arm64: kgdb: Fix single-step exception handling oops
[linux/fpc-iii.git] / fs / f2fs / node.c
blobd87c48e4a9baae784cab228f2b3860c18e8456e0
1 /*
2 * fs/f2fs/node.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
39 si_meminfo(&val);
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
49 PAGE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 if (excess_cached_nats(sbi))
56 res = false;
57 } else if (type == DIRTY_DENTS) {
58 if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 return false;
60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 } else if (type == INO_ENTRIES) {
63 int i;
65 for (i = 0; i <= UPDATE_INO; i++)
66 mem_size += (sbi->im[i].ino_num *
67 sizeof(struct ino_entry)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
69 } else if (type == EXTENT_CACHE) {
70 mem_size = (atomic_read(&sbi->total_ext_tree) *
71 sizeof(struct extent_tree) +
72 atomic_read(&sbi->total_ext_node) *
73 sizeof(struct extent_node)) >> PAGE_SHIFT;
74 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
75 } else {
76 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
77 return true;
79 return res;
82 static void clear_node_page_dirty(struct page *page)
84 struct address_space *mapping = page->mapping;
85 unsigned int long flags;
87 if (PageDirty(page)) {
88 spin_lock_irqsave(&mapping->tree_lock, flags);
89 radix_tree_tag_clear(&mapping->page_tree,
90 page_index(page),
91 PAGECACHE_TAG_DIRTY);
92 spin_unlock_irqrestore(&mapping->tree_lock, flags);
94 clear_page_dirty_for_io(page);
95 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
97 ClearPageUptodate(page);
100 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
102 pgoff_t index = current_nat_addr(sbi, nid);
103 return get_meta_page(sbi, index);
106 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
108 struct page *src_page;
109 struct page *dst_page;
110 pgoff_t src_off;
111 pgoff_t dst_off;
112 void *src_addr;
113 void *dst_addr;
114 struct f2fs_nm_info *nm_i = NM_I(sbi);
116 src_off = current_nat_addr(sbi, nid);
117 dst_off = next_nat_addr(sbi, src_off);
119 /* get current nat block page with lock */
120 src_page = get_meta_page(sbi, src_off);
121 dst_page = grab_meta_page(sbi, dst_off);
122 f2fs_bug_on(sbi, PageDirty(src_page));
124 src_addr = page_address(src_page);
125 dst_addr = page_address(dst_page);
126 memcpy(dst_addr, src_addr, PAGE_SIZE);
127 set_page_dirty(dst_page);
128 f2fs_put_page(src_page, 1);
130 set_to_next_nat(nm_i, nid);
132 return dst_page;
135 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
137 return radix_tree_lookup(&nm_i->nat_root, n);
140 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
141 nid_t start, unsigned int nr, struct nat_entry **ep)
143 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
146 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
148 list_del(&e->list);
149 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
150 nm_i->nat_cnt--;
151 kmem_cache_free(nat_entry_slab, e);
154 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
155 struct nat_entry *ne)
157 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
158 struct nat_entry_set *head;
160 if (get_nat_flag(ne, IS_DIRTY))
161 return;
163 head = radix_tree_lookup(&nm_i->nat_set_root, set);
164 if (!head) {
165 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
167 INIT_LIST_HEAD(&head->entry_list);
168 INIT_LIST_HEAD(&head->set_list);
169 head->set = set;
170 head->entry_cnt = 0;
171 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
173 list_move_tail(&ne->list, &head->entry_list);
174 nm_i->dirty_nat_cnt++;
175 head->entry_cnt++;
176 set_nat_flag(ne, IS_DIRTY, true);
179 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
180 struct nat_entry *ne)
182 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
183 struct nat_entry_set *head;
185 head = radix_tree_lookup(&nm_i->nat_set_root, set);
186 if (head) {
187 list_move_tail(&ne->list, &nm_i->nat_entries);
188 set_nat_flag(ne, IS_DIRTY, false);
189 head->entry_cnt--;
190 nm_i->dirty_nat_cnt--;
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 nid_t start, unsigned int nr, struct nat_entry_set **ep)
197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 start, nr);
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
203 struct f2fs_nm_info *nm_i = NM_I(sbi);
204 struct nat_entry *e;
205 bool need = false;
207 down_read(&nm_i->nat_tree_lock);
208 e = __lookup_nat_cache(nm_i, nid);
209 if (e) {
210 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 !get_nat_flag(e, HAS_FSYNCED_INODE))
212 need = true;
214 up_read(&nm_i->nat_tree_lock);
215 return need;
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
220 struct f2fs_nm_info *nm_i = NM_I(sbi);
221 struct nat_entry *e;
222 bool is_cp = true;
224 down_read(&nm_i->nat_tree_lock);
225 e = __lookup_nat_cache(nm_i, nid);
226 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 is_cp = false;
228 up_read(&nm_i->nat_tree_lock);
229 return is_cp;
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
234 struct f2fs_nm_info *nm_i = NM_I(sbi);
235 struct nat_entry *e;
236 bool need_update = true;
238 down_read(&nm_i->nat_tree_lock);
239 e = __lookup_nat_cache(nm_i, ino);
240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 (get_nat_flag(e, IS_CHECKPOINTED) ||
242 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 need_update = false;
244 up_read(&nm_i->nat_tree_lock);
245 return need_update;
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
250 struct nat_entry *new;
252 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
253 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
254 memset(new, 0, sizeof(struct nat_entry));
255 nat_set_nid(new, nid);
256 nat_reset_flag(new);
257 list_add_tail(&new->list, &nm_i->nat_entries);
258 nm_i->nat_cnt++;
259 return new;
262 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
263 struct f2fs_nat_entry *ne)
265 struct f2fs_nm_info *nm_i = NM_I(sbi);
266 struct nat_entry *e;
268 e = __lookup_nat_cache(nm_i, nid);
269 if (!e) {
270 e = grab_nat_entry(nm_i, nid);
271 node_info_from_raw_nat(&e->ni, ne);
272 } else {
273 f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
274 nat_get_blkaddr(e) != ne->block_addr ||
275 nat_get_version(e) != ne->version);
279 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
280 block_t new_blkaddr, bool fsync_done)
282 struct f2fs_nm_info *nm_i = NM_I(sbi);
283 struct nat_entry *e;
285 down_write(&nm_i->nat_tree_lock);
286 e = __lookup_nat_cache(nm_i, ni->nid);
287 if (!e) {
288 e = grab_nat_entry(nm_i, ni->nid);
289 copy_node_info(&e->ni, ni);
290 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
291 } else if (new_blkaddr == NEW_ADDR) {
293 * when nid is reallocated,
294 * previous nat entry can be remained in nat cache.
295 * So, reinitialize it with new information.
