2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include <linux/stddef.h>
20 #include <linux/errno.h>
21 #include <linux/gfp.h>
22 #include <linux/pagemap.h>
23 #include <linux/init.h>
24 #include <linux/vmalloc.h>
25 #include <linux/bio.h>
26 #include <linux/sysctl.h>
27 #include <linux/proc_fs.h>
28 #include <linux/workqueue.h>
29 #include <linux/percpu.h>
30 #include <linux/blkdev.h>
31 #include <linux/hash.h>
32 #include <linux/kthread.h>
33 #include <linux/migrate.h>
34 #include <linux/backing-dev.h>
35 #include <linux/freezer.h>
37 #include "xfs_format.h"
38 #include "xfs_log_format.h"
39 #include "xfs_trans_resv.h"
41 #include "xfs_mount.h"
42 #include "xfs_trace.h"
45 static kmem_zone_t
*xfs_buf_zone
;
47 #ifdef XFS_BUF_LOCK_TRACKING
48 # define XB_SET_OWNER(bp) ((bp)->b_last_holder = current->pid)
49 # define XB_CLEAR_OWNER(bp) ((bp)->b_last_holder = -1)
50 # define XB_GET_OWNER(bp) ((bp)->b_last_holder)
52 # define XB_SET_OWNER(bp) do { } while (0)
53 # define XB_CLEAR_OWNER(bp) do { } while (0)
54 # define XB_GET_OWNER(bp) do { } while (0)
57 #define xb_to_gfp(flags) \
58 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
65 * b_sema (caller holds)
69 * b_sema (caller holds)
78 * xfs_buftarg_wait_rele
80 * b_lock (trylock due to inversion)
84 * b_lock (trylock due to inversion)
92 * Return true if the buffer is vmapped.
94 * b_addr is null if the buffer is not mapped, but the code is clever
95 * enough to know it doesn't have to map a single page, so the check has
96 * to be both for b_addr and bp->b_page_count > 1.
98 return bp
->b_addr
&& bp
->b_page_count
> 1;
105 return (bp
->b_page_count
* PAGE_SIZE
) - bp
->b_offset
;
109 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
110 * this buffer. The count is incremented once per buffer (per hold cycle)
111 * because the corresponding decrement is deferred to buffer release. Buffers
112 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
113 * tracking adds unnecessary overhead. This is used for sychronization purposes
114 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
117 * Buffers that are never released (e.g., superblock, iclog buffers) must set
118 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
119 * never reaches zero and unmount hangs indefinitely.
125 if (bp
->b_flags
& XBF_NO_IOACCT
)
128 ASSERT(bp
->b_flags
& XBF_ASYNC
);
129 spin_lock(&bp
->b_lock
);
130 if (!(bp
->b_state
& XFS_BSTATE_IN_FLIGHT
)) {
131 bp
->b_state
|= XFS_BSTATE_IN_FLIGHT
;
132 percpu_counter_inc(&bp
->b_target
->bt_io_count
);
134 spin_unlock(&bp
->b_lock
);
138 * Clear the in-flight state on a buffer about to be released to the LRU or
139 * freed and unaccount from the buftarg.
142 __xfs_buf_ioacct_dec(
145 lockdep_assert_held(&bp
->b_lock
);
147 if (bp
->b_state
& XFS_BSTATE_IN_FLIGHT
) {
148 bp
->b_state
&= ~XFS_BSTATE_IN_FLIGHT
;
149 percpu_counter_dec(&bp
->b_target
->bt_io_count
);
157 spin_lock(&bp
->b_lock
);
158 __xfs_buf_ioacct_dec(bp
);
159 spin_unlock(&bp
->b_lock
);
163 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
164 * b_lru_ref count so that the buffer is freed immediately when the buffer
165 * reference count falls to zero. If the buffer is already on the LRU, we need
166 * to remove the reference that LRU holds on the buffer.
168 * This prevents build-up of stale buffers on the LRU.
174 ASSERT(xfs_buf_islocked(bp
));
176 bp
->b_flags
|= XBF_STALE
;
179 * Clear the delwri status so that a delwri queue walker will not
180 * flush this buffer to disk now that it is stale. The delwri queue has
181 * a reference to the buffer, so this is safe to do.
183 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
186 * Once the buffer is marked stale and unlocked, a subsequent lookup
187 * could reset b_flags. There is no guarantee that the buffer is
188 * unaccounted (released to LRU) before that occurs. Drop in-flight
189 * status now to preserve accounting consistency.
191 spin_lock(&bp
->b_lock
);
192 __xfs_buf_ioacct_dec(bp
);
194 atomic_set(&bp
->b_lru_ref
, 0);
195 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
) &&
196 (list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
)))
197 atomic_dec(&bp
->b_hold
);
199 ASSERT(atomic_read(&bp
->b_hold
) >= 1);
200 spin_unlock(&bp
->b_lock
);
208 ASSERT(bp
->b_maps
== NULL
);
209 bp
->b_map_count
= map_count
;
211 if (map_count
== 1) {
212 bp
->b_maps
= &bp
->__b_map
;
216 bp
->b_maps
= kmem_zalloc(map_count
* sizeof(struct xfs_buf_map
),
224 * Frees b_pages if it was allocated.
230 if (bp
->b_maps
!= &bp
->__b_map
) {
231 kmem_free(bp
->b_maps
);
238 struct xfs_buftarg
*target
,
239 struct xfs_buf_map
*map
,
241 xfs_buf_flags_t flags
)
247 bp
= kmem_zone_zalloc(xfs_buf_zone
, KM_NOFS
);
252 * We don't want certain flags to appear in b_flags unless they are
253 * specifically set by later operations on the buffer.
255 flags
&= ~(XBF_UNMAPPED
| XBF_TRYLOCK
| XBF_ASYNC
| XBF_READ_AHEAD
);
257 atomic_set(&bp
->b_hold
, 1);
258 atomic_set(&bp
->b_lru_ref
, 1);
259 init_completion(&bp
->b_iowait
);
260 INIT_LIST_HEAD(&bp
->b_lru
);
261 INIT_LIST_HEAD(&bp
->b_list
);
262 RB_CLEAR_NODE(&bp
->b_rbnode
);
263 sema_init(&bp
->b_sema
, 0); /* held, no waiters */
264 spin_lock_init(&bp
->b_lock
);
266 bp
->b_target
= target
;
270 * Set length and io_length to the same value initially.
271 * I/O routines should use io_length, which will be the same in
272 * most cases but may be reset (e.g. XFS recovery).
274 error
= xfs_buf_get_maps(bp
, nmaps
);
276 kmem_zone_free(xfs_buf_zone
, bp
);
280 bp
->b_bn
= map
[0].bm_bn
;
282 for (i
= 0; i
< nmaps
; i
++) {
283 bp
->b_maps
[i
].bm_bn
= map
[i
].bm_bn
;
284 bp
->b_maps
[i
].bm_len
= map
[i
].bm_len
;
285 bp
->b_length
+= map
[i
].bm_len
;
287 bp
->b_io_length
= bp
->b_length
;
289 atomic_set(&bp
->b_pin_count
, 0);
290 init_waitqueue_head(&bp
->b_waiters
);
292 XFS_STATS_INC(target
->bt_mount
, xb_create
);
293 trace_xfs_buf_init(bp
, _RET_IP_
);
299 * Allocate a page array capable of holding a specified number
300 * of pages, and point the page buf at it.
