2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
38 kmem_zone_t
*xfs_log_ticket_zone
;
40 /* Local miscellaneous function prototypes */
44 struct xlog_ticket
*ticket
,
45 struct xlog_in_core
**iclog
,
46 xfs_lsn_t
*commitlsnp
);
51 struct xfs_buftarg
*log_target
,
52 xfs_daddr_t blk_offset
,
61 struct xlog_in_core
*iclog
);
66 /* local state machine functions */
67 STATIC
void xlog_state_done_syncing(xlog_in_core_t
*iclog
, int);
69 xlog_state_do_callback(
72 struct xlog_in_core
*iclog
);
74 xlog_state_get_iclog_space(
77 struct xlog_in_core
**iclog
,
78 struct xlog_ticket
*ticket
,
82 xlog_state_release_iclog(
84 struct xlog_in_core
*iclog
);
86 xlog_state_switch_iclogs(
88 struct xlog_in_core
*iclog
,
93 struct xlog_in_core
*iclog
);
100 xlog_regrant_reserve_log_space(
102 struct xlog_ticket
*ticket
);
104 xlog_ungrant_log_space(
106 struct xlog_ticket
*ticket
);
110 xlog_verify_dest_ptr(
114 xlog_verify_grant_tail(
119 struct xlog_in_core
*iclog
,
123 xlog_verify_tail_lsn(
125 struct xlog_in_core
*iclog
,
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
139 xlog_grant_sub_space(
144 int64_t head_val
= atomic64_read(head
);
150 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
154 space
+= log
->l_logsize
;
159 new = xlog_assign_grant_head_val(cycle
, space
);
160 head_val
= atomic64_cmpxchg(head
, old
, new);
161 } while (head_val
!= old
);
165 xlog_grant_add_space(
170 int64_t head_val
= atomic64_read(head
);
177 xlog_crack_grant_head_val(head_val
, &cycle
, &space
);
179 tmp
= log
->l_logsize
- space
;
188 new = xlog_assign_grant_head_val(cycle
, space
);
189 head_val
= atomic64_cmpxchg(head
, old
, new);
190 } while (head_val
!= old
);
194 xlog_grant_head_init(
195 struct xlog_grant_head
*head
)
197 xlog_assign_grant_head(&head
->grant
, 1, 0);
198 INIT_LIST_HEAD(&head
->waiters
);
199 spin_lock_init(&head
->lock
);
203 xlog_grant_head_wake_all(
204 struct xlog_grant_head
*head
)
206 struct xlog_ticket
*tic
;
208 spin_lock(&head
->lock
);
209 list_for_each_entry(tic
, &head
->waiters
, t_queue
)
210 wake_up_process(tic
->t_task
);
211 spin_unlock(&head
->lock
);
215 xlog_ticket_reservation(
217 struct xlog_grant_head
*head
,
218 struct xlog_ticket
*tic
)
220 if (head
== &log
->l_write_head
) {
221 ASSERT(tic
->t_flags
& XLOG_TIC_PERM_RESERV
);
222 return tic
->t_unit_res
;
224 if (tic
->t_flags
& XLOG_TIC_PERM_RESERV
)
225 return tic
->t_unit_res
* tic
->t_cnt
;
227 return tic
->t_unit_res
;
232 xlog_grant_head_wake(
234 struct xlog_grant_head
*head
,
237 struct xlog_ticket
*tic
;
240 list_for_each_entry(tic
, &head
->waiters
, t_queue
) {
241 need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
242 if (*free_bytes
< need_bytes
)
245 *free_bytes
-= need_bytes
;
246 trace_xfs_log_grant_wake_up(log
, tic
);
247 wake_up_process(tic
->t_task
);
254 xlog_grant_head_wait(
256 struct xlog_grant_head
*head
,
257 struct xlog_ticket
*tic
,
258 int need_bytes
) __releases(&head
->lock
)
259 __acquires(&head
->lock
)
261 list_add_tail(&tic
->t_queue
, &head
->waiters
);
264 if (XLOG_FORCED_SHUTDOWN(log
))
266 xlog_grant_push_ail(log
, need_bytes
);
268 __set_current_state(TASK_UNINTERRUPTIBLE
);
269 spin_unlock(&head
->lock
);
271 XFS_STATS_INC(log
->l_mp
, xs_sleep_logspace
);
273 trace_xfs_log_grant_sleep(log
, tic
);
275 trace_xfs_log_grant_wake(log
, tic
);
277 spin_lock(&head
->lock
);
278 if (XLOG_FORCED_SHUTDOWN(log
))
280 } while (xlog_space_left(log
, &head
->grant
) < need_bytes
);
282 list_del_init(&tic
->t_queue
);
285 list_del_init(&tic
->t_queue
);
290 * Atomically get the log space required for a log ticket.
292 * Once a ticket gets put onto head->waiters, it will only return after the
293 * needed reservation is satisfied.
295 * This function is structured so that it has a lock free fast path. This is
296 * necessary because every new transaction reservation will come through this
297 * path. Hence any lock will be globally hot if we take it unconditionally on
300 * As tickets are only ever moved on and off head->waiters under head->lock, we
301 * only need to take that lock if we are going to add the ticket to the queue
302 * and sleep. We can avoid taking the lock if the ticket was never added to
303 * head->waiters because the t_queue list head will be empty and we hold the
304 * only reference to it so it can safely be checked unlocked.
307 xlog_grant_head_check(
309 struct xlog_grant_head
*head
,
310 struct xlog_ticket
*tic
,
316 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
319 * If there are other waiters on the queue then give them a chance at
320 * logspace before us. Wake up the first waiters, if we do not wake
321 * up all the waiters then go to sleep waiting for more free space,
322 * otherwise try to get some space for this transaction.
324 *need_bytes
= xlog_ticket_reservation(log
, head
, tic
);
325 free_bytes
= xlog_space_left(log
, &head
->grant
);
326 if (!list_empty_careful(&head
->waiters
)) {
327 spin_lock(&head
->lock
);
328 if (!xlog_grant_head_wake(log
, head
, &free_bytes
) ||
329 free_bytes
< *need_bytes
) {
330 error
= xlog_grant_head_wait(log
, head
, tic
,
333 spin_unlock(&head
->lock
);
334 } else if (free_bytes
< *need_bytes
) {
335 spin_lock(&head
->lock
);
336 error
= xlog_grant_head_wait(log
, head
, tic
, *need_bytes
);
337 spin_unlock(&head
->lock
);
344 xlog_tic_reset_res(xlog_ticket_t
*tic
)
347 tic
->t_res_arr_sum
= 0;
348 tic
->t_res_num_ophdrs
= 0;
352 xlog_tic_add_region(xlog_ticket_t
*tic
, uint len
, uint type
)
354 if (tic
->t_res_num
== XLOG_TIC_LEN_MAX
) {
355 /* add to overflow and start again */
356 tic
->t_res_o_flow
+= tic
->t_res_arr_sum
;
358 tic
->t_res_arr_sum
= 0;
361 tic
->t_res_arr
[tic
->t_res_num
].r_len
= len
;
362 tic
->t_res_arr
[tic
->t_res_num
].r_type
= type
;
363 tic
->t_res_arr_sum
+= len
;
368 * Replenish the byte reservation required by moving the grant write head.
