2 * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3 * Copyright 2004-2011 Red Hat, Inc.
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/dlm.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/delay.h>
17 #include <linux/gfs2_ondisk.h>
23 #include "trace_gfs2.h"
25 extern struct workqueue_struct
*gfs2_control_wq
;
28 * gfs2_update_stats - Update time based stats
29 * @mv: Pointer to mean/variance structure to update
30 * @sample: New data to include
32 * @delta is the difference between the current rtt sample and the
33 * running average srtt. We add 1/8 of that to the srtt in order to
34 * update the current srtt estimate. The variance estimate is a bit
35 * more complicated. We subtract the current variance estimate from
36 * the abs value of the @delta and add 1/4 of that to the running
37 * total. That's equivalent to 3/4 of the current variance
38 * estimate plus 1/4 of the abs of @delta.
40 * Note that the index points at the array entry containing the smoothed
41 * mean value, and the variance is always in the following entry
43 * Reference: TCP/IP Illustrated, vol 2, p. 831,832
44 * All times are in units of integer nanoseconds. Unlike the TCP/IP case,
45 * they are not scaled fixed point.
48 static inline void gfs2_update_stats(struct gfs2_lkstats
*s
, unsigned index
,
51 s64 delta
= sample
- s
->stats
[index
];
52 s
->stats
[index
] += (delta
>> 3);
54 s
->stats
[index
] += (s64
)(abs(delta
) - s
->stats
[index
]) >> 2;
58 * gfs2_update_reply_times - Update locking statistics
59 * @gl: The glock to update
61 * This assumes that gl->gl_dstamp has been set earlier.
63 * The rtt (lock round trip time) is an estimate of the time
64 * taken to perform a dlm lock request. We update it on each
67 * The blocking flag is set on the glock for all dlm requests
68 * which may potentially block due to lock requests from other nodes.
69 * DLM requests where the current lock state is exclusive, the
70 * requested state is null (or unlocked) or where the TRY or
71 * TRY_1CB flags are set are classified as non-blocking. All
72 * other DLM requests are counted as (potentially) blocking.
74 static inline void gfs2_update_reply_times(struct gfs2_glock
*gl
)
76 struct gfs2_pcpu_lkstats
*lks
;
77 const unsigned gltype
= gl
->gl_name
.ln_type
;
78 unsigned index
= test_bit(GLF_BLOCKING
, &gl
->gl_flags
) ?
79 GFS2_LKS_SRTTB
: GFS2_LKS_SRTT
;
83 rtt
= ktime_to_ns(ktime_sub(ktime_get_real(), gl
->gl_dstamp
));
84 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
85 gfs2_update_stats(&gl
->gl_stats
, index
, rtt
); /* Local */
86 gfs2_update_stats(&lks
->lkstats
[gltype
], index
, rtt
); /* Global */
89 trace_gfs2_glock_lock_time(gl
, rtt
);
93 * gfs2_update_request_times - Update locking statistics
94 * @gl: The glock to update
96 * The irt (lock inter-request times) measures the average time
97 * between requests to the dlm. It is updated immediately before
101 static inline void gfs2_update_request_times(struct gfs2_glock
*gl
)
103 struct gfs2_pcpu_lkstats
*lks
;
104 const unsigned gltype
= gl
->gl_name
.ln_type
;
109 dstamp
= gl
->gl_dstamp
;
110 gl
->gl_dstamp
= ktime_get_real();
111 irt
= ktime_to_ns(ktime_sub(gl
->gl_dstamp
, dstamp
));
112 lks
= this_cpu_ptr(gl
->gl_name
.ln_sbd
->sd_lkstats
);
113 gfs2_update_stats(&gl
->gl_stats
, GFS2_LKS_SIRT
, irt
); /* Local */
114 gfs2_update_stats(&lks
->lkstats
[gltype
], GFS2_LKS_SIRT
, irt
); /* Global */
118 static void gdlm_ast(void *arg
)
120 struct gfs2_glock
*gl
= arg
;
121 unsigned ret
= gl
->gl_state
;
123 gfs2_update_reply_times(gl
);
124 BUG_ON(gl
->gl_lksb
.sb_flags
& DLM_SBF_DEMOTED
);
126 if ((gl
->gl_lksb
.sb_flags
& DLM_SBF_VALNOTVALID
) && gl
->gl_lksb
.sb_lvbptr
)
127 memset(gl
->gl_lksb
.sb_lvbptr
, 0, GDLM_LVB_SIZE
);
129 switch (gl
->gl_lksb
.sb_status
) {
130 case -DLM_EUNLOCK
: /* Unlocked, so glock can be freed */
133 case -DLM_ECANCEL
: /* Cancel while getting lock */
134 ret
|= LM_OUT_CANCELED
;
136 case -EAGAIN
: /* Try lock fails */
137 case -EDEADLK
: /* Deadlock detected */
139 case -ETIMEDOUT
: /* Canceled due to timeout */
142 case 0: /* Success */
144 default: /* Something unexpected */
149 if (gl
->gl_lksb
.sb_flags
& DLM_SBF_ALTMODE
) {
150 if (gl
->gl_req
== LM_ST_SHARED
)
151 ret
= LM_ST_DEFERRED
;
152 else if (gl
->gl_req
== LM_ST_DEFERRED
)
158 set_bit(GLF_INITIAL
, &gl
->gl_flags
);
159 gfs2_glock_complete(gl
, ret
);
162 if (!test_bit(GLF_INITIAL
, &gl
->gl_flags
))
163 gl
->gl_lksb
.sb_lkid
= 0;
