arm64: kgdb: Fix single-step exception handling oops
[linux/fpc-iii.git] / fs / hugetlbfs / inode.c
blob253b03451b727650ade31e262d1351e14312079c
1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
4 * Nadia Yvette Chambers, 2002
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
40 #include <asm/uaccess.h>
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
48 struct hugetlbfs_config {
49 kuid_t uid;
50 kgid_t gid;
51 umode_t mode;
52 long max_hpages;
53 long nr_inodes;
54 struct hstate *hstate;
55 long min_hpages;
58 struct hugetlbfs_inode_info {
59 struct shared_policy policy;
60 struct inode vfs_inode;
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
65 return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
68 int sysctl_hugetlb_shm_group;
70 enum {
71 Opt_size, Opt_nr_inodes,
72 Opt_mode, Opt_uid, Opt_gid,
73 Opt_pagesize, Opt_min_size,
74 Opt_err,
77 static const match_table_t tokens = {
78 {Opt_size, "size=%s"},
79 {Opt_nr_inodes, "nr_inodes=%s"},
80 {Opt_mode, "mode=%o"},
81 {Opt_uid, "uid=%u"},
82 {Opt_gid, "gid=%u"},
83 {Opt_pagesize, "pagesize=%s"},
84 {Opt_min_size, "min_size=%s"},
85 {Opt_err, NULL},
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
98 mpol_cond_put(vma->vm_policy);
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
109 #endif
111 static void huge_pagevec_release(struct pagevec *pvec)
113 int i;
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
118 pagevec_reinit(pvec);
122 * Mask used when checking the page offset value passed in via system
123 * calls. This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value. The extra bit (- 1 in the shift value) is to take the sign
126 * bit into account.
128 #define PGOFF_LOFFT_MAX \
129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
133 struct inode *inode = file_inode(file);
134 loff_t len, vma_len;
135 int ret;
136 struct hstate *h = hstate_file(file);
139 * vma address alignment (but not the pgoff alignment) has
140 * already been checked by prepare_hugepage_range. If you add
141 * any error returns here, do so after setting VM_HUGETLB, so
142 * is_vm_hugetlb_page tests below unmap_region go the right
143 * way when do_mmap_pgoff unwinds (may be important on powerpc
144 * and ia64).
146 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
147 vma->vm_ops = &hugetlb_vm_ops;
150 * page based offset in vm_pgoff could be sufficiently large to
151 * overflow a loff_t when converted to byte offset. This can
152 * only happen on architectures where sizeof(loff_t) ==
153 * sizeof(unsigned long). So, only check in those instances.
155 if (sizeof(unsigned long) == sizeof(loff_t)) {
156 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
157 return -EINVAL;
160 /* must be huge page aligned */
161 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
162 return -EINVAL;
164 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
165 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
166 /* check for overflow */
167 if (len < vma_len)
168 return -EINVAL;
170 inode_lock(inode);
171 file_accessed(file);
173 ret = -ENOMEM;
174 if (hugetlb_reserve_pages(inode,
175 vma->vm_pgoff >> huge_page_order(h),
176 len >> huge_page_shift(h), vma,
177 vma->vm_flags))
178 goto out;
180 ret = 0;
181 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
182 i_size_write(inode, len);
183 out:
184 inode_unlock(inode);
186 return ret;
190 * Called under down_write(mmap_sem).
193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
194 static unsigned long
195 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
196 unsigned long len, unsigned long pgoff, unsigned long flags)
198 struct mm_struct *mm = current->mm;
199 struct vm_area_struct *vma;
200 struct hstate *h = hstate_file(file);
201 struct vm_unmapped_area_info info;
203 if (len & ~huge_page_mask(h))
204 return -EINVAL;
205 if (len > TASK_SIZE)
206 return -ENOMEM;
208 if (flags & MAP_FIXED) {
209 if (prepare_hugepage_range(file, addr, len))
210 return -EINVAL;
211 return addr;
214 if (addr) {
215 addr = ALIGN(addr, huge_page_size(h));
216 vma = find_vma(mm, addr);
217 if (TASK_SIZE - len >= addr &&
218 (!vma || addr + len <= vm_start_gap(vma)))
219 return addr;
222 info.flags = 0;
223 info.length = len;
224 info.low_limit = TASK_UNMAPPED_BASE;
225 info.high_limit = TASK_SIZE;
226 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 info.align_offset = 0;
228 return vm_unmapped_area(&info);
230 #endif
232 static size_t
233 hugetlbfs_read_actor(struct page *page, unsigned long offset,
234 struct iov_iter *to, unsigned long size)
236 size_t copied = 0;
237 int i, chunksize;
239 /* Find which 4k chunk and offset with in that chunk */
240 i = offset >> PAGE_SHIFT;
241 offset = offset & ~PAGE_MASK;
243 while (size) {
244 size_t n;
245 chunksize = PAGE_SIZE;
246 if (offset)
247 chunksize -= offset;
248 if (chunksize > size)
249 chunksize = size;
250 n = copy_page_to_iter(&page[i], offset, chunksize, to);
251 copied += n;
252 if (n != chunksize)
253 return copied;
254 offset = 0;
255 size -= chunksize;
256 i++;
258 return copied;
262 * Support for read() - Find the page attached to f_mapping and copy out the
263 * data. Its *very* similar to do_generic_mapping_read(), we can't use that
264 * since it has PAGE_SIZE assumptions.