297 copy_node_info(&e->ni, ni);
298 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
301 /* sanity check */
302 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
303 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
304 new_blkaddr == NULL_ADDR);
305 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
306 new_blkaddr == NEW_ADDR);
307 f2fs_bug_on(sbi, is_valid_data_blkaddr(sbi, nat_get_blkaddr(e)) &&
308 new_blkaddr == NEW_ADDR);
310 /* increment version no as node is removed */
311 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
312 unsigned char version = nat_get_version(e);
313 nat_set_version(e, inc_node_version(version));
315 /* in order to reuse the nid */
316 if (nm_i->next_scan_nid > ni->nid)
317 nm_i->next_scan_nid = ni->nid;
320 /* change address */
321 nat_set_blkaddr(e, new_blkaddr);
322 if (!is_valid_data_blkaddr(sbi, new_blkaddr))
323 set_nat_flag(e, IS_CHECKPOINTED, false);
324 __set_nat_cache_dirty(nm_i, e);
326 /* update fsync_mark if its inode nat entry is still alive */
327 if (ni->nid != ni->ino)
328 e = __lookup_nat_cache(nm_i, ni->ino);
329 if (e) {
330 if (fsync_done && ni->nid == ni->ino)
331 set_nat_flag(e, HAS_FSYNCED_INODE, true);
332 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
334 up_write(&nm_i->nat_tree_lock);
337 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
339 struct f2fs_nm_info *nm_i = NM_I(sbi);
340 int nr = nr_shrink;
342 if (!down_write_trylock(&nm_i->nat_tree_lock))
343 return 0;
345 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
346 struct nat_entry *ne;
347 ne = list_first_entry(&nm_i->nat_entries,
348 struct nat_entry, list);
349 __del_from_nat_cache(nm_i, ne);
350 nr_shrink--;
352 up_write(&nm_i->nat_tree_lock);
353 return nr - nr_shrink;
357 * This function always returns success
359 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
361 struct f2fs_nm_info *nm_i = NM_I(sbi);
362 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
363 struct f2fs_journal *journal = curseg->journal;
364 nid_t start_nid = START_NID(nid);
365 struct f2fs_nat_block *nat_blk;
366 struct page *page = NULL;
367 struct f2fs_nat_entry ne;
368 struct nat_entry *e;
369 int i;
371 ni->nid = nid;
373 /* Check nat cache */
374 down_read(&nm_i->nat_tree_lock);
375 e = __lookup_nat_cache(nm_i, nid);
376 if (e) {
377 ni->ino = nat_get_ino(e);
378 ni->blk_addr = nat_get_blkaddr(e);
379 ni->version = nat_get_version(e);
380 up_read(&nm_i->nat_tree_lock);
381 return;
384 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
386 /* Check current segment summary */
387 down_read(&curseg->journal_rwsem);
388 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
389 if (i >= 0) {
390 ne = nat_in_journal(journal, i);
391 node_info_from_raw_nat(ni, &ne);
393 up_read(&curseg->journal_rwsem);
394 if (i >= 0)
395 goto cache;
397 /* Fill node_info from nat page */
398 page = get_current_nat_page(sbi, start_nid);
399 nat_blk = (struct f2fs_nat_block *)page_address(page);
400 ne = nat_blk->entries[nid - start_nid];
401 node_info_from_raw_nat(ni, &ne);
402 f2fs_put_page(page, 1);
403 cache:
404 up_read(&nm_i->nat_tree_lock);
405 /* cache nat entry */
406 down_write(&nm_i->nat_tree_lock);
407 cache_nat_entry(sbi, nid, &ne);
408 up_write(&nm_i->nat_tree_lock);
412 * readahead MAX_RA_NODE number of node pages.
414 static void ra_node_pages(struct page *parent, int start, int n)
416 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
417 struct blk_plug plug;
418 int i, end;
419 nid_t nid;
421 blk_start_plug(&plug);
423 /* Then, try readahead for siblings of the desired node */
424 end = start + n;
425 end = min(end, NIDS_PER_BLOCK);
426 for (i = start; i < end; i++) {
427 nid = get_nid(parent, i, false);
428 ra_node_page(sbi, nid);
431 blk_finish_plug(&plug);
434 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
436 const long direct_index = ADDRS_PER_INODE(dn->inode);
437 const long direct_blks = ADDRS_PER_BLOCK;
438 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
439 unsigned int skipped_unit = ADDRS_PER_BLOCK;
440 int cur_level = dn->cur_level;
441 int max_level = dn->max_level;
442 pgoff_t base = 0;
444 if (!dn->max_level)
445 return pgofs + 1;
447 while (max_level-- > cur_level)
448 skipped_unit *= NIDS_PER_BLOCK;
450 switch (dn->max_level) {
451 case 3:
452 base += 2 * indirect_blks;
453 case 2:
454 base += 2 * direct_blks;
455 case 1:
456 base += direct_index;
457 break;
458 default:
459 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
462 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
466 * The maximum depth is four.
467 * Offset[0] will have raw inode offset.
469 static int get_node_path(struct inode *inode, long block,
470 int offset[4], unsigned int noffset[4])
472 const long direct_index = ADDRS_PER_INODE(inode);
473 const long direct_blks = ADDRS_PER_BLOCK;
474 const long dptrs_per_blk = NIDS_PER_BLOCK;
475 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
476 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
477 int n = 0;
478 int level = 0;
480 noffset[0] = 0;
482 if (block < direct_index) {
483 offset[n] = block;
484 goto got;
486 block -= direct_index;
487 if (block < direct_blks) {
488 offset[n++] = NODE_DIR1_BLOCK;
489 noffset[n] = 1;
490 offset[n] = block;
491 level = 1;
492 goto got;
494 block -= direct_blks;
495 if (block < direct_blks) {
496 offset[n++] = NODE_DIR2_BLOCK;
497 noffset[n] = 2;
498 offset[n] = block;
499 level = 1;
500 goto got;
502 block -= direct_blks;
503 if (block < indirect_blks) {
504 offset[n++] = NODE_IND1_BLOCK;
505 noffset[n] = 3;
506 offset[n++] = block / direct_blks;
507 noffset[n] = 4 + offset[n - 1];
508 offset[n] = block % direct_blks;
509 level = 2;
510 goto got;
512 block -= indirect_blks;
513 if (block < indirect_blks) {
514 offset[n++] = NODE_IND2_BLOCK;
515 noffset[n] = 4 + dptrs_per_blk;
516 offset[n++] = block / direct_blks;
517 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
518 offset[n] = block % direct_blks;
519 level = 2;
520 goto got;
522 block -= indirect_blks;
523 if (block < dindirect_blks) {
524 offset[n++] = NODE_DIND_BLOCK;
525 noffset[n] = 5 + (dptrs_per_blk * 2);
526 offset[n++] = block / indirect_blks;
527 noffset[n] = 6 + (dptrs_per_blk * 2) +
528 offset[n - 1] * (dptrs_per_blk + 1);
529 offset[n++] = (block / direct_blks) % dptrs_per_blk;
530 noffset[n] = 7 + (dptrs_per_blk * 2) +
531 offset[n - 2] * (dptrs_per_blk + 1) +
532 offset[n - 1];
533 offset[n] = block % direct_blks;
534 level = 3;
535 goto got;
536 } else {
537 BUG();
539 got:
540 return level;
544 * Caller should call f2fs_put_dnode(dn).
545 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
546 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
547 * In the case of RDONLY_NODE, we don't need to care about mutex.
