
683 BUG_ON(crypt_stat
->iv_bytes
> MD5_DIGEST_SIZE
);
684 BUG_ON(crypt_stat
->iv_bytes
<= 0);
685 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
687 ecryptfs_printk(KERN_WARNING
, "Session key not valid; "
688 "cannot generate root IV\n");
691 rc
= ecryptfs_calculate_md5(dst
, crypt_stat
, crypt_stat
->key
,
692 crypt_stat
->key_size
);
694 ecryptfs_printk(KERN_WARNING
, "Error attempting to compute "
695 "MD5 while generating root IV\n");
698 memcpy(crypt_stat
->root_iv
, dst
, crypt_stat
->iv_bytes
);
701 memset(crypt_stat
->root_iv
, 0, crypt_stat
->iv_bytes
);
702 crypt_stat
->flags
|= ECRYPTFS_SECURITY_WARNING
;
707 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat
*crypt_stat
)
709 get_random_bytes(crypt_stat
->key
, crypt_stat
->key_size
);
710 crypt_stat
->flags
|= ECRYPTFS_KEY_VALID
;
711 ecryptfs_compute_root_iv(crypt_stat
);
712 if (unlikely(ecryptfs_verbosity
> 0)) {
713 ecryptfs_printk(KERN_DEBUG
, "Generated new session key:\n");
714 ecryptfs_dump_hex(crypt_stat
->key
,
715 crypt_stat
->key_size
);
720 * ecryptfs_copy_mount_wide_flags_to_inode_flags
721 * @crypt_stat: The inode's cryptographic context
722 * @mount_crypt_stat: The mount point's cryptographic context
724 * This function propagates the mount-wide flags to individual inode
727 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
728 struct ecryptfs_crypt_stat
*crypt_stat
,
729 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
731 if (mount_crypt_stat
->flags
& ECRYPTFS_XATTR_METADATA_ENABLED
)
732 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
733 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
734 crypt_stat
->flags
|= ECRYPTFS_VIEW_AS_ENCRYPTED
;
735 if (mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
) {
736 crypt_stat
->flags
|= ECRYPTFS_ENCRYPT_FILENAMES
;
737 if (mount_crypt_stat
->flags
738 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)
739 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_MOUNT_FNEK
;
740 else if (mount_crypt_stat
->flags
741 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK
)
742 crypt_stat
->flags
|= ECRYPTFS_ENCFN_USE_FEK
;
746 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
747 struct ecryptfs_crypt_stat
*crypt_stat
,
748 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
750 struct ecryptfs_global_auth_tok
*global_auth_tok
;
753 mutex_lock(&crypt_stat
->keysig_list_mutex
);
754 mutex_lock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
756 list_for_each_entry(global_auth_tok
,
757 &mount_crypt_stat
->global_auth_tok_list
,
758 mount_crypt_stat_list
) {
759 if (global_auth_tok
->flags
& ECRYPTFS_AUTH_TOK_FNEK
)
761 rc
= ecryptfs_add_keysig(crypt_stat
, global_auth_tok
->sig
);
763 printk(KERN_ERR
"Error adding keysig; rc = [%d]\n", rc
);
769 mutex_unlock(&mount_crypt_stat
->global_auth_tok_list_mutex
);
770 mutex_unlock(&crypt_stat
->keysig_list_mutex
);
775 * ecryptfs_set_default_crypt_stat_vals
776 * @crypt_stat: The inode's cryptographic context
777 * @mount_crypt_stat: The mount point's cryptographic context
779 * Default values in the event that policy does not override them.
781 static void ecryptfs_set_default_crypt_stat_vals(
782 struct ecryptfs_crypt_stat
*crypt_stat
,
783 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
785 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
787 ecryptfs_set_default_sizes(crypt_stat
);
788 strcpy(crypt_stat
->cipher
, ECRYPTFS_DEFAULT_CIPHER
);
789 crypt_stat
->key_size
= ECRYPTFS_DEFAULT_KEY_BYTES
;
790 crypt_stat
->flags
&= ~(ECRYPTFS_KEY_VALID
);
791 crypt_stat
->file_version
= ECRYPTFS_FILE_VERSION
;
792 crypt_stat
->mount_crypt_stat
= mount_crypt_stat
;
796 * ecryptfs_new_file_context
797 * @ecryptfs_inode: The eCryptfs inode
799 * If the crypto context for the file has not yet been established,
800 * this is where we do that. Establishing a new crypto context
801 * involves the following decisions:
802 * - What cipher to use?
803 * - What set of authentication tokens to use?
804 * Here we just worry about getting enough information into the
805 * authentication tokens so that we know that they are available.
806 * We associate the available authentication tokens with the new file
807 * via the set of signatures in the crypt_stat struct. Later, when
808 * the headers are actually written out, we may again defer to
809 * userspace to perform the encryption of the session key; for the
810 * foreseeable future, this will be the case with public key packets.