266 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
268 struct file *file = iocb->ki_filp;
269 struct hstate *h = hstate_file(file);
270 struct address_space *mapping = file->f_mapping;
271 struct inode *inode = mapping->host;
272 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
273 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
274 unsigned long end_index;
275 loff_t isize;
276 ssize_t retval = 0;
278 while (iov_iter_count(to)) {
279 struct page *page;
280 size_t nr, copied;
282 /* nr is the maximum number of bytes to copy from this page */
283 nr = huge_page_size(h);
284 isize = i_size_read(inode);
285 if (!isize)
286 break;
287 end_index = (isize - 1) >> huge_page_shift(h);
288 if (index > end_index)
289 break;
290 if (index == end_index) {
291 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
292 if (nr <= offset)
293 break;
295 nr = nr - offset;
297 /* Find the page */
298 page = find_lock_page(mapping, index);
299 if (unlikely(page == NULL)) {
301 * We have a HOLE, zero out the user-buffer for the
302 * length of the hole or request.
304 copied = iov_iter_zero(nr, to);
305 } else {
306 unlock_page(page);
309 * We have the page, copy it to user space buffer.
311 copied = hugetlbfs_read_actor(page, offset, to, nr);
312 put_page(page);
314 offset += copied;
315 retval += copied;
316 if (copied != nr && iov_iter_count(to)) {
317 if (!retval)
318 retval = -EFAULT;
319 break;
321 index += offset >> huge_page_shift(h);
322 offset &= ~huge_page_mask(h);
324 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
325 return retval;
328 static int hugetlbfs_write_begin(struct file *file,
329 struct address_space *mapping,
330 loff_t pos, unsigned len, unsigned flags,
331 struct page **pagep, void **fsdata)
333 return -EINVAL;
336 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
337 loff_t pos, unsigned len, unsigned copied,
338 struct page *page, void *fsdata)
340 BUG();
341 return -EINVAL;
344 static void remove_huge_page(struct page *page)
346 ClearPageDirty(page);
347 ClearPageUptodate(page);
348 delete_from_page_cache(page);
351 static void
352 hugetlb_vmdelete_list(struct rb_root *root, pgoff_t start, pgoff_t end)
354 struct vm_area_struct *vma;
357 * end == 0 indicates that the entire range after
358 * start should be unmapped.
360 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
361 unsigned long v_offset;
362 unsigned long v_end;
365 * Can the expression below overflow on 32-bit arches?
366 * No, because the interval tree returns us only those vmas
367 * which overlap the truncated area starting at pgoff,
368 * and no vma on a 32-bit arch can span beyond the 4GB.
370 if (vma->vm_pgoff < start)
371 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
372 else
373 v_offset = 0;
375 if (!end)
376 v_end = vma->vm_end;
377 else {
378 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
379 + vma->vm_start;
380 if (v_end > vma->vm_end)
381 v_end = vma->vm_end;
384 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
385 NULL);
390 * remove_inode_hugepages handles two distinct cases: truncation and hole
391 * punch. There are subtle differences in operation for each case.
393 * truncation is indicated by end of range being LLONG_MAX
394 * In this case, we first scan the range and release found pages.
395 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
396 * maps and global counts. Page faults can not race with truncation
397 * in this routine. hugetlb_no_page() prevents page faults in the
398 * truncated range. It checks i_size before allocation, and again after
399 * with the page table lock for the page held. The same lock must be
400 * acquired to unmap a page.
401 * hole punch is indicated if end is not LLONG_MAX
402 * In the hole punch case we scan the range and release found pages.
403 * Only when releasing a page is the associated region/reserv map
404 * deleted. The region/reserv map for ranges without associated
405 * pages are not modified. Page faults can race with hole punch.
406 * This is indicated if we find a mapped page.
407 * Note: If the passed end of range value is beyond the end of file, but
408 * not LLONG_MAX this routine still performs a hole punch operation.