372 struct xfs_mount
*mp
,
373 struct xlog_ticket
*tic
)
375 struct xlog
*log
= mp
->m_log
;
379 if (XLOG_FORCED_SHUTDOWN(log
))
382 XFS_STATS_INC(mp
, xs_try_logspace
);
385 * This is a new transaction on the ticket, so we need to change the
386 * transaction ID so that the next transaction has a different TID in
387 * the log. Just add one to the existing tid so that we can see chains
388 * of rolling transactions in the log easily.
392 xlog_grant_push_ail(log
, tic
->t_unit_res
);
394 tic
->t_curr_res
= tic
->t_unit_res
;
395 xlog_tic_reset_res(tic
);
400 trace_xfs_log_regrant(log
, tic
);
402 error
= xlog_grant_head_check(log
, &log
->l_write_head
, tic
,
407 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
408 trace_xfs_log_regrant_exit(log
, tic
);
409 xlog_verify_grant_tail(log
);
414 * If we are failing, make sure the ticket doesn't have any current
415 * reservations. We don't want to add this back when the ticket/
416 * transaction gets cancelled.
419 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
424 * Reserve log space and return a ticket corresponding the reservation.
426 * Each reservation is going to reserve extra space for a log record header.
427 * When writes happen to the on-disk log, we don't subtract the length of the
428 * log record header from any reservation. By wasting space in each
429 * reservation, we prevent over allocation problems.
433 struct xfs_mount
*mp
,
436 struct xlog_ticket
**ticp
,
440 struct xlog
*log
= mp
->m_log
;
441 struct xlog_ticket
*tic
;
445 ASSERT(client
== XFS_TRANSACTION
|| client
== XFS_LOG
);
447 if (XLOG_FORCED_SHUTDOWN(log
))
450 XFS_STATS_INC(mp
, xs_try_logspace
);
452 ASSERT(*ticp
== NULL
);
453 tic
= xlog_ticket_alloc(log
, unit_bytes
, cnt
, client
, permanent
,
454 KM_SLEEP
| KM_MAYFAIL
);
460 xlog_grant_push_ail(log
, tic
->t_cnt
? tic
->t_unit_res
* tic
->t_cnt
463 trace_xfs_log_reserve(log
, tic
);
465 error
= xlog_grant_head_check(log
, &log
->l_reserve_head
, tic
,
470 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, need_bytes
);
471 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, need_bytes
);
472 trace_xfs_log_reserve_exit(log
, tic
);
473 xlog_verify_grant_tail(log
);
478 * If we are failing, make sure the ticket doesn't have any current
479 * reservations. We don't want to add this back when the ticket/
480 * transaction gets cancelled.
483 tic
->t_cnt
= 0; /* ungrant will give back unit_res * t_cnt. */
491 * 1. currblock field gets updated at startup and after in-core logs
492 * marked as with WANT_SYNC.
496 * This routine is called when a user of a log manager ticket is done with
497 * the reservation. If the ticket was ever used, then a commit record for
498 * the associated transaction is written out as a log operation header with
499 * no data. The flag XLOG_TIC_INITED is set when the first write occurs with
500 * a given ticket. If the ticket was one with a permanent reservation, then
501 * a few operations are done differently. Permanent reservation tickets by
502 * default don't release the reservation. They just commit the current
503 * transaction with the belief that the reservation is still needed. A flag
504 * must be passed in before permanent reservations are actually released.
505 * When these type of tickets are not released, they need to be set into
506 * the inited state again. By doing this, a start record will be written
507 * out when the next write occurs.
511 struct xfs_mount
*mp
,
512 struct xlog_ticket
*ticket
,
513 struct xlog_in_core
**iclog
,
516 struct xlog
*log
= mp
->m_log
;
519 if (XLOG_FORCED_SHUTDOWN(log
) ||
521 * If nothing was ever written, don't write out commit record.
522 * If we get an error, just continue and give back the log ticket.
524 (((ticket
->t_flags
& XLOG_TIC_INITED
) == 0) &&
525 (xlog_commit_record(log
, ticket
, iclog
, &lsn
)))) {
526 lsn
= (xfs_lsn_t
) -1;
532 trace_xfs_log_done_nonperm(log
, ticket
);
535 * Release ticket if not permanent reservation or a specific
536 * request has been made to release a permanent reservation.
538 xlog_ungrant_log_space(log
, ticket
);
540 trace_xfs_log_done_perm(log
, ticket
);
542 xlog_regrant_reserve_log_space(log
, ticket
);
543 /* If this ticket was a permanent reservation and we aren't
544 * trying to release it, reset the inited flags; so next time
545 * we write, a start record will be written out.
547 ticket
->t_flags
|= XLOG_TIC_INITED
;
550 xfs_log_ticket_put(ticket
);
555 * Attaches a new iclog I/O completion callback routine during
556 * transaction commit. If the log is in error state, a non-zero
557 * return code is handed back and the caller is responsible for
558 * executing the callback at an appropriate time.
562 struct xfs_mount
*mp
,
563 struct xlog_in_core
*iclog
,
564 xfs_log_callback_t
*cb
)
568 spin_lock(&iclog
->ic_callback_lock
);
569 abortflg
= (iclog
->ic_state
& XLOG_STATE_IOERROR
);
571 ASSERT_ALWAYS((iclog
->ic_state
== XLOG_STATE_ACTIVE
) ||
572 (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
));
574 *(iclog
->ic_callback_tail
) = cb
;
575 iclog
->ic_callback_tail
= &(cb
->cb_next
);
577 spin_unlock(&iclog
->ic_callback_lock
);
582 xfs_log_release_iclog(
583 struct xfs_mount
*mp
,
584 struct xlog_in_core
*iclog
)
586 if (xlog_state_release_iclog(mp
->m_log
, iclog
)) {
587 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
595 * Mount a log filesystem
597 * mp - ubiquitous xfs mount point structure
598 * log_target - buftarg of on-disk log device
599 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
600 * num_bblocks - Number of BBSIZE blocks in on-disk log
602 * Return error or zero.
607 xfs_buftarg_t
*log_target
,
608 xfs_daddr_t blk_offset
,
614 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
615 xfs_notice(mp
, "Mounting V%d Filesystem",
616 XFS_SB_VERSION_NUM(&mp
->m_sb
));
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620 XFS_SB_VERSION_NUM(&mp
->m_sb
));
621 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
624 mp
->m_log
= xlog_alloc_log(mp
, log_target
, blk_offset
, num_bblks
);
625 if (IS_ERR(mp
->m_log
)) {
626 error
= PTR_ERR(mp
->m_log
);
631 * Validate the given log space and drop a critical message via syslog
632 * if the log size is too small that would lead to some unexpected
633 * situations in transaction log space reservation stage.
635 * Note: we can't just reject the mount if the validation fails. This
636 * would mean that people would have to downgrade their kernel just to
637 * remedy the situation as there is no way to grow the log (short of
638 * black magic surgery with xfs_db).
640 * We can, however, reject mounts for CRC format filesystems, as the
641 * mkfs binary being used to make the filesystem should never create a
642 * filesystem with a log that is too small.
