4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
24 #include <trace/events/f2fs.h>
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
28 static struct kmem_cache
*discard_entry_slab
;
29 static struct kmem_cache
*bio_entry_slab
;
30 static struct kmem_cache
*sit_entry_set_slab
;
31 static struct kmem_cache
*inmem_entry_slab
;
33 static unsigned long __reverse_ulong(unsigned char *str
)
35 unsigned long tmp
= 0;
36 int shift
= 24, idx
= 0;
38 #if BITS_PER_LONG == 64
42 tmp
|= (unsigned long)str
[idx
++] << shift
;
43 shift
-= BITS_PER_BYTE
;
49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
52 static inline unsigned long __reverse_ffs(unsigned long word
)
56 #if BITS_PER_LONG == 64
57 if ((word
& 0xffffffff00000000UL
) == 0)
62 if ((word
& 0xffff0000) == 0)
67 if ((word
& 0xff00) == 0)
72 if ((word
& 0xf0) == 0)
77 if ((word
& 0xc) == 0)
82 if ((word
& 0x2) == 0)
88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
90 * @size must be integral times of unsigned long.
93 * f2fs_set_bit(0, bitmap) => 1000 0000
94 * f2fs_set_bit(7, bitmap) => 0000 0001
96 static unsigned long __find_rev_next_bit(const unsigned long *addr
,
97 unsigned long size
, unsigned long offset
)
99 const unsigned long *p
= addr
+ BIT_WORD(offset
);
100 unsigned long result
= size
;
106 size
-= (offset
& ~(BITS_PER_LONG
- 1));
107 offset
%= BITS_PER_LONG
;
113 tmp
= __reverse_ulong((unsigned char *)p
);
115 tmp
&= ~0UL >> offset
;
116 if (size
< BITS_PER_LONG
)
117 tmp
&= (~0UL << (BITS_PER_LONG
- size
));
121 if (size
<= BITS_PER_LONG
)
123 size
-= BITS_PER_LONG
;
129 return result
- size
+ __reverse_ffs(tmp
);
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr
,
133 unsigned long size
, unsigned long offset
)
135 const unsigned long *p
= addr
+ BIT_WORD(offset
);
136 unsigned long result
= size
;
142 size
-= (offset
& ~(BITS_PER_LONG
- 1));
143 offset
%= BITS_PER_LONG
;
149 tmp
= __reverse_ulong((unsigned char *)p
);
152 tmp
|= ~0UL << (BITS_PER_LONG
- offset
);
153 if (size
< BITS_PER_LONG
)
158 if (size
<= BITS_PER_LONG
)
160 size
-= BITS_PER_LONG
;
166 return result
- size
+ __reverse_ffz(tmp
);
169 void register_inmem_page(struct inode
*inode
, struct page
*page
)
171 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
172 struct inmem_pages
*new;
174 f2fs_trace_pid(page
);
176 set_page_private(page
, (unsigned long)ATOMIC_WRITTEN_PAGE
);
177 SetPagePrivate(page
);
179 new = f2fs_kmem_cache_alloc(inmem_entry_slab
, GFP_NOFS
);
181 /* add atomic page indices to the list */
183 INIT_LIST_HEAD(&new->list
);
185 /* increase reference count with clean state */
186 mutex_lock(&fi
->inmem_lock
);
188 list_add_tail(&new->list
, &fi
->inmem_pages
);
189 inc_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
190 mutex_unlock(&fi
->inmem_lock
);
192 trace_f2fs_register_inmem_page(page
, INMEM
);
195 static int __revoke_inmem_pages(struct inode
*inode
,
196 struct list_head
*head
, bool drop
, bool recover
)
198 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
199 struct inmem_pages
*cur
, *tmp
;
202 list_for_each_entry_safe(cur
, tmp
, head
, list
) {
203 struct page
*page
= cur
->page
;
206 trace_f2fs_commit_inmem_page(page
, INMEM_DROP
);
210 f2fs_wait_on_page_writeback(page
, DATA
, true);
213 struct dnode_of_data dn
;
216 trace_f2fs_commit_inmem_page(page
, INMEM_REVOKE
);
218 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
219 if (get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
)) {
223 get_node_info(sbi
, dn
.nid
, &ni
);
224 f2fs_replace_block(sbi
, &dn
, dn
.data_blkaddr
,
225 cur
->old_addr
, ni
.version
, true, true);
229 /* we don't need to invalidate this in the sccessful status */
230 if (drop
|| recover
) {
231 ClearPageUptodate(page
);
232 clear_cold_data(page
);
234 set_page_private(page
, 0);
235 ClearPagePrivate(page
);
236 f2fs_put_page(page
, 1);
238 list_del(&cur
->list
);
239 kmem_cache_free(inmem_entry_slab
, cur
);
240 dec_page_count(F2FS_I_SB(inode
), F2FS_INMEM_PAGES
);
245 void drop_inmem_pages(struct inode
*inode
)
247 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
249 clear_inode_flag(inode
, FI_ATOMIC_FILE
);
251 mutex_lock(&fi
->inmem_lock
);
252 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
253 mutex_unlock(&fi
->inmem_lock
);
256 static int __commit_inmem_pages(struct inode
*inode
,
257 struct list_head
*revoke_list
)
259 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
260 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
261 struct inmem_pages
*cur
, *tmp
;
262 struct f2fs_io_info fio
= {
266 .op_flags
= WRITE_SYNC
| REQ_PRIO
,
267 .encrypted_page
= NULL
,
269 bool submit_bio
= false;
272 list_for_each_entry_safe(cur
, tmp
, &fi
->inmem_pages
, list
) {
273 struct page
*page
= cur
->page
;
276 if (page
->mapping
== inode
->i_mapping
) {
277 trace_f2fs_commit_inmem_page(page
, INMEM
);
279 set_page_dirty(page
);
280 f2fs_wait_on_page_writeback(page
, DATA
, true);
281 if (clear_page_dirty_for_io(page
))
282 inode_dec_dirty_pages(inode
);
285 err
= do_write_data_page(&fio
);
291 /* record old blkaddr for revoking */
292 cur
->old_addr
= fio
.old_blkaddr
;
294 clear_cold_data(page
);
298 list_move_tail(&cur
->list
, revoke_list
);
302 f2fs_submit_merged_bio_cond(sbi
, inode
, NULL
, 0, DATA
, WRITE
);
305 __revoke_inmem_pages(inode
, revoke_list
, false, false);
310 int commit_inmem_pages(struct inode
*inode
)
312 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
313 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
314 struct list_head revoke_list
;
317 INIT_LIST_HEAD(&revoke_list
);
318 f2fs_balance_fs(sbi
, true);
321 mutex_lock(&fi
->inmem_lock
);
322 err
= __commit_inmem_pages(inode
, &revoke_list
);
326 * try to revoke all committed pages, but still we could fail
327 * due to no memory or other reason, if that happened, EAGAIN
328 * will be returned, which means in such case, transaction is
329 * already not integrity, caller should use journal to do the
330 * recovery or rewrite & commit last transaction. For other
331 * error number, revoking was done by filesystem itself.
333 ret
= __revoke_inmem_pages(inode
, &revoke_list
, false, true);
337 /* drop all uncommitted pages */
338 __revoke_inmem_pages(inode
, &fi
->inmem_pages
, true, false);
340 mutex_unlock(&fi
->inmem_lock
);
347 * This function balances dirty node and dentry pages.
348 * In addition, it controls garbage collection.
350 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
, bool need
)
352 #ifdef CONFIG_F2FS_FAULT_INJECTION
353 if (time_to_inject(sbi
, FAULT_CHECKPOINT
))
354 f2fs_stop_checkpoint(sbi
, false);
360 /* balance_fs_bg is able to be pending */
361 if (excess_cached_nats(sbi
))
362 f2fs_balance_fs_bg(sbi
);
365 * We should do GC or end up with checkpoint, if there are so many dirty
366 * dir/node pages without enough free segments.