410 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
411 loff_t lend)
413 struct hstate *h = hstate_inode(inode);
414 struct address_space *mapping = &inode->i_data;
415 const pgoff_t start = lstart >> huge_page_shift(h);
416 const pgoff_t end = lend >> huge_page_shift(h);
417 struct vm_area_struct pseudo_vma;
418 struct pagevec pvec;
419 pgoff_t next;
420 int i, freed = 0;
421 long lookup_nr = PAGEVEC_SIZE;
422 bool truncate_op = (lend == LLONG_MAX);
424 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
425 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
426 pagevec_init(&pvec, 0);
427 next = start;
428 while (next < end) {
430 * Don't grab more pages than the number left in the range.
432 if (end - next < lookup_nr)
433 lookup_nr = end - next;
436 * When no more pages are found, we are done.
438 if (!pagevec_lookup(&pvec, mapping, next, lookup_nr))
439 break;
441 for (i = 0; i < pagevec_count(&pvec); ++i) {
442 struct page *page = pvec.pages[i];
443 u32 hash;
446 * The page (index) could be beyond end. This is
447 * only possible in the punch hole case as end is
448 * max page offset in the truncate case.
450 next = page->index;
451 if (next >= end)
452 break;
454 hash = hugetlb_fault_mutex_hash(h, mapping, next, 0);
455 mutex_lock(&hugetlb_fault_mutex_table[hash]);
458 * If page is mapped, it was faulted in after being
459 * unmapped in caller. Unmap (again) now after taking
460 * the fault mutex. The mutex will prevent faults
461 * until we finish removing the page.
463 * This race can only happen in the hole punch case.
464 * Getting here in a truncate operation is a bug.
466 if (unlikely(page_mapped(page))) {
467 BUG_ON(truncate_op);
469 i_mmap_lock_write(mapping);
470 hugetlb_vmdelete_list(&mapping->i_mmap,
471 next * pages_per_huge_page(h),
472 (next + 1) * pages_per_huge_page(h));
473 i_mmap_unlock_write(mapping);
476 lock_page(page);
478 * We must free the huge page and remove from page
479 * cache (remove_huge_page) BEFORE removing the
480 * region/reserve map (hugetlb_unreserve_pages). In
481 * rare out of memory conditions, removal of the
482 * region/reserve map could fail. Correspondingly,
483 * the subpool and global reserve usage count can need
484 * to be adjusted.
486 VM_BUG_ON(PagePrivate(page));
487 remove_huge_page(page);
488 freed++;
489 if (!truncate_op) {
490 if (unlikely(hugetlb_unreserve_pages(inode,
491 next, next + 1, 1)))
492 hugetlb_fix_reserve_counts(inode);
495 unlock_page(page);
496 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
498 ++next;
499 huge_pagevec_release(&pvec);
500 cond_resched();
503 if (truncate_op)
504 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
507 static void hugetlbfs_evict_inode(struct inode *inode)
509 struct resv_map *resv_map;
511 remove_inode_hugepages(inode, 0, LLONG_MAX);
512 resv_map = (struct resv_map *)inode->i_mapping->private_data;
513 /* root inode doesn't have the resv_map, so we should check it */
514 if (resv_map)
515 resv_map_release(&resv_map->refs);
516 clear_inode(inode);
519 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
521 pgoff_t pgoff;
522 struct address_space *mapping = inode->i_mapping;
523 struct hstate *h = hstate_inode(inode);
525 BUG_ON(offset & ~huge_page_mask(h));
526 pgoff = offset >> PAGE_SHIFT;
528 i_size_write(inode, offset);
529 i_mmap_lock_write(mapping);
530 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
531 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
532 i_mmap_unlock_write(mapping);
533 remove_inode_hugepages(inode, offset, LLONG_MAX);
534 return 0;
537 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
539 struct hstate *h = hstate_inode(inode);
540 loff_t hpage_size = huge_page_size(h);
541 loff_t hole_start, hole_end;
544 * For hole punch round up the beginning offset of the hole and
545 * round down the end.