644 min_logfsbs
= xfs_log_calc_minimum_size(mp
);
646 if (mp
->m_sb
.sb_logblocks
< min_logfsbs
) {
648 "Log size %d blocks too small, minimum size is %d blocks",
649 mp
->m_sb
.sb_logblocks
, min_logfsbs
);
651 } else if (mp
->m_sb
.sb_logblocks
> XFS_MAX_LOG_BLOCKS
) {
653 "Log size %d blocks too large, maximum size is %lld blocks",
654 mp
->m_sb
.sb_logblocks
, XFS_MAX_LOG_BLOCKS
);
656 } else if (XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
) > XFS_MAX_LOG_BYTES
) {
658 "log size %lld bytes too large, maximum size is %lld bytes",
659 XFS_FSB_TO_B(mp
, mp
->m_sb
.sb_logblocks
),
664 if (xfs_sb_version_hascrc(&mp
->m_sb
)) {
665 xfs_crit(mp
, "AAIEEE! Log failed size checks. Abort!");
669 xfs_crit(mp
, "Log size out of supported range.");
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
675 * Initialize the AIL now we have a log.
677 error
= xfs_trans_ail_init(mp
);
679 xfs_warn(mp
, "AIL initialisation failed: error %d", error
);
682 mp
->m_log
->l_ailp
= mp
->m_ail
;
685 * skip log recovery on a norecovery mount. pretend it all
688 if (!(mp
->m_flags
& XFS_MOUNT_NORECOVERY
)) {
689 int readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
692 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
694 error
= xlog_recover(mp
->m_log
);
697 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
699 xfs_warn(mp
, "log mount/recovery failed: error %d",
701 xlog_recover_cancel(mp
->m_log
);
702 goto out_destroy_ail
;
706 error
= xfs_sysfs_init(&mp
->m_log
->l_kobj
, &xfs_log_ktype
, &mp
->m_kobj
,
709 goto out_destroy_ail
;
711 /* Normal transactions can now occur */
712 mp
->m_log
->l_flags
&= ~XLOG_ACTIVE_RECOVERY
;
715 * Now the log has been fully initialised and we know were our
716 * space grant counters are, we can initialise the permanent ticket
717 * needed for delayed logging to work.
719 xlog_cil_init_post_recovery(mp
->m_log
);
724 xfs_trans_ail_destroy(mp
);
726 xlog_dealloc_log(mp
->m_log
);
732 * Finish the recovery of the file system. This is separate from the
733 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
737 * If we finish recovery successfully, start the background log work. If we are
738 * not doing recovery, then we have a RO filesystem and we don't need to start
742 xfs_log_mount_finish(
743 struct xfs_mount
*mp
)
746 bool readonly
= (mp
->m_flags
& XFS_MOUNT_RDONLY
);
748 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
) {
749 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
751 } else if (readonly
) {
752 /* Allow unlinked processing to proceed */
753 mp
->m_flags
&= ~XFS_MOUNT_RDONLY
;
757 * During the second phase of log recovery, we need iget and
758 * iput to behave like they do for an active filesystem.
759 * xfs_fs_drop_inode needs to be able to prevent the deletion
760 * of inodes before we're done replaying log items on those
761 * inodes. Turn it off immediately after recovery finishes
762 * so that we don't leak the quota inodes if subsequent mount
765 * We let all inodes involved in redo item processing end up on
766 * the LRU instead of being evicted immediately so that if we do
767 * something to an unlinked inode, the irele won't cause
768 * premature truncation and freeing of the inode, which results
769 * in log recovery failure. We have to evict the unreferenced
770 * lru inodes after clearing MS_ACTIVE because we don't
771 * otherwise clean up the lru if there's a subsequent failure in
772 * xfs_mountfs, which leads to us leaking the inodes if nothing
773 * else (e.g. quotacheck) references the inodes before the
774 * mount failure occurs.
776 mp
->m_super
->s_flags
|= MS_ACTIVE
;
777 error
= xlog_recover_finish(mp
->m_log
);
779 xfs_log_work_queue(mp
);
780 mp
->m_super
->s_flags
&= ~MS_ACTIVE
;
781 evict_inodes(mp
->m_super
);
784 mp
->m_flags
|= XFS_MOUNT_RDONLY
;
790 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
794 xfs_log_mount_cancel(
795 struct xfs_mount
*mp
)
799 error
= xlog_recover_cancel(mp
->m_log
);
806 * Final log writes as part of unmount.
808 * Mark the filesystem clean as unmount happens. Note that during relocation
809 * this routine needs to be executed as part of source-bag while the
810 * deallocation must not be done until source-end.
814 * Unmount record used to have a string "Unmount filesystem--" in the
815 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
816 * We just write the magic number now since that particular field isn't
817 * currently architecture converted and "Unmount" is a bit foo.
818 * As far as I know, there weren't any dependencies on the old behaviour.
822 xfs_log_unmount_write(xfs_mount_t
*mp
)
824 struct xlog
*log
= mp
->m_log
;
825 xlog_in_core_t
*iclog
;
827 xlog_in_core_t
*first_iclog
;
829 xlog_ticket_t
*tic
= NULL
;
834 * Don't write out unmount record on norecovery mounts or ro devices.
835 * Or, if we are doing a forced umount (typically because of IO errors).
837 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
||
838 xfs_readonly_buftarg(log
->l_mp
->m_logdev_targp
)) {
839 ASSERT(mp
->m_flags
& XFS_MOUNT_RDONLY
);
843 error
= _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
844 ASSERT(error
|| !(XLOG_FORCED_SHUTDOWN(log
)));
847 first_iclog
= iclog
= log
->l_iclog
;
849 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
850 ASSERT(iclog
->ic_state
& XLOG_STATE_ACTIVE
);
851 ASSERT(iclog
->ic_offset
== 0);
853 iclog
= iclog
->ic_next
;
854 } while (iclog
!= first_iclog
);
856 if (! (XLOG_FORCED_SHUTDOWN(log
))) {
857 error
= xfs_log_reserve(mp
, 600, 1, &tic
, XFS_LOG
, 0);
859 /* the data section must be 32 bit size aligned */
863 __uint32_t pad2
; /* may as well make it 64 bits */
865 .magic
= XLOG_UNMOUNT_TYPE
,
867 struct xfs_log_iovec reg
= {
869 .i_len
= sizeof(magic
),
870 .i_type
= XLOG_REG_TYPE_UNMOUNT
,
872 struct xfs_log_vec vec
= {
877 /* remove inited flag, and account for space used */
879 tic
->t_curr_res
-= sizeof(magic
);
880 error
= xlog_write(log
, &vec
, tic
, &lsn
,
881 NULL
, XLOG_UNMOUNT_TRANS
);
883 * At this point, we're umounting anyway,
884 * so there's no point in transitioning log state
885 * to IOERROR. Just continue...
890 xfs_alert(mp
, "%s: unmount record failed", __func__
);
893 spin_lock(&log
->l_icloglock
);
894 iclog
= log
->l_iclog
;
895 atomic_inc(&iclog
->ic_refcnt
);
896 xlog_state_want_sync(log
, iclog
);
897 spin_unlock(&log
->l_icloglock
);
898 error
= xlog_state_release_iclog(log
, iclog
);
900 spin_lock(&log
->l_icloglock
);
901 if (!(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
902 iclog
->ic_state
== XLOG_STATE_DIRTY
)) {
903 if (!XLOG_FORCED_SHUTDOWN(log
)) {
904 xlog_wait(&iclog
->ic_force_wait
,
907 spin_unlock(&log
->l_icloglock
);
910 spin_unlock(&log
->l_icloglock
);
913 trace_xfs_log_umount_write(log
, tic
);
914 xlog_ungrant_log_space(log
, tic
);
915 xfs_log_ticket_put(tic
);
919 * We're already in forced_shutdown mode, couldn't
920 * even attempt to write out the unmount transaction.