368 if (has_not_enough_free_secs(sbi
, 0, 0)) {
369 mutex_lock(&sbi
->gc_mutex
);
374 void f2fs_balance_fs_bg(struct f2fs_sb_info
*sbi
)
376 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
379 /* try to shrink extent cache when there is no enough memory */
380 if (!available_free_memory(sbi
, EXTENT_CACHE
))
381 f2fs_shrink_extent_tree(sbi
, EXTENT_CACHE_SHRINK_NUMBER
);
383 /* check the # of cached NAT entries */
384 if (!available_free_memory(sbi
, NAT_ENTRIES
))
385 try_to_free_nats(sbi
, NAT_ENTRY_PER_BLOCK
);
387 if (!available_free_memory(sbi
, FREE_NIDS
))
388 try_to_free_nids(sbi
, MAX_FREE_NIDS
);
390 build_free_nids(sbi
);
392 /* checkpoint is the only way to shrink partial cached entries */
393 if (!available_free_memory(sbi
, NAT_ENTRIES
) ||
394 !available_free_memory(sbi
, INO_ENTRIES
) ||
395 excess_prefree_segs(sbi
) ||
396 excess_dirty_nats(sbi
) ||
397 (is_idle(sbi
) && f2fs_time_over(sbi
, CP_TIME
))) {
398 if (test_opt(sbi
, DATA_FLUSH
)) {
399 struct blk_plug plug
;
401 blk_start_plug(&plug
);
402 sync_dirty_inodes(sbi
, FILE_INODE
);
403 blk_finish_plug(&plug
);
405 f2fs_sync_fs(sbi
->sb
, true);
406 stat_inc_bg_cp_count(sbi
->stat_info
);
410 static int issue_flush_thread(void *data
)
412 struct f2fs_sb_info
*sbi
= data
;
413 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
414 wait_queue_head_t
*q
= &fcc
->flush_wait_queue
;
416 if (kthread_should_stop())
419 if (!llist_empty(&fcc
->issue_list
)) {
421 struct flush_cmd
*cmd
, *next
;
424 bio
= f2fs_bio_alloc(0);
426 fcc
->dispatch_list
= llist_del_all(&fcc
->issue_list
);
427 fcc
->dispatch_list
= llist_reverse_order(fcc
->dispatch_list
);
429 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
430 bio_set_op_attrs(bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
431 ret
= submit_bio_wait(bio
);
433 llist_for_each_entry_safe(cmd
, next
,
434 fcc
->dispatch_list
, llnode
) {
436 complete(&cmd
->wait
);
439 fcc
->dispatch_list
= NULL
;
442 wait_event_interruptible(*q
,
443 kthread_should_stop() || !llist_empty(&fcc
->issue_list
));
447 int f2fs_issue_flush(struct f2fs_sb_info
*sbi
)
449 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
450 struct flush_cmd cmd
;
452 trace_f2fs_issue_flush(sbi
->sb
, test_opt(sbi
, NOBARRIER
),
453 test_opt(sbi
, FLUSH_MERGE
));
455 if (test_opt(sbi
, NOBARRIER
))
458 if (!test_opt(sbi
, FLUSH_MERGE
) || !atomic_read(&fcc
->submit_flush
)) {
459 struct bio
*bio
= f2fs_bio_alloc(0);
462 atomic_inc(&fcc
->submit_flush
);
463 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
464 bio_set_op_attrs(bio
, REQ_OP_WRITE
, WRITE_FLUSH
);
465 ret
= submit_bio_wait(bio
);
466 atomic_dec(&fcc
->submit_flush
);
471 init_completion(&cmd
.wait
);
473 atomic_inc(&fcc
->submit_flush
);
474 llist_add(&cmd
.llnode
, &fcc
->issue_list
);
476 if (!fcc
->dispatch_list
)
477 wake_up(&fcc
->flush_wait_queue
);
479 wait_for_completion(&cmd
.wait
);
480 atomic_dec(&fcc
->submit_flush
);
485 int create_flush_cmd_control(struct f2fs_sb_info
*sbi
)
487 dev_t dev
= sbi
->sb
->s_bdev
->bd_dev
;
488 struct flush_cmd_control
*fcc
;
491 fcc
= kzalloc(sizeof(struct flush_cmd_control
), GFP_KERNEL
);
494 atomic_set(&fcc
->submit_flush
, 0);
495 init_waitqueue_head(&fcc
->flush_wait_queue
);
496 init_llist_head(&fcc
->issue_list
);
497 SM_I(sbi
)->cmd_control_info
= fcc
;
498 if (!test_opt(sbi
, FLUSH_MERGE
))
501 fcc
->f2fs_issue_flush
= kthread_run(issue_flush_thread
, sbi
,
502 "f2fs_flush-%u:%u", MAJOR(dev
), MINOR(dev
));
503 if (IS_ERR(fcc
->f2fs_issue_flush
)) {
504 err
= PTR_ERR(fcc
->f2fs_issue_flush
);
506 SM_I(sbi
)->cmd_control_info
= NULL
;
513 void destroy_flush_cmd_control(struct f2fs_sb_info
*sbi
)
515 struct flush_cmd_control
*fcc
= SM_I(sbi
)->cmd_control_info
;
517 if (fcc
&& fcc
->f2fs_issue_flush
)
518 kthread_stop(fcc
->f2fs_issue_flush
);
520 SM_I(sbi
)->cmd_control_info
= NULL
;
523 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
524 enum dirty_type dirty_type
)
526 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
528 /* need not be added */
529 if (IS_CURSEG(sbi
, segno
))
532 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
533 dirty_i
->nr_dirty
[dirty_type
]++;
535 if (dirty_type
== DIRTY
) {
536 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
537 enum dirty_type t
= sentry
->type
;
539 if (unlikely(t
>= DIRTY
)) {
543 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[t
]))
544 dirty_i
->nr_dirty
[t
]++;
548 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
549 enum dirty_type dirty_type
)
551 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
553 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
554 dirty_i
->nr_dirty
[dirty_type
]--;
556 if (dirty_type
== DIRTY
) {
557 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
558 enum dirty_type t
= sentry
->type
;
560 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[t
]))
561 dirty_i
->nr_dirty
[t
]--;
563 if (get_valid_blocks(sbi
, segno
, sbi
->segs_per_sec
) == 0)
564 clear_bit(GET_SECNO(sbi
, segno
),
565 dirty_i
->victim_secmap
);
570 * Should not occur error such as -ENOMEM.
571 * Adding dirty entry into seglist is not critical operation.
572 * If a given segment is one of current working segments, it won't be added.
574 static void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
576 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
577 unsigned short valid_blocks
;
579 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
582 mutex_lock(&dirty_i
->seglist_lock
);
584 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
586 if (valid_blocks
== 0) {
587 __locate_dirty_segment(sbi
, segno
, PRE
);
588 __remove_dirty_segment(sbi
, segno
, DIRTY
);
589 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
590 __locate_dirty_segment(sbi
, segno
, DIRTY
);
592 /* Recovery routine with SSR needs this */
593 __remove_dirty_segment(sbi
, segno
, DIRTY
);
596 mutex_unlock(&dirty_i
->seglist_lock
);
599 static struct bio_entry
*__add_bio_entry(struct f2fs_sb_info
*sbi
,
602 struct list_head
*wait_list
= &(SM_I(sbi
)->wait_list
);
603 struct bio_entry
*be
= f2fs_kmem_cache_alloc(bio_entry_slab
, GFP_NOFS
);
605 INIT_LIST_HEAD(&be
->list
);
607 init_completion(&be
->event
);
608 list_add_tail(&be
->list
, wait_list
);
613 void f2fs_wait_all_discard_bio(struct f2fs_sb_info
*sbi
)
615 struct list_head
*wait_list
= &(SM_I(sbi
)->wait_list
);
616 struct bio_entry
*be
, *tmp
;
618 list_for_each_entry_safe(be
, tmp
, wait_list
, list
) {
619 struct bio
*bio
= be
->bio
;
622 wait_for_completion_io(&be
->event
);
624 if (err
== -EOPNOTSUPP
)
628 f2fs_msg(sbi
->sb
, KERN_INFO
,
629 "Issue discard failed, ret: %d", err
);
633 kmem_cache_free(bio_entry_slab
, be
);
637 static void f2fs_submit_bio_wait_endio(struct bio
*bio
)
639 struct bio_entry
*be
= (struct bio_entry
*)bio
->bi_private
;
641 be
->error
= bio
->bi_error
;
642 complete(&be
->event
);
645 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
646 int __f2fs_issue_discard_async(struct f2fs_sb_info
*sbi
, sector_t sector
,
647 sector_t nr_sects
, gfp_t gfp_mask
, unsigned long flags
)
649 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
650 struct bio
*bio
= NULL
;
653 err
= __blkdev_issue_discard(bdev
, sector
, nr_sects
, gfp_mask
, flags
,
656 struct bio_entry
*be
= __add_bio_entry(sbi
, bio
);
658 bio
->bi_private
= be
;
659 bio
->bi_end_io
= f2fs_submit_bio_wait_endio
;
660 bio
->bi_opf
|= REQ_SYNC
;
667 static int f2fs_issue_discard(struct f2fs_sb_info
*sbi
,
668 block_t blkstart
, block_t blklen
)
670 sector_t start
= SECTOR_FROM_BLOCK(blkstart
);
671 sector_t len
= SECTOR_FROM_BLOCK(blklen
);
672 struct seg_entry
*se
;
676 for (i
= blkstart
; i
< blkstart
+ blklen
; i
++) {
677 se
= get_seg_entry(sbi
, GET_SEGNO(sbi
, i
));
678 offset
= GET_BLKOFF_FROM_SEG0(sbi
, i
);
680 if (!f2fs_test_and_set_bit(offset
, se
->discard_map
))
683 trace_f2fs_issue_discard(sbi
->sb
, blkstart
, blklen
);
684 return __f2fs_issue_discard_async(sbi
, start
, len
, GFP_NOFS
, 0);
687 static void __add_discard_entry(struct f2fs_sb_info
*sbi
,
688 struct cp_control
*cpc
, struct seg_entry
*se
,
689 unsigned int start
, unsigned int end
)
691 struct list_head
*head
= &SM_I(sbi
)->discard_list
;
692 struct discard_entry
*new, *last
;
694 if (!list_empty(head
)) {
695 last
= list_last_entry(head
, struct discard_entry
, list
);
696 if (START_BLOCK(sbi
, cpc
->trim_start
) + start
==
697 last
->blkaddr
+ last
->len
) {
698 last
->len
+= end
- start
;
703 new = f2fs_kmem_cache_alloc(discard_entry_slab
, GFP_NOFS
);
704 INIT_LIST_HEAD(&new->list
);
705 new->blkaddr
= START_BLOCK(sbi
, cpc
->trim_start
) + start
;
706 new->len
= end
- start
;
707 list_add_tail(&new->list
, head
);
709 SM_I(sbi
)->nr_discards
+= end
- start
;
712 static void add_discard_addrs(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
714 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
715 int max_blocks
= sbi
->blocks_per_seg
;
716 struct seg_entry
*se
= get_seg_entry(sbi
, cpc
->trim_start
);
717 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
718 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
719 unsigned long *discard_map
= (unsigned long *)se
->discard_map
;
720 unsigned long *dmap
= SIT_I(sbi
)->tmp_map
;
721 unsigned int start
= 0, end
= -1;
722 bool force
= (cpc
->reason
== CP_DISCARD
);
725 if (se
->valid_blocks
== max_blocks
|| !f2fs_discard_en(sbi
))
729 if (!test_opt(sbi
, DISCARD
) || !se
->valid_blocks
||
730 SM_I(sbi
)->nr_discards
>= SM_I(sbi
)->max_discards
)
734 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
735 for (i
= 0; i
< entries
; i
++)
736 dmap
[i
] = force
? ~ckpt_map
[i
] & ~discard_map
[i
] :
737 (cur_map
[i
] ^ ckpt_map
[i
]) & ckpt_map
[i
];
739 while (force
|| SM_I(sbi
)->nr_discards
<= SM_I(sbi
)->max_discards
) {
740 start
= __find_rev_next_bit(dmap
, max_blocks
, end
+ 1);
741 if (start
>= max_blocks
)
744 end
= __find_rev_next_zero_bit(dmap
, max_blocks
, start
+ 1);
745 if (force
&& start
&& end
!= max_blocks
746 && (end
- start
) < cpc
->trim_minlen
)
749 __add_discard_entry(sbi
, cpc
, se
, start
, end
);
753 void release_discard_addrs(struct f2fs_sb_info
*sbi
)
755 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
756 struct discard_entry
*entry
, *this;
759 list_for_each_entry_safe(entry
, this, head
, list
) {
760 list_del(&entry
->list
);
761 kmem_cache_free(discard_entry_slab
, entry
);
766 * Should call clear_prefree_segments after checkpoint is done.