549 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
551 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
552 struct page *npage[4];
553 struct page *parent = NULL;
554 int offset[4];
555 unsigned int noffset[4];
556 nid_t nids[4];
557 int level, i = 0;
558 int err = 0;
560 level = get_node_path(dn->inode, index, offset, noffset);
562 nids[0] = dn->inode->i_ino;
563 npage[0] = dn->inode_page;
565 if (!npage[0]) {
566 npage[0] = get_node_page(sbi, nids[0]);
567 if (IS_ERR(npage[0]))
568 return PTR_ERR(npage[0]);
571 /* if inline_data is set, should not report any block indices */
572 if (f2fs_has_inline_data(dn->inode) && index) {
573 err = -ENOENT;
574 f2fs_put_page(npage[0], 1);
575 goto release_out;
578 parent = npage[0];
579 if (level != 0)
580 nids[1] = get_nid(parent, offset[0], true);
581 dn->inode_page = npage[0];
582 dn->inode_page_locked = true;
584 /* get indirect or direct nodes */
585 for (i = 1; i <= level; i++) {
586 bool done = false;
588 if (!nids[i] && mode == ALLOC_NODE) {
589 /* alloc new node */
590 if (!alloc_nid(sbi, &(nids[i]))) {
591 err = -ENOSPC;
592 goto release_pages;
595 dn->nid = nids[i];
596 npage[i] = new_node_page(dn, noffset[i], NULL);
597 if (IS_ERR(npage[i])) {
598 alloc_nid_failed(sbi, nids[i]);
599 err = PTR_ERR(npage[i]);
600 goto release_pages;
603 set_nid(parent, offset[i - 1], nids[i], i == 1);
604 alloc_nid_done(sbi, nids[i]);
605 done = true;
606 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
607 npage[i] = get_node_page_ra(parent, offset[i - 1]);
608 if (IS_ERR(npage[i])) {
609 err = PTR_ERR(npage[i]);
610 goto release_pages;
612 done = true;
614 if (i == 1) {
615 dn->inode_page_locked = false;
616 unlock_page(parent);
617 } else {
618 f2fs_put_page(parent, 1);
621 if (!done) {
622 npage[i] = get_node_page(sbi, nids[i]);
623 if (IS_ERR(npage[i])) {
624 err = PTR_ERR(npage[i]);
625 f2fs_put_page(npage[0], 0);
626 goto release_out;
629 if (i < level) {
630 parent = npage[i];
631 nids[i + 1] = get_nid(parent, offset[i], false);
634 dn->nid = nids[level];
635 dn->ofs_in_node = offset[level];
636 dn->node_page = npage[level];
637 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
638 return 0;
640 release_pages:
641 f2fs_put_page(parent, 1);
642 if (i > 1)
643 f2fs_put_page(npage[0], 0);
644 release_out:
645 dn->inode_page = NULL;
646 dn->node_page = NULL;
647 if (err == -ENOENT) {
648 dn->cur_level = i;
649 dn->max_level = level;
650 dn->ofs_in_node = offset[level];
652 return err;
655 static void truncate_node(struct dnode_of_data *dn)
657 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
658 struct node_info ni;
659 pgoff_t index;
661 get_node_info(sbi, dn->nid, &ni);
662 if (dn->inode->i_blocks == 0) {
663 f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
664 goto invalidate;
666 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
668 /* Deallocate node address */
669 invalidate_blocks(sbi, ni.blk_addr);
670 dec_valid_node_count(sbi, dn->inode);
671 set_node_addr(sbi, &ni, NULL_ADDR, false);
673 if (dn->nid == dn->inode->i_ino) {
674 remove_orphan_inode(sbi, dn->nid);
675 dec_valid_inode_count(sbi);
676 f2fs_inode_synced(dn->inode);
678 invalidate:
679 clear_node_page_dirty(dn->node_page);
680 set_sbi_flag(sbi, SBI_IS_DIRTY);
682 index = dn->node_page->index;
683 f2fs_put_page(dn->node_page, 1);
685 invalidate_mapping_pages(NODE_MAPPING(sbi),
686 index, index);
688 dn->node_page = NULL;
689 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
692 static int truncate_dnode(struct dnode_of_data *dn)
694 struct page *page;
696 if (dn->nid == 0)
697 return 1;
699 /* get direct node */
700 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
701 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
702 return 1;
703 else if (IS_ERR(page))
704 return PTR_ERR(page);
706 /* Make dnode_of_data for parameter */
707 dn->node_page = page;
708 dn->ofs_in_node = 0;
709 truncate_data_blocks(dn);
710 truncate_node(dn);
711 return 1;
714 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
715 int ofs, int depth)
717 struct dnode_of_data rdn = *dn;
718 struct page *page;
719 struct f2fs_node *rn;
720 nid_t child_nid;
721 unsigned int child_nofs;
722 int freed = 0;
723 int i, ret;
725 if (dn->nid == 0)
726 return NIDS_PER_BLOCK + 1;
728 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
730 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
731 if (IS_ERR(page)) {
732 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
733 return PTR_ERR(page);
736 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
738 rn = F2FS_NODE(page);
739 if (depth < 3) {
740 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
741 child_nid = le32_to_cpu(rn->in.nid[i]);
742 if (child_nid == 0)
743 continue;
744 rdn.nid = child_nid;
745 ret = truncate_dnode(&rdn);
746 if (ret < 0)
747 goto out_err;
748 if (set_nid(page, i, 0, false))
749 dn->node_changed = true;
751 } else {
752 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
753 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
754 child_nid = le32_to_cpu(rn->in.nid[i]);
755 if (child_nid == 0) {
756 child_nofs += NIDS_PER_BLOCK + 1;
757 continue;
759 rdn.nid = child_nid;
760 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
761 if (ret == (NIDS_PER_BLOCK + 1)) {
762 if (set_nid(page, i, 0, false))
763 dn->node_changed = true;
764 child_nofs += ret;
765 } else if (ret < 0 && ret != -ENOENT) {
766 goto out_err;
769 freed = child_nofs;
772 if (!ofs) {
773 /* remove current indirect node */
774 dn->node_page = page;
775 truncate_node(dn);
776 freed++;
777 } else {
778 f2fs_put_page(page, 1);
780 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
781 return freed;
783 out_err:
784 f2fs_put_page(page, 1);
785 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
786 return ret;
789 static int truncate_partial_nodes(struct dnode_of_data *dn,
790 struct f2fs_inode *ri, int *offset, int depth)
792 struct page *pages[2];
793 nid_t nid[3];
794 nid_t child_nid;
795 int err = 0;
796 int i;
797 int idx = depth - 2;
799 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
800 if (!nid[0])
801 return 0;
803 /* get indirect nodes in the path */
804 for (i = 0; i < idx + 1; i++) {
805 /* reference count'll be increased */
806 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
807 if (IS_ERR(pages[i])) {
808 err = PTR_ERR(pages[i]);
809 idx = i - 1;
810 goto fail;
812 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
815 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
817 /* free direct nodes linked to a partial indirect node */
818 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
819 child_nid = get_nid(pages[idx], i, false);
820 if (!child_nid)
821 continue;
822 dn->nid = child_nid;
823 err = truncate_dnode(dn);
824 if (err < 0)
825 goto fail;
826 if (set_nid(pages[idx], i, 0, false))
827 dn->node_changed = true;
830 if (offset[idx + 1] == 0) {
831 dn->node_page = pages[idx];
832 dn->nid = nid[idx];
833 truncate_node(dn);
834 } else {
835 f2fs_put_page(pages[idx], 1);
837 offset[idx]++;
838 offset[idx + 1] = 0;
839 idx--;
840 fail:
841 for (i = idx; i >= 0; i--)
842 f2fs_put_page(pages[i], 1);
844 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
846 return err;
850 * All the block addresses of data and nodes should be nullified.
852 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
854 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
855 int err = 0, cont = 1;
856 int level, offset[4], noffset[4];
857 unsigned int nofs = 0;
858 struct f2fs_inode *ri;
859 struct dnode_of_data dn;
860 struct page *page;
862 trace_f2fs_truncate_inode_blocks_enter(inode, from);
864 level = get_node_path(inode, from, offset, noffset);
866 page = get_node_page(sbi, inode->i_ino);
867 if (IS_ERR(page)) {
868 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
869 return PTR_ERR(page);
872 set_new_dnode(&dn, inode, page, NULL, 0);
873 unlock_page(page);
875 ri = F2FS_INODE(page);
876 switch (level) {
877 case 0:
878 case 1:
879 nofs = noffset[1];
880 break;
881 case 2:
882 nofs = noffset[1];
883 if (!offset[level - 1])
884 goto skip_partial;
885 err = truncate_partial_nodes(&dn, ri, offset, level);
886 if (err < 0 && err != -ENOENT)
887 goto fail;
888 nofs += 1 + NIDS_PER_BLOCK;
889 break;
890 case 3:
891 nofs = 5 + 2 * NIDS_PER_BLOCK;
892 if (!offset[level - 1])
893 goto skip_partial;
894 err = truncate_partial_nodes(&dn, ri, offset, level);
895 if (err < 0 && err != -ENOENT)
896 goto fail;
897 break;
898 default:
899 BUG();
902 skip_partial:
903 while (cont) {
904 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
905 switch (offset[0]) {
906 case NODE_DIR1_BLOCK:
907 case NODE_DIR2_BLOCK:
908 err = truncate_dnode(&dn);
909 break;
911 case NODE_IND1_BLOCK:
912 case NODE_IND2_BLOCK:
913 err = truncate_nodes(&dn, nofs, offset[1], 2);
914 break;
916 case NODE_DIND_BLOCK:
917 err = truncate_nodes(&dn, nofs, offset[1], 3);
918 cont = 0;
919 break;
921 default:
922 BUG();
924 if (err < 0 && err != -ENOENT)
925 goto fail;
926 if (offset[1] == 0 &&
927 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
928 lock_page(page);
929 BUG_ON(page->mapping != NODE_MAPPING(sbi));
930 f2fs_wait_on_page_writeback(page, NODE, true);
931 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
932 set_page_dirty(page);
933 unlock_page(page);
935 offset[1] = 0;
936 offset[0]++;
937 nofs += err;
939 fail:
940 f2fs_put_page(page, 0);
941 trace_f2fs_truncate_inode_blocks_exit(inode, err);
942 return err > 0 ? 0 : err;
945 int truncate_xattr_node(struct inode *inode, struct page *page)
947 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
948 nid_t nid = F2FS_I(inode)->i_xattr_nid;
949 struct dnode_of_data dn;
950 struct page *npage;
952 if (!nid)
953 return 0;
955 npage = get_node_page(sbi, nid);
956 if (IS_ERR(npage))
957 return PTR_ERR(npage);
959 f2fs_i_xnid_write(inode, 0);
961 /* need to do checkpoint during fsync */
962 F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
964 set_new_dnode(&dn, inode, page, npage, nid);
966 if (page)
967 dn.inode_page_locked = true;
968 truncate_node(&dn);
969 return 0;
973 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
974 * f2fs_unlock_op().