922 * Go through the motions of sync'ing and releasing
923 * the iclog, even though no I/O will actually happen,
924 * we need to wait for other log I/Os that may already
925 * be in progress. Do this as a separate section of
926 * code so we'll know if we ever get stuck here that
927 * we're in this odd situation of trying to unmount
928 * a file system that went into forced_shutdown as
929 * the result of an unmount..
931 spin_lock(&log
->l_icloglock
);
932 iclog
= log
->l_iclog
;
933 atomic_inc(&iclog
->ic_refcnt
);
935 xlog_state_want_sync(log
, iclog
);
936 spin_unlock(&log
->l_icloglock
);
937 error
= xlog_state_release_iclog(log
, iclog
);
939 spin_lock(&log
->l_icloglock
);
941 if ( ! ( iclog
->ic_state
== XLOG_STATE_ACTIVE
942 || iclog
->ic_state
== XLOG_STATE_DIRTY
943 || iclog
->ic_state
== XLOG_STATE_IOERROR
) ) {
945 xlog_wait(&iclog
->ic_force_wait
,
948 spin_unlock(&log
->l_icloglock
);
953 } /* xfs_log_unmount_write */
956 * Empty the log for unmount/freeze.
958 * To do this, we first need to shut down the background log work so it is not
959 * trying to cover the log as we clean up. We then need to unpin all objects in
960 * the log so we can then flush them out. Once they have completed their IO and
961 * run the callbacks removing themselves from the AIL, we can write the unmount
966 struct xfs_mount
*mp
)
968 cancel_delayed_work_sync(&mp
->m_log
->l_work
);
969 xfs_log_force(mp
, XFS_LOG_SYNC
);
972 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
973 * will push it, xfs_wait_buftarg() will not wait for it. Further,
974 * xfs_buf_iowait() cannot be used because it was pushed with the
975 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
976 * the IO to complete.
978 xfs_ail_push_all_sync(mp
->m_ail
);
979 xfs_wait_buftarg(mp
->m_ddev_targp
);
980 xfs_buf_lock(mp
->m_sb_bp
);
981 xfs_buf_unlock(mp
->m_sb_bp
);
983 xfs_log_unmount_write(mp
);
987 * Shut down and release the AIL and Log.
989 * During unmount, we need to ensure we flush all the dirty metadata objects
990 * from the AIL so that the log is empty before we write the unmount record to
991 * the log. Once this is done, we can tear down the AIL and the log.
995 struct xfs_mount
*mp
)
999 xfs_trans_ail_destroy(mp
);
1001 xfs_sysfs_del(&mp
->m_log
->l_kobj
);
1003 xlog_dealloc_log(mp
->m_log
);
1008 struct xfs_mount
*mp
,
1009 struct xfs_log_item
*item
,
1011 const struct xfs_item_ops
*ops
)
1013 item
->li_mountp
= mp
;
1014 item
->li_ailp
= mp
->m_ail
;
1015 item
->li_type
= type
;
1019 INIT_LIST_HEAD(&item
->li_ail
);
1020 INIT_LIST_HEAD(&item
->li_cil
);
1024 * Wake up processes waiting for log space after we have moved the log tail.
1028 struct xfs_mount
*mp
)
1030 struct xlog
*log
= mp
->m_log
;
1033 if (XLOG_FORCED_SHUTDOWN(log
))
1036 if (!list_empty_careful(&log
->l_write_head
.waiters
)) {
1037 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1039 spin_lock(&log
->l_write_head
.lock
);
1040 free_bytes
= xlog_space_left(log
, &log
->l_write_head
.grant
);
1041 xlog_grant_head_wake(log
, &log
->l_write_head
, &free_bytes
);
1042 spin_unlock(&log
->l_write_head
.lock
);
1045 if (!list_empty_careful(&log
->l_reserve_head
.waiters
)) {
1046 ASSERT(!(log
->l_flags
& XLOG_ACTIVE_RECOVERY
));
1048 spin_lock(&log
->l_reserve_head
.lock
);
1049 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1050 xlog_grant_head_wake(log
, &log
->l_reserve_head
, &free_bytes
);
1051 spin_unlock(&log
->l_reserve_head
.lock
);
1056 * Determine if we have a transaction that has gone to disk that needs to be
1057 * covered. To begin the transition to the idle state firstly the log needs to
1058 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1059 * we start attempting to cover the log.
1061 * Only if we are then in a state where covering is needed, the caller is
1062 * informed that dummy transactions are required to move the log into the idle
1065 * If there are any items in the AIl or CIL, then we do not want to attempt to
1066 * cover the log as we may be in a situation where there isn't log space
1067 * available to run a dummy transaction and this can lead to deadlocks when the
1068 * tail of the log is pinned by an item that is modified in the CIL. Hence
1069 * there's no point in running a dummy transaction at this point because we
1070 * can't start trying to idle the log until both the CIL and AIL are empty.
1073 xfs_log_need_covered(xfs_mount_t
*mp
)
1075 struct xlog
*log
= mp
->m_log
;
1078 if (!xfs_fs_writable(mp
, SB_FREEZE_WRITE
))
1081 if (!xlog_cil_empty(log
))
1084 spin_lock(&log
->l_icloglock
);
1085 switch (log
->l_covered_state
) {
1086 case XLOG_STATE_COVER_DONE
:
1087 case XLOG_STATE_COVER_DONE2
:
1088 case XLOG_STATE_COVER_IDLE
:
1090 case XLOG_STATE_COVER_NEED
:
1091 case XLOG_STATE_COVER_NEED2
:
1092 if (xfs_ail_min_lsn(log
->l_ailp
))
1094 if (!xlog_iclogs_empty(log
))
1098 if (log
->l_covered_state
== XLOG_STATE_COVER_NEED
)
1099 log
->l_covered_state
= XLOG_STATE_COVER_DONE
;
1101 log
->l_covered_state
= XLOG_STATE_COVER_DONE2
;
1107 spin_unlock(&log
->l_icloglock
);
1112 * We may be holding the log iclog lock upon entering this routine.
1115 xlog_assign_tail_lsn_locked(
1116 struct xfs_mount
*mp
)
1118 struct xlog
*log
= mp
->m_log
;
1119 struct xfs_log_item
*lip
;
1122 assert_spin_locked(&mp
->m_ail
->xa_lock
);
1125 * To make sure we always have a valid LSN for the log tail we keep
1126 * track of the last LSN which was committed in log->l_last_sync_lsn,
1127 * and use that when the AIL was empty.
