2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched.h> /* remove ASAP */
15 #include <linux/falloc.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <asm/uaccess.h>
42 static const struct super_operations hugetlbfs_ops
;
43 static const struct address_space_operations hugetlbfs_aops
;
44 const struct file_operations hugetlbfs_file_operations
;
45 static const struct inode_operations hugetlbfs_dir_inode_operations
;
46 static const struct inode_operations hugetlbfs_inode_operations
;
48 struct hugetlbfs_config
{
54 struct hstate
*hstate
;
58 struct hugetlbfs_inode_info
{
59 struct shared_policy policy
;
60 struct inode vfs_inode
;
63 static inline struct hugetlbfs_inode_info
*HUGETLBFS_I(struct inode
*inode
)
65 return container_of(inode
, struct hugetlbfs_inode_info
, vfs_inode
);
68 int sysctl_hugetlb_shm_group
;
71 Opt_size
, Opt_nr_inodes
,
72 Opt_mode
, Opt_uid
, Opt_gid
,
73 Opt_pagesize
, Opt_min_size
,
77 static const match_table_t tokens
= {
78 {Opt_size
, "size=%s"},
79 {Opt_nr_inodes
, "nr_inodes=%s"},
80 {Opt_mode
, "mode=%o"},
83 {Opt_pagesize
, "pagesize=%s"},
84 {Opt_min_size
, "min_size=%s"},
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
90 struct inode
*inode
, pgoff_t index
)
92 vma
->vm_policy
= mpol_shared_policy_lookup(&HUGETLBFS_I(inode
)->policy
,
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
98 mpol_cond_put(vma
->vm_policy
);
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct
*vma
,
102 struct inode
*inode
, pgoff_t index
)
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct
*vma
)
111 static void huge_pagevec_release(struct pagevec
*pvec
)
115 for (i
= 0; i
< pagevec_count(pvec
); ++i
)
116 put_page(pvec
->pages
[i
]);
118 pagevec_reinit(pvec
);
122 * Mask used when checking the page offset value passed in via system
123 * calls. This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value. The extra bit (- 1 in the shift value) is to take the sign
128 #define PGOFF_LOFFT_MAX \
129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
131 static int hugetlbfs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
133 struct inode
*inode
= file_inode(file
);
136 struct hstate
*h
= hstate_file(file
);
139 * vma address alignment (but not the pgoff alignment) has
140 * already been checked by prepare_hugepage_range. If you add
141 * any error returns here, do so after setting VM_HUGETLB, so
142 * is_vm_hugetlb_page tests below unmap_region go the right
143 * way when do_mmap_pgoff unwinds (may be important on powerpc
146 vma
->vm_flags
|= VM_HUGETLB
| VM_DONTEXPAND
;
147 vma
->vm_ops
= &hugetlb_vm_ops
;
150 * page based offset in vm_pgoff could be sufficiently large to
151 * overflow a loff_t when converted to byte offset. This can
152 * only happen on architectures where sizeof(loff_t) ==
153 * sizeof(unsigned long). So, only check in those instances.
155 if (sizeof(unsigned long) == sizeof(loff_t
)) {
156 if (vma
->vm_pgoff
& PGOFF_LOFFT_MAX
)
160 /* must be huge page aligned */
161 if (vma
->vm_pgoff
& (~huge_page_mask(h
) >> PAGE_SHIFT
))
164 vma_len
= (loff_t
)(vma
->vm_end
- vma
->vm_start
);
165 len
= vma_len
+ ((loff_t
)vma
->vm_pgoff
<< PAGE_SHIFT
);
166 /* check for overflow */
174 if (hugetlb_reserve_pages(inode
,
175 vma
->vm_pgoff
>> huge_page_order(h
),
176 len
>> huge_page_shift(h
), vma
,
181 if (vma
->vm_flags
& VM_WRITE
&& inode
->i_size
< len
)
182 i_size_write(inode
, len
);
190 * Called under down_write(mmap_sem).
193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
195 hugetlb_get_unmapped_area(struct file
*file
, unsigned long addr
,
196 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
198 struct mm_struct
*mm
= current
->mm
;
199 struct vm_area_struct
*vma
;
200 struct hstate
*h
= hstate_file(file
);
201 struct vm_unmapped_area_info info
;
203 if (len
& ~huge_page_mask(h
))
208 if (flags
& MAP_FIXED
) {
209 if (prepare_hugepage_range(file
, addr
, len
))
215 addr
= ALIGN(addr
, huge_page_size(h
));
216 vma
= find_vma(mm
, addr
);
217 if (TASK_SIZE
- len
>= addr
&&
218 (!vma
|| addr
+ len
<= vm_start_gap(vma
)))
224 info
.low_limit
= TASK_UNMAPPED_BASE
;
225 info
.high_limit
= TASK_SIZE
;
226 info
.align_mask
= PAGE_MASK
& ~huge_page_mask(h
);
227 info
.align_offset
= 0;
228 return vm_unmapped_area(&info
);
233 hugetlbfs_read_actor(struct page
*page
, unsigned long offset
,
234 struct iov_iter
*to
, unsigned long size
)
239 /* Find which 4k chunk and offset with in that chunk */
240 i
= offset
>> PAGE_SHIFT
;
241 offset
= offset
& ~PAGE_MASK
;
245 chunksize
= PAGE_SIZE
;
248 if (chunksize
> size
)
250 n
= copy_page_to_iter(&page
[i
], offset
, chunksize
, to
);
262 * Support for read() - Find the page attached to f_mapping and copy out the
263 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
264 * since it has PAGE_SIZE assumptions.
