arm64: kgdb: Fix single-step exception handling oops
[linux/fpc-iii.git] / fs / ext4 / mballoc.c
blobac13de1a7e420ed931e87a448f7f1aee0321fdda
1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 * mballoc.c contains the multiblocks allocation routines
24 #include "ext4_jbd2.h"
25 #include "mballoc.h"
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/slab.h>
29 #include <linux/nospec.h>
30 #include <linux/backing-dev.h>
31 #include <trace/events/ext4.h>
33 #ifdef CONFIG_EXT4_DEBUG
34 ushort ext4_mballoc_debug __read_mostly;
36 module_param_named(mballoc_debug, ext4_mballoc_debug, ushort, 0644);
37 MODULE_PARM_DESC(mballoc_debug, "Debugging level for ext4's mballoc");
38 #endif
41 * MUSTDO:
42 * - test ext4_ext_search_left() and ext4_ext_search_right()
43 * - search for metadata in few groups
45 * TODO v4:
46 * - normalization should take into account whether file is still open
47 * - discard preallocations if no free space left (policy?)
48 * - don't normalize tails
49 * - quota
50 * - reservation for superuser
52 * TODO v3:
53 * - bitmap read-ahead (proposed by Oleg Drokin aka green)
54 * - track min/max extents in each group for better group selection
55 * - mb_mark_used() may allocate chunk right after splitting buddy
56 * - tree of groups sorted by number of free blocks
57 * - error handling
61 * The allocation request involve request for multiple number of blocks
62 * near to the goal(block) value specified.
64 * During initialization phase of the allocator we decide to use the
65 * group preallocation or inode preallocation depending on the size of
66 * the file. The size of the file could be the resulting file size we
67 * would have after allocation, or the current file size, which ever
68 * is larger. If the size is less than sbi->s_mb_stream_request we
69 * select to use the group preallocation. The default value of
70 * s_mb_stream_request is 16 blocks. This can also be tuned via
71 * /sys/fs/ext4/<partition>/mb_stream_req. The value is represented in
72 * terms of number of blocks.
74 * The main motivation for having small file use group preallocation is to
75 * ensure that we have small files closer together on the disk.
77 * First stage the allocator looks at the inode prealloc list,
78 * ext4_inode_info->i_prealloc_list, which contains list of prealloc
79 * spaces for this particular inode. The inode prealloc space is
80 * represented as:
82 * pa_lstart -> the logical start block for this prealloc space
83 * pa_pstart -> the physical start block for this prealloc space
84 * pa_len -> length for this prealloc space (in clusters)
85 * pa_free -> free space available in this prealloc space (in clusters)
87 * The inode preallocation space is used looking at the _logical_ start
88 * block. If only the logical file block falls within the range of prealloc
89 * space we will consume the particular prealloc space. This makes sure that
90 * we have contiguous physical blocks representing the file blocks
92 * The important thing to be noted in case of inode prealloc space is that
93 * we don't modify the values associated to inode prealloc space except
94 * pa_free.
96 * If we are not able to find blocks in the inode prealloc space and if we
97 * have the group allocation flag set then we look at the locality group
98 * prealloc space. These are per CPU prealloc list represented as
100 * ext4_sb_info.s_locality_groups[smp_processor_id()]
102 * The reason for having a per cpu locality group is to reduce the contention
103 * between CPUs. It is possible to get scheduled at this point.
105 * The locality group prealloc space is used looking at whether we have
106 * enough free space (pa_free) within the prealloc space.
108 * If we can't allocate blocks via inode prealloc or/and locality group
109 * prealloc then we look at the buddy cache. The buddy cache is represented
110 * by ext4_sb_info.s_buddy_cache (struct inode) whose file offset gets
111 * mapped to the buddy and bitmap information regarding different
112 * groups. The buddy information is attached to buddy cache inode so that
113 * we can access them through the page cache. The information regarding
114 * each group is loaded via ext4_mb_load_buddy. The information involve
115 * block bitmap and buddy information. The information are stored in the
116 * inode as:
118 * { page }
119 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
122 * one block each for bitmap and buddy information. So for each group we
123 * take up 2 blocks. A page can contain blocks_per_page (PAGE_SIZE /
124 * blocksize) blocks. So it can have information regarding groups_per_page
125 * which is blocks_per_page/2
127 * The buddy cache inode is not stored on disk. The inode is thrown
128 * away when the filesystem is unmounted.
130 * We look for count number of blocks in the buddy cache. If we were able
131 * to locate that many free blocks we return with additional information
132 * regarding rest of the contiguous physical block available
134 * Before allocating blocks via buddy cache we normalize the request
135 * blocks. This ensure we ask for more blocks that we needed. The extra
136 * blocks that we get after allocation is added to the respective prealloc
137 * list. In case of inode preallocation we follow a list of heuristics
138 * based on file size. This can be found in ext4_mb_normalize_request. If
139 * we are doing a group prealloc we try to normalize the request to
140 * sbi->s_mb_group_prealloc. The default value of s_mb_group_prealloc is
141 * dependent on the cluster size; for non-bigalloc file systems, it is
142 * 512 blocks. This can be tuned via
143 * /sys/fs/ext4/<partition>/mb_group_prealloc. The value is represented in
144 * terms of number of blocks. If we have mounted the file system with -O
145 * stripe=<value> option the group prealloc request is normalized to the
146 * the smallest multiple of the stripe value (sbi->s_stripe) which is
147 * greater than the default mb_group_prealloc.
149 * The regular allocator (using the buddy cache) supports a few tunables.
151 * /sys/fs/ext4/<partition>/mb_min_to_scan
152 * /sys/fs/ext4/<partition>/mb_max_to_scan
153 * /sys/fs/ext4/<partition>/mb_order2_req
155 * The regular allocator uses buddy scan only if the request len is power of
156 * 2 blocks and the order of allocation is >= sbi->s_mb_order2_reqs. The
157 * value of s_mb_order2_reqs can be tuned via
158 * /sys/fs/ext4/<partition>/mb_order2_req. If the request len is equal to
159 * stripe size (sbi->s_stripe), we try to search for contiguous block in
160 * stripe size. This should result in better allocation on RAID setups. If
161 * not, we search in the specific group using bitmap for best extents. The
162 * tunable min_to_scan and max_to_scan control the behaviour here.
163 * min_to_scan indicate how long the mballoc __must__ look for a best
164 * extent and max_to_scan indicates how long the mballoc __can__ look for a
165 * best extent in the found extents. Searching for the blocks starts with
166 * the group specified as the goal value in allocation context via
167 * ac_g_ex. Each group is first checked based on the criteria whether it
168 * can be used for allocation. ext4_mb_good_group explains how the groups are
169 * checked.
171 * Both the prealloc space are getting populated as above. So for the first
172 * request we will hit the buddy cache which will result in this prealloc
173 * space getting filled. The prealloc space is then later used for the
174 * subsequent request.
178 * mballoc operates on the following data:
179 * - on-disk bitmap
180 * - in-core buddy (actually includes buddy and bitmap)
181 * - preallocation descriptors (PAs)
183 * there are two types of preallocations:
184 * - inode
185 * assiged to specific inode and can be used for this inode only.
186 * it describes part of inode's space preallocated to specific
187 * physical blocks. any block from that preallocated can be used
188 * independent. the descriptor just tracks number of blocks left
189 * unused. so, before taking some block from descriptor, one must
190 * make sure corresponded logical block isn't allocated yet. this
191 * also means that freeing any block within descriptor's range
192 * must discard all preallocated blocks.
193 * - locality group
194 * assigned to specific locality group which does not translate to
195 * permanent set of inodes: inode can join and leave group. space
196 * from this type of preallocation can be used for any inode. thus
197 * it's consumed from the beginning to the end.
199 * relation between them can be expressed as:
200 * in-core buddy = on-disk bitmap + preallocation descriptors
202 * this mean blocks mballoc considers used are:
203 * - allocated blocks (persistent)
204 * - preallocated blocks (non-persistent)
206 * consistency in mballoc world means that at any time a block is either
207 * free or used in ALL structures. notice: "any time" should not be read
208 * literally -- time is discrete and delimited by locks.
210 * to keep it simple, we don't use block numbers, instead we count number of
211 * blocks: how many blocks marked used/free in on-disk bitmap, buddy and PA.
213 * all operations can be expressed as:
214 * - init buddy: buddy = on-disk + PAs
215 * - new PA: buddy += N; PA = N
216 * - use inode PA: on-disk += N; PA -= N
217 * - discard inode PA buddy -= on-disk - PA; PA = 0
218 * - use locality group PA on-disk += N; PA -= N
219 * - discard locality group PA buddy -= PA; PA = 0
220 * note: 'buddy -= on-disk - PA' is used to show that on-disk bitmap
221 * is used in real operation because we can't know actual used
222 * bits from PA, only from on-disk bitmap
224 * if we follow this strict logic, then all operations above should be atomic.
225 * given some of them can block, we'd have to use something like semaphores
226 * killing performance on high-end SMP hardware. let's try to relax it using
227 * the following knowledge:
228 * 1) if buddy is referenced, it's already initialized
229 * 2) while block is used in buddy and the buddy is referenced,
230 * nobody can re-allocate that block
231 * 3) we work on bitmaps and '+' actually means 'set bits'. if on-disk has
232 * bit set and PA claims same block, it's OK. IOW, one can set bit in
233 * on-disk bitmap if buddy has same bit set or/and PA covers corresponded
234 * block
236 * so, now we're building a concurrency table:
237 * - init buddy vs.
238 * - new PA
239 * blocks for PA are allocated in the buddy, buddy must be referenced
240 * until PA is linked to allocation group to avoid concurrent buddy init
241 * - use inode PA
242 * we need to make sure that either on-disk bitmap or PA has uptodate data
243 * given (3) we care that PA-=N operation doesn't interfere with init
244 * - discard inode PA
245 * the simplest way would be to have buddy initialized by the discard
246 * - use locality group PA
247 * again PA-=N must be serialized with init
248 * - discard locality group PA
249 * the simplest way would be to have buddy initialized by the discard
250 * - new PA vs.
251 * - use inode PA
252 * i_data_sem serializes them
253 * - discard inode PA
254 * discard process must wait until PA isn't used by another process
255 * - use locality group PA
256 * some mutex should serialize them
257 * - discard locality group PA
258 * discard process must wait until PA isn't used by another process
259 * - use inode PA
260 * - use inode PA
261 * i_data_sem or another mutex should serializes them
262 * - discard inode PA
263 * discard process must wait until PA isn't used by another process
264 * - use locality group PA
265 * nothing wrong here -- they're different PAs covering different blocks
266 * - discard locality group PA
267 * discard process must wait until PA isn't used by another process
269 * now we're ready to make few consequences:
270 * - PA is referenced and while it is no discard is possible
271 * - PA is referenced until block isn't marked in on-disk bitmap
272 * - PA changes only after on-disk bitmap
273 * - discard must not compete with init. either init is done before
274 * any discard or they're serialized somehow
275 * - buddy init as sum of on-disk bitmap and PAs is done atomically
277 * a special case when we've used PA to emptiness. no need to modify buddy
278 * in this case, but we should care about concurrent init
283 * Logic in few words:
285 * - allocation:
286 * load group
287 * find blocks
288 * mark bits in on-disk bitmap
289 * release group
291 * - use preallocation:
292 * find proper PA (per-inode or group)
293 * load group
294 * mark bits in on-disk bitmap
295 * release group
296 * release PA
298 * - free:
299 * load group
300 * mark bits in on-disk bitmap
301 * release group
303 * - discard preallocations in group:
304 * mark PAs deleted
305 * move them onto local list
306 * load on-disk bitmap
307 * load group
308 * remove PA from object (inode or locality group)
309 * mark free blocks in-core
311 * - discard inode's preallocations:
315 * Locking rules
317 * Locks:
318 * - bitlock on a group (group)
319 * - object (inode/locality) (object)
320 * - per-pa lock (pa)
322 * Paths:
323 * - new pa
324 * object
325 * group
327 * - find and use pa:
328 * pa
330 * - release consumed pa:
331 * pa
332 * group
333 * object
335 * - generate in-core bitmap:
336 * group
337 * pa
339 * - discard all for given object (inode, locality group):
340 * object
341 * pa
342 * group
344 * - discard all for given group:
345 * group
346 * pa
347 * group
348 * object
351 static struct kmem_cache *ext4_pspace_cachep;
352 static struct kmem_cache *ext4_ac_cachep;
353 static struct kmem_cache *ext4_free_data_cachep;
355 /* We create slab caches for groupinfo data structures based on the
356 * superblock block size. There will be one per mounted filesystem for
357 * each unique s_blocksize_bits */
358 #define NR_GRPINFO_CACHES 8
359 static struct kmem_cache *ext4_groupinfo_caches[NR_GRPINFO_CACHES];
361 static const char *ext4_groupinfo_slab_names[NR_GRPINFO_CACHES] = {
362 "ext4_groupinfo_1k", "ext4_groupinfo_2k", "ext4_groupinfo_4k",
363 "ext4_groupinfo_8k", "ext4_groupinfo_16k", "ext4_groupinfo_32k",
364 "ext4_groupinfo_64k", "ext4_groupinfo_128k"
367 static void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
368 ext4_group_t group);
369 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
370 ext4_group_t group);
371 static void ext4_free_data_callback(struct super_block *sb,
372 struct ext4_journal_cb_entry *jce, int rc);
374 static inline void *mb_correct_addr_and_bit(int *bit, void *addr)
376 #if BITS_PER_LONG == 64
377 *bit += ((unsigned long) addr & 7UL) << 3;
378 addr = (void *) ((unsigned long) addr & ~7UL);
379 #elif BITS_PER_LONG == 32
380 *bit += ((unsigned long) addr & 3UL) << 3;
381 addr = (void *) ((unsigned long) addr & ~3UL);
382 #else
383 #error "how many bits you are?!"
384 #endif
385 return addr;
388 static inline int mb_test_bit(int bit, void *addr)
391 * ext4_test_bit on architecture like powerpc
392 * needs unsigned long aligned address
394 addr = mb_correct_addr_and_bit(&bit, addr);
395 return ext4_test_bit(bit, addr);
398 static inline void mb_set_bit(int bit, void *addr)
400 addr = mb_correct_addr_and_bit(&bit, addr);
401 ext4_set_bit(bit, addr);
404 static inline void mb_clear_bit(int bit, void *addr)
406 addr = mb_correct_addr_and_bit(&bit, addr);
407 ext4_clear_bit(bit, addr);
410 static inline int mb_test_and_clear_bit(int bit, void *addr)
412 addr = mb_correct_addr_and_bit(&bit, addr);
413 return ext4_test_and_clear_bit(bit, addr);
416 static inline int mb_find_next_zero_bit(void *addr, int max, int start)
418 int fix = 0, ret, tmpmax;
419 addr = mb_correct_addr_and_bit(&fix, addr);
420 tmpmax = max + fix;
421 start += fix;
423 ret = ext4_find_next_zero_bit(addr, tmpmax, start) - fix;
424 if (ret > max)
425 return max;
426 return ret;
429 static inline int mb_find_next_bit(void *addr, int max, int start)
431 int fix = 0, ret, tmpmax;
432 addr = mb_correct_addr_and_bit(&fix, addr);
433 tmpmax = max + fix;
434 start += fix;
436 ret = ext4_find_next_bit(addr, tmpmax, start) - fix;
437 if (ret > max)
438 return max;
439 return ret;
442 static void *mb_find_buddy(struct ext4_buddy *e4b, int order, int *max)
444 char *bb;
446 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
447 BUG_ON(max == NULL);
449 if (order > e4b->bd_blkbits + 1) {
450 *max = 0;
451 return NULL;
454 /* at order 0 we see each particular block */
455 if (order == 0) {
456 *max = 1 << (e4b->bd_blkbits + 3);
457 return e4b->bd_bitmap;
460 bb = e4b->bd_buddy + EXT4_SB(e4b->bd_sb)->s_mb_offsets[order];
461 *max = EXT4_SB(e4b->bd_sb)->s_mb_maxs[order];
463 return bb;
466 #ifdef DOUBLE_CHECK
467 static void mb_free_blocks_double(struct inode *inode, struct ext4_buddy *e4b,
468 int first, int count)
470 int i;
471 struct super_block *sb = e4b->bd_sb;
473 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
474 return;
475 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
476 for (i = 0; i < count; i++) {
477 if (!mb_test_bit(first + i, e4b->bd_info->bb_bitmap)) {
478 ext4_fsblk_t blocknr;
480 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
481 blocknr += EXT4_C2B(EXT4_SB(sb), first + i);
482 ext4_grp_locked_error(sb, e4b->bd_group,
483 inode ? inode->i_ino : 0,
484 blocknr,
485 "freeing block already freed "
486 "(bit %u)",
487 first + i);
489 mb_clear_bit(first + i, e4b->bd_info->bb_bitmap);
493 static void mb_mark_used_double(struct ext4_buddy *e4b, int first, int count)
495 int i;
497 if (unlikely(e4b->bd_info->bb_bitmap == NULL))
498 return;
499 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
500 for (i = 0; i < count; i++) {
501 BUG_ON(mb_test_bit(first + i, e4b->bd_info->bb_bitmap));
502 mb_set_bit(first + i, e4b->bd_info->bb_bitmap);
506 static void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
508 if (memcmp(e4b->bd_info->bb_bitmap, bitmap, e4b->bd_sb->s_blocksize)) {
509 unsigned char *b1, *b2;
510 int i;
511 b1 = (unsigned char *) e4b->bd_info->bb_bitmap;
512 b2 = (unsigned char *) bitmap;
513 for (i = 0; i < e4b->bd_sb->s_blocksize; i++) {
514 if (b1[i] != b2[i]) {
515 ext4_msg(e4b->bd_sb, KERN_ERR,
516 "corruption in group %u "
517 "at byte %u(%u): %x in copy != %x "
518 "on disk/prealloc",
519 e4b->bd_group, i, i * 8, b1[i], b2[i]);
520 BUG();
526 #else
527 static inline void mb_free_blocks_double(struct inode *inode,
528 struct ext4_buddy *e4b, int first, int count)
530 return;
532 static inline void mb_mark_used_double(struct ext4_buddy *e4b,
533 int first, int count)
535 return;
537 static inline void mb_cmp_bitmaps(struct ext4_buddy *e4b, void *bitmap)
539 return;
541 #endif
543 #ifdef AGGRESSIVE_CHECK
545 #define MB_CHECK_ASSERT(assert) \
546 do { \
547 if (!(assert)) { \
548 printk(KERN_EMERG \
549 "Assertion failure in %s() at %s:%d: \"%s\"\n", \
550 function, file, line, # assert); \
551 BUG(); \
553 } while (0)
555 static int __mb_check_buddy(struct ext4_buddy *e4b, char *file,
556 const char *function, int line)
558 struct super_block *sb = e4b->bd_sb;
559 int order = e4b->bd_blkbits + 1;
560 int max;
561 int max2;
562 int i;
563 int j;
564 int k;
565 int count;
566 struct ext4_group_info *grp;
567 int fragments = 0;
568 int fstart;
569 struct list_head *cur;
570 void *buddy;
571 void *buddy2;
574 static int mb_check_counter;
575 if (mb_check_counter++ % 100 != 0)
576 return 0;
579 while (order > 1) {
580 buddy = mb_find_buddy(e4b, order, &max);
581 MB_CHECK_ASSERT(buddy);
582 buddy2 = mb_find_buddy(e4b, order - 1, &max2);
583 MB_CHECK_ASSERT(buddy2);
584 MB_CHECK_ASSERT(buddy != buddy2);
585 MB_CHECK_ASSERT(max * 2 == max2);
587 count = 0;
588 for (i = 0; i < max; i++) {
590 if (mb_test_bit(i, buddy)) {
591 /* only single bit in buddy2 may be 1 */
592 if (!mb_test_bit(i << 1, buddy2)) {
593 MB_CHECK_ASSERT(
594 mb_test_bit((i<<1)+1, buddy2));
595 } else if (!mb_test_bit((i << 1) + 1, buddy2)) {
596 MB_CHECK_ASSERT(
597 mb_test_bit(i << 1, buddy2));
599 continue;
602 /* both bits in buddy2 must be 1 */
603 MB_CHECK_ASSERT(mb_test_bit(i << 1, buddy2));
604 MB_CHECK_ASSERT(mb_test_bit((i << 1) + 1, buddy2));
606 for (j = 0; j < (1 << order); j++) {
607 k = (i * (1 << order)) + j;
608 MB_CHECK_ASSERT(
609 !mb_test_bit(k, e4b->bd_bitmap));
611 count++;
613 MB_CHECK_ASSERT(e4b->bd_info->bb_counters[order] == count);
614 order--;
617 fstart = -1;
618 buddy = mb_find_buddy(e4b, 0, &max);
619 for (i = 0; i < max; i++) {
620 if (!mb_test_bit(i, buddy)) {
621 MB_CHECK_ASSERT(i >= e4b->bd_info->bb_first_free);
622 if (fstart == -1) {
623 fragments++;
624 fstart = i;
626 continue;
628 fstart = -1;
629 /* check used bits only */
630 for (j = 0; j < e4b->bd_blkbits + 1; j++) {
631 buddy2 = mb_find_buddy(e4b, j, &max2);
632 k = i >> j;
633 MB_CHECK_ASSERT(k < max2);
634 MB_CHECK_ASSERT(mb_test_bit(k, buddy2));
637 MB_CHECK_ASSERT(!EXT4_MB_GRP_NEED_INIT(e4b->bd_info));
638 MB_CHECK_ASSERT(e4b->bd_info->bb_fragments == fragments);
640 grp = ext4_get_group_info(sb, e4b->bd_group);
641 list_for_each(cur, &grp->bb_prealloc_list) {
642 ext4_group_t groupnr;
643 struct ext4_prealloc_space *pa;
644 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
645 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &groupnr, &k);
646 MB_CHECK_ASSERT(groupnr == e4b->bd_group);
647 for (i = 0; i < pa->pa_len; i++)
648 MB_CHECK_ASSERT(mb_test_bit(k + i, buddy));
650 return 0;
652 #undef MB_CHECK_ASSERT
653 #define mb_check_buddy(e4b) __mb_check_buddy(e4b, \
654 __FILE__, __func__, __LINE__)
655 #else
656 #define mb_check_buddy(e4b)
657 #endif
660 * Divide blocks started from @first with length @len into
661 * smaller chunks with power of 2 blocks.
662 * Clear the bits in bitmap which the blocks of the chunk(s) covered,
663 * then increase bb_counters[] for corresponded chunk size.
665 static void ext4_mb_mark_free_simple(struct super_block *sb,
666 void *buddy, ext4_grpblk_t first, ext4_grpblk_t len,
667 struct ext4_group_info *grp)
669 struct ext4_sb_info *sbi = EXT4_SB(sb);
670 ext4_grpblk_t min;
671 ext4_grpblk_t max;
672 ext4_grpblk_t chunk;
673 unsigned int border;
675 BUG_ON(len > EXT4_CLUSTERS_PER_GROUP(sb));
677 border = 2 << sb->s_blocksize_bits;
679 while (len > 0) {
680 /* find how many blocks can be covered since this position */
681 max = ffs(first | border) - 1;
683 /* find how many blocks of power 2 we need to mark */
684 min = fls(len) - 1;
686 if (max < min)
687 min = max;
688 chunk = 1 << min;
690 /* mark multiblock chunks only */
691 grp->bb_counters[min]++;
692 if (min > 0)
693 mb_clear_bit(first >> min,
694 buddy + sbi->s_mb_offsets[min]);
696 len -= chunk;
697 first += chunk;
702 * Cache the order of the largest free extent we have available in this block
703 * group.