812 * Returns zero on success; non-zero otherwise
814 int ecryptfs_new_file_context(struct inode
*ecryptfs_inode
)
816 struct ecryptfs_crypt_stat
*crypt_stat
=
817 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
818 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
819 &ecryptfs_superblock_to_private(
820 ecryptfs_inode
->i_sb
)->mount_crypt_stat
;
824 ecryptfs_set_default_crypt_stat_vals(crypt_stat
, mount_crypt_stat
);
825 crypt_stat
->flags
|= (ECRYPTFS_ENCRYPTED
| ECRYPTFS_KEY_VALID
);
826 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
828 rc
= ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat
,
831 printk(KERN_ERR
"Error attempting to copy mount-wide key sigs "
832 "to the inode key sigs; rc = [%d]\n", rc
);
836 strlen(mount_crypt_stat
->global_default_cipher_name
);
837 memcpy(crypt_stat
->cipher
,
838 mount_crypt_stat
->global_default_cipher_name
,
840 crypt_stat
->cipher
[cipher_name_len
] = '\0';
841 crypt_stat
->key_size
=
842 mount_crypt_stat
->global_default_cipher_key_size
;
843 ecryptfs_generate_new_key(crypt_stat
);
844 rc
= ecryptfs_init_crypt_ctx(crypt_stat
);
846 ecryptfs_printk(KERN_ERR
, "Error initializing cryptographic "
847 "context for cipher [%s]: rc = [%d]\n",
848 crypt_stat
->cipher
, rc
);
854 * ecryptfs_validate_marker - check for the ecryptfs marker
855 * @data: The data block in which to check
857 * Returns zero if marker found; -EINVAL if not found
859 static int ecryptfs_validate_marker(char *data
)
863 m_1
= get_unaligned_be32(data
);
864 m_2
= get_unaligned_be32(data
+ 4);
865 if ((m_1
^ MAGIC_ECRYPTFS_MARKER
) == m_2
)
867 ecryptfs_printk(KERN_DEBUG
, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
868 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1
, m_2
,
869 MAGIC_ECRYPTFS_MARKER
);
870 ecryptfs_printk(KERN_DEBUG
, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
871 "[0x%.8x]\n", (m_1
^ MAGIC_ECRYPTFS_MARKER
));
875 struct ecryptfs_flag_map_elem
{
880 /* Add support for additional flags by adding elements here. */
881 static struct ecryptfs_flag_map_elem ecryptfs_flag_map
[] = {
882 {0x00000001, ECRYPTFS_ENABLE_HMAC
},
883 {0x00000002, ECRYPTFS_ENCRYPTED
},
884 {0x00000004, ECRYPTFS_METADATA_IN_XATTR
},
885 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES
}
889 * ecryptfs_process_flags
890 * @crypt_stat: The cryptographic context
891 * @page_virt: Source data to be parsed
892 * @bytes_read: Updated with the number of bytes read
894 * Returns zero on success; non-zero if the flag set is invalid
896 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat
*crypt_stat
,
897 char *page_virt
, int *bytes_read
)
903 flags
= get_unaligned_be32(page_virt
);
904 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
905 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
906 if (flags
& ecryptfs_flag_map
[i
].file_flag
) {
907 crypt_stat
->flags
|= ecryptfs_flag_map
[i
].local_flag
;
909 crypt_stat
->flags
&= ~(ecryptfs_flag_map
[i
].local_flag
);
910 /* Version is in top 8 bits of the 32-bit flag vector */
911 crypt_stat
->file_version
= ((flags
>> 24) & 0xFF);
917 * write_ecryptfs_marker
918 * @page_virt: The pointer to in a page to begin writing the marker
919 * @written: Number of bytes written
921 * Marker = 0x3c81b7f5
923 static void write_ecryptfs_marker(char *page_virt
, size_t *written
)
927 get_random_bytes(&m_1
, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2));
928 m_2
= (m_1
^ MAGIC_ECRYPTFS_MARKER
);
929 put_unaligned_be32(m_1
, page_virt
);
930 page_virt
+= (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
/ 2);
931 put_unaligned_be32(m_2
, page_virt
);
932 (*written
) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
935 void ecryptfs_write_crypt_stat_flags(char *page_virt
,
936 struct ecryptfs_crypt_stat
*crypt_stat
,
942 for (i
= 0; i
< ((sizeof(ecryptfs_flag_map
)
943 / sizeof(struct ecryptfs_flag_map_elem
))); i
++)
944 if (crypt_stat
->flags
& ecryptfs_flag_map
[i
].local_flag
)
945 flags
|= ecryptfs_flag_map
[i
].file_flag
;
946 /* Version is in top 8 bits of the 32-bit flag vector */
947 flags
|= ((((u8
)crypt_stat
->file_version
) << 24) & 0xFF000000);
948 put_unaligned_be32(flags
, page_virt
);
952 struct ecryptfs_cipher_code_str_map_elem
{
957 /* Add support for additional ciphers by adding elements here. The
958 * cipher_code is whatever OpenPGP applications use to identify the
959 * ciphers. List in order of probability. */
960 static struct ecryptfs_cipher_code_str_map_elem
961 ecryptfs_cipher_code_str_map
[] = {
962 {"aes",RFC2440_CIPHER_AES_128
},
963 {"blowfish", RFC2440_CIPHER_BLOWFISH
},
964 {"des3_ede", RFC2440_CIPHER_DES3_EDE
},
965 {"cast5", RFC2440_CIPHER_CAST_5
},
966 {"twofish", RFC2440_CIPHER_TWOFISH
},
967 {"cast6", RFC2440_CIPHER_CAST_6
},
968 {"aes", RFC2440_CIPHER_AES_192
},
969 {"aes", RFC2440_CIPHER_AES_256
}
973 * ecryptfs_code_for_cipher_string