547 hole_start = round_up(offset, hpage_size);
548 hole_end = round_down(offset + len, hpage_size);
550 if (hole_end > hole_start) {
551 struct address_space *mapping = inode->i_mapping;
553 inode_lock(inode);
554 i_mmap_lock_write(mapping);
555 if (!RB_EMPTY_ROOT(&mapping->i_mmap))
556 hugetlb_vmdelete_list(&mapping->i_mmap,
557 hole_start >> PAGE_SHIFT,
558 hole_end >> PAGE_SHIFT);
559 i_mmap_unlock_write(mapping);
560 remove_inode_hugepages(inode, hole_start, hole_end);
561 inode_unlock(inode);
564 return 0;
567 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
568 loff_t len)
570 struct inode *inode = file_inode(file);
571 struct address_space *mapping = inode->i_mapping;
572 struct hstate *h = hstate_inode(inode);
573 struct vm_area_struct pseudo_vma;
574 loff_t hpage_size = huge_page_size(h);
575 unsigned long hpage_shift = huge_page_shift(h);
576 pgoff_t start, index, end;
577 int error;
578 u32 hash;
580 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
581 return -EOPNOTSUPP;
583 if (mode & FALLOC_FL_PUNCH_HOLE)
584 return hugetlbfs_punch_hole(inode, offset, len);
587 * Default preallocate case.
588 * For this range, start is rounded down and end is rounded up
589 * as well as being converted to page offsets.
591 start = offset >> hpage_shift;
592 end = (offset + len + hpage_size - 1) >> hpage_shift;
594 inode_lock(inode);
596 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
597 error = inode_newsize_ok(inode, offset + len);
598 if (error)
599 goto out;
602 * Initialize a pseudo vma as this is required by the huge page
603 * allocation routines. If NUMA is configured, use page index
604 * as input to create an allocation policy.
606 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
607 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
608 pseudo_vma.vm_file = file;
610 for (index = start; index < end; index++) {
612 * This is supposed to be the vaddr where the page is being
613 * faulted in, but we have no vaddr here.
615 struct page *page;
616 unsigned long addr;
617 int avoid_reserve = 0;
619 cond_resched();
622 * fallocate(2) manpage permits EINTR; we may have been
623 * interrupted because we are using up too much memory.
625 if (signal_pending(current)) {
626 error = -EINTR;
627 break;
630 /* Set numa allocation policy based on index */
631 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
633 /* addr is the offset within the file (zero based) */
634 addr = index * hpage_size;
636 /* mutex taken here, fault path and hole punch */
637 hash = hugetlb_fault_mutex_hash(h, mapping, index, addr);
638 mutex_lock(&hugetlb_fault_mutex_table[hash]);
640 /* See if already present in mapping to avoid alloc/free */
641 page = find_get_page(mapping, index);
642 if (page) {
643 put_page(page);
644 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
645 hugetlb_drop_vma_policy(&pseudo_vma);
646 continue;
649 /* Allocate page and add to page cache */
650 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
651 hugetlb_drop_vma_policy(&pseudo_vma);
652 if (IS_ERR(page)) {
653 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
654 error = PTR_ERR(page);
655 goto out;
657 clear_huge_page(page, addr, pages_per_huge_page(h));
658 __SetPageUptodate(page);
659 error = huge_add_to_page_cache(page, mapping, index);
660 if (unlikely(error)) {
661 put_page(page);
662 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
663 goto out;
666 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
669 * page_put due to reference from alloc_huge_page()
670 * unlock_page because locked by add_to_page_cache()
672 put_page(page);
673 unlock_page(page);
676 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
677 i_size_write(inode, offset + len);
678 inode->i_ctime = current_time(inode);
679 out:
680 inode_unlock(inode);
681 return error;
684 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
686 struct inode *inode = d_inode(dentry);
687 struct hstate *h = hstate_inode(inode);
688 int error;
689 unsigned int ia_valid = attr->ia_valid;
691 BUG_ON(!inode);
693 error = setattr_prepare(dentry, attr);
694 if (error)
695 return error;
697 if (ia_valid & ATTR_SIZE) {
698 error = -EINVAL;
699 if (attr->ia_size & ~huge_page_mask(h))
700 return -EINVAL;
701 error = hugetlb_vmtruncate(inode, attr->ia_size);
702 if (error)
703 return error;
706 setattr_copy(inode, attr);
707 mark_inode_dirty(inode);
708 return 0;
711 static struct inode *hugetlbfs_get_root(struct super_block *sb,
712 struct hugetlbfs_config *config)
714 struct inode *inode;
716 inode = new_inode(sb);
717 if (inode) {
718 inode->i_ino = get_next_ino();
719 inode->i_mode = S_IFDIR | config->mode;
720 inode->i_uid = config->uid;
721 inode->i_gid = config->gid;
722 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
723 inode->i_op = &hugetlbfs_dir_inode_operations;
724 inode->i_fop = &simple_dir_operations;
725 /* directory inodes start off with i_nlink == 2 (for "." entry) */
726 inc_nlink(inode);
727 lockdep_annotate_inode_mutex_key(inode);
729 return inode;
733 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
734 * be taken from reclaim -- unlike regular filesystems. This needs an
735 * annotation because huge_pmd_share() does an allocation under hugetlb's
736 * i_mmap_rwsem.
