4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache
*ino_entry_slab
;
27 struct kmem_cache
*inode_entry_slab
;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
)
31 set_ckpt_flags(sbi
, CP_ERROR_FLAG
);
32 sbi
->sb
->s_flags
|= MS_RDONLY
;
34 f2fs_flush_merged_bios(sbi
);
38 * We guarantee no failure on the returned page.
40 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
42 struct address_space
*mapping
= META_MAPPING(sbi
);
43 struct page
*page
= NULL
;
45 page
= f2fs_grab_cache_page(mapping
, index
, false);
50 f2fs_wait_on_page_writeback(page
, META
, true);
51 if (!PageUptodate(page
))
52 SetPageUptodate(page
);
57 * We guarantee no failure on the returned page.
59 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
62 struct address_space
*mapping
= META_MAPPING(sbi
);
64 struct f2fs_io_info fio
= {
68 .op_flags
= READ_SYNC
| REQ_META
| REQ_PRIO
,
71 .encrypted_page
= NULL
,
75 if (unlikely(!is_meta
))
76 fio
.op_flags
&= ~REQ_META
;
78 page
= f2fs_grab_cache_page(mapping
, index
, false);
83 if (PageUptodate(page
))
88 if (f2fs_submit_page_bio(&fio
)) {
89 memset(page_address(page
), 0, PAGE_SIZE
);
90 f2fs_stop_checkpoint(sbi
, false);
96 if (unlikely(page
->mapping
!= mapping
)) {
97 f2fs_put_page(page
, 1);
102 * if there is any IO error when accessing device, make our filesystem
103 * readonly and make sure do not write checkpoint with non-uptodate
106 if (unlikely(!PageUptodate(page
)))
107 f2fs_stop_checkpoint(sbi
, false);
112 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
114 return __get_meta_page(sbi
, index
, true);
118 struct page
*get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
120 return __get_meta_page(sbi
, index
, false);
123 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info
*sbi
,
124 block_t blkaddr
, int type
)
130 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
134 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
135 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
139 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
140 blkaddr
< __start_cp_addr(sbi
)))
145 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
146 blkaddr
< MAIN_BLKADDR(sbi
))) {
147 if (type
== DATA_GENERIC
) {
148 f2fs_msg(sbi
->sb
, KERN_WARNING
,
149 "access invalid blkaddr:%u", blkaddr
);
156 if (unlikely(blkaddr
< SEG0_BLKADDR(sbi
) ||
157 blkaddr
>= MAIN_BLKADDR(sbi
)))
168 * Readahead CP/NAT/SIT/SSA pages
170 int ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
174 block_t blkno
= start
;
175 struct f2fs_io_info fio
= {
179 .op_flags
= sync
? (READ_SYNC
| REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
180 .encrypted_page
= NULL
,
181 .is_meta
= (type
!= META_POR
),
183 struct blk_plug plug
;
185 if (unlikely(type
== META_POR
))
186 fio
.op_flags
&= ~REQ_META
;
188 blk_start_plug(&plug
);
189 for (; nrpages
-- > 0; blkno
++) {
191 if (!f2fs_is_valid_blkaddr(sbi
, blkno
, type
))
196 if (unlikely(blkno
>=
197 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
199 /* get nat block addr */
200 fio
.new_blkaddr
= current_nat_addr(sbi
,
201 blkno
* NAT_ENTRY_PER_BLOCK
);
204 /* get sit block addr */
205 fio
.new_blkaddr
= current_sit_addr(sbi
,
206 blkno
* SIT_ENTRY_PER_BLOCK
);
211 fio
.new_blkaddr
= blkno
;
217 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
218 fio
.new_blkaddr
, false);
221 if (PageUptodate(page
)) {
222 f2fs_put_page(page
, 1);
227 fio
.old_blkaddr
= fio
.new_blkaddr
;
228 f2fs_submit_page_mbio(&fio
);
229 f2fs_put_page(page
, 0);
232 f2fs_submit_merged_bio(sbi
, META
, READ
);
233 blk_finish_plug(&plug
);
234 return blkno
- start
;
237 void ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
240 bool readahead
= false;
242 page
= find_get_page(META_MAPPING(sbi
), index
);
243 if (!page
|| !PageUptodate(page
))
245 f2fs_put_page(page
, 0);
248 ra_meta_pages(sbi
, index
, MAX_BIO_BLOCKS(sbi
), META_POR
, true);
251 static int f2fs_write_meta_page(struct page
*page
,
252 struct writeback_control
*wbc
)
254 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
256 trace_f2fs_writepage(page
, META
);
258 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
260 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