974 * @cipher_name: The string alias for the cipher
975 * @key_bytes: Length of key in bytes; used for AES code selection
977 * Returns zero on no match, or the cipher code on match
979 u8
ecryptfs_code_for_cipher_string(char *cipher_name
, size_t key_bytes
)
983 struct ecryptfs_cipher_code_str_map_elem
*map
=
984 ecryptfs_cipher_code_str_map
;
986 if (strcmp(cipher_name
, "aes") == 0) {
989 code
= RFC2440_CIPHER_AES_128
;
992 code
= RFC2440_CIPHER_AES_192
;
995 code
= RFC2440_CIPHER_AES_256
;
998 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
999 if (strcmp(cipher_name
, map
[i
].cipher_str
) == 0) {
1000 code
= map
[i
].cipher_code
;
1008 * ecryptfs_cipher_code_to_string
1009 * @str: Destination to write out the cipher name
1010 * @cipher_code: The code to convert to cipher name string
1012 * Returns zero on success
1014 int ecryptfs_cipher_code_to_string(char *str
, u8 cipher_code
)
1020 for (i
= 0; i
< ARRAY_SIZE(ecryptfs_cipher_code_str_map
); i
++)
1021 if (cipher_code
== ecryptfs_cipher_code_str_map
[i
].cipher_code
)
1022 strcpy(str
, ecryptfs_cipher_code_str_map
[i
].cipher_str
);
1023 if (str
[0] == '\0') {
1024 ecryptfs_printk(KERN_WARNING
, "Cipher code not recognized: "
1025 "[%d]\n", cipher_code
);
1031 int ecryptfs_read_and_validate_header_region(struct inode
*inode
)
1033 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1034 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1037 rc
= ecryptfs_read_lower(file_size
, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES
,
1041 else if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1043 rc
= ecryptfs_validate_marker(marker
);
1045 ecryptfs_i_size_init(file_size
, inode
);
1050 ecryptfs_write_header_metadata(char *virt
,
1051 struct ecryptfs_crypt_stat
*crypt_stat
,
1054 u32 header_extent_size
;
1055 u16 num_header_extents_at_front
;
1057 header_extent_size
= (u32
)crypt_stat
->extent_size
;
1058 num_header_extents_at_front
=
1059 (u16
)(crypt_stat
->metadata_size
/ crypt_stat
->extent_size
);
1060 put_unaligned_be32(header_extent_size
, virt
);
1062 put_unaligned_be16(num_header_extents_at_front
, virt
);
1066 struct kmem_cache
*ecryptfs_header_cache
;
1069 * ecryptfs_write_headers_virt
1070 * @page_virt: The virtual address to write the headers to
1071 * @max: The size of memory allocated at page_virt
1072 * @size: Set to the number of bytes written by this function
1073 * @crypt_stat: The cryptographic context
1074 * @ecryptfs_dentry: The eCryptfs dentry
1079 * Octets 0-7: Unencrypted file size (big-endian)
1080 * Octets 8-15: eCryptfs special marker
1081 * Octets 16-19: Flags
1082 * Octet 16: File format version number (between 0 and 255)
1083 * Octets 17-18: Reserved
1084 * Octet 19: Bit 1 (lsb): Reserved
1086 * Bits 3-8: Reserved
1087 * Octets 20-23: Header extent size (big-endian)
1088 * Octets 24-25: Number of header extents at front of file
1090 * Octet 26: Begin RFC 2440 authentication token packet set
1092 * Lower data (CBC encrypted)
1094 * Lower data (CBC encrypted)
1097 * Returns zero on success
1099 static int ecryptfs_write_headers_virt(char *page_virt
, size_t max
,
1101 struct ecryptfs_crypt_stat
*crypt_stat
,
1102 struct dentry
*ecryptfs_dentry
)
1108 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1109 write_ecryptfs_marker((page_virt
+ offset
), &written
);
1111 ecryptfs_write_crypt_stat_flags((page_virt
+ offset
), crypt_stat
,
1114 ecryptfs_write_header_metadata((page_virt
+ offset
), crypt_stat
,
1117 rc
= ecryptfs_generate_key_packet_set((page_virt
+ offset
), crypt_stat
,
1118 ecryptfs_dentry
, &written
,
1121 ecryptfs_printk(KERN_WARNING
, "Error generating key packet "
1122 "set; rc = [%d]\n", rc
);
1131 ecryptfs_write_metadata_to_contents(struct inode
*ecryptfs_inode
,
1132 char *virt
, size_t virt_len
)
1136 rc
= ecryptfs_write_lower(ecryptfs_inode
, virt
,
1139 printk(KERN_ERR
"%s: Error attempting to write header "
1140 "information to lower file; rc = [%d]\n", __func__
, rc
);
1147 ecryptfs_write_metadata_to_xattr(struct dentry
*ecryptfs_dentry
,
1148 struct inode
*ecryptfs_inode
,
1149 char *page_virt
, size_t size
)
1153 rc
= ecryptfs_setxattr(ecryptfs_dentry
, ecryptfs_inode
,
1154 ECRYPTFS_XATTR_NAME
, page_virt
, size
, 0);
1158 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask
,
1163 page
= alloc_pages(gfp_mask
| __GFP_ZERO
, order
);
1165 return (unsigned long) page_address(page
);
1170 * ecryptfs_write_metadata
1171 * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1172 * @ecryptfs_inode: The newly created eCryptfs inode
1174 * Write the file headers out. This will likely involve a userspace
1175 * callout, in which the session key is encrypted with one or more
1176 * public keys and/or the passphrase necessary to do the encryption is
1177 * retrieved via a prompt. Exactly what happens at this point should
1178 * be policy-dependent.