976 int remove_inode_page(struct inode *inode)
978 struct dnode_of_data dn;
979 int err;
981 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
982 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
983 if (err)
984 return err;
986 err = truncate_xattr_node(inode, dn.inode_page);
987 if (err) {
988 f2fs_put_dnode(&dn);
989 return err;
992 /* remove potential inline_data blocks */
993 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
994 S_ISLNK(inode->i_mode))
995 truncate_data_blocks_range(&dn, 1);
997 /* 0 is possible, after f2fs_new_inode() has failed */
998 f2fs_bug_on(F2FS_I_SB(inode),
999 inode->i_blocks != 0 && inode->i_blocks != 1);
1001 /* will put inode & node pages */
1002 truncate_node(&dn);
1003 return 0;
1006 struct page *new_inode_page(struct inode *inode)
1008 struct dnode_of_data dn;
1010 /* allocate inode page for new inode */
1011 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1013 /* caller should f2fs_put_page(page, 1); */
1014 return new_node_page(&dn, 0, NULL);
1017 struct page *new_node_page(struct dnode_of_data *dn,
1018 unsigned int ofs, struct page *ipage)
1020 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1021 struct node_info old_ni, new_ni;
1022 struct page *page;
1023 int err;
1025 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1026 return ERR_PTR(-EPERM);
1028 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1029 if (!page)
1030 return ERR_PTR(-ENOMEM);
1032 if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1033 err = -ENOSPC;
1034 goto fail;
1037 get_node_info(sbi, dn->nid, &old_ni);
1039 /* Reinitialize old_ni with new node page */
1040 f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1041 new_ni = old_ni;
1042 new_ni.ino = dn->inode->i_ino;
1043 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1045 f2fs_wait_on_page_writeback(page, NODE, true);
1046 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1047 set_cold_node(dn->inode, page);
1048 if (!PageUptodate(page))
1049 SetPageUptodate(page);
1050 if (set_page_dirty(page))
1051 dn->node_changed = true;
1053 if (f2fs_has_xattr_block(ofs))
1054 f2fs_i_xnid_write(dn->inode, dn->nid);
1056 if (ofs == 0)
1057 inc_valid_inode_count(sbi);
1058 return page;
1060 fail:
1061 clear_node_page_dirty(page);
1062 f2fs_put_page(page, 1);
1063 return ERR_PTR(err);
1067 * Caller should do after getting the following values.
1068 * 0: f2fs_put_page(page, 0)
1069 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1071 static int read_node_page(struct page *page, int op_flags)
1073 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1074 struct node_info ni;
1075 struct f2fs_io_info fio = {
1076 .sbi = sbi,
1077 .type = NODE,
1078 .op = REQ_OP_READ,
1079 .op_flags = op_flags,
1080 .page = page,
1081 .encrypted_page = NULL,
1084 if (PageUptodate(page))
1085 return LOCKED_PAGE;
1087 get_node_info(sbi, page->index, &ni);
1089 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1090 ClearPageUptodate(page);
1091 return -ENOENT;
1094 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1095 return f2fs_submit_page_bio(&fio);
1099 * Readahead a node page
1101 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1103 struct page *apage;
1104 int err;
1106 if (!nid)
1107 return;
1108 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1110 rcu_read_lock();
1111 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1112 rcu_read_unlock();
1113 if (apage)
1114 return;
1116 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1117 if (!apage)
1118 return;
1120 err = read_node_page(apage, REQ_RAHEAD);
1121 f2fs_put_page(apage, err ? 1 : 0);
1124 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125 struct page *parent, int start)
1127 struct page *page;
1128 int err;
1130 if (!nid)
1131 return ERR_PTR(-ENOENT);
1132 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1133 repeat:
1134 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1135 if (!page)
1136 return ERR_PTR(-ENOMEM);
1138 err = read_node_page(page, READ_SYNC);
1139 if (err < 0) {
1140 f2fs_put_page(page, 1);
1141 return ERR_PTR(err);
1142 } else if (err == LOCKED_PAGE) {
1143 goto page_hit;
1146 if (parent)
1147 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1149 lock_page(page);
1151 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1152 f2fs_put_page(page, 1);
1153 goto repeat;
1156 if (unlikely(!PageUptodate(page)))
1157 goto out_err;
1158 page_hit:
1159 if(unlikely(nid != nid_of_node(page))) {
1160 f2fs_bug_on(sbi, 1);
1161 ClearPageUptodate(page);
1162 out_err:
1163 f2fs_put_page(page, 1);
1164 return ERR_PTR(-EIO);
1166 return page;
1169 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1171 return __get_node_page(sbi, nid, NULL, 0);
1174 struct page *get_node_page_ra(struct page *parent, int start)
1176 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1177 nid_t nid = get_nid(parent, start, false);
1179 return __get_node_page(sbi, nid, parent, start);
1182 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1184 struct inode *inode;
1185 struct page *page;
1186 int ret;
1188 /* should flush inline_data before evict_inode */
1189 inode = ilookup(sbi->sb, ino);
1190 if (!inode)
1191 return;
1193 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1194 if (!page)
1195 goto iput_out;
1197 if (!PageUptodate(page))
1198 goto page_out;
1200 if (!PageDirty(page))
1201 goto page_out;
1203 if (!clear_page_dirty_for_io(page))
1204 goto page_out;
1206 ret = f2fs_write_inline_data(inode, page);
1207 inode_dec_dirty_pages(inode);
1208 if (ret)
1209 set_page_dirty(page);
1210 page_out:
1211 f2fs_put_page(page, 1);
1212 iput_out:
1213 iput(inode);
1216 void move_node_page(struct page *node_page, int gc_type)
1218 if (gc_type == FG_GC) {
1219 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1220 struct writeback_control wbc = {
1221 .sync_mode = WB_SYNC_ALL,
1222 .nr_to_write = 1,
1223 .for_reclaim = 0,
1226 set_page_dirty(node_page);
1227 f2fs_wait_on_page_writeback(node_page, NODE, true);
1229 f2fs_bug_on(sbi, PageWriteback(node_page));
1230 if (!clear_page_dirty_for_io(node_page))
1231 goto out_page;
1233 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1234 unlock_page(node_page);
1235 goto release_page;
1236 } else {
1237 /* set page dirty and write it */
1238 if (!PageWriteback(node_page))
1239 set_page_dirty(node_page);
1241 out_page:
1242 unlock_page(node_page);
1243 release_page:
1244 f2fs_put_page(node_page, 0);
1247 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1249 pgoff_t index, end;
1250 struct pagevec pvec;
1251 struct page *last_page = NULL;
1253 pagevec_init(&pvec, 0);
1254 index = 0;
1255 end = ULONG_MAX;
1257 while (index <= end) {
1258 int i, nr_pages;
1259 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1260 PAGECACHE_TAG_DIRTY,
1261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1262 if (nr_pages == 0)
1263 break;
1265 for (i = 0; i < nr_pages; i++) {
1266 struct page *page = pvec.pages[i];
1268 if (unlikely(f2fs_cp_error(sbi))) {
1269 f2fs_put_page(last_page, 0);
1270 pagevec_release(&pvec);
1271 return ERR_PTR(-EIO);
1274 if (!IS_DNODE(page) || !is_cold_node(page))
1275 continue;
1276 if (ino_of_node(page) != ino)
1277 continue;
1279 lock_page(page);
1281 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1282 continue_unlock:
1283 unlock_page(page);
1284 continue;
1286 if (ino_of_node(page) != ino)
1287 goto continue_unlock;
1289 if (!PageDirty(page)) {
1290 /* someone wrote it for us */
1291 goto continue_unlock;
1294 if (last_page)
1295 f2fs_put_page(last_page, 0);