705 static void
706 mb_set_largest_free_order(struct super_block *sb, struct ext4_group_info *grp)
708 int i;
709 int bits;
711 grp->bb_largest_free_order = -1; /* uninit */
713 bits = sb->s_blocksize_bits + 1;
714 for (i = bits; i >= 0; i--) {
715 if (grp->bb_counters[i] > 0) {
716 grp->bb_largest_free_order = i;
717 break;
722 static noinline_for_stack
723 void ext4_mb_generate_buddy(struct super_block *sb,
724 void *buddy, void *bitmap, ext4_group_t group)
726 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
727 struct ext4_sb_info *sbi = EXT4_SB(sb);
728 ext4_grpblk_t max = EXT4_CLUSTERS_PER_GROUP(sb);
729 ext4_grpblk_t i = 0;
730 ext4_grpblk_t first;
731 ext4_grpblk_t len;
732 unsigned free = 0;
733 unsigned fragments = 0;
734 unsigned long long period = get_cycles();
736 /* initialize buddy from bitmap which is aggregation
737 * of on-disk bitmap and preallocations */
738 i = mb_find_next_zero_bit(bitmap, max, 0);
739 grp->bb_first_free = i;
740 while (i < max) {
741 fragments++;
742 first = i;
743 i = mb_find_next_bit(bitmap, max, i);
744 len = i - first;
745 free += len;
746 if (len > 1)
747 ext4_mb_mark_free_simple(sb, buddy, first, len, grp);
748 else
749 grp->bb_counters[0]++;
750 if (i < max)
751 i = mb_find_next_zero_bit(bitmap, max, i);
753 grp->bb_fragments = fragments;
755 if (free != grp->bb_free) {
756 ext4_grp_locked_error(sb, group, 0, 0,
757 "block bitmap and bg descriptor "
758 "inconsistent: %u vs %u free clusters",
759 free, grp->bb_free);
761 * If we intend to continue, we consider group descriptor
762 * corrupt and update bb_free using bitmap value
764 grp->bb_free = free;
765 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(grp))
766 percpu_counter_sub(&sbi->s_freeclusters_counter,
767 grp->bb_free);
768 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT, &grp->bb_state);
770 mb_set_largest_free_order(sb, grp);
772 clear_bit(EXT4_GROUP_INFO_NEED_INIT_BIT, &(grp->bb_state));
774 period = get_cycles() - period;
775 spin_lock(&EXT4_SB(sb)->s_bal_lock);
776 EXT4_SB(sb)->s_mb_buddies_generated++;
777 EXT4_SB(sb)->s_mb_generation_time += period;
778 spin_unlock(&EXT4_SB(sb)->s_bal_lock);
781 static void mb_regenerate_buddy(struct ext4_buddy *e4b)
783 int count;
784 int order = 1;
785 void *buddy;
787 while ((buddy = mb_find_buddy(e4b, order++, &count))) {
788 ext4_set_bits(buddy, 0, count);
790 e4b->bd_info->bb_fragments = 0;
791 memset(e4b->bd_info->bb_counters, 0,
792 sizeof(*e4b->bd_info->bb_counters) *
793 (e4b->bd_sb->s_blocksize_bits + 2));
795 ext4_mb_generate_buddy(e4b->bd_sb, e4b->bd_buddy,
796 e4b->bd_bitmap, e4b->bd_group);
799 /* The buddy information is attached the buddy cache inode
800 * for convenience. The information regarding each group
801 * is loaded via ext4_mb_load_buddy. The information involve
802 * block bitmap and buddy information. The information are
803 * stored in the inode as
805 * { page }
806 * [ group 0 bitmap][ group 0 buddy] [group 1][ group 1]...
809 * one block each for bitmap and buddy information.
810 * So for each group we take up 2 blocks. A page can
811 * contain blocks_per_page (PAGE_SIZE / blocksize) blocks.
812 * So it can have information regarding groups_per_page which
813 * is blocks_per_page/2
815 * Locking note: This routine takes the block group lock of all groups
816 * for this page; do not hold this lock when calling this routine!
819 static int ext4_mb_init_cache(struct page *page, char *incore, gfp_t gfp)
821 ext4_group_t ngroups;
822 int blocksize;
823 int blocks_per_page;
824 int groups_per_page;
825 int err = 0;
826 int i;
827 ext4_group_t first_group, group;
828 int first_block;
829 struct super_block *sb;
830 struct buffer_head *bhs;
831 struct buffer_head **bh = NULL;
832 struct inode *inode;
833 char *data;
834 char *bitmap;
835 struct ext4_group_info *grinfo;
837 mb_debug(1, "init page %lu\n", page->index);
839 inode = page->mapping->host;
840 sb = inode->i_sb;
841 ngroups = ext4_get_groups_count(sb);
842 blocksize = i_blocksize(inode);
843 blocks_per_page = PAGE_SIZE / blocksize;
845 groups_per_page = blocks_per_page >> 1;
846 if (groups_per_page == 0)
847 groups_per_page = 1;
849 /* allocate buffer_heads to read bitmaps */
850 if (groups_per_page > 1) {
851 i = sizeof(struct buffer_head *) * groups_per_page;
852 bh = kzalloc(i, gfp);
853 if (bh == NULL) {
854 err = -ENOMEM;
855 goto out;
857 } else
858 bh = &bhs;
860 first_group = page->index * blocks_per_page / 2;
862 /* read all groups the page covers into the cache */
863 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
864 if (group >= ngroups)
865 break;
867 grinfo = ext4_get_group_info(sb, group);
869 * If page is uptodate then we came here after online resize
870 * which added some new uninitialized group info structs, so
871 * we must skip all initialized uptodate buddies on the page,
872 * which may be currently in use by an allocating task.
874 if (PageUptodate(page) && !EXT4_MB_GRP_NEED_INIT(grinfo)) {
875 bh[i] = NULL;
876 continue;
878 bh[i] = ext4_read_block_bitmap_nowait(sb, group);
879 if (IS_ERR(bh[i])) {
880 err = PTR_ERR(bh[i]);
881 bh[i] = NULL;
882 goto out;
884 mb_debug(1, "read bitmap for group %u\n", group);
887 /* wait for I/O completion */
888 for (i = 0, group = first_group; i < groups_per_page; i++, group++) {
889 int err2;
891 if (!bh[i])
892 continue;
893 err2 = ext4_wait_block_bitmap(sb, group, bh[i]);
894 if (!err)
895 err = err2;
898 first_block = page->index * blocks_per_page;
899 for (i = 0; i < blocks_per_page; i++) {
900 group = (first_block + i) >> 1;
901 if (group >= ngroups)
902 break;
904 if (!bh[group - first_group])
905 /* skip initialized uptodate buddy */
906 continue;
908 if (!buffer_verified(bh[group - first_group]))
909 /* Skip faulty bitmaps */
910 continue;
911 err = 0;
914 * data carry information regarding this
915 * particular group in the format specified
916 * above
919 data = page_address(page) + (i * blocksize);
920 bitmap = bh[group - first_group]->b_data;
923 * We place the buddy block and bitmap block
924 * close together
926 if ((first_block + i) & 1) {
927 /* this is block of buddy */
928 BUG_ON(incore == NULL);
929 mb_debug(1, "put buddy for group %u in page %lu/%x\n",
930 group, page->index, i * blocksize);
931 trace_ext4_mb_buddy_bitmap_load(sb, group);
932 grinfo = ext4_get_group_info(sb, group);
933 grinfo->bb_fragments = 0;
934 memset(grinfo->bb_counters, 0,
935 sizeof(*grinfo->bb_counters) *
936 (sb->s_blocksize_bits+2));
938 * incore got set to the group block bitmap below
940 ext4_lock_group(sb, group);
941 /* init the buddy */
942 memset(data, 0xff, blocksize);
943 ext4_mb_generate_buddy(sb, data, incore, group);
944 ext4_unlock_group(sb, group);
945 incore = NULL;
946 } else {
947 /* this is block of bitmap */
948 BUG_ON(incore != NULL);
949 mb_debug(1, "put bitmap for group %u in page %lu/%x\n",
950 group, page->index, i * blocksize);
951 trace_ext4_mb_bitmap_load(sb, group);
953 /* see comments in ext4_mb_put_pa() */
954 ext4_lock_group(sb, group);
955 memcpy(data, bitmap, blocksize);
957 /* mark all preallocated blks used in in-core bitmap */
958 ext4_mb_generate_from_pa(sb, data, group);
959 ext4_mb_generate_from_freelist(sb, data, group);
960 ext4_unlock_group(sb, group);
962 /* set incore so that the buddy information can be
963 * generated using this
965 incore = data;
968 SetPageUptodate(page);
970 out:
971 if (bh) {
972 for (i = 0; i < groups_per_page; i++)
973 brelse(bh[i]);
974 if (bh != &bhs)
975 kfree(bh);
977 return err;
981 * Lock the buddy and bitmap pages. This make sure other parallel init_group
982 * on the same buddy page doesn't happen whild holding the buddy page lock.
983 * Return locked buddy and bitmap pages on e4b struct. If buddy and bitmap
984 * are on the same page e4b->bd_buddy_page is NULL and return value is 0.
986 static int ext4_mb_get_buddy_page_lock(struct super_block *sb,
987 ext4_group_t group, struct ext4_buddy *e4b, gfp_t gfp)
989 struct inode *inode = EXT4_SB(sb)->s_buddy_cache;
990 int block, pnum, poff;
991 int blocks_per_page;
992 struct page *page;
994 e4b->bd_buddy_page = NULL;
995 e4b->bd_bitmap_page = NULL;
997 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
999 * the buddy cache inode stores the block bitmap
1000 * and buddy information in consecutive blocks.
1001 * So for each group we need two blocks.
1003 block = group * 2;
1004 pnum = block / blocks_per_page;
1005 poff = block % blocks_per_page;
1006 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1007 if (!page)
1008 return -ENOMEM;
1009 BUG_ON(page->mapping != inode->i_mapping);
1010 e4b->bd_bitmap_page = page;
1011 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1013 if (blocks_per_page >= 2) {
1014 /* buddy and bitmap are on the same page */
1015 return 0;
1018 block++;
1019 pnum = block / blocks_per_page;
1020 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1021 if (!page)
1022 return -ENOMEM;
1023 BUG_ON(page->mapping != inode->i_mapping);
1024 e4b->bd_buddy_page = page;
1025 return 0;
1028 static void ext4_mb_put_buddy_page_lock(struct ext4_buddy *e4b)
1030 if (e4b->bd_bitmap_page) {
1031 unlock_page(e4b->bd_bitmap_page);
1032 put_page(e4b->bd_bitmap_page);
1034 if (e4b->bd_buddy_page) {
1035 unlock_page(e4b->bd_buddy_page);
1036 put_page(e4b->bd_buddy_page);
1041 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1042 * block group lock of all groups for this page; do not hold the BG lock when
1043 * calling this routine!
1045 static noinline_for_stack
1046 int ext4_mb_init_group(struct super_block *sb, ext4_group_t group, gfp_t gfp)
1049 struct ext4_group_info *this_grp;
1050 struct ext4_buddy e4b;
1051 struct page *page;
1052 int ret = 0;
1054 might_sleep();
1055 mb_debug(1, "init group %u\n", group);
1056 this_grp = ext4_get_group_info(sb, group);
1058 * This ensures that we don't reinit the buddy cache
1059 * page which map to the group from which we are already
1060 * allocating. If we are looking at the buddy cache we would
1061 * have taken a reference using ext4_mb_load_buddy and that
1062 * would have pinned buddy page to page cache.
1063 * The call to ext4_mb_get_buddy_page_lock will mark the
1064 * page accessed.
1066 ret = ext4_mb_get_buddy_page_lock(sb, group, &e4b, gfp);
1067 if (ret || !EXT4_MB_GRP_NEED_INIT(this_grp)) {
1069 * somebody initialized the group
1070 * return without doing anything
1072 goto err;
1075 page = e4b.bd_bitmap_page;
1076 ret = ext4_mb_init_cache(page, NULL, gfp);
1077 if (ret)
1078 goto err;
1079 if (!PageUptodate(page)) {
1080 ret = -EIO;
1081 goto err;
1084 if (e4b.bd_buddy_page == NULL) {
1086 * If both the bitmap and buddy are in
1087 * the same page we don't need to force
1088 * init the buddy
1090 ret = 0;
1091 goto err;
1093 /* init buddy cache */
1094 page = e4b.bd_buddy_page;
1095 ret = ext4_mb_init_cache(page, e4b.bd_bitmap, gfp);
1096 if (ret)
1097 goto err;
1098 if (!PageUptodate(page)) {
1099 ret = -EIO;
1100 goto err;
1102 err:
1103 ext4_mb_put_buddy_page_lock(&e4b);
1104 return ret;
1108 * Locking note: This routine calls ext4_mb_init_cache(), which takes the
1109 * block group lock of all groups for this page; do not hold the BG lock when
1110 * calling this routine!
1112 static noinline_for_stack int
1113 ext4_mb_load_buddy_gfp(struct super_block *sb, ext4_group_t group,
1114 struct ext4_buddy *e4b, gfp_t gfp)
1116 int blocks_per_page;
1117 int block;
1118 int pnum;
1119 int poff;
1120 struct page *page;
1121 int ret;
1122 struct ext4_group_info *grp;
1123 struct ext4_sb_info *sbi = EXT4_SB(sb);
1124 struct inode *inode = sbi->s_buddy_cache;
1126 might_sleep();
1127 mb_debug(1, "load group %u\n", group);
1129 blocks_per_page = PAGE_SIZE / sb->s_blocksize;
1130 grp = ext4_get_group_info(sb, group);
1132 e4b->bd_blkbits = sb->s_blocksize_bits;
1133 e4b->bd_info = grp;
1134 e4b->bd_sb = sb;
1135 e4b->bd_group = group;
1136 e4b->bd_buddy_page = NULL;
1137 e4b->bd_bitmap_page = NULL;
1139 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
1141 * we need full data about the group
1142 * to make a good selection
1144 ret = ext4_mb_init_group(sb, group, gfp);
1145 if (ret)
1146 return ret;
1150 * the buddy cache inode stores the block bitmap
1151 * and buddy information in consecutive blocks.
1152 * So for each group we need two blocks.
1154 block = group * 2;
1155 pnum = block / blocks_per_page;
1156 poff = block % blocks_per_page;
1158 /* we could use find_or_create_page(), but it locks page
1159 * what we'd like to avoid in fast path ... */
1160 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1161 if (page == NULL || !PageUptodate(page)) {
1162 if (page)
1164 * drop the page reference and try
1165 * to get the page with lock. If we
1166 * are not uptodate that implies
1167 * somebody just created the page but
1168 * is yet to initialize the same. So
1169 * wait for it to initialize.
1171 put_page(page);
1172 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1173 if (page) {
1174 BUG_ON(page->mapping != inode->i_mapping);
1175 if (!PageUptodate(page)) {
1176 ret = ext4_mb_init_cache(page, NULL, gfp);
1177 if (ret) {
1178 unlock_page(page);
1179 goto err;
1181 mb_cmp_bitmaps(e4b, page_address(page) +
1182 (poff * sb->s_blocksize));
1184 unlock_page(page);
1187 if (page == NULL) {
1188 ret = -ENOMEM;
1189 goto err;
1191 if (!PageUptodate(page)) {
1192 ret = -EIO;
1193 goto err;
1196 /* Pages marked accessed already */
1197 e4b->bd_bitmap_page = page;
1198 e4b->bd_bitmap = page_address(page) + (poff * sb->s_blocksize);
1200 block++;
1201 pnum = block / blocks_per_page;
1202 poff = block % blocks_per_page;
1204 page = find_get_page_flags(inode->i_mapping, pnum, FGP_ACCESSED);
1205 if (page == NULL || !PageUptodate(page)) {
1206 if (page)
1207 put_page(page);
1208 page = find_or_create_page(inode->i_mapping, pnum, gfp);
1209 if (page) {
1210 BUG_ON(page->mapping != inode->i_mapping);
1211 if (!PageUptodate(page)) {
1212 ret = ext4_mb_init_cache(page, e4b->bd_bitmap,
1213 gfp);
1214 if (ret) {
1215 unlock_page(page);
1216 goto err;
1219 unlock_page(page);
1222 if (page == NULL) {
1223 ret = -ENOMEM;
1224 goto err;
1226 if (!PageUptodate(page)) {
1227 ret = -EIO;
1228 goto err;
1231 /* Pages marked accessed already */
1232 e4b->bd_buddy_page = page;
1233 e4b->bd_buddy = page_address(page) + (poff * sb->s_blocksize);
1235 BUG_ON(e4b->bd_bitmap_page == NULL);
1236 BUG_ON(e4b->bd_buddy_page == NULL);
1238 return 0;
1240 err:
1241 if (page)
1242 put_page(page);
1243 if (e4b->bd_bitmap_page)
1244 put_page(e4b->bd_bitmap_page);
1245 if (e4b->bd_buddy_page)
1246 put_page(e4b->bd_buddy_page);
1247 e4b->bd_buddy = NULL;
1248 e4b->bd_bitmap = NULL;
1249 return ret;
1252 static int ext4_mb_load_buddy(struct super_block *sb, ext4_group_t group,
1253 struct ext4_buddy *e4b)
1255 return ext4_mb_load_buddy_gfp(sb, group, e4b, GFP_NOFS);
1258 static void ext4_mb_unload_buddy(struct ext4_buddy *e4b)
1260 if (e4b->bd_bitmap_page)
1261 put_page(e4b->bd_bitmap_page);
1262 if (e4b->bd_buddy_page)
1263 put_page(e4b->bd_buddy_page);
1267 static int mb_find_order_for_block(struct ext4_buddy *e4b, int block)
1269 int order = 1;
1270 int bb_incr = 1 << (e4b->bd_blkbits - 1);
1271 void *bb;
1273 BUG_ON(e4b->bd_bitmap == e4b->bd_buddy);
1274 BUG_ON(block >= (1 << (e4b->bd_blkbits + 3)));
1276 bb = e4b->bd_buddy;
1277 while (order <= e4b->bd_blkbits + 1) {
1278 block = block >> 1;
1279 if (!mb_test_bit(block, bb)) {
1280 /* this block is part of buddy of order 'order' */
1281 return order;
1283 bb += bb_incr;
1284 bb_incr >>= 1;
1285 order++;
1287 return 0;
1290 static void mb_clear_bits(void *bm, int cur, int len)
1292 __u32 *addr;
1294 len = cur + len;
1295 while (cur < len) {
1296 if ((cur & 31) == 0 && (len - cur) >= 32) {
1297 /* fast path: clear whole word at once */
1298 addr = bm + (cur >> 3);
1299 *addr = 0;
1300 cur += 32;
1301 continue;
1303 mb_clear_bit(cur, bm);
1304 cur++;
1308 /* clear bits in given range
1309 * will return first found zero bit if any, -1 otherwise
1311 static int mb_test_and_clear_bits(void *bm, int cur, int len)
1313 __u32 *addr;
1314 int zero_bit = -1;
1316 len = cur + len;
1317 while (cur < len) {
1318 if ((cur & 31) == 0 && (len - cur) >= 32) {
1319 /* fast path: clear whole word at once */
1320 addr = bm + (cur >> 3);
1321 if (*addr != (__u32)(-1) && zero_bit == -1)
1322 zero_bit = cur + mb_find_next_zero_bit(addr, 32, 0);
1323 *addr = 0;
1324 cur += 32;
1325 continue;
1327 if (!mb_test_and_clear_bit(cur, bm) && zero_bit == -1)
1328 zero_bit = cur;
1329 cur++;
1332 return zero_bit;
1335 void ext4_set_bits(void *bm, int cur, int len)
1337 __u32 *addr;
1339 len = cur + len;
1340 while (cur < len) {
1341 if ((cur & 31) == 0 && (len - cur) >= 32) {
1342 /* fast path: set whole word at once */
1343 addr = bm + (cur >> 3);
1344 *addr = 0xffffffff;
1345 cur += 32;
1346 continue;
1348 mb_set_bit(cur, bm);
1349 cur++;
1354 * _________________________________________________________________ */
1356 static inline int mb_buddy_adjust_border(int* bit, void* bitmap, int side)
1358 if (mb_test_bit(*bit + side, bitmap)) {
1359 mb_clear_bit(*bit, bitmap);
1360 (*bit) -= side;
1361 return 1;
1363 else {
1364 (*bit) += side;
1365 mb_set_bit(*bit, bitmap);
1366 return -1;
1370 static void mb_buddy_mark_free(struct ext4_buddy *e4b, int first, int last)
1372 int max;
1373 int order = 1;
1374 void *buddy = mb_find_buddy(e4b, order, &max);
1376 while (buddy) {
1377 void *buddy2;
1379 /* Bits in range [first; last] are known to be set since
1380 * corresponding blocks were allocated. Bits in range
1381 * (first; last) will stay set because they form buddies on
1382 * upper layer. We just deal with borders if they don't
1383 * align with upper layer and then go up.
1384 * Releasing entire group is all about clearing
1385 * single bit of highest order buddy.
1388 /* Example:
1389 * ---------------------------------
1390 * | 1 | 1 | 1 | 1 |
1391 * ---------------------------------
1392 * | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1393 * ---------------------------------
1394 * 0 1 2 3 4 5 6 7
1395 * \_____________________/
1397 * Neither [1] nor [6] is aligned to above layer.
1398 * Left neighbour [0] is free, so mark it busy,
1399 * decrease bb_counters and extend range to
1400 * [0; 6]
1401 * Right neighbour [7] is busy. It can't be coaleasced with [6], so
1402 * mark [6] free, increase bb_counters and shrink range to
1403 * [0; 5].
1404 * Then shift range to [0; 2], go up and do the same.
1408 if (first & 1)
1409 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&first, buddy, -1);
1410 if (!(last & 1))
1411 e4b->bd_info->bb_counters[order] += mb_buddy_adjust_border(&last, buddy, 1);
1412 if (first > last)
1413 break;
1414 order++;
1416 if (first == last || !(buddy2 = mb_find_buddy(e4b, order, &max))) {
1417 mb_clear_bits(buddy, first, last - first + 1);
1418 e4b->bd_info->bb_counters[order - 1] += last - first + 1;
1419 break;
1421 first >>= 1;
1422 last >>= 1;
1423 buddy = buddy2;
1427 static void mb_free_blocks(struct inode *inode, struct ext4_buddy *e4b,
1428 int first, int count)
1430 int left_is_free = 0;
1431 int right_is_free = 0;
1432 int block;
1433 int last = first + count - 1;
1434 struct super_block *sb = e4b->bd_sb;
1436 if (WARN_ON(count == 0))
1437 return;
1438 BUG_ON(last >= (sb->s_blocksize << 3));
1439 assert_spin_locked(ext4_group_lock_ptr(sb, e4b->bd_group));
1440 /* Don't bother if the block group is corrupt. */
1441 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info)))
1442 return;
1444 mb_check_buddy(e4b);
1445 mb_free_blocks_double(inode, e4b, first, count);
1447 e4b->bd_info->bb_free += count;
1448 if (first < e4b->bd_info->bb_first_free)
1449 e4b->bd_info->bb_first_free = first;
1451 /* access memory sequentially: check left neighbour,
1452 * clear range and then check right neighbour
1454 if (first != 0)
1455 left_is_free = !mb_test_bit(first - 1, e4b->bd_bitmap);
1456 block = mb_test_and_clear_bits(e4b->bd_bitmap, first, count);
1457 if (last + 1 < EXT4_SB(sb)->s_mb_maxs[0])
1458 right_is_free = !mb_test_bit(last + 1, e4b->bd_bitmap);
1460 if (unlikely(block != -1)) {
1461 struct ext4_sb_info *sbi = EXT4_SB(sb);
1462 ext4_fsblk_t blocknr;
1464 blocknr = ext4_group_first_block_no(sb, e4b->bd_group);
1465 blocknr += EXT4_C2B(EXT4_SB(sb), block);
1466 ext4_grp_locked_error(sb, e4b->bd_group,
1467 inode ? inode->i_ino : 0,
1468 blocknr,
1469 "freeing already freed block "
1470 "(bit %u); block bitmap corrupt.",
1471 block);
1472 if (!EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))
1473 percpu_counter_sub(&sbi->s_freeclusters_counter,
1474 e4b->bd_info->bb_free);
1475 /* Mark the block group as corrupt. */
1476 set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1477 &e4b->bd_info->bb_state);
1478 mb_regenerate_buddy(e4b);
1479 goto done;
1482 /* let's maintain fragments counter */
1483 if (left_is_free && right_is_free)
1484 e4b->bd_info->bb_fragments--;
1485 else if (!left_is_free && !right_is_free)
1486 e4b->bd_info->bb_fragments++;
1488 /* buddy[0] == bd_bitmap is a special case, so handle
1489 * it right away and let mb_buddy_mark_free stay free of
1490 * zero order checks.