262 if (unlikely(f2fs_cp_error(sbi
)))
265 write_meta_page(sbi
, page
);
266 dec_page_count(sbi
, F2FS_DIRTY_META
);
268 if (wbc
->for_reclaim
)
269 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, META
, WRITE
);
273 if (unlikely(f2fs_cp_error(sbi
)))
274 f2fs_submit_merged_bio(sbi
, META
, WRITE
);
279 redirty_page_for_writepage(wbc
, page
);
280 return AOP_WRITEPAGE_ACTIVATE
;
283 static int f2fs_write_meta_pages(struct address_space
*mapping
,
284 struct writeback_control
*wbc
)
286 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
289 /* collect a number of dirty meta pages and write together */
290 if (wbc
->for_kupdate
||
291 get_pages(sbi
, F2FS_DIRTY_META
) < nr_pages_to_skip(sbi
, META
))
294 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
296 /* if mounting is failed, skip writing node pages */
297 mutex_lock(&sbi
->cp_mutex
);
298 diff
= nr_pages_to_write(sbi
, META
, wbc
);
299 written
= sync_meta_pages(sbi
, META
, wbc
->nr_to_write
);
300 mutex_unlock(&sbi
->cp_mutex
);
301 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
305 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
306 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
310 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
313 struct address_space
*mapping
= META_MAPPING(sbi
);
314 pgoff_t index
= 0, end
= ULONG_MAX
, prev
= ULONG_MAX
;
317 struct writeback_control wbc
= {
320 struct blk_plug plug
;
322 pagevec_init(&pvec
, 0);
324 blk_start_plug(&plug
);
326 while (index
<= end
) {
328 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
330 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
331 if (unlikely(nr_pages
== 0))
334 for (i
= 0; i
< nr_pages
; i
++) {
335 struct page
*page
= pvec
.pages
[i
];
337 if (prev
== ULONG_MAX
)
338 prev
= page
->index
- 1;
339 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
340 pagevec_release(&pvec
);
346 if (unlikely(page
->mapping
!= mapping
)) {
351 if (!PageDirty(page
)) {
352 /* someone wrote it for us */
353 goto continue_unlock
;
356 f2fs_wait_on_page_writeback(page
, META
, true);
358 BUG_ON(PageWriteback(page
));
359 if (!clear_page_dirty_for_io(page
))
360 goto continue_unlock
;
362 if (mapping
->a_ops
->writepage(page
, &wbc
)) {
368 if (unlikely(nwritten
>= nr_to_write
))
371 pagevec_release(&pvec
);
376 f2fs_submit_merged_bio(sbi
, type
, WRITE
);
378 blk_finish_plug(&plug
);
383 static int f2fs_set_meta_page_dirty(struct page
*page
)
385 trace_f2fs_set_page_dirty(page
, META
);
387 if (!PageUptodate(page
))
388 SetPageUptodate(page
);
389 if (!PageDirty(page
)) {
390 f2fs_set_page_dirty_nobuffers(page
);
391 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
392 SetPagePrivate(page
);
393 f2fs_trace_pid(page
);
399 const struct address_space_operations f2fs_meta_aops
= {
400 .writepage
= f2fs_write_meta_page
,
401 .writepages
= f2fs_write_meta_pages
,
402 .set_page_dirty
= f2fs_set_meta_page_dirty
,
403 .invalidatepage
= f2fs_invalidate_page
,
404 .releasepage
= f2fs_release_page
,
405 #ifdef CONFIG_MIGRATION
406 .migratepage
= f2fs_migrate_page
,
410 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
412 struct inode_management
*im
= &sbi
->im
[type
];
413 struct ino_entry
*e
, *tmp
;
415 tmp
= f2fs_kmem_cache_alloc(ino_entry_slab
, GFP_NOFS
);
417 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
419 spin_lock(&im
->ino_lock
);
420 e
= radix_tree_lookup(&im
->ino_root
, ino
);
423 if (radix_tree_insert(&im
->ino_root
, ino
, e
)) {
424 spin_unlock(&im
->ino_lock
);
425 radix_tree_preload_end();
428 memset(e
, 0, sizeof(struct ino_entry
));
431 list_add_tail(&e
->list
, &im
->ino_list
);
432 if (type
!= ORPHAN_INO
)
435 spin_unlock(&im
->ino_lock
);
436 radix_tree_preload_end();
439 kmem_cache_free(ino_entry_slab
, tmp
);
442 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
444 struct inode_management
*im
= &sbi
->im
[type
];
447 spin_lock(&im
->ino_lock
);
448 e
= radix_tree_lookup(&im
->ino_root
, ino
);
451 radix_tree_delete(&im
->ino_root
, ino
);
453 spin_unlock(&im
->ino_lock
);
454 kmem_cache_free(ino_entry_slab
, e
);
457 spin_unlock(&im
->ino_lock
);
460 void add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
462 /* add new dirty ino entry into list */