1180 * Returns zero on success; non-zero on error
1182 int ecryptfs_write_metadata(struct dentry
*ecryptfs_dentry
,
1183 struct inode
*ecryptfs_inode
)
1185 struct ecryptfs_crypt_stat
*crypt_stat
=
1186 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1193 if (likely(crypt_stat
->flags
& ECRYPTFS_ENCRYPTED
)) {
1194 if (!(crypt_stat
->flags
& ECRYPTFS_KEY_VALID
)) {
1195 printk(KERN_ERR
"Key is invalid; bailing out\n");
1200 printk(KERN_WARNING
"%s: Encrypted flag not set\n",
1205 virt_len
= crypt_stat
->metadata_size
;
1206 order
= get_order(virt_len
);
1207 /* Released in this function */
1208 virt
= (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL
, order
);
1210 printk(KERN_ERR
"%s: Out of memory\n", __func__
);
1214 /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1215 rc
= ecryptfs_write_headers_virt(virt
, virt_len
, &size
, crypt_stat
,
1218 printk(KERN_ERR
"%s: Error whilst writing headers; rc = [%d]\n",
1222 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1223 rc
= ecryptfs_write_metadata_to_xattr(ecryptfs_dentry
, ecryptfs_inode
,
1226 rc
= ecryptfs_write_metadata_to_contents(ecryptfs_inode
, virt
,
1229 printk(KERN_ERR
"%s: Error writing metadata out to lower file; "
1230 "rc = [%d]\n", __func__
, rc
);
1234 free_pages((unsigned long)virt
, order
);
1239 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1240 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1241 static int parse_header_metadata(struct ecryptfs_crypt_stat
*crypt_stat
,
1242 char *virt
, int *bytes_read
,
1243 int validate_header_size
)
1246 u32 header_extent_size
;
1247 u16 num_header_extents_at_front
;
1249 header_extent_size
= get_unaligned_be32(virt
);
1250 virt
+= sizeof(__be32
);
1251 num_header_extents_at_front
= get_unaligned_be16(virt
);
1252 crypt_stat
->metadata_size
= (((size_t)num_header_extents_at_front
1253 * (size_t)header_extent_size
));
1254 (*bytes_read
) = (sizeof(__be32
) + sizeof(__be16
));
1255 if ((validate_header_size
== ECRYPTFS_VALIDATE_HEADER_SIZE
)
1256 && (crypt_stat
->metadata_size
1257 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
)) {
1259 printk(KERN_WARNING
"Invalid header size: [%zd]\n",
1260 crypt_stat
->metadata_size
);
1266 * set_default_header_data
1267 * @crypt_stat: The cryptographic context
1269 * For version 0 file format; this function is only for backwards
1270 * compatibility for files created with the prior versions of
1273 static void set_default_header_data(struct ecryptfs_crypt_stat
*crypt_stat
)
1275 crypt_stat
->metadata_size
= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE
;
1278 void ecryptfs_i_size_init(const char *page_virt
, struct inode
*inode
)
1280 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
;
1281 struct ecryptfs_crypt_stat
*crypt_stat
;
1284 crypt_stat
= &ecryptfs_inode_to_private(inode
)->crypt_stat
;
1286 &ecryptfs_superblock_to_private(inode
->i_sb
)->mount_crypt_stat
;
1287 if (mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
) {
1288 file_size
= i_size_read(ecryptfs_inode_to_lower(inode
));
1289 if (crypt_stat
->flags
& ECRYPTFS_METADATA_IN_XATTR
)
1290 file_size
+= crypt_stat
->metadata_size
;
1292 file_size
= get_unaligned_be64(page_virt
);
1293 i_size_write(inode
, (loff_t
)file_size
);
1294 crypt_stat
->flags
|= ECRYPTFS_I_SIZE_INITIALIZED
;
1298 * ecryptfs_read_headers_virt
1299 * @page_virt: The virtual address into which to read the headers
1300 * @crypt_stat: The cryptographic context
1301 * @ecryptfs_dentry: The eCryptfs dentry
1302 * @validate_header_size: Whether to validate the header size while reading
1304 * Read/parse the header data. The header format is detailed in the
1305 * comment block for the ecryptfs_write_headers_virt() function.
1307 * Returns zero on success
1309 static int ecryptfs_read_headers_virt(char *page_virt
,
1310 struct ecryptfs_crypt_stat
*crypt_stat
,
1311 struct dentry
*ecryptfs_dentry
,
1312 int validate_header_size
)
1318 ecryptfs_set_default_sizes(crypt_stat
);
1319 crypt_stat
->mount_crypt_stat
= &ecryptfs_superblock_to_private(
1320 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1321 offset
= ECRYPTFS_FILE_SIZE_BYTES
;
1322 rc
= ecryptfs_validate_marker(page_virt
+ offset
);
1325 if (!(crypt_stat
->flags
& ECRYPTFS_I_SIZE_INITIALIZED
))
1326 ecryptfs_i_size_init(page_virt
, d_inode(ecryptfs_dentry
));
1327 offset
+= MAGIC_ECRYPTFS_MARKER_SIZE_BYTES
;
1328 rc
= ecryptfs_process_flags(crypt_stat
, (page_virt
+ offset
),
1331 ecryptfs_printk(KERN_WARNING
, "Error processing flags\n");
1334 if (crypt_stat
->file_version
> ECRYPTFS_SUPPORTED_FILE_VERSION
) {
1335 ecryptfs_printk(KERN_WARNING
, "File version is [%d]; only "
1336 "file version [%d] is supported by this "
1337 "version of eCryptfs\n",
1338 crypt_stat
->file_version
,
1339 ECRYPTFS_SUPPORTED_FILE_VERSION
);
1343 offset
+= bytes_read
;
1344 if (crypt_stat
->file_version
>= 1) {
1345 rc
= parse_header_metadata(crypt_stat
, (page_virt
+ offset
),
1346 &bytes_read
, validate_header_size
);
1348 ecryptfs_printk(KERN_WARNING
, "Error reading header "
1349 "metadata; rc = [%d]\n", rc
);
1351 offset
+= bytes_read
;
1353 set_default_header_data(crypt_stat
);
1354 rc
= ecryptfs_parse_packet_set(crypt_stat
, (page_virt
+ offset
),
1361 * ecryptfs_read_xattr_region
1362 * @page_virt: The vitual address into which to read the xattr data
1363 * @ecryptfs_inode: The eCryptfs inode
1365 * Attempts to read the crypto metadata from the extended attribute
1366 * region of the lower file.
1368 * Returns zero on success; non-zero on error
1370 int ecryptfs_read_xattr_region(char *page_virt
, struct inode
*ecryptfs_inode
)
1372 struct dentry
*lower_dentry
=
1373 ecryptfs_inode_to_private(ecryptfs_inode
)->lower_file
->f_path
.dentry
;
1377 size
= ecryptfs_getxattr_lower(lower_dentry
,
1378 ecryptfs_inode_to_lower(ecryptfs_inode
),
1379 ECRYPTFS_XATTR_NAME
,
1380 page_virt
, ECRYPTFS_DEFAULT_EXTENT_SIZE
);
1382 if (unlikely(ecryptfs_verbosity
> 0))
1383 printk(KERN_INFO
"Error attempting to read the [%s] "
1384 "xattr from the lower file; return value = "
1385 "[%zd]\n", ECRYPTFS_XATTR_NAME
, size
);
1393 int ecryptfs_read_and_validate_xattr_region(struct dentry
*dentry
,
1394 struct inode
*inode
)
1396 u8 file_size
[ECRYPTFS_SIZE_AND_MARKER_BYTES
];
1397 u8
*marker
= file_size
+ ECRYPTFS_FILE_SIZE_BYTES
;
1400 rc
= ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry
),
1401 ecryptfs_inode_to_lower(inode
),
1402 ECRYPTFS_XATTR_NAME
, file_size
,
1403 ECRYPTFS_SIZE_AND_MARKER_BYTES
);
1406 else if (rc
< ECRYPTFS_SIZE_AND_MARKER_BYTES
)
1408 rc
= ecryptfs_validate_marker(marker
);
1410 ecryptfs_i_size_init(file_size
, inode
);
1415 * ecryptfs_read_metadata
1417 * Common entry point for reading file metadata. From here, we could
1418 * retrieve the header information from the header region of the file,
1419 * the xattr region of the file, or some other repository that is
1420 * stored separately from the file itself. The current implementation
1421 * supports retrieving the metadata information from the file contents
1422 * and from the xattr region.