266 static ssize_t
hugetlbfs_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
268 struct file
*file
= iocb
->ki_filp
;
269 struct hstate
*h
= hstate_file(file
);
270 struct address_space
*mapping
= file
->f_mapping
;
271 struct inode
*inode
= mapping
->host
;
272 unsigned long index
= iocb
->ki_pos
>> huge_page_shift(h
);
273 unsigned long offset
= iocb
->ki_pos
& ~huge_page_mask(h
);
274 unsigned long end_index
;
278 while (iov_iter_count(to
)) {
282 /* nr is the maximum number of bytes to copy from this page */
283 nr
= huge_page_size(h
);
284 isize
= i_size_read(inode
);
287 end_index
= (isize
- 1) >> huge_page_shift(h
);
288 if (index
> end_index
)
290 if (index
== end_index
) {
291 nr
= ((isize
- 1) & ~huge_page_mask(h
)) + 1;
298 page
= find_lock_page(mapping
, index
);
299 if (unlikely(page
== NULL
)) {
301 * We have a HOLE, zero out the user-buffer for the
302 * length of the hole or request.
304 copied
= iov_iter_zero(nr
, to
);
309 * We have the page, copy it to user space buffer.
311 copied
= hugetlbfs_read_actor(page
, offset
, to
, nr
);
316 if (copied
!= nr
&& iov_iter_count(to
)) {
321 index
+= offset
>> huge_page_shift(h
);
322 offset
&= ~huge_page_mask(h
);
324 iocb
->ki_pos
= ((loff_t
)index
<< huge_page_shift(h
)) + offset
;
328 static int hugetlbfs_write_begin(struct file
*file
,
329 struct address_space
*mapping
,
330 loff_t pos
, unsigned len
, unsigned flags
,
331 struct page
**pagep
, void **fsdata
)
336 static int hugetlbfs_write_end(struct file
*file
, struct address_space
*mapping
,
337 loff_t pos
, unsigned len
, unsigned copied
,
338 struct page
*page
, void *fsdata
)
344 static void remove_huge_page(struct page
*page
)
346 ClearPageDirty(page
);
347 ClearPageUptodate(page
);
348 delete_from_page_cache(page
);
352 hugetlb_vmdelete_list(struct rb_root
*root
, pgoff_t start
, pgoff_t end
)
354 struct vm_area_struct
*vma
;
357 * end == 0 indicates that the entire range after
358 * start should be unmapped.
360 vma_interval_tree_foreach(vma
, root
, start
, end
? end
: ULONG_MAX
) {
361 unsigned long v_offset
;
365 * Can the expression below overflow on 32-bit arches?
366 * No, because the interval tree returns us only those vmas
367 * which overlap the truncated area starting at pgoff,
368 * and no vma on a 32-bit arch can span beyond the 4GB.
370 if (vma
->vm_pgoff
< start
)
371 v_offset
= (start
- vma
->vm_pgoff
) << PAGE_SHIFT
;
378 v_end
= ((end
- vma
->vm_pgoff
) << PAGE_SHIFT
)
380 if (v_end
> vma
->vm_end
)
384 unmap_hugepage_range(vma
, vma
->vm_start
+ v_offset
, v_end
,
390 * remove_inode_hugepages handles two distinct cases: truncation and hole
391 * punch. There are subtle differences in operation for each case.
393 * truncation is indicated by end of range being LLONG_MAX
394 * In this case, we first scan the range and release found pages.
395 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
396 * maps and global counts. Page faults can not race with truncation
397 * in this routine. hugetlb_no_page() prevents page faults in the
398 * truncated range. It checks i_size before allocation, and again after
399 * with the page table lock for the page held. The same lock must be
400 * acquired to unmap a page.
401 * hole punch is indicated if end is not LLONG_MAX
402 * In the hole punch case we scan the range and release found pages.
403 * Only when releasing a page is the associated region/reserv map
404 * deleted. The region/reserv map for ranges without associated
405 * pages are not modified. Page faults can race with hole punch.
406 * This is indicated if we find a mapped page.
407 * Note: If the passed end of range value is beyond the end of file, but
408 * not LLONG_MAX this routine still performs a hole punch operation.