463 __add_ino_entry(sbi
, ino
, type
);
466 void remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
468 /* remove dirty ino entry from list */
469 __remove_ino_entry(sbi
, ino
, type
);
472 /* mode should be APPEND_INO or UPDATE_INO */
473 bool exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
475 struct inode_management
*im
= &sbi
->im
[mode
];
478 spin_lock(&im
->ino_lock
);
479 e
= radix_tree_lookup(&im
->ino_root
, ino
);
480 spin_unlock(&im
->ino_lock
);
481 return e
? true : false;
484 void release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
486 struct ino_entry
*e
, *tmp
;
489 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
<= UPDATE_INO
; i
++) {
490 struct inode_management
*im
= &sbi
->im
[i
];
492 spin_lock(&im
->ino_lock
);
493 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
495 radix_tree_delete(&im
->ino_root
, e
->ino
);
496 kmem_cache_free(ino_entry_slab
, e
);
499 spin_unlock(&im
->ino_lock
);
503 int acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
505 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
508 spin_lock(&im
->ino_lock
);
510 #ifdef CONFIG_F2FS_FAULT_INJECTION
511 if (time_to_inject(sbi
, FAULT_ORPHAN
)) {
512 spin_unlock(&im
->ino_lock
);
516 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
520 spin_unlock(&im
->ino_lock
);
525 void release_orphan_inode(struct f2fs_sb_info
*sbi
)
527 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
529 spin_lock(&im
->ino_lock
);
530 f2fs_bug_on(sbi
, im
->ino_num
== 0);
532 spin_unlock(&im
->ino_lock
);
535 void add_orphan_inode(struct inode
*inode
)
537 /* add new orphan ino entry into list */
538 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, ORPHAN_INO
);
539 update_inode_page(inode
);
542 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
544 /* remove orphan entry from orphan list */
545 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
548 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
552 int err
= acquire_orphan_inode(sbi
);
555 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
556 f2fs_msg(sbi
->sb
, KERN_WARNING
,
557 "%s: orphan failed (ino=%x), run fsck to fix.",
562 __add_ino_entry(sbi
, ino
, ORPHAN_INO
);
564 inode
= f2fs_iget_retry(sbi
->sb
, ino
);
567 * there should be a bug that we can't find the entry
570 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
571 return PTR_ERR(inode
);
576 /* truncate all the data during iput */
579 get_node_info(sbi
, ino
, &ni
);
581 /* ENOMEM was fully retried in f2fs_evict_inode. */
582 if (ni
.blk_addr
!= NULL_ADDR
) {
583 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
584 f2fs_msg(sbi
->sb
, KERN_WARNING
,
585 "%s: orphan failed (ino=%x), run fsck to fix.",
589 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
593 int recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
595 block_t start_blk
, orphan_blocks
, i
, j
;
598 if (!is_set_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
))
601 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
602 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
604 ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
606 for (i
= 0; i
< orphan_blocks
; i
++) {
607 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
608 struct f2fs_orphan_block
*orphan_blk
;
610 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
611 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
612 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
613 err
= recover_orphan_inode(sbi
, ino
);
615 f2fs_put_page(page
, 1);
619 f2fs_put_page(page
, 1);
621 /* clear Orphan Flag */
622 clear_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
);
626 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
628 struct list_head
*head
;
629 struct f2fs_orphan_block
*orphan_blk
= NULL
;
630 unsigned int nentries
= 0;
631 unsigned short index
= 1;
632 unsigned short orphan_blocks
;
633 struct page
*page
= NULL
;
634 struct ino_entry
*orphan
= NULL
;
635 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
637 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
640 * we don't need to do spin_lock(&im->ino_lock) here, since all the
641 * orphan inode operations are covered under f2fs_lock_op().