1297 get_page(page);
1298 last_page = page;
1299 unlock_page(page);
1301 pagevec_release(&pvec);
1302 cond_resched();
1304 return last_page;
1307 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1308 struct writeback_control *wbc, bool atomic)
1310 pgoff_t index, end;
1311 struct pagevec pvec;
1312 int ret = 0;
1313 struct page *last_page = NULL;
1314 bool marked = false;
1315 nid_t ino = inode->i_ino;
1316 int nwritten = 0;
1318 if (atomic) {
1319 last_page = last_fsync_dnode(sbi, ino);
1320 if (IS_ERR_OR_NULL(last_page))
1321 return PTR_ERR_OR_ZERO(last_page);
1323 retry:
1324 pagevec_init(&pvec, 0);
1325 index = 0;
1326 end = ULONG_MAX;
1328 while (index <= end) {
1329 int i, nr_pages;
1330 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1331 PAGECACHE_TAG_DIRTY,
1332 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1333 if (nr_pages == 0)
1334 break;
1336 for (i = 0; i < nr_pages; i++) {
1337 struct page *page = pvec.pages[i];
1339 if (unlikely(f2fs_cp_error(sbi))) {
1340 f2fs_put_page(last_page, 0);
1341 pagevec_release(&pvec);
1342 return -EIO;
1345 if (!IS_DNODE(page) || !is_cold_node(page))
1346 continue;
1347 if (ino_of_node(page) != ino)
1348 continue;
1350 lock_page(page);
1352 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1353 continue_unlock:
1354 unlock_page(page);
1355 continue;
1357 if (ino_of_node(page) != ino)
1358 goto continue_unlock;
1360 if (!PageDirty(page) && page != last_page) {
1361 /* someone wrote it for us */
1362 goto continue_unlock;
1365 f2fs_wait_on_page_writeback(page, NODE, true);
1366 BUG_ON(PageWriteback(page));
1368 if (!atomic || page == last_page) {
1369 set_fsync_mark(page, 1);
1370 if (IS_INODE(page)) {
1371 if (is_inode_flag_set(inode,
1372 FI_DIRTY_INODE))
1373 update_inode(inode, page);
1374 set_dentry_mark(page,
1375 need_dentry_mark(sbi, ino));
1377 /* may be written by other thread */
1378 if (!PageDirty(page))
1379 set_page_dirty(page);
1382 if (!clear_page_dirty_for_io(page))
1383 goto continue_unlock;
1385 ret = NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1386 if (ret) {
1387 unlock_page(page);
1388 f2fs_put_page(last_page, 0);
1389 break;
1390 } else {
1391 nwritten++;
1394 if (page == last_page) {
1395 f2fs_put_page(page, 0);
1396 marked = true;
1397 break;
1400 pagevec_release(&pvec);
1401 cond_resched();
1403 if (ret || marked)
1404 break;
1406 if (!ret && atomic && !marked) {
1407 f2fs_msg(sbi->sb, KERN_DEBUG,
1408 "Retry to write fsync mark: ino=%u, idx=%lx",
1409 ino, last_page->index);
1410 lock_page(last_page);
1411 set_page_dirty(last_page);
1412 unlock_page(last_page);
1413 goto retry;
1416 if (nwritten)
1417 f2fs_submit_merged_bio_cond(sbi, NULL, NULL, ino, NODE, WRITE);
1418 return ret ? -EIO: 0;
1421 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1423 pgoff_t index, end;
1424 struct pagevec pvec;
1425 int step = 0;
1426 int nwritten = 0;
1427 int ret = 0;
1429 pagevec_init(&pvec, 0);
1431 next_step:
1432 index = 0;
1433 end = ULONG_MAX;
1435 while (index <= end) {
1436 int i, nr_pages;
1437 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1438 PAGECACHE_TAG_DIRTY,
1439 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1440 if (nr_pages == 0)
1441 break;
1443 for (i = 0; i < nr_pages; i++) {
1444 struct page *page = pvec.pages[i];
1446 if (unlikely(f2fs_cp_error(sbi))) {
1447 pagevec_release(&pvec);
1448 ret = -EIO;
1449 goto out;
1453 * flushing sequence with step:
1454 * 0. indirect nodes
1455 * 1. dentry dnodes
1456 * 2. file dnodes
1458 if (step == 0 && IS_DNODE(page))
1459 continue;
1460 if (step == 1 && (!IS_DNODE(page) ||
1461 is_cold_node(page)))
1462 continue;
1463 if (step == 2 && (!IS_DNODE(page) ||
1464 !is_cold_node(page)))
1465 continue;
1466 lock_node:
1467 if (wbc->sync_mode == WB_SYNC_ALL)
1468 lock_page(page);
1469 else if (!trylock_page(page))
1470 continue;
1472 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1473 continue_unlock:
1474 unlock_page(page);
1475 continue;
1478 if (!PageDirty(page)) {
1479 /* someone wrote it for us */
1480 goto continue_unlock;
1483 /* flush inline_data */
1484 if (is_inline_node(page)) {
1485 clear_inline_node(page);
1486 unlock_page(page);
1487 flush_inline_data(sbi, ino_of_node(page));
1488 goto lock_node;
1491 f2fs_wait_on_page_writeback(page, NODE, true);
1493 BUG_ON(PageWriteback(page));
1494 if (!clear_page_dirty_for_io(page))
1495 goto continue_unlock;
1497 set_fsync_mark(page, 0);
1498 set_dentry_mark(page, 0);
1500 if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
1501 unlock_page(page);
1502 else
1503 nwritten++;
1505 if (--wbc->nr_to_write == 0)
1506 break;
1508 pagevec_release(&pvec);
1509 cond_resched();
1511 if (wbc->nr_to_write == 0) {
1512 step = 2;
1513 break;
1517 if (step < 2) {
1518 step++;
1519 goto next_step;
1521 out:
1522 if (nwritten)
1523 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1524 return ret;
1527 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1529 pgoff_t index = 0, end = ULONG_MAX;
1530 struct pagevec pvec;
1531 int ret2, ret = 0;
1533 pagevec_init(&pvec, 0);
1535 while (index <= end) {
1536 int i, nr_pages;
1537 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1538 PAGECACHE_TAG_WRITEBACK,
1539 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1540 if (nr_pages == 0)
1541 break;
1543 for (i = 0; i < nr_pages; i++) {
1544 struct page *page = pvec.pages[i];
1546 /* until radix tree lookup accepts end_index */
1547 if (unlikely(page->index > end))
1548 continue;
1550 if (ino && ino_of_node(page) == ino) {
1551 f2fs_wait_on_page_writeback(page, NODE, true);
1552 if (TestClearPageError(page))
1553 ret = -EIO;
1556 pagevec_release(&pvec);
1557 cond_resched();
1560 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1561 if (!ret)
1562 ret = ret2;
1563 return ret;
1566 static int f2fs_write_node_page(struct page *page,
1567 struct writeback_control *wbc)
1569 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1570 nid_t nid;
1571 struct node_info ni;
1572 struct f2fs_io_info fio = {
1573 .sbi = sbi,
1574 .type = NODE,
1575 .op = REQ_OP_WRITE,
1576 .op_flags = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : 0,
1577 .page = page,
1578 .encrypted_page = NULL,
1581 trace_f2fs_writepage(page, NODE);
1583 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1584 goto redirty_out;
1585 if (unlikely(f2fs_cp_error(sbi)))
1586 goto redirty_out;
1588 /* get old block addr of this node page */
1589 nid = nid_of_node(page);
1590 f2fs_bug_on(sbi, page->index != nid);
1592 if (wbc->for_reclaim) {
1593 if (!down_read_trylock(&sbi->node_write))
1594 goto redirty_out;
1595 } else {
1596 down_read(&sbi->node_write);
1599 get_node_info(sbi, nid, &ni);
1601 /* This page is already truncated */
1602 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1603 ClearPageUptodate(page);
1604 dec_page_count(sbi, F2FS_DIRTY_NODES);
1605 up_read(&sbi->node_write);
1606 unlock_page(page);
1607 return 0;
1610 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1611 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr, DATA_GENERIC)) {
1612 up_read(&sbi->node_write);
1613 goto redirty_out;
1616 set_page_writeback(page);
1617 fio.old_blkaddr = ni.blk_addr;
1618 write_node_page(nid, &fio);
1619 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1620 dec_page_count(sbi, F2FS_DIRTY_NODES);
1621 up_read(&sbi->node_write);
1623 if (wbc->for_reclaim)
1624 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1626 unlock_page(page);
1628 if (unlikely(f2fs_cp_error(sbi)))
1629 f2fs_submit_merged_bio(sbi, NODE, WRITE);