1129 lip
= xfs_ail_min(mp
->m_ail
);
1131 tail_lsn
= lip
->li_lsn
;
1133 tail_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1134 trace_xfs_log_assign_tail_lsn(log
, tail_lsn
);
1135 atomic64_set(&log
->l_tail_lsn
, tail_lsn
);
1140 xlog_assign_tail_lsn(
1141 struct xfs_mount
*mp
)
1145 spin_lock(&mp
->m_ail
->xa_lock
);
1146 tail_lsn
= xlog_assign_tail_lsn_locked(mp
);
1147 spin_unlock(&mp
->m_ail
->xa_lock
);
1153 * Return the space in the log between the tail and the head. The head
1154 * is passed in the cycle/bytes formal parms. In the special case where
1155 * the reserve head has wrapped passed the tail, this calculation is no
1156 * longer valid. In this case, just return 0 which means there is no space
1157 * in the log. This works for all places where this function is called
1158 * with the reserve head. Of course, if the write head were to ever
1159 * wrap the tail, we should blow up. Rather than catch this case here,
1160 * we depend on other ASSERTions in other parts of the code. XXXmiken
1162 * This code also handles the case where the reservation head is behind
1163 * the tail. The details of this case are described below, but the end
1164 * result is that we return the size of the log as the amount of space left.
1177 xlog_crack_grant_head(head
, &head_cycle
, &head_bytes
);
1178 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_bytes
);
1179 tail_bytes
= BBTOB(tail_bytes
);
1180 if (tail_cycle
== head_cycle
&& head_bytes
>= tail_bytes
)
1181 free_bytes
= log
->l_logsize
- (head_bytes
- tail_bytes
);
1182 else if (tail_cycle
+ 1 < head_cycle
)
1184 else if (tail_cycle
< head_cycle
) {
1185 ASSERT(tail_cycle
== (head_cycle
- 1));
1186 free_bytes
= tail_bytes
- head_bytes
;
1189 * The reservation head is behind the tail.
1190 * In this case we just want to return the size of the
1191 * log as the amount of space left.
1193 xfs_alert(log
->l_mp
, "xlog_space_left: head behind tail");
1194 xfs_alert(log
->l_mp
,
1195 " tail_cycle = %d, tail_bytes = %d",
1196 tail_cycle
, tail_bytes
);
1197 xfs_alert(log
->l_mp
,
1198 " GH cycle = %d, GH bytes = %d",
1199 head_cycle
, head_bytes
);
1201 free_bytes
= log
->l_logsize
;
1208 * Log function which is called when an io completes.
1210 * The log manager needs its own routine, in order to control what
1211 * happens with the buffer after the write completes.
1214 xlog_iodone(xfs_buf_t
*bp
)
1216 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1217 struct xlog
*l
= iclog
->ic_log
;
1221 * Race to shutdown the filesystem if we see an error or the iclog is in
1222 * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1223 * CRC errors into log recovery.
1225 if (XFS_TEST_ERROR(bp
->b_error
, l
->l_mp
, XFS_ERRTAG_IODONE_IOERR
,
1226 XFS_RANDOM_IODONE_IOERR
) ||
1227 iclog
->ic_state
& XLOG_STATE_IOABORT
) {
1228 if (iclog
->ic_state
& XLOG_STATE_IOABORT
)
1229 iclog
->ic_state
&= ~XLOG_STATE_IOABORT
;
1231 xfs_buf_ioerror_alert(bp
, __func__
);
1233 xfs_force_shutdown(l
->l_mp
, SHUTDOWN_LOG_IO_ERROR
);
1235 * This flag will be propagated to the trans-committed
1236 * callback routines to let them know that the log-commit
1239 aborted
= XFS_LI_ABORTED
;
1240 } else if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1241 aborted
= XFS_LI_ABORTED
;
1244 /* log I/O is always issued ASYNC */
1245 ASSERT(bp
->b_flags
& XBF_ASYNC
);
1246 xlog_state_done_syncing(iclog
, aborted
);
1249 * drop the buffer lock now that we are done. Nothing references
1250 * the buffer after this, so an unmount waiting on this lock can now
1251 * tear it down safely. As such, it is unsafe to reference the buffer
1252 * (bp) after the unlock as we could race with it being freed.
1258 * Return size of each in-core log record buffer.
1260 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1262 * If the filesystem blocksize is too large, we may need to choose a
1263 * larger size since the directory code currently logs entire blocks.
1267 xlog_get_iclog_buffer_size(
1268 struct xfs_mount
*mp
,
1274 if (mp
->m_logbufs
<= 0)
1275 log
->l_iclog_bufs
= XLOG_MAX_ICLOGS
;
1277 log
->l_iclog_bufs
= mp
->m_logbufs
;
1280 * Buffer size passed in from mount system call.
1282 if (mp
->m_logbsize
> 0) {
1283 size
= log
->l_iclog_size
= mp
->m_logbsize
;
1284 log
->l_iclog_size_log
= 0;
1286 log
->l_iclog_size_log
++;
1290 if (xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1291 /* # headers = size / 32k
1292 * one header holds cycles from 32k of data
1295 xhdrs
= mp
->m_logbsize
/ XLOG_HEADER_CYCLE_SIZE
;
1296 if (mp
->m_logbsize
% XLOG_HEADER_CYCLE_SIZE
)
1298 log
->l_iclog_hsize
= xhdrs
<< BBSHIFT
;
1299 log
->l_iclog_heads
= xhdrs
;
1301 ASSERT(mp
->m_logbsize
<= XLOG_BIG_RECORD_BSIZE
);
1302 log
->l_iclog_hsize
= BBSIZE
;
1303 log
->l_iclog_heads
= 1;
1308 /* All machines use 32kB buffers by default. */
1309 log
->l_iclog_size
= XLOG_BIG_RECORD_BSIZE
;
1310 log
->l_iclog_size_log
= XLOG_BIG_RECORD_BSHIFT
;
1312 /* the default log size is 16k or 32k which is one header sector */
1313 log
->l_iclog_hsize
= BBSIZE
;
1314 log
->l_iclog_heads
= 1;
1317 /* are we being asked to make the sizes selected above visible? */
1318 if (mp
->m_logbufs
== 0)
1319 mp
->m_logbufs
= log
->l_iclog_bufs
;
1320 if (mp
->m_logbsize
== 0)
1321 mp
->m_logbsize
= log
->l_iclog_size
;
1322 } /* xlog_get_iclog_buffer_size */
1327 struct xfs_mount
*mp
)
1329 queue_delayed_work(mp
->m_sync_workqueue
, &mp
->m_log
->l_work
,
1330 msecs_to_jiffies(xfs_syncd_centisecs
* 10));
1334 * Every sync period we need to unpin all items in the AIL and push them to
1335 * disk. If there is nothing dirty, then we might need to cover the log to
1336 * indicate that the filesystem is idle.
1340 struct work_struct
*work
)
1342 struct xlog
*log
= container_of(to_delayed_work(work
),
1343 struct xlog
, l_work
);
1344 struct xfs_mount
*mp
= log
->l_mp
;
1346 /* dgc: errors ignored - not fatal and nowhere to report them */
1347 if (xfs_log_need_covered(mp
)) {
1349 * Dump a transaction into the log that contains no real change.
1350 * This is needed to stamp the current tail LSN into the log
1351 * during the covering operation.
1353 * We cannot use an inode here for this - that will push dirty
1354 * state back up into the VFS and then periodic inode flushing
1355 * will prevent log covering from making progress. Hence we
1356 * synchronously log the superblock instead to ensure the
1357 * superblock is immediately unpinned and can be written back.
1359 xfs_sync_sb(mp
, true);
1361 xfs_log_force(mp
, 0);
1363 /* start pushing all the metadata that is currently dirty */
1364 xfs_ail_push_all(mp
->m_ail
);
1366 /* queue us up again */
1367 xfs_log_work_queue(mp
);
1371 * This routine initializes some of the log structure for a given mount point.