164 gfs2_glock_complete(gl
, ret
);
167 static void gdlm_bast(void *arg
, int mode
)
169 struct gfs2_glock
*gl
= arg
;
173 gfs2_glock_cb(gl
, LM_ST_UNLOCKED
);
176 gfs2_glock_cb(gl
, LM_ST_DEFERRED
);
179 gfs2_glock_cb(gl
, LM_ST_SHARED
);
182 pr_err("unknown bast mode %d\n", mode
);
187 /* convert gfs lock-state to dlm lock-mode */
189 static int make_mode(const unsigned int lmstate
)
194 case LM_ST_EXCLUSIVE
:
201 pr_err("unknown LM state %d\n", lmstate
);
206 static u32
make_flags(struct gfs2_glock
*gl
, const unsigned int gfs_flags
,
211 if (gl
->gl_lksb
.sb_lvbptr
)
212 lkf
|= DLM_LKF_VALBLK
;
214 if (gfs_flags
& LM_FLAG_TRY
)
215 lkf
|= DLM_LKF_NOQUEUE
;
217 if (gfs_flags
& LM_FLAG_TRY_1CB
) {
218 lkf
|= DLM_LKF_NOQUEUE
;
219 lkf
|= DLM_LKF_NOQUEUEBAST
;
222 if (gfs_flags
& LM_FLAG_PRIORITY
) {
223 lkf
|= DLM_LKF_NOORDER
;
224 lkf
|= DLM_LKF_HEADQUE
;
227 if (gfs_flags
& LM_FLAG_ANY
) {
228 if (req
== DLM_LOCK_PR
)
229 lkf
|= DLM_LKF_ALTCW
;
230 else if (req
== DLM_LOCK_CW
)
231 lkf
|= DLM_LKF_ALTPR
;
236 if (gl
->gl_lksb
.sb_lkid
!= 0) {
237 lkf
|= DLM_LKF_CONVERT
;
238 if (test_bit(GLF_BLOCKING
, &gl
->gl_flags
))
239 lkf
|= DLM_LKF_QUECVT
;
245 static void gfs2_reverse_hex(char *c
, u64 value
)
249 *c
-- = hex_asc
[value
& 0x0f];
254 static int gdlm_lock(struct gfs2_glock
*gl
, unsigned int req_state
,
257 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
260 char strname
[GDLM_STRNAME_BYTES
] = "";
262 req
= make_mode(req_state
);
263 lkf
= make_flags(gl
, flags
, req
);
264 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
265 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
266 if (gl
->gl_lksb
.sb_lkid
) {
267 gfs2_update_request_times(gl
);
269 memset(strname
, ' ', GDLM_STRNAME_BYTES
- 1);
270 strname
[GDLM_STRNAME_BYTES
- 1] = '\0';
271 gfs2_reverse_hex(strname
+ 7, gl
->gl_name
.ln_type
);
272 gfs2_reverse_hex(strname
+ 23, gl
->gl_name
.ln_number
);
273 gl
->gl_dstamp
= ktime_get_real();
276 * Submit the actual lock request.
279 return dlm_lock(ls
->ls_dlm
, req
, &gl
->gl_lksb
, lkf
, strname
,
280 GDLM_STRNAME_BYTES
- 1, 0, gdlm_ast
, gl
, gdlm_bast
);
283 static void gdlm_put_lock(struct gfs2_glock
*gl
)
285 struct gfs2_sbd
*sdp
= gl
->gl_name
.ln_sbd
;
286 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
287 int lvb_needs_unlock
= 0;
290 if (gl
->gl_lksb
.sb_lkid
== 0) {
295 clear_bit(GLF_BLOCKING
, &gl
->gl_flags
);
296 gfs2_glstats_inc(gl
, GFS2_LKS_DCOUNT
);
297 gfs2_sbstats_inc(gl
, GFS2_LKS_DCOUNT
);
298 gfs2_update_request_times(gl
);
300 /* don't want to skip dlm_unlock writing the lvb when lock is ex */
302 if (gl
->gl_lksb
.sb_lvbptr
&& (gl
->gl_state
== LM_ST_EXCLUSIVE
))
303 lvb_needs_unlock
= 1;
305 if (test_bit(SDF_SKIP_DLM_UNLOCK
, &sdp
->sd_flags
) &&
311 error
= dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_VALBLK
,
314 pr_err("gdlm_unlock %x,%llx err=%d\n",
316 (unsigned long long)gl
->gl_name
.ln_number
, error
);
321 static void gdlm_cancel(struct gfs2_glock
*gl
)
323 struct lm_lockstruct
*ls
= &gl
->gl_name
.ln_sbd
->sd_lockstruct
;
324 dlm_unlock(ls
->ls_dlm
, gl
->gl_lksb
.sb_lkid
, DLM_LKF_CANCEL
, NULL
, gl
);
328 * dlm/gfs2 recovery coordination using dlm_recover callbacks
330 * 1. dlm_controld sees lockspace members change
331 * 2. dlm_controld blocks dlm-kernel locking activity
332 * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
333 * 4. dlm_controld starts and finishes its own user level recovery
334 * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
335 * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
336 * 7. dlm_recoverd does its own lock recovery
337 * 8. dlm_recoverd unblocks dlm-kernel locking activity
338 * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
339 * 10. gfs2_control updates control_lock lvb with new generation and jid bits
340 * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
341 * 12. gfs2_recover dequeues and recovers journals of failed nodes
342 * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
343 * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
344 * 15. gfs2_control unblocks normal locking when all journals are recovered
346 * - failures during recovery
348 * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
349 * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
350 * recovering for a prior failure. gfs2_control needs a way to detect
351 * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
352 * the recover_block and recover_start values.