1491 * Check if neighbours are to be coaleasced,
1492 * adjust bitmap bb_counters and borders appropriately.
1494 if (first & 1) {
1495 first += !left_is_free;
1496 e4b->bd_info->bb_counters[0] += left_is_free ? -1 : 1;
1498 if (!(last & 1)) {
1499 last -= !right_is_free;
1500 e4b->bd_info->bb_counters[0] += right_is_free ? -1 : 1;
1503 if (first <= last)
1504 mb_buddy_mark_free(e4b, first >> 1, last >> 1);
1506 done:
1507 mb_set_largest_free_order(sb, e4b->bd_info);
1508 mb_check_buddy(e4b);
1511 static int mb_find_extent(struct ext4_buddy *e4b, int block,
1512 int needed, struct ext4_free_extent *ex)
1514 int next = block;
1515 int max, order;
1516 void *buddy;
1518 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1519 BUG_ON(ex == NULL);
1521 buddy = mb_find_buddy(e4b, 0, &max);
1522 BUG_ON(buddy == NULL);
1523 BUG_ON(block >= max);
1524 if (mb_test_bit(block, buddy)) {
1525 ex->fe_len = 0;
1526 ex->fe_start = 0;
1527 ex->fe_group = 0;
1528 return 0;
1531 /* find actual order */
1532 order = mb_find_order_for_block(e4b, block);
1533 block = block >> order;
1535 ex->fe_len = 1 << order;
1536 ex->fe_start = block << order;
1537 ex->fe_group = e4b->bd_group;
1539 /* calc difference from given start */
1540 next = next - ex->fe_start;
1541 ex->fe_len -= next;
1542 ex->fe_start += next;
1544 while (needed > ex->fe_len &&
1545 mb_find_buddy(e4b, order, &max)) {
1547 if (block + 1 >= max)
1548 break;
1550 next = (block + 1) * (1 << order);
1551 if (mb_test_bit(next, e4b->bd_bitmap))
1552 break;
1554 order = mb_find_order_for_block(e4b, next);
1556 block = next >> order;
1557 ex->fe_len += 1 << order;
1560 BUG_ON(ex->fe_start + ex->fe_len > (1 << (e4b->bd_blkbits + 3)));
1561 return ex->fe_len;
1564 static int mb_mark_used(struct ext4_buddy *e4b, struct ext4_free_extent *ex)
1566 int ord;
1567 int mlen = 0;
1568 int max = 0;
1569 int cur;
1570 int start = ex->fe_start;
1571 int len = ex->fe_len;
1572 unsigned ret = 0;
1573 int len0 = len;
1574 void *buddy;
1576 BUG_ON(start + len > (e4b->bd_sb->s_blocksize << 3));
1577 BUG_ON(e4b->bd_group != ex->fe_group);
1578 assert_spin_locked(ext4_group_lock_ptr(e4b->bd_sb, e4b->bd_group));
1579 mb_check_buddy(e4b);
1580 mb_mark_used_double(e4b, start, len);
1582 e4b->bd_info->bb_free -= len;
1583 if (e4b->bd_info->bb_first_free == start)
1584 e4b->bd_info->bb_first_free += len;
1586 /* let's maintain fragments counter */
1587 if (start != 0)
1588 mlen = !mb_test_bit(start - 1, e4b->bd_bitmap);
1589 if (start + len < EXT4_SB(e4b->bd_sb)->s_mb_maxs[0])
1590 max = !mb_test_bit(start + len, e4b->bd_bitmap);
1591 if (mlen && max)
1592 e4b->bd_info->bb_fragments++;
1593 else if (!mlen && !max)
1594 e4b->bd_info->bb_fragments--;
1596 /* let's maintain buddy itself */
1597 while (len) {
1598 ord = mb_find_order_for_block(e4b, start);
1600 if (((start >> ord) << ord) == start && len >= (1 << ord)) {
1601 /* the whole chunk may be allocated at once! */
1602 mlen = 1 << ord;
1603 buddy = mb_find_buddy(e4b, ord, &max);
1604 BUG_ON((start >> ord) >= max);
1605 mb_set_bit(start >> ord, buddy);
1606 e4b->bd_info->bb_counters[ord]--;
1607 start += mlen;
1608 len -= mlen;
1609 BUG_ON(len < 0);
1610 continue;
1613 /* store for history */
1614 if (ret == 0)
1615 ret = len | (ord << 16);
1617 /* we have to split large buddy */
1618 BUG_ON(ord <= 0);
1619 buddy = mb_find_buddy(e4b, ord, &max);
1620 mb_set_bit(start >> ord, buddy);
1621 e4b->bd_info->bb_counters[ord]--;
1623 ord--;
1624 cur = (start >> ord) & ~1U;
1625 buddy = mb_find_buddy(e4b, ord, &max);
1626 mb_clear_bit(cur, buddy);
1627 mb_clear_bit(cur + 1, buddy);
1628 e4b->bd_info->bb_counters[ord]++;
1629 e4b->bd_info->bb_counters[ord]++;
1631 mb_set_largest_free_order(e4b->bd_sb, e4b->bd_info);
1633 ext4_set_bits(e4b->bd_bitmap, ex->fe_start, len0);
1634 mb_check_buddy(e4b);
1636 return ret;
1640 * Must be called under group lock!
1642 static void ext4_mb_use_best_found(struct ext4_allocation_context *ac,
1643 struct ext4_buddy *e4b)
1645 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1646 int ret;
1648 BUG_ON(ac->ac_b_ex.fe_group != e4b->bd_group);
1649 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
1651 ac->ac_b_ex.fe_len = min(ac->ac_b_ex.fe_len, ac->ac_g_ex.fe_len);
1652 ac->ac_b_ex.fe_logical = ac->ac_g_ex.fe_logical;
1653 ret = mb_mark_used(e4b, &ac->ac_b_ex);
1655 /* preallocation can change ac_b_ex, thus we store actually
1656 * allocated blocks for history */
1657 ac->ac_f_ex = ac->ac_b_ex;
1659 ac->ac_status = AC_STATUS_FOUND;
1660 ac->ac_tail = ret & 0xffff;
1661 ac->ac_buddy = ret >> 16;
1664 * take the page reference. We want the page to be pinned
1665 * so that we don't get a ext4_mb_init_cache_call for this
1666 * group until we update the bitmap. That would mean we
1667 * double allocate blocks. The reference is dropped
1668 * in ext4_mb_release_context
1670 ac->ac_bitmap_page = e4b->bd_bitmap_page;
1671 get_page(ac->ac_bitmap_page);
1672 ac->ac_buddy_page = e4b->bd_buddy_page;
1673 get_page(ac->ac_buddy_page);
1674 /* store last allocated for subsequent stream allocation */
1675 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
1676 spin_lock(&sbi->s_md_lock);
1677 sbi->s_mb_last_group = ac->ac_f_ex.fe_group;
1678 sbi->s_mb_last_start = ac->ac_f_ex.fe_start;
1679 spin_unlock(&sbi->s_md_lock);
1684 * regular allocator, for general purposes allocation
1687 static void ext4_mb_check_limits(struct ext4_allocation_context *ac,
1688 struct ext4_buddy *e4b,
1689 int finish_group)
1691 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1692 struct ext4_free_extent *bex = &ac->ac_b_ex;
1693 struct ext4_free_extent *gex = &ac->ac_g_ex;
1694 struct ext4_free_extent ex;
1695 int max;
1697 if (ac->ac_status == AC_STATUS_FOUND)
1698 return;
1700 * We don't want to scan for a whole year
1702 if (ac->ac_found > sbi->s_mb_max_to_scan &&
1703 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1704 ac->ac_status = AC_STATUS_BREAK;
1705 return;
1709 * Haven't found good chunk so far, let's continue
1711 if (bex->fe_len < gex->fe_len)
1712 return;
1714 if ((finish_group || ac->ac_found > sbi->s_mb_min_to_scan)
1715 && bex->fe_group == e4b->bd_group) {
1716 /* recheck chunk's availability - we don't know
1717 * when it was found (within this lock-unlock
1718 * period or not) */
1719 max = mb_find_extent(e4b, bex->fe_start, gex->fe_len, &ex);
1720 if (max >= gex->fe_len) {
1721 ext4_mb_use_best_found(ac, e4b);
1722 return;
1728 * The routine checks whether found extent is good enough. If it is,
1729 * then the extent gets marked used and flag is set to the context
1730 * to stop scanning. Otherwise, the extent is compared with the
1731 * previous found extent and if new one is better, then it's stored
1732 * in the context. Later, the best found extent will be used, if
1733 * mballoc can't find good enough extent.
1735 * FIXME: real allocation policy is to be designed yet!
1737 static void ext4_mb_measure_extent(struct ext4_allocation_context *ac,
1738 struct ext4_free_extent *ex,
1739 struct ext4_buddy *e4b)
1741 struct ext4_free_extent *bex = &ac->ac_b_ex;
1742 struct ext4_free_extent *gex = &ac->ac_g_ex;
1744 BUG_ON(ex->fe_len <= 0);
1745 BUG_ON(ex->fe_len > EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1746 BUG_ON(ex->fe_start >= EXT4_CLUSTERS_PER_GROUP(ac->ac_sb));
1747 BUG_ON(ac->ac_status != AC_STATUS_CONTINUE);
1749 ac->ac_found++;
1752 * The special case - take what you catch first
1754 if (unlikely(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
1755 *bex = *ex;
1756 ext4_mb_use_best_found(ac, e4b);
1757 return;
1761 * Let's check whether the chuck is good enough
1763 if (ex->fe_len == gex->fe_len) {
1764 *bex = *ex;
1765 ext4_mb_use_best_found(ac, e4b);
1766 return;
1770 * If this is first found extent, just store it in the context
1772 if (bex->fe_len == 0) {
1773 *bex = *ex;
1774 return;
1778 * If new found extent is better, store it in the context
1780 if (bex->fe_len < gex->fe_len) {
1781 /* if the request isn't satisfied, any found extent
1782 * larger than previous best one is better */
1783 if (ex->fe_len > bex->fe_len)
1784 *bex = *ex;
1785 } else if (ex->fe_len > gex->fe_len) {
1786 /* if the request is satisfied, then we try to find
1787 * an extent that still satisfy the request, but is
1788 * smaller than previous one */
1789 if (ex->fe_len < bex->fe_len)
1790 *bex = *ex;
1793 ext4_mb_check_limits(ac, e4b, 0);
1796 static noinline_for_stack
1797 int ext4_mb_try_best_found(struct ext4_allocation_context *ac,
1798 struct ext4_buddy *e4b)
1800 struct ext4_free_extent ex = ac->ac_b_ex;
1801 ext4_group_t group = ex.fe_group;
1802 int max;
1803 int err;
1805 BUG_ON(ex.fe_len <= 0);
1806 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1807 if (err)
1808 return err;
1810 ext4_lock_group(ac->ac_sb, group);
1811 max = mb_find_extent(e4b, ex.fe_start, ex.fe_len, &ex);
1813 if (max > 0) {
1814 ac->ac_b_ex = ex;
1815 ext4_mb_use_best_found(ac, e4b);
1818 ext4_unlock_group(ac->ac_sb, group);
1819 ext4_mb_unload_buddy(e4b);
1821 return 0;
1824 static noinline_for_stack
1825 int ext4_mb_find_by_goal(struct ext4_allocation_context *ac,
1826 struct ext4_buddy *e4b)
1828 ext4_group_t group = ac->ac_g_ex.fe_group;
1829 int max;
1830 int err;
1831 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
1832 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
1833 struct ext4_free_extent ex;
1835 if (!(ac->ac_flags & EXT4_MB_HINT_TRY_GOAL))
1836 return 0;
1837 if (grp->bb_free == 0)
1838 return 0;
1840 err = ext4_mb_load_buddy(ac->ac_sb, group, e4b);
1841 if (err)
1842 return err;
1844 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(e4b->bd_info))) {
1845 ext4_mb_unload_buddy(e4b);
1846 return 0;
1849 ext4_lock_group(ac->ac_sb, group);
1850 max = mb_find_extent(e4b, ac->ac_g_ex.fe_start,
1851 ac->ac_g_ex.fe_len, &ex);
1852 ex.fe_logical = 0xDEADFA11; /* debug value */
1854 if (max >= ac->ac_g_ex.fe_len && ac->ac_g_ex.fe_len == sbi->s_stripe) {
1855 ext4_fsblk_t start;
1857 start = ext4_group_first_block_no(ac->ac_sb, e4b->bd_group) +
1858 ex.fe_start;
1859 /* use do_div to get remainder (would be 64-bit modulo) */
1860 if (do_div(start, sbi->s_stripe) == 0) {
1861 ac->ac_found++;
1862 ac->ac_b_ex = ex;
1863 ext4_mb_use_best_found(ac, e4b);
1865 } else if (max >= ac->ac_g_ex.fe_len) {
1866 BUG_ON(ex.fe_len <= 0);
1867 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1868 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1869 ac->ac_found++;
1870 ac->ac_b_ex = ex;
1871 ext4_mb_use_best_found(ac, e4b);
1872 } else if (max > 0 && (ac->ac_flags & EXT4_MB_HINT_MERGE)) {
1873 /* Sometimes, caller may want to merge even small
1874 * number of blocks to an existing extent */
1875 BUG_ON(ex.fe_len <= 0);
1876 BUG_ON(ex.fe_group != ac->ac_g_ex.fe_group);
1877 BUG_ON(ex.fe_start != ac->ac_g_ex.fe_start);
1878 ac->ac_found++;
1879 ac->ac_b_ex = ex;
1880 ext4_mb_use_best_found(ac, e4b);
1882 ext4_unlock_group(ac->ac_sb, group);
1883 ext4_mb_unload_buddy(e4b);
1885 return 0;
1889 * The routine scans buddy structures (not bitmap!) from given order
1890 * to max order and tries to find big enough chunk to satisfy the req
1892 static noinline_for_stack
1893 void ext4_mb_simple_scan_group(struct ext4_allocation_context *ac,
1894 struct ext4_buddy *e4b)
1896 struct super_block *sb = ac->ac_sb;
1897 struct ext4_group_info *grp = e4b->bd_info;
1898 void *buddy;
1899 int i;
1900 int k;
1901 int max;
1903 BUG_ON(ac->ac_2order <= 0);
1904 for (i = ac->ac_2order; i <= sb->s_blocksize_bits + 1; i++) {
1905 if (grp->bb_counters[i] == 0)
1906 continue;
1908 buddy = mb_find_buddy(e4b, i, &max);
1909 BUG_ON(buddy == NULL);
1911 k = mb_find_next_zero_bit(buddy, max, 0);
1912 BUG_ON(k >= max);
1914 ac->ac_found++;
1916 ac->ac_b_ex.fe_len = 1 << i;
1917 ac->ac_b_ex.fe_start = k << i;
1918 ac->ac_b_ex.fe_group = e4b->bd_group;
1920 ext4_mb_use_best_found(ac, e4b);
1922 BUG_ON(ac->ac_b_ex.fe_len != ac->ac_g_ex.fe_len);
1924 if (EXT4_SB(sb)->s_mb_stats)
1925 atomic_inc(&EXT4_SB(sb)->s_bal_2orders);
1927 break;
1932 * The routine scans the group and measures all found extents.
1933 * In order to optimize scanning, caller must pass number of
1934 * free blocks in the group, so the routine can know upper limit.
1936 static noinline_for_stack
1937 void ext4_mb_complex_scan_group(struct ext4_allocation_context *ac,
1938 struct ext4_buddy *e4b)
1940 struct super_block *sb = ac->ac_sb;
1941 void *bitmap = e4b->bd_bitmap;
1942 struct ext4_free_extent ex;
1943 int i;
1944 int free;
1946 free = e4b->bd_info->bb_free;
1947 if (WARN_ON(free <= 0))
1948 return;
1950 i = e4b->bd_info->bb_first_free;
1952 while (free && ac->ac_status == AC_STATUS_CONTINUE) {
1953 i = mb_find_next_zero_bit(bitmap,
1954 EXT4_CLUSTERS_PER_GROUP(sb), i);
1955 if (i >= EXT4_CLUSTERS_PER_GROUP(sb)) {
1957 * IF we have corrupt bitmap, we won't find any
1958 * free blocks even though group info says we
1959 * we have free blocks
1961 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1962 "%d free clusters as per "
1963 "group info. But bitmap says 0",
1964 free);
1965 break;
1968 mb_find_extent(e4b, i, ac->ac_g_ex.fe_len, &ex);
1969 if (WARN_ON(ex.fe_len <= 0))
1970 break;
1971 if (free < ex.fe_len) {
1972 ext4_grp_locked_error(sb, e4b->bd_group, 0, 0,
1973 "%d free clusters as per "
1974 "group info. But got %d blocks",
1975 free, ex.fe_len);
1977 * The number of free blocks differs. This mostly
1978 * indicate that the bitmap is corrupt. So exit
1979 * without claiming the space.
1981 break;
1983 ex.fe_logical = 0xDEADC0DE; /* debug value */
1984 ext4_mb_measure_extent(ac, &ex, e4b);
1986 i += ex.fe_len;
1987 free -= ex.fe_len;
1990 ext4_mb_check_limits(ac, e4b, 1);
1994 * This is a special case for storages like raid5
1995 * we try to find stripe-aligned chunks for stripe-size-multiple requests
1997 static noinline_for_stack
1998 void ext4_mb_scan_aligned(struct ext4_allocation_context *ac,
1999 struct ext4_buddy *e4b)
2001 struct super_block *sb = ac->ac_sb;
2002 struct ext4_sb_info *sbi = EXT4_SB(sb);
2003 void *bitmap = e4b->bd_bitmap;
2004 struct ext4_free_extent ex;
2005 ext4_fsblk_t first_group_block;
2006 ext4_fsblk_t a;
2007 ext4_grpblk_t i;
2008 int max;
2010 BUG_ON(sbi->s_stripe == 0);
2012 /* find first stripe-aligned block in group */
2013 first_group_block = ext4_group_first_block_no(sb, e4b->bd_group);
2015 a = first_group_block + sbi->s_stripe - 1;
2016 do_div(a, sbi->s_stripe);
2017 i = (a * sbi->s_stripe) - first_group_block;
2019 while (i < EXT4_CLUSTERS_PER_GROUP(sb)) {
2020 if (!mb_test_bit(i, bitmap)) {
2021 max = mb_find_extent(e4b, i, sbi->s_stripe, &ex);
2022 if (max >= sbi->s_stripe) {
2023 ac->ac_found++;
2024 ex.fe_logical = 0xDEADF00D; /* debug value */
2025 ac->ac_b_ex = ex;
2026 ext4_mb_use_best_found(ac, e4b);
2027 break;
2030 i += sbi->s_stripe;
2035 * This is now called BEFORE we load the buddy bitmap.
2036 * Returns either 1 or 0 indicating that the group is either suitable
2037 * for the allocation or not. In addition it can also return negative
2038 * error code when something goes wrong.
2040 static int ext4_mb_good_group(struct ext4_allocation_context *ac,
2041 ext4_group_t group, int cr)
2043 unsigned free, fragments;
2044 int flex_size = ext4_flex_bg_size(EXT4_SB(ac->ac_sb));
2045 struct ext4_group_info *grp = ext4_get_group_info(ac->ac_sb, group);
2047 BUG_ON(cr < 0 || cr >= 4);
2049 free = grp->bb_free;
2050 if (free == 0)
2051 return 0;
2052 if (cr <= 2 && free < ac->ac_g_ex.fe_len)
2053 return 0;
2055 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(grp)))
2056 return 0;
2058 /* We only do this if the grp has never been initialized */
2059 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
2060 int ret = ext4_mb_init_group(ac->ac_sb, group, GFP_NOFS);
2061 if (ret)
2062 return ret;
2065 fragments = grp->bb_fragments;
2066 if (fragments == 0)
2067 return 0;
2069 switch (cr) {
2070 case 0:
2071 BUG_ON(ac->ac_2order == 0);
2073 /* Avoid using the first bg of a flexgroup for data files */
2074 if ((ac->ac_flags & EXT4_MB_HINT_DATA) &&
2075 (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) &&
2076 ((group % flex_size) == 0))
2077 return 0;
2079 if ((ac->ac_2order > ac->ac_sb->s_blocksize_bits+1) ||
2080 (free / fragments) >= ac->ac_g_ex.fe_len)
2081 return 1;
2083 if (grp->bb_largest_free_order < ac->ac_2order)
2084 return 0;
2086 return 1;
2087 case 1:
2088 if ((free / fragments) >= ac->ac_g_ex.fe_len)
2089 return 1;
2090 break;
2091 case 2:
2092 if (free >= ac->ac_g_ex.fe_len)
2093 return 1;
2094 break;
2095 case 3:
2096 return 1;
2097 default:
2098 BUG();
2101 return 0;
2104 static noinline_for_stack int
2105 ext4_mb_regular_allocator(struct ext4_allocation_context *ac)
2107 ext4_group_t ngroups, group, i;
2108 int cr;
2109 int err = 0, first_err = 0;
2110 struct ext4_sb_info *sbi;
2111 struct super_block *sb;
2112 struct ext4_buddy e4b;
2114 sb = ac->ac_sb;
2115 sbi = EXT4_SB(sb);
2116 ngroups = ext4_get_groups_count(sb);
2117 /* non-extent files are limited to low blocks/groups */
2118 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)))
2119 ngroups = sbi->s_blockfile_groups;
2121 BUG_ON(ac->ac_status == AC_STATUS_FOUND);
2123 /* first, try the goal */
2124 err = ext4_mb_find_by_goal(ac, &e4b);
2125 if (err || ac->ac_status == AC_STATUS_FOUND)
2126 goto out;
2128 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
2129 goto out;
2132 * ac->ac2_order is set only if the fe_len is a power of 2
2133 * if ac2_order is set we also set criteria to 0 so that we
2134 * try exact allocation using buddy.