642 * And, spin_lock should be avoided due to page operations below.
644 head
= &im
->ino_list
;
646 /* loop for each orphan inode entry and write them in Jornal block */
647 list_for_each_entry(orphan
, head
, list
) {
649 page
= grab_meta_page(sbi
, start_blk
++);
651 (struct f2fs_orphan_block
*)page_address(page
);
652 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
655 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
657 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
659 * an orphan block is full of 1020 entries,
660 * then we need to flush current orphan blocks
661 * and bring another one in memory
663 orphan_blk
->blk_addr
= cpu_to_le16(index
);
664 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
665 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
666 set_page_dirty(page
);
667 f2fs_put_page(page
, 1);
675 orphan_blk
->blk_addr
= cpu_to_le16(index
);
676 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
677 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
678 set_page_dirty(page
);
679 f2fs_put_page(page
, 1);
683 static int get_checkpoint_version(struct f2fs_sb_info
*sbi
, block_t cp_addr
,
684 struct f2fs_checkpoint
**cp_block
, struct page
**cp_page
,
685 unsigned long long *version
)
687 unsigned long blk_size
= sbi
->blocksize
;
688 size_t crc_offset
= 0;
691 *cp_page
= get_meta_page(sbi
, cp_addr
);
692 *cp_block
= (struct f2fs_checkpoint
*)page_address(*cp_page
);
694 crc_offset
= le32_to_cpu((*cp_block
)->checksum_offset
);
695 if (crc_offset
>= blk_size
) {
696 f2fs_put_page(*cp_page
, 1);
697 f2fs_msg(sbi
->sb
, KERN_WARNING
,
698 "invalid crc_offset: %zu", crc_offset
);
702 crc
= le32_to_cpu(*((__le32
*)((unsigned char *)*cp_block
704 if (!f2fs_crc_valid(sbi
, crc
, *cp_block
, crc_offset
)) {
705 f2fs_put_page(*cp_page
, 1);
706 f2fs_msg(sbi
->sb
, KERN_WARNING
, "invalid crc value");
710 *version
= cur_cp_version(*cp_block
);
714 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
715 block_t cp_addr
, unsigned long long *version
)
717 struct page
*cp_page_1
= NULL
, *cp_page_2
= NULL
;
718 struct f2fs_checkpoint
*cp_block
= NULL
;
719 unsigned long long cur_version
= 0, pre_version
= 0;
722 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
723 &cp_page_1
, version
);
727 if (le32_to_cpu(cp_block
->cp_pack_total_block_count
) >
728 sbi
->blocks_per_seg
) {
729 f2fs_msg(sbi
->sb
, KERN_WARNING
,
730 "invalid cp_pack_total_block_count:%u",
731 le32_to_cpu(cp_block
->cp_pack_total_block_count
));
734 pre_version
= *version
;
736 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
737 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
738 &cp_page_2
, version
);
741 cur_version
= *version
;
743 if (cur_version
== pre_version
) {
744 *version
= cur_version
;
745 f2fs_put_page(cp_page_2
, 1);
748 f2fs_put_page(cp_page_2
, 1);
750 f2fs_put_page(cp_page_1
, 1);
754 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
756 struct f2fs_checkpoint
*cp_block
;
757 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
758 struct page
*cp1
, *cp2
, *cur_page
;
759 unsigned long blk_size
= sbi
->blocksize
;
760 unsigned long long cp1_version
= 0, cp2_version
= 0;
761 unsigned long long cp_start_blk_no
;
762 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
766 sbi
->ckpt
= kzalloc(cp_blks
* blk_size
, GFP_KERNEL
);
770 * Finding out valid cp block involves read both
771 * sets( cp pack1 and cp pack 2)
773 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
774 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
776 /* The second checkpoint pack should start at the next segment */
777 cp_start_blk_no
+= ((unsigned long long)1) <<
778 le32_to_cpu(fsb
->log_blocks_per_seg
);
779 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
782 if (ver_after(cp2_version
, cp1_version
))
794 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
795 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
798 sbi
->cur_cp_pack
= 1;
800 sbi
->cur_cp_pack
= 2;
802 /* Sanity checking of checkpoint */
803 if (sanity_check_ckpt(sbi
))
804 goto free_fail_no_cp
;
809 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
811 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
813 for (i
= 1; i
< cp_blks
; i
++) {
814 void *sit_bitmap_ptr
;
815 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