738 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
740 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
741 struct inode *dir,
742 umode_t mode, dev_t dev)
744 struct inode *inode;
745 struct resv_map *resv_map = NULL;
748 * Reserve maps are only needed for inodes that can have associated
749 * page allocations.
751 if (S_ISREG(mode) || S_ISLNK(mode)) {
752 resv_map = resv_map_alloc();
753 if (!resv_map)
754 return NULL;
757 inode = new_inode(sb);
758 if (inode) {
759 inode->i_ino = get_next_ino();
760 inode_init_owner(inode, dir, mode);
761 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
762 &hugetlbfs_i_mmap_rwsem_key);
763 inode->i_mapping->a_ops = &hugetlbfs_aops;
764 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
765 inode->i_mapping->private_data = resv_map;
766 switch (mode & S_IFMT) {
767 default:
768 init_special_inode(inode, mode, dev);
769 break;
770 case S_IFREG:
771 inode->i_op = &hugetlbfs_inode_operations;
772 inode->i_fop = &hugetlbfs_file_operations;
773 break;
774 case S_IFDIR:
775 inode->i_op = &hugetlbfs_dir_inode_operations;
776 inode->i_fop = &simple_dir_operations;
778 /* directory inodes start off with i_nlink == 2 (for "." entry) */
779 inc_nlink(inode);
780 break;
781 case S_IFLNK:
782 inode->i_op = &page_symlink_inode_operations;
783 inode_nohighmem(inode);
784 break;
786 lockdep_annotate_inode_mutex_key(inode);
787 } else {
788 if (resv_map)
789 kref_put(&resv_map->refs, resv_map_release);
792 return inode;
796 * File creation. Allocate an inode, and we're done..
798 static int hugetlbfs_mknod(struct inode *dir,
799 struct dentry *dentry, umode_t mode, dev_t dev)
801 struct inode *inode;
802 int error = -ENOSPC;
804 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
805 if (inode) {
806 dir->i_ctime = dir->i_mtime = current_time(dir);
807 d_instantiate(dentry, inode);
808 dget(dentry); /* Extra count - pin the dentry in core */
809 error = 0;
811 return error;
814 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
816 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
817 if (!retval)
818 inc_nlink(dir);
819 return retval;
822 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
824 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
827 static int hugetlbfs_symlink(struct inode *dir,
828 struct dentry *dentry, const char *symname)
830 struct inode *inode;
831 int error = -ENOSPC;
833 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
834 if (inode) {
835 int l = strlen(symname)+1;
836 error = page_symlink(inode, symname, l);
837 if (!error) {
838 d_instantiate(dentry, inode);
839 dget(dentry);
840 } else
841 iput(inode);
843 dir->i_ctime = dir->i_mtime = current_time(dir);
845 return error;
849 * mark the head page dirty
851 static int hugetlbfs_set_page_dirty(struct page *page)
853 struct page *head = compound_head(page);
855 SetPageDirty(head);
856 return 0;
859 static int hugetlbfs_migrate_page(struct address_space *mapping,
860 struct page *newpage, struct page *page,
861 enum migrate_mode mode)
863 int rc;
865 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
866 if (rc != MIGRATEPAGE_SUCCESS)
867 return rc;
870 * page_private is subpool pointer in hugetlb pages. Transfer to
871 * new page. PagePrivate is not associated with page_private for
872 * hugetlb pages and can not be set here as only page_huge_active
873 * pages can be migrated.