354 * recover_done() provides a new lockspace generation number each time it
355 * is called (step 9). This generation number is saved as recover_start.
356 * When recover_prep() is called, it sets BLOCK_LOCKS and sets
357 * recover_block = recover_start. So, while recover_block is equal to
358 * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
359 * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
361 * - more specific gfs2 steps in sequence above
363 * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
364 * 6. recover_slot records any failed jids (maybe none)
365 * 9. recover_done sets recover_start = new generation number
366 * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
367 * 12. gfs2_recover does journal recoveries for failed jids identified above
368 * 14. gfs2_control clears control_lock lvb bits for recovered jids
369 * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
370 * again) then do nothing, otherwise if recover_start > recover_block
371 * then clear BLOCK_LOCKS.
373 * - parallel recovery steps across all nodes
375 * All nodes attempt to update the control_lock lvb with the new generation
376 * number and jid bits, but only the first to get the control_lock EX will
377 * do so; others will see that it's already done (lvb already contains new
378 * generation number.)
380 * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
381 * . All nodes attempt to set control_lock lvb gen + bits for the new gen
382 * . One node gets control_lock first and writes the lvb, others see it's done
383 * . All nodes attempt to recover jids for which they see control_lock bits set
384 * . One node succeeds for a jid, and that one clears the jid bit in the lvb
385 * . All nodes will eventually see all lvb bits clear and unblock locks
387 * - is there a problem with clearing an lvb bit that should be set
388 * and missing a journal recovery?
391 * 2. lvb bit set for step 1
392 * 3. jid recovered for step 1
393 * 4. jid taken again (new mount)
394 * 5. jid fails (for step 4)
395 * 6. lvb bit set for step 5 (will already be set)
396 * 7. lvb bit cleared for step 3
398 * This is not a problem because the failure in step 5 does not
399 * require recovery, because the mount in step 4 could not have
400 * progressed far enough to unblock locks and access the fs. The
401 * control_mount() function waits for all recoveries to be complete
402 * for the latest lockspace generation before ever unblocking locks
403 * and returning. The mount in step 4 waits until the recovery in
406 * - special case of first mounter: first node to mount the fs
408 * The first node to mount a gfs2 fs needs to check all the journals
409 * and recover any that need recovery before other nodes are allowed
410 * to mount the fs. (Others may begin mounting, but they must wait
411 * for the first mounter to be done before taking locks on the fs
412 * or accessing the fs.) This has two parts:
414 * 1. The mounted_lock tells a node it's the first to mount the fs.
415 * Each node holds the mounted_lock in PR while it's mounted.
416 * Each node tries to acquire the mounted_lock in EX when it mounts.
417 * If a node is granted the mounted_lock EX it means there are no
418 * other mounted nodes (no PR locks exist), and it is the first mounter.
419 * The mounted_lock is demoted to PR when first recovery is done, so
420 * others will fail to get an EX lock, but will get a PR lock.
422 * 2. The control_lock blocks others in control_mount() while the first
423 * mounter is doing first mount recovery of all journals.
424 * A mounting node needs to acquire control_lock in EX mode before
425 * it can proceed. The first mounter holds control_lock in EX while doing
426 * the first mount recovery, blocking mounts from other nodes, then demotes
427 * control_lock to NL when it's done (others_may_mount/first_done),
428 * allowing other nodes to continue mounting.
431 * control_lock EX/NOQUEUE success
432 * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
434 * do first mounter recovery
435 * mounted_lock EX->PR
436 * control_lock EX->NL, write lvb generation
439 * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
440 * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
441 * mounted_lock PR/NOQUEUE success
442 * read lvb generation
443 * control_lock EX->NL
446 * - mount during recovery
448 * If a node mounts while others are doing recovery (not first mounter),
449 * the mounting node will get its initial recover_done() callback without
450 * having seen any previous failures/callbacks.
452 * It must wait for all recoveries preceding its mount to be finished
453 * before it unblocks locks. It does this by repeating the "other mounter"
454 * steps above until the lvb generation number is >= its mount generation
455 * number (from initial recover_done) and all lvb bits are clear.
457 * - control_lock lvb format
459 * 4 bytes generation number: the latest dlm lockspace generation number
460 * from recover_done callback. Indicates the jid bitmap has been updated
461 * to reflect all slot failures through that generation.
463 * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
464 * that jid N needs recovery.