410 static void remove_inode_hugepages(struct inode
*inode
, loff_t lstart
,
413 struct hstate
*h
= hstate_inode(inode
);
414 struct address_space
*mapping
= &inode
->i_data
;
415 const pgoff_t start
= lstart
>> huge_page_shift(h
);
416 const pgoff_t end
= lend
>> huge_page_shift(h
);
417 struct vm_area_struct pseudo_vma
;
421 long lookup_nr
= PAGEVEC_SIZE
;
422 bool truncate_op
= (lend
== LLONG_MAX
);
424 memset(&pseudo_vma
, 0, sizeof(struct vm_area_struct
));
425 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
426 pagevec_init(&pvec
, 0);
430 * Don't grab more pages than the number left in the range.
432 if (end
- next
< lookup_nr
)
433 lookup_nr
= end
- next
;
436 * When no more pages are found, we are done.
438 if (!pagevec_lookup(&pvec
, mapping
, next
, lookup_nr
))
441 for (i
= 0; i
< pagevec_count(&pvec
); ++i
) {
442 struct page
*page
= pvec
.pages
[i
];
446 * The page (index) could be beyond end. This is
447 * only possible in the punch hole case as end is
448 * max page offset in the truncate case.
454 hash
= hugetlb_fault_mutex_hash(h
, mapping
, next
, 0);
455 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
458 * If page is mapped, it was faulted in after being
459 * unmapped in caller. Unmap (again) now after taking
460 * the fault mutex. The mutex will prevent faults
461 * until we finish removing the page.
463 * This race can only happen in the hole punch case.
464 * Getting here in a truncate operation is a bug.
466 if (unlikely(page_mapped(page
))) {
469 i_mmap_lock_write(mapping
);
470 hugetlb_vmdelete_list(&mapping
->i_mmap
,
471 next
* pages_per_huge_page(h
),
472 (next
+ 1) * pages_per_huge_page(h
));
473 i_mmap_unlock_write(mapping
);
478 * We must free the huge page and remove from page
479 * cache (remove_huge_page) BEFORE removing the
480 * region/reserve map (hugetlb_unreserve_pages). In
481 * rare out of memory conditions, removal of the
482 * region/reserve map could fail. Correspondingly,
483 * the subpool and global reserve usage count can need
486 VM_BUG_ON(PagePrivate(page
));
487 remove_huge_page(page
);
490 if (unlikely(hugetlb_unreserve_pages(inode
,
492 hugetlb_fix_reserve_counts(inode
);
496 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
499 huge_pagevec_release(&pvec
);
504 (void)hugetlb_unreserve_pages(inode
, start
, LONG_MAX
, freed
);
507 static void hugetlbfs_evict_inode(struct inode
*inode
)
509 struct resv_map
*resv_map
;
511 remove_inode_hugepages(inode
, 0, LLONG_MAX
);
512 resv_map
= (struct resv_map
*)inode
->i_mapping
->private_data
;
513 /* root inode doesn't have the resv_map, so we should check it */
515 resv_map_release(&resv_map
->refs
);
519 static int hugetlb_vmtruncate(struct inode
*inode
, loff_t offset
)
522 struct address_space
*mapping
= inode
->i_mapping
;
523 struct hstate
*h
= hstate_inode(inode
);
525 BUG_ON(offset
& ~huge_page_mask(h
));
526 pgoff
= offset
>> PAGE_SHIFT
;
528 i_size_write(inode
, offset
);
529 i_mmap_lock_write(mapping
);
530 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
))
531 hugetlb_vmdelete_list(&mapping
->i_mmap
, pgoff
, 0);
532 i_mmap_unlock_write(mapping
);
533 remove_inode_hugepages(inode
, offset
, LLONG_MAX
);
537 static long hugetlbfs_punch_hole(struct inode
*inode
, loff_t offset
, loff_t len
)
539 struct hstate
*h
= hstate_inode(inode
);
540 loff_t hpage_size
= huge_page_size(h
);
541 loff_t hole_start
, hole_end
;
544 * For hole punch round up the beginning offset of the hole and
545 * round down the end.