307 /* Make sure that we have a page list */
308 if (bp
->b_pages
== NULL
) {
309 bp
->b_page_count
= page_count
;
310 if (page_count
<= XB_PAGES
) {
311 bp
->b_pages
= bp
->b_page_array
;
313 bp
->b_pages
= kmem_alloc(sizeof(struct page
*) *
314 page_count
, KM_NOFS
);
315 if (bp
->b_pages
== NULL
)
318 memset(bp
->b_pages
, 0, sizeof(struct page
*) * page_count
);
324 * Frees b_pages if it was allocated.
330 if (bp
->b_pages
!= bp
->b_page_array
) {
331 kmem_free(bp
->b_pages
);
337 * Releases the specified buffer.
339 * The modification state of any associated pages is left unchanged.
340 * The buffer must not be on any hash - use xfs_buf_rele instead for
341 * hashed and refcounted buffers
347 trace_xfs_buf_free(bp
, _RET_IP_
);
349 ASSERT(list_empty(&bp
->b_lru
));
351 if (bp
->b_flags
& _XBF_PAGES
) {
354 if (xfs_buf_is_vmapped(bp
))
355 vm_unmap_ram(bp
->b_addr
- bp
->b_offset
,
358 for (i
= 0; i
< bp
->b_page_count
; i
++) {
359 struct page
*page
= bp
->b_pages
[i
];
363 } else if (bp
->b_flags
& _XBF_KMEM
)
364 kmem_free(bp
->b_addr
);
365 _xfs_buf_free_pages(bp
);
366 xfs_buf_free_maps(bp
);
367 kmem_zone_free(xfs_buf_zone
, bp
);
371 * Allocates all the pages for buffer in question and builds it's page list.
374 xfs_buf_allocate_memory(
379 size_t nbytes
, offset
;
380 gfp_t gfp_mask
= xb_to_gfp(flags
);
381 unsigned short page_count
, i
;
382 xfs_off_t start
, end
;
386 * for buffers that are contained within a single page, just allocate
387 * the memory from the heap - there's no need for the complexity of
388 * page arrays to keep allocation down to order 0.
390 size
= BBTOB(bp
->b_length
);
391 if (size
< PAGE_SIZE
) {
392 bp
->b_addr
= kmem_alloc(size
, KM_NOFS
);
394 /* low memory - use alloc_page loop instead */
398 if (((unsigned long)(bp
->b_addr
+ size
- 1) & PAGE_MASK
) !=
399 ((unsigned long)bp
->b_addr
& PAGE_MASK
)) {
400 /* b_addr spans two pages - use alloc_page instead */
401 kmem_free(bp
->b_addr
);
405 bp
->b_offset
= offset_in_page(bp
->b_addr
);
406 bp
->b_pages
= bp
->b_page_array
;
407 bp
->b_pages
[0] = virt_to_page(bp
->b_addr
);
408 bp
->b_page_count
= 1;
409 bp
->b_flags
|= _XBF_KMEM
;
414 start
= BBTOB(bp
->b_maps
[0].bm_bn
) >> PAGE_SHIFT
;
415 end
= (BBTOB(bp
->b_maps
[0].bm_bn
+ bp
->b_length
) + PAGE_SIZE
- 1)
417 page_count
= end
- start
;
418 error
= _xfs_buf_get_pages(bp
, page_count
);
422 offset
= bp
->b_offset
;
423 bp
->b_flags
|= _XBF_PAGES
;
425 for (i
= 0; i
< bp
->b_page_count
; i
++) {
429 page
= alloc_page(gfp_mask
);
430 if (unlikely(page
== NULL
)) {
431 if (flags
& XBF_READ_AHEAD
) {
432 bp
->b_page_count
= i
;
438 * This could deadlock.
440 * But until all the XFS lowlevel code is revamped to
441 * handle buffer allocation failures we can't do much.
443 if (!(++retries
% 100))
445 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
446 current
->comm
, current
->pid
,
449 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_retries
);
450 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
454 XFS_STATS_INC(bp
->b_target
->bt_mount
, xb_page_found
);
456 nbytes
= min_t(size_t, size
, PAGE_SIZE
- offset
);
458 bp
->b_pages
[i
] = page
;
464 for (i
= 0; i
< bp
->b_page_count
; i
++)
465 __free_page(bp
->b_pages
[i
]);
466 bp
->b_flags
&= ~_XBF_PAGES
;
471 * Map buffer into kernel address-space if necessary.
478 ASSERT(bp
->b_flags
& _XBF_PAGES
);
479 if (bp
->b_page_count
== 1) {
480 /* A single page buffer is always mappable */
481 bp
->b_addr
= page_address(bp
->b_pages
[0]) + bp
->b_offset
;
482 } else if (flags
& XBF_UNMAPPED
) {
489 * vm_map_ram() will allocate auxillary structures (e.g.
490 * pagetables) with GFP_KERNEL, yet we are likely to be under
491 * GFP_NOFS context here. Hence we need to tell memory reclaim
492 * that we are in such a context via PF_MEMALLOC_NOIO to prevent
493 * memory reclaim re-entering the filesystem here and
494 * potentially deadlocking.
496 noio_flag
= memalloc_noio_save();
498 bp
->b_addr
= vm_map_ram(bp
->b_pages
, bp
->b_page_count
,
503 } while (retried
++ <= 1);
504 memalloc_noio_restore(noio_flag
);
508 bp
->b_addr
+= bp
->b_offset
;
515 * Finding and Reading Buffers
519 * Look up, and creates if absent, a lockable buffer for
520 * a given range of an inode. The buffer is returned
521 * locked. No I/O is implied by this call.
525 struct xfs_buftarg
*btp
,
526 struct xfs_buf_map
*map
,
528 xfs_buf_flags_t flags
,
531 struct xfs_perag
*pag
;
532 struct rb_node
**rbp
;
533 struct rb_node
*parent
;
535 xfs_daddr_t blkno
= map
[0].bm_bn
;
540 for (i
= 0; i
< nmaps
; i
++)
541 numblks
+= map
[i
].bm_len
;
543 /* Check for IOs smaller than the sector size / not sector aligned */
544 ASSERT(!(BBTOB(numblks
) < btp
->bt_meta_sectorsize
));
545 ASSERT(!(BBTOB(blkno
) & (xfs_off_t
)btp
->bt_meta_sectormask
));
548 * Corrupted block numbers can get through to here, unfortunately, so we
549 * have to check that the buffer falls within the filesystem bounds.
551 eofs
= XFS_FSB_TO_BB(btp
->bt_mount
, btp
->bt_mount
->m_sb
.sb_dblocks
);
552 if (blkno
< 0 || blkno
>= eofs
) {
554 * XXX (dgc): we should really be returning -EFSCORRUPTED here,
555 * but none of the higher level infrastructure supports
556 * returning a specific error on buffer lookup failures.