1424 * Returns zero if valid headers found and parsed; non-zero otherwise
1426 int ecryptfs_read_metadata(struct dentry
*ecryptfs_dentry
)
1430 struct inode
*ecryptfs_inode
= d_inode(ecryptfs_dentry
);
1431 struct ecryptfs_crypt_stat
*crypt_stat
=
1432 &ecryptfs_inode_to_private(ecryptfs_inode
)->crypt_stat
;
1433 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
1434 &ecryptfs_superblock_to_private(
1435 ecryptfs_dentry
->d_sb
)->mount_crypt_stat
;
1437 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat
,
1439 /* Read the first page from the underlying file */
1440 page_virt
= kmem_cache_alloc(ecryptfs_header_cache
, GFP_USER
);
1443 printk(KERN_ERR
"%s: Unable to allocate page_virt\n",
1447 rc
= ecryptfs_read_lower(page_virt
, 0, crypt_stat
->extent_size
,
1450 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1452 ECRYPTFS_VALIDATE_HEADER_SIZE
);
1454 /* metadata is not in the file header, so try xattrs */
1455 memset(page_virt
, 0, PAGE_SIZE
);
1456 rc
= ecryptfs_read_xattr_region(page_virt
, ecryptfs_inode
);
1458 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1459 "file header region or xattr region, inode %lu\n",
1460 ecryptfs_inode
->i_ino
);
1464 rc
= ecryptfs_read_headers_virt(page_virt
, crypt_stat
,
1466 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE
);
1468 printk(KERN_DEBUG
"Valid eCryptfs headers not found in "
1469 "file xattr region either, inode %lu\n",
1470 ecryptfs_inode
->i_ino
);
1473 if (crypt_stat
->mount_crypt_stat
->flags
1474 & ECRYPTFS_XATTR_METADATA_ENABLED
) {
1475 crypt_stat
->flags
|= ECRYPTFS_METADATA_IN_XATTR
;
1477 printk(KERN_WARNING
"Attempt to access file with "
1478 "crypto metadata only in the extended attribute "
1479 "region, but eCryptfs was mounted without "
1480 "xattr support enabled. eCryptfs will not treat "
1481 "this like an encrypted file, inode %lu\n",
1482 ecryptfs_inode
->i_ino
);
1488 memset(page_virt
, 0, PAGE_SIZE
);
1489 kmem_cache_free(ecryptfs_header_cache
, page_virt
);
1495 * ecryptfs_encrypt_filename - encrypt filename
1497 * CBC-encrypts the filename. We do not want to encrypt the same
1498 * filename with the same key and IV, which may happen with hard
1499 * links, so we prepend random bits to each filename.
1501 * Returns zero on success; non-zero otherwise
1504 ecryptfs_encrypt_filename(struct ecryptfs_filename
*filename
,
1505 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
1509 filename
->encrypted_filename
= NULL
;
1510 filename
->encrypted_filename_size
= 0;
1511 if (mount_crypt_stat
&& (mount_crypt_stat
->flags
1512 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)) {
1514 size_t remaining_bytes
;
1516 rc
= ecryptfs_write_tag_70_packet(
1518 &filename
->encrypted_filename_size
,
1519 mount_crypt_stat
, NULL
,
1520 filename
->filename_size
);
1522 printk(KERN_ERR
"%s: Error attempting to get packet "
1523 "size for tag 72; rc = [%d]\n", __func__
,
1525 filename
->encrypted_filename_size
= 0;
1528 filename
->encrypted_filename
=
1529 kmalloc(filename
->encrypted_filename_size
, GFP_KERNEL
);
1530 if (!filename
->encrypted_filename
) {
1531 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1532 "to kmalloc [%zd] bytes\n", __func__
,
1533 filename
->encrypted_filename_size
);
1537 remaining_bytes
= filename
->encrypted_filename_size
;
1538 rc
= ecryptfs_write_tag_70_packet(filename
->encrypted_filename
,
1543 filename
->filename_size
);
1545 printk(KERN_ERR
"%s: Error attempting to generate "
1546 "tag 70 packet; rc = [%d]\n", __func__
,
1548 kfree(filename
->encrypted_filename
);
1549 filename
->encrypted_filename
= NULL
;
1550 filename
->encrypted_filename_size
= 0;
1553 filename
->encrypted_filename_size
= packet_size
;
1555 printk(KERN_ERR
"%s: No support for requested filename "
1556 "encryption method in this release\n", __func__
);
1564 static int ecryptfs_copy_filename(char **copied_name
, size_t *copied_name_size
,
1565 const char *name
, size_t name_size
)
1569 (*copied_name
) = kmalloc((name_size
+ 1), GFP_KERNEL
);
1570 if (!(*copied_name
)) {
1574 memcpy((void *)(*copied_name
), (void *)name
, name_size
);
1575 (*copied_name
)[(name_size
)] = '\0'; /* Only for convenience
1576 * in printing out the
1579 (*copied_name_size
) = name_size
;
1585 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1586 * @key_tfm: Crypto context for key material, set by this function
1587 * @cipher_name: Name of the cipher
1588 * @key_size: Size of the key in bytes
1590 * Returns zero on success. Any crypto_tfm structs allocated here
1591 * should be released by other functions, such as on a superblock put
1592 * event, regardless of whether this function succeeds for fails.