768 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
770 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
773 mutex_lock(&dirty_i
->seglist_lock
);
774 for_each_set_bit(segno
, dirty_i
->dirty_segmap
[PRE
], MAIN_SEGS(sbi
))
775 __set_test_and_free(sbi
, segno
);
776 mutex_unlock(&dirty_i
->seglist_lock
);
779 void clear_prefree_segments(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
781 struct list_head
*head
= &(SM_I(sbi
)->discard_list
);
782 struct discard_entry
*entry
, *this;
783 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
784 struct blk_plug plug
;
785 unsigned long *prefree_map
= dirty_i
->dirty_segmap
[PRE
];
786 unsigned int start
= 0, end
= -1;
787 unsigned int secno
, start_segno
;
788 bool force
= (cpc
->reason
== CP_DISCARD
);
790 blk_start_plug(&plug
);
792 mutex_lock(&dirty_i
->seglist_lock
);
796 start
= find_next_bit(prefree_map
, MAIN_SEGS(sbi
), end
+ 1);
797 if (start
>= MAIN_SEGS(sbi
))
799 end
= find_next_zero_bit(prefree_map
, MAIN_SEGS(sbi
),
802 for (i
= start
; i
< end
; i
++)
803 clear_bit(i
, prefree_map
);
805 dirty_i
->nr_dirty
[PRE
] -= end
- start
;
807 if (force
|| !test_opt(sbi
, DISCARD
))
810 if (!test_opt(sbi
, LFS
) || sbi
->segs_per_sec
== 1) {
811 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start
),
812 (end
- start
) << sbi
->log_blocks_per_seg
);
816 secno
= GET_SECNO(sbi
, start
);
817 start_segno
= secno
* sbi
->segs_per_sec
;
818 if (!IS_CURSEC(sbi
, secno
) &&
819 !get_valid_blocks(sbi
, start
, sbi
->segs_per_sec
))
820 f2fs_issue_discard(sbi
, START_BLOCK(sbi
, start_segno
),
821 sbi
->segs_per_sec
<< sbi
->log_blocks_per_seg
);
823 start
= start_segno
+ sbi
->segs_per_sec
;
829 mutex_unlock(&dirty_i
->seglist_lock
);
831 /* send small discards */
832 list_for_each_entry_safe(entry
, this, head
, list
) {
833 if (force
&& entry
->len
< cpc
->trim_minlen
)
835 f2fs_issue_discard(sbi
, entry
->blkaddr
, entry
->len
);
836 cpc
->trimmed
+= entry
->len
;
838 list_del(&entry
->list
);
839 SM_I(sbi
)->nr_discards
-= entry
->len
;
840 kmem_cache_free(discard_entry_slab
, entry
);
843 blk_finish_plug(&plug
);
846 static bool __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
848 struct sit_info
*sit_i
= SIT_I(sbi
);
850 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
)) {
851 sit_i
->dirty_sentries
++;
858 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
859 unsigned int segno
, int modified
)
861 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
864 __mark_sit_entry_dirty(sbi
, segno
);
867 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
869 struct seg_entry
*se
;
870 unsigned int segno
, offset
;
871 long int new_vblocks
;
873 segno
= GET_SEGNO(sbi
, blkaddr
);
875 se
= get_seg_entry(sbi
, segno
);
876 new_vblocks
= se
->valid_blocks
+ del
;
877 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
879 f2fs_bug_on(sbi
, (new_vblocks
>> (sizeof(unsigned short) << 3) ||
880 (new_vblocks
> sbi
->blocks_per_seg
)));
882 se
->valid_blocks
= new_vblocks
;
883 se
->mtime
= get_mtime(sbi
);
884 SIT_I(sbi
)->max_mtime
= se
->mtime
;
886 /* Update valid block bitmap */
888 if (f2fs_test_and_set_bit(offset
, se
->cur_valid_map
))
890 if (f2fs_discard_en(sbi
) &&
891 !f2fs_test_and_set_bit(offset
, se
->discard_map
))
894 if (!f2fs_test_and_clear_bit(offset
, se
->cur_valid_map
))
896 if (f2fs_discard_en(sbi
) &&
897 f2fs_test_and_clear_bit(offset
, se
->discard_map
))
900 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
901 se
->ckpt_valid_blocks
+= del
;
903 __mark_sit_entry_dirty(sbi
, segno
);
905 /* update total number of valid blocks to be written in ckpt area */
906 SIT_I(sbi
)->written_valid_blocks
+= del
;
908 if (sbi
->segs_per_sec
> 1)
909 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
912 void refresh_sit_entry(struct f2fs_sb_info
*sbi
, block_t old
, block_t
new)
914 update_sit_entry(sbi
, new, 1);
915 if (GET_SEGNO(sbi
, old
) != NULL_SEGNO
)
916 update_sit_entry(sbi
, old
, -1);
918 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old
));
919 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new));
922 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
924 unsigned int segno
= GET_SEGNO(sbi
, addr
);
925 struct sit_info
*sit_i
= SIT_I(sbi
);
927 f2fs_bug_on(sbi
, addr
== NULL_ADDR
);
928 if (addr
== NEW_ADDR
)
931 /* add it into sit main buffer */
932 mutex_lock(&sit_i
->sentry_lock
);
934 update_sit_entry(sbi
, addr
, -1);
936 /* add it into dirty seglist */
937 locate_dirty_segment(sbi
, segno
);
939 mutex_unlock(&sit_i
->sentry_lock
);
942 bool is_checkpointed_data(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
944 struct sit_info
*sit_i
= SIT_I(sbi
);
945 unsigned int segno
, offset
;
946 struct seg_entry
*se
;
949 if (!is_valid_data_blkaddr(sbi
, blkaddr
))
952 mutex_lock(&sit_i
->sentry_lock
);
954 segno
= GET_SEGNO(sbi
, blkaddr
);
955 se
= get_seg_entry(sbi
, segno
);
956 offset
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
958 if (f2fs_test_bit(offset
, se
->ckpt_valid_map
))
961 mutex_unlock(&sit_i
->sentry_lock
);
967 * This function should be resided under the curseg_mutex lock
969 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
970 struct f2fs_summary
*sum
)
972 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
973 void *addr
= curseg
->sum_blk
;
974 addr
+= curseg
->next_blkoff
* sizeof(struct f2fs_summary
);
975 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
979 * Calculate the number of current summary pages for writing
981 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
, bool for_ra
)
983 int valid_sum_count
= 0;
986 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
987 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
988 valid_sum_count
+= sbi
->blocks_per_seg
;
991 valid_sum_count
+= le16_to_cpu(
992 F2FS_CKPT(sbi
)->cur_data_blkoff
[i
]);
994 valid_sum_count
+= curseg_blkoff(sbi
, i
);
998 sum_in_page
= (PAGE_SIZE
- 2 * SUM_JOURNAL_SIZE
-
999 SUM_FOOTER_SIZE
) / SUMMARY_SIZE
;
1000 if (valid_sum_count
<= sum_in_page
)
1002 else if ((valid_sum_count
- sum_in_page
) <=
1003 (PAGE_SIZE
- SUM_FOOTER_SIZE
) / SUMMARY_SIZE
)
1009 * Caller should put this summary page
1011 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
1013 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
1016 void update_meta_page(struct f2fs_sb_info
*sbi
, void *src
, block_t blk_addr
)
1018 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
1019 void *dst
= page_address(page
);
1022 memcpy(dst
, src
, PAGE_SIZE
);
1024 memset(dst
, 0, PAGE_SIZE
);
1025 set_page_dirty(page
);
1026 f2fs_put_page(page
, 1);
1029 static void write_sum_page(struct f2fs_sb_info
*sbi
,
1030 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
1032 update_meta_page(sbi
, (void *)sum_blk
, blk_addr
);
1035 static void write_current_sum_page(struct f2fs_sb_info
*sbi
,
1036 int type
, block_t blk_addr
)
1038 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1039 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
1040 struct f2fs_summary_block
*src
= curseg
->sum_blk
;
1041 struct f2fs_summary_block
*dst
;
1043 dst
= (struct f2fs_summary_block
*)page_address(page
);
1045 mutex_lock(&curseg
->curseg_mutex
);
1047 down_read(&curseg
->journal_rwsem
);
1048 memcpy(&dst
->journal
, curseg
->journal
, SUM_JOURNAL_SIZE
);
1049 up_read(&curseg
->journal_rwsem
);
1051 memcpy(dst
->entries
, src
->entries
, SUM_ENTRY_SIZE
);
1052 memcpy(&dst
->footer
, &src
->footer
, SUM_FOOTER_SIZE
);
1054 mutex_unlock(&curseg
->curseg_mutex
);
1056 set_page_dirty(page
);
1057 f2fs_put_page(page
, 1);
1060 static int is_next_segment_free(struct f2fs_sb_info
*sbi
, int type
)
1062 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1063 unsigned int segno
= curseg
->segno
+ 1;
1064 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1066 if (segno
< MAIN_SEGS(sbi
) && segno
% sbi
->segs_per_sec
)
1067 return !test_bit(segno
, free_i
->free_segmap
);
1072 * Find a new segment from the free segments bitmap to right order
1073 * This function should be returned with success, otherwise BUG
1075 static void get_new_segment(struct f2fs_sb_info
*sbi
,
1076 unsigned int *newseg
, bool new_sec
, int dir
)
1078 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1079 unsigned int segno
, secno
, zoneno
;
1080 unsigned int total_zones
= MAIN_SECS(sbi
) / sbi
->secs_per_zone
;
1081 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
1082 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
1083 unsigned int left_start
= hint
;
1088 spin_lock(&free_i
->segmap_lock
);
1090 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
1091 segno
= find_next_zero_bit(free_i
->free_segmap
,
1092 (hint
+ 1) * sbi
->segs_per_sec
, *newseg
+ 1);
1093 if (segno
< (hint
+ 1) * sbi
->segs_per_sec
)
1097 secno
= find_next_zero_bit(free_i
->free_secmap
, MAIN_SECS(sbi
), hint
);
1098 if (secno
>= MAIN_SECS(sbi
)) {
1099 if (dir
== ALLOC_RIGHT
) {
1100 secno
= find_next_zero_bit(free_i
->free_secmap
,
1102 f2fs_bug_on(sbi
, secno
>= MAIN_SECS(sbi
));
1105 left_start
= hint
- 1;
1111 while (test_bit(left_start
, free_i
->free_secmap
)) {
1112 if (left_start
> 0) {
1116 left_start
= find_next_zero_bit(free_i
->free_secmap
,
1118 f2fs_bug_on(sbi
, left_start
>= MAIN_SECS(sbi
));
1124 segno
= secno
* sbi
->segs_per_sec
;
1125 zoneno
= secno
/ sbi
->secs_per_zone
;
1127 /* give up on finding another zone */
1130 if (sbi
->secs_per_zone
== 1)
1132 if (zoneno
== old_zoneno
)
1134 if (dir
== ALLOC_LEFT
) {
1135 if (!go_left
&& zoneno
+ 1 >= total_zones
)
1137 if (go_left
&& zoneno
== 0)
1140 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
1141 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
1144 if (i
< NR_CURSEG_TYPE
) {
1145 /* zone is in user, try another */
1147 hint
= zoneno
* sbi
->secs_per_zone
- 1;
1148 else if (zoneno
+ 1 >= total_zones
)
1151 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
1153 goto find_other_zone
;
1156 /* set it as dirty segment in free segmap */
1157 f2fs_bug_on(sbi
, test_bit(segno
, free_i
->free_segmap
));
1158 __set_inuse(sbi
, segno
);
1160 spin_unlock(&free_i
->segmap_lock
);
1163 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
1165 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1166 struct summary_footer
*sum_footer
;
1168 curseg
->segno
= curseg
->next_segno
;
1169 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
1170 curseg
->next_blkoff
= 0;
1171 curseg
->next_segno
= NULL_SEGNO
;
1173 sum_footer
= &(curseg
->sum_blk
->footer
);
1174 memset(sum_footer
, 0, sizeof(struct summary_footer
));
1175 if (IS_DATASEG(type
))
1176 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
1177 if (IS_NODESEG(type
))
1178 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
1179 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
1183 * Allocate a current working segment.