558 xfs_alert(btp
->bt_mount
,
559 "%s: Block out of range: block 0x%llx, EOFS 0x%llx ",
560 __func__
, blkno
, eofs
);
566 pag
= xfs_perag_get(btp
->bt_mount
,
567 xfs_daddr_to_agno(btp
->bt_mount
, blkno
));
570 spin_lock(&pag
->pag_buf_lock
);
571 rbp
= &pag
->pag_buf_tree
.rb_node
;
576 bp
= rb_entry(parent
, struct xfs_buf
, b_rbnode
);
578 if (blkno
< bp
->b_bn
)
579 rbp
= &(*rbp
)->rb_left
;
580 else if (blkno
> bp
->b_bn
)
581 rbp
= &(*rbp
)->rb_right
;
584 * found a block number match. If the range doesn't
585 * match, the only way this is allowed is if the buffer
586 * in the cache is stale and the transaction that made
587 * it stale has not yet committed. i.e. we are
588 * reallocating a busy extent. Skip this buffer and
589 * continue searching to the right for an exact match.
591 if (bp
->b_length
!= numblks
) {
592 ASSERT(bp
->b_flags
& XBF_STALE
);
593 rbp
= &(*rbp
)->rb_right
;
596 atomic_inc(&bp
->b_hold
);
603 rb_link_node(&new_bp
->b_rbnode
, parent
, rbp
);
604 rb_insert_color(&new_bp
->b_rbnode
, &pag
->pag_buf_tree
);
605 /* the buffer keeps the perag reference until it is freed */
607 spin_unlock(&pag
->pag_buf_lock
);
609 XFS_STATS_INC(btp
->bt_mount
, xb_miss_locked
);
610 spin_unlock(&pag
->pag_buf_lock
);
616 spin_unlock(&pag
->pag_buf_lock
);
619 if (!xfs_buf_trylock(bp
)) {
620 if (flags
& XBF_TRYLOCK
) {
622 XFS_STATS_INC(btp
->bt_mount
, xb_busy_locked
);
626 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked_waited
);
630 * if the buffer is stale, clear all the external state associated with
631 * it. We need to keep flags such as how we allocated the buffer memory
634 if (bp
->b_flags
& XBF_STALE
) {
635 ASSERT((bp
->b_flags
& _XBF_DELWRI_Q
) == 0);
636 ASSERT(bp
->b_iodone
== NULL
);
637 bp
->b_flags
&= _XBF_KMEM
| _XBF_PAGES
;
641 trace_xfs_buf_find(bp
, flags
, _RET_IP_
);
642 XFS_STATS_INC(btp
->bt_mount
, xb_get_locked
);
647 * Assembles a buffer covering the specified range. The code is optimised for
648 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
649 * more hits than misses.
653 struct xfs_buftarg
*target
,
654 struct xfs_buf_map
*map
,
656 xfs_buf_flags_t flags
)
659 struct xfs_buf
*new_bp
;
662 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, NULL
);
666 new_bp
= _xfs_buf_alloc(target
, map
, nmaps
, flags
);
667 if (unlikely(!new_bp
))
670 error
= xfs_buf_allocate_memory(new_bp
, flags
);
672 xfs_buf_free(new_bp
);
676 bp
= _xfs_buf_find(target
, map
, nmaps
, flags
, new_bp
);
678 xfs_buf_free(new_bp
);
683 xfs_buf_free(new_bp
);
687 error
= _xfs_buf_map_pages(bp
, flags
);
688 if (unlikely(error
)) {
689 xfs_warn(target
->bt_mount
,
690 "%s: failed to map pagesn", __func__
);
697 * Clear b_error if this is a lookup from a caller that doesn't expect
698 * valid data to be found in the buffer.
700 if (!(flags
& XBF_READ
))
701 xfs_buf_ioerror(bp
, 0);
703 XFS_STATS_INC(target
->bt_mount
, xb_get
);
704 trace_xfs_buf_get(bp
, flags
, _RET_IP_
);
711 xfs_buf_flags_t flags
)
713 ASSERT(!(flags
& XBF_WRITE
));
714 ASSERT(bp
->b_maps
[0].bm_bn
!= XFS_BUF_DADDR_NULL
);
716 bp
->b_flags
&= ~(XBF_WRITE
| XBF_ASYNC
| XBF_READ_AHEAD
);
717 bp
->b_flags
|= flags
& (XBF_READ
| XBF_ASYNC
| XBF_READ_AHEAD
);
719 if (flags
& XBF_ASYNC
) {
723 return xfs_buf_submit_wait(bp
);
728 struct xfs_buftarg
*target
,
729 struct xfs_buf_map
*map
,
731 xfs_buf_flags_t flags
,
732 const struct xfs_buf_ops
*ops
)
738 bp
= xfs_buf_get_map(target
, map
, nmaps
, flags
);
740 trace_xfs_buf_read(bp
, flags
, _RET_IP_
);
742 if (!(bp
->b_flags
& XBF_DONE
)) {
743 XFS_STATS_INC(target
->bt_mount
, xb_get_read
);
745 _xfs_buf_read(bp
, flags
);
746 } else if (flags
& XBF_ASYNC
) {
748 * Read ahead call which is already satisfied,
754 /* We do not want read in the flags */
755 bp
->b_flags
&= ~XBF_READ
;
763 * If we are not low on memory then do the readahead in a deadlock
767 xfs_buf_readahead_map(
768 struct xfs_buftarg
*target
,
769 struct xfs_buf_map
*map
,
771 const struct xfs_buf_ops
*ops
)
773 if (bdi_read_congested(target
->bt_bdi
))
776 xfs_buf_read_map(target
, map
, nmaps
,
777 XBF_TRYLOCK
|XBF_ASYNC
|XBF_READ_AHEAD
, ops
);
781 * Read an uncached buffer from disk. Allocates and returns a locked
782 * buffer containing the disk contents or nothing.
785 xfs_buf_read_uncached(
786 struct xfs_buftarg
*target
,
790 struct xfs_buf
**bpp
,
791 const struct xfs_buf_ops
*ops
)
797 bp
= xfs_buf_get_uncached(target
, numblks
, flags
);
801 /* set up the buffer for a read IO */
802 ASSERT(bp
->b_map_count
== 1);
803 bp
->b_bn
= XFS_BUF_DADDR_NULL
; /* always null for uncached buffers */
804 bp
->b_maps
[0].bm_bn
= daddr
;
805 bp
->b_flags
|= XBF_READ
;
808 xfs_buf_submit_wait(bp
);
810 int error
= bp
->b_error
;
820 * Return a buffer allocated as an empty buffer and associated to external
821 * memory via xfs_buf_associate_memory() back to it's empty state.