547 hole_start
= round_up(offset
, hpage_size
);
548 hole_end
= round_down(offset
+ len
, hpage_size
);
550 if (hole_end
> hole_start
) {
551 struct address_space
*mapping
= inode
->i_mapping
;
554 i_mmap_lock_write(mapping
);
555 if (!RB_EMPTY_ROOT(&mapping
->i_mmap
))
556 hugetlb_vmdelete_list(&mapping
->i_mmap
,
557 hole_start
>> PAGE_SHIFT
,
558 hole_end
>> PAGE_SHIFT
);
559 i_mmap_unlock_write(mapping
);
560 remove_inode_hugepages(inode
, hole_start
, hole_end
);
567 static long hugetlbfs_fallocate(struct file
*file
, int mode
, loff_t offset
,
570 struct inode
*inode
= file_inode(file
);
571 struct address_space
*mapping
= inode
->i_mapping
;
572 struct hstate
*h
= hstate_inode(inode
);
573 struct vm_area_struct pseudo_vma
;
574 loff_t hpage_size
= huge_page_size(h
);
575 unsigned long hpage_shift
= huge_page_shift(h
);
576 pgoff_t start
, index
, end
;
580 if (mode
& ~(FALLOC_FL_KEEP_SIZE
| FALLOC_FL_PUNCH_HOLE
))
583 if (mode
& FALLOC_FL_PUNCH_HOLE
)
584 return hugetlbfs_punch_hole(inode
, offset
, len
);
587 * Default preallocate case.
588 * For this range, start is rounded down and end is rounded up
589 * as well as being converted to page offsets.
591 start
= offset
>> hpage_shift
;
592 end
= (offset
+ len
+ hpage_size
- 1) >> hpage_shift
;
596 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
597 error
= inode_newsize_ok(inode
, offset
+ len
);
602 * Initialize a pseudo vma as this is required by the huge page
603 * allocation routines. If NUMA is configured, use page index
604 * as input to create an allocation policy.
606 memset(&pseudo_vma
, 0, sizeof(struct vm_area_struct
));
607 pseudo_vma
.vm_flags
= (VM_HUGETLB
| VM_MAYSHARE
| VM_SHARED
);
608 pseudo_vma
.vm_file
= file
;
610 for (index
= start
; index
< end
; index
++) {
612 * This is supposed to be the vaddr where the page is being
613 * faulted in, but we have no vaddr here.
617 int avoid_reserve
= 0;
622 * fallocate(2) manpage permits EINTR; we may have been
623 * interrupted because we are using up too much memory.
625 if (signal_pending(current
)) {
630 /* Set numa allocation policy based on index */
631 hugetlb_set_vma_policy(&pseudo_vma
, inode
, index
);
633 /* addr is the offset within the file (zero based) */
634 addr
= index
* hpage_size
;
636 /* mutex taken here, fault path and hole punch */
637 hash
= hugetlb_fault_mutex_hash(h
, mapping
, index
, addr
);
638 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
640 /* See if already present in mapping to avoid alloc/free */
641 page
= find_get_page(mapping
, index
);
644 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
645 hugetlb_drop_vma_policy(&pseudo_vma
);
649 /* Allocate page and add to page cache */
650 page
= alloc_huge_page(&pseudo_vma
, addr
, avoid_reserve
);
651 hugetlb_drop_vma_policy(&pseudo_vma
);
653 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
654 error
= PTR_ERR(page
);
657 clear_huge_page(page
, addr
, pages_per_huge_page(h
));
658 __SetPageUptodate(page
);
659 error
= huge_add_to_page_cache(page
, mapping
, index
);
660 if (unlikely(error
)) {
662 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
666 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
669 * page_put due to reference from alloc_huge_page()
670 * unlock_page because locked by add_to_page_cache()
676 if (!(mode
& FALLOC_FL_KEEP_SIZE
) && offset
+ len
> inode
->i_size
)
677 i_size_write(inode
, offset
+ len
);
678 inode
->i_ctime
= current_time(inode
);
684 static int hugetlbfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
686 struct inode
*inode
= d_inode(dentry
);
687 struct hstate
*h
= hstate_inode(inode
);
689 unsigned int ia_valid
= attr
->ia_valid
;
693 error
= setattr_prepare(dentry
, attr
);
697 if (ia_valid
& ATTR_SIZE
) {
699 if (attr
->ia_size
& ~huge_page_mask(h
))
701 error
= hugetlb_vmtruncate(inode
, attr
->ia_size
);
706 setattr_copy(inode
, attr
);
707 mark_inode_dirty(inode
);
711 static struct inode
*hugetlbfs_get_root(struct super_block
*sb
,
712 struct hugetlbfs_config
*config
)
716 inode
= new_inode(sb
);
718 inode
->i_ino
= get_next_ino();
719 inode
->i_mode
= S_IFDIR
| config
->mode
;
720 inode
->i_uid
= config
->uid
;
721 inode
->i_gid
= config
->gid
;
722 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
723 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
724 inode
->i_fop
= &simple_dir_operations
;
725 /* directory inodes start off with i_nlink == 2 (for "." entry) */
727 lockdep_annotate_inode_mutex_key(inode
);
733 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
734 * be taken from reclaim -- unlike regular filesystems. This needs an
735 * annotation because huge_pmd_share() does an allocation under hugetlb's
738 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key
;
740 static struct inode
*hugetlbfs_get_inode(struct super_block
*sb
,
742 umode_t mode
, dev_t dev
)
745 struct resv_map
*resv_map
= NULL
;
748 * Reserve maps are only needed for inodes that can have associated
751 if (S_ISREG(mode
) || S_ISLNK(mode
)) {
752 resv_map
= resv_map_alloc();
757 inode
= new_inode(sb
);
759 inode
->i_ino
= get_next_ino();
760 inode_init_owner(inode
, dir
, mode
);
761 lockdep_set_class(&inode
->i_mapping
->i_mmap_rwsem
,
762 &hugetlbfs_i_mmap_rwsem_key
);
763 inode
->i_mapping
->a_ops
= &hugetlbfs_aops
;
764 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
765 inode
->i_mapping
->private_data
= resv_map
;
766 switch (mode
& S_IFMT
) {
768 init_special_inode(inode
, mode
, dev
);
771 inode
->i_op
= &hugetlbfs_inode_operations
;
772 inode
->i_fop
= &hugetlbfs_file_operations
;
775 inode
->i_op
= &hugetlbfs_dir_inode_operations
;
776 inode
->i_fop
= &simple_dir_operations
;
778 /* directory inodes start off with i_nlink == 2 (for "." entry) */
782 inode
->i_op
= &page_symlink_inode_operations
;
783 inode_nohighmem(inode
);
786 lockdep_annotate_inode_mutex_key(inode
);
789 kref_put(&resv_map
->refs
, resv_map_release
);
796 * File creation. Allocate an inode, and we're done..