1184 * This function always allocates a free segment in LFS manner.
1186 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
1188 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1189 unsigned int segno
= curseg
->segno
;
1190 int dir
= ALLOC_LEFT
;
1192 write_sum_page(sbi
, curseg
->sum_blk
,
1193 GET_SUM_BLOCK(sbi
, segno
));
1194 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
1197 if (test_opt(sbi
, NOHEAP
))
1200 get_new_segment(sbi
, &segno
, new_sec
, dir
);
1201 curseg
->next_segno
= segno
;
1202 reset_curseg(sbi
, type
, 1);
1203 curseg
->alloc_type
= LFS
;
1206 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
1207 struct curseg_info
*seg
, block_t start
)
1209 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
1210 int entries
= SIT_VBLOCK_MAP_SIZE
/ sizeof(unsigned long);
1211 unsigned long *target_map
= SIT_I(sbi
)->tmp_map
;
1212 unsigned long *ckpt_map
= (unsigned long *)se
->ckpt_valid_map
;
1213 unsigned long *cur_map
= (unsigned long *)se
->cur_valid_map
;
1216 for (i
= 0; i
< entries
; i
++)
1217 target_map
[i
] = ckpt_map
[i
] | cur_map
[i
];
1219 pos
= __find_rev_next_zero_bit(target_map
, sbi
->blocks_per_seg
, start
);
1221 seg
->next_blkoff
= pos
;
1225 * If a segment is written by LFS manner, next block offset is just obtained
1226 * by increasing the current block offset. However, if a segment is written by
1227 * SSR manner, next block offset obtained by calling __next_free_blkoff
1229 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
1230 struct curseg_info
*seg
)
1232 if (seg
->alloc_type
== SSR
)
1233 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
1239 * This function always allocates a used segment(from dirty seglist) by SSR
1240 * manner, so it should recover the existing segment information of valid blocks
1242 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
1244 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1245 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1246 unsigned int new_segno
= curseg
->next_segno
;
1247 struct f2fs_summary_block
*sum_node
;
1248 struct page
*sum_page
;
1250 write_sum_page(sbi
, curseg
->sum_blk
,
1251 GET_SUM_BLOCK(sbi
, curseg
->segno
));
1252 __set_test_and_inuse(sbi
, new_segno
);
1254 mutex_lock(&dirty_i
->seglist_lock
);
1255 __remove_dirty_segment(sbi
, new_segno
, PRE
);
1256 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
1257 mutex_unlock(&dirty_i
->seglist_lock
);
1259 reset_curseg(sbi
, type
, 1);
1260 curseg
->alloc_type
= SSR
;
1261 __next_free_blkoff(sbi
, curseg
, 0);
1264 sum_page
= get_sum_page(sbi
, new_segno
);
1265 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
1266 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
1267 f2fs_put_page(sum_page
, 1);
1271 static int get_ssr_segment(struct f2fs_sb_info
*sbi
, int type
)
1273 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1274 const struct victim_selection
*v_ops
= DIRTY_I(sbi
)->v_ops
;
1276 if (IS_NODESEG(type
))
1277 return v_ops
->get_victim(sbi
,
1278 &(curseg
)->next_segno
, BG_GC
, type
, SSR
);
1280 /* For data segments, let's do SSR more intensively */
1281 for (; type
>= CURSEG_HOT_DATA
; type
--)
1282 if (v_ops
->get_victim(sbi
, &(curseg
)->next_segno
,
1289 * flush out current segment and replace it with new segment
1290 * This function should be returned with success, otherwise BUG
1292 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
1293 int type
, bool force
)
1295 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1298 new_curseg(sbi
, type
, true);
1299 else if (type
== CURSEG_WARM_NODE
)
1300 new_curseg(sbi
, type
, false);
1301 else if (curseg
->alloc_type
== LFS
&& is_next_segment_free(sbi
, type
))
1302 new_curseg(sbi
, type
, false);
1303 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
1304 change_curseg(sbi
, type
, true);
1306 new_curseg(sbi
, type
, false);
1308 stat_inc_seg_type(sbi
, curseg
);
1311 static void __allocate_new_segments(struct f2fs_sb_info
*sbi
, int type
)
1313 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1314 unsigned int old_segno
;
1316 old_segno
= curseg
->segno
;
1317 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, type
, true);
1318 locate_dirty_segment(sbi
, old_segno
);
1321 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
1325 if (test_opt(sbi
, LFS
))
1328 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++)
1329 __allocate_new_segments(sbi
, i
);
1332 static const struct segment_allocation default_salloc_ops
= {
1333 .allocate_segment
= allocate_segment_by_default
,
1336 int f2fs_trim_fs(struct f2fs_sb_info
*sbi
, struct fstrim_range
*range
)
1338 __u64 start
= F2FS_BYTES_TO_BLK(range
->start
);
1339 __u64 end
= start
+ F2FS_BYTES_TO_BLK(range
->len
) - 1;
1340 unsigned int start_segno
, end_segno
;
1341 struct cp_control cpc
;
1344 if (start
>= MAX_BLKADDR(sbi
) || range
->len
< sbi
->blocksize
)
1348 if (end
<= MAIN_BLKADDR(sbi
))
1351 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
)) {
1352 f2fs_msg(sbi
->sb
, KERN_WARNING
,
1353 "Found FS corruption, run fsck to fix.");
1357 /* start/end segment number in main_area */
1358 start_segno
= (start
<= MAIN_BLKADDR(sbi
)) ? 0 : GET_SEGNO(sbi
, start
);
1359 end_segno
= (end
>= MAX_BLKADDR(sbi
)) ? MAIN_SEGS(sbi
) - 1 :
1360 GET_SEGNO(sbi
, end
);
1361 cpc
.reason
= CP_DISCARD
;
1362 cpc
.trim_minlen
= max_t(__u64
, 1, F2FS_BYTES_TO_BLK(range
->minlen
));
1364 /* do checkpoint to issue discard commands safely */
1365 for (; start_segno
<= end_segno
; start_segno
= cpc
.trim_end
+ 1) {
1366 cpc
.trim_start
= start_segno
;
1368 if (sbi
->discard_blks
== 0)
1370 else if (sbi
->discard_blks
< BATCHED_TRIM_BLOCKS(sbi
))
1371 cpc
.trim_end
= end_segno
;
1373 cpc
.trim_end
= min_t(unsigned int,
1374 rounddown(start_segno
+
1375 BATCHED_TRIM_SEGMENTS(sbi
),
1376 sbi
->segs_per_sec
) - 1, end_segno
);
1378 mutex_lock(&sbi
->gc_mutex
);
1379 err
= write_checkpoint(sbi
, &cpc
);
1380 mutex_unlock(&sbi
->gc_mutex
);
1387 range
->len
= F2FS_BLK_TO_BYTES(cpc
.trimmed
);
1391 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
1393 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
1394 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
1399 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
1402 return CURSEG_HOT_DATA
;
1404 return CURSEG_HOT_NODE
;
1407 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
1409 if (p_type
== DATA
) {
1410 struct inode
*inode
= page
->mapping
->host
;
1412 if (S_ISDIR(inode
->i_mode
))
1413 return CURSEG_HOT_DATA
;
1415 return CURSEG_COLD_DATA
;
1417 if (IS_DNODE(page
) && is_cold_node(page
))
1418 return CURSEG_WARM_NODE
;
1420 return CURSEG_COLD_NODE
;
1424 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
1426 if (p_type
== DATA
) {
1427 struct inode
*inode
= page
->mapping
->host
;
1429 if (S_ISDIR(inode
->i_mode
))
1430 return CURSEG_HOT_DATA
;
1431 else if (is_cold_data(page
) || file_is_cold(inode
))
1432 return CURSEG_COLD_DATA
;
1434 return CURSEG_WARM_DATA
;
1437 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
1440 return CURSEG_COLD_NODE
;
1444 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
1446 switch (F2FS_P_SB(page
)->active_logs
) {
1448 return __get_segment_type_2(page
, p_type
);
1450 return __get_segment_type_4(page
, p_type
);
1452 /* NR_CURSEG_TYPE(6) logs by default */
1453 f2fs_bug_on(F2FS_P_SB(page
),
1454 F2FS_P_SB(page
)->active_logs
!= NR_CURSEG_TYPE
);
1455 return __get_segment_type_6(page
, p_type
);
1458 void allocate_data_block(struct f2fs_sb_info
*sbi
, struct page
*page
,
1459 block_t old_blkaddr
, block_t
*new_blkaddr
,
1460 struct f2fs_summary
*sum
, int type
)
1462 struct sit_info
*sit_i
= SIT_I(sbi
);
1463 struct curseg_info
*curseg
;
1464 bool direct_io
= (type
== CURSEG_DIRECT_IO
);
1466 type
= direct_io
? CURSEG_WARM_DATA
: type
;
1468 curseg
= CURSEG_I(sbi
, type
);
1470 mutex_lock(&curseg
->curseg_mutex
);
1471 mutex_lock(&sit_i
->sentry_lock
);
1473 /* direct_io'ed data is aligned to the segment for better performance */
1474 if (direct_io
&& curseg
->next_blkoff
&&
1475 !has_not_enough_free_secs(sbi
, 0, 0))
1476 __allocate_new_segments(sbi
, type
);
1478 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
1481 * __add_sum_entry should be resided under the curseg_mutex
1482 * because, this function updates a summary entry in the
1483 * current summary block.