875 if (page_private(page)) {
876 set_page_private(newpage, page_private(page));
877 set_page_private(page, 0);
880 migrate_page_copy(newpage, page);
882 return MIGRATEPAGE_SUCCESS;
885 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
887 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
888 struct hstate *h = hstate_inode(d_inode(dentry));
890 buf->f_type = HUGETLBFS_MAGIC;
891 buf->f_bsize = huge_page_size(h);
892 if (sbinfo) {
893 spin_lock(&sbinfo->stat_lock);
894 /* If no limits set, just report 0 for max/free/used
895 * blocks, like simple_statfs() */
896 if (sbinfo->spool) {
897 long free_pages;
899 spin_lock(&sbinfo->spool->lock);
900 buf->f_blocks = sbinfo->spool->max_hpages;
901 free_pages = sbinfo->spool->max_hpages
902 - sbinfo->spool->used_hpages;
903 buf->f_bavail = buf->f_bfree = free_pages;
904 spin_unlock(&sbinfo->spool->lock);
905 buf->f_files = sbinfo->max_inodes;
906 buf->f_ffree = sbinfo->free_inodes;
908 spin_unlock(&sbinfo->stat_lock);
910 buf->f_namelen = NAME_MAX;
911 return 0;
914 static void hugetlbfs_put_super(struct super_block *sb)
916 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
918 if (sbi) {
919 sb->s_fs_info = NULL;
921 if (sbi->spool)
922 hugepage_put_subpool(sbi->spool);
924 kfree(sbi);
928 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
930 if (sbinfo->free_inodes >= 0) {
931 spin_lock(&sbinfo->stat_lock);
932 if (unlikely(!sbinfo->free_inodes)) {
933 spin_unlock(&sbinfo->stat_lock);
934 return 0;
936 sbinfo->free_inodes--;
937 spin_unlock(&sbinfo->stat_lock);
940 return 1;
943 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
945 if (sbinfo->free_inodes >= 0) {
946 spin_lock(&sbinfo->stat_lock);
947 sbinfo->free_inodes++;
948 spin_unlock(&sbinfo->stat_lock);
953 static struct kmem_cache *hugetlbfs_inode_cachep;
955 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
957 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
958 struct hugetlbfs_inode_info *p;
960 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
961 return NULL;
962 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
963 if (unlikely(!p)) {
964 hugetlbfs_inc_free_inodes(sbinfo);
965 return NULL;
969 * Any time after allocation, hugetlbfs_destroy_inode can be called
970 * for the inode. mpol_free_shared_policy is unconditionally called
971 * as part of hugetlbfs_destroy_inode. So, initialize policy here
972 * in case of a quick call to destroy.
974 * Note that the policy is initialized even if we are creating a
975 * private inode. This simplifies hugetlbfs_destroy_inode.
977 mpol_shared_policy_init(&p->policy, NULL);
979 return &p->vfs_inode;
982 static void hugetlbfs_i_callback(struct rcu_head *head)
984 struct inode *inode = container_of(head, struct inode, i_rcu);
985 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
988 static void hugetlbfs_destroy_inode(struct inode *inode)
990 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
991 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
992 call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
995 static const struct address_space_operations hugetlbfs_aops = {
996 .write_begin = hugetlbfs_write_begin,
997 .write_end = hugetlbfs_write_end,
998 .set_page_dirty = hugetlbfs_set_page_dirty,
999 .migratepage = hugetlbfs_migrate_page,
1003 static void init_once(void *foo)
1005 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1007 inode_init_once(&ei->vfs_inode);
1010 const struct file_operations hugetlbfs_file_operations = {
1011 .read_iter = hugetlbfs_read_iter,
1012 .mmap = hugetlbfs_file_mmap,
1013 .fsync = noop_fsync,
1014 .get_unmapped_area = hugetlb_get_unmapped_area,
1015 .llseek = default_llseek,
1016 .fallocate = hugetlbfs_fallocate,
1019 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1020 .create = hugetlbfs_create,
1021 .lookup = simple_lookup,
1022 .link = simple_link,
1023 .unlink = simple_unlink,
1024 .symlink = hugetlbfs_symlink,
1025 .mkdir = hugetlbfs_mkdir,
1026 .rmdir = simple_rmdir,
1027 .mknod = hugetlbfs_mknod,
1028 .rename = simple_rename,
1029 .setattr = hugetlbfs_setattr,
1032 static const struct inode_operations hugetlbfs_inode_operations = {
1033 .setattr = hugetlbfs_setattr,
1036 static const struct super_operations hugetlbfs_ops = {
1037 .alloc_inode = hugetlbfs_alloc_inode,
1038 .destroy_inode = hugetlbfs_destroy_inode,
1039 .evict_inode = hugetlbfs_evict_inode,
1040 .statfs = hugetlbfs_statfs,
1041 .put_super = hugetlbfs_put_super,
1042 .show_options = generic_show_options,