829 _xfs_buf_free_pages(bp
);
832 bp
->b_page_count
= 0;
834 bp
->b_length
= numblks
;
835 bp
->b_io_length
= numblks
;
837 ASSERT(bp
->b_map_count
== 1);
838 bp
->b_bn
= XFS_BUF_DADDR_NULL
;
839 bp
->b_maps
[0].bm_bn
= XFS_BUF_DADDR_NULL
;
840 bp
->b_maps
[0].bm_len
= bp
->b_length
;
843 static inline struct page
*
847 if ((!is_vmalloc_addr(addr
))) {
848 return virt_to_page(addr
);
850 return vmalloc_to_page(addr
);
855 xfs_buf_associate_memory(
862 unsigned long pageaddr
;
863 unsigned long offset
;
867 pageaddr
= (unsigned long)mem
& PAGE_MASK
;
868 offset
= (unsigned long)mem
- pageaddr
;
869 buflen
= PAGE_ALIGN(len
+ offset
);
870 page_count
= buflen
>> PAGE_SHIFT
;
872 /* Free any previous set of page pointers */
874 _xfs_buf_free_pages(bp
);
879 rval
= _xfs_buf_get_pages(bp
, page_count
);
883 bp
->b_offset
= offset
;
885 for (i
= 0; i
< bp
->b_page_count
; i
++) {
886 bp
->b_pages
[i
] = mem_to_page((void *)pageaddr
);
887 pageaddr
+= PAGE_SIZE
;
890 bp
->b_io_length
= BTOBB(len
);
891 bp
->b_length
= BTOBB(buflen
);
897 xfs_buf_get_uncached(
898 struct xfs_buftarg
*target
,
902 unsigned long page_count
;
905 DEFINE_SINGLE_BUF_MAP(map
, XFS_BUF_DADDR_NULL
, numblks
);
907 /* flags might contain irrelevant bits, pass only what we care about */
908 bp
= _xfs_buf_alloc(target
, &map
, 1, flags
& XBF_NO_IOACCT
);
909 if (unlikely(bp
== NULL
))
912 page_count
= PAGE_ALIGN(numblks
<< BBSHIFT
) >> PAGE_SHIFT
;
913 error
= _xfs_buf_get_pages(bp
, page_count
);
917 for (i
= 0; i
< page_count
; i
++) {
918 bp
->b_pages
[i
] = alloc_page(xb_to_gfp(flags
));
922 bp
->b_flags
|= _XBF_PAGES
;
924 error
= _xfs_buf_map_pages(bp
, 0);
925 if (unlikely(error
)) {
926 xfs_warn(target
->bt_mount
,
927 "%s: failed to map pages", __func__
);
931 trace_xfs_buf_get_uncached(bp
, _RET_IP_
);
936 __free_page(bp
->b_pages
[i
]);
937 _xfs_buf_free_pages(bp
);
939 xfs_buf_free_maps(bp
);
940 kmem_zone_free(xfs_buf_zone
, bp
);
946 * Increment reference count on buffer, to hold the buffer concurrently
947 * with another thread which may release (free) the buffer asynchronously.
948 * Must hold the buffer already to call this function.
954 trace_xfs_buf_hold(bp
, _RET_IP_
);
955 atomic_inc(&bp
->b_hold
);
959 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
960 * placed on LRU or freed (depending on b_lru_ref).
966 struct xfs_perag
*pag
= bp
->b_pag
;
968 bool freebuf
= false;
970 trace_xfs_buf_rele(bp
, _RET_IP_
);
973 ASSERT(list_empty(&bp
->b_lru
));
974 ASSERT(RB_EMPTY_NODE(&bp
->b_rbnode
));
975 if (atomic_dec_and_test(&bp
->b_hold
)) {
976 xfs_buf_ioacct_dec(bp
);
982 ASSERT(!RB_EMPTY_NODE(&bp
->b_rbnode
));
984 ASSERT(atomic_read(&bp
->b_hold
) > 0);
987 * We grab the b_lock here first to serialise racing xfs_buf_rele()
988 * calls. The pag_buf_lock being taken on the last reference only
989 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
990 * to last reference we drop here is not serialised against the last
991 * reference until we take bp->b_lock. Hence if we don't grab b_lock
992 * first, the last "release" reference can win the race to the lock and
993 * free the buffer before the second-to-last reference is processed,
994 * leading to a use-after-free scenario.
996 spin_lock(&bp
->b_lock
);
997 release
= atomic_dec_and_lock(&bp
->b_hold
, &pag
->pag_buf_lock
);
1000 * Drop the in-flight state if the buffer is already on the LRU
1001 * and it holds the only reference. This is racy because we
1002 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1003 * ensures the decrement occurs only once per-buf.
1005 if ((atomic_read(&bp
->b_hold
) == 1) && !list_empty(&bp
->b_lru
))
1006 __xfs_buf_ioacct_dec(bp
);
1010 /* the last reference has been dropped ... */
1011 __xfs_buf_ioacct_dec(bp
);
1012 if (!(bp
->b_flags
& XBF_STALE
) && atomic_read(&bp
->b_lru_ref
)) {
1014 * If the buffer is added to the LRU take a new reference to the
1015 * buffer for the LRU and clear the (now stale) dispose list
1018 if (list_lru_add(&bp
->b_target
->bt_lru
, &bp
->b_lru
)) {
1019 bp
->b_state
&= ~XFS_BSTATE_DISPOSE
;
1020 atomic_inc(&bp
->b_hold
);
1022 spin_unlock(&pag
->pag_buf_lock
);
1025 * most of the time buffers will already be removed from the
1026 * LRU, so optimise that case by checking for the
1027 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1028 * was on was the disposal list
1030 if (!(bp
->b_state
& XFS_BSTATE_DISPOSE
)) {
1031 list_lru_del(&bp
->b_target
->bt_lru
, &bp
->b_lru
);
1033 ASSERT(list_empty(&bp
->b_lru
));
1036 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1037 rb_erase(&bp
->b_rbnode
, &pag
->pag_buf_tree
);
1038 spin_unlock(&pag
->pag_buf_lock
);
1044 spin_unlock(&bp
->b_lock
);
1052 * Lock a buffer object, if it is not already locked.
1054 * If we come across a stale, pinned, locked buffer, we know that we are
1055 * being asked to lock a buffer that has been reallocated. Because it is
1056 * pinned, we know that the log has not been pushed to disk and hence it
1057 * will still be locked. Rather than continuing to have trylock attempts
1058 * fail until someone else pushes the log, push it ourselves before
1059 * returning. This means that the xfsaild will not get stuck trying
1060 * to push on stale inode buffers.
1068 locked
= down_trylock(&bp
->b_sema
) == 0;
1071 trace_xfs_buf_trylock(bp
, _RET_IP_
);
1073 trace_xfs_buf_trylock_fail(bp
, _RET_IP_
);
1079 * Lock a buffer object.
1081 * If we come across a stale, pinned, locked buffer, we know that we
1082 * are being asked to lock a buffer that has been reallocated. Because
1083 * it is pinned, we know that the log has not been pushed to disk and
1084 * hence it will still be locked. Rather than sleeping until someone
1085 * else pushes the log, push it ourselves before trying to get the lock.