2136 i = fls(ac->ac_g_ex.fe_len);
2137 ac->ac_2order = 0;
2139 * We search using buddy data only if the order of the request
2140 * is greater than equal to the sbi_s_mb_order2_reqs
2141 * You can tune it via /sys/fs/ext4/<partition>/mb_order2_req
2142 * We also support searching for power-of-two requests only for
2143 * requests upto maximum buddy size we have constructed.
2145 if (i >= sbi->s_mb_order2_reqs && i <= sb->s_blocksize_bits + 2) {
2147 * This should tell if fe_len is exactly power of 2
2149 if ((ac->ac_g_ex.fe_len & (~(1 << (i - 1)))) == 0)
2150 ac->ac_2order = array_index_nospec(i - 1,
2151 sb->s_blocksize_bits + 2);
2154 /* if stream allocation is enabled, use global goal */
2155 if (ac->ac_flags & EXT4_MB_STREAM_ALLOC) {
2156 /* TBD: may be hot point */
2157 spin_lock(&sbi->s_md_lock);
2158 ac->ac_g_ex.fe_group = sbi->s_mb_last_group;
2159 ac->ac_g_ex.fe_start = sbi->s_mb_last_start;
2160 spin_unlock(&sbi->s_md_lock);
2163 /* Let's just scan groups to find more-less suitable blocks */
2164 cr = ac->ac_2order ? 0 : 1;
2166 * cr == 0 try to get exact allocation,
2167 * cr == 3 try to get anything
2169 repeat:
2170 for (; cr < 4 && ac->ac_status == AC_STATUS_CONTINUE; cr++) {
2171 ac->ac_criteria = cr;
2173 * searching for the right group start
2174 * from the goal value specified
2176 group = ac->ac_g_ex.fe_group;
2178 for (i = 0; i < ngroups; group++, i++) {
2179 int ret = 0;
2180 cond_resched();
2182 * Artificially restricted ngroups for non-extent
2183 * files makes group > ngroups possible on first loop.
2185 if (group >= ngroups)
2186 group = 0;
2188 /* This now checks without needing the buddy page */
2189 ret = ext4_mb_good_group(ac, group, cr);
2190 if (ret <= 0) {
2191 if (!first_err)
2192 first_err = ret;
2193 continue;
2196 err = ext4_mb_load_buddy(sb, group, &e4b);
2197 if (err)
2198 goto out;
2200 ext4_lock_group(sb, group);
2203 * We need to check again after locking the
2204 * block group
2206 ret = ext4_mb_good_group(ac, group, cr);
2207 if (ret <= 0) {
2208 ext4_unlock_group(sb, group);
2209 ext4_mb_unload_buddy(&e4b);
2210 if (!first_err)
2211 first_err = ret;
2212 continue;
2215 ac->ac_groups_scanned++;
2216 if (cr == 0)
2217 ext4_mb_simple_scan_group(ac, &e4b);
2218 else if (cr == 1 && sbi->s_stripe &&
2219 !(ac->ac_g_ex.fe_len % sbi->s_stripe))
2220 ext4_mb_scan_aligned(ac, &e4b);
2221 else
2222 ext4_mb_complex_scan_group(ac, &e4b);
2224 ext4_unlock_group(sb, group);
2225 ext4_mb_unload_buddy(&e4b);
2227 if (ac->ac_status != AC_STATUS_CONTINUE)
2228 break;
2232 if (ac->ac_b_ex.fe_len > 0 && ac->ac_status != AC_STATUS_FOUND &&
2233 !(ac->ac_flags & EXT4_MB_HINT_FIRST)) {
2235 * We've been searching too long. Let's try to allocate
2236 * the best chunk we've found so far
2239 ext4_mb_try_best_found(ac, &e4b);
2240 if (ac->ac_status != AC_STATUS_FOUND) {
2242 * Someone more lucky has already allocated it.
2243 * The only thing we can do is just take first
2244 * found block(s)
2245 printk(KERN_DEBUG "EXT4-fs: someone won our chunk\n");
2247 ac->ac_b_ex.fe_group = 0;
2248 ac->ac_b_ex.fe_start = 0;
2249 ac->ac_b_ex.fe_len = 0;
2250 ac->ac_status = AC_STATUS_CONTINUE;
2251 ac->ac_flags |= EXT4_MB_HINT_FIRST;
2252 cr = 3;
2253 atomic_inc(&sbi->s_mb_lost_chunks);
2254 goto repeat;
2257 out:
2258 if (!err && ac->ac_status != AC_STATUS_FOUND && first_err)
2259 err = first_err;
2260 return err;
2263 static void *ext4_mb_seq_groups_start(struct seq_file *seq, loff_t *pos)
2265 struct super_block *sb = seq->private;
2266 ext4_group_t group;
2268 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2269 return NULL;
2270 group = *pos + 1;
2271 return (void *) ((unsigned long) group);
2274 static void *ext4_mb_seq_groups_next(struct seq_file *seq, void *v, loff_t *pos)
2276 struct super_block *sb = seq->private;
2277 ext4_group_t group;
2279 ++*pos;
2280 if (*pos < 0 || *pos >= ext4_get_groups_count(sb))
2281 return NULL;
2282 group = *pos + 1;
2283 return (void *) ((unsigned long) group);
2286 static int ext4_mb_seq_groups_show(struct seq_file *seq, void *v)
2288 struct super_block *sb = seq->private;
2289 ext4_group_t group = (ext4_group_t) ((unsigned long) v);
2290 int i;
2291 int err, buddy_loaded = 0;
2292 struct ext4_buddy e4b;
2293 struct ext4_group_info *grinfo;
2294 struct sg {
2295 struct ext4_group_info info;
2296 ext4_grpblk_t counters[EXT4_MAX_BLOCK_LOG_SIZE + 2];
2297 } sg;
2299 group--;
2300 if (group == 0)
2301 seq_puts(seq, "#group: free frags first ["
2302 " 2^0 2^1 2^2 2^3 2^4 2^5 2^6 "
2303 " 2^7 2^8 2^9 2^10 2^11 2^12 2^13 ]\n");
2305 i = (sb->s_blocksize_bits + 2) * sizeof(sg.info.bb_counters[0]) +
2306 sizeof(struct ext4_group_info);
2307 grinfo = ext4_get_group_info(sb, group);
2308 /* Load the group info in memory only if not already loaded. */
2309 if (unlikely(EXT4_MB_GRP_NEED_INIT(grinfo))) {
2310 err = ext4_mb_load_buddy(sb, group, &e4b);
2311 if (err) {
2312 seq_printf(seq, "#%-5u: I/O error\n", group);
2313 return 0;
2315 buddy_loaded = 1;
2318 memcpy(&sg, ext4_get_group_info(sb, group), i);
2320 if (buddy_loaded)
2321 ext4_mb_unload_buddy(&e4b);
2323 seq_printf(seq, "#%-5u: %-5u %-5u %-5u [", group, sg.info.bb_free,
2324 sg.info.bb_fragments, sg.info.bb_first_free);
2325 for (i = 0; i <= 13; i++)
2326 seq_printf(seq, " %-5u", i <= sb->s_blocksize_bits + 1 ?
2327 sg.info.bb_counters[i] : 0);
2328 seq_printf(seq, " ]\n");
2330 return 0;
2333 static void ext4_mb_seq_groups_stop(struct seq_file *seq, void *v)
2337 static const struct seq_operations ext4_mb_seq_groups_ops = {
2338 .start = ext4_mb_seq_groups_start,
2339 .next = ext4_mb_seq_groups_next,
2340 .stop = ext4_mb_seq_groups_stop,
2341 .show = ext4_mb_seq_groups_show,
2344 static int ext4_mb_seq_groups_open(struct inode *inode, struct file *file)
2346 struct super_block *sb = PDE_DATA(inode);
2347 int rc;
2349 rc = seq_open(file, &ext4_mb_seq_groups_ops);
2350 if (rc == 0) {
2351 struct seq_file *m = file->private_data;
2352 m->private = sb;
2354 return rc;
2358 const struct file_operations ext4_seq_mb_groups_fops = {
2359 .open = ext4_mb_seq_groups_open,
2360 .read = seq_read,
2361 .llseek = seq_lseek,
2362 .release = seq_release,
2365 static struct kmem_cache *get_groupinfo_cache(int blocksize_bits)
2367 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2368 struct kmem_cache *cachep = ext4_groupinfo_caches[cache_index];
2370 BUG_ON(!cachep);
2371 return cachep;
2375 * Allocate the top-level s_group_info array for the specified number
2376 * of groups
2378 int ext4_mb_alloc_groupinfo(struct super_block *sb, ext4_group_t ngroups)
2380 struct ext4_sb_info *sbi = EXT4_SB(sb);
2381 unsigned size;
2382 struct ext4_group_info ***old_groupinfo, ***new_groupinfo;
2384 size = (ngroups + EXT4_DESC_PER_BLOCK(sb) - 1) >>
2385 EXT4_DESC_PER_BLOCK_BITS(sb);
2386 if (size <= sbi->s_group_info_size)
2387 return 0;
2389 size = roundup_pow_of_two(sizeof(*sbi->s_group_info) * size);
2390 new_groupinfo = ext4_kvzalloc(size, GFP_KERNEL);
2391 if (!new_groupinfo) {
2392 ext4_msg(sb, KERN_ERR, "can't allocate buddy meta group");
2393 return -ENOMEM;
2395 rcu_read_lock();
2396 old_groupinfo = rcu_dereference(sbi->s_group_info);
2397 if (old_groupinfo)
2398 memcpy(new_groupinfo, old_groupinfo,
2399 sbi->s_group_info_size * sizeof(*sbi->s_group_info));
2400 rcu_read_unlock();
2401 rcu_assign_pointer(sbi->s_group_info, new_groupinfo);
2402 sbi->s_group_info_size = size / sizeof(*sbi->s_group_info);
2403 if (old_groupinfo)
2404 ext4_kvfree_array_rcu(old_groupinfo);
2405 ext4_debug("allocated s_groupinfo array for %d meta_bg's\n",
2406 sbi->s_group_info_size);
2407 return 0;
2410 /* Create and initialize ext4_group_info data for the given group. */
2411 int ext4_mb_add_groupinfo(struct super_block *sb, ext4_group_t group,
2412 struct ext4_group_desc *desc)
2414 int i;
2415 int metalen = 0;
2416 int idx = group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2417 struct ext4_sb_info *sbi = EXT4_SB(sb);
2418 struct ext4_group_info **meta_group_info;
2419 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2422 * First check if this group is the first of a reserved block.
2423 * If it's true, we have to allocate a new table of pointers
2424 * to ext4_group_info structures
2426 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2427 metalen = sizeof(*meta_group_info) <<
2428 EXT4_DESC_PER_BLOCK_BITS(sb);
2429 meta_group_info = kmalloc(metalen, GFP_NOFS);
2430 if (meta_group_info == NULL) {
2431 ext4_msg(sb, KERN_ERR, "can't allocate mem "
2432 "for a buddy group");
2433 goto exit_meta_group_info;
2435 rcu_read_lock();
2436 rcu_dereference(sbi->s_group_info)[idx] = meta_group_info;
2437 rcu_read_unlock();
2440 meta_group_info = sbi_array_rcu_deref(sbi, s_group_info, idx);
2441 i = group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2443 meta_group_info[i] = kmem_cache_zalloc(cachep, GFP_NOFS);
2444 if (meta_group_info[i] == NULL) {
2445 ext4_msg(sb, KERN_ERR, "can't allocate buddy mem");
2446 goto exit_group_info;
2448 set_bit(EXT4_GROUP_INFO_NEED_INIT_BIT,
2449 &(meta_group_info[i]->bb_state));
2452 * initialize bb_free to be able to skip
2453 * empty groups without initialization
2455 if (ext4_has_group_desc_csum(sb) &&
2456 (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2457 meta_group_info[i]->bb_free =
2458 ext4_free_clusters_after_init(sb, group, desc);
2459 } else {
2460 meta_group_info[i]->bb_free =
2461 ext4_free_group_clusters(sb, desc);
2464 INIT_LIST_HEAD(&meta_group_info[i]->bb_prealloc_list);
2465 init_rwsem(&meta_group_info[i]->alloc_sem);
2466 meta_group_info[i]->bb_free_root = RB_ROOT;
2467 meta_group_info[i]->bb_largest_free_order = -1; /* uninit */
2469 #ifdef DOUBLE_CHECK
2471 struct buffer_head *bh;
2472 meta_group_info[i]->bb_bitmap =
2473 kmalloc(sb->s_blocksize, GFP_NOFS);
2474 BUG_ON(meta_group_info[i]->bb_bitmap == NULL);
2475 bh = ext4_read_block_bitmap(sb, group);
2476 BUG_ON(IS_ERR_OR_NULL(bh));
2477 memcpy(meta_group_info[i]->bb_bitmap, bh->b_data,
2478 sb->s_blocksize);
2479 put_bh(bh);
2481 #endif
2483 return 0;
2485 exit_group_info:
2486 /* If a meta_group_info table has been allocated, release it now */
2487 if (group % EXT4_DESC_PER_BLOCK(sb) == 0) {
2488 struct ext4_group_info ***group_info;
2490 rcu_read_lock();
2491 group_info = rcu_dereference(sbi->s_group_info);
2492 kfree(group_info[idx]);
2493 group_info[idx] = NULL;
2494 rcu_read_unlock();
2496 exit_meta_group_info:
2497 return -ENOMEM;
2498 } /* ext4_mb_add_groupinfo */
2500 static int ext4_mb_init_backend(struct super_block *sb)
2502 ext4_group_t ngroups = ext4_get_groups_count(sb);
2503 ext4_group_t i;
2504 struct ext4_sb_info *sbi = EXT4_SB(sb);
2505 int err;
2506 struct ext4_group_desc *desc;
2507 struct ext4_group_info ***group_info;
2508 struct kmem_cache *cachep;
2510 err = ext4_mb_alloc_groupinfo(sb, ngroups);
2511 if (err)
2512 return err;
2514 sbi->s_buddy_cache = new_inode(sb);
2515 if (sbi->s_buddy_cache == NULL) {
2516 ext4_msg(sb, KERN_ERR, "can't get new inode");
2517 goto err_freesgi;
2519 /* To avoid potentially colliding with an valid on-disk inode number,
2520 * use EXT4_BAD_INO for the buddy cache inode number. This inode is
2521 * not in the inode hash, so it should never be found by iget(), but
2522 * this will avoid confusion if it ever shows up during debugging. */
2523 sbi->s_buddy_cache->i_ino = EXT4_BAD_INO;
2524 EXT4_I(sbi->s_buddy_cache)->i_disksize = 0;
2525 for (i = 0; i < ngroups; i++) {
2526 desc = ext4_get_group_desc(sb, i, NULL);
2527 if (desc == NULL) {
2528 ext4_msg(sb, KERN_ERR, "can't read descriptor %u", i);
2529 goto err_freebuddy;
2531 if (ext4_mb_add_groupinfo(sb, i, desc) != 0)
2532 goto err_freebuddy;
2535 return 0;
2537 err_freebuddy:
2538 cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2539 while (i-- > 0)
2540 kmem_cache_free(cachep, ext4_get_group_info(sb, i));
2541 i = sbi->s_group_info_size;
2542 rcu_read_lock();
2543 group_info = rcu_dereference(sbi->s_group_info);
2544 while (i-- > 0)
2545 kfree(group_info[i]);
2546 rcu_read_unlock();
2547 iput(sbi->s_buddy_cache);
2548 err_freesgi:
2549 rcu_read_lock();
2550 kvfree(rcu_dereference(sbi->s_group_info));
2551 rcu_read_unlock();
2552 return -ENOMEM;
2555 static void ext4_groupinfo_destroy_slabs(void)
2557 int i;
2559 for (i = 0; i < NR_GRPINFO_CACHES; i++) {
2560 if (ext4_groupinfo_caches[i])
2561 kmem_cache_destroy(ext4_groupinfo_caches[i]);
2562 ext4_groupinfo_caches[i] = NULL;
2566 static int ext4_groupinfo_create_slab(size_t size)
2568 static DEFINE_MUTEX(ext4_grpinfo_slab_create_mutex);
2569 int slab_size;
2570 int blocksize_bits = order_base_2(size);
2571 int cache_index = blocksize_bits - EXT4_MIN_BLOCK_LOG_SIZE;
2572 struct kmem_cache *cachep;
2574 if (cache_index >= NR_GRPINFO_CACHES)
2575 return -EINVAL;
2577 if (unlikely(cache_index < 0))
2578 cache_index = 0;
2580 mutex_lock(&ext4_grpinfo_slab_create_mutex);
2581 if (ext4_groupinfo_caches[cache_index]) {
2582 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2583 return 0; /* Already created */
2586 slab_size = offsetof(struct ext4_group_info,
2587 bb_counters[blocksize_bits + 2]);
2589 cachep = kmem_cache_create(ext4_groupinfo_slab_names[cache_index],
2590 slab_size, 0, SLAB_RECLAIM_ACCOUNT,
2591 NULL);
2593 ext4_groupinfo_caches[cache_index] = cachep;
2595 mutex_unlock(&ext4_grpinfo_slab_create_mutex);
2596 if (!cachep) {
2597 printk(KERN_EMERG
2598 "EXT4-fs: no memory for groupinfo slab cache\n");
2599 return -ENOMEM;
2602 return 0;
2605 int ext4_mb_init(struct super_block *sb)
2607 struct ext4_sb_info *sbi = EXT4_SB(sb);
2608 unsigned i, j;
2609 unsigned offset, offset_incr;
2610 unsigned max;
2611 int ret;
2613 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_offsets);
2615 sbi->s_mb_offsets = kmalloc(i, GFP_KERNEL);
2616 if (sbi->s_mb_offsets == NULL) {
2617 ret = -ENOMEM;
2618 goto out;
2621 i = (sb->s_blocksize_bits + 2) * sizeof(*sbi->s_mb_maxs);
2622 sbi->s_mb_maxs = kmalloc(i, GFP_KERNEL);
2623 if (sbi->s_mb_maxs == NULL) {
2624 ret = -ENOMEM;
2625 goto out;
2628 ret = ext4_groupinfo_create_slab(sb->s_blocksize);
2629 if (ret < 0)
2630 goto out;
2632 /* order 0 is regular bitmap */
2633 sbi->s_mb_maxs[0] = sb->s_blocksize << 3;
2634 sbi->s_mb_offsets[0] = 0;
2636 i = 1;
2637 offset = 0;
2638 offset_incr = 1 << (sb->s_blocksize_bits - 1);
2639 max = sb->s_blocksize << 2;
2640 do {
2641 sbi->s_mb_offsets[i] = offset;
2642 sbi->s_mb_maxs[i] = max;
2643 offset += offset_incr;
2644 offset_incr = offset_incr >> 1;
2645 max = max >> 1;
2646 i++;
2647 } while (i <= sb->s_blocksize_bits + 1);
2649 spin_lock_init(&sbi->s_md_lock);
2650 spin_lock_init(&sbi->s_bal_lock);
2651 sbi->s_mb_free_pending = 0;
2653 sbi->s_mb_max_to_scan = MB_DEFAULT_MAX_TO_SCAN;
2654 sbi->s_mb_min_to_scan = MB_DEFAULT_MIN_TO_SCAN;
2655 sbi->s_mb_stats = MB_DEFAULT_STATS;
2656 sbi->s_mb_stream_request = MB_DEFAULT_STREAM_THRESHOLD;
2657 sbi->s_mb_order2_reqs = MB_DEFAULT_ORDER2_REQS;
2659 * The default group preallocation is 512, which for 4k block
2660 * sizes translates to 2 megabytes. However for bigalloc file
2661 * systems, this is probably too big (i.e, if the cluster size
2662 * is 1 megabyte, then group preallocation size becomes half a
2663 * gigabyte!). As a default, we will keep a two megabyte
2664 * group pralloc size for cluster sizes up to 64k, and after
2665 * that, we will force a minimum group preallocation size of
2666 * 32 clusters. This translates to 8 megs when the cluster
2667 * size is 256k, and 32 megs when the cluster size is 1 meg,
2668 * which seems reasonable as a default.
2670 sbi->s_mb_group_prealloc = max(MB_DEFAULT_GROUP_PREALLOC >>
2671 sbi->s_cluster_bits, 32);
2673 * If there is a s_stripe > 1, then we set the s_mb_group_prealloc
2674 * to the lowest multiple of s_stripe which is bigger than
2675 * the s_mb_group_prealloc as determined above. We want
2676 * the preallocation size to be an exact multiple of the
2677 * RAID stripe size so that preallocations don't fragment
2678 * the stripes.
2680 if (sbi->s_stripe > 1) {
2681 sbi->s_mb_group_prealloc = roundup(
2682 sbi->s_mb_group_prealloc, sbi->s_stripe);
2685 sbi->s_locality_groups = alloc_percpu(struct ext4_locality_group);
2686 if (sbi->s_locality_groups == NULL) {
2687 ret = -ENOMEM;
2688 goto out;
2690 for_each_possible_cpu(i) {
2691 struct ext4_locality_group *lg;
2692 lg = per_cpu_ptr(sbi->s_locality_groups, i);
2693 mutex_init(&lg->lg_mutex);
2694 for (j = 0; j < PREALLOC_TB_SIZE; j++)
2695 INIT_LIST_HEAD(&lg->lg_prealloc_list[j]);
2696 spin_lock_init(&lg->lg_prealloc_lock);
2699 /* init file for buddy data */
2700 ret = ext4_mb_init_backend(sb);
2701 if (ret != 0)
2702 goto out_free_locality_groups;
2704 return 0;
2706 out_free_locality_groups:
2707 free_percpu(sbi->s_locality_groups);
2708 sbi->s_locality_groups = NULL;
2709 out:
2710 kfree(sbi->s_mb_offsets);
2711 sbi->s_mb_offsets = NULL;
2712 kfree(sbi->s_mb_maxs);
2713 sbi->s_mb_maxs = NULL;
2714 return ret;
2717 /* need to called with the ext4 group lock held */
2718 static void ext4_mb_cleanup_pa(struct ext4_group_info *grp)
2720 struct ext4_prealloc_space *pa;
2721 struct list_head *cur, *tmp;
2722 int count = 0;
2724 list_for_each_safe(cur, tmp, &grp->bb_prealloc_list) {
2725 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
2726 list_del(&pa->pa_group_list);
2727 count++;
2728 kmem_cache_free(ext4_pspace_cachep, pa);
2730 if (count)
2731 mb_debug(1, "mballoc: %u PAs left\n", count);
2735 int ext4_mb_release(struct super_block *sb)
2737 ext4_group_t ngroups = ext4_get_groups_count(sb);
2738 ext4_group_t i;
2739 int num_meta_group_infos;
2740 struct ext4_group_info *grinfo, ***group_info;
2741 struct ext4_sb_info *sbi = EXT4_SB(sb);
2742 struct kmem_cache *cachep = get_groupinfo_cache(sb->s_blocksize_bits);
2744 if (sbi->s_group_info) {
2745 for (i = 0; i < ngroups; i++) {
2746 grinfo = ext4_get_group_info(sb, i);
2747 #ifdef DOUBLE_CHECK
2748 kfree(grinfo->bb_bitmap);
2749 #endif
2750 ext4_lock_group(sb, i);
2751 ext4_mb_cleanup_pa(grinfo);
2752 ext4_unlock_group(sb, i);
2753 kmem_cache_free(cachep, grinfo);
2755 num_meta_group_infos = (ngroups +
2756 EXT4_DESC_PER_BLOCK(sb) - 1) >>
2757 EXT4_DESC_PER_BLOCK_BITS(sb);
2758 rcu_read_lock();
2759 group_info = rcu_dereference(sbi->s_group_info);
2760 for (i = 0; i < num_meta_group_infos; i++)
2761 kfree(group_info[i]);
2762 kvfree(group_info);
2763 rcu_read_unlock();
2765 kfree(sbi->s_mb_offsets);
2766 kfree(sbi->s_mb_maxs);
2767 iput(sbi->s_buddy_cache);
2768 if (sbi->s_mb_stats) {
2769 ext4_msg(sb, KERN_INFO,
2770 "mballoc: %u blocks %u reqs (%u success)",
2771 atomic_read(&sbi->s_bal_allocated),
2772 atomic_read(&sbi->s_bal_reqs),
2773 atomic_read(&sbi->s_bal_success));
2774 ext4_msg(sb, KERN_INFO,
2775 "mballoc: %u extents scanned, %u goal hits, "
2776 "%u 2^N hits, %u breaks, %u lost",
2777 atomic_read(&sbi->s_bal_ex_scanned),
2778 atomic_read(&sbi->s_bal_goals),
2779 atomic_read(&sbi->s_bal_2orders),
2780 atomic_read(&sbi->s_bal_breaks),
2781 atomic_read(&sbi->s_mb_lost_chunks));
2782 ext4_msg(sb, KERN_INFO,
2783 "mballoc: %lu generated and it took %Lu",
2784 sbi->s_mb_buddies_generated,
2785 sbi->s_mb_generation_time);
2786 ext4_msg(sb, KERN_INFO,
2787 "mballoc: %u preallocated, %u discarded",
2788 atomic_read(&sbi->s_mb_preallocated),
2789 atomic_read(&sbi->s_mb_discarded));
2792 free_percpu(sbi->s_locality_groups);
2794 return 0;
2797 static inline int ext4_issue_discard(struct super_block *sb,
2798 ext4_group_t block_group, ext4_grpblk_t cluster, int count)
2800 ext4_fsblk_t discard_block;
2802 discard_block = (EXT4_C2B(EXT4_SB(sb), cluster) +
2803 ext4_group_first_block_no(sb, block_group));
2804 count = EXT4_C2B(EXT4_SB(sb), count);
2805 trace_ext4_discard_blocks(sb,
2806 (unsigned long long) discard_block, count);
2807 return sb_issue_discard(sb, discard_block, count, GFP_NOFS, 0);
2811 * This function is called by the jbd2 layer once the commit has finished,
2812 * so we know we can free the blocks that were released with that commit.