1045 enum { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1048 * Convert size option passed from command line to number of huge pages
1049 * in the pool specified by hstate. Size option could be in bytes
1050 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1052 static long long
1053 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1054 int val_type)
1056 if (val_type == NO_SIZE)
1057 return -1;
1059 if (val_type == SIZE_PERCENT) {
1060 size_opt <<= huge_page_shift(h);
1061 size_opt *= h->max_huge_pages;
1062 do_div(size_opt, 100);
1065 size_opt >>= huge_page_shift(h);
1066 return size_opt;
1069 static int
1070 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1072 char *p, *rest;
1073 substring_t args[MAX_OPT_ARGS];
1074 int option;
1075 unsigned long long max_size_opt = 0, min_size_opt = 0;
1076 int max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1078 if (!options)
1079 return 0;
1081 while ((p = strsep(&options, ",")) != NULL) {
1082 int token;
1083 if (!*p)
1084 continue;
1086 token = match_token(p, tokens, args);
1087 switch (token) {
1088 case Opt_uid:
1089 if (match_int(&args[0], &option))
1090 goto bad_val;
1091 pconfig->uid = make_kuid(current_user_ns(), option);
1092 if (!uid_valid(pconfig->uid))
1093 goto bad_val;
1094 break;
1096 case Opt_gid:
1097 if (match_int(&args[0], &option))
1098 goto bad_val;
1099 pconfig->gid = make_kgid(current_user_ns(), option);
1100 if (!gid_valid(pconfig->gid))
1101 goto bad_val;
1102 break;
1104 case Opt_mode:
1105 if (match_octal(&args[0], &option))
1106 goto bad_val;
1107 pconfig->mode = option & 01777U;
1108 break;
1110 case Opt_size: {
1111 /* memparse() will accept a K/M/G without a digit */
1112 if (!isdigit(*args[0].from))
1113 goto bad_val;
1114 max_size_opt = memparse(args[0].from, &rest);
1115 max_val_type = SIZE_STD;
1116 if (*rest == '%')
1117 max_val_type = SIZE_PERCENT;
1118 break;
1121 case Opt_nr_inodes:
1122 /* memparse() will accept a K/M/G without a digit */
1123 if (!isdigit(*args[0].from))
1124 goto bad_val;
1125 pconfig->nr_inodes = memparse(args[0].from, &rest);
1126 break;
1128 case Opt_pagesize: {
1129 unsigned long ps;
1130 ps = memparse(args[0].from, &rest);
1131 pconfig->hstate = size_to_hstate(ps);
1132 if (!pconfig->hstate) {
1133 pr_err("Unsupported page size %lu MB\n",
1134 ps >> 20);
1135 return -EINVAL;
1137 break;
1140 case Opt_min_size: {
1141 /* memparse() will accept a K/M/G without a digit */
1142 if (!isdigit(*args[0].from))
1143 goto bad_val;
1144 min_size_opt = memparse(args[0].from, &rest);
1145 min_val_type = SIZE_STD;
1146 if (*rest == '%')
1147 min_val_type = SIZE_PERCENT;
1148 break;
1151 default:
1152 pr_err("Bad mount option: \"%s\"\n", p);
1153 return -EINVAL;
1154 break;
1159 * Use huge page pool size (in hstate) to convert the size
1160 * options to number of huge pages. If NO_SIZE, -1 is returned.
1162 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1163 max_size_opt, max_val_type);
1164 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1165 min_size_opt, min_val_type);
1168 * If max_size was specified, then min_size must be smaller
1170 if (max_val_type > NO_SIZE &&
1171 pconfig->min_hpages > pconfig->max_hpages) {
1172 pr_err("minimum size can not be greater than maximum size\n");
1173 return -EINVAL;
1176 return 0;
1178 bad_val:
1179 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1180 return -EINVAL;
1183 static int
1184 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1186 int ret;
1187 struct hugetlbfs_config config;
1188 struct hugetlbfs_sb_info *sbinfo;
1190 save_mount_options(sb, data);
1192 config.max_hpages = -1; /* No limit on size by default */
1193 config.nr_inodes = -1; /* No limit on number of inodes by default */
1194 config.uid = current_fsuid();
1195 config.gid = current_fsgid();
1196 config.mode = 0755;
1197 config.hstate = &default_hstate;
1198 config.min_hpages = -1; /* No default minimum size */
1199 ret = hugetlbfs_parse_options(data, &config);
1200 if (ret)
1201 return ret;
1203 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1204 if (!sbinfo)
1205 return -ENOMEM;
1206 sb->s_fs_info = sbinfo;
1207 sbinfo->hstate = config.hstate;
1208 spin_lock_init(&sbinfo->stat_lock);
1209 sbinfo->max_inodes = config.nr_inodes;
1210 sbinfo->free_inodes = config.nr_inodes;
1211 sbinfo->spool = NULL;
1213 * Allocate and initialize subpool if maximum or minimum size is
1214 * specified. Any needed reservations (for minimim size) are taken
1215 * taken when the subpool is created.