467 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
469 static void control_lvb_read(struct lm_lockstruct
*ls
, uint32_t *lvb_gen
,
473 memcpy(lvb_bits
, ls
->ls_control_lvb
, GDLM_LVB_SIZE
);
474 memcpy(&gen
, lvb_bits
, sizeof(__le32
));
475 *lvb_gen
= le32_to_cpu(gen
);
478 static void control_lvb_write(struct lm_lockstruct
*ls
, uint32_t lvb_gen
,
482 memcpy(ls
->ls_control_lvb
, lvb_bits
, GDLM_LVB_SIZE
);
483 gen
= cpu_to_le32(lvb_gen
);
484 memcpy(ls
->ls_control_lvb
, &gen
, sizeof(__le32
));
487 static int all_jid_bits_clear(char *lvb
)
489 return !memchr_inv(lvb
+ JID_BITMAP_OFFSET
, 0,
490 GDLM_LVB_SIZE
- JID_BITMAP_OFFSET
);
493 static void sync_wait_cb(void *arg
)
495 struct lm_lockstruct
*ls
= arg
;
496 complete(&ls
->ls_sync_wait
);
499 static int sync_unlock(struct gfs2_sbd
*sdp
, struct dlm_lksb
*lksb
, char *name
)
501 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
504 error
= dlm_unlock(ls
->ls_dlm
, lksb
->sb_lkid
, 0, lksb
, ls
);
506 fs_err(sdp
, "%s lkid %x error %d\n",
507 name
, lksb
->sb_lkid
, error
);
511 wait_for_completion(&ls
->ls_sync_wait
);
513 if (lksb
->sb_status
!= -DLM_EUNLOCK
) {
514 fs_err(sdp
, "%s lkid %x status %d\n",
515 name
, lksb
->sb_lkid
, lksb
->sb_status
);
521 static int sync_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
,
522 unsigned int num
, struct dlm_lksb
*lksb
, char *name
)
524 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
525 char strname
[GDLM_STRNAME_BYTES
];
528 memset(strname
, 0, GDLM_STRNAME_BYTES
);
529 snprintf(strname
, GDLM_STRNAME_BYTES
, "%8x%16x", LM_TYPE_NONDISK
, num
);
531 error
= dlm_lock(ls
->ls_dlm
, mode
, lksb
, flags
,
532 strname
, GDLM_STRNAME_BYTES
- 1,
533 0, sync_wait_cb
, ls
, NULL
);
535 fs_err(sdp
, "%s lkid %x flags %x mode %d error %d\n",
536 name
, lksb
->sb_lkid
, flags
, mode
, error
);
540 wait_for_completion(&ls
->ls_sync_wait
);
542 status
= lksb
->sb_status
;
544 if (status
&& status
!= -EAGAIN
) {
545 fs_err(sdp
, "%s lkid %x flags %x mode %d status %d\n",
546 name
, lksb
->sb_lkid
, flags
, mode
, status
);
552 static int mounted_unlock(struct gfs2_sbd
*sdp
)
554 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
555 return sync_unlock(sdp
, &ls
->ls_mounted_lksb
, "mounted_lock");
558 static int mounted_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
560 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
561 return sync_lock(sdp
, mode
, flags
, GFS2_MOUNTED_LOCK
,
562 &ls
->ls_mounted_lksb
, "mounted_lock");
565 static int control_unlock(struct gfs2_sbd
*sdp
)
567 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
568 return sync_unlock(sdp
, &ls
->ls_control_lksb
, "control_lock");
571 static int control_lock(struct gfs2_sbd
*sdp
, int mode
, uint32_t flags
)
573 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
574 return sync_lock(sdp
, mode
, flags
, GFS2_CONTROL_LOCK
,
575 &ls
->ls_control_lksb
, "control_lock");
578 static void gfs2_control_func(struct work_struct
*work
)
580 struct gfs2_sbd
*sdp
= container_of(work
, struct gfs2_sbd
, sd_control_work
.work
);
581 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
582 uint32_t block_gen
, start_gen
, lvb_gen
, flags
;
588 spin_lock(&ls
->ls_recover_spin
);
590 * No MOUNT_DONE means we're still mounting; control_mount()
591 * will set this flag, after which this thread will take over
592 * all further clearing of BLOCK_LOCKS.
594 * FIRST_MOUNT means this node is doing first mounter recovery,
595 * for which recovery control is handled by
596 * control_mount()/control_first_done(), not this thread.
598 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
599 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
600 spin_unlock(&ls
->ls_recover_spin
);
603 block_gen
= ls
->ls_recover_block
;
604 start_gen
= ls
->ls_recover_start
;
605 spin_unlock(&ls
->ls_recover_spin
);
608 * Equal block_gen and start_gen implies we are between
609 * recover_prep and recover_done callbacks, which means
610 * dlm recovery is in progress and dlm locking is blocked.
611 * There's no point trying to do any work until recover_done.
614 if (block_gen
== start_gen
)
618 * Propagate recover_submit[] and recover_result[] to lvb:
619 * dlm_recoverd adds to recover_submit[] jids needing recovery
620 * gfs2_recover adds to recover_result[] journal recovery results
622 * set lvb bit for jids in recover_submit[] if the lvb has not
623 * yet been updated for the generation of the failure
625 * clear lvb bit for jids in recover_result[] if the result of
626 * the journal recovery is SUCCESS
629 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
631 fs_err(sdp
, "control lock EX error %d\n", error
);
635 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
637 spin_lock(&ls
->ls_recover_spin
);
638 if (block_gen
!= ls
->ls_recover_block
||
639 start_gen
!= ls
->ls_recover_start
) {
640 fs_info(sdp
, "recover generation %u block1 %u %u\n",
641 start_gen
, block_gen
, ls
->ls_recover_block
);
642 spin_unlock(&ls
->ls_recover_spin
);
643 control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
647 recover_size
= ls
->ls_recover_size
;
649 if (lvb_gen
<= start_gen
) {
651 * Clear lvb bits for jids we've successfully recovered.