1485 __add_sum_entry(sbi
, type
, sum
);
1487 __refresh_next_blkoff(sbi
, curseg
);
1489 stat_inc_block_count(sbi
, curseg
);
1491 if (!__has_curseg_space(sbi
, type
))
1492 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
1494 * SIT information should be updated before segment allocation,
1495 * since SSR needs latest valid block information.
1497 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
1499 mutex_unlock(&sit_i
->sentry_lock
);
1501 if (page
&& IS_NODESEG(type
))
1502 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
1504 mutex_unlock(&curseg
->curseg_mutex
);
1507 static void do_write_page(struct f2fs_summary
*sum
, struct f2fs_io_info
*fio
)
1509 int type
= __get_segment_type(fio
->page
, fio
->type
);
1511 if (fio
->type
== NODE
|| fio
->type
== DATA
)
1512 mutex_lock(&fio
->sbi
->wio_mutex
[fio
->type
]);
1514 allocate_data_block(fio
->sbi
, fio
->page
, fio
->old_blkaddr
,
1515 &fio
->new_blkaddr
, sum
, type
);
1517 /* writeout dirty page into bdev */
1518 f2fs_submit_page_mbio(fio
);
1520 if (fio
->type
== NODE
|| fio
->type
== DATA
)
1521 mutex_unlock(&fio
->sbi
->wio_mutex
[fio
->type
]);
1524 void write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
1526 struct f2fs_io_info fio
= {
1530 .op_flags
= WRITE_SYNC
| REQ_META
| REQ_PRIO
,
1531 .old_blkaddr
= page
->index
,
1532 .new_blkaddr
= page
->index
,
1534 .encrypted_page
= NULL
,
1537 if (unlikely(page
->index
>= MAIN_BLKADDR(sbi
)))
1538 fio
.op_flags
&= ~REQ_META
;
1540 set_page_writeback(page
);
1541 f2fs_submit_page_mbio(&fio
);
1544 void write_node_page(unsigned int nid
, struct f2fs_io_info
*fio
)
1546 struct f2fs_summary sum
;
1548 set_summary(&sum
, nid
, 0, 0);
1549 do_write_page(&sum
, fio
);
1552 void write_data_page(struct dnode_of_data
*dn
, struct f2fs_io_info
*fio
)
1554 struct f2fs_sb_info
*sbi
= fio
->sbi
;
1555 struct f2fs_summary sum
;
1556 struct node_info ni
;
1558 f2fs_bug_on(sbi
, dn
->data_blkaddr
== NULL_ADDR
);
1559 get_node_info(sbi
, dn
->nid
, &ni
);
1560 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
1561 do_write_page(&sum
, fio
);
1562 f2fs_update_data_blkaddr(dn
, fio
->new_blkaddr
);
1565 void rewrite_data_page(struct f2fs_io_info
*fio
)
1567 fio
->new_blkaddr
= fio
->old_blkaddr
;
1568 stat_inc_inplace_blocks(fio
->sbi
);
1569 f2fs_submit_page_mbio(fio
);
1572 void __f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct f2fs_summary
*sum
,
1573 block_t old_blkaddr
, block_t new_blkaddr
,
1574 bool recover_curseg
, bool recover_newaddr
)
1576 struct sit_info
*sit_i
= SIT_I(sbi
);
1577 struct curseg_info
*curseg
;
1578 unsigned int segno
, old_cursegno
;
1579 struct seg_entry
*se
;
1581 unsigned short old_blkoff
;
1583 segno
= GET_SEGNO(sbi
, new_blkaddr
);
1584 se
= get_seg_entry(sbi
, segno
);
1587 if (!recover_curseg
) {
1588 /* for recovery flow */
1589 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
1590 if (old_blkaddr
== NULL_ADDR
)
1591 type
= CURSEG_COLD_DATA
;
1593 type
= CURSEG_WARM_DATA
;
1596 if (!IS_CURSEG(sbi
, segno
))
1597 type
= CURSEG_WARM_DATA
;
1600 curseg
= CURSEG_I(sbi
, type
);
1602 mutex_lock(&curseg
->curseg_mutex
);
1603 mutex_lock(&sit_i
->sentry_lock
);
1605 old_cursegno
= curseg
->segno
;
1606 old_blkoff
= curseg
->next_blkoff
;
1608 /* change the current segment */
1609 if (segno
!= curseg
->segno
) {
1610 curseg
->next_segno
= segno
;
1611 change_curseg(sbi
, type
, true);
1614 curseg
->next_blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, new_blkaddr
);
1615 __add_sum_entry(sbi
, type
, sum
);
1617 if (!recover_curseg
|| recover_newaddr
)
1618 update_sit_entry(sbi
, new_blkaddr
, 1);
1619 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
1620 update_sit_entry(sbi
, old_blkaddr
, -1);
1622 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
1623 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, new_blkaddr
));
1625 locate_dirty_segment(sbi
, old_cursegno
);
1627 if (recover_curseg
) {
1628 if (old_cursegno
!= curseg
->segno
) {
1629 curseg
->next_segno
= old_cursegno
;
1630 change_curseg(sbi
, type
, true);
1632 curseg
->next_blkoff
= old_blkoff
;
1635 mutex_unlock(&sit_i
->sentry_lock
);
1636 mutex_unlock(&curseg
->curseg_mutex
);
1639 void f2fs_replace_block(struct f2fs_sb_info
*sbi
, struct dnode_of_data
*dn
,
1640 block_t old_addr
, block_t new_addr
,
1641 unsigned char version
, bool recover_curseg
,
1642 bool recover_newaddr
)
1644 struct f2fs_summary sum
;
1646 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, version
);
1648 __f2fs_replace_block(sbi
, &sum
, old_addr
, new_addr
,
1649 recover_curseg
, recover_newaddr
);
1651 f2fs_update_data_blkaddr(dn
, new_addr
);
1654 void f2fs_wait_on_page_writeback(struct page
*page
,
1655 enum page_type type
, bool ordered
)
1657 if (PageWriteback(page
)) {
1658 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1660 f2fs_submit_merged_bio_cond(sbi
, NULL
, page
, 0, type
, WRITE
);
1662 wait_on_page_writeback(page
);
1664 wait_for_stable_page(page
);
1668 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info
*sbi
,
1673 if (!is_valid_data_blkaddr(sbi
, blkaddr
))
1676 cpage
= find_lock_page(META_MAPPING(sbi
), blkaddr
);
1678 f2fs_wait_on_page_writeback(cpage
, DATA
, true);
1679 f2fs_put_page(cpage
, 1);
1683 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
1685 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1686 struct curseg_info
*seg_i
;
1687 unsigned char *kaddr
;
1692 start
= start_sum_block(sbi
);
1694 page
= get_meta_page(sbi
, start
++);
1695 kaddr
= (unsigned char *)page_address(page
);
1697 /* Step 1: restore nat cache */
1698 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1699 memcpy(seg_i
->journal
, kaddr
, SUM_JOURNAL_SIZE
);
1701 /* Step 2: restore sit cache */
1702 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1703 memcpy(seg_i
->journal
, kaddr
+ SUM_JOURNAL_SIZE
, SUM_JOURNAL_SIZE
);
1704 offset
= 2 * SUM_JOURNAL_SIZE
;
1706 /* Step 3: restore summary entries */
1707 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1708 unsigned short blk_off
;
1711 seg_i
= CURSEG_I(sbi
, i
);
1712 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
1713 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
1714 seg_i
->next_segno
= segno
;
1715 reset_curseg(sbi
, i
, 0);
1716 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
1717 seg_i
->next_blkoff
= blk_off
;
1719 if (seg_i
->alloc_type
== SSR
)
1720 blk_off
= sbi
->blocks_per_seg
;
1722 for (j
= 0; j
< blk_off
; j
++) {
1723 struct f2fs_summary
*s
;
1724 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
1725 seg_i
->sum_blk
->entries
[j
] = *s
;
1726 offset
+= SUMMARY_SIZE
;
1727 if (offset
+ SUMMARY_SIZE
<= PAGE_SIZE
-
1731 f2fs_put_page(page
, 1);
1734 page
= get_meta_page(sbi
, start
++);
1735 kaddr
= (unsigned char *)page_address(page
);
1739 f2fs_put_page(page
, 1);
1743 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
1745 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1746 struct f2fs_summary_block
*sum
;
1747 struct curseg_info
*curseg
;
1749 unsigned short blk_off
;
1750 unsigned int segno
= 0;
1751 block_t blk_addr
= 0;
1753 /* get segment number and block addr */
1754 if (IS_DATASEG(type
)) {
1755 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
1756 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
1758 if (__exist_node_summaries(sbi
))
1759 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
1761 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
1763 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
1765 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
1767 if (__exist_node_summaries(sbi
))
1768 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
1769 type
- CURSEG_HOT_NODE
);
1771 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