1631 return 0;
1633 redirty_out:
1634 redirty_page_for_writepage(wbc, page);
1635 return AOP_WRITEPAGE_ACTIVATE;
1638 static int f2fs_write_node_pages(struct address_space *mapping,
1639 struct writeback_control *wbc)
1641 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1642 struct blk_plug plug;
1643 long diff;
1645 /* balancing f2fs's metadata in background */
1646 f2fs_balance_fs_bg(sbi);
1648 /* collect a number of dirty node pages and write together */
1649 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1650 goto skip_write;
1652 trace_f2fs_writepages(mapping->host, wbc, NODE);
1654 diff = nr_pages_to_write(sbi, NODE, wbc);
1655 wbc->sync_mode = WB_SYNC_NONE;
1656 blk_start_plug(&plug);
1657 sync_node_pages(sbi, wbc);
1658 blk_finish_plug(&plug);
1659 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1660 return 0;
1662 skip_write:
1663 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1664 trace_f2fs_writepages(mapping->host, wbc, NODE);
1665 return 0;
1668 static int f2fs_set_node_page_dirty(struct page *page)
1670 trace_f2fs_set_page_dirty(page, NODE);
1672 if (!PageUptodate(page))
1673 SetPageUptodate(page);
1674 if (!PageDirty(page)) {
1675 f2fs_set_page_dirty_nobuffers(page);
1676 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1677 SetPagePrivate(page);
1678 f2fs_trace_pid(page);
1679 return 1;
1681 return 0;
1685 * Structure of the f2fs node operations
1687 const struct address_space_operations f2fs_node_aops = {
1688 .writepage = f2fs_write_node_page,
1689 .writepages = f2fs_write_node_pages,
1690 .set_page_dirty = f2fs_set_node_page_dirty,
1691 .invalidatepage = f2fs_invalidate_page,
1692 .releasepage = f2fs_release_page,
1693 #ifdef CONFIG_MIGRATION
1694 .migratepage = f2fs_migrate_page,
1695 #endif
1698 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1699 nid_t n)
1701 return radix_tree_lookup(&nm_i->free_nid_root, n);
1704 static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1705 struct free_nid *i)
1707 list_del(&i->list);
1708 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1711 static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1713 struct f2fs_nm_info *nm_i = NM_I(sbi);
1714 struct free_nid *i, *e;
1715 struct nat_entry *ne;
1716 int err = -EINVAL;
1718 if (!available_free_memory(sbi, FREE_NIDS))
1719 return -1;
1721 /* 0 nid should not be used */
1722 if (unlikely(nid == 0))
1723 return 0;
1725 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1726 i->nid = nid;
1727 i->state = NID_NEW;
1729 if (radix_tree_preload(GFP_NOFS))
1730 goto err;
1732 spin_lock(&nm_i->free_nid_list_lock);
1734 if (build) {
1736 * Thread A Thread B
1737 * - f2fs_create
1738 * - f2fs_new_inode
1739 * - alloc_nid
1740 * - __insert_nid_to_list(ALLOC_NID_LIST)
1741 * - f2fs_balance_fs_bg
1742 * - build_free_nids
1743 * - __build_free_nids
1744 * - scan_nat_page
1745 * - add_free_nid
1746 * - __lookup_nat_cache
1747 * - f2fs_add_link
1748 * - init_inode_metadata
1749 * - new_inode_page
1750 * - new_node_page
1751 * - set_node_addr
1752 * - alloc_nid_done
1753 * - __remove_nid_from_list(ALLOC_NID_LIST)
1754 * - __insert_nid_to_list(FREE_NID_LIST)
1756 ne = __lookup_nat_cache(nm_i, nid);
1757 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1758 nat_get_blkaddr(ne) != NULL_ADDR))
1759 goto err_out;
1761 e = __lookup_free_nid_list(nm_i, nid);
1762 if (e)
1763 goto err_out;
1765 if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i))
1766 goto err_out;
1767 err = 0;
1768 list_add_tail(&i->list, &nm_i->free_nid_list);
1769 nm_i->fcnt++;
1770 err_out:
1771 spin_unlock(&nm_i->free_nid_list_lock);
1772 radix_tree_preload_end();
1773 err:
1774 if (err)
1775 kmem_cache_free(free_nid_slab, i);
1776 return !err;
1779 static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1781 struct free_nid *i;
1782 bool need_free = false;
1784 spin_lock(&nm_i->free_nid_list_lock);
1785 i = __lookup_free_nid_list(nm_i, nid);
1786 if (i && i->state == NID_NEW) {
1787 __del_from_free_nid_list(nm_i, i);
1788 nm_i->fcnt--;
1789 need_free = true;
1791 spin_unlock(&nm_i->free_nid_list_lock);
1793 if (need_free)
1794 kmem_cache_free(free_nid_slab, i);
1797 static void scan_nat_page(struct f2fs_sb_info *sbi,
1798 struct page *nat_page, nid_t start_nid)
1800 struct f2fs_nm_info *nm_i = NM_I(sbi);
1801 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1802 block_t blk_addr;
1803 int i;
1805 i = start_nid % NAT_ENTRY_PER_BLOCK;
1807 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1809 if (unlikely(start_nid >= nm_i->max_nid))
1810 break;
1812 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1813 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1814 if (blk_addr == NULL_ADDR) {
1815 if (add_free_nid(sbi, start_nid, true) < 0)
1816 break;
1821 void build_free_nids(struct f2fs_sb_info *sbi)
1823 struct f2fs_nm_info *nm_i = NM_I(sbi);
1824 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1825 struct f2fs_journal *journal = curseg->journal;
1826 int i = 0;
1827 nid_t nid = nm_i->next_scan_nid;
1829 /* Enough entries */
1830 if (nm_i->fcnt >= NAT_ENTRY_PER_BLOCK)
1831 return;
1833 /* readahead nat pages to be scanned */
1834 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1835 META_NAT, true);
1837 down_read(&nm_i->nat_tree_lock);
1839 while (1) {
1840 struct page *page = get_current_nat_page(sbi, nid);
1842 scan_nat_page(sbi, page, nid);
1843 f2fs_put_page(page, 1);
1845 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1846 if (unlikely(nid >= nm_i->max_nid))
1847 nid = 0;
1849 if (++i >= FREE_NID_PAGES)
1850 break;
1853 /* go to the next free nat pages to find free nids abundantly */
1854 nm_i->next_scan_nid = nid;
1856 /* find free nids from current sum_pages */
1857 down_read(&curseg->journal_rwsem);
1858 for (i = 0; i < nats_in_cursum(journal); i++) {
1859 block_t addr;
1861 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1862 nid = le32_to_cpu(nid_in_journal(journal, i));
1863 if (addr == NULL_ADDR)
1864 add_free_nid(sbi, nid, true);
1865 else
1866 remove_free_nid(nm_i, nid);
1868 up_read(&curseg->journal_rwsem);
1869 up_read(&nm_i->nat_tree_lock);
1871 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1872 nm_i->ra_nid_pages, META_NAT, false);
1876 * If this function returns success, caller can obtain a new nid
1877 * from second parameter of this function.
1878 * The returned nid could be used ino as well as nid when inode is created.
1880 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1882 struct f2fs_nm_info *nm_i = NM_I(sbi);
1883 struct free_nid *i = NULL;
1884 retry:
1885 #ifdef CONFIG_F2FS_FAULT_INJECTION
1886 if (time_to_inject(sbi, FAULT_ALLOC_NID))
1887 return false;
1888 #endif
1889 if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
1890 return false;
1892 spin_lock(&nm_i->free_nid_list_lock);
1894 /* We should not use stale free nids created by build_free_nids */
1895 if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1896 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1897 list_for_each_entry(i, &nm_i->free_nid_list, list)
1898 if (i->state == NID_NEW)
1899 break;
1901 f2fs_bug_on(sbi, i->state != NID_NEW);
1902 *nid = i->nid;
1903 i->state = NID_ALLOC;
1904 nm_i->fcnt--;
1905 spin_unlock(&nm_i->free_nid_list_lock);
1906 return true;
1908 spin_unlock(&nm_i->free_nid_list_lock);
1910 /* Let's scan nat pages and its caches to get free nids */
1911 mutex_lock(&nm_i->build_lock);
1912 build_free_nids(sbi);
1913 mutex_unlock(&nm_i->build_lock);
1914 goto retry;
1918 * alloc_nid() should be called prior to this function.