1091 trace_xfs_buf_lock(bp
, _RET_IP_
);
1093 if (atomic_read(&bp
->b_pin_count
) && (bp
->b_flags
& XBF_STALE
))
1094 xfs_log_force(bp
->b_target
->bt_mount
, 0);
1098 trace_xfs_buf_lock_done(bp
, _RET_IP_
);
1105 ASSERT(xfs_buf_islocked(bp
));
1110 trace_xfs_buf_unlock(bp
, _RET_IP_
);
1117 DECLARE_WAITQUEUE (wait
, current
);
1119 if (atomic_read(&bp
->b_pin_count
) == 0)
1122 add_wait_queue(&bp
->b_waiters
, &wait
);
1124 set_current_state(TASK_UNINTERRUPTIBLE
);
1125 if (atomic_read(&bp
->b_pin_count
) == 0)
1129 remove_wait_queue(&bp
->b_waiters
, &wait
);
1130 set_current_state(TASK_RUNNING
);
1134 * Buffer Utility Routines
1141 bool read
= bp
->b_flags
& XBF_READ
;
1143 trace_xfs_buf_iodone(bp
, _RET_IP_
);
1145 bp
->b_flags
&= ~(XBF_READ
| XBF_WRITE
| XBF_READ_AHEAD
);
1148 * Pull in IO completion errors now. We are guaranteed to be running
1149 * single threaded, so we don't need the lock to read b_io_error.
1151 if (!bp
->b_error
&& bp
->b_io_error
)
1152 xfs_buf_ioerror(bp
, bp
->b_io_error
);
1154 /* Only validate buffers that were read without errors */
1155 if (read
&& !bp
->b_error
&& bp
->b_ops
) {
1156 ASSERT(!bp
->b_iodone
);
1157 bp
->b_ops
->verify_read(bp
);
1161 bp
->b_flags
|= XBF_DONE
;
1164 (*(bp
->b_iodone
))(bp
);
1165 else if (bp
->b_flags
& XBF_ASYNC
)
1168 complete(&bp
->b_iowait
);
1173 struct work_struct
*work
)
1175 struct xfs_buf
*bp
=
1176 container_of(work
, xfs_buf_t
, b_ioend_work
);
1182 xfs_buf_ioend_async(
1185 INIT_WORK(&bp
->b_ioend_work
, xfs_buf_ioend_work
);
1186 queue_work(bp
->b_ioend_wq
, &bp
->b_ioend_work
);
1194 ASSERT(error
<= 0 && error
>= -1000);
1195 bp
->b_error
= error
;
1196 trace_xfs_buf_ioerror(bp
, error
, _RET_IP_
);
1200 xfs_buf_ioerror_alert(
1204 xfs_alert(bp
->b_target
->bt_mount
,
1205 "metadata I/O error: block 0x%llx (\"%s\") error %d numblks %d",
1206 (__uint64_t
)XFS_BUF_ADDR(bp
), func
, -bp
->b_error
, bp
->b_length
);
1215 ASSERT(xfs_buf_islocked(bp
));
1217 bp
->b_flags
|= XBF_WRITE
;
1218 bp
->b_flags
&= ~(XBF_ASYNC
| XBF_READ
| _XBF_DELWRI_Q
|
1219 XBF_WRITE_FAIL
| XBF_DONE
);
1221 error
= xfs_buf_submit_wait(bp
);
1223 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1224 SHUTDOWN_META_IO_ERROR
);
1233 struct xfs_buf
*bp
= (struct xfs_buf
*)bio
->bi_private
;
1236 * don't overwrite existing errors - otherwise we can lose errors on
1237 * buffers that require multiple bios to complete.
1240 cmpxchg(&bp
->b_io_error
, 0, bio
->bi_error
);
1242 if (!bp
->b_error
&& xfs_buf_is_vmapped(bp
) && (bp
->b_flags
& XBF_READ
))
1243 invalidate_kernel_vmap_range(bp
->b_addr
, xfs_buf_vmap_len(bp
));
1245 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1246 xfs_buf_ioend_async(bp
);
1251 xfs_buf_ioapply_map(
1260 int total_nr_pages
= bp
->b_page_count
;
1263 sector_t sector
= bp
->b_maps
[map
].bm_bn
;
1267 total_nr_pages
= bp
->b_page_count
;
1269 /* skip the pages in the buffer before the start offset */
1271 offset
= *buf_offset
;
1272 while (offset
>= PAGE_SIZE
) {
1274 offset
-= PAGE_SIZE
;
1278 * Limit the IO size to the length of the current vector, and update the
1279 * remaining IO count for the next time around.
1281 size
= min_t(int, BBTOB(bp
->b_maps
[map
].bm_len
), *count
);
1283 *buf_offset
+= size
;
1286 atomic_inc(&bp
->b_io_remaining
);
1287 nr_pages
= min(total_nr_pages
, BIO_MAX_PAGES
);
1289 bio
= bio_alloc(GFP_NOIO
, nr_pages
);
1290 bio
->bi_bdev
= bp
->b_target
->bt_bdev
;
1291 bio
->bi_iter
.bi_sector
= sector
;
1292 bio
->bi_end_io
= xfs_buf_bio_end_io
;
1293 bio
->bi_private
= bp
;
1294 bio_set_op_attrs(bio
, op
, op_flags
);
1296 for (; size
&& nr_pages
; nr_pages
--, page_index
++) {
1297 int rbytes
, nbytes
= PAGE_SIZE
- offset
;
1302 rbytes
= bio_add_page(bio
, bp
->b_pages
[page_index
], nbytes
,
1304 if (rbytes
< nbytes
)
1308 sector
+= BTOBB(nbytes
);
1313 if (likely(bio
->bi_iter
.bi_size
)) {
1314 if (xfs_buf_is_vmapped(bp
)) {
1315 flush_kernel_vmap_range(bp
->b_addr
,
1316 xfs_buf_vmap_len(bp
));
1323 * This is guaranteed not to be the last io reference count
1324 * because the caller (xfs_buf_submit) holds a count itself.
1326 atomic_dec(&bp
->b_io_remaining
);
1327 xfs_buf_ioerror(bp
, -EIO
);
1337 struct blk_plug plug
;
1345 * Make sure we capture only current IO errors rather than stale errors
1346 * left over from previous use of the buffer (e.g. failed readahead).
1351 * Initialize the I/O completion workqueue if we haven't yet or the
1352 * submitter has not opted to specify a custom one.
1354 if (!bp
->b_ioend_wq
)
1355 bp
->b_ioend_wq
= bp
->b_target
->bt_mount
->m_buf_workqueue
;
1357 if (bp
->b_flags
& XBF_WRITE
) {
1359 if (bp
->b_flags
& XBF_SYNCIO
)
1360 op_flags
= WRITE_SYNC
;
1361 if (bp
->b_flags
& XBF_FUA
)
1362 op_flags
|= REQ_FUA
;
1363 if (bp
->b_flags
& XBF_FLUSH
)
1364 op_flags
|= REQ_PREFLUSH
;
1367 * Run the write verifier callback function if it exists. If
1368 * this function fails it will mark the buffer with an error and
1369 * the IO should not be dispatched.
1372 bp
->b_ops
->verify_write(bp
);
1374 xfs_force_shutdown(bp
->b_target
->bt_mount
,
1375 SHUTDOWN_CORRUPT_INCORE
);
1378 } else if (bp
->b_bn
!= XFS_BUF_DADDR_NULL
) {
1379 struct xfs_mount
*mp
= bp
->b_target
->bt_mount
;
1382 * non-crc filesystems don't attach verifiers during
1383 * log recovery, so don't warn for such filesystems.