2814 static void ext4_free_data_callback(struct super_block *sb,
2815 struct ext4_journal_cb_entry *jce,
2816 int rc)
2818 struct ext4_free_data *entry = (struct ext4_free_data *)jce;
2819 struct ext4_buddy e4b;
2820 struct ext4_group_info *db;
2821 int err, count = 0, count2 = 0;
2823 mb_debug(1, "gonna free %u blocks in group %u (0x%p):",
2824 entry->efd_count, entry->efd_group, entry);
2826 if (test_opt(sb, DISCARD)) {
2827 err = ext4_issue_discard(sb, entry->efd_group,
2828 entry->efd_start_cluster,
2829 entry->efd_count);
2830 if (err && err != -EOPNOTSUPP)
2831 ext4_msg(sb, KERN_WARNING, "discard request in"
2832 " group:%d block:%d count:%d failed"
2833 " with %d", entry->efd_group,
2834 entry->efd_start_cluster,
2835 entry->efd_count, err);
2838 err = ext4_mb_load_buddy(sb, entry->efd_group, &e4b);
2839 /* we expect to find existing buddy because it's pinned */
2840 BUG_ON(err != 0);
2842 spin_lock(&EXT4_SB(sb)->s_md_lock);
2843 EXT4_SB(sb)->s_mb_free_pending -= entry->efd_count;
2844 spin_unlock(&EXT4_SB(sb)->s_md_lock);
2846 db = e4b.bd_info;
2847 /* there are blocks to put in buddy to make them really free */
2848 count += entry->efd_count;
2849 count2++;
2850 ext4_lock_group(sb, entry->efd_group);
2851 /* Take it out of per group rb tree */
2852 rb_erase(&entry->efd_node, &(db->bb_free_root));
2853 mb_free_blocks(NULL, &e4b, entry->efd_start_cluster, entry->efd_count);
2856 * Clear the trimmed flag for the group so that the next
2857 * ext4_trim_fs can trim it.
2858 * If the volume is mounted with -o discard, online discard
2859 * is supported and the free blocks will be trimmed online.
2861 if (!test_opt(sb, DISCARD))
2862 EXT4_MB_GRP_CLEAR_TRIMMED(db);
2864 if (!db->bb_free_root.rb_node) {
2865 /* No more items in the per group rb tree
2866 * balance refcounts from ext4_mb_free_metadata()
2868 put_page(e4b.bd_buddy_page);
2869 put_page(e4b.bd_bitmap_page);
2871 ext4_unlock_group(sb, entry->efd_group);
2872 kmem_cache_free(ext4_free_data_cachep, entry);
2873 ext4_mb_unload_buddy(&e4b);
2875 mb_debug(1, "freed %u blocks in %u structures\n", count, count2);
2878 int __init ext4_init_mballoc(void)
2880 ext4_pspace_cachep = KMEM_CACHE(ext4_prealloc_space,
2881 SLAB_RECLAIM_ACCOUNT);
2882 if (ext4_pspace_cachep == NULL)
2883 return -ENOMEM;
2885 ext4_ac_cachep = KMEM_CACHE(ext4_allocation_context,
2886 SLAB_RECLAIM_ACCOUNT);
2887 if (ext4_ac_cachep == NULL) {
2888 kmem_cache_destroy(ext4_pspace_cachep);
2889 return -ENOMEM;
2892 ext4_free_data_cachep = KMEM_CACHE(ext4_free_data,
2893 SLAB_RECLAIM_ACCOUNT);
2894 if (ext4_free_data_cachep == NULL) {
2895 kmem_cache_destroy(ext4_pspace_cachep);
2896 kmem_cache_destroy(ext4_ac_cachep);
2897 return -ENOMEM;
2899 return 0;
2902 void ext4_exit_mballoc(void)
2905 * Wait for completion of call_rcu()'s on ext4_pspace_cachep
2906 * before destroying the slab cache.
2908 rcu_barrier();
2909 kmem_cache_destroy(ext4_pspace_cachep);
2910 kmem_cache_destroy(ext4_ac_cachep);
2911 kmem_cache_destroy(ext4_free_data_cachep);
2912 ext4_groupinfo_destroy_slabs();
2917 * Check quota and mark chosen space (ac->ac_b_ex) non-free in bitmaps
2918 * Returns 0 if success or error code
2920 static noinline_for_stack int
2921 ext4_mb_mark_diskspace_used(struct ext4_allocation_context *ac,
2922 handle_t *handle, unsigned int reserv_clstrs)
2924 struct buffer_head *bitmap_bh = NULL;
2925 struct ext4_group_desc *gdp;
2926 struct buffer_head *gdp_bh;
2927 struct ext4_sb_info *sbi;
2928 struct super_block *sb;
2929 ext4_fsblk_t block;
2930 int err, len;
2932 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
2933 BUG_ON(ac->ac_b_ex.fe_len <= 0);
2935 sb = ac->ac_sb;
2936 sbi = EXT4_SB(sb);
2938 bitmap_bh = ext4_read_block_bitmap(sb, ac->ac_b_ex.fe_group);
2939 if (IS_ERR(bitmap_bh)) {
2940 err = PTR_ERR(bitmap_bh);
2941 bitmap_bh = NULL;
2942 goto out_err;
2945 BUFFER_TRACE(bitmap_bh, "getting write access");
2946 err = ext4_journal_get_write_access(handle, bitmap_bh);
2947 if (err)
2948 goto out_err;
2950 err = -EIO;
2951 gdp = ext4_get_group_desc(sb, ac->ac_b_ex.fe_group, &gdp_bh);
2952 if (!gdp)
2953 goto out_err;
2955 ext4_debug("using block group %u(%d)\n", ac->ac_b_ex.fe_group,
2956 ext4_free_group_clusters(sb, gdp));
2958 BUFFER_TRACE(gdp_bh, "get_write_access");
2959 err = ext4_journal_get_write_access(handle, gdp_bh);
2960 if (err)
2961 goto out_err;
2963 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
2965 len = EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
2966 if (!ext4_data_block_valid(sbi, block, len)) {
2967 ext4_error(sb, "Allocating blocks %llu-%llu which overlap "
2968 "fs metadata", block, block+len);
2969 /* File system mounted not to panic on error
2970 * Fix the bitmap and return EFSCORRUPTED
2971 * We leak some of the blocks here.
2973 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2974 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2975 ac->ac_b_ex.fe_len);
2976 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
2977 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
2978 if (!err)
2979 err = -EFSCORRUPTED;
2980 goto out_err;
2983 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
2984 #ifdef AGGRESSIVE_CHECK
2986 int i;
2987 for (i = 0; i < ac->ac_b_ex.fe_len; i++) {
2988 BUG_ON(mb_test_bit(ac->ac_b_ex.fe_start + i,
2989 bitmap_bh->b_data));
2992 #endif
2993 ext4_set_bits(bitmap_bh->b_data, ac->ac_b_ex.fe_start,
2994 ac->ac_b_ex.fe_len);
2995 if (ext4_has_group_desc_csum(sb) &&
2996 (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))) {
2997 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
2998 ext4_free_group_clusters_set(sb, gdp,
2999 ext4_free_clusters_after_init(sb,
3000 ac->ac_b_ex.fe_group, gdp));
3002 len = ext4_free_group_clusters(sb, gdp) - ac->ac_b_ex.fe_len;
3003 ext4_free_group_clusters_set(sb, gdp, len);
3004 ext4_block_bitmap_csum_set(sb, ac->ac_b_ex.fe_group, gdp, bitmap_bh);
3005 ext4_group_desc_csum_set(sb, ac->ac_b_ex.fe_group, gdp);
3007 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3008 percpu_counter_sub(&sbi->s_freeclusters_counter, ac->ac_b_ex.fe_len);
3010 * Now reduce the dirty block count also. Should not go negative
3012 if (!(ac->ac_flags & EXT4_MB_DELALLOC_RESERVED))
3013 /* release all the reserved blocks if non delalloc */
3014 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
3015 reserv_clstrs);
3017 if (sbi->s_log_groups_per_flex) {
3018 ext4_group_t flex_group = ext4_flex_group(sbi,
3019 ac->ac_b_ex.fe_group);
3020 atomic64_sub(ac->ac_b_ex.fe_len,
3021 &sbi_array_rcu_deref(sbi, s_flex_groups,
3022 flex_group)->free_clusters);
3025 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
3026 if (err)
3027 goto out_err;
3028 err = ext4_handle_dirty_metadata(handle, NULL, gdp_bh);
3030 out_err:
3031 brelse(bitmap_bh);
3032 return err;
3036 * here we normalize request for locality group
3037 * Group request are normalized to s_mb_group_prealloc, which goes to
3038 * s_strip if we set the same via mount option.
3039 * s_mb_group_prealloc can be configured via
3040 * /sys/fs/ext4/<partition>/mb_group_prealloc
3042 * XXX: should we try to preallocate more than the group has now?
3044 static void ext4_mb_normalize_group_request(struct ext4_allocation_context *ac)
3046 struct super_block *sb = ac->ac_sb;
3047 struct ext4_locality_group *lg = ac->ac_lg;
3049 BUG_ON(lg == NULL);
3050 ac->ac_g_ex.fe_len = EXT4_SB(sb)->s_mb_group_prealloc;
3051 mb_debug(1, "#%u: goal %u blocks for locality group\n",
3052 current->pid, ac->ac_g_ex.fe_len);
3056 * Normalization means making request better in terms of
3057 * size and alignment
3059 static noinline_for_stack void
3060 ext4_mb_normalize_request(struct ext4_allocation_context *ac,
3061 struct ext4_allocation_request *ar)
3063 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3064 int bsbits, max;
3065 ext4_lblk_t end;
3066 loff_t size, start_off;
3067 loff_t orig_size __maybe_unused;
3068 ext4_lblk_t start;
3069 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3070 struct ext4_prealloc_space *pa;
3072 /* do normalize only data requests, metadata requests
3073 do not need preallocation */
3074 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3075 return;
3077 /* sometime caller may want exact blocks */
3078 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
3079 return;
3081 /* caller may indicate that preallocation isn't
3082 * required (it's a tail, for example) */
3083 if (ac->ac_flags & EXT4_MB_HINT_NOPREALLOC)
3084 return;
3086 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC) {
3087 ext4_mb_normalize_group_request(ac);
3088 return ;
3091 bsbits = ac->ac_sb->s_blocksize_bits;
3093 /* first, let's learn actual file size
3094 * given current request is allocated */
3095 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
3096 size = size << bsbits;
3097 if (size < i_size_read(ac->ac_inode))
3098 size = i_size_read(ac->ac_inode);
3099 orig_size = size;
3101 /* max size of free chunks */
3102 max = 2 << bsbits;
3104 #define NRL_CHECK_SIZE(req, size, max, chunk_size) \
3105 (req <= (size) || max <= (chunk_size))
3107 /* first, try to predict filesize */
3108 /* XXX: should this table be tunable? */
3109 start_off = 0;
3110 if (size <= 16 * 1024) {
3111 size = 16 * 1024;
3112 } else if (size <= 32 * 1024) {
3113 size = 32 * 1024;
3114 } else if (size <= 64 * 1024) {
3115 size = 64 * 1024;
3116 } else if (size <= 128 * 1024) {
3117 size = 128 * 1024;
3118 } else if (size <= 256 * 1024) {
3119 size = 256 * 1024;
3120 } else if (size <= 512 * 1024) {
3121 size = 512 * 1024;
3122 } else if (size <= 1024 * 1024) {
3123 size = 1024 * 1024;
3124 } else if (NRL_CHECK_SIZE(size, 4 * 1024 * 1024, max, 2 * 1024)) {
3125 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3126 (21 - bsbits)) << 21;
3127 size = 2 * 1024 * 1024;
3128 } else if (NRL_CHECK_SIZE(size, 8 * 1024 * 1024, max, 4 * 1024)) {
3129 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3130 (22 - bsbits)) << 22;
3131 size = 4 * 1024 * 1024;
3132 } else if (NRL_CHECK_SIZE(ac->ac_o_ex.fe_len,
3133 (8<<20)>>bsbits, max, 8 * 1024)) {
3134 start_off = ((loff_t)ac->ac_o_ex.fe_logical >>
3135 (23 - bsbits)) << 23;
3136 size = 8 * 1024 * 1024;
3137 } else {
3138 start_off = (loff_t) ac->ac_o_ex.fe_logical << bsbits;
3139 size = (loff_t) EXT4_C2B(EXT4_SB(ac->ac_sb),
3140 ac->ac_o_ex.fe_len) << bsbits;
3142 size = size >> bsbits;
3143 start = start_off >> bsbits;
3145 /* don't cover already allocated blocks in selected range */
3146 if (ar->pleft && start <= ar->lleft) {
3147 size -= ar->lleft + 1 - start;
3148 start = ar->lleft + 1;
3150 if (ar->pright && start + size - 1 >= ar->lright)
3151 size -= start + size - ar->lright;
3154 * Trim allocation request for filesystems with artificially small
3155 * groups.
3157 if (size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb))
3158 size = EXT4_BLOCKS_PER_GROUP(ac->ac_sb);
3160 end = start + size;
3162 /* check we don't cross already preallocated blocks */
3163 rcu_read_lock();
3164 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3165 ext4_lblk_t pa_end;
3167 if (pa->pa_deleted)
3168 continue;
3169 spin_lock(&pa->pa_lock);
3170 if (pa->pa_deleted) {
3171 spin_unlock(&pa->pa_lock);
3172 continue;
3175 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3176 pa->pa_len);
3178 /* PA must not overlap original request */
3179 BUG_ON(!(ac->ac_o_ex.fe_logical >= pa_end ||
3180 ac->ac_o_ex.fe_logical < pa->pa_lstart));
3182 /* skip PAs this normalized request doesn't overlap with */
3183 if (pa->pa_lstart >= end || pa_end <= start) {
3184 spin_unlock(&pa->pa_lock);
3185 continue;
3187 BUG_ON(pa->pa_lstart <= start && pa_end >= end);
3189 /* adjust start or end to be adjacent to this pa */
3190 if (pa_end <= ac->ac_o_ex.fe_logical) {
3191 BUG_ON(pa_end < start);
3192 start = pa_end;
3193 } else if (pa->pa_lstart > ac->ac_o_ex.fe_logical) {
3194 BUG_ON(pa->pa_lstart > end);
3195 end = pa->pa_lstart;
3197 spin_unlock(&pa->pa_lock);
3199 rcu_read_unlock();
3200 size = end - start;
3202 /* XXX: extra loop to check we really don't overlap preallocations */
3203 rcu_read_lock();
3204 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3205 ext4_lblk_t pa_end;
3207 spin_lock(&pa->pa_lock);
3208 if (pa->pa_deleted == 0) {
3209 pa_end = pa->pa_lstart + EXT4_C2B(EXT4_SB(ac->ac_sb),
3210 pa->pa_len);
3211 BUG_ON(!(start >= pa_end || end <= pa->pa_lstart));
3213 spin_unlock(&pa->pa_lock);
3215 rcu_read_unlock();
3217 if (start + size <= ac->ac_o_ex.fe_logical &&
3218 start > ac->ac_o_ex.fe_logical) {
3219 ext4_msg(ac->ac_sb, KERN_ERR,
3220 "start %lu, size %lu, fe_logical %lu",
3221 (unsigned long) start, (unsigned long) size,
3222 (unsigned long) ac->ac_o_ex.fe_logical);
3223 BUG();
3225 BUG_ON(size <= 0 || size > EXT4_BLOCKS_PER_GROUP(ac->ac_sb));
3227 /* now prepare goal request */
3229 /* XXX: is it better to align blocks WRT to logical
3230 * placement or satisfy big request as is */
3231 ac->ac_g_ex.fe_logical = start;
3232 ac->ac_g_ex.fe_len = EXT4_NUM_B2C(sbi, size);
3234 /* define goal start in order to merge */
3235 if (ar->pright && (ar->lright == (start + size))) {
3236 /* merge to the right */
3237 ext4_get_group_no_and_offset(ac->ac_sb, ar->pright - size,
3238 &ac->ac_f_ex.fe_group,
3239 &ac->ac_f_ex.fe_start);
3240 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3242 if (ar->pleft && (ar->lleft + 1 == start)) {
3243 /* merge to the left */
3244 ext4_get_group_no_and_offset(ac->ac_sb, ar->pleft + 1,
3245 &ac->ac_f_ex.fe_group,
3246 &ac->ac_f_ex.fe_start);
3247 ac->ac_flags |= EXT4_MB_HINT_TRY_GOAL;
3250 mb_debug(1, "goal: %u(was %u) blocks at %u\n", (unsigned) size,
3251 (unsigned) orig_size, (unsigned) start);
3254 static void ext4_mb_collect_stats(struct ext4_allocation_context *ac)
3256 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3258 if (sbi->s_mb_stats && ac->ac_g_ex.fe_len > 1) {
3259 atomic_inc(&sbi->s_bal_reqs);
3260 atomic_add(ac->ac_b_ex.fe_len, &sbi->s_bal_allocated);
3261 if (ac->ac_b_ex.fe_len >= ac->ac_o_ex.fe_len)
3262 atomic_inc(&sbi->s_bal_success);
3263 atomic_add(ac->ac_found, &sbi->s_bal_ex_scanned);
3264 if (ac->ac_g_ex.fe_start == ac->ac_b_ex.fe_start &&
3265 ac->ac_g_ex.fe_group == ac->ac_b_ex.fe_group)
3266 atomic_inc(&sbi->s_bal_goals);
3267 if (ac->ac_found > sbi->s_mb_max_to_scan)
3268 atomic_inc(&sbi->s_bal_breaks);
3271 if (ac->ac_op == EXT4_MB_HISTORY_ALLOC)
3272 trace_ext4_mballoc_alloc(ac);
3273 else
3274 trace_ext4_mballoc_prealloc(ac);
3278 * Called on failure; free up any blocks from the inode PA for this
3279 * context. We don't need this for MB_GROUP_PA because we only change
3280 * pa_free in ext4_mb_release_context(), but on failure, we've already
3281 * zeroed out ac->ac_b_ex.fe_len, so group_pa->pa_free is not changed.
3283 static void ext4_discard_allocated_blocks(struct ext4_allocation_context *ac)
3285 struct ext4_prealloc_space *pa = ac->ac_pa;
3286 struct ext4_buddy e4b;
3287 int err;
3289 if (pa == NULL) {
3290 if (ac->ac_f_ex.fe_len == 0)
3291 return;
3292 err = ext4_mb_load_buddy(ac->ac_sb, ac->ac_f_ex.fe_group, &e4b);
3293 if (err) {
3295 * This should never happen since we pin the
3296 * pages in the ext4_allocation_context so
3297 * ext4_mb_load_buddy() should never fail.
3299 WARN(1, "mb_load_buddy failed (%d)", err);
3300 return;
3302 ext4_lock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3303 mb_free_blocks(ac->ac_inode, &e4b, ac->ac_f_ex.fe_start,
3304 ac->ac_f_ex.fe_len);
3305 ext4_unlock_group(ac->ac_sb, ac->ac_f_ex.fe_group);
3306 ext4_mb_unload_buddy(&e4b);
3307 return;
3309 if (pa->pa_type == MB_INODE_PA)
3310 pa->pa_free += ac->ac_b_ex.fe_len;
3314 * use blocks preallocated to inode
3316 static void ext4_mb_use_inode_pa(struct ext4_allocation_context *ac,
3317 struct ext4_prealloc_space *pa)
3319 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3320 ext4_fsblk_t start;
3321 ext4_fsblk_t end;
3322 int len;
3324 /* found preallocated blocks, use them */
3325 start = pa->pa_pstart + (ac->ac_o_ex.fe_logical - pa->pa_lstart);
3326 end = min(pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len),
3327 start + EXT4_C2B(sbi, ac->ac_o_ex.fe_len));
3328 len = EXT4_NUM_B2C(sbi, end - start);
3329 ext4_get_group_no_and_offset(ac->ac_sb, start, &ac->ac_b_ex.fe_group,
3330 &ac->ac_b_ex.fe_start);
3331 ac->ac_b_ex.fe_len = len;
3332 ac->ac_status = AC_STATUS_FOUND;
3333 ac->ac_pa = pa;
3335 BUG_ON(start < pa->pa_pstart);
3336 BUG_ON(end > pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len));
3337 BUG_ON(pa->pa_free < len);
3338 pa->pa_free -= len;
3340 mb_debug(1, "use %llu/%u from inode pa %p\n", start, len, pa);
3344 * use blocks preallocated to locality group
3346 static void ext4_mb_use_group_pa(struct ext4_allocation_context *ac,
3347 struct ext4_prealloc_space *pa)
3349 unsigned int len = ac->ac_o_ex.fe_len;
3351 ext4_get_group_no_and_offset(ac->ac_sb, pa->pa_pstart,
3352 &ac->ac_b_ex.fe_group,
3353 &ac->ac_b_ex.fe_start);
3354 ac->ac_b_ex.fe_len = len;
3355 ac->ac_status = AC_STATUS_FOUND;
3356 ac->ac_pa = pa;
3358 /* we don't correct pa_pstart or pa_plen here to avoid
3359 * possible race when the group is being loaded concurrently
3360 * instead we correct pa later, after blocks are marked
3361 * in on-disk bitmap -- see ext4_mb_release_context()
3362 * Other CPUs are prevented from allocating from this pa by lg_mutex
3364 mb_debug(1, "use %u/%u from group pa %p\n", pa->pa_lstart-len, len, pa);
3368 * Return the prealloc space that have minimal distance
3369 * from the goal block. @cpa is the prealloc
3370 * space that is having currently known minimal distance
3371 * from the goal block.