1217 if (config.max_hpages != -1 || config.min_hpages != -1) {
1218 sbinfo->spool = hugepage_new_subpool(config.hstate,
1219 config.max_hpages,
1220 config.min_hpages);
1221 if (!sbinfo->spool)
1222 goto out_free;
1224 sb->s_maxbytes = MAX_LFS_FILESIZE;
1225 sb->s_blocksize = huge_page_size(config.hstate);
1226 sb->s_blocksize_bits = huge_page_shift(config.hstate);
1227 sb->s_magic = HUGETLBFS_MAGIC;
1228 sb->s_op = &hugetlbfs_ops;
1229 sb->s_time_gran = 1;
1230 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1231 if (!sb->s_root)
1232 goto out_free;
1233 return 0;
1234 out_free:
1235 kfree(sbinfo->spool);
1236 kfree(sbinfo);
1237 return -ENOMEM;
1240 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1241 int flags, const char *dev_name, void *data)
1243 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1246 static struct file_system_type hugetlbfs_fs_type = {
1247 .name = "hugetlbfs",
1248 .mount = hugetlbfs_mount,
1249 .kill_sb = kill_litter_super,
1252 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1254 static int can_do_hugetlb_shm(void)
1256 kgid_t shm_group;
1257 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1258 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1261 static int get_hstate_idx(int page_size_log)
1263 struct hstate *h = hstate_sizelog(page_size_log);
1265 if (!h)
1266 return -1;
1267 return h - hstates;
1270 static const struct dentry_operations anon_ops = {
1271 .d_dname = simple_dname
1275 * Note that size should be aligned to proper hugepage size in caller side,
1276 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1278 struct file *hugetlb_file_setup(const char *name, size_t size,
1279 vm_flags_t acctflag, struct user_struct **user,
1280 int creat_flags, int page_size_log)
1282 struct file *file = ERR_PTR(-ENOMEM);
1283 struct inode *inode;
1284 struct path path;
1285 struct super_block *sb;
1286 struct qstr quick_string;
1287 int hstate_idx;
1289 hstate_idx = get_hstate_idx(page_size_log);
1290 if (hstate_idx < 0)
1291 return ERR_PTR(-ENODEV);
1293 *user = NULL;
1294 if (!hugetlbfs_vfsmount[hstate_idx])
1295 return ERR_PTR(-ENOENT);
1297 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1298 *user = current_user();
1299 if (user_shm_lock(size, *user)) {
1300 task_lock(current);
1301 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1302 current->comm, current->pid);
1303 task_unlock(current);
1304 } else {
1305 *user = NULL;
1306 return ERR_PTR(-EPERM);
1310 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1311 quick_string.name = name;
1312 quick_string.len = strlen(quick_string.name);
1313 quick_string.hash = 0;
1314 path.dentry = d_alloc_pseudo(sb, &quick_string);
1315 if (!path.dentry)
1316 goto out_shm_unlock;
1318 d_set_d_op(path.dentry, &anon_ops);
1319 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1320 file = ERR_PTR(-ENOSPC);
1321 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1322 if (!inode)
1323 goto out_dentry;
1324 if (creat_flags == HUGETLB_SHMFS_INODE)
1325 inode->i_flags |= S_PRIVATE;
1327 file = ERR_PTR(-ENOMEM);
1328 if (hugetlb_reserve_pages(inode, 0,
1329 size >> huge_page_shift(hstate_inode(inode)), NULL,
1330 acctflag))
1331 goto out_inode;
1333 d_instantiate(path.dentry, inode);
1334 inode->i_size = size;
1335 clear_nlink(inode);
1337 file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1338 &hugetlbfs_file_operations);
1339 if (IS_ERR(file))
1340 goto out_dentry; /* inode is already attached */
1342 return file;
1344 out_inode:
1345 iput(inode);
1346 out_dentry:
1347 path_put(&path);
1348 out_shm_unlock:
1349 if (*user) {
1350 user_shm_unlock(size, *user);
1351 *user = NULL;
1353 return file;
1356 static int __init init_hugetlbfs_fs(void)
1358 struct hstate *h;
1359 int error;
1360 int i;
1362 if (!hugepages_supported()) {
1363 pr_info("disabling because there are no supported hugepage sizes\n");
1364 return -ENOTSUPP;
1367 error = -ENOMEM;
1368 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1369 sizeof(struct hugetlbfs_inode_info),
1370 0, SLAB_ACCOUNT, init_once);
1371 if (hugetlbfs_inode_cachep == NULL)
1372 goto out2;
1374 error = register_filesystem(&hugetlbfs_fs_type);
1375 if (error)
1376 goto out;
1378 i = 0;
1379 for_each_hstate(h) {
1380 char buf[50];
1381 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1383 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1384 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1385 buf);
1387 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1388 pr_err("Cannot mount internal hugetlbfs for "
1389 "page size %uK", ps_kb);
1390 error = PTR_ERR(hugetlbfs_vfsmount[i]);
1391 hugetlbfs_vfsmount[i] = NULL;
1393 i++;
1395 /* Non default hstates are optional */
1396 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1397 return 0;
1399 out:
1400 kmem_cache_destroy(hugetlbfs_inode_cachep);
1401 out2:
1402 return error;
1404 fs_initcall(init_hugetlbfs_fs)