798 static int hugetlbfs_mknod(struct inode
*dir
,
799 struct dentry
*dentry
, umode_t mode
, dev_t dev
)
804 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, mode
, dev
);
806 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
807 d_instantiate(dentry
, inode
);
808 dget(dentry
); /* Extra count - pin the dentry in core */
814 static int hugetlbfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
816 int retval
= hugetlbfs_mknod(dir
, dentry
, mode
| S_IFDIR
, 0);
822 static int hugetlbfs_create(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, bool excl
)
824 return hugetlbfs_mknod(dir
, dentry
, mode
| S_IFREG
, 0);
827 static int hugetlbfs_symlink(struct inode
*dir
,
828 struct dentry
*dentry
, const char *symname
)
833 inode
= hugetlbfs_get_inode(dir
->i_sb
, dir
, S_IFLNK
|S_IRWXUGO
, 0);
835 int l
= strlen(symname
)+1;
836 error
= page_symlink(inode
, symname
, l
);
838 d_instantiate(dentry
, inode
);
843 dir
->i_ctime
= dir
->i_mtime
= current_time(dir
);
849 * mark the head page dirty
851 static int hugetlbfs_set_page_dirty(struct page
*page
)
853 struct page
*head
= compound_head(page
);
859 static int hugetlbfs_migrate_page(struct address_space
*mapping
,
860 struct page
*newpage
, struct page
*page
,
861 enum migrate_mode mode
)
865 rc
= migrate_huge_page_move_mapping(mapping
, newpage
, page
);
866 if (rc
!= MIGRATEPAGE_SUCCESS
)
870 * page_private is subpool pointer in hugetlb pages. Transfer to
871 * new page. PagePrivate is not associated with page_private for
872 * hugetlb pages and can not be set here as only page_huge_active
873 * pages can be migrated.
875 if (page_private(page
)) {
876 set_page_private(newpage
, page_private(page
));
877 set_page_private(page
, 0);
880 migrate_page_copy(newpage
, page
);
882 return MIGRATEPAGE_SUCCESS
;
885 static int hugetlbfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
887 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(dentry
->d_sb
);
888 struct hstate
*h
= hstate_inode(d_inode(dentry
));
890 buf
->f_type
= HUGETLBFS_MAGIC
;
891 buf
->f_bsize
= huge_page_size(h
);
893 spin_lock(&sbinfo
->stat_lock
);
894 /* If no limits set, just report 0 for max/free/used
895 * blocks, like simple_statfs() */
899 spin_lock(&sbinfo
->spool
->lock
);
900 buf
->f_blocks
= sbinfo
->spool
->max_hpages
;
901 free_pages
= sbinfo
->spool
->max_hpages
902 - sbinfo
->spool
->used_hpages
;
903 buf
->f_bavail
= buf
->f_bfree
= free_pages
;
904 spin_unlock(&sbinfo
->spool
->lock
);
905 buf
->f_files
= sbinfo
->max_inodes
;
906 buf
->f_ffree
= sbinfo
->free_inodes
;
908 spin_unlock(&sbinfo
->stat_lock
);
910 buf
->f_namelen
= NAME_MAX
;
914 static void hugetlbfs_put_super(struct super_block
*sb
)
916 struct hugetlbfs_sb_info
*sbi
= HUGETLBFS_SB(sb
);
919 sb
->s_fs_info
= NULL
;
922 hugepage_put_subpool(sbi
->spool
);
928 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
930 if (sbinfo
->free_inodes
>= 0) {
931 spin_lock(&sbinfo
->stat_lock
);
932 if (unlikely(!sbinfo
->free_inodes
)) {
933 spin_unlock(&sbinfo
->stat_lock
);
936 sbinfo
->free_inodes
--;
937 spin_unlock(&sbinfo
->stat_lock
);
943 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info
*sbinfo
)
945 if (sbinfo
->free_inodes
>= 0) {
946 spin_lock(&sbinfo
->stat_lock
);
947 sbinfo
->free_inodes
++;
948 spin_unlock(&sbinfo
->stat_lock
);
953 static struct kmem_cache
*hugetlbfs_inode_cachep
;
955 static struct inode
*hugetlbfs_alloc_inode(struct super_block
*sb
)
957 struct hugetlbfs_sb_info
*sbinfo
= HUGETLBFS_SB(sb
);
958 struct hugetlbfs_inode_info
*p
;
960 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo
)))
962 p
= kmem_cache_alloc(hugetlbfs_inode_cachep
, GFP_KERNEL
);
964 hugetlbfs_inc_free_inodes(sbinfo
);
969 * Any time after allocation, hugetlbfs_destroy_inode can be called
970 * for the inode. mpol_free_shared_policy is unconditionally called
971 * as part of hugetlbfs_destroy_inode. So, initialize policy here
972 * in case of a quick call to destroy.