1920 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1922 struct f2fs_nm_info *nm_i = NM_I(sbi);
1923 struct free_nid *i;
1925 spin_lock(&nm_i->free_nid_list_lock);
1926 i = __lookup_free_nid_list(nm_i, nid);
1927 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1928 __del_from_free_nid_list(nm_i, i);
1929 spin_unlock(&nm_i->free_nid_list_lock);
1931 kmem_cache_free(free_nid_slab, i);
1935 * alloc_nid() should be called prior to this function.
1937 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1939 struct f2fs_nm_info *nm_i = NM_I(sbi);
1940 struct free_nid *i;
1941 bool need_free = false;
1943 if (!nid)
1944 return;
1946 spin_lock(&nm_i->free_nid_list_lock);
1947 i = __lookup_free_nid_list(nm_i, nid);
1948 f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1949 if (!available_free_memory(sbi, FREE_NIDS)) {
1950 __del_from_free_nid_list(nm_i, i);
1951 need_free = true;
1952 } else {
1953 i->state = NID_NEW;
1954 nm_i->fcnt++;
1956 spin_unlock(&nm_i->free_nid_list_lock);
1958 if (need_free)
1959 kmem_cache_free(free_nid_slab, i);
1962 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1964 struct f2fs_nm_info *nm_i = NM_I(sbi);
1965 struct free_nid *i, *next;
1966 int nr = nr_shrink;
1968 if (nm_i->fcnt <= MAX_FREE_NIDS)
1969 return 0;
1971 if (!mutex_trylock(&nm_i->build_lock))
1972 return 0;
1974 spin_lock(&nm_i->free_nid_list_lock);
1975 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1976 if (nr_shrink <= 0 || nm_i->fcnt <= MAX_FREE_NIDS)
1977 break;
1978 if (i->state == NID_ALLOC)
1979 continue;
1980 __del_from_free_nid_list(nm_i, i);
1981 kmem_cache_free(free_nid_slab, i);
1982 nm_i->fcnt--;
1983 nr_shrink--;
1985 spin_unlock(&nm_i->free_nid_list_lock);
1986 mutex_unlock(&nm_i->build_lock);
1988 return nr - nr_shrink;
1991 void recover_inline_xattr(struct inode *inode, struct page *page)
1993 void *src_addr, *dst_addr;
1994 size_t inline_size;
1995 struct page *ipage;
1996 struct f2fs_inode *ri;
1998 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1999 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2001 ri = F2FS_INODE(page);
2002 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2003 clear_inode_flag(inode, FI_INLINE_XATTR);
2004 goto update_inode;
2007 dst_addr = inline_xattr_addr(ipage);
2008 src_addr = inline_xattr_addr(page);
2009 inline_size = inline_xattr_size(inode);
2011 f2fs_wait_on_page_writeback(ipage, NODE, true);
2012 memcpy(dst_addr, src_addr, inline_size);
2013 update_inode:
2014 update_inode(inode, ipage);
2015 f2fs_put_page(ipage, 1);
2018 void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2020 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2021 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2022 nid_t new_xnid = nid_of_node(page);
2023 struct node_info ni;
2025 /* 1: invalidate the previous xattr nid */
2026 if (!prev_xnid)
2027 goto recover_xnid;
2029 /* Deallocate node address */
2030 get_node_info(sbi, prev_xnid, &ni);
2031 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2032 invalidate_blocks(sbi, ni.blk_addr);
2033 dec_valid_node_count(sbi, inode);
2034 set_node_addr(sbi, &ni, NULL_ADDR, false);
2036 recover_xnid:
2037 /* 2: allocate new xattr nid */
2038 if (unlikely(!inc_valid_node_count(sbi, inode)))
2039 f2fs_bug_on(sbi, 1);
2041 remove_free_nid(NM_I(sbi), new_xnid);
2042 get_node_info(sbi, new_xnid, &ni);
2043 ni.ino = inode->i_ino;
2044 set_node_addr(sbi, &ni, NEW_ADDR, false);
2045 f2fs_i_xnid_write(inode, new_xnid);
2047 /* 3: update xattr blkaddr */
2048 refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
2049 set_node_addr(sbi, &ni, blkaddr, false);
2052 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2054 struct f2fs_inode *src, *dst;
2055 nid_t ino = ino_of_node(page);
2056 struct node_info old_ni, new_ni;
2057 struct page *ipage;
2059 get_node_info(sbi, ino, &old_ni);
2061 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2062 return -EINVAL;
2063 retry:
2064 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2065 if (!ipage) {
2066 congestion_wait(BLK_RW_ASYNC, HZ/50);
2067 goto retry;
2070 /* Should not use this inode from free nid list */
2071 remove_free_nid(NM_I(sbi), ino);
2073 if (!PageUptodate(ipage))
2074 SetPageUptodate(ipage);
2075 fill_node_footer(ipage, ino, ino, 0, true);
2077 src = F2FS_INODE(page);
2078 dst = F2FS_INODE(ipage);
2080 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2081 dst->i_size = 0;
2082 dst->i_blocks = cpu_to_le64(1);
2083 dst->i_links = cpu_to_le32(1);
2084 dst->i_xattr_nid = 0;
2085 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2087 new_ni = old_ni;
2088 new_ni.ino = ino;
2090 if (unlikely(!inc_valid_node_count(sbi, NULL)))
2091 WARN_ON(1);
2092 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2093 inc_valid_inode_count(sbi);
2094 set_page_dirty(ipage);
2095 f2fs_put_page(ipage, 1);
2096 return 0;
2099 int restore_node_summary(struct f2fs_sb_info *sbi,
2100 unsigned int segno, struct f2fs_summary_block *sum)
2102 struct f2fs_node *rn;
2103 struct f2fs_summary *sum_entry;
2104 block_t addr;
2105 int bio_blocks = MAX_BIO_BLOCKS(sbi);
2106 int i, idx, last_offset, nrpages;
2108 /* scan the node segment */
2109 last_offset = sbi->blocks_per_seg;
2110 addr = START_BLOCK(sbi, segno);
2111 sum_entry = &sum->entries[0];
2113 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2114 nrpages = min(last_offset - i, bio_blocks);
2116 /* readahead node pages */
2117 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2119 for (idx = addr; idx < addr + nrpages; idx++) {
2120 struct page *page = get_tmp_page(sbi, idx);
2122 rn = F2FS_NODE(page);
2123 sum_entry->nid = rn->footer.nid;
2124 sum_entry->version = 0;
2125 sum_entry->ofs_in_node = 0;
2126 sum_entry++;
2127 f2fs_put_page(page, 1);
2130 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2131 addr + nrpages);
2133 return 0;
2136 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2138 struct f2fs_nm_info *nm_i = NM_I(sbi);
2139 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2140 struct f2fs_journal *journal = curseg->journal;
2141 int i;
2143 down_write(&curseg->journal_rwsem);
2144 for (i = 0; i < nats_in_cursum(journal); i++) {
2145 struct nat_entry *ne;
2146 struct f2fs_nat_entry raw_ne;
2147 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2149 raw_ne = nat_in_journal(journal, i);
2151 ne = __lookup_nat_cache(nm_i, nid);
2152 if (!ne) {
2153 ne = grab_nat_entry(nm_i, nid);
2154 node_info_from_raw_nat(&ne->ni, &raw_ne);
2156 __set_nat_cache_dirty(nm_i, ne);
2158 update_nats_in_cursum(journal, -i);
2159 up_write(&curseg->journal_rwsem);
2162 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2163 struct list_head *head, int max)
2165 struct nat_entry_set *cur;
2167 if (nes->entry_cnt >= max)
2168 goto add_out;
2170 list_for_each_entry(cur, head, set_list) {
2171 if (cur->entry_cnt >= nes->entry_cnt) {
2172 list_add(&nes->set_list, cur->set_list.prev);
2173 return;
2176 add_out:
2177 list_add_tail(&nes->set_list, head);
2180 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2181 struct nat_entry_set *set)
2183 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2184 struct f2fs_journal *journal = curseg->journal;
2185 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2186 bool to_journal = true;
2187 struct f2fs_nat_block *nat_blk;
2188 struct nat_entry *ne, *cur;
2189 struct page *page = NULL;
2192 * there are two steps to flush nat entries:
2193 * #1, flush nat entries to journal in current hot data summary block.