1372 * Its primary purpose is to fill in enough, so recovery can occur. However,
1373 * some other stuff may be filled in too.
1375 STATIC
struct xlog
*
1377 struct xfs_mount
*mp
,
1378 struct xfs_buftarg
*log_target
,
1379 xfs_daddr_t blk_offset
,
1383 xlog_rec_header_t
*head
;
1384 xlog_in_core_t
**iclogp
;
1385 xlog_in_core_t
*iclog
, *prev_iclog
=NULL
;
1388 int error
= -ENOMEM
;
1391 log
= kmem_zalloc(sizeof(struct xlog
), KM_MAYFAIL
);
1393 xfs_warn(mp
, "Log allocation failed: No memory!");
1398 log
->l_targ
= log_target
;
1399 log
->l_logsize
= BBTOB(num_bblks
);
1400 log
->l_logBBstart
= blk_offset
;
1401 log
->l_logBBsize
= num_bblks
;
1402 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
1403 log
->l_flags
|= XLOG_ACTIVE_RECOVERY
;
1404 INIT_DELAYED_WORK(&log
->l_work
, xfs_log_worker
);
1406 log
->l_prev_block
= -1;
1407 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1408 xlog_assign_atomic_lsn(&log
->l_tail_lsn
, 1, 0);
1409 xlog_assign_atomic_lsn(&log
->l_last_sync_lsn
, 1, 0);
1410 log
->l_curr_cycle
= 1; /* 0 is bad since this is initial value */
1412 xlog_grant_head_init(&log
->l_reserve_head
);
1413 xlog_grant_head_init(&log
->l_write_head
);
1415 error
= -EFSCORRUPTED
;
1416 if (xfs_sb_version_hassector(&mp
->m_sb
)) {
1417 log2_size
= mp
->m_sb
.sb_logsectlog
;
1418 if (log2_size
< BBSHIFT
) {
1419 xfs_warn(mp
, "Log sector size too small (0x%x < 0x%x)",
1420 log2_size
, BBSHIFT
);
1424 log2_size
-= BBSHIFT
;
1425 if (log2_size
> mp
->m_sectbb_log
) {
1426 xfs_warn(mp
, "Log sector size too large (0x%x > 0x%x)",
1427 log2_size
, mp
->m_sectbb_log
);
1431 /* for larger sector sizes, must have v2 or external log */
1432 if (log2_size
&& log
->l_logBBstart
> 0 &&
1433 !xfs_sb_version_haslogv2(&mp
->m_sb
)) {
1435 "log sector size (0x%x) invalid for configuration.",
1440 log
->l_sectBBsize
= 1 << log2_size
;
1442 xlog_get_iclog_buffer_size(mp
, log
);
1445 * Use a NULL block for the extra log buffer used during splits so that
1446 * it will trigger errors if we ever try to do IO on it without first
1447 * having set it up properly.
1450 bp
= xfs_buf_alloc(mp
->m_logdev_targp
, XFS_BUF_DADDR_NULL
,
1451 BTOBB(log
->l_iclog_size
), XBF_NO_IOACCT
);
1456 * The iclogbuf buffer locks are held over IO but we are not going to do
1457 * IO yet. Hence unlock the buffer so that the log IO path can grab it
1458 * when appropriately.
1460 ASSERT(xfs_buf_islocked(bp
));
1463 /* use high priority wq for log I/O completion */
1464 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1465 bp
->b_iodone
= xlog_iodone
;
1468 spin_lock_init(&log
->l_icloglock
);
1469 init_waitqueue_head(&log
->l_flush_wait
);
1471 iclogp
= &log
->l_iclog
;
1473 * The amount of memory to allocate for the iclog structure is
1474 * rather funky due to the way the structure is defined. It is
1475 * done this way so that we can use different sizes for machines
1476 * with different amounts of memory. See the definition of
1477 * xlog_in_core_t in xfs_log_priv.h for details.
1479 ASSERT(log
->l_iclog_size
>= 4096);
1480 for (i
=0; i
< log
->l_iclog_bufs
; i
++) {
1481 *iclogp
= kmem_zalloc(sizeof(xlog_in_core_t
), KM_MAYFAIL
);
1483 goto out_free_iclog
;
1486 iclog
->ic_prev
= prev_iclog
;
1489 bp
= xfs_buf_get_uncached(mp
->m_logdev_targp
,
1490 BTOBB(log
->l_iclog_size
),
1493 goto out_free_iclog
;
1495 ASSERT(xfs_buf_islocked(bp
));
1498 /* use high priority wq for log I/O completion */
1499 bp
->b_ioend_wq
= mp
->m_log_workqueue
;
1500 bp
->b_iodone
= xlog_iodone
;
1502 iclog
->ic_data
= bp
->b_addr
;
1504 log
->l_iclog_bak
[i
] = &iclog
->ic_header
;
1506 head
= &iclog
->ic_header
;
1507 memset(head
, 0, sizeof(xlog_rec_header_t
));
1508 head
->h_magicno
= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
);
1509 head
->h_version
= cpu_to_be32(
1510 xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) ? 2 : 1);
1511 head
->h_size
= cpu_to_be32(log
->l_iclog_size
);
1513 head
->h_fmt
= cpu_to_be32(XLOG_FMT
);
1514 memcpy(&head
->h_fs_uuid
, &mp
->m_sb
.sb_uuid
, sizeof(uuid_t
));
1516 iclog
->ic_size
= BBTOB(bp
->b_length
) - log
->l_iclog_hsize
;
1517 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
1518 iclog
->ic_log
= log
;
1519 atomic_set(&iclog
->ic_refcnt
, 0);
1520 spin_lock_init(&iclog
->ic_callback_lock
);
1521 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
1522 iclog
->ic_datap
= (char *)iclog
->ic_data
+ log
->l_iclog_hsize
;
1524 init_waitqueue_head(&iclog
->ic_force_wait
);
1525 init_waitqueue_head(&iclog
->ic_write_wait
);
1527 iclogp
= &iclog
->ic_next
;
1529 *iclogp
= log
->l_iclog
; /* complete ring */
1530 log
->l_iclog
->ic_prev
= prev_iclog
; /* re-write 1st prev ptr */
1532 error
= xlog_cil_init(log
);
1534 goto out_free_iclog
;
1538 for (iclog
= log
->l_iclog
; iclog
; iclog
= prev_iclog
) {
1539 prev_iclog
= iclog
->ic_next
;
1541 xfs_buf_free(iclog
->ic_bp
);
1543 if (prev_iclog
== log
->l_iclog
)
1546 spinlock_destroy(&log
->l_icloglock
);
1547 xfs_buf_free(log
->l_xbuf
);
1551 return ERR_PTR(error
);
1552 } /* xlog_alloc_log */
1556 * Write out the commit record of a transaction associated with the given
1557 * ticket. Return the lsn of the commit record.