1385 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
1387 "%s: no ops on block 0x%llx/0x%x",
1388 __func__
, bp
->b_bn
, bp
->b_length
);
1389 xfs_hex_dump(bp
->b_addr
, 64);
1393 } else if (bp
->b_flags
& XBF_READ_AHEAD
) {
1395 op_flags
= REQ_RAHEAD
;
1400 /* we only use the buffer cache for meta-data */
1401 op_flags
|= REQ_META
;
1404 * Walk all the vectors issuing IO on them. Set up the initial offset
1405 * into the buffer and the desired IO size before we start -
1406 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1409 offset
= bp
->b_offset
;
1410 size
= BBTOB(bp
->b_io_length
);
1411 blk_start_plug(&plug
);
1412 for (i
= 0; i
< bp
->b_map_count
; i
++) {
1413 xfs_buf_ioapply_map(bp
, i
, &offset
, &size
, op
, op_flags
);
1417 break; /* all done */
1419 blk_finish_plug(&plug
);
1423 * Asynchronous IO submission path. This transfers the buffer lock ownership and
1424 * the current reference to the IO. It is not safe to reference the buffer after
1425 * a call to this function unless the caller holds an additional reference
1432 trace_xfs_buf_submit(bp
, _RET_IP_
);
1434 ASSERT(!(bp
->b_flags
& _XBF_DELWRI_Q
));
1435 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1437 /* on shutdown we stale and complete the buffer immediately */
1438 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1439 xfs_buf_ioerror(bp
, -EIO
);
1440 bp
->b_flags
&= ~XBF_DONE
;
1446 if (bp
->b_flags
& XBF_WRITE
)
1447 xfs_buf_wait_unpin(bp
);
1449 /* clear the internal error state to avoid spurious errors */
1453 * The caller's reference is released during I/O completion.
1454 * This occurs some time after the last b_io_remaining reference is
1455 * released, so after we drop our Io reference we have to have some
1456 * other reference to ensure the buffer doesn't go away from underneath
1457 * us. Take a direct reference to ensure we have safe access to the
1458 * buffer until we are finished with it.
1463 * Set the count to 1 initially, this will stop an I/O completion
1464 * callout which happens before we have started all the I/O from calling
1465 * xfs_buf_ioend too early.
1467 atomic_set(&bp
->b_io_remaining
, 1);
1468 xfs_buf_ioacct_inc(bp
);
1469 _xfs_buf_ioapply(bp
);
1472 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1473 * reference we took above. If we drop it to zero, run completion so
1474 * that we don't return to the caller with completion still pending.
1476 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1) {
1480 xfs_buf_ioend_async(bp
);
1484 /* Note: it is not safe to reference bp now we've dropped our ref */
1488 * Synchronous buffer IO submission path, read or write.
1491 xfs_buf_submit_wait(
1496 trace_xfs_buf_submit_wait(bp
, _RET_IP_
);
1498 ASSERT(!(bp
->b_flags
& (_XBF_DELWRI_Q
| XBF_ASYNC
)));
1500 if (XFS_FORCED_SHUTDOWN(bp
->b_target
->bt_mount
)) {
1501 xfs_buf_ioerror(bp
, -EIO
);
1503 bp
->b_flags
&= ~XBF_DONE
;
1507 if (bp
->b_flags
& XBF_WRITE
)
1508 xfs_buf_wait_unpin(bp
);
1510 /* clear the internal error state to avoid spurious errors */
1514 * For synchronous IO, the IO does not inherit the submitters reference
1515 * count, nor the buffer lock. Hence we cannot release the reference we
1516 * are about to take until we've waited for all IO completion to occur,
1517 * including any xfs_buf_ioend_async() work that may be pending.
1522 * Set the count to 1 initially, this will stop an I/O completion
1523 * callout which happens before we have started all the I/O from calling
1524 * xfs_buf_ioend too early.
1526 atomic_set(&bp
->b_io_remaining
, 1);
1527 _xfs_buf_ioapply(bp
);
1530 * make sure we run completion synchronously if it raced with us and is
1533 if (atomic_dec_and_test(&bp
->b_io_remaining
) == 1)
1536 /* wait for completion before gathering the error from the buffer */
1537 trace_xfs_buf_iowait(bp
, _RET_IP_
);
1538 wait_for_completion(&bp
->b_iowait
);
1539 trace_xfs_buf_iowait_done(bp
, _RET_IP_
);
1540 error
= bp
->b_error
;
1543 * all done now, we can release the hold that keeps the buffer
1544 * referenced for the entire IO.
1558 return bp
->b_addr
+ offset
;
1560 offset
+= bp
->b_offset
;
1561 page
= bp
->b_pages
[offset
>> PAGE_SHIFT
];
1562 return page_address(page
) + (offset
& (PAGE_SIZE
-1));
1566 * Move data into or out of a buffer.
1570 xfs_buf_t
*bp
, /* buffer to process */
1571 size_t boff
, /* starting buffer offset */
1572 size_t bsize
, /* length to copy */
1573 void *data
, /* data address */
1574 xfs_buf_rw_t mode
) /* read/write/zero flag */
1578 bend
= boff
+ bsize
;
1579 while (boff
< bend
) {
1581 int page_index
, page_offset
, csize
;
1583 page_index
= (boff
+ bp
->b_offset
) >> PAGE_SHIFT
;
1584 page_offset
= (boff
+ bp
->b_offset
) & ~PAGE_MASK
;
1585 page
= bp
->b_pages
[page_index
];
1586 csize
= min_t(size_t, PAGE_SIZE
- page_offset
,
1587 BBTOB(bp
->b_io_length
) - boff
);
1589 ASSERT((csize
+ page_offset
) <= PAGE_SIZE
);
1593 memset(page_address(page
) + page_offset
, 0, csize
);
1596 memcpy(data
, page_address(page
) + page_offset
, csize
);
1599 memcpy(page_address(page
) + page_offset
, data
, csize
);
1608 * Handling of buffer targets (buftargs).
1612 * Wait for any bufs with callbacks that have been submitted but have not yet
1613 * returned. These buffers will have an elevated hold count, so wait on those
1614 * while freeing all the buffers only held by the LRU.
1616 static enum lru_status
1617 xfs_buftarg_wait_rele(
1618 struct list_head
*item
,
1619 struct list_lru_one
*lru
,
1620 spinlock_t
*lru_lock
,
1624 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1625 struct list_head
*dispose
= arg
;
1627 if (atomic_read(&bp
->b_hold
) > 1) {
1628 /* need to wait, so skip it this pass */
1629 trace_xfs_buf_wait_buftarg(bp
, _RET_IP_
);
1632 if (!spin_trylock(&bp
->b_lock
))
1636 * clear the LRU reference count so the buffer doesn't get
1637 * ignored in xfs_buf_rele().
1639 atomic_set(&bp
->b_lru_ref
, 0);
1640 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1641 list_lru_isolate_move(lru
, item
, dispose
);
1642 spin_unlock(&bp
->b_lock
);
1648 struct xfs_buftarg
*btp
)
1654 * First wait on the buftarg I/O count for all in-flight buffers to be
1655 * released. This is critical as new buffers do not make the LRU until
1656 * they are released.