817 cur_page
= get_meta_page(sbi
, cp_blk_no
+ i
);
818 sit_bitmap_ptr
= page_address(cur_page
);
819 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
820 f2fs_put_page(cur_page
, 1);
823 f2fs_put_page(cp1
, 1);
824 f2fs_put_page(cp2
, 1);
828 f2fs_put_page(cp1
, 1);
829 f2fs_put_page(cp2
, 1);
835 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
837 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
838 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
840 if (is_inode_flag_set(inode
, flag
))
843 set_inode_flag(inode
, flag
);
844 list_add_tail(&F2FS_I(inode
)->dirty_list
, &sbi
->inode_list
[type
]);
845 stat_inc_dirty_inode(sbi
, type
);
848 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
850 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
852 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
855 list_del_init(&F2FS_I(inode
)->dirty_list
);
856 clear_inode_flag(inode
, flag
);
857 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
860 void update_dirty_page(struct inode
*inode
, struct page
*page
)
862 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
863 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
865 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
866 !S_ISLNK(inode
->i_mode
))
869 spin_lock(&sbi
->inode_lock
[type
]);
870 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
871 __add_dirty_inode(inode
, type
);
872 inode_inc_dirty_pages(inode
);
873 spin_unlock(&sbi
->inode_lock
[type
]);
875 SetPagePrivate(page
);
876 f2fs_trace_pid(page
);
879 void remove_dirty_inode(struct inode
*inode
)
881 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
882 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
884 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
885 !S_ISLNK(inode
->i_mode
))
888 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
891 spin_lock(&sbi
->inode_lock
[type
]);
892 __remove_dirty_inode(inode
, type
);
893 spin_unlock(&sbi
->inode_lock
[type
]);
896 int sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
)
898 struct list_head
*head
;
900 struct f2fs_inode_info
*fi
;
901 bool is_dir
= (type
== DIR_INODE
);
903 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
904 get_pages(sbi
, is_dir
?
905 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
907 if (unlikely(f2fs_cp_error(sbi
)))
910 spin_lock(&sbi
->inode_lock
[type
]);
912 head
= &sbi
->inode_list
[type
];
913 if (list_empty(head
)) {
914 spin_unlock(&sbi
->inode_lock
[type
]);
915 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
916 get_pages(sbi
, is_dir
?
917 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
920 fi
= list_entry(head
->next
, struct f2fs_inode_info
, dirty_list
);
921 inode
= igrab(&fi
->vfs_inode
);
922 spin_unlock(&sbi
->inode_lock
[type
]);
924 filemap_fdatawrite(inode
->i_mapping
);
928 * We should submit bio, since it exists several
929 * wribacking dentry pages in the freeing inode.
931 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
937 int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
939 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
941 struct f2fs_inode_info
*fi
;
942 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
945 if (unlikely(f2fs_cp_error(sbi
)))
948 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
949 if (list_empty(head
)) {
950 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
953 fi
= list_entry(head
->next
, struct f2fs_inode_info
,
955 inode
= igrab(&fi
->vfs_inode
);
956 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
958 update_inode_page(inode
);
966 * Freeze all the FS-operations for checkpoint.
968 static int block_operations(struct f2fs_sb_info
*sbi
)
970 struct writeback_control wbc
= {
971 .sync_mode
= WB_SYNC_ALL
,
972 .nr_to_write
= LONG_MAX
,
975 struct blk_plug plug
;
978 blk_start_plug(&plug
);
982 /* write all the dirty dentry pages */
983 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
984 f2fs_unlock_all(sbi
);
985 err
= sync_dirty_inodes(sbi
, DIR_INODE
);
988 goto retry_flush_dents
;
991 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
992 f2fs_unlock_all(sbi
);
993 err
= f2fs_sync_inode_meta(sbi
);
996 goto retry_flush_dents
;
1000 * POR: we should ensure that there are no dirty node pages
1001 * until finishing nat/sit flush.