1562 struct xlog_ticket
*ticket
,
1563 struct xlog_in_core
**iclog
,
1564 xfs_lsn_t
*commitlsnp
)
1566 struct xfs_mount
*mp
= log
->l_mp
;
1568 struct xfs_log_iovec reg
= {
1571 .i_type
= XLOG_REG_TYPE_COMMIT
,
1573 struct xfs_log_vec vec
= {
1578 ASSERT_ALWAYS(iclog
);
1579 error
= xlog_write(log
, &vec
, ticket
, commitlsnp
, iclog
,
1582 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
1587 * Push on the buffer cache code if we ever use more than 75% of the on-disk
1588 * log space. This code pushes on the lsn which would supposedly free up
1589 * the 25% which we want to leave free. We may need to adopt a policy which
1590 * pushes on an lsn which is further along in the log once we reach the high
1591 * water mark. In this manner, we would be creating a low water mark.
1594 xlog_grant_push_ail(
1598 xfs_lsn_t threshold_lsn
= 0;
1599 xfs_lsn_t last_sync_lsn
;
1602 int threshold_block
;
1603 int threshold_cycle
;
1606 ASSERT(BTOBB(need_bytes
) < log
->l_logBBsize
);
1608 free_bytes
= xlog_space_left(log
, &log
->l_reserve_head
.grant
);
1609 free_blocks
= BTOBBT(free_bytes
);
1612 * Set the threshold for the minimum number of free blocks in the
1613 * log to the maximum of what the caller needs, one quarter of the
1614 * log, and 256 blocks.
1616 free_threshold
= BTOBB(need_bytes
);
1617 free_threshold
= MAX(free_threshold
, (log
->l_logBBsize
>> 2));
1618 free_threshold
= MAX(free_threshold
, 256);
1619 if (free_blocks
>= free_threshold
)
1622 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &threshold_cycle
,
1624 threshold_block
+= free_threshold
;
1625 if (threshold_block
>= log
->l_logBBsize
) {
1626 threshold_block
-= log
->l_logBBsize
;
1627 threshold_cycle
+= 1;
1629 threshold_lsn
= xlog_assign_lsn(threshold_cycle
,
1632 * Don't pass in an lsn greater than the lsn of the last
1633 * log record known to be on disk. Use a snapshot of the last sync lsn
1634 * so that it doesn't change between the compare and the set.
1636 last_sync_lsn
= atomic64_read(&log
->l_last_sync_lsn
);
1637 if (XFS_LSN_CMP(threshold_lsn
, last_sync_lsn
) > 0)
1638 threshold_lsn
= last_sync_lsn
;
1641 * Get the transaction layer to kick the dirty buffers out to
1642 * disk asynchronously. No point in trying to do this if
1643 * the filesystem is shutting down.
1645 if (!XLOG_FORCED_SHUTDOWN(log
))
1646 xfs_ail_push(log
->l_ailp
, threshold_lsn
);
1650 * Stamp cycle number in every block
1655 struct xlog_in_core
*iclog
,
1659 int size
= iclog
->ic_offset
+ roundoff
;
1663 cycle_lsn
= CYCLE_LSN_DISK(iclog
->ic_header
.h_lsn
);
1665 dp
= iclog
->ic_datap
;
1666 for (i
= 0; i
< BTOBB(size
); i
++) {
1667 if (i
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
))
1669 iclog
->ic_header
.h_cycle_data
[i
] = *(__be32
*)dp
;
1670 *(__be32
*)dp
= cycle_lsn
;
1674 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1675 xlog_in_core_2_t
*xhdr
= iclog
->ic_data
;
1677 for ( ; i
< BTOBB(size
); i
++) {
1678 j
= i
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1679 k
= i
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
1680 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
] = *(__be32
*)dp
;
1681 *(__be32
*)dp
= cycle_lsn
;
1685 for (i
= 1; i
< log
->l_iclog_heads
; i
++)
1686 xhdr
[i
].hic_xheader
.xh_cycle
= cycle_lsn
;
1691 * Calculate the checksum for a log buffer.
1693 * This is a little more complicated than it should be because the various
1694 * headers and the actual data are non-contiguous.
1699 struct xlog_rec_header
*rhead
,
1705 /* first generate the crc for the record header ... */
1706 crc
= xfs_start_cksum((char *)rhead
,
1707 sizeof(struct xlog_rec_header
),
1708 offsetof(struct xlog_rec_header
, h_crc
));
1710 /* ... then for additional cycle data for v2 logs ... */
1711 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
)) {
1712 union xlog_in_core2
*xhdr
= (union xlog_in_core2
*)rhead
;
1716 xheads
= size
/ XLOG_HEADER_CYCLE_SIZE
;
1717 if (size
% XLOG_HEADER_CYCLE_SIZE
)
1720 for (i
= 1; i
< xheads
; i
++) {
1721 crc
= crc32c(crc
, &xhdr
[i
].hic_xheader
,
1722 sizeof(struct xlog_rec_ext_header
));
1726 /* ... and finally for the payload */
1727 crc
= crc32c(crc
, dp
, size
);
1729 return xfs_end_cksum(crc
);
1733 * The bdstrat callback function for log bufs. This gives us a central
1734 * place to trap bufs in case we get hit by a log I/O error and need to
1735 * shutdown. Actually, in practice, even when we didn't get a log error,
1736 * we transition the iclogs to IOERROR state *after* flushing all existing
1737 * iclogs to disk. This is because we don't want anymore new transactions to be
1738 * started or completed afterwards.
1740 * We lock the iclogbufs here so that we can serialise against IO completion
1741 * during unmount. We might be processing a shutdown triggered during unmount,
1742 * and that can occur asynchronously to the unmount thread, and hence we need to
1743 * ensure that completes before tearing down the iclogbufs. Hence we need to
1744 * hold the buffer lock across the log IO to acheive that.
1750 struct xlog_in_core
*iclog
= bp
->b_fspriv
;
1753 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
1754 xfs_buf_ioerror(bp
, -EIO
);
1758 * It would seem logical to return EIO here, but we rely on
1759 * the log state machine to propagate I/O errors instead of
1760 * doing it here. Similarly, IO completion will unlock the
1761 * buffer, so we don't do it here.
1771 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1772 * fashion. Previously, we should have moved the current iclog
1773 * ptr in the log to point to the next available iclog. This allows further
1774 * write to continue while this code syncs out an iclog ready to go.
1775 * Before an in-core log can be written out, the data section must be scanned
1776 * to save away the 1st word of each BBSIZE block into the header. We replace
1777 * it with the current cycle count. Each BBSIZE block is tagged with the
1778 * cycle count because there in an implicit assumption that drives will
1779 * guarantee that entire 512 byte blocks get written at once. In other words,
1780 * we can't have part of a 512 byte block written and part not written. By
1781 * tagging each block, we will know which blocks are valid when recovering
1782 * after an unclean shutdown.
1784 * This routine is single threaded on the iclog. No other thread can be in
1785 * this routine with the same iclog. Changing contents of iclog can there-
1786 * fore be done without grabbing the state machine lock. Updating the global
1787 * log will require grabbing the lock though.
1789 * The entire log manager uses a logical block numbering scheme. Only
1790 * log_sync (and then only bwrite()) know about the fact that the log may
1791 * not start with block zero on a given device. The log block start offset
1792 * is added immediately before calling bwrite().