1658 * Next, flush the buffer workqueue to ensure all completion processing
1659 * has finished. Just waiting on buffer locks is not sufficient for
1660 * async IO as the reference count held over IO is not released until
1661 * after the buffer lock is dropped. Hence we need to ensure here that
1662 * all reference counts have been dropped before we start walking the
1665 while (percpu_counter_sum(&btp
->bt_io_count
))
1667 flush_workqueue(btp
->bt_mount
->m_buf_workqueue
);
1669 /* loop until there is nothing left on the lru list. */
1670 while (list_lru_count(&btp
->bt_lru
)) {
1671 list_lru_walk(&btp
->bt_lru
, xfs_buftarg_wait_rele
,
1672 &dispose
, LONG_MAX
);
1674 while (!list_empty(&dispose
)) {
1676 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1677 list_del_init(&bp
->b_lru
);
1678 if (bp
->b_flags
& XBF_WRITE_FAIL
) {
1679 xfs_alert(btp
->bt_mount
,
1680 "Corruption Alert: Buffer at block 0x%llx had permanent write failures!",
1681 (long long)bp
->b_bn
);
1682 xfs_alert(btp
->bt_mount
,
1683 "Please run xfs_repair to determine the extent of the problem.");
1692 static enum lru_status
1693 xfs_buftarg_isolate(
1694 struct list_head
*item
,
1695 struct list_lru_one
*lru
,
1696 spinlock_t
*lru_lock
,
1699 struct xfs_buf
*bp
= container_of(item
, struct xfs_buf
, b_lru
);
1700 struct list_head
*dispose
= arg
;
1703 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1704 * If we fail to get the lock, just skip it.
1706 if (!spin_trylock(&bp
->b_lock
))
1709 * Decrement the b_lru_ref count unless the value is already
1710 * zero. If the value is already zero, we need to reclaim the
1711 * buffer, otherwise it gets another trip through the LRU.
1713 if (atomic_add_unless(&bp
->b_lru_ref
, -1, 0)) {
1714 spin_unlock(&bp
->b_lock
);
1718 bp
->b_state
|= XFS_BSTATE_DISPOSE
;
1719 list_lru_isolate_move(lru
, item
, dispose
);
1720 spin_unlock(&bp
->b_lock
);
1724 static unsigned long
1725 xfs_buftarg_shrink_scan(
1726 struct shrinker
*shrink
,
1727 struct shrink_control
*sc
)
1729 struct xfs_buftarg
*btp
= container_of(shrink
,
1730 struct xfs_buftarg
, bt_shrinker
);
1732 unsigned long freed
;
1734 freed
= list_lru_shrink_walk(&btp
->bt_lru
, sc
,
1735 xfs_buftarg_isolate
, &dispose
);
1737 while (!list_empty(&dispose
)) {
1739 bp
= list_first_entry(&dispose
, struct xfs_buf
, b_lru
);
1740 list_del_init(&bp
->b_lru
);
1747 static unsigned long
1748 xfs_buftarg_shrink_count(
1749 struct shrinker
*shrink
,
1750 struct shrink_control
*sc
)
1752 struct xfs_buftarg
*btp
= container_of(shrink
,
1753 struct xfs_buftarg
, bt_shrinker
);
1754 return list_lru_shrink_count(&btp
->bt_lru
, sc
);
1759 struct xfs_mount
*mp
,
1760 struct xfs_buftarg
*btp
)
1762 unregister_shrinker(&btp
->bt_shrinker
);
1763 ASSERT(percpu_counter_sum(&btp
->bt_io_count
) == 0);
1764 percpu_counter_destroy(&btp
->bt_io_count
);
1765 list_lru_destroy(&btp
->bt_lru
);
1767 if (mp
->m_flags
& XFS_MOUNT_BARRIER
)
1768 xfs_blkdev_issue_flush(btp
);
1774 xfs_setsize_buftarg(
1776 unsigned int sectorsize
)
1778 /* Set up metadata sector size info */
1779 btp
->bt_meta_sectorsize
= sectorsize
;
1780 btp
->bt_meta_sectormask
= sectorsize
- 1;
1782 if (set_blocksize(btp
->bt_bdev
, sectorsize
)) {
1783 xfs_warn(btp
->bt_mount
,
1784 "Cannot set_blocksize to %u on device %pg",
1785 sectorsize
, btp
->bt_bdev
);
1789 /* Set up device logical sector size mask */
1790 btp
->bt_logical_sectorsize
= bdev_logical_block_size(btp
->bt_bdev
);
1791 btp
->bt_logical_sectormask
= bdev_logical_block_size(btp
->bt_bdev
) - 1;
1797 * When allocating the initial buffer target we have not yet
1798 * read in the superblock, so don't know what sized sectors
1799 * are being used at this early stage. Play safe.
1802 xfs_setsize_buftarg_early(
1804 struct block_device
*bdev
)
1806 return xfs_setsize_buftarg(btp
, bdev_logical_block_size(bdev
));
1811 struct xfs_mount
*mp
,
1812 struct block_device
*bdev
)
1816 btp
= kmem_zalloc(sizeof(*btp
), KM_SLEEP
| KM_NOFS
);
1819 btp
->bt_dev
= bdev
->bd_dev
;
1820 btp
->bt_bdev
= bdev
;
1821 btp
->bt_bdi
= blk_get_backing_dev_info(bdev
);
1823 if (xfs_setsize_buftarg_early(btp
, bdev
))
1826 if (list_lru_init(&btp
->bt_lru
))
1829 if (percpu_counter_init(&btp
->bt_io_count
, 0, GFP_KERNEL
))
1832 btp
->bt_shrinker
.count_objects
= xfs_buftarg_shrink_count
;
1833 btp
->bt_shrinker
.scan_objects
= xfs_buftarg_shrink_scan
;
1834 btp
->bt_shrinker
.seeks
= DEFAULT_SEEKS
;
1835 btp
->bt_shrinker
.flags
= SHRINKER_NUMA_AWARE
;
1836 if (register_shrinker(&btp
->bt_shrinker
))
1841 percpu_counter_destroy(&btp
->bt_io_count
);
1843 list_lru_destroy(&btp
->bt_lru
);
1850 * Cancel a delayed write list.
1852 * Remove each buffer from the list, clear the delwri queue flag and drop the
1853 * associated buffer reference.
1856 xfs_buf_delwri_cancel(
1857 struct list_head
*list
)
1861 while (!list_empty(list
)) {
1862 bp
= list_first_entry(list
, struct xfs_buf
, b_list
);
1865 bp
->b_flags
&= ~_XBF_DELWRI_Q
;
1866 list_del_init(&bp
->b_list
);
1872 * Add a buffer to the delayed write list.
1874 * This queues a buffer for writeout if it hasn't already been. Note that
1875 * neither this routine nor the buffer list submission functions perform
1876 * any internal synchronization. It is expected that the lists are thread-local
1879 * Returns true if we queued up the buffer, or false if it already had
1880 * been on the buffer list.