652 * Because all nodes attempt to recover failed journals,
653 * a journal can be recovered multiple times successfully
654 * in succession. Only the first will really do recovery,
655 * the others find it clean, but still report a successful
656 * recovery. So, another node may have already recovered
657 * the jid and cleared the lvb bit for it.
659 for (i
= 0; i
< recover_size
; i
++) {
660 if (ls
->ls_recover_result
[i
] != LM_RD_SUCCESS
)
663 ls
->ls_recover_result
[i
] = 0;
665 if (!test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
))
668 __clear_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
673 if (lvb_gen
== start_gen
) {
675 * Failed slots before start_gen are already set in lvb.
677 for (i
= 0; i
< recover_size
; i
++) {
678 if (!ls
->ls_recover_submit
[i
])
680 if (ls
->ls_recover_submit
[i
] < lvb_gen
)
681 ls
->ls_recover_submit
[i
] = 0;
683 } else if (lvb_gen
< start_gen
) {
685 * Failed slots before start_gen are not yet set in lvb.
687 for (i
= 0; i
< recover_size
; i
++) {
688 if (!ls
->ls_recover_submit
[i
])
690 if (ls
->ls_recover_submit
[i
] < start_gen
) {
691 ls
->ls_recover_submit
[i
] = 0;
692 __set_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
);
695 /* even if there are no bits to set, we need to write the
696 latest generation to the lvb */
700 * we should be getting a recover_done() for lvb_gen soon
703 spin_unlock(&ls
->ls_recover_spin
);
706 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
707 flags
= DLM_LKF_CONVERT
| DLM_LKF_VALBLK
;
709 flags
= DLM_LKF_CONVERT
;
712 error
= control_lock(sdp
, DLM_LOCK_NL
, flags
);
714 fs_err(sdp
, "control lock NL error %d\n", error
);
719 * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
720 * and clear a jid bit in the lvb if the recovery is a success.
721 * Eventually all journals will be recovered, all jid bits will
722 * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
725 for (i
= 0; i
< recover_size
; i
++) {
726 if (test_bit_le(i
, ls
->ls_lvb_bits
+ JID_BITMAP_OFFSET
)) {
727 fs_info(sdp
, "recover generation %u jid %d\n",
729 gfs2_recover_set(sdp
, i
);
737 * No more jid bits set in lvb, all recovery is done, unblock locks
738 * (unless a new recover_prep callback has occured blocking locks
739 * again while working above)
742 spin_lock(&ls
->ls_recover_spin
);
743 if (ls
->ls_recover_block
== block_gen
&&
744 ls
->ls_recover_start
== start_gen
) {
745 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
746 spin_unlock(&ls
->ls_recover_spin
);
747 fs_info(sdp
, "recover generation %u done\n", start_gen
);
748 gfs2_glock_thaw(sdp
);
750 fs_info(sdp
, "recover generation %u block2 %u %u\n",
751 start_gen
, block_gen
, ls
->ls_recover_block
);
752 spin_unlock(&ls
->ls_recover_spin
);
756 static int control_mount(struct gfs2_sbd
*sdp
)
758 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
759 uint32_t start_gen
, block_gen
, mount_gen
, lvb_gen
;
764 memset(&ls
->ls_mounted_lksb
, 0, sizeof(struct dlm_lksb
));
765 memset(&ls
->ls_control_lksb
, 0, sizeof(struct dlm_lksb
));
766 memset(&ls
->ls_control_lvb
, 0, GDLM_LVB_SIZE
);
767 ls
->ls_control_lksb
.sb_lvbptr
= ls
->ls_control_lvb
;
768 init_completion(&ls
->ls_sync_wait
);
770 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
772 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_VALBLK
);
774 fs_err(sdp
, "control_mount control_lock NL error %d\n", error
);
778 error
= mounted_lock(sdp
, DLM_LOCK_NL
, 0);
780 fs_err(sdp
, "control_mount mounted_lock NL error %d\n", error
);
784 mounted_mode
= DLM_LOCK_NL
;
787 if (retries
++ && signal_pending(current
)) {
793 * We always start with both locks in NL. control_lock is
794 * demoted to NL below so we don't need to do it here.
797 if (mounted_mode
!= DLM_LOCK_NL
) {
798 error
= mounted_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
801 mounted_mode
= DLM_LOCK_NL
;
805 * Other nodes need to do some work in dlm recovery and gfs2_control
806 * before the recover_done and control_lock will be ready for us below.
807 * A delay here is not required but often avoids having to retry.
810 msleep_interruptible(500);
813 * Acquire control_lock in EX and mounted_lock in either EX or PR.
814 * control_lock lvb keeps track of any pending journal recoveries.
815 * mounted_lock indicates if any other nodes have the fs mounted.
818 error
= control_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
|DLM_LKF_VALBLK
);
819 if (error
== -EAGAIN
) {
822 fs_err(sdp
, "control_mount control_lock EX error %d\n", error
);
826 error
= mounted_lock(sdp
, DLM_LOCK_EX
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
828 mounted_mode
= DLM_LOCK_EX
;
830 } else if (error
!= -EAGAIN
) {
831 fs_err(sdp
, "control_mount mounted_lock EX error %d\n", error
);
835 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
|DLM_LKF_NOQUEUE
);
837 mounted_mode
= DLM_LOCK_PR
;
840 /* not even -EAGAIN should happen here */
841 fs_err(sdp
, "control_mount mounted_lock PR error %d\n", error
);
847 * If we got both locks above in EX, then we're the first mounter.