1004 down_write(&sbi
->node_write
);
1006 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
1007 up_write(&sbi
->node_write
);
1008 err
= sync_node_pages(sbi
, &wbc
);
1010 f2fs_unlock_all(sbi
);
1013 goto retry_flush_nodes
;
1016 blk_finish_plug(&plug
);
1020 static void unblock_operations(struct f2fs_sb_info
*sbi
)
1022 up_write(&sbi
->node_write
);
1024 build_free_nids(sbi
);
1025 f2fs_unlock_all(sbi
);
1028 static void wait_on_all_pages_writeback(struct f2fs_sb_info
*sbi
)
1033 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1035 if (!atomic_read(&sbi
->nr_wb_bios
))
1038 io_schedule_timeout(5*HZ
);
1040 finish_wait(&sbi
->cp_wait
, &wait
);
1043 static void update_ckpt_flags(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1045 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1046 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1048 spin_lock(&sbi
->cp_lock
);
1050 if (cpc
->reason
== CP_UMOUNT
)
1051 __set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1053 __clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1055 if (cpc
->reason
== CP_FASTBOOT
)
1056 __set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1058 __clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1061 __set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1063 __clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1065 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1066 __set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1068 /* set this flag to activate crc|cp_ver for recovery */
1069 __set_ckpt_flags(ckpt
, CP_CRC_RECOVERY_FLAG
);
1071 spin_unlock(&sbi
->cp_lock
);
1074 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1076 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1077 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1078 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1079 nid_t last_nid
= nm_i
->next_scan_nid
;
1081 unsigned int data_sum_blocks
, orphan_blocks
;
1084 int cp_payload_blks
= __cp_payload(sbi
);
1085 struct super_block
*sb
= sbi
->sb
;
1086 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1089 /* Flush all the NAT/SIT pages */
1090 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
1091 sync_meta_pages(sbi
, META
, LONG_MAX
);
1092 if (unlikely(f2fs_cp_error(sbi
)))
1096 next_free_nid(sbi
, &last_nid
);
1100 * version number is already updated
1102 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
1103 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
1104 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1105 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1106 ckpt
->cur_node_segno
[i
] =
1107 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
1108 ckpt
->cur_node_blkoff
[i
] =
1109 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
1110 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
1111 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
1113 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1114 ckpt
->cur_data_segno
[i
] =
1115 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
1116 ckpt
->cur_data_blkoff
[i
] =
1117 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
1118 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
1119 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
1122 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
1123 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
1124 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
1126 /* 2 cp + n data seg summary + orphan inode blocks */
1127 data_sum_blocks
= npages_for_summary_flush(sbi
, false);
1128 spin_lock(&sbi
->cp_lock
);
1129 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1130 __set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1132 __clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1133 spin_unlock(&sbi
->cp_lock
);
1135 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1136 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1139 if (__remain_node_summaries(cpc
->reason
))
1140 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1141 cp_payload_blks
+ data_sum_blocks
+
1142 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1144 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1145 cp_payload_blks
+ data_sum_blocks
+
1148 /* update ckpt flag for checkpoint */
1149 update_ckpt_flags(sbi
, cpc
);
1151 /* update SIT/NAT bitmap */
1152 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1153 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1155 crc32
= f2fs_crc32(sbi
, ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
1156 *((__le32
*)((unsigned char *)ckpt
+
1157 le32_to_cpu(ckpt
->checksum_offset
)))
1158 = cpu_to_le32(crc32
);
1160 start_blk
= __start_cp_next_addr(sbi
);
1162 /* need to wait for end_io results */
1163 wait_on_all_pages_writeback(sbi
);
1164 if (unlikely(f2fs_cp_error(sbi
)))
1167 /* write out checkpoint buffer at block 0 */
1168 update_meta_page(sbi
, ckpt
, start_blk
++);
1170 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1171 update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1175 write_orphan_inodes(sbi
, start_blk
);
1176 start_blk
+= orphan_blocks
;
1179 write_data_summaries(sbi
, start_blk
);
1180 start_blk
+= data_sum_blocks
;
1182 /* Record write statistics in the hot node summary */
1183 kbytes_written
= sbi
->kbytes_written
;
1184 if (sb
->s_bdev
->bd_part
)
1185 kbytes_written
+= BD_PART_WRITTEN(sbi
);
1187 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1189 if (__remain_node_summaries(cpc
->reason
)) {
1190 write_node_summaries(sbi
, start_blk
);
1191 start_blk
+= NR_CURSEG_NODE_TYPE
;
1194 /* writeout checkpoint block */
1195 update_meta_page(sbi
, ckpt
, start_blk
);
1197 /* wait for previous submitted node/meta pages writeback */
1198 wait_on_all_pages_writeback(sbi
);
1200 if (unlikely(f2fs_cp_error(sbi
)))
1203 filemap_fdatawait_range(NODE_MAPPING(sbi
), 0, LLONG_MAX
);
1204 filemap_fdatawait_range(META_MAPPING(sbi
), 0, LLONG_MAX
);
1206 /* update user_block_counts */
1207 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1208 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1210 /* Here, we only have one bio having CP pack */
1211 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
);
1213 /* wait for previous submitted meta pages writeback */
1214 wait_on_all_pages_writeback(sbi
);
1216 release_ino_entry(sbi
, false);
1218 if (unlikely(f2fs_cp_error(sbi
)))
1221 clear_prefree_segments(sbi
, cpc
);
1222 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1223 clear_sbi_flag(sbi
, SBI_NEED_CP
);
1224 __set_cp_next_pack(sbi
);
1227 * redirty superblock if metadata like node page or inode cache is
1228 * updated during writing checkpoint.