974 * Note that the policy is initialized even if we are creating a
975 * private inode. This simplifies hugetlbfs_destroy_inode.
977 mpol_shared_policy_init(&p
->policy
, NULL
);
979 return &p
->vfs_inode
;
982 static void hugetlbfs_i_callback(struct rcu_head
*head
)
984 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
985 kmem_cache_free(hugetlbfs_inode_cachep
, HUGETLBFS_I(inode
));
988 static void hugetlbfs_destroy_inode(struct inode
*inode
)
990 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode
->i_sb
));
991 mpol_free_shared_policy(&HUGETLBFS_I(inode
)->policy
);
992 call_rcu(&inode
->i_rcu
, hugetlbfs_i_callback
);
995 static const struct address_space_operations hugetlbfs_aops
= {
996 .write_begin
= hugetlbfs_write_begin
,
997 .write_end
= hugetlbfs_write_end
,
998 .set_page_dirty
= hugetlbfs_set_page_dirty
,
999 .migratepage
= hugetlbfs_migrate_page
,
1003 static void init_once(void *foo
)
1005 struct hugetlbfs_inode_info
*ei
= (struct hugetlbfs_inode_info
*)foo
;
1007 inode_init_once(&ei
->vfs_inode
);
1010 const struct file_operations hugetlbfs_file_operations
= {
1011 .read_iter
= hugetlbfs_read_iter
,
1012 .mmap
= hugetlbfs_file_mmap
,
1013 .fsync
= noop_fsync
,
1014 .get_unmapped_area
= hugetlb_get_unmapped_area
,
1015 .llseek
= default_llseek
,
1016 .fallocate
= hugetlbfs_fallocate
,
1019 static const struct inode_operations hugetlbfs_dir_inode_operations
= {
1020 .create
= hugetlbfs_create
,
1021 .lookup
= simple_lookup
,
1022 .link
= simple_link
,
1023 .unlink
= simple_unlink
,
1024 .symlink
= hugetlbfs_symlink
,
1025 .mkdir
= hugetlbfs_mkdir
,
1026 .rmdir
= simple_rmdir
,
1027 .mknod
= hugetlbfs_mknod
,
1028 .rename
= simple_rename
,
1029 .setattr
= hugetlbfs_setattr
,
1032 static const struct inode_operations hugetlbfs_inode_operations
= {
1033 .setattr
= hugetlbfs_setattr
,
1036 static const struct super_operations hugetlbfs_ops
= {
1037 .alloc_inode
= hugetlbfs_alloc_inode
,
1038 .destroy_inode
= hugetlbfs_destroy_inode
,
1039 .evict_inode
= hugetlbfs_evict_inode
,
1040 .statfs
= hugetlbfs_statfs
,
1041 .put_super
= hugetlbfs_put_super
,
1042 .show_options
= generic_show_options
,
1045 enum { NO_SIZE
, SIZE_STD
, SIZE_PERCENT
};
1048 * Convert size option passed from command line to number of huge pages
1049 * in the pool specified by hstate. Size option could be in bytes
1050 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1053 hugetlbfs_size_to_hpages(struct hstate
*h
, unsigned long long size_opt
,
1056 if (val_type
== NO_SIZE
)
1059 if (val_type
== SIZE_PERCENT
) {
1060 size_opt
<<= huge_page_shift(h
);
1061 size_opt
*= h
->max_huge_pages
;
1062 do_div(size_opt
, 100);
1065 size_opt
>>= huge_page_shift(h
);
1070 hugetlbfs_parse_options(char *options
, struct hugetlbfs_config
*pconfig
)
1073 substring_t args
[MAX_OPT_ARGS
];
1075 unsigned long long max_size_opt
= 0, min_size_opt
= 0;
1076 int max_val_type
= NO_SIZE
, min_val_type
= NO_SIZE
;
1081 while ((p
= strsep(&options