848 * If not, then we need to wait for the control_lock lvb to be
849 * updated by other mounted nodes to reflect our mount generation.
851 * In simple first mounter cases, first mounter will see zero lvb_gen,
852 * but in cases where all existing nodes leave/fail before mounting
853 * nodes finish control_mount, then all nodes will be mounting and
854 * lvb_gen will be non-zero.
857 control_lvb_read(ls
, &lvb_gen
, ls
->ls_lvb_bits
);
859 if (lvb_gen
== 0xFFFFFFFF) {
860 /* special value to force mount attempts to fail */
861 fs_err(sdp
, "control_mount control_lock disabled\n");
866 if (mounted_mode
== DLM_LOCK_EX
) {
867 /* first mounter, keep both EX while doing first recovery */
868 spin_lock(&ls
->ls_recover_spin
);
869 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
870 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
871 set_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
872 spin_unlock(&ls
->ls_recover_spin
);
873 fs_info(sdp
, "first mounter control generation %u\n", lvb_gen
);
877 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
);
882 * We are not first mounter, now we need to wait for the control_lock
883 * lvb generation to be >= the generation from our first recover_done
884 * and all lvb bits to be clear (no pending journal recoveries.)
887 if (!all_jid_bits_clear(ls
->ls_lvb_bits
)) {
888 /* journals need recovery, wait until all are clear */
889 fs_info(sdp
, "control_mount wait for journal recovery\n");
893 spin_lock(&ls
->ls_recover_spin
);
894 block_gen
= ls
->ls_recover_block
;
895 start_gen
= ls
->ls_recover_start
;
896 mount_gen
= ls
->ls_recover_mount
;
898 if (lvb_gen
< mount_gen
) {
899 /* wait for mounted nodes to update control_lock lvb to our
900 generation, which might include new recovery bits set */
901 fs_info(sdp
, "control_mount wait1 block %u start %u mount %u "
902 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
903 lvb_gen
, ls
->ls_recover_flags
);
904 spin_unlock(&ls
->ls_recover_spin
);
908 if (lvb_gen
!= start_gen
) {
909 /* wait for mounted nodes to update control_lock lvb to the
910 latest recovery generation */
911 fs_info(sdp
, "control_mount wait2 block %u start %u mount %u "
912 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
913 lvb_gen
, ls
->ls_recover_flags
);
914 spin_unlock(&ls
->ls_recover_spin
);
918 if (block_gen
== start_gen
) {
919 /* dlm recovery in progress, wait for it to finish */
920 fs_info(sdp
, "control_mount wait3 block %u start %u mount %u "
921 "lvb %u flags %lx\n", block_gen
, start_gen
, mount_gen
,
922 lvb_gen
, ls
->ls_recover_flags
);
923 spin_unlock(&ls
->ls_recover_spin
);
927 clear_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
928 set_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
);
929 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
930 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
931 spin_unlock(&ls
->ls_recover_spin
);
940 static int control_first_done(struct gfs2_sbd
*sdp
)
942 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
943 uint32_t start_gen
, block_gen
;
947 spin_lock(&ls
->ls_recover_spin
);
948 start_gen
= ls
->ls_recover_start
;
949 block_gen
= ls
->ls_recover_block
;
951 if (test_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
) ||
952 !test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
953 !test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
954 /* sanity check, should not happen */
955 fs_err(sdp
, "control_first_done start %u block %u flags %lx\n",
956 start_gen
, block_gen
, ls
->ls_recover_flags
);
957 spin_unlock(&ls
->ls_recover_spin
);
962 if (start_gen
== block_gen
) {
964 * Wait for the end of a dlm recovery cycle to switch from
965 * first mounter recovery. We can ignore any recover_slot
966 * callbacks between the recover_prep and next recover_done
967 * because we are still the first mounter and any failed nodes
968 * have not fully mounted, so they don't need recovery.