3373 static struct ext4_prealloc_space *
3374 ext4_mb_check_group_pa(ext4_fsblk_t goal_block,
3375 struct ext4_prealloc_space *pa,
3376 struct ext4_prealloc_space *cpa)
3378 ext4_fsblk_t cur_distance, new_distance;
3380 if (cpa == NULL) {
3381 atomic_inc(&pa->pa_count);
3382 return pa;
3384 cur_distance = abs(goal_block - cpa->pa_pstart);
3385 new_distance = abs(goal_block - pa->pa_pstart);
3387 if (cur_distance <= new_distance)
3388 return cpa;
3390 /* drop the previous reference */
3391 atomic_dec(&cpa->pa_count);
3392 atomic_inc(&pa->pa_count);
3393 return pa;
3397 * search goal blocks in preallocated space
3399 static noinline_for_stack int
3400 ext4_mb_use_preallocated(struct ext4_allocation_context *ac)
3402 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
3403 int order, i;
3404 struct ext4_inode_info *ei = EXT4_I(ac->ac_inode);
3405 struct ext4_locality_group *lg;
3406 struct ext4_prealloc_space *pa, *cpa = NULL;
3407 ext4_fsblk_t goal_block;
3409 /* only data can be preallocated */
3410 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
3411 return 0;
3413 /* first, try per-file preallocation */
3414 rcu_read_lock();
3415 list_for_each_entry_rcu(pa, &ei->i_prealloc_list, pa_inode_list) {
3417 /* all fields in this condition don't change,
3418 * so we can skip locking for them */
3419 if (ac->ac_o_ex.fe_logical < pa->pa_lstart ||
3420 ac->ac_o_ex.fe_logical >= (pa->pa_lstart +
3421 EXT4_C2B(sbi, pa->pa_len)))
3422 continue;
3424 /* non-extent files can't have physical blocks past 2^32 */
3425 if (!(ext4_test_inode_flag(ac->ac_inode, EXT4_INODE_EXTENTS)) &&
3426 (pa->pa_pstart + EXT4_C2B(sbi, pa->pa_len) >
3427 EXT4_MAX_BLOCK_FILE_PHYS))
3428 continue;
3430 /* found preallocated blocks, use them */
3431 spin_lock(&pa->pa_lock);
3432 if (pa->pa_deleted == 0 && pa->pa_free) {
3433 atomic_inc(&pa->pa_count);
3434 ext4_mb_use_inode_pa(ac, pa);
3435 spin_unlock(&pa->pa_lock);
3436 ac->ac_criteria = 10;
3437 rcu_read_unlock();
3438 return 1;
3440 spin_unlock(&pa->pa_lock);
3442 rcu_read_unlock();
3444 /* can we use group allocation? */
3445 if (!(ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC))
3446 return 0;
3448 /* inode may have no locality group for some reason */
3449 lg = ac->ac_lg;
3450 if (lg == NULL)
3451 return 0;
3452 order = fls(ac->ac_o_ex.fe_len) - 1;
3453 if (order > PREALLOC_TB_SIZE - 1)
3454 /* The max size of hash table is PREALLOC_TB_SIZE */
3455 order = PREALLOC_TB_SIZE - 1;
3457 goal_block = ext4_grp_offs_to_block(ac->ac_sb, &ac->ac_g_ex);
3459 * search for the prealloc space that is having
3460 * minimal distance from the goal block.
3462 for (i = order; i < PREALLOC_TB_SIZE; i++) {
3463 rcu_read_lock();
3464 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[i],
3465 pa_inode_list) {
3466 spin_lock(&pa->pa_lock);
3467 if (pa->pa_deleted == 0 &&
3468 pa->pa_free >= ac->ac_o_ex.fe_len) {
3470 cpa = ext4_mb_check_group_pa(goal_block,
3471 pa, cpa);
3473 spin_unlock(&pa->pa_lock);
3475 rcu_read_unlock();
3477 if (cpa) {
3478 ext4_mb_use_group_pa(ac, cpa);
3479 ac->ac_criteria = 20;
3480 return 1;
3482 return 0;
3486 * the function goes through all block freed in the group
3487 * but not yet committed and marks them used in in-core bitmap.
3488 * buddy must be generated from this bitmap
3489 * Need to be called with the ext4 group lock held
3491 static void ext4_mb_generate_from_freelist(struct super_block *sb, void *bitmap,
3492 ext4_group_t group)
3494 struct rb_node *n;
3495 struct ext4_group_info *grp;
3496 struct ext4_free_data *entry;
3498 grp = ext4_get_group_info(sb, group);
3499 n = rb_first(&(grp->bb_free_root));
3501 while (n) {
3502 entry = rb_entry(n, struct ext4_free_data, efd_node);
3503 ext4_set_bits(bitmap, entry->efd_start_cluster, entry->efd_count);
3504 n = rb_next(n);
3506 return;
3510 * the function goes through all preallocation in this group and marks them
3511 * used in in-core bitmap. buddy must be generated from this bitmap
3512 * Need to be called with ext4 group lock held
3514 static noinline_for_stack
3515 void ext4_mb_generate_from_pa(struct super_block *sb, void *bitmap,
3516 ext4_group_t group)
3518 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3519 struct ext4_prealloc_space *pa;
3520 struct list_head *cur;
3521 ext4_group_t groupnr;
3522 ext4_grpblk_t start;
3523 int preallocated = 0;
3524 int len;
3526 /* all form of preallocation discards first load group,
3527 * so the only competing code is preallocation use.
3528 * we don't need any locking here
3529 * notice we do NOT ignore preallocations with pa_deleted
3530 * otherwise we could leave used blocks available for
3531 * allocation in buddy when concurrent ext4_mb_put_pa()
3532 * is dropping preallocation
3534 list_for_each(cur, &grp->bb_prealloc_list) {
3535 pa = list_entry(cur, struct ext4_prealloc_space, pa_group_list);
3536 spin_lock(&pa->pa_lock);
3537 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
3538 &groupnr, &start);
3539 len = pa->pa_len;
3540 spin_unlock(&pa->pa_lock);
3541 if (unlikely(len == 0))
3542 continue;
3543 BUG_ON(groupnr != group);
3544 ext4_set_bits(bitmap, start, len);
3545 preallocated += len;
3547 mb_debug(1, "prellocated %u for group %u\n", preallocated, group);
3550 static void ext4_mb_pa_callback(struct rcu_head *head)
3552 struct ext4_prealloc_space *pa;
3553 pa = container_of(head, struct ext4_prealloc_space, u.pa_rcu);
3555 BUG_ON(atomic_read(&pa->pa_count));
3556 BUG_ON(pa->pa_deleted == 0);
3557 kmem_cache_free(ext4_pspace_cachep, pa);
3561 * drops a reference to preallocated space descriptor
3562 * if this was the last reference and the space is consumed
3564 static void ext4_mb_put_pa(struct ext4_allocation_context *ac,
3565 struct super_block *sb, struct ext4_prealloc_space *pa)
3567 ext4_group_t grp;
3568 ext4_fsblk_t grp_blk;
3570 /* in this short window concurrent discard can set pa_deleted */
3571 spin_lock(&pa->pa_lock);
3572 if (!atomic_dec_and_test(&pa->pa_count) || pa->pa_free != 0) {
3573 spin_unlock(&pa->pa_lock);
3574 return;
3577 if (pa->pa_deleted == 1) {
3578 spin_unlock(&pa->pa_lock);
3579 return;
3582 pa->pa_deleted = 1;
3583 spin_unlock(&pa->pa_lock);
3585 grp_blk = pa->pa_pstart;
3587 * If doing group-based preallocation, pa_pstart may be in the
3588 * next group when pa is used up
3590 if (pa->pa_type == MB_GROUP_PA)
3591 grp_blk--;
3593 grp = ext4_get_group_number(sb, grp_blk);
3596 * possible race:
3598 * P1 (buddy init) P2 (regular allocation)
3599 * find block B in PA
3600 * copy on-disk bitmap to buddy
3601 * mark B in on-disk bitmap
3602 * drop PA from group
3603 * mark all PAs in buddy
3605 * thus, P1 initializes buddy with B available. to prevent this
3606 * we make "copy" and "mark all PAs" atomic and serialize "drop PA"
3607 * against that pair
3609 ext4_lock_group(sb, grp);
3610 list_del(&pa->pa_group_list);
3611 ext4_unlock_group(sb, grp);
3613 spin_lock(pa->pa_obj_lock);
3614 list_del_rcu(&pa->pa_inode_list);
3615 spin_unlock(pa->pa_obj_lock);
3617 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3621 * creates new preallocated space for given inode
3623 static noinline_for_stack int
3624 ext4_mb_new_inode_pa(struct ext4_allocation_context *ac)
3626 struct super_block *sb = ac->ac_sb;
3627 struct ext4_sb_info *sbi = EXT4_SB(sb);
3628 struct ext4_prealloc_space *pa;
3629 struct ext4_group_info *grp;
3630 struct ext4_inode_info *ei;
3632 /* preallocate only when found space is larger then requested */
3633 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3634 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3635 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3637 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3638 if (pa == NULL)
3639 return -ENOMEM;
3641 if (ac->ac_b_ex.fe_len < ac->ac_g_ex.fe_len) {
3642 int winl;
3643 int wins;
3644 int win;
3645 int offs;
3647 /* we can't allocate as much as normalizer wants.
3648 * so, found space must get proper lstart
3649 * to cover original request */
3650 BUG_ON(ac->ac_g_ex.fe_logical > ac->ac_o_ex.fe_logical);
3651 BUG_ON(ac->ac_g_ex.fe_len < ac->ac_o_ex.fe_len);
3653 /* we're limited by original request in that
3654 * logical block must be covered any way
3655 * winl is window we can move our chunk within */
3656 winl = ac->ac_o_ex.fe_logical - ac->ac_g_ex.fe_logical;
3658 /* also, we should cover whole original request */
3659 wins = EXT4_C2B(sbi, ac->ac_b_ex.fe_len - ac->ac_o_ex.fe_len);
3661 /* the smallest one defines real window */
3662 win = min(winl, wins);
3664 offs = ac->ac_o_ex.fe_logical %
3665 EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
3666 if (offs && offs < win)
3667 win = offs;
3669 ac->ac_b_ex.fe_logical = ac->ac_o_ex.fe_logical -
3670 EXT4_NUM_B2C(sbi, win);
3671 BUG_ON(ac->ac_o_ex.fe_logical < ac->ac_b_ex.fe_logical);
3672 BUG_ON(ac->ac_o_ex.fe_len > ac->ac_b_ex.fe_len);
3675 /* preallocation can change ac_b_ex, thus we store actually
3676 * allocated blocks for history */
3677 ac->ac_f_ex = ac->ac_b_ex;
3679 pa->pa_lstart = ac->ac_b_ex.fe_logical;
3680 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3681 pa->pa_len = ac->ac_b_ex.fe_len;
3682 pa->pa_free = pa->pa_len;
3683 atomic_set(&pa->pa_count, 1);
3684 spin_lock_init(&pa->pa_lock);
3685 INIT_LIST_HEAD(&pa->pa_inode_list);
3686 INIT_LIST_HEAD(&pa->pa_group_list);
3687 pa->pa_deleted = 0;
3688 pa->pa_type = MB_INODE_PA;
3690 mb_debug(1, "new inode pa %p: %llu/%u for %u\n", pa,
3691 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3692 trace_ext4_mb_new_inode_pa(ac, pa);
3694 ext4_mb_use_inode_pa(ac, pa);
3695 atomic_add(pa->pa_free, &sbi->s_mb_preallocated);
3697 ei = EXT4_I(ac->ac_inode);
3698 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3700 pa->pa_obj_lock = &ei->i_prealloc_lock;
3701 pa->pa_inode = ac->ac_inode;
3703 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3704 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3705 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3707 spin_lock(pa->pa_obj_lock);
3708 list_add_rcu(&pa->pa_inode_list, &ei->i_prealloc_list);
3709 spin_unlock(pa->pa_obj_lock);
3711 return 0;
3715 * creates new preallocated space for locality group inodes belongs to
3717 static noinline_for_stack int
3718 ext4_mb_new_group_pa(struct ext4_allocation_context *ac)
3720 struct super_block *sb = ac->ac_sb;
3721 struct ext4_locality_group *lg;
3722 struct ext4_prealloc_space *pa;
3723 struct ext4_group_info *grp;
3725 /* preallocate only when found space is larger then requested */
3726 BUG_ON(ac->ac_o_ex.fe_len >= ac->ac_b_ex.fe_len);
3727 BUG_ON(ac->ac_status != AC_STATUS_FOUND);
3728 BUG_ON(!S_ISREG(ac->ac_inode->i_mode));
3730 BUG_ON(ext4_pspace_cachep == NULL);
3731 pa = kmem_cache_alloc(ext4_pspace_cachep, GFP_NOFS);
3732 if (pa == NULL)
3733 return -ENOMEM;
3735 /* preallocation can change ac_b_ex, thus we store actually
3736 * allocated blocks for history */
3737 ac->ac_f_ex = ac->ac_b_ex;
3739 pa->pa_pstart = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
3740 pa->pa_lstart = pa->pa_pstart;
3741 pa->pa_len = ac->ac_b_ex.fe_len;
3742 pa->pa_free = pa->pa_len;
3743 atomic_set(&pa->pa_count, 1);
3744 spin_lock_init(&pa->pa_lock);
3745 INIT_LIST_HEAD(&pa->pa_inode_list);
3746 INIT_LIST_HEAD(&pa->pa_group_list);
3747 pa->pa_deleted = 0;
3748 pa->pa_type = MB_GROUP_PA;
3750 mb_debug(1, "new group pa %p: %llu/%u for %u\n", pa,
3751 pa->pa_pstart, pa->pa_len, pa->pa_lstart);
3752 trace_ext4_mb_new_group_pa(ac, pa);
3754 ext4_mb_use_group_pa(ac, pa);
3755 atomic_add(pa->pa_free, &EXT4_SB(sb)->s_mb_preallocated);
3757 grp = ext4_get_group_info(sb, ac->ac_b_ex.fe_group);
3758 lg = ac->ac_lg;
3759 BUG_ON(lg == NULL);
3761 pa->pa_obj_lock = &lg->lg_prealloc_lock;
3762 pa->pa_inode = NULL;
3764 ext4_lock_group(sb, ac->ac_b_ex.fe_group);
3765 list_add(&pa->pa_group_list, &grp->bb_prealloc_list);
3766 ext4_unlock_group(sb, ac->ac_b_ex.fe_group);
3769 * We will later add the new pa to the right bucket
3770 * after updating the pa_free in ext4_mb_release_context
3772 return 0;
3775 static int ext4_mb_new_preallocation(struct ext4_allocation_context *ac)
3777 int err;
3779 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
3780 err = ext4_mb_new_group_pa(ac);
3781 else
3782 err = ext4_mb_new_inode_pa(ac);
3783 return err;
3787 * finds all unused blocks in on-disk bitmap, frees them in
3788 * in-core bitmap and buddy.
3789 * @pa must be unlinked from inode and group lists, so that
3790 * nobody else can find/use it.
3791 * the caller MUST hold group/inode locks.
3792 * TODO: optimize the case when there are no in-core structures yet
3794 static noinline_for_stack int
3795 ext4_mb_release_inode_pa(struct ext4_buddy *e4b, struct buffer_head *bitmap_bh,
3796 struct ext4_prealloc_space *pa)
3798 struct super_block *sb = e4b->bd_sb;
3799 struct ext4_sb_info *sbi = EXT4_SB(sb);
3800 unsigned int end;
3801 unsigned int next;
3802 ext4_group_t group;
3803 ext4_grpblk_t bit;
3804 unsigned long long grp_blk_start;
3805 int err = 0;
3806 int free = 0;
3808 BUG_ON(pa->pa_deleted == 0);
3809 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3810 grp_blk_start = pa->pa_pstart - EXT4_C2B(sbi, bit);
3811 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3812 end = bit + pa->pa_len;
3814 while (bit < end) {
3815 bit = mb_find_next_zero_bit(bitmap_bh->b_data, end, bit);
3816 if (bit >= end)
3817 break;
3818 next = mb_find_next_bit(bitmap_bh->b_data, end, bit);
3819 mb_debug(1, " free preallocated %u/%u in group %u\n",
3820 (unsigned) ext4_group_first_block_no(sb, group) + bit,
3821 (unsigned) next - bit, (unsigned) group);
3822 free += next - bit;
3824 trace_ext4_mballoc_discard(sb, NULL, group, bit, next - bit);
3825 trace_ext4_mb_release_inode_pa(pa, (grp_blk_start +
3826 EXT4_C2B(sbi, bit)),
3827 next - bit);
3828 mb_free_blocks(pa->pa_inode, e4b, bit, next - bit);
3829 bit = next + 1;
3831 if (free != pa->pa_free) {
3832 ext4_msg(e4b->bd_sb, KERN_CRIT,
3833 "pa %p: logic %lu, phys. %lu, len %lu",
3834 pa, (unsigned long) pa->pa_lstart,
3835 (unsigned long) pa->pa_pstart,
3836 (unsigned long) pa->pa_len);
3837 ext4_grp_locked_error(sb, group, 0, 0, "free %u, pa_free %u",
3838 free, pa->pa_free);
3840 * pa is already deleted so we use the value obtained
3841 * from the bitmap and continue.
3844 atomic_add(free, &sbi->s_mb_discarded);
3846 return err;
3849 static noinline_for_stack int
3850 ext4_mb_release_group_pa(struct ext4_buddy *e4b,
3851 struct ext4_prealloc_space *pa)
3853 struct super_block *sb = e4b->bd_sb;
3854 ext4_group_t group;
3855 ext4_grpblk_t bit;
3857 trace_ext4_mb_release_group_pa(sb, pa);
3858 BUG_ON(pa->pa_deleted == 0);
3859 ext4_get_group_no_and_offset(sb, pa->pa_pstart, &group, &bit);
3860 BUG_ON(group != e4b->bd_group && pa->pa_len != 0);
3861 mb_free_blocks(pa->pa_inode, e4b, bit, pa->pa_len);
3862 atomic_add(pa->pa_len, &EXT4_SB(sb)->s_mb_discarded);
3863 trace_ext4_mballoc_discard(sb, NULL, group, bit, pa->pa_len);
3865 return 0;
3869 * releases all preallocations in given group
3871 * first, we need to decide discard policy:
3872 * - when do we discard
3873 * 1) ENOSPC
3874 * - how many do we discard
3875 * 1) how many requested
3877 static noinline_for_stack int
3878 ext4_mb_discard_group_preallocations(struct super_block *sb,
3879 ext4_group_t group, int needed)
3881 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
3882 struct buffer_head *bitmap_bh = NULL;
3883 struct ext4_prealloc_space *pa, *tmp;
3884 struct list_head list;
3885 struct ext4_buddy e4b;
3886 int err;
3887 int busy = 0;
3888 int free = 0;
3890 mb_debug(1, "discard preallocation for group %u\n", group);
3892 if (list_empty(&grp->bb_prealloc_list))
3893 return 0;
3895 bitmap_bh = ext4_read_block_bitmap(sb, group);
3896 if (IS_ERR(bitmap_bh)) {
3897 err = PTR_ERR(bitmap_bh);
3898 ext4_error(sb, "Error %d reading block bitmap for %u",
3899 err, group);
3900 return 0;
3903 err = ext4_mb_load_buddy(sb, group, &e4b);
3904 if (err) {
3905 ext4_warning(sb, "Error %d loading buddy information for %u",
3906 err, group);
3907 put_bh(bitmap_bh);
3908 return 0;
3911 if (needed == 0)
3912 needed = EXT4_CLUSTERS_PER_GROUP(sb) + 1;
3914 INIT_LIST_HEAD(&list);
3915 repeat:
3916 ext4_lock_group(sb, group);
3917 list_for_each_entry_safe(pa, tmp,
3918 &grp->bb_prealloc_list, pa_group_list) {
3919 spin_lock(&pa->pa_lock);
3920 if (atomic_read(&pa->pa_count)) {
3921 spin_unlock(&pa->pa_lock);
3922 busy = 1;
3923 continue;
3925 if (pa->pa_deleted) {
3926 spin_unlock(&pa->pa_lock);
3927 continue;
3930 /* seems this one can be freed ... */
3931 pa->pa_deleted = 1;
3933 /* we can trust pa_free ... */
3934 free += pa->pa_free;
3936 spin_unlock(&pa->pa_lock);
3938 list_del(&pa->pa_group_list);
3939 list_add(&pa->u.pa_tmp_list, &list);
3942 /* if we still need more blocks and some PAs were used, try again */
3943 if (free < needed && busy) {
3944 busy = 0;
3945 ext4_unlock_group(sb, group);
3946 cond_resched();
3947 goto repeat;
3950 /* found anything to free? */
3951 if (list_empty(&list)) {
3952 BUG_ON(free != 0);
3953 goto out;
3956 /* now free all selected PAs */
3957 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
3959 /* remove from object (inode or locality group) */
3960 spin_lock(pa->pa_obj_lock);
3961 list_del_rcu(&pa->pa_inode_list);
3962 spin_unlock(pa->pa_obj_lock);
3964 if (pa->pa_type == MB_GROUP_PA)
3965 ext4_mb_release_group_pa(&e4b, pa);
3966 else
3967 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
3969 list_del(&pa->u.pa_tmp_list);
3970 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
3973 out:
3974 ext4_unlock_group(sb, group);
3975 ext4_mb_unload_buddy(&e4b);
3976 put_bh(bitmap_bh);
3977 return free;
3981 * releases all non-used preallocated blocks for given inode
3983 * It's important to discard preallocations under i_data_sem
3984 * We don't want another block to be served from the prealloc
3985 * space when we are discarding the inode prealloc space.