1774 new = get_meta_page(sbi
, blk_addr
);
1775 sum
= (struct f2fs_summary_block
*)page_address(new);
1777 if (IS_NODESEG(type
)) {
1778 if (__exist_node_summaries(sbi
)) {
1779 struct f2fs_summary
*ns
= &sum
->entries
[0];
1781 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
1783 ns
->ofs_in_node
= 0;
1788 err
= restore_node_summary(sbi
, segno
, sum
);
1790 f2fs_put_page(new, 1);
1796 /* set uncompleted segment to curseg */
1797 curseg
= CURSEG_I(sbi
, type
);
1798 mutex_lock(&curseg
->curseg_mutex
);
1800 /* update journal info */
1801 down_write(&curseg
->journal_rwsem
);
1802 memcpy(curseg
->journal
, &sum
->journal
, SUM_JOURNAL_SIZE
);
1803 up_write(&curseg
->journal_rwsem
);
1805 memcpy(curseg
->sum_blk
->entries
, sum
->entries
, SUM_ENTRY_SIZE
);
1806 memcpy(&curseg
->sum_blk
->footer
, &sum
->footer
, SUM_FOOTER_SIZE
);
1807 curseg
->next_segno
= segno
;
1808 reset_curseg(sbi
, type
, 0);
1809 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
1810 curseg
->next_blkoff
= blk_off
;
1811 mutex_unlock(&curseg
->curseg_mutex
);
1812 f2fs_put_page(new, 1);
1816 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
1818 struct f2fs_journal
*sit_j
= CURSEG_I(sbi
, CURSEG_COLD_DATA
)->journal
;
1819 struct f2fs_journal
*nat_j
= CURSEG_I(sbi
, CURSEG_HOT_DATA
)->journal
;
1820 int type
= CURSEG_HOT_DATA
;
1823 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
)) {
1824 int npages
= npages_for_summary_flush(sbi
, true);
1827 ra_meta_pages(sbi
, start_sum_block(sbi
), npages
,
1830 /* restore for compacted data summary */
1831 if (read_compacted_summaries(sbi
))
1833 type
= CURSEG_HOT_NODE
;
1836 if (__exist_node_summaries(sbi
))
1837 ra_meta_pages(sbi
, sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
),
1838 NR_CURSEG_TYPE
- type
, META_CP
, true);
1840 for (; type
<= CURSEG_COLD_NODE
; type
++) {
1841 err
= read_normal_summaries(sbi
, type
);
1846 /* sanity check for summary blocks */
1847 if (nats_in_cursum(nat_j
) > NAT_JOURNAL_ENTRIES
||
1848 sits_in_cursum(sit_j
) > SIT_JOURNAL_ENTRIES
)
1854 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1857 unsigned char *kaddr
;
1858 struct f2fs_summary
*summary
;
1859 struct curseg_info
*seg_i
;
1860 int written_size
= 0;
1863 page
= grab_meta_page(sbi
, blkaddr
++);
1864 kaddr
= (unsigned char *)page_address(page
);
1866 /* Step 1: write nat cache */
1867 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1868 memcpy(kaddr
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
1869 written_size
+= SUM_JOURNAL_SIZE
;
1871 /* Step 2: write sit cache */
1872 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1873 memcpy(kaddr
+ written_size
, seg_i
->journal
, SUM_JOURNAL_SIZE
);
1874 written_size
+= SUM_JOURNAL_SIZE
;
1876 /* Step 3: write summary entries */
1877 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1878 unsigned short blkoff
;
1879 seg_i
= CURSEG_I(sbi
, i
);
1880 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1881 blkoff
= sbi
->blocks_per_seg
;
1883 blkoff
= curseg_blkoff(sbi
, i
);
1885 for (j
= 0; j
< blkoff
; j
++) {
1887 page
= grab_meta_page(sbi
, blkaddr
++);
1888 kaddr
= (unsigned char *)page_address(page
);
1891 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
1892 *summary
= seg_i
->sum_blk
->entries
[j
];
1893 written_size
+= SUMMARY_SIZE
;
1895 if (written_size
+ SUMMARY_SIZE
<= PAGE_SIZE
-
1899 set_page_dirty(page
);
1900 f2fs_put_page(page
, 1);
1905 set_page_dirty(page
);
1906 f2fs_put_page(page
, 1);
1910 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
1911 block_t blkaddr
, int type
)
1914 if (IS_DATASEG(type
))
1915 end
= type
+ NR_CURSEG_DATA_TYPE
;
1917 end
= type
+ NR_CURSEG_NODE_TYPE
;
1919 for (i
= type
; i
< end
; i
++)
1920 write_current_sum_page(sbi
, i
, blkaddr
+ (i
- type
));
1923 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1925 if (is_set_ckpt_flags(sbi
, CP_COMPACT_SUM_FLAG
))
1926 write_compacted_summaries(sbi
, start_blk
);
1928 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
1931 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1933 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
1936 int lookup_journal_in_cursum(struct f2fs_journal
*journal
, int type
,
1937 unsigned int val
, int alloc
)
1941 if (type
== NAT_JOURNAL
) {
1942 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1943 if (le32_to_cpu(nid_in_journal(journal
, i
)) == val
)
1946 if (alloc
&& __has_cursum_space(journal
, 1, NAT_JOURNAL
))
1947 return update_nats_in_cursum(journal
, 1);
1948 } else if (type
== SIT_JOURNAL
) {
1949 for (i
= 0; i
< sits_in_cursum(journal
); i
++)
1950 if (le32_to_cpu(segno_in_journal(journal
, i
)) == val
)
1952 if (alloc
&& __has_cursum_space(journal
, 1, SIT_JOURNAL
))
1953 return update_sits_in_cursum(journal
, 1);
1958 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
1961 return get_meta_page(sbi
, current_sit_addr(sbi
, segno
));
1964 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
1967 struct sit_info
*sit_i
= SIT_I(sbi
);
1968 struct page
*src_page
, *dst_page
;
1969 pgoff_t src_off
, dst_off
;
1970 void *src_addr
, *dst_addr
;
1972 src_off
= current_sit_addr(sbi
, start
);
1973 dst_off
= next_sit_addr(sbi
, src_off
);
1975 /* get current sit block page without lock */
1976 src_page
= get_meta_page(sbi
, src_off
);
1977 dst_page
= grab_meta_page(sbi
, dst_off
);
1978 f2fs_bug_on(sbi
, PageDirty(src_page
));
1980 src_addr
= page_address(src_page
);
1981 dst_addr
= page_address(dst_page
);
1982 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
1984 set_page_dirty(dst_page
);
1985 f2fs_put_page(src_page
, 1);
1987 set_to_next_sit(sit_i
, start
);
1992 static struct sit_entry_set
*grab_sit_entry_set(void)
1994 struct sit_entry_set
*ses
=
1995 f2fs_kmem_cache_alloc(sit_entry_set_slab
, GFP_NOFS
);
1998 INIT_LIST_HEAD(&ses
->set_list
);
2002 static void release_sit_entry_set(struct sit_entry_set
*ses
)
2004 list_del(&ses
->set_list
);
2005 kmem_cache_free(sit_entry_set_slab
, ses
);
2008 static void adjust_sit_entry_set(struct sit_entry_set
*ses
,
2009 struct list_head
*head
)
2011 struct sit_entry_set
*next
= ses
;
2013 if (list_is_last(&ses
->set_list
, head
))
2016 list_for_each_entry_continue(next
, head
, set_list
)
2017 if (ses
->entry_cnt
<= next
->entry_cnt
)
2020 list_move_tail(&ses
->set_list
, &next
->set_list
);
2023 static void add_sit_entry(unsigned int segno
, struct list_head
*head
)
2025 struct sit_entry_set
*ses
;
2026 unsigned int start_segno
= START_SEGNO(segno
);
2028 list_for_each_entry(ses
, head
, set_list
) {
2029 if (ses
->start_segno
== start_segno
) {
2031 adjust_sit_entry_set(ses
, head
);
2036 ses
= grab_sit_entry_set();
2038 ses
->start_segno
= start_segno
;
2040 list_add(&ses
->set_list
, head
);
2043 static void add_sits_in_set(struct f2fs_sb_info
*sbi
)
2045 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2046 struct list_head
*set_list
= &sm_info
->sit_entry_set
;
2047 unsigned long *bitmap
= SIT_I(sbi
)->dirty_sentries_bitmap
;
2050 for_each_set_bit(segno
, bitmap
, MAIN_SEGS(sbi
))
2051 add_sit_entry(segno
, set_list
);
2054 static void remove_sits_in_journal(struct f2fs_sb_info
*sbi
)
2056 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2057 struct f2fs_journal
*journal
= curseg
->journal
;
2060 down_write(&curseg
->journal_rwsem
);
2061 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
2065 segno
= le32_to_cpu(segno_in_journal(journal
, i
));
2066 dirtied
= __mark_sit_entry_dirty(sbi
, segno
);
2069 add_sit_entry(segno
, &SM_I(sbi
)->sit_entry_set
);
2071 update_sits_in_cursum(journal
, -i
);
2072 up_write(&curseg
->journal_rwsem
);
2076 * CP calls this function, which flushes SIT entries including sit_journal,
2077 * and moves prefree segs to free segs.