1595 ecryptfs_process_key_cipher(struct crypto_skcipher
**key_tfm
,
1596 char *cipher_name
, size_t *key_size
)
1598 char dummy_key
[ECRYPTFS_MAX_KEY_BYTES
];
1599 char *full_alg_name
= NULL
;
1603 if (*key_size
> ECRYPTFS_MAX_KEY_BYTES
) {
1605 printk(KERN_ERR
"Requested key size is [%zd] bytes; maximum "
1606 "allowable is [%d]\n", *key_size
, ECRYPTFS_MAX_KEY_BYTES
);
1609 rc
= ecryptfs_crypto_api_algify_cipher_name(&full_alg_name
, cipher_name
,
1613 *key_tfm
= crypto_alloc_skcipher(full_alg_name
, 0, CRYPTO_ALG_ASYNC
);
1614 if (IS_ERR(*key_tfm
)) {
1615 rc
= PTR_ERR(*key_tfm
);
1616 printk(KERN_ERR
"Unable to allocate crypto cipher with name "
1617 "[%s]; rc = [%d]\n", full_alg_name
, rc
);
1620 crypto_skcipher_set_flags(*key_tfm
, CRYPTO_TFM_REQ_WEAK_KEY
);
1622 *key_size
= crypto_skcipher_default_keysize(*key_tfm
);
1623 get_random_bytes(dummy_key
, *key_size
);
1624 rc
= crypto_skcipher_setkey(*key_tfm
, dummy_key
, *key_size
);
1626 printk(KERN_ERR
"Error attempting to set key of size [%zd] for "
1627 "cipher [%s]; rc = [%d]\n", *key_size
, full_alg_name
,
1633 kfree(full_alg_name
);
1637 struct kmem_cache
*ecryptfs_key_tfm_cache
;
1638 static struct list_head key_tfm_list
;
1639 struct mutex key_tfm_list_mutex
;
1641 int __init
ecryptfs_init_crypto(void)
1643 mutex_init(&key_tfm_list_mutex
);
1644 INIT_LIST_HEAD(&key_tfm_list
);
1649 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1651 * Called only at module unload time
1653 int ecryptfs_destroy_crypto(void)
1655 struct ecryptfs_key_tfm
*key_tfm
, *key_tfm_tmp
;
1657 mutex_lock(&key_tfm_list_mutex
);
1658 list_for_each_entry_safe(key_tfm
, key_tfm_tmp
, &key_tfm_list
,
1660 list_del(&key_tfm
->key_tfm_list
);
1661 crypto_free_skcipher(key_tfm
->key_tfm
);
1662 kmem_cache_free(ecryptfs_key_tfm_cache
, key_tfm
);
1664 mutex_unlock(&key_tfm_list_mutex
);
1669 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm
**key_tfm
, char *cipher_name
,
1672 struct ecryptfs_key_tfm
*tmp_tfm
;
1675 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1677 tmp_tfm
= kmem_cache_alloc(ecryptfs_key_tfm_cache
, GFP_KERNEL
);
1678 if (key_tfm
!= NULL
)
1679 (*key_tfm
) = tmp_tfm
;
1682 printk(KERN_ERR
"Error attempting to allocate from "
1683 "ecryptfs_key_tfm_cache\n");
1686 mutex_init(&tmp_tfm
->key_tfm_mutex
);
1687 strncpy(tmp_tfm
->cipher_name
, cipher_name
,
1688 ECRYPTFS_MAX_CIPHER_NAME_SIZE
);
1689 tmp_tfm
->cipher_name
[ECRYPTFS_MAX_CIPHER_NAME_SIZE
] = '\0';
1690 tmp_tfm
->key_size
= key_size
;
1691 rc
= ecryptfs_process_key_cipher(&tmp_tfm
->key_tfm
,
1692 tmp_tfm
->cipher_name
,
1693 &tmp_tfm
->key_size
);
1695 printk(KERN_ERR
"Error attempting to initialize key TFM "
1696 "cipher with name = [%s]; rc = [%d]\n",
1697 tmp_tfm
->cipher_name
, rc
);
1698 kmem_cache_free(ecryptfs_key_tfm_cache
, tmp_tfm
);
1699 if (key_tfm
!= NULL
)
1703 list_add(&tmp_tfm
->key_tfm_list
, &key_tfm_list
);
1709 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1710 * @cipher_name: the name of the cipher to search for
1711 * @key_tfm: set to corresponding tfm if found
1713 * Searches for cached key_tfm matching @cipher_name
1714 * Must be called with &key_tfm_list_mutex held
1715 * Returns 1 if found, with @key_tfm set
1716 * Returns 0 if not found, with @key_tfm set to NULL
1718 int ecryptfs_tfm_exists(char *cipher_name
, struct ecryptfs_key_tfm
**key_tfm
)
1720 struct ecryptfs_key_tfm
*tmp_key_tfm
;
1722 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex
));
1724 list_for_each_entry(tmp_key_tfm
, &key_tfm_list
, key_tfm_list
) {
1725 if (strcmp(tmp_key_tfm
->cipher_name
, cipher_name
) == 0) {
1727 (*key_tfm
) = tmp_key_tfm
;
1737 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1739 * @tfm: set to cached tfm found, or new tfm created
1740 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1741 * @cipher_name: the name of the cipher to search for and/or add
1743 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1744 * Searches for cached item first, and creates new if not found.