3987 * FIXME!! Make sure it is valid at all the call sites
3989 void ext4_discard_preallocations(struct inode *inode)
3991 struct ext4_inode_info *ei = EXT4_I(inode);
3992 struct super_block *sb = inode->i_sb;
3993 struct buffer_head *bitmap_bh = NULL;
3994 struct ext4_prealloc_space *pa, *tmp;
3995 ext4_group_t group = 0;
3996 struct list_head list;
3997 struct ext4_buddy e4b;
3998 int err;
4000 if (!S_ISREG(inode->i_mode)) {
4001 /*BUG_ON(!list_empty(&ei->i_prealloc_list));*/
4002 return;
4005 mb_debug(1, "discard preallocation for inode %lu\n", inode->i_ino);
4006 trace_ext4_discard_preallocations(inode);
4008 INIT_LIST_HEAD(&list);
4010 repeat:
4011 /* first, collect all pa's in the inode */
4012 spin_lock(&ei->i_prealloc_lock);
4013 while (!list_empty(&ei->i_prealloc_list)) {
4014 pa = list_entry(ei->i_prealloc_list.next,
4015 struct ext4_prealloc_space, pa_inode_list);
4016 BUG_ON(pa->pa_obj_lock != &ei->i_prealloc_lock);
4017 spin_lock(&pa->pa_lock);
4018 if (atomic_read(&pa->pa_count)) {
4019 /* this shouldn't happen often - nobody should
4020 * use preallocation while we're discarding it */
4021 spin_unlock(&pa->pa_lock);
4022 spin_unlock(&ei->i_prealloc_lock);
4023 ext4_msg(sb, KERN_ERR,
4024 "uh-oh! used pa while discarding");
4025 WARN_ON(1);
4026 schedule_timeout_uninterruptible(HZ);
4027 goto repeat;
4030 if (pa->pa_deleted == 0) {
4031 pa->pa_deleted = 1;
4032 spin_unlock(&pa->pa_lock);
4033 list_del_rcu(&pa->pa_inode_list);
4034 list_add(&pa->u.pa_tmp_list, &list);
4035 continue;
4038 /* someone is deleting pa right now */
4039 spin_unlock(&pa->pa_lock);
4040 spin_unlock(&ei->i_prealloc_lock);
4042 /* we have to wait here because pa_deleted
4043 * doesn't mean pa is already unlinked from
4044 * the list. as we might be called from
4045 * ->clear_inode() the inode will get freed
4046 * and concurrent thread which is unlinking
4047 * pa from inode's list may access already
4048 * freed memory, bad-bad-bad */
4050 /* XXX: if this happens too often, we can
4051 * add a flag to force wait only in case
4052 * of ->clear_inode(), but not in case of
4053 * regular truncate */
4054 schedule_timeout_uninterruptible(HZ);
4055 goto repeat;
4057 spin_unlock(&ei->i_prealloc_lock);
4059 list_for_each_entry_safe(pa, tmp, &list, u.pa_tmp_list) {
4060 BUG_ON(pa->pa_type != MB_INODE_PA);
4061 group = ext4_get_group_number(sb, pa->pa_pstart);
4063 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4064 GFP_NOFS|__GFP_NOFAIL);
4065 if (err) {
4066 ext4_error(sb, "Error %d loading buddy information for %u",
4067 err, group);
4068 continue;
4071 bitmap_bh = ext4_read_block_bitmap(sb, group);
4072 if (IS_ERR(bitmap_bh)) {
4073 err = PTR_ERR(bitmap_bh);
4074 ext4_error(sb, "Error %d reading block bitmap for %u",
4075 err, group);
4076 ext4_mb_unload_buddy(&e4b);
4077 continue;
4080 ext4_lock_group(sb, group);
4081 list_del(&pa->pa_group_list);
4082 ext4_mb_release_inode_pa(&e4b, bitmap_bh, pa);
4083 ext4_unlock_group(sb, group);
4085 ext4_mb_unload_buddy(&e4b);
4086 put_bh(bitmap_bh);
4088 list_del(&pa->u.pa_tmp_list);
4089 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4093 #ifdef CONFIG_EXT4_DEBUG
4094 static void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4096 struct super_block *sb = ac->ac_sb;
4097 ext4_group_t ngroups, i;
4099 if (!ext4_mballoc_debug ||
4100 (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED))
4101 return;
4103 ext4_msg(ac->ac_sb, KERN_ERR, "Can't allocate:"
4104 " Allocation context details:");
4105 ext4_msg(ac->ac_sb, KERN_ERR, "status %d flags %d",
4106 ac->ac_status, ac->ac_flags);
4107 ext4_msg(ac->ac_sb, KERN_ERR, "orig %lu/%lu/%lu@%lu, "
4108 "goal %lu/%lu/%lu@%lu, "
4109 "best %lu/%lu/%lu@%lu cr %d",
4110 (unsigned long)ac->ac_o_ex.fe_group,
4111 (unsigned long)ac->ac_o_ex.fe_start,
4112 (unsigned long)ac->ac_o_ex.fe_len,
4113 (unsigned long)ac->ac_o_ex.fe_logical,
4114 (unsigned long)ac->ac_g_ex.fe_group,
4115 (unsigned long)ac->ac_g_ex.fe_start,
4116 (unsigned long)ac->ac_g_ex.fe_len,
4117 (unsigned long)ac->ac_g_ex.fe_logical,
4118 (unsigned long)ac->ac_b_ex.fe_group,
4119 (unsigned long)ac->ac_b_ex.fe_start,
4120 (unsigned long)ac->ac_b_ex.fe_len,
4121 (unsigned long)ac->ac_b_ex.fe_logical,
4122 (int)ac->ac_criteria);
4123 ext4_msg(ac->ac_sb, KERN_ERR, "%d found", ac->ac_found);
4124 ext4_msg(ac->ac_sb, KERN_ERR, "groups: ");
4125 ngroups = ext4_get_groups_count(sb);
4126 for (i = 0; i < ngroups; i++) {
4127 struct ext4_group_info *grp = ext4_get_group_info(sb, i);
4128 struct ext4_prealloc_space *pa;
4129 ext4_grpblk_t start;
4130 struct list_head *cur;
4131 ext4_lock_group(sb, i);
4132 list_for_each(cur, &grp->bb_prealloc_list) {
4133 pa = list_entry(cur, struct ext4_prealloc_space,
4134 pa_group_list);
4135 spin_lock(&pa->pa_lock);
4136 ext4_get_group_no_and_offset(sb, pa->pa_pstart,
4137 NULL, &start);
4138 spin_unlock(&pa->pa_lock);
4139 printk(KERN_ERR "PA:%u:%d:%u \n", i,
4140 start, pa->pa_len);
4142 ext4_unlock_group(sb, i);
4144 if (grp->bb_free == 0)
4145 continue;
4146 printk(KERN_ERR "%u: %d/%d \n",
4147 i, grp->bb_free, grp->bb_fragments);
4149 printk(KERN_ERR "\n");
4151 #else
4152 static inline void ext4_mb_show_ac(struct ext4_allocation_context *ac)
4154 return;
4156 #endif
4159 * We use locality group preallocation for small size file. The size of the
4160 * file is determined by the current size or the resulting size after
4161 * allocation which ever is larger
4163 * One can tune this size via /sys/fs/ext4/<partition>/mb_stream_req
4165 static void ext4_mb_group_or_file(struct ext4_allocation_context *ac)
4167 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4168 int bsbits = ac->ac_sb->s_blocksize_bits;
4169 loff_t size, isize;
4171 if (!(ac->ac_flags & EXT4_MB_HINT_DATA))
4172 return;
4174 if (unlikely(ac->ac_flags & EXT4_MB_HINT_GOAL_ONLY))
4175 return;
4177 size = ac->ac_o_ex.fe_logical + EXT4_C2B(sbi, ac->ac_o_ex.fe_len);
4178 isize = (i_size_read(ac->ac_inode) + ac->ac_sb->s_blocksize - 1)
4179 >> bsbits;
4181 if ((size == isize) &&
4182 !ext4_fs_is_busy(sbi) &&
4183 (atomic_read(&ac->ac_inode->i_writecount) == 0)) {
4184 ac->ac_flags |= EXT4_MB_HINT_NOPREALLOC;
4185 return;
4188 if (sbi->s_mb_group_prealloc <= 0) {
4189 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4190 return;
4193 /* don't use group allocation for large files */
4194 size = max(size, isize);
4195 if (size > sbi->s_mb_stream_request) {
4196 ac->ac_flags |= EXT4_MB_STREAM_ALLOC;
4197 return;
4200 BUG_ON(ac->ac_lg != NULL);
4202 * locality group prealloc space are per cpu. The reason for having
4203 * per cpu locality group is to reduce the contention between block
4204 * request from multiple CPUs.
4206 ac->ac_lg = raw_cpu_ptr(sbi->s_locality_groups);
4208 /* we're going to use group allocation */
4209 ac->ac_flags |= EXT4_MB_HINT_GROUP_ALLOC;
4211 /* serialize all allocations in the group */
4212 mutex_lock(&ac->ac_lg->lg_mutex);
4215 static noinline_for_stack int
4216 ext4_mb_initialize_context(struct ext4_allocation_context *ac,
4217 struct ext4_allocation_request *ar)
4219 struct super_block *sb = ar->inode->i_sb;
4220 struct ext4_sb_info *sbi = EXT4_SB(sb);
4221 struct ext4_super_block *es = sbi->s_es;
4222 ext4_group_t group;
4223 unsigned int len;
4224 ext4_fsblk_t goal;
4225 ext4_grpblk_t block;
4227 /* we can't allocate > group size */
4228 len = ar->len;
4230 /* just a dirty hack to filter too big requests */
4231 if (len >= EXT4_CLUSTERS_PER_GROUP(sb))
4232 len = EXT4_CLUSTERS_PER_GROUP(sb);
4234 /* start searching from the goal */
4235 goal = ar->goal;
4236 if (goal < le32_to_cpu(es->s_first_data_block) ||
4237 goal >= ext4_blocks_count(es))
4238 goal = le32_to_cpu(es->s_first_data_block);
4239 ext4_get_group_no_and_offset(sb, goal, &group, &block);
4241 /* set up allocation goals */
4242 ac->ac_b_ex.fe_logical = EXT4_LBLK_CMASK(sbi, ar->logical);
4243 ac->ac_status = AC_STATUS_CONTINUE;
4244 ac->ac_sb = sb;
4245 ac->ac_inode = ar->inode;
4246 ac->ac_o_ex.fe_logical = ac->ac_b_ex.fe_logical;
4247 ac->ac_o_ex.fe_group = group;
4248 ac->ac_o_ex.fe_start = block;
4249 ac->ac_o_ex.fe_len = len;
4250 ac->ac_g_ex = ac->ac_o_ex;
4251 ac->ac_flags = ar->flags;
4253 /* we have to define context: we'll we work with a file or
4254 * locality group. this is a policy, actually */
4255 ext4_mb_group_or_file(ac);
4257 mb_debug(1, "init ac: %u blocks @ %u, goal %u, flags %x, 2^%d, "
4258 "left: %u/%u, right %u/%u to %swritable\n",
4259 (unsigned) ar->len, (unsigned) ar->logical,
4260 (unsigned) ar->goal, ac->ac_flags, ac->ac_2order,
4261 (unsigned) ar->lleft, (unsigned) ar->pleft,
4262 (unsigned) ar->lright, (unsigned) ar->pright,
4263 atomic_read(&ar->inode->i_writecount) ? "" : "non-");
4264 return 0;
4268 static noinline_for_stack void
4269 ext4_mb_discard_lg_preallocations(struct super_block *sb,
4270 struct ext4_locality_group *lg,
4271 int order, int total_entries)
4273 ext4_group_t group = 0;
4274 struct ext4_buddy e4b;
4275 struct list_head discard_list;
4276 struct ext4_prealloc_space *pa, *tmp;
4278 mb_debug(1, "discard locality group preallocation\n");
4280 INIT_LIST_HEAD(&discard_list);
4282 spin_lock(&lg->lg_prealloc_lock);
4283 list_for_each_entry_rcu(pa, &lg->lg_prealloc_list[order],
4284 pa_inode_list) {
4285 spin_lock(&pa->pa_lock);
4286 if (atomic_read(&pa->pa_count)) {
4288 * This is the pa that we just used
4289 * for block allocation. So don't
4290 * free that
4292 spin_unlock(&pa->pa_lock);
4293 continue;
4295 if (pa->pa_deleted) {
4296 spin_unlock(&pa->pa_lock);
4297 continue;
4299 /* only lg prealloc space */
4300 BUG_ON(pa->pa_type != MB_GROUP_PA);
4302 /* seems this one can be freed ... */
4303 pa->pa_deleted = 1;
4304 spin_unlock(&pa->pa_lock);
4306 list_del_rcu(&pa->pa_inode_list);
4307 list_add(&pa->u.pa_tmp_list, &discard_list);
4309 total_entries--;
4310 if (total_entries <= 5) {
4312 * we want to keep only 5 entries
4313 * allowing it to grow to 8. This
4314 * mak sure we don't call discard
4315 * soon for this list.
4317 break;
4320 spin_unlock(&lg->lg_prealloc_lock);
4322 list_for_each_entry_safe(pa, tmp, &discard_list, u.pa_tmp_list) {
4323 int err;
4325 group = ext4_get_group_number(sb, pa->pa_pstart);
4326 err = ext4_mb_load_buddy_gfp(sb, group, &e4b,
4327 GFP_NOFS|__GFP_NOFAIL);
4328 if (err) {
4329 ext4_error(sb, "Error %d loading buddy information for %u",
4330 err, group);
4331 continue;
4333 ext4_lock_group(sb, group);
4334 list_del(&pa->pa_group_list);
4335 ext4_mb_release_group_pa(&e4b, pa);
4336 ext4_unlock_group(sb, group);
4338 ext4_mb_unload_buddy(&e4b);
4339 list_del(&pa->u.pa_tmp_list);
4340 call_rcu(&(pa)->u.pa_rcu, ext4_mb_pa_callback);
4345 * We have incremented pa_count. So it cannot be freed at this
4346 * point. Also we hold lg_mutex. So no parallel allocation is
4347 * possible from this lg. That means pa_free cannot be updated.
4349 * A parallel ext4_mb_discard_group_preallocations is possible.
4350 * which can cause the lg_prealloc_list to be updated.
4353 static void ext4_mb_add_n_trim(struct ext4_allocation_context *ac)
4355 int order, added = 0, lg_prealloc_count = 1;
4356 struct super_block *sb = ac->ac_sb;
4357 struct ext4_locality_group *lg = ac->ac_lg;
4358 struct ext4_prealloc_space *tmp_pa, *pa = ac->ac_pa;
4360 order = fls(pa->pa_free) - 1;
4361 if (order > PREALLOC_TB_SIZE - 1)
4362 /* The max size of hash table is PREALLOC_TB_SIZE */
4363 order = PREALLOC_TB_SIZE - 1;
4364 /* Add the prealloc space to lg */
4365 spin_lock(&lg->lg_prealloc_lock);
4366 list_for_each_entry_rcu(tmp_pa, &lg->lg_prealloc_list[order],
4367 pa_inode_list) {
4368 spin_lock(&tmp_pa->pa_lock);
4369 if (tmp_pa->pa_deleted) {
4370 spin_unlock(&tmp_pa->pa_lock);
4371 continue;
4373 if (!added && pa->pa_free < tmp_pa->pa_free) {
4374 /* Add to the tail of the previous entry */
4375 list_add_tail_rcu(&pa->pa_inode_list,
4376 &tmp_pa->pa_inode_list);
4377 added = 1;
4379 * we want to count the total
4380 * number of entries in the list
4383 spin_unlock(&tmp_pa->pa_lock);
4384 lg_prealloc_count++;
4386 if (!added)
4387 list_add_tail_rcu(&pa->pa_inode_list,
4388 &lg->lg_prealloc_list[order]);
4389 spin_unlock(&lg->lg_prealloc_lock);
4391 /* Now trim the list to be not more than 8 elements */
4392 if (lg_prealloc_count > 8) {
4393 ext4_mb_discard_lg_preallocations(sb, lg,
4394 order, lg_prealloc_count);
4395 return;
4397 return ;
4401 * release all resource we used in allocation
4403 static int ext4_mb_release_context(struct ext4_allocation_context *ac)
4405 struct ext4_sb_info *sbi = EXT4_SB(ac->ac_sb);
4406 struct ext4_prealloc_space *pa = ac->ac_pa;
4407 if (pa) {
4408 if (pa->pa_type == MB_GROUP_PA) {
4409 /* see comment in ext4_mb_use_group_pa() */
4410 spin_lock(&pa->pa_lock);
4411 pa->pa_pstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4412 pa->pa_lstart += EXT4_C2B(sbi, ac->ac_b_ex.fe_len);
4413 pa->pa_free -= ac->ac_b_ex.fe_len;
4414 pa->pa_len -= ac->ac_b_ex.fe_len;
4415 spin_unlock(&pa->pa_lock);
4418 if (pa) {
4420 * We want to add the pa to the right bucket.
4421 * Remove it from the list and while adding
4422 * make sure the list to which we are adding
4423 * doesn't grow big.
4425 if ((pa->pa_type == MB_GROUP_PA) && likely(pa->pa_free)) {
4426 spin_lock(pa->pa_obj_lock);
4427 list_del_rcu(&pa->pa_inode_list);
4428 spin_unlock(pa->pa_obj_lock);
4429 ext4_mb_add_n_trim(ac);
4431 ext4_mb_put_pa(ac, ac->ac_sb, pa);
4433 if (ac->ac_bitmap_page)
4434 put_page(ac->ac_bitmap_page);
4435 if (ac->ac_buddy_page)
4436 put_page(ac->ac_buddy_page);
4437 if (ac->ac_flags & EXT4_MB_HINT_GROUP_ALLOC)
4438 mutex_unlock(&ac->ac_lg->lg_mutex);
4439 ext4_mb_collect_stats(ac);
4440 return 0;
4443 static int ext4_mb_discard_preallocations(struct super_block *sb, int needed)
4445 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4446 int ret;
4447 int freed = 0;
4449 trace_ext4_mb_discard_preallocations(sb, needed);
4450 for (i = 0; i < ngroups && needed > 0; i++) {
4451 ret = ext4_mb_discard_group_preallocations(sb, i, needed);
4452 freed += ret;
4453 needed -= ret;
4456 return freed;
4460 * Main entry point into mballoc to allocate blocks
4461 * it tries to use preallocation first, then falls back
4462 * to usual allocation
4464 ext4_fsblk_t ext4_mb_new_blocks(handle_t *handle,
4465 struct ext4_allocation_request *ar, int *errp)
4467 int freed;
4468 struct ext4_allocation_context *ac = NULL;
4469 struct ext4_sb_info *sbi;
4470 struct super_block *sb;
4471 ext4_fsblk_t block = 0;
4472 unsigned int inquota = 0;
4473 unsigned int reserv_clstrs = 0;
4475 might_sleep();
4476 sb = ar->inode->i_sb;
4477 sbi = EXT4_SB(sb);
4479 trace_ext4_request_blocks(ar);
4481 /* Allow to use superuser reservation for quota file */
4482 if (IS_NOQUOTA(ar->inode))
4483 ar->flags |= EXT4_MB_USE_ROOT_BLOCKS;
4485 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0) {
4486 /* Without delayed allocation we need to verify
4487 * there is enough free blocks to do block allocation
4488 * and verify allocation doesn't exceed the quota limits.
4490 while (ar->len &&
4491 ext4_claim_free_clusters(sbi, ar->len, ar->flags)) {
4493 /* let others to free the space */
4494 cond_resched();
4495 ar->len = ar->len >> 1;
4497 if (!ar->len) {
4498 *errp = -ENOSPC;
4499 return 0;
4501 reserv_clstrs = ar->len;
4502 if (ar->flags & EXT4_MB_USE_ROOT_BLOCKS) {
4503 dquot_alloc_block_nofail(ar->inode,
4504 EXT4_C2B(sbi, ar->len));
4505 } else {
4506 while (ar->len &&
4507 dquot_alloc_block(ar->inode,
4508 EXT4_C2B(sbi, ar->len))) {
4510 ar->flags |= EXT4_MB_HINT_NOPREALLOC;
4511 ar->len--;
4514 inquota = ar->len;
4515 if (ar->len == 0) {
4516 *errp = -EDQUOT;
4517 goto out;
4521 ac = kmem_cache_zalloc(ext4_ac_cachep, GFP_NOFS);
4522 if (!ac) {
4523 ar->len = 0;
4524 *errp = -ENOMEM;
4525 goto out;
4528 *errp = ext4_mb_initialize_context(ac, ar);
4529 if (*errp) {
4530 ar->len = 0;
4531 goto out;
4534 ac->ac_op = EXT4_MB_HISTORY_PREALLOC;
4535 if (!ext4_mb_use_preallocated(ac)) {
4536 ac->ac_op = EXT4_MB_HISTORY_ALLOC;
4537 ext4_mb_normalize_request(ac, ar);
4538 repeat:
4539 /* allocate space in core */
4540 *errp = ext4_mb_regular_allocator(ac);
4541 if (*errp)
4542 goto discard_and_exit;
4544 /* as we've just preallocated more space than
4545 * user requested originally, we store allocated
4546 * space in a special descriptor */
4547 if (ac->ac_status == AC_STATUS_FOUND &&
4548 ac->ac_o_ex.fe_len < ac->ac_b_ex.fe_len)
4549 *errp = ext4_mb_new_preallocation(ac);
4550 if (*errp) {
4551 discard_and_exit:
4552 ext4_discard_allocated_blocks(ac);
4553 goto errout;
4556 if (likely(ac->ac_status == AC_STATUS_FOUND)) {
4557 *errp = ext4_mb_mark_diskspace_used(ac, handle, reserv_clstrs);
4558 if (*errp) {
4559 ext4_discard_allocated_blocks(ac);
4560 goto errout;
4561 } else {
4562 block = ext4_grp_offs_to_block(sb, &ac->ac_b_ex);
4563 ar->len = ac->ac_b_ex.fe_len;
4565 } else {
4566 freed = ext4_mb_discard_preallocations(sb, ac->ac_o_ex.fe_len);
4567 if (freed)
4568 goto repeat;
4569 *errp = -ENOSPC;
4572 errout:
4573 if (*errp) {
4574 ac->ac_b_ex.fe_len = 0;
4575 ar->len = 0;
4576 ext4_mb_show_ac(ac);
4578 ext4_mb_release_context(ac);
4579 out:
4580 if (ac)
4581 kmem_cache_free(ext4_ac_cachep, ac);
4582 if (inquota && ar->len < inquota)
4583 dquot_free_block(ar->inode, EXT4_C2B(sbi, inquota - ar->len));
4584 if (!ar->len) {
4585 if ((ar->flags & EXT4_MB_DELALLOC_RESERVED) == 0)
4586 /* release all the reserved blocks if non delalloc */
4587 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
4588 reserv_clstrs);
4591 trace_ext4_allocate_blocks(ar, (unsigned long long)block);
4593 return block;
4597 * We can merge two free data extents only if the physical blocks
4598 * are contiguous, AND the extents were freed by the same transaction,
4599 * AND the blocks are associated with the same group.