970 spin_unlock(&ls
->ls_recover_spin
);
971 fs_info(sdp
, "control_first_done wait gen %u\n", start_gen
);
973 wait_on_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
,
974 TASK_UNINTERRUPTIBLE
);
978 clear_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
979 set_bit(DFL_FIRST_MOUNT_DONE
, &ls
->ls_recover_flags
);
980 memset(ls
->ls_recover_submit
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
981 memset(ls
->ls_recover_result
, 0, ls
->ls_recover_size
*sizeof(uint32_t));
982 spin_unlock(&ls
->ls_recover_spin
);
984 memset(ls
->ls_lvb_bits
, 0, GDLM_LVB_SIZE
);
985 control_lvb_write(ls
, start_gen
, ls
->ls_lvb_bits
);
987 error
= mounted_lock(sdp
, DLM_LOCK_PR
, DLM_LKF_CONVERT
);
989 fs_err(sdp
, "control_first_done mounted PR error %d\n", error
);
991 error
= control_lock(sdp
, DLM_LOCK_NL
, DLM_LKF_CONVERT
|DLM_LKF_VALBLK
);
993 fs_err(sdp
, "control_first_done control NL error %d\n", error
);
999 * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
1000 * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
1001 * gfs2 jids start at 0, so jid = slot - 1)
1004 #define RECOVER_SIZE_INC 16
1006 static int set_recover_size(struct gfs2_sbd
*sdp
, struct dlm_slot
*slots
,
1009 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1010 uint32_t *submit
= NULL
;
1011 uint32_t *result
= NULL
;
1012 uint32_t old_size
, new_size
;
1015 if (!ls
->ls_lvb_bits
) {
1016 ls
->ls_lvb_bits
= kzalloc(GDLM_LVB_SIZE
, GFP_NOFS
);
1017 if (!ls
->ls_lvb_bits
)
1022 for (i
= 0; i
< num_slots
; i
++) {
1023 if (max_jid
< slots
[i
].slot
- 1)
1024 max_jid
= slots
[i
].slot
- 1;
1027 old_size
= ls
->ls_recover_size
;
1029 if (old_size
>= max_jid
+ 1)
1032 new_size
= old_size
+ RECOVER_SIZE_INC
;
1034 submit
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1035 result
= kcalloc(new_size
, sizeof(uint32_t), GFP_NOFS
);
1036 if (!submit
|| !result
) {
1042 spin_lock(&ls
->ls_recover_spin
);
1043 memcpy(submit
, ls
->ls_recover_submit
, old_size
* sizeof(uint32_t));
1044 memcpy(result
, ls
->ls_recover_result
, old_size
* sizeof(uint32_t));
1045 kfree(ls
->ls_recover_submit
);
1046 kfree(ls
->ls_recover_result
);
1047 ls
->ls_recover_submit
= submit
;
1048 ls
->ls_recover_result
= result
;
1049 ls
->ls_recover_size
= new_size
;
1050 spin_unlock(&ls
->ls_recover_spin
);
1054 static void free_recover_size(struct lm_lockstruct
*ls
)
1056 kfree(ls
->ls_lvb_bits
);
1057 kfree(ls
->ls_recover_submit
);
1058 kfree(ls
->ls_recover_result
);
1059 ls
->ls_recover_submit
= NULL
;
1060 ls
->ls_recover_result
= NULL
;
1061 ls
->ls_recover_size
= 0;
1064 /* dlm calls before it does lock recovery */
1066 static void gdlm_recover_prep(void *arg
)
1068 struct gfs2_sbd
*sdp
= arg
;
1069 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1071 spin_lock(&ls
->ls_recover_spin
);
1072 ls
->ls_recover_block
= ls
->ls_recover_start
;
1073 set_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1075 if (!test_bit(DFL_MOUNT_DONE
, &ls
->ls_recover_flags
) ||
1076 test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1077 spin_unlock(&ls
->ls_recover_spin
);
1080 set_bit(DFL_BLOCK_LOCKS
, &ls
->ls_recover_flags
);
1081 spin_unlock(&ls
->ls_recover_spin
);
1084 /* dlm calls after recover_prep has been completed on all lockspace members;
1085 identifies slot/jid of failed member */
1087 static void gdlm_recover_slot(void *arg
, struct dlm_slot
*slot
)
1089 struct gfs2_sbd
*sdp
= arg
;
1090 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1091 int jid
= slot
->slot
- 1;
1093 spin_lock(&ls
->ls_recover_spin
);
1094 if (ls
->ls_recover_size
< jid
+ 1) {
1095 fs_err(sdp
, "recover_slot jid %d gen %u short size %d",
1096 jid
, ls
->ls_recover_block
, ls
->ls_recover_size
);
1097 spin_unlock(&ls
->ls_recover_spin
);
1101 if (ls
->ls_recover_submit
[jid
]) {
1102 fs_info(sdp
, "recover_slot jid %d gen %u prev %u\n",
1103 jid
, ls
->ls_recover_block
, ls
->ls_recover_submit
[jid
]);
1105 ls
->ls_recover_submit
[jid
] = ls
->ls_recover_block
;
1106 spin_unlock(&ls
->ls_recover_spin
);
1109 /* dlm calls after recover_slot and after it completes lock recovery */
1111 static void gdlm_recover_done(void *arg
, struct dlm_slot
*slots
, int num_slots
,
1112 int our_slot
, uint32_t generation
)
1114 struct gfs2_sbd
*sdp
= arg
;
1115 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1117 /* ensure the ls jid arrays are large enough */
1118 set_recover_size(sdp
, slots
, num_slots
);
1120 spin_lock(&ls
->ls_recover_spin
);
1121 ls
->ls_recover_start
= generation
;
1123 if (!ls
->ls_recover_mount
) {
1124 ls
->ls_recover_mount
= generation
;
1125 ls
->ls_jid
= our_slot
- 1;
1128 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1129 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
, 0);
1131 clear_bit(DFL_DLM_RECOVERY
, &ls
->ls_recover_flags
);
1132 smp_mb__after_atomic();
1133 wake_up_bit(&ls
->ls_recover_flags
, DFL_DLM_RECOVERY