1745 * Returns 0 on success, non-zero if adding new cipher failed
1747 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher
**tfm
,
1748 struct mutex
**tfm_mutex
,
1751 struct ecryptfs_key_tfm
*key_tfm
;
1755 (*tfm_mutex
) = NULL
;
1757 mutex_lock(&key_tfm_list_mutex
);
1758 if (!ecryptfs_tfm_exists(cipher_name
, &key_tfm
)) {
1759 rc
= ecryptfs_add_new_key_tfm(&key_tfm
, cipher_name
, 0);
1761 printk(KERN_ERR
"Error adding new key_tfm to list; "
1766 (*tfm
) = key_tfm
->key_tfm
;
1767 (*tfm_mutex
) = &key_tfm
->key_tfm_mutex
;
1769 mutex_unlock(&key_tfm_list_mutex
);
1773 /* 64 characters forming a 6-bit target field */
1774 static unsigned char *portable_filename_chars
= ("-.0123456789ABCD"
1777 "klmnopqrstuvwxyz");
1779 /* We could either offset on every reverse map or just pad some 0x00's
1780 * at the front here */
1781 static const unsigned char filename_rev_map
[256] = {
1782 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1783 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1784 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1785 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1786 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1787 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1788 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1789 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1790 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1791 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1792 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1793 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1794 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1795 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1796 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1797 0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1801 * ecryptfs_encode_for_filename
1802 * @dst: Destination location for encoded filename
1803 * @dst_size: Size of the encoded filename in bytes
1804 * @src: Source location for the filename to encode
1805 * @src_size: Size of the source in bytes
1807 static void ecryptfs_encode_for_filename(unsigned char *dst
, size_t *dst_size
,
1808 unsigned char *src
, size_t src_size
)
1811 size_t block_num
= 0;
1812 size_t dst_offset
= 0;
1813 unsigned char last_block
[3];
1815 if (src_size
== 0) {
1819 num_blocks
= (src_size
/ 3);
1820 if ((src_size
% 3) == 0) {
1821 memcpy(last_block
, (&src
[src_size
- 3]), 3);
1824 last_block
[2] = 0x00;
1825 switch (src_size
% 3) {
1827 last_block
[0] = src
[src_size
- 1];
1828 last_block
[1] = 0x00;
1831 last_block
[0] = src
[src_size
- 2];
1832 last_block
[1] = src
[src_size
- 1];
1835 (*dst_size
) = (num_blocks
* 4);
1838 while (block_num
< num_blocks
) {
1839 unsigned char *src_block
;
1840 unsigned char dst_block
[4];
1842 if (block_num
== (num_blocks
- 1))
1843 src_block
= last_block
;
1845 src_block
= &src
[block_num
* 3];
1846 dst_block
[0] = ((src_block
[0] >> 2) & 0x3F);
1847 dst_block
[1] = (((src_block
[0] << 4) & 0x30)
1848 | ((src_block
[1] >> 4) & 0x0F));
1849 dst_block
[2] = (((src_block
[1] << 2) & 0x3C)
1850 | ((src_block
[2] >> 6) & 0x03));
1851 dst_block
[3] = (src_block
[2] & 0x3F);
1852 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[0]];
1853 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[1]];
1854 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[2]];
1855 dst
[dst_offset
++] = portable_filename_chars
[dst_block
[3]];
1862 static size_t ecryptfs_max_decoded_size(size_t encoded_size
)
1864 /* Not exact; conservatively long. Every block of 4
1865 * encoded characters decodes into a block of 3
1866 * decoded characters. This segment of code provides
1867 * the caller with the maximum amount of allocated
1868 * space that @dst will need to point to in a
1869 * subsequent call. */
1870 return ((encoded_size
+ 1) * 3) / 4;
1874 * ecryptfs_decode_from_filename
1875 * @dst: If NULL, this function only sets @dst_size and returns. If
1876 * non-NULL, this function decodes the encoded octets in @src
1877 * into the memory that @dst points to.
1878 * @dst_size: Set to the size of the decoded string.
1879 * @src: The encoded set of octets to decode.
1880 * @src_size: The size of the encoded set of octets to decode.
1883 ecryptfs_decode_from_filename(unsigned char *dst
, size_t *dst_size
,
1884 const unsigned char *src
, size_t src_size
)
1886 u8 current_bit_offset
= 0;
1887 size_t src_byte_offset
= 0;
1888 size_t dst_byte_offset
= 0;
1891 (*dst_size
) = ecryptfs_max_decoded_size(src_size
);
1894 while (src_byte_offset
< src_size
) {
1895 unsigned char src_byte
=
1896 filename_rev_map
[(int)src
[src_byte_offset
]];
1898 switch (current_bit_offset
) {
1900 dst
[dst_byte_offset
] = (src_byte
<< 2);
1901 current_bit_offset
= 6;
1904 dst
[dst_byte_offset
++] |= (src_byte
>> 4);
1905 dst
[dst_byte_offset
] = ((src_byte
& 0xF)
1907 current_bit_offset
= 4;
1910 dst
[dst_byte_offset
++] |= (src_byte
>> 2);
1911 dst
[dst_byte_offset
] = (src_byte
<< 6);
1912 current_bit_offset
= 2;
1915 dst
[dst_byte_offset
++] |= (src_byte
);
1916 current_bit_offset
= 0;
1921 (*dst_size
) = dst_byte_offset
;
1927 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1928 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1929 * @name: The plaintext name
1930 * @length: The length of the plaintext
1931 * @encoded_name: The encypted name
1933 * Encrypts and encodes a filename into something that constitutes a
1934 * valid filename for a filesystem, with printable characters.
1936 * We assume that we have a properly initialized crypto context,
1937 * pointed to by crypt_stat->tfm.