4601 static int can_merge(struct ext4_free_data *entry1,
4602 struct ext4_free_data *entry2)
4604 if ((entry1->efd_tid == entry2->efd_tid) &&
4605 (entry1->efd_group == entry2->efd_group) &&
4606 ((entry1->efd_start_cluster + entry1->efd_count) == entry2->efd_start_cluster))
4607 return 1;
4608 return 0;
4611 static noinline_for_stack int
4612 ext4_mb_free_metadata(handle_t *handle, struct ext4_buddy *e4b,
4613 struct ext4_free_data *new_entry)
4615 ext4_group_t group = e4b->bd_group;
4616 ext4_grpblk_t cluster;
4617 ext4_grpblk_t clusters = new_entry->efd_count;
4618 struct ext4_free_data *entry;
4619 struct ext4_group_info *db = e4b->bd_info;
4620 struct super_block *sb = e4b->bd_sb;
4621 struct ext4_sb_info *sbi = EXT4_SB(sb);
4622 struct rb_node **n = &db->bb_free_root.rb_node, *node;
4623 struct rb_node *parent = NULL, *new_node;
4625 BUG_ON(!ext4_handle_valid(handle));
4626 BUG_ON(e4b->bd_bitmap_page == NULL);
4627 BUG_ON(e4b->bd_buddy_page == NULL);
4629 new_node = &new_entry->efd_node;
4630 cluster = new_entry->efd_start_cluster;
4632 if (!*n) {
4633 /* first free block exent. We need to
4634 protect buddy cache from being freed,
4635 * otherwise we'll refresh it from
4636 * on-disk bitmap and lose not-yet-available
4637 * blocks */
4638 get_page(e4b->bd_buddy_page);
4639 get_page(e4b->bd_bitmap_page);
4641 while (*n) {
4642 parent = *n;
4643 entry = rb_entry(parent, struct ext4_free_data, efd_node);
4644 if (cluster < entry->efd_start_cluster)
4645 n = &(*n)->rb_left;
4646 else if (cluster >= (entry->efd_start_cluster + entry->efd_count))
4647 n = &(*n)->rb_right;
4648 else {
4649 ext4_grp_locked_error(sb, group, 0,
4650 ext4_group_first_block_no(sb, group) +
4651 EXT4_C2B(sbi, cluster),
4652 "Block already on to-be-freed list");
4653 return 0;
4657 rb_link_node(new_node, parent, n);
4658 rb_insert_color(new_node, &db->bb_free_root);
4660 /* Now try to see the extent can be merged to left and right */
4661 node = rb_prev(new_node);
4662 if (node) {
4663 entry = rb_entry(node, struct ext4_free_data, efd_node);
4664 if (can_merge(entry, new_entry) &&
4665 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4666 new_entry->efd_start_cluster = entry->efd_start_cluster;
4667 new_entry->efd_count += entry->efd_count;
4668 rb_erase(node, &(db->bb_free_root));
4669 kmem_cache_free(ext4_free_data_cachep, entry);
4673 node = rb_next(new_node);
4674 if (node) {
4675 entry = rb_entry(node, struct ext4_free_data, efd_node);
4676 if (can_merge(new_entry, entry) &&
4677 ext4_journal_callback_try_del(handle, &entry->efd_jce)) {
4678 new_entry->efd_count += entry->efd_count;
4679 rb_erase(node, &(db->bb_free_root));
4680 kmem_cache_free(ext4_free_data_cachep, entry);
4683 /* Add the extent to transaction's private list */
4684 new_entry->efd_jce.jce_func = ext4_free_data_callback;
4685 spin_lock(&sbi->s_md_lock);
4686 _ext4_journal_callback_add(handle, &new_entry->efd_jce);
4687 sbi->s_mb_free_pending += clusters;
4688 spin_unlock(&sbi->s_md_lock);
4689 return 0;
4693 * ext4_free_blocks() -- Free given blocks and update quota
4694 * @handle: handle for this transaction
4695 * @inode: inode
4696 * @block: start physical block to free
4697 * @count: number of blocks to count
4698 * @flags: flags used by ext4_free_blocks
4700 void ext4_free_blocks(handle_t *handle, struct inode *inode,
4701 struct buffer_head *bh, ext4_fsblk_t block,
4702 unsigned long count, int flags)
4704 struct buffer_head *bitmap_bh = NULL;
4705 struct super_block *sb = inode->i_sb;
4706 struct ext4_group_desc *gdp;
4707 unsigned int overflow;
4708 ext4_grpblk_t bit;
4709 struct buffer_head *gd_bh;
4710 ext4_group_t block_group;
4711 struct ext4_sb_info *sbi;
4712 struct ext4_buddy e4b;
4713 unsigned int count_clusters;
4714 int err = 0;
4715 int ret;
4717 might_sleep();
4718 if (bh) {
4719 if (block)
4720 BUG_ON(block != bh->b_blocknr);
4721 else
4722 block = bh->b_blocknr;
4725 sbi = EXT4_SB(sb);
4726 if (!(flags & EXT4_FREE_BLOCKS_VALIDATED) &&
4727 !ext4_data_block_valid(sbi, block, count)) {
4728 ext4_error(sb, "Freeing blocks not in datazone - "
4729 "block = %llu, count = %lu", block, count);
4730 goto error_return;
4733 ext4_debug("freeing block %llu\n", block);
4734 trace_ext4_free_blocks(inode, block, count, flags);
4736 if (bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4737 BUG_ON(count > 1);
4739 ext4_forget(handle, flags & EXT4_FREE_BLOCKS_METADATA,
4740 inode, bh, block);
4744 * If the extent to be freed does not begin on a cluster
4745 * boundary, we need to deal with partial clusters at the
4746 * beginning and end of the extent. Normally we will free
4747 * blocks at the beginning or the end unless we are explicitly
4748 * requested to avoid doing so.
4750 overflow = EXT4_PBLK_COFF(sbi, block);
4751 if (overflow) {
4752 if (flags & EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER) {
4753 overflow = sbi->s_cluster_ratio - overflow;
4754 block += overflow;
4755 if (count > overflow)
4756 count -= overflow;
4757 else
4758 return;
4759 } else {
4760 block -= overflow;
4761 count += overflow;
4764 overflow = EXT4_LBLK_COFF(sbi, count);
4765 if (overflow) {
4766 if (flags & EXT4_FREE_BLOCKS_NOFREE_LAST_CLUSTER) {
4767 if (count > overflow)
4768 count -= overflow;
4769 else
4770 return;
4771 } else
4772 count += sbi->s_cluster_ratio - overflow;
4775 if (!bh && (flags & EXT4_FREE_BLOCKS_FORGET)) {
4776 int i;
4777 int is_metadata = flags & EXT4_FREE_BLOCKS_METADATA;
4779 for (i = 0; i < count; i++) {
4780 cond_resched();
4781 if (is_metadata)
4782 bh = sb_find_get_block(inode->i_sb, block + i);
4783 ext4_forget(handle, is_metadata, inode, bh, block + i);
4787 do_more:
4788 overflow = 0;
4789 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4791 if (unlikely(EXT4_MB_GRP_BBITMAP_CORRUPT(
4792 ext4_get_group_info(sb, block_group))))
4793 return;
4796 * Check to see if we are freeing blocks across a group
4797 * boundary.
4799 if (EXT4_C2B(sbi, bit) + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4800 overflow = EXT4_C2B(sbi, bit) + count -
4801 EXT4_BLOCKS_PER_GROUP(sb);
4802 count -= overflow;
4804 count_clusters = EXT4_NUM_B2C(sbi, count);
4805 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4806 if (IS_ERR(bitmap_bh)) {
4807 err = PTR_ERR(bitmap_bh);
4808 bitmap_bh = NULL;
4809 goto error_return;
4811 gdp = ext4_get_group_desc(sb, block_group, &gd_bh);
4812 if (!gdp) {
4813 err = -EIO;
4814 goto error_return;
4817 if (in_range(ext4_block_bitmap(sb, gdp), block, count) ||
4818 in_range(ext4_inode_bitmap(sb, gdp), block, count) ||
4819 in_range(block, ext4_inode_table(sb, gdp),
4820 EXT4_SB(sb)->s_itb_per_group) ||
4821 in_range(block + count - 1, ext4_inode_table(sb, gdp),
4822 EXT4_SB(sb)->s_itb_per_group)) {
4824 ext4_error(sb, "Freeing blocks in system zone - "
4825 "Block = %llu, count = %lu", block, count);
4826 /* err = 0. ext4_std_error should be a no op */
4827 goto error_return;
4830 BUFFER_TRACE(bitmap_bh, "getting write access");
4831 err = ext4_journal_get_write_access(handle, bitmap_bh);
4832 if (err)
4833 goto error_return;
4836 * We are about to modify some metadata. Call the journal APIs
4837 * to unshare ->b_data if a currently-committing transaction is
4838 * using it
4840 BUFFER_TRACE(gd_bh, "get_write_access");
4841 err = ext4_journal_get_write_access(handle, gd_bh);
4842 if (err)
4843 goto error_return;
4844 #ifdef AGGRESSIVE_CHECK
4846 int i;
4847 for (i = 0; i < count_clusters; i++)
4848 BUG_ON(!mb_test_bit(bit + i, bitmap_bh->b_data));
4850 #endif
4851 trace_ext4_mballoc_free(sb, inode, block_group, bit, count_clusters);
4853 /* __GFP_NOFAIL: retry infinitely, ignore TIF_MEMDIE and memcg limit. */
4854 err = ext4_mb_load_buddy_gfp(sb, block_group, &e4b,
4855 GFP_NOFS|__GFP_NOFAIL);
4856 if (err)
4857 goto error_return;
4860 * We need to make sure we don't reuse the freed block until after the
4861 * transaction is committed. We make an exception if the inode is to be
4862 * written in writeback mode since writeback mode has weak data
4863 * consistency guarantees.
4865 if (ext4_handle_valid(handle) &&
4866 ((flags & EXT4_FREE_BLOCKS_METADATA) ||
4867 !ext4_should_writeback_data(inode))) {
4868 struct ext4_free_data *new_entry;
4870 * We use __GFP_NOFAIL because ext4_free_blocks() is not allowed
4871 * to fail.
4873 new_entry = kmem_cache_alloc(ext4_free_data_cachep,
4874 GFP_NOFS|__GFP_NOFAIL);
4875 new_entry->efd_start_cluster = bit;
4876 new_entry->efd_group = block_group;
4877 new_entry->efd_count = count_clusters;
4878 new_entry->efd_tid = handle->h_transaction->t_tid;
4880 ext4_lock_group(sb, block_group);
4881 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4882 ext4_mb_free_metadata(handle, &e4b, new_entry);
4883 } else {
4884 /* need to update group_info->bb_free and bitmap
4885 * with group lock held. generate_buddy look at
4886 * them with group lock_held
4888 if (test_opt(sb, DISCARD)) {
4889 err = ext4_issue_discard(sb, block_group, bit, count);
4890 if (err && err != -EOPNOTSUPP)
4891 ext4_msg(sb, KERN_WARNING, "discard request in"
4892 " group:%d block:%d count:%lu failed"
4893 " with %d", block_group, bit, count,
4894 err);
4895 } else
4896 EXT4_MB_GRP_CLEAR_TRIMMED(e4b.bd_info);
4898 ext4_lock_group(sb, block_group);
4899 mb_clear_bits(bitmap_bh->b_data, bit, count_clusters);
4900 mb_free_blocks(inode, &e4b, bit, count_clusters);
4903 ret = ext4_free_group_clusters(sb, gdp) + count_clusters;
4904 ext4_free_group_clusters_set(sb, gdp, ret);
4905 ext4_block_bitmap_csum_set(sb, block_group, gdp, bitmap_bh);
4906 ext4_group_desc_csum_set(sb, block_group, gdp);
4907 ext4_unlock_group(sb, block_group);
4909 if (sbi->s_log_groups_per_flex) {
4910 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
4911 atomic64_add(count_clusters,
4912 &sbi_array_rcu_deref(sbi, s_flex_groups,
4913 flex_group)->free_clusters);
4916 if (!(flags & EXT4_FREE_BLOCKS_NO_QUOT_UPDATE))
4917 dquot_free_block(inode, EXT4_C2B(sbi, count_clusters));
4918 percpu_counter_add(&sbi->s_freeclusters_counter, count_clusters);
4920 ext4_mb_unload_buddy(&e4b);
4922 /* We dirtied the bitmap block */
4923 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
4924 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
4926 /* And the group descriptor block */
4927 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
4928 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
4929 if (!err)
4930 err = ret;
4932 if (overflow && !err) {
4933 block += count;
4934 count = overflow;
4935 put_bh(bitmap_bh);
4936 goto do_more;
4938 error_return:
4939 brelse(bitmap_bh);
4940 ext4_std_error(sb, err);
4941 return;
4945 * ext4_group_add_blocks() -- Add given blocks to an existing group
4946 * @handle: handle to this transaction
4947 * @sb: super block
4948 * @block: start physical block to add to the block group
4949 * @count: number of blocks to free
4951 * This marks the blocks as free in the bitmap and buddy.
4953 int ext4_group_add_blocks(handle_t *handle, struct super_block *sb,
4954 ext4_fsblk_t block, unsigned long count)
4956 struct buffer_head *bitmap_bh = NULL;
4957 struct buffer_head *gd_bh;
4958 ext4_group_t block_group;
4959 ext4_grpblk_t bit;
4960 unsigned int i;
4961 struct ext4_group_desc *desc;
4962 struct ext4_sb_info *sbi = EXT4_SB(sb);
4963 struct ext4_buddy e4b;
4964 int err = 0, ret, blk_free_count;
4965 ext4_grpblk_t blocks_freed;
4967 ext4_debug("Adding block(s) %llu-%llu\n", block, block + count - 1);
4969 if (count == 0)
4970 return 0;
4972 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
4974 * Check to see if we are freeing blocks across a group
4975 * boundary.
4977 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
4978 ext4_warning(sb, "too much blocks added to group %u",
4979 block_group);
4980 err = -EINVAL;
4981 goto error_return;
4984 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
4985 if (IS_ERR(bitmap_bh)) {
4986 err = PTR_ERR(bitmap_bh);
4987 bitmap_bh = NULL;
4988 goto error_return;
4991 desc = ext4_get_group_desc(sb, block_group, &gd_bh);
4992 if (!desc) {
4993 err = -EIO;
4994 goto error_return;
4997 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
4998 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
4999 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
5000 in_range(block + count - 1, ext4_inode_table(sb, desc),
5001 sbi->s_itb_per_group)) {
5002 ext4_error(sb, "Adding blocks in system zones - "
5003 "Block = %llu, count = %lu",
5004 block, count);
5005 err = -EINVAL;
5006 goto error_return;
5009 BUFFER_TRACE(bitmap_bh, "getting write access");
5010 err = ext4_journal_get_write_access(handle, bitmap_bh);
5011 if (err)
5012 goto error_return;
5015 * We are about to modify some metadata. Call the journal APIs
5016 * to unshare ->b_data if a currently-committing transaction is
5017 * using it
5019 BUFFER_TRACE(gd_bh, "get_write_access");
5020 err = ext4_journal_get_write_access(handle, gd_bh);
5021 if (err)
5022 goto error_return;
5024 for (i = 0, blocks_freed = 0; i < count; i++) {
5025 BUFFER_TRACE(bitmap_bh, "clear bit");
5026 if (!mb_test_bit(bit + i, bitmap_bh->b_data)) {
5027 ext4_error(sb, "bit already cleared for block %llu",
5028 (ext4_fsblk_t)(block + i));
5029 BUFFER_TRACE(bitmap_bh, "bit already cleared");
5030 } else {
5031 blocks_freed++;
5035 err = ext4_mb_load_buddy(sb, block_group, &e4b);
5036 if (err)
5037 goto error_return;
5040 * need to update group_info->bb_free and bitmap
5041 * with group lock held. generate_buddy look at
5042 * them with group lock_held
5044 ext4_lock_group(sb, block_group);
5045 mb_clear_bits(bitmap_bh->b_data, bit, count);
5046 mb_free_blocks(NULL, &e4b, bit, count);
5047 blk_free_count = blocks_freed + ext4_free_group_clusters(sb, desc);
5048 ext4_free_group_clusters_set(sb, desc, blk_free_count);
5049 ext4_block_bitmap_csum_set(sb, block_group, desc, bitmap_bh);
5050 ext4_group_desc_csum_set(sb, block_group, desc);
5051 ext4_unlock_group(sb, block_group);
5052 percpu_counter_add(&sbi->s_freeclusters_counter,
5053 EXT4_NUM_B2C(sbi, blocks_freed));
5055 if (sbi->s_log_groups_per_flex) {
5056 ext4_group_t flex_group = ext4_flex_group(sbi, block_group);
5057 atomic64_add(EXT4_NUM_B2C(sbi, blocks_freed),
5058 &sbi_array_rcu_deref(sbi, s_flex_groups,
5059 flex_group)->free_clusters);
5062 ext4_mb_unload_buddy(&e4b);
5064 /* We dirtied the bitmap block */
5065 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
5066 err = ext4_handle_dirty_metadata(handle, NULL, bitmap_bh);
5068 /* And the group descriptor block */
5069 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
5070 ret = ext4_handle_dirty_metadata(handle, NULL, gd_bh);
5071 if (!err)
5072 err = ret;
5074 error_return:
5075 brelse(bitmap_bh);
5076 ext4_std_error(sb, err);
5077 return err;
5081 * ext4_trim_extent -- function to TRIM one single free extent in the group
5082 * @sb: super block for the file system
5083 * @start: starting block of the free extent in the alloc. group
5084 * @count: number of blocks to TRIM
5085 * @group: alloc. group we are working with
5086 * @e4b: ext4 buddy for the group
5088 * Trim "count" blocks starting at "start" in the "group". To assure that no
5089 * one will allocate those blocks, mark it as used in buddy bitmap. This must
5090 * be called with under the group lock.
5092 static int ext4_trim_extent(struct super_block *sb, int start, int count,
5093 ext4_group_t group, struct ext4_buddy *e4b)
5094 __releases(bitlock)
5095 __acquires(bitlock)
5097 struct ext4_free_extent ex;
5098 int ret = 0;
5100 trace_ext4_trim_extent(sb, group, start, count);
5102 assert_spin_locked(ext4_group_lock_ptr(sb, group));
5104 ex.fe_start = start;
5105 ex.fe_group = group;
5106 ex.fe_len = count;
5109 * Mark blocks used, so no one can reuse them while
5110 * being trimmed.
5112 mb_mark_used(e4b, &ex);
5113 ext4_unlock_group(sb, group);
5114 ret = ext4_issue_discard(sb, group, start, count);
5115 ext4_lock_group(sb, group);
5116 mb_free_blocks(NULL, e4b, start, ex.fe_len);
5117 return ret;
5121 * ext4_trim_all_free -- function to trim all free space in alloc. group
5122 * @sb: super block for file system
5123 * @group: group to be trimmed
5124 * @start: first group block to examine
5125 * @max: last group block to examine
5126 * @minblocks: minimum extent block count
5128 * ext4_trim_all_free walks through group's buddy bitmap searching for free
5129 * extents. When the free block is found, ext4_trim_extent is called to TRIM
5130 * the extent.
5133 * ext4_trim_all_free walks through group's block bitmap searching for free
5134 * extents. When the free extent is found, mark it as used in group buddy
5135 * bitmap. Then issue a TRIM command on this extent and free the extent in
5136 * the group buddy bitmap. This is done until whole group is scanned.
5138 static ext4_grpblk_t
5139 ext4_trim_all_free(struct super_block *sb, ext4_group_t group,
5140 ext4_grpblk_t start, ext4_grpblk_t max,
5141 ext4_grpblk_t minblocks)
5143 void *bitmap;
5144 ext4_grpblk_t next, count = 0, free_count = 0;
5145 struct ext4_buddy e4b;
5146 int ret = 0;
5148 trace_ext4_trim_all_free(sb, group, start, max);
5150 ret = ext4_mb_load_buddy(sb, group, &e4b);
5151 if (ret) {
5152 ext4_warning(sb, "Error %d loading buddy information for %u",
5153 ret, group);
5154 return ret;
5156 bitmap = e4b.bd_bitmap;
5158 ext4_lock_group(sb, group);
5159 if (EXT4_MB_GRP_WAS_TRIMMED(e4b.bd_info) &&
5160 minblocks >= atomic_read(&EXT4_SB(sb)->s_last_trim_minblks))
5161 goto out;
5163 start = (e4b.bd_info->bb_first_free > start) ?
5164 e4b.bd_info->bb_first_free : start;
5166 while (start <= max) {
5167 start = mb_find_next_zero_bit(bitmap, max + 1, start);
5168 if (start > max)
5169 break;
5170 next = mb_find_next_bit(bitmap, max + 1, start);
5172 if ((next - start) >= minblocks) {
5173 ret = ext4_trim_extent(sb, start,
5174 next - start, group, &e4b);
5175 if (ret && ret != -EOPNOTSUPP)
5176 break;
5177 ret = 0;
5178 count += next - start;
5180 free_count += next - start;
5181 start = next + 1;
5183 if (fatal_signal_pending(current)) {
5184 count = -ERESTARTSYS;
5185 break;
5188 if (need_resched()) {
5189 ext4_unlock_group(sb, group);
5190 cond_resched();
5191 ext4_lock_group(sb, group);
5194 if ((e4b.bd_info->bb_free - free_count) < minblocks)
5195 break;
5198 if (!ret) {
5199 ret = count;
5200 EXT4_MB_GRP_SET_TRIMMED(e4b.bd_info);
5202 out:
5203 ext4_unlock_group(sb, group);
5204 ext4_mb_unload_buddy(&e4b);
5206 ext4_debug("trimmed %d blocks in the group %d\n",
5207 count, group);
5209 return ret;
5213 * ext4_trim_fs() -- trim ioctl handle function
5214 * @sb: superblock for filesystem
5215 * @range: fstrim_range structure
5217 * start: First Byte to trim
5218 * len: number of Bytes to trim from start
5219 * minlen: minimum extent length in Bytes
5220 * ext4_trim_fs goes through all allocation groups containing Bytes from
5221 * start to start+len. For each such a group ext4_trim_all_free function
5222 * is invoked to trim all free space.
5224 int ext4_trim_fs(struct super_block *sb, struct fstrim_range *range)
5226 struct ext4_group_info *grp;
5227 ext4_group_t group, first_group, last_group;
5228 ext4_grpblk_t cnt = 0, first_cluster, last_cluster;
5229 uint64_t start, end, minlen, trimmed = 0;
5230 ext4_fsblk_t first_data_blk =
5231 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block);
5232 ext4_fsblk_t max_blks = ext4_blocks_count(EXT4_SB(sb)->s_es);
5233 int ret = 0;
5235 start = range->start >> sb->s_blocksize_bits;
5236 end = start + (range->len >> sb->s_blocksize_bits) - 1;
5237 minlen = EXT4_NUM_B2C(EXT4_SB(sb),
5238 range->minlen >> sb->s_blocksize_bits);
5240 if (minlen > EXT4_CLUSTERS_PER_GROUP(sb) ||
5241 start >= max_blks ||
5242 range->len < sb->s_blocksize)
5243 return -EINVAL;
5244 if (end >= max_blks)
5245 end = max_blks - 1;
5246 if (end <= first_data_blk)
5247 goto out;
5248 if (start < first_data_blk)
5249 start = first_data_blk;
5251 /* Determine first and last group to examine based on start and end */
5252 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) start,
5253 &first_group, &first_cluster);
5254 ext4_get_group_no_and_offset(sb, (ext4_fsblk_t) end,
5255 &last_group, &last_cluster);
5257 /* end now represents the last cluster to discard in this group */
5258 end = EXT4_CLUSTERS_PER_GROUP(sb) - 1;
5260 for (group = first_group; group <= last_group; group++) {
5261 grp = ext4_get_group_info(sb, group);
5262 /* We only do this if the grp has never been initialized */
5263 if (unlikely(EXT4_MB_GRP_NEED_INIT(grp))) {
5264 ret = ext4_mb_init_group(sb, group, GFP_NOFS);
5265 if (ret)
5266 break;
5270 * For all the groups except the last one, last cluster will
5271 * always be EXT4_CLUSTERS_PER_GROUP(sb)-1, so we only need to
5272 * change it for the last group, note that last_cluster is
5273 * already computed earlier by ext4_get_group_no_and_offset()
5275 if (group == last_group)
5276 end = last_cluster;
5278 if (grp->bb_free >= minlen) {
5279 cnt = ext4_trim_all_free(sb, group, first_cluster,
5280 end, minlen);
5281 if (cnt < 0) {
5282 ret = cnt;
5283 break;
5285 trimmed += cnt;
5289 * For every group except the first one, we are sure
5290 * that the first cluster to discard will be cluster #0.
5292 first_cluster = 0;
5295 if (!ret)
5296 atomic_set(&EXT4_SB(sb)->s_last_trim_minblks, minlen);
5298 out:
5299 range->len = EXT4_C2B(EXT4_SB(sb), trimmed) << sb->s_blocksize_bits;
5300 return ret;