2079 void flush_sit_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2081 struct sit_info
*sit_i
= SIT_I(sbi
);
2082 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
2083 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2084 struct f2fs_journal
*journal
= curseg
->journal
;
2085 struct sit_entry_set
*ses
, *tmp
;
2086 struct list_head
*head
= &SM_I(sbi
)->sit_entry_set
;
2087 bool to_journal
= true;
2088 struct seg_entry
*se
;
2090 mutex_lock(&sit_i
->sentry_lock
);
2092 if (!sit_i
->dirty_sentries
)
2096 * add and account sit entries of dirty bitmap in sit entry
2099 add_sits_in_set(sbi
);
2102 * if there are no enough space in journal to store dirty sit
2103 * entries, remove all entries from journal and add and account
2104 * them in sit entry set.
2106 if (!__has_cursum_space(journal
, sit_i
->dirty_sentries
, SIT_JOURNAL
))
2107 remove_sits_in_journal(sbi
);
2110 * there are two steps to flush sit entries:
2111 * #1, flush sit entries to journal in current cold data summary block.
2112 * #2, flush sit entries to sit page.
2114 list_for_each_entry_safe(ses
, tmp
, head
, set_list
) {
2115 struct page
*page
= NULL
;
2116 struct f2fs_sit_block
*raw_sit
= NULL
;
2117 unsigned int start_segno
= ses
->start_segno
;
2118 unsigned int end
= min(start_segno
+ SIT_ENTRY_PER_BLOCK
,
2119 (unsigned long)MAIN_SEGS(sbi
));
2120 unsigned int segno
= start_segno
;
2123 !__has_cursum_space(journal
, ses
->entry_cnt
, SIT_JOURNAL
))
2127 down_write(&curseg
->journal_rwsem
);
2129 page
= get_next_sit_page(sbi
, start_segno
);
2130 raw_sit
= page_address(page
);
2133 /* flush dirty sit entries in region of current sit set */
2134 for_each_set_bit_from(segno
, bitmap
, end
) {
2135 int offset
, sit_offset
;
2137 se
= get_seg_entry(sbi
, segno
);
2139 /* add discard candidates */
2140 if (cpc
->reason
!= CP_DISCARD
) {
2141 cpc
->trim_start
= segno
;
2142 add_discard_addrs(sbi
, cpc
);
2146 offset
= lookup_journal_in_cursum(journal
,
2147 SIT_JOURNAL
, segno
, 1);
2148 f2fs_bug_on(sbi
, offset
< 0);
2149 segno_in_journal(journal
, offset
) =
2151 seg_info_to_raw_sit(se
,
2152 &sit_in_journal(journal
, offset
));
2154 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
2155 seg_info_to_raw_sit(se
,
2156 &raw_sit
->entries
[sit_offset
]);
2159 __clear_bit(segno
, bitmap
);
2160 sit_i
->dirty_sentries
--;
2165 up_write(&curseg
->journal_rwsem
);
2167 f2fs_put_page(page
, 1);
2169 f2fs_bug_on(sbi
, ses
->entry_cnt
);
2170 release_sit_entry_set(ses
);
2173 f2fs_bug_on(sbi
, !list_empty(head
));
2174 f2fs_bug_on(sbi
, sit_i
->dirty_sentries
);
2176 if (cpc
->reason
== CP_DISCARD
) {
2177 for (; cpc
->trim_start
<= cpc
->trim_end
; cpc
->trim_start
++)
2178 add_discard_addrs(sbi
, cpc
);
2180 mutex_unlock(&sit_i
->sentry_lock
);
2182 set_prefree_as_free_segments(sbi
);
2185 static int build_sit_info(struct f2fs_sb_info
*sbi
)
2187 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2188 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2189 struct sit_info
*sit_i
;
2190 unsigned int sit_segs
, start
;
2191 char *src_bitmap
, *dst_bitmap
;
2192 unsigned int bitmap_size
;
2194 /* allocate memory for SIT information */
2195 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
2199 SM_I(sbi
)->sit_info
= sit_i
;
2201 sit_i
->sentries
= f2fs_kvzalloc(MAIN_SEGS(sbi
) *
2202 sizeof(struct seg_entry
), GFP_KERNEL
);
2203 if (!sit_i
->sentries
)
2206 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2207 sit_i
->dirty_sentries_bitmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2208 if (!sit_i
->dirty_sentries_bitmap
)
2211 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2212 sit_i
->sentries
[start
].cur_valid_map
2213 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2214 sit_i
->sentries
[start
].ckpt_valid_map
2215 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2216 if (!sit_i
->sentries
[start
].cur_valid_map
||
2217 !sit_i
->sentries
[start
].ckpt_valid_map
)
2220 if (f2fs_discard_en(sbi
)) {
2221 sit_i
->sentries
[start
].discard_map
2222 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2223 if (!sit_i
->sentries
[start
].discard_map
)
2228 sit_i
->tmp_map
= kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
2229 if (!sit_i
->tmp_map
)
2232 if (sbi
->segs_per_sec
> 1) {
2233 sit_i
->sec_entries
= f2fs_kvzalloc(MAIN_SECS(sbi
) *
2234 sizeof(struct sec_entry
), GFP_KERNEL
);
2235 if (!sit_i
->sec_entries
)
2239 /* get information related with SIT */
2240 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
2242 /* setup SIT bitmap from ckeckpoint pack */
2243 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
2244 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
2246 dst_bitmap
= kmemdup(src_bitmap
, bitmap_size
, GFP_KERNEL
);
2250 /* init SIT information */
2251 sit_i
->s_ops
= &default_salloc_ops
;
2253 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
2254 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
2255 sit_i
->written_valid_blocks
= le64_to_cpu(ckpt
->valid_block_count
);
2256 sit_i
->sit_bitmap
= dst_bitmap
;
2257 sit_i
->bitmap_size
= bitmap_size
;
2258 sit_i
->dirty_sentries
= 0;
2259 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
2260 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
2261 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
2262 mutex_init(&sit_i
->sentry_lock
);
2266 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
2268 struct free_segmap_info
*free_i
;
2269 unsigned int bitmap_size
, sec_bitmap_size
;
2271 /* allocate memory for free segmap information */
2272 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
2276 SM_I(sbi
)->free_info
= free_i
;
2278 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2279 free_i
->free_segmap
= f2fs_kvmalloc(bitmap_size
, GFP_KERNEL
);
2280 if (!free_i
->free_segmap
)
2283 sec_bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2284 free_i
->free_secmap
= f2fs_kvmalloc(sec_bitmap_size
, GFP_KERNEL
);
2285 if (!free_i
->free_secmap
)
2288 /* set all segments as dirty temporarily */
2289 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
2290 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
2292 /* init free segmap information */
2293 free_i
->start_segno
= GET_SEGNO_FROM_SEG0(sbi
, MAIN_BLKADDR(sbi
));
2294 free_i
->free_segments
= 0;
2295 free_i
->free_sections
= 0;
2296 spin_lock_init(&free_i
->segmap_lock
);
2300 static int build_curseg(struct f2fs_sb_info
*sbi
)
2302 struct curseg_info
*array
;
2305 array
= kcalloc(NR_CURSEG_TYPE
, sizeof(*array
), GFP_KERNEL
);
2309 SM_I(sbi
)->curseg_array
= array
;
2311 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2312 mutex_init(&array
[i
].curseg_mutex
);
2313 array
[i
].sum_blk
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
2314 if (!array
[i
].sum_blk
)
2316 init_rwsem(&array
[i
].journal_rwsem
);
2317 array
[i
].journal
= kzalloc(sizeof(struct f2fs_journal
),
2319 if (!array
[i
].journal
)
2321 array
[i
].segno
= NULL_SEGNO
;
2322 array
[i
].next_blkoff
= 0;
2324 return restore_curseg_summaries(sbi
);
2327 static int build_sit_entries(struct f2fs_sb_info
*sbi
)
2329 struct sit_info
*sit_i
= SIT_I(sbi
);
2330 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
2331 struct f2fs_journal
*journal
= curseg
->journal
;
2332 struct seg_entry
*se
;
2333 struct f2fs_sit_entry sit
;
2334 int sit_blk_cnt
= SIT_BLK_CNT(sbi
);
2335 unsigned int i
, start
, end
;
2336 unsigned int readed
, start_blk
= 0;
2337 int nrpages
= MAX_BIO_BLOCKS(sbi
) * 8;
2341 readed
= ra_meta_pages(sbi
, start_blk
, nrpages
, META_SIT
, true);
2343 start
= start_blk
* sit_i
->sents_per_block
;
2344 end
= (start_blk
+ readed
) * sit_i
->sents_per_block
;
2346 for (; start
< end
&& start
< MAIN_SEGS(sbi
); start
++) {
2347 struct f2fs_sit_block
*sit_blk
;
2350 se
= &sit_i
->sentries
[start
];
2351 page
= get_current_sit_page(sbi
, start
);
2352 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
2353 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
2354 f2fs_put_page(page
, 1);
2356 err
= check_block_count(sbi
, start
, &sit
);
2359 seg_info_from_raw_sit(se
, &sit
);
2361 /* build discard map only one time */
2362 if (f2fs_discard_en(sbi
)) {
2363 memcpy(se
->discard_map
, se
->cur_valid_map
,
2364 SIT_VBLOCK_MAP_SIZE
);
2365 sbi
->discard_blks
+= sbi
->blocks_per_seg
-
2369 if (sbi
->segs_per_sec
> 1)
2370 get_sec_entry(sbi
, start
)->valid_blocks
+=
2373 start_blk
+= readed
;
2374 } while (start_blk
< sit_blk_cnt
);
2376 down_read(&curseg
->journal_rwsem
);
2377 for (i
= 0; i
< sits_in_cursum(journal
); i
++) {
2378 unsigned int old_valid_blocks
;
2380 start
= le32_to_cpu(segno_in_journal(journal
, i
));
2381 if (start
>= MAIN_SEGS(sbi
)) {
2382 f2fs_msg(sbi
->sb
, KERN_ERR
,
2383 "Wrong journal entry on segno %u",
2385 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
2390 se
= &sit_i
->sentries
[start
];
2391 sit
= sit_in_journal(journal
, i
);
2393 old_valid_blocks
= se
->valid_blocks
;
2395 err
= check_block_count(sbi
, start
, &sit
);
2398 seg_info_from_raw_sit(se
, &sit
);
2400 if (f2fs_discard_en(sbi
)) {
2401 memcpy(se
->discard_map
, se