1939 * Returns zero on success; non-zero on otherwise
1941 int ecryptfs_encrypt_and_encode_filename(
1942 char **encoded_name
,
1943 size_t *encoded_name_size
,
1944 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
,
1945 const char *name
, size_t name_size
)
1947 size_t encoded_name_no_prefix_size
;
1950 (*encoded_name
) = NULL
;
1951 (*encoded_name_size
) = 0;
1952 if (mount_crypt_stat
&& (mount_crypt_stat
->flags
1953 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
1954 struct ecryptfs_filename
*filename
;
1956 filename
= kzalloc(sizeof(*filename
), GFP_KERNEL
);
1958 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1959 "to kzalloc [%zd] bytes\n", __func__
,
1964 filename
->filename
= (char *)name
;
1965 filename
->filename_size
= name_size
;
1966 rc
= ecryptfs_encrypt_filename(filename
, mount_crypt_stat
);
1968 printk(KERN_ERR
"%s: Error attempting to encrypt "
1969 "filename; rc = [%d]\n", __func__
, rc
);
1973 ecryptfs_encode_for_filename(
1974 NULL
, &encoded_name_no_prefix_size
,
1975 filename
->encrypted_filename
,
1976 filename
->encrypted_filename_size
);
1977 if (mount_crypt_stat
1978 && (mount_crypt_stat
->flags
1979 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
))
1980 (*encoded_name_size
) =
1981 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1982 + encoded_name_no_prefix_size
);
1984 (*encoded_name_size
) =
1985 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1986 + encoded_name_no_prefix_size
);
1987 (*encoded_name
) = kmalloc((*encoded_name_size
) + 1, GFP_KERNEL
);
1988 if (!(*encoded_name
)) {
1989 printk(KERN_ERR
"%s: Out of memory whilst attempting "
1990 "to kzalloc [%zd] bytes\n", __func__
,
1991 (*encoded_name_size
));
1993 kfree(filename
->encrypted_filename
);
1997 if (mount_crypt_stat
1998 && (mount_crypt_stat
->flags
1999 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK
)) {
2000 memcpy((*encoded_name
),
2001 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2002 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
);
2003 ecryptfs_encode_for_filename(
2005 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
),
2006 &encoded_name_no_prefix_size
,
2007 filename
->encrypted_filename
,
2008 filename
->encrypted_filename_size
);
2009 (*encoded_name_size
) =
2010 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2011 + encoded_name_no_prefix_size
);
2012 (*encoded_name
)[(*encoded_name_size
)] = '\0';
2017 printk(KERN_ERR
"%s: Error attempting to encode "
2018 "encrypted filename; rc = [%d]\n", __func__
,
2020 kfree((*encoded_name
));
2021 (*encoded_name
) = NULL
;
2022 (*encoded_name_size
) = 0;
2024 kfree(filename
->encrypted_filename
);
2027 rc
= ecryptfs_copy_filename(encoded_name
,
2036 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2037 * @plaintext_name: The plaintext name
2038 * @plaintext_name_size: The plaintext name size
2039 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2040 * @name: The filename in cipher text
2041 * @name_size: The cipher text name size
2043 * Decrypts and decodes the filename.
2045 * Returns zero on error; non-zero otherwise
2047 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name
,
2048 size_t *plaintext_name_size
,
2049 struct super_block
*sb
,
2050 const char *name
, size_t name_size
)
2052 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
=
2053 &ecryptfs_superblock_to_private(sb
)->mount_crypt_stat
;
2055 size_t decoded_name_size
;
2059 if ((mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)
2060 && !(mount_crypt_stat
->flags
& ECRYPTFS_ENCRYPTED_VIEW_ENABLED
)
2061 && (name_size
> ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
)
2062 && (strncmp(name
, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX
,
2063 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
) == 0)) {
2064 const char *orig_name
= name
;
2065 size_t orig_name_size
= name_size
;
2067 name
+= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2068 name_size
-= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2069 ecryptfs_decode_from_filename(NULL
, &decoded_name_size
,
2071 decoded_name
= kmalloc(decoded_name_size
, GFP_KERNEL
);
2072 if (!decoded_name
) {
2073 printk(KERN_ERR
"%s: Out of memory whilst attempting "
2074 "to kmalloc [%zd] bytes\n", __func__
,
2079 ecryptfs_decode_from_filename(decoded_name
, &decoded_name_size
,
2081 rc
= ecryptfs_parse_tag_70_packet(plaintext_name
,
2082 plaintext_name_size
,
2088 printk(KERN_INFO
"%s: Could not parse tag 70 packet "
2089 "from filename; copying through filename "
2090 "as-is\n", __func__
);
2091 rc
= ecryptfs_copy_filename(plaintext_name
,
2092 plaintext_name_size
,
2093 orig_name
, orig_name_size
);
2097 rc
= ecryptfs_copy_filename(plaintext_name
,
2098 plaintext_name_size
,
2103 kfree(decoded_name
);
2108 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16 143
2110 int ecryptfs_set_f_namelen(long *namelen
, long lower_namelen
,
2111 struct ecryptfs_mount_crypt_stat
*mount_crypt_stat
)
2113 struct crypto_skcipher
*tfm
;
2114 struct mutex
*tfm_mutex
;
2115 size_t cipher_blocksize
;
2118 if (!(mount_crypt_stat
->flags
& ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES
)) {
2119 (*namelen
) = lower_namelen
;
2123 rc
= ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm
, &tfm_mutex
,
2124 mount_crypt_stat
->global_default_fn_cipher_name
);
2130 mutex_lock(tfm_mutex
);
2131 cipher_blocksize
= crypto_skcipher_blocksize(tfm
);
2132 mutex_unlock(tfm_mutex
);
2134 /* Return an exact amount for the common cases */
2135 if (lower_namelen
== NAME_MAX
2136 && (cipher_blocksize
== 8 || cipher_blocksize
== 16)) {
2137 (*namelen
) = ENC_NAME_MAX_BLOCKLEN_8_OR_16
;
2141 /* Return a safe estimate for the uncommon cases */
2142 (*namelen
) = lower_namelen
;
2143 (*namelen
) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
;
2144 /* Since this is the max decoded size, subtract 1 "decoded block" len */
2145 (*namelen
) = ecryptfs_max_decoded_size(*namelen
) - 3;
2146 (*namelen
) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE
;
2147 (*namelen
) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES
;
2148 /* Worst case is that the filename is padded nearly a full block size */
2149 (*namelen
) -= cipher_blocksize
- 1;