2194 * #2, flush nat entries to nat page.
2196 if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2197 to_journal = false;
2199 if (to_journal) {
2200 down_write(&curseg->journal_rwsem);
2201 } else {
2202 page = get_next_nat_page(sbi, start_nid);
2203 nat_blk = page_address(page);
2204 f2fs_bug_on(sbi, !nat_blk);
2207 /* flush dirty nats in nat entry set */
2208 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2209 struct f2fs_nat_entry *raw_ne;
2210 nid_t nid = nat_get_nid(ne);
2211 int offset;
2213 if (nat_get_blkaddr(ne) == NEW_ADDR)
2214 continue;
2216 if (to_journal) {
2217 offset = lookup_journal_in_cursum(journal,
2218 NAT_JOURNAL, nid, 1);
2219 f2fs_bug_on(sbi, offset < 0);
2220 raw_ne = &nat_in_journal(journal, offset);
2221 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2222 } else {
2223 raw_ne = &nat_blk->entries[nid - start_nid];
2225 raw_nat_from_node_info(raw_ne, &ne->ni);
2226 nat_reset_flag(ne);
2227 __clear_nat_cache_dirty(NM_I(sbi), ne);
2228 if (nat_get_blkaddr(ne) == NULL_ADDR)
2229 add_free_nid(sbi, nid, false);
2232 if (to_journal)
2233 up_write(&curseg->journal_rwsem);
2234 else
2235 f2fs_put_page(page, 1);
2237 f2fs_bug_on(sbi, set->entry_cnt);
2239 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2240 kmem_cache_free(nat_entry_set_slab, set);
2244 * This function is called during the checkpointing process.
2246 void flush_nat_entries(struct f2fs_sb_info *sbi)
2248 struct f2fs_nm_info *nm_i = NM_I(sbi);
2249 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2250 struct f2fs_journal *journal = curseg->journal;
2251 struct nat_entry_set *setvec[SETVEC_SIZE];
2252 struct nat_entry_set *set, *tmp;
2253 unsigned int found;
2254 nid_t set_idx = 0;
2255 LIST_HEAD(sets);
2257 if (!nm_i->dirty_nat_cnt)
2258 return;
2260 down_write(&nm_i->nat_tree_lock);
2263 * if there are no enough space in journal to store dirty nat
2264 * entries, remove all entries from journal and merge them
2265 * into nat entry set.
2267 if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2268 remove_nats_in_journal(sbi);
2270 while ((found = __gang_lookup_nat_set(nm_i,
2271 set_idx, SETVEC_SIZE, setvec))) {
2272 unsigned idx;
2273 set_idx = setvec[found - 1]->set + 1;
2274 for (idx = 0; idx < found; idx++)
2275 __adjust_nat_entry_set(setvec[idx], &sets,
2276 MAX_NAT_JENTRIES(journal));
2279 /* flush dirty nats in nat entry set */
2280 list_for_each_entry_safe(set, tmp, &sets, set_list)
2281 __flush_nat_entry_set(sbi, set);
2283 up_write(&nm_i->nat_tree_lock);
2285 f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
2288 static int init_node_manager(struct f2fs_sb_info *sbi)
2290 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2291 struct f2fs_nm_info *nm_i = NM_I(sbi);
2292 unsigned char *version_bitmap;
2293 unsigned int nat_segs, nat_blocks;
2295 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2297 /* segment_count_nat includes pair segment so divide to 2. */
2298 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2299 nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2301 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2303 /* not used nids: 0, node, meta, (and root counted as valid node) */
2304 nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2305 nm_i->fcnt = 0;
2306 nm_i->nat_cnt = 0;
2307 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2308 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2309 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2311 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2312 INIT_LIST_HEAD(&nm_i->free_nid_list);
2313 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2314 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2315 INIT_LIST_HEAD(&nm_i->nat_entries);
2317 mutex_init(&nm_i->build_lock);
2318 spin_lock_init(&nm_i->free_nid_list_lock);
2319 init_rwsem(&nm_i->nat_tree_lock);
2321 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2322 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2323 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2324 if (!version_bitmap)
2325 return -EFAULT;
2327 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2328 GFP_KERNEL);
2329 if (!nm_i->nat_bitmap)
2330 return -ENOMEM;
2331 return 0;
2334 int build_node_manager(struct f2fs_sb_info *sbi)
2336 int err;
2338 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2339 if (!sbi->nm_info)
2340 return -ENOMEM;
2342 err = init_node_manager(sbi);
2343 if (err)
2344 return err;
2346 build_free_nids(sbi);
2347 return 0;
2350 void destroy_node_manager(struct f2fs_sb_info *sbi)
2352 struct f2fs_nm_info *nm_i = NM_I(sbi);
2353 struct free_nid *i, *next_i;
2354 struct nat_entry *natvec[NATVEC_SIZE];
2355 struct nat_entry_set *setvec[SETVEC_SIZE];
2356 nid_t nid = 0;
2357 unsigned int found;
2359 if (!nm_i)
2360 return;
2362 /* destroy free nid list */
2363 spin_lock(&nm_i->free_nid_list_lock);
2364 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2365 f2fs_bug_on(sbi, i->state == NID_ALLOC);
2366 __del_from_free_nid_list(nm_i, i);
2367 nm_i->fcnt--;
2368 spin_unlock(&nm_i->free_nid_list_lock);
2369 kmem_cache_free(free_nid_slab, i);
2370 spin_lock(&nm_i->free_nid_list_lock);
2372 f2fs_bug_on(sbi, nm_i->fcnt);
2373 spin_unlock(&nm_i->free_nid_list_lock);
2375 /* destroy nat cache */
2376 down_write(&nm_i->nat_tree_lock);
2377 while ((found = __gang_lookup_nat_cache(nm_i,
2378 nid, NATVEC_SIZE, natvec))) {
2379 unsigned idx;
2381 nid = nat_get_nid(natvec[found - 1]) + 1;
2382 for (idx = 0; idx < found; idx++)
2383 __del_from_nat_cache(nm_i, natvec[idx]);
2385 f2fs_bug_on(sbi, nm_i->nat_cnt);
2387 /* destroy nat set cache */
2388 nid = 0;
2389 while ((found = __gang_lookup_nat_set(nm_i,
2390 nid, SETVEC_SIZE, setvec))) {
2391 unsigned idx;
2393 nid = setvec[found - 1]->set + 1;
2394 for (idx = 0; idx < found; idx++) {
2395 /* entry_cnt is not zero, when cp_error was occurred */
2396 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2397 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2398 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2401 up_write(&nm_i->nat_tree_lock);
2403 kfree(nm_i->nat_bitmap);
2404 sbi->nm_info = NULL;
2405 kfree(nm_i);
2408 int __init create_node_manager_caches(void)
2410 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2411 sizeof(struct nat_entry));
2412 if (!nat_entry_slab)
2413 goto fail;
2415 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2416 sizeof(struct free_nid));
2417 if (!free_nid_slab)
2418 goto destroy_nat_entry;
2420 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2421 sizeof(struct nat_entry_set));
2422 if (!nat_entry_set_slab)
2423 goto destroy_free_nid;
2424 return 0;
2426 destroy_free_nid:
2427 kmem_cache_destroy(free_nid_slab);
2428 destroy_nat_entry:
2429 kmem_cache_destroy(nat_entry_slab);
2430 fail:
2431 return -ENOMEM;
2434 void destroy_node_manager_caches(void)
2436 kmem_cache_destroy(nat_entry_set_slab);
2437 kmem_cache_destroy(free_nid_slab);
2438 kmem_cache_destroy(nat_entry_slab);