->cur_valid_map
,
2402 SIT_VBLOCK_MAP_SIZE
);
2403 sbi
->discard_blks
+= old_valid_blocks
-
2407 if (sbi
->segs_per_sec
> 1)
2408 get_sec_entry(sbi
, start
)->valid_blocks
+=
2409 se
->valid_blocks
- old_valid_blocks
;
2411 up_read(&curseg
->journal_rwsem
);
2415 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
2420 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2421 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
2422 if (!sentry
->valid_blocks
)
2423 __set_free(sbi
, start
);
2426 /* set use the current segments */
2427 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
2428 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
2429 __set_test_and_inuse(sbi
, curseg_t
->segno
);
2433 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
2435 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2436 struct free_segmap_info
*free_i
= FREE_I(sbi
);
2437 unsigned int segno
= 0, offset
= 0;
2438 unsigned short valid_blocks
;
2441 /* find dirty segment based on free segmap */
2442 segno
= find_next_inuse(free_i
, MAIN_SEGS(sbi
), offset
);
2443 if (segno
>= MAIN_SEGS(sbi
))
2446 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
2447 if (valid_blocks
== sbi
->blocks_per_seg
|| !valid_blocks
)
2449 if (valid_blocks
> sbi
->blocks_per_seg
) {
2450 f2fs_bug_on(sbi
, 1);
2453 mutex_lock(&dirty_i
->seglist_lock
);
2454 __locate_dirty_segment(sbi
, segno
, DIRTY
);
2455 mutex_unlock(&dirty_i
->seglist_lock
);
2459 static int init_victim_secmap(struct f2fs_sb_info
*sbi
)
2461 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2462 unsigned int bitmap_size
= f2fs_bitmap_size(MAIN_SECS(sbi
));
2464 dirty_i
->victim_secmap
= f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2465 if (!dirty_i
->victim_secmap
)
2470 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
2472 struct dirty_seglist_info
*dirty_i
;
2473 unsigned int bitmap_size
, i
;
2475 /* allocate memory for dirty segments list information */
2476 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
2480 SM_I(sbi
)->dirty_info
= dirty_i
;
2481 mutex_init(&dirty_i
->seglist_lock
);
2483 bitmap_size
= f2fs_bitmap_size(MAIN_SEGS(sbi
));
2485 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
2486 dirty_i
->dirty_segmap
[i
] = f2fs_kvzalloc(bitmap_size
, GFP_KERNEL
);
2487 if (!dirty_i
->dirty_segmap
[i
])
2491 init_dirty_segmap(sbi
);
2492 return init_victim_secmap(sbi
);
2495 static int sanity_check_curseg(struct f2fs_sb_info
*sbi
)
2500 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
2501 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
2503 for (i
= 0; i
< NO_CHECK_TYPE
; i
++) {
2504 struct curseg_info
*curseg
= CURSEG_I(sbi
, i
);
2505 struct seg_entry
*se
= get_seg_entry(sbi
, curseg
->segno
);
2506 unsigned int blkofs
= curseg
->next_blkoff
;
2508 if (f2fs_test_bit(blkofs
, se
->cur_valid_map
))
2511 if (curseg
->alloc_type
== SSR
)
2514 for (blkofs
+= 1; blkofs
< sbi
->blocks_per_seg
; blkofs
++) {
2515 if (!f2fs_test_bit(blkofs
, se
->cur_valid_map
))
2518 f2fs_msg(sbi
->sb
, KERN_ERR
,
2519 "Current segment's next free block offset is "
2520 "inconsistent with bitmap, logtype:%u, "
2521 "segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
2522 i
, curseg
->segno
, curseg
->alloc_type
,
2523 curseg
->next_blkoff
, blkofs
);
2531 * Update min, max modified time for cost-benefit GC algorithm
2533 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
2535 struct sit_info
*sit_i
= SIT_I(sbi
);
2538 mutex_lock(&sit_i
->sentry_lock
);
2540 sit_i
->min_mtime
= LLONG_MAX
;
2542 for (segno
= 0; segno
< MAIN_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
2544 unsigned long long mtime
= 0;
2546 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
2547 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
2549 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
2551 if (sit_i
->min_mtime
> mtime
)
2552 sit_i
->min_mtime
= mtime
;
2554 sit_i
->max_mtime
= get_mtime(sbi
);
2555 mutex_unlock(&sit_i
->sentry_lock
);
2558 int build_segment_manager(struct f2fs_sb_info
*sbi
)
2560 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
2561 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2562 struct f2fs_sm_info
*sm_info
;
2565 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
2570 sbi
->sm_info
= sm_info
;
2571 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
2572 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
2573 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
2574 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
2575 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
2576 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
2577 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
2578 sm_info
->rec_prefree_segments
= sm_info
->main_segments
*
2579 DEF_RECLAIM_PREFREE_SEGMENTS
/ 100;
2580 if (sm_info
->rec_prefree_segments
> DEF_MAX_RECLAIM_PREFREE_SEGMENTS
)
2581 sm_info
->rec_prefree_segments
= DEF_MAX_RECLAIM_PREFREE_SEGMENTS
;
2583 if (!test_opt(sbi
, LFS
))
2584 sm_info
->ipu_policy
= 1 << F2FS_IPU_FSYNC
;
2585 sm_info
->min_ipu_util
= DEF_MIN_IPU_UTIL
;
2586 sm_info
->min_fsync_blocks
= DEF_MIN_FSYNC_BLOCKS
;
2588 INIT_LIST_HEAD(&sm_info
->discard_list
);
2589 INIT_LIST_HEAD(&sm_info
->wait_list
);
2590 sm_info
->nr_discards
= 0;
2591 sm_info
->max_discards
= 0;
2593 sm_info
->trim_sections
= DEF_BATCHED_TRIM_SECTIONS
;
2595 INIT_LIST_HEAD(&sm_info
->sit_entry_set
);
2597 if (!f2fs_readonly(sbi
->sb
)) {
2598 err
= create_flush_cmd_control(sbi
);
2603 err
= build_sit_info(sbi
);
2606 err
= build_free_segmap(sbi
);
2609 err
= build_curseg(sbi
);
2613 /* reinit free segmap based on SIT */
2614 err
= build_sit_entries(sbi
);
2618 init_free_segmap(sbi
);
2619 err
= build_dirty_segmap(sbi
);
2623 err
= sanity_check_curseg(sbi
);
2627 init_min_max_mtime(sbi
);
2631 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
2632 enum dirty_type dirty_type
)
2634 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2636 mutex_lock(&dirty_i
->seglist_lock
);
2637 kvfree(dirty_i
->dirty_segmap
[dirty_type
]);
2638 dirty_i
->nr_dirty
[dirty_type
] = 0;
2639 mutex_unlock(&dirty_i
->seglist_lock
);
2642 static void destroy_victim_secmap(struct f2fs_sb_info
*sbi
)
2644 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2645 kvfree(dirty_i
->victim_secmap
);
2648 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
2650 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
2656 /* discard pre-free/dirty segments list */
2657 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
2658 discard_dirty_segmap(sbi
, i
);
2660 destroy_victim_secmap(sbi
);
2661 SM_I(sbi
)->dirty_info
= NULL
;
2665 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
2667 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
2672 SM_I(sbi
)->curseg_array
= NULL
;
2673 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
2674 kfree(array
[i
].sum_blk
);
2675 kfree(array
[i
].journal
);
2680 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
2682 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
2685 SM_I(sbi
)->free_info
= NULL
;
2686 kvfree(free_i
->free_segmap
);
2687 kvfree(free_i
->free_secmap
);
2691 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
2693 struct sit_info
*sit_i
= SIT_I(sbi
);
2699 if (sit_i
->sentries
) {
2700 for (start
= 0; start
< MAIN_SEGS(sbi
); start
++) {
2701 kfree(sit_i
->sentries
[start
].cur_valid_map
);
2702 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
2703 kfree(sit_i
->sentries
[start
].discard_map
);
2706 kfree(sit_i
->tmp_map
);
2708 kvfree(sit_i
->sentries
);
2709 kvfree(sit_i
->sec_entries
);
2710 kvfree(sit_i
->dirty_sentries_bitmap
);
2712 SM_I(sbi
)->sit_info
= NULL
;
2713 kfree(sit_i
->sit_bitmap
);
2717 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
2719 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
2723 destroy_flush_cmd_control(sbi
);
2724 destroy_dirty_segmap(sbi
);
2725 destroy_curseg(sbi
);
2726 destroy_free_segmap(sbi
);
2727 destroy_sit_info(sbi
);
2728 sbi
->sm_info
= NULL
;
2732 int __init
create_segment_manager_caches(void)
2734 discard_entry_slab
= f2fs_kmem_cache_create("discard_entry",
2735 sizeof(struct discard_entry
));
2736 if (!discard_entry_slab
)
2739 bio_entry_slab
= f2fs_kmem_cache_create("bio_entry",
2740 sizeof(struct bio_entry
));
2741 if (!bio_entry_slab
)
2742 goto destroy_discard_entry
;
2744 sit_entry_set_slab
= f2fs_kmem_cache_create("sit_entry_set",
2745 sizeof(struct sit_entry_set
));
2746 if (!sit_entry_set_slab
)
2747 goto destroy_bio_entry
;
2749 inmem_entry_slab
= f2fs_kmem_cache_create("inmem_page_entry",
2750 sizeof(struct inmem_pages
));
2751 if (!inmem_entry_slab
)
2752 goto destroy_sit_entry_set
;
2755 destroy_sit_entry_set
:
2756 kmem_cache_destroy(sit_entry_set_slab
);
2758 kmem_cache_destroy(bio_entry_slab
);
2759 destroy_discard_entry
:
2760 kmem_cache_destroy(discard_entry_slab
);
2765 void destroy_segment_manager_caches(void)
2767 kmem_cache_destroy(sit_entry_set_slab
);
2768 kmem_cache_destroy(bio_entry_slab
);
2769 kmem_cache_destroy(discard_entry_slab
);
2770 kmem_cache_destroy(inmem_entry_slab
);