, ",")) != NULL
) {
1086 token
= match_token(p
, tokens
, args
);
1089 if (match_int(&args
[0], &option
))
1091 pconfig
->uid
= make_kuid(current_user_ns(), option
);
1092 if (!uid_valid(pconfig
->uid
))
1097 if (match_int(&args
[0], &option
))
1099 pconfig
->gid
= make_kgid(current_user_ns(), option
);
1100 if (!gid_valid(pconfig
->gid
))
1105 if (match_octal(&args
[0], &option
))
1107 pconfig
->mode
= option
& 01777U;
1111 /* memparse() will accept a K/M/G without a digit */
1112 if (!isdigit(*args
[0].from
))
1114 max_size_opt
= memparse(args
[0].from
, &rest
);
1115 max_val_type
= SIZE_STD
;
1117 max_val_type
= SIZE_PERCENT
;
1122 /* memparse() will accept a K/M/G without a digit */
1123 if (!isdigit(*args
[0].from
))
1125 pconfig
->nr_inodes
= memparse(args
[0].from
, &rest
);
1128 case Opt_pagesize
: {
1130 ps
= memparse(args
[0].from
, &rest
);
1131 pconfig
->hstate
= size_to_hstate(ps
);
1132 if (!pconfig
->hstate
) {
1133 pr_err("Unsupported page size %lu MB\n",
1140 case Opt_min_size
: {
1141 /* memparse() will accept a K/M/G without a digit */
1142 if (!isdigit(*args
[0].from
))
1144 min_size_opt
= memparse(args
[0].from
, &rest
);
1145 min_val_type
= SIZE_STD
;
1147 min_val_type
= SIZE_PERCENT
;
1152 pr_err("Bad mount option: \"%s\"\n", p
);
1159 * Use huge page pool size (in hstate) to convert the size
1160 * options to number of huge pages. If NO_SIZE, -1 is returned.
1162 pconfig
->max_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1163 max_size_opt
, max_val_type
);
1164 pconfig
->min_hpages
= hugetlbfs_size_to_hpages(pconfig
->hstate
,
1165 min_size_opt
, min_val_type
);
1168 * If max_size was specified, then min_size must be smaller
1170 if (max_val_type
> NO_SIZE
&&
1171 pconfig
->min_hpages
> pconfig
->max_hpages
) {
1172 pr_err("minimum size can not be greater than maximum size\n");
1179 pr_err("Bad value '%s' for mount option '%s'\n", args
[0].from
, p
);
1184 hugetlbfs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1187 struct hugetlbfs_config config
;
1188 struct hugetlbfs_sb_info
*sbinfo
;
1190 save_mount_options(sb
, data
);
1192 config
.max_hpages
= -1; /* No limit on size by default */
1193 config
.nr_inodes
= -1; /* No limit on number of inodes by default */
1194 config
.uid
= current_fsuid();
1195 config
.gid
= current_fsgid();
1197 config
.hstate
= &default_hstate
;
1198 config
.min_hpages
= -1; /* No default minimum size */
1199 ret
= hugetlbfs_parse_options(data
, &config
);
1203 sbinfo
= kmalloc(sizeof(struct hugetlbfs_sb_info
), GFP_KERNEL
);
1206 sb
->s_fs_info
= sbinfo
;
1207 sbinfo
->hstate
= config
.hstate
;
1208 spin_lock_init(&sbinfo
->stat_lock
);
1209 sbinfo
->max_inodes
= config
.nr_inodes
;
1210 sbinfo
->free_inodes
= config
.nr_inodes
;
1211 sbinfo
->spool
= NULL
;
1213 * Allocate and initialize subpool if maximum or minimum size is
1214 * specified. Any needed reservations (for minimim size) are taken
1215 * taken when the subpool is created.