);
1134 spin_unlock(&ls
->ls_recover_spin
);
1137 /* gfs2_recover thread has a journal recovery result */
1139 static void gdlm_recovery_result(struct gfs2_sbd
*sdp
, unsigned int jid
,
1140 unsigned int result
)
1142 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1144 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1147 /* don't care about the recovery of own journal during mount */
1148 if (jid
== ls
->ls_jid
)
1151 spin_lock(&ls
->ls_recover_spin
);
1152 if (test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
)) {
1153 spin_unlock(&ls
->ls_recover_spin
);
1156 if (ls
->ls_recover_size
< jid
+ 1) {
1157 fs_err(sdp
, "recovery_result jid %d short size %d",
1158 jid
, ls
->ls_recover_size
);
1159 spin_unlock(&ls
->ls_recover_spin
);
1163 fs_info(sdp
, "recover jid %d result %s\n", jid
,
1164 result
== LM_RD_GAVEUP
? "busy" : "success");
1166 ls
->ls_recover_result
[jid
] = result
;
1168 /* GAVEUP means another node is recovering the journal; delay our
1169 next attempt to recover it, to give the other node a chance to
1170 finish before trying again */
1172 if (!test_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
))
1173 queue_delayed_work(gfs2_control_wq
, &sdp
->sd_control_work
,
1174 result
== LM_RD_GAVEUP
? HZ
: 0);
1175 spin_unlock(&ls
->ls_recover_spin
);
1178 const struct dlm_lockspace_ops gdlm_lockspace_ops
= {
1179 .recover_prep
= gdlm_recover_prep
,
1180 .recover_slot
= gdlm_recover_slot
,
1181 .recover_done
= gdlm_recover_done
,
1184 static int gdlm_mount(struct gfs2_sbd
*sdp
, const char *table
)
1186 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1187 char cluster
[GFS2_LOCKNAME_LEN
];
1190 int error
, ops_result
;
1193 * initialize everything
1196 INIT_DELAYED_WORK(&sdp
->sd_control_work
, gfs2_control_func
);
1197 spin_lock_init(&ls
->ls_recover_spin
);
1198 ls
->ls_recover_flags
= 0;
1199 ls
->ls_recover_mount
= 0;
1200 ls
->ls_recover_start
= 0;
1201 ls
->ls_recover_block
= 0;
1202 ls
->ls_recover_size
= 0;
1203 ls
->ls_recover_submit
= NULL
;
1204 ls
->ls_recover_result
= NULL
;
1205 ls
->ls_lvb_bits
= NULL
;
1207 error
= set_recover_size(sdp
, NULL
, 0);
1212 * prepare dlm_new_lockspace args
1215 fsname
= strchr(table
, ':');
1217 fs_info(sdp
, "no fsname found\n");
1221 memset(cluster
, 0, sizeof(cluster
));
1222 memcpy(cluster
, table
, strlen(table
) - strlen(fsname
));
1225 flags
= DLM_LSFL_FS
| DLM_LSFL_NEWEXCL
;
1228 * create/join lockspace
1231 error
= dlm_new_lockspace(fsname
, cluster
, flags
, GDLM_LVB_SIZE
,
1232 &gdlm_lockspace_ops
, sdp
, &ops_result
,
1235 fs_err(sdp
, "dlm_new_lockspace error %d\n", error
);
1239 if (ops_result
< 0) {
1241 * dlm does not support ops callbacks,
1242 * old dlm_controld/gfs_controld are used, try without ops.
1244 fs_info(sdp
, "dlm lockspace ops not used\n");
1245 free_recover_size(ls
);
1246 set_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
);
1250 if (!test_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
)) {
1251 fs_err(sdp
, "dlm lockspace ops disallow jid preset\n");
1257 * control_mount() uses control_lock to determine first mounter,
1258 * and for later mounts, waits for any recoveries to be cleared.
1261 error
= control_mount(sdp
);
1263 fs_err(sdp
, "mount control error %d\n", error
);
1267 ls
->ls_first
= !!test_bit(DFL_FIRST_MOUNT
, &ls
->ls_recover_flags
);
1268 clear_bit(SDF_NOJOURNALID
, &sdp
->sd_flags
);
1269 smp_mb__after_atomic();
1270 wake_up_bit(&sdp
->sd_flags
, SDF_NOJOURNALID
);
1274 dlm_release_lockspace(ls
->ls_dlm
, 2);
1276 free_recover_size(ls
);
1281 static void gdlm_first_done(struct gfs2_sbd
*sdp
)
1283 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1286 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1289 error
= control_first_done(sdp
);
1291 fs_err(sdp
, "mount first_done error %d\n", error
);
1294 static void gdlm_unmount(struct gfs2_sbd
*sdp
)
1296 struct lm_lockstruct
*ls
= &sdp
->sd_lockstruct
;
1298 if (test_bit(DFL_NO_DLM_OPS
, &ls
->ls_recover_flags
))
1301 /* wait for gfs2_control_wq to be done with this mount */
1303 spin_lock(&ls
->ls_recover_spin
);
1304 set_bit(DFL_UNMOUNT
, &ls
->ls_recover_flags
);
1305 spin_unlock(&ls
->ls_recover_spin
);
1306 flush_delayed_work(&sdp
->sd_control_work
);
1308 /* mounted_lock and control_lock will be purged in dlm recovery */
1311 dlm_release_lockspace(ls
->ls_dlm
, 2);
1315 free_recover_size(ls
);
1318 static const match_table_t dlm_tokens
= {
1319 { Opt_jid
, "jid=%d"},
1321 { Opt_first
, "first=%d"},
1322 { Opt_nodir
, "nodir=%d"},
1326 const struct lm_lockops gfs2_dlm_ops
= {
1327 .lm_proto_name
= "lock_dlm",
1328 .lm_mount
= gdlm_mount
,
1329 .lm_first_done
= gdlm_first_done
,
1330 .lm_recovery_result
= gdlm_recovery_result
,
1331 .lm_unmount
= gdlm_unmount
,
1332 .lm_put_lock
= gdlm_put_lock
,
1333 .lm_lock
= gdlm_lock
,
1334 .lm_cancel
= gdlm_cancel
,
1335 .lm_tokens
= &dlm_tokens
,