1883 xfs_buf_delwri_queue(
1885 struct list_head
*list
)
1887 ASSERT(xfs_buf_islocked(bp
));
1888 ASSERT(!(bp
->b_flags
& XBF_READ
));
1891 * If the buffer is already marked delwri it already is queued up
1892 * by someone else for imediate writeout. Just ignore it in that
1895 if (bp
->b_flags
& _XBF_DELWRI_Q
) {
1896 trace_xfs_buf_delwri_queued(bp
, _RET_IP_
);
1900 trace_xfs_buf_delwri_queue(bp
, _RET_IP_
);
1903 * If a buffer gets written out synchronously or marked stale while it
1904 * is on a delwri list we lazily remove it. To do this, the other party
1905 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1906 * It remains referenced and on the list. In a rare corner case it
1907 * might get readded to a delwri list after the synchronous writeout, in
1908 * which case we need just need to re-add the flag here.
1910 bp
->b_flags
|= _XBF_DELWRI_Q
;
1911 if (list_empty(&bp
->b_list
)) {
1912 atomic_inc(&bp
->b_hold
);
1913 list_add_tail(&bp
->b_list
, list
);
1920 * Compare function is more complex than it needs to be because
1921 * the return value is only 32 bits and we are doing comparisons
1927 struct list_head
*a
,
1928 struct list_head
*b
)
1930 struct xfs_buf
*ap
= container_of(a
, struct xfs_buf
, b_list
);
1931 struct xfs_buf
*bp
= container_of(b
, struct xfs_buf
, b_list
);
1934 diff
= ap
->b_maps
[0].bm_bn
- bp
->b_maps
[0].bm_bn
;
1943 * submit buffers for write.
1945 * When we have a large buffer list, we do not want to hold all the buffers
1946 * locked while we block on the request queue waiting for IO dispatch. To avoid
1947 * this problem, we lock and submit buffers in groups of 50, thereby minimising
1948 * the lock hold times for lists which may contain thousands of objects.
1950 * To do this, we sort the buffer list before we walk the list to lock and
1951 * submit buffers, and we plug and unplug around each group of buffers we
1955 xfs_buf_delwri_submit_buffers(
1956 struct list_head
*buffer_list
,
1957 struct list_head
*wait_list
)
1959 struct xfs_buf
*bp
, *n
;
1960 LIST_HEAD (submit_list
);
1962 struct blk_plug plug
;
1964 list_sort(NULL
, buffer_list
, xfs_buf_cmp
);
1966 blk_start_plug(&plug
);
1967 list_for_each_entry_safe(bp
, n
, buffer_list
, b_list
) {
1969 if (xfs_buf_ispinned(bp
)) {
1973 if (!xfs_buf_trylock(bp
))
1980 * Someone else might have written the buffer synchronously or
1981 * marked it stale in the meantime. In that case only the
1982 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1983 * reference and remove it from the list here.
1985 if (!(bp
->b_flags
& _XBF_DELWRI_Q
)) {
1986 list_del_init(&bp
->b_list
);
1991 trace_xfs_buf_delwri_split(bp
, _RET_IP_
);
1994 * We do all IO submission async. This means if we need
1995 * to wait for IO completion we need to take an extra
1996 * reference so the buffer is still valid on the other
1997 * side. We need to move the buffer onto the io_list
1998 * at this point so the caller can still access it.
2000 bp
->b_flags
&= ~(_XBF_DELWRI_Q
| XBF_WRITE_FAIL
);
2001 bp
->b_flags
|= XBF_WRITE
| XBF_ASYNC
;
2004 list_move_tail(&bp
->b_list
, wait_list
);
2006 list_del_init(&bp
->b_list
);
2010 blk_finish_plug(&plug
);
2016 * Write out a buffer list asynchronously.
2018 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2019 * out and not wait for I/O completion on any of the buffers. This interface
2020 * is only safely useable for callers that can track I/O completion by higher
2021 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2025 xfs_buf_delwri_submit_nowait(
2026 struct list_head
*buffer_list
)
2028 return xfs_buf_delwri_submit_buffers(buffer_list
, NULL
);
2032 * Write out a buffer list synchronously.
2034 * This will take the @buffer_list, write all buffers out and wait for I/O
2035 * completion on all of the buffers. @buffer_list is consumed by the function,
2036 * so callers must have some other way of tracking buffers if they require such
2040 xfs_buf_delwri_submit(
2041 struct list_head
*buffer_list
)
2043 LIST_HEAD (wait_list
);
2044 int error
= 0, error2
;
2047 xfs_buf_delwri_submit_buffers(buffer_list
, &wait_list
);
2049 /* Wait for IO to complete. */
2050 while (!list_empty(&wait_list
)) {
2051 bp
= list_first_entry(&wait_list
, struct xfs_buf
, b_list
);
2053 list_del_init(&bp
->b_list
);
2055 /* locking the buffer will wait for async IO completion. */
2057 error2
= bp
->b_error
;
2067 * Push a single buffer on a delwri queue.
2069 * The purpose of this function is to submit a single buffer of a delwri queue
2070 * and return with the buffer still on the original queue. The waiting delwri
2071 * buffer submission infrastructure guarantees transfer of the delwri queue
2072 * buffer reference to a temporary wait list. We reuse this infrastructure to
2073 * transfer the buffer back to the original queue.
2075 * Note the buffer transitions from the queued state, to the submitted and wait
2076 * listed state and back to the queued state during this call. The buffer
2077 * locking and queue management logic between _delwri_pushbuf() and
2078 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2082 xfs_buf_delwri_pushbuf(
2084 struct list_head
*buffer_list
)
2086 LIST_HEAD (submit_list
);
2089 ASSERT(bp
->b_flags
& _XBF_DELWRI_Q
);
2091 trace_xfs_buf_delwri_pushbuf(bp
, _RET_IP_
);
2094 * Isolate the buffer to a new local list so we can submit it for I/O
2095 * independently from the rest of the original list.
2098 list_move(&bp
->b_list
, &submit_list
);
2102 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2103 * the buffer on the wait list with an associated reference. Rather than
2104 * bounce the buffer from a local wait list back to the original list
2105 * after I/O completion, reuse the original list as the wait list.
2107 xfs_buf_delwri_submit_buffers(&submit_list
, buffer_list
);
2110 * The buffer is now under I/O and wait listed as during typical delwri
2111 * submission. Lock the buffer to wait for I/O completion. Rather than
2112 * remove the buffer from the wait list and release the reference, we
2113 * want to return with the buffer queued to the original list. The
2114 * buffer already sits on the original list with a wait list reference,
2115 * however. If we let the queue inherit that wait list reference, all we
2116 * need to do is reset the DELWRI_Q flag.
2119 error
= bp
->b_error
;
2120 bp
->b_flags
|= _XBF_DELWRI_Q
;
2129 xfs_buf_zone
= kmem_zone_init_flags(sizeof(xfs_buf_t
), "xfs_buf",
2130 KM_ZONE_HWALIGN
, NULL
);
2141 xfs_buf_terminate(void)
2143 kmem_zone_destroy(xfs_buf_zone
);