1217 if (config
.max_hpages
!= -1 || config
.min_hpages
!= -1) {
1218 sbinfo
->spool
= hugepage_new_subpool(config
.hstate
,
1224 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1225 sb
->s_blocksize
= huge_page_size(config
.hstate
);
1226 sb
->s_blocksize_bits
= huge_page_shift(config
.hstate
);
1227 sb
->s_magic
= HUGETLBFS_MAGIC
;
1228 sb
->s_op
= &hugetlbfs_ops
;
1229 sb
->s_time_gran
= 1;
1230 sb
->s_root
= d_make_root(hugetlbfs_get_root(sb
, &config
));
1235 kfree(sbinfo
->spool
);
1240 static struct dentry
*hugetlbfs_mount(struct file_system_type
*fs_type
,
1241 int flags
, const char *dev_name
, void *data
)
1243 return mount_nodev(fs_type
, flags
, data
, hugetlbfs_fill_super
);
1246 static struct file_system_type hugetlbfs_fs_type
= {
1247 .name
= "hugetlbfs",
1248 .mount
= hugetlbfs_mount
,
1249 .kill_sb
= kill_litter_super
,
1252 static struct vfsmount
*hugetlbfs_vfsmount
[HUGE_MAX_HSTATE
];
1254 static int can_do_hugetlb_shm(void)
1257 shm_group
= make_kgid(&init_user_ns
, sysctl_hugetlb_shm_group
);
1258 return capable(CAP_IPC_LOCK
) || in_group_p(shm_group
);
1261 static int get_hstate_idx(int page_size_log
)
1263 struct hstate
*h
= hstate_sizelog(page_size_log
);
1270 static const struct dentry_operations anon_ops
= {
1271 .d_dname
= simple_dname
1275 * Note that size should be aligned to proper hugepage size in caller side,
1276 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1278 struct file
*hugetlb_file_setup(const char *name
, size_t size
,
1279 vm_flags_t acctflag
, struct user_struct
**user
,
1280 int creat_flags
, int page_size_log
)
1282 struct file
*file
= ERR_PTR(-ENOMEM
);
1283 struct inode
*inode
;
1285 struct super_block
*sb
;
1286 struct qstr quick_string
;
1289 hstate_idx
= get_hstate_idx(page_size_log
);
1291 return ERR_PTR(-ENODEV
);
1294 if (!hugetlbfs_vfsmount
[hstate_idx
])
1295 return ERR_PTR(-ENOENT
);
1297 if (creat_flags
== HUGETLB_SHMFS_INODE
&& !can_do_hugetlb_shm()) {
1298 *user
= current_user();
1299 if (user_shm_lock(size
, *user
)) {
1301 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1302 current
->comm
, current
->pid
);
1303 task_unlock(current
);
1306 return ERR_PTR(-EPERM
);
1310 sb
= hugetlbfs_vfsmount
[hstate_idx
]->mnt_sb
;
1311 quick_string
.name
= name
;
1312 quick_string
.len
= strlen(quick_string
.name
);
1313 quick_string
.hash
= 0;
1314 path
.dentry
= d_alloc_pseudo(sb
, &quick_string
);
1316 goto out_shm_unlock
;
1318 d_set_d_op(path
.dentry
, &anon_ops
);
1319 path
.mnt
= mntget(hugetlbfs_vfsmount
[hstate_idx
]);
1320 file
= ERR_PTR(-ENOSPC
);
1321 inode
= hugetlbfs_get_inode(sb
, NULL
, S_IFREG
| S_IRWXUGO
, 0);
1324 if (creat_flags
== HUGETLB_SHMFS_INODE
)
1325 inode
->i_flags
|= S_PRIVATE
;
1327 file
= ERR_PTR(-ENOMEM
);
1328 if (hugetlb_reserve_pages(inode
, 0,
1329 size
>> huge_page_shift(hstate_inode(inode
)), NULL
,
1333 d_instantiate(path
.dentry
, inode
);
1334 inode
->i_size
= size
;
1337 file
= alloc_file(&path
, FMODE_WRITE
| FMODE_READ
,
1338 &hugetlbfs_file_operations
);
1340 goto out_dentry
; /* inode is already attached */
1350 user_shm_unlock(size
, *user
);
1356 static int __init
init_hugetlbfs_fs(void)
1362 if (!hugepages_supported()) {
1363 pr_info("disabling because there are no supported hugepage sizes\n");
1368 hugetlbfs_inode_cachep
= kmem_cache_create("hugetlbfs_inode_cache",
1369 sizeof(struct hugetlbfs_inode_info
),
1370 0, SLAB_ACCOUNT
, init_once
);
1371 if (hugetlbfs_inode_cachep
== NULL
)
1374 error
= register_filesystem(&hugetlbfs_fs_type
);
1379 for_each_hstate(h
) {
1381 unsigned ps_kb
= 1U << (h
->order
+ PAGE_SHIFT
- 10);
1383 snprintf(buf
, sizeof(buf
), "pagesize=%uK", ps_kb
);
1384 hugetlbfs_vfsmount
[i
] = kern_mount_data(&hugetlbfs_fs_type
,
1387 if (IS_ERR(hugetlbfs_vfsmount
[i
])) {
1388 pr_err("Cannot mount internal hugetlbfs for "
1389 "page size %uK", ps_kb
);
1390 error
= PTR_ERR(hugetlbfs_vfsmount
[i
]);
1391 hugetlbfs_vfsmount
[i
] = NULL
;
1395 /* Non default hstates are optional */
1396 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount
[default_hstate_idx
]))
1400 kmem_cache_destroy(hugetlbfs_inode_cachep
);
1404 fs_initcall(init_hugetlbfs_fs
)