1230 if (get_pages(sbi
, F2FS_DIRTY_NODES
) ||
1231 get_pages(sbi
, F2FS_DIRTY_IMETA
))
1232 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1234 f2fs_bug_on(sbi
, get_pages(sbi
, F2FS_DIRTY_DENTS
));
1240 * We guarantee that this checkpoint procedure will not fail.
1242 int write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1244 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1245 unsigned long long ckpt_ver
;
1248 mutex_lock(&sbi
->cp_mutex
);
1250 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1251 (cpc
->reason
== CP_FASTBOOT
|| cpc
->reason
== CP_SYNC
||
1252 (cpc
->reason
== CP_DISCARD
&& !sbi
->discard_blks
)))
1254 if (unlikely(f2fs_cp_error(sbi
))) {
1258 if (f2fs_readonly(sbi
->sb
)) {
1263 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1265 err
= block_operations(sbi
);
1269 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1271 f2fs_flush_merged_bios(sbi
);
1273 /* this is the case of multiple fstrims without any changes */
1274 if (cpc
->reason
== CP_DISCARD
&& !is_sbi_flag_set(sbi
, SBI_IS_DIRTY
)) {
1275 f2fs_bug_on(sbi
, NM_I(sbi
)->dirty_nat_cnt
);
1276 f2fs_bug_on(sbi
, SIT_I(sbi
)->dirty_sentries
);
1277 f2fs_bug_on(sbi
, prefree_segments(sbi
));
1278 flush_sit_entries(sbi
, cpc
);
1279 clear_prefree_segments(sbi
, cpc
);
1280 f2fs_wait_all_discard_bio(sbi
);
1281 unblock_operations(sbi
);
1286 * update checkpoint pack index
1287 * Increase the version number so that
1288 * SIT entries and seg summaries are written at correct place
1290 ckpt_ver
= cur_cp_version(ckpt
);
1291 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1293 /* write cached NAT/SIT entries to NAT/SIT area */
1294 flush_nat_entries(sbi
);
1295 flush_sit_entries(sbi
, cpc
);
1297 /* unlock all the fs_lock[] in do_checkpoint() */
1298 err
= do_checkpoint(sbi
, cpc
);
1300 f2fs_wait_all_discard_bio(sbi
);
1302 unblock_operations(sbi
);
1303 stat_inc_cp_count(sbi
->stat_info
);
1305 if (cpc
->reason
== CP_RECOVERY
)
1306 f2fs_msg(sbi
->sb
, KERN_NOTICE
,
1307 "checkpoint: version = %llx", ckpt_ver
);
1309 /* do checkpoint periodically */
1310 f2fs_update_time(sbi
, CP_TIME
);
1311 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1313 mutex_unlock(&sbi
->cp_mutex
);
1317 void init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1321 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1322 struct inode_management
*im
= &sbi
->im
[i
];
1324 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1325 spin_lock_init(&im
->ino_lock
);
1326 INIT_LIST_HEAD(&im
->ino_list
);
1330 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1331 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1332 F2FS_ORPHANS_PER_BLOCK
;
1335 int __init
create_checkpoint_caches(void)
1337 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1338 sizeof(struct ino_entry
));
1339 if (!ino_entry_slab
)
1341 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1342 sizeof(struct inode_entry
));
1343 if (!inode_entry_slab
) {
1344 kmem_cache_destroy(ino_entry_slab
);
1350 void destroy_checkpoint_caches(void)
1352 kmem_cache_destroy(ino_entry_slab
);
1353 kmem_cache_destroy(inode_entry_slab
);