1798 struct xlog_in_core
*iclog
)
1802 uint count
; /* byte count of bwrite */
1803 uint count_init
; /* initial count before roundup */
1804 int roundoff
; /* roundoff to BB or stripe */
1805 int split
= 0; /* split write into two regions */
1807 int v2
= xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
);
1810 XFS_STATS_INC(log
->l_mp
, xs_log_writes
);
1811 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
1813 /* Add for LR header */
1814 count_init
= log
->l_iclog_hsize
+ iclog
->ic_offset
;
1816 /* Round out the log write size */
1817 if (v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1) {
1818 /* we have a v2 stripe unit to use */
1819 count
= XLOG_LSUNITTOB(log
, XLOG_BTOLSUNIT(log
, count_init
));
1821 count
= BBTOB(BTOBB(count_init
));
1823 roundoff
= count
- count_init
;
1824 ASSERT(roundoff
>= 0);
1825 ASSERT((v2
&& log
->l_mp
->m_sb
.sb_logsunit
> 1 &&
1826 roundoff
< log
->l_mp
->m_sb
.sb_logsunit
)
1828 (log
->l_mp
->m_sb
.sb_logsunit
<= 1 &&
1829 roundoff
< BBTOB(1)));
1831 /* move grant heads by roundoff in sync */
1832 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
, roundoff
);
1833 xlog_grant_add_space(log
, &log
->l_write_head
.grant
, roundoff
);
1835 /* put cycle number in every block */
1836 xlog_pack_data(log
, iclog
, roundoff
);
1838 /* real byte length */
1839 size
= iclog
->ic_offset
;
1842 iclog
->ic_header
.h_len
= cpu_to_be32(size
);
1845 XFS_BUF_SET_ADDR(bp
, BLOCK_LSN(be64_to_cpu(iclog
->ic_header
.h_lsn
)));
1847 XFS_STATS_ADD(log
->l_mp
, xs_log_blocks
, BTOBB(count
));
1849 /* Do we need to split this write into 2 parts? */
1850 if (XFS_BUF_ADDR(bp
) + BTOBB(count
) > log
->l_logBBsize
) {
1853 split
= count
- (BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
)));
1854 count
= BBTOB(log
->l_logBBsize
- XFS_BUF_ADDR(bp
));
1855 iclog
->ic_bwritecnt
= 2;
1858 * Bump the cycle numbers at the start of each block in the
1859 * part of the iclog that ends up in the buffer that gets
1860 * written to the start of the log.
1862 * Watch out for the header magic number case, though.
1864 dptr
= (char *)&iclog
->ic_header
+ count
;
1865 for (i
= 0; i
< split
; i
+= BBSIZE
) {
1866 __uint32_t cycle
= be32_to_cpu(*(__be32
*)dptr
);
1867 if (++cycle
== XLOG_HEADER_MAGIC_NUM
)
1869 *(__be32
*)dptr
= cpu_to_be32(cycle
);
1874 iclog
->ic_bwritecnt
= 1;
1877 /* calculcate the checksum */
1878 iclog
->ic_header
.h_crc
= xlog_cksum(log
, &iclog
->ic_header
,
1879 iclog
->ic_datap
, size
);
1882 * Intentionally corrupt the log record CRC based on the error injection
1883 * frequency, if defined. This facilitates testing log recovery in the
1884 * event of torn writes. Hence, set the IOABORT state to abort the log
1885 * write on I/O completion and shutdown the fs. The subsequent mount
1886 * detects the bad CRC and attempts to recover.
1888 if (log
->l_badcrc_factor
&&
1889 (prandom_u32() % log
->l_badcrc_factor
== 0)) {
1890 iclog
->ic_header
.h_crc
&= 0xAAAAAAAA;
1891 iclog
->ic_state
|= XLOG_STATE_IOABORT
;
1893 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1894 be64_to_cpu(iclog
->ic_header
.h_lsn
));
1898 bp
->b_io_length
= BTOBB(count
);
1899 bp
->b_fspriv
= iclog
;
1900 bp
->b_flags
&= ~(XBF_FUA
| XBF_FLUSH
);
1901 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
);
1903 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
) {
1904 bp
->b_flags
|= XBF_FUA
;
1907 * Flush the data device before flushing the log to make
1908 * sure all meta data written back from the AIL actually made
1909 * it to disk before stamping the new log tail LSN into the
1910 * log buffer. For an external log we need to issue the
1911 * flush explicitly, and unfortunately synchronously here;
1912 * for an internal log we can simply use the block layer
1913 * state machine for preflushes.
1915 if (log
->l_mp
->m_logdev_targp
!= log
->l_mp
->m_ddev_targp
)
1916 xfs_blkdev_issue_flush(log
->l_mp
->m_ddev_targp
);
1918 bp
->b_flags
|= XBF_FLUSH
;
1921 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1922 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1924 xlog_verify_iclog(log
, iclog
, count
, true);
1926 /* account for log which doesn't start at block #0 */
1927 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1930 * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1933 error
= xlog_bdstrat(bp
);
1935 xfs_buf_ioerror_alert(bp
, "xlog_sync");
1939 bp
= iclog
->ic_log
->l_xbuf
;
1940 XFS_BUF_SET_ADDR(bp
, 0); /* logical 0 */
1941 xfs_buf_associate_memory(bp
,
1942 (char *)&iclog
->ic_header
+ count
, split
);
1943 bp
->b_fspriv
= iclog
;
1944 bp
->b_flags
&= ~(XBF_FUA
| XBF_FLUSH
);
1945 bp
->b_flags
|= (XBF_ASYNC
| XBF_SYNCIO
| XBF_WRITE
);
1946 if (log
->l_mp
->m_flags
& XFS_MOUNT_BARRIER
)
1947 bp
->b_flags
|= XBF_FUA
;
1949 ASSERT(XFS_BUF_ADDR(bp
) <= log
->l_logBBsize
-1);
1950 ASSERT(XFS_BUF_ADDR(bp
) + BTOBB(count
) <= log
->l_logBBsize
);
1952 /* account for internal log which doesn't start at block #0 */
1953 XFS_BUF_SET_ADDR(bp
, XFS_BUF_ADDR(bp
) + log
->l_logBBstart
);
1954 error
= xlog_bdstrat(bp
);
1956 xfs_buf_ioerror_alert(bp
, "xlog_sync (split)");
1964 * Deallocate a log structure
1970 xlog_in_core_t
*iclog
, *next_iclog
;
1973 xlog_cil_destroy(log
);
1976 * Cycle all the iclogbuf locks to make sure all log IO completion
1977 * is done before we tear down these buffers.
1979 iclog
= log
->l_iclog
;
1980 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1981 xfs_buf_lock(iclog
->ic_bp
);
1982 xfs_buf_unlock(iclog
->ic_bp
);
1983 iclog
= iclog
->ic_next
;
1987 * Always need to ensure that the extra buffer does not point to memory
1988 * owned by another log buffer before we free it. Also, cycle the lock
1989 * first to ensure we've completed IO on it.
1991 xfs_buf_lock(log
->l_xbuf
);
1992 xfs_buf_unlock(log
->l_xbuf
);
1993 xfs_buf_set_empty(log
->l_xbuf
, BTOBB(log
->l_iclog_size
));
1994 xfs_buf_free(log
->l_xbuf
);
1996 iclog
= log
->l_iclog
;
1997 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
1998 xfs_buf_free(iclog
->ic_bp
);
1999 next_iclog
= iclog
->ic_next
;
2003 spinlock_destroy(&log
->l_icloglock
);
2005 log
->l_mp
->m_log
= NULL
;
2007 } /* xlog_dealloc_log */
2010 * Update counters atomically now that memcpy is done.
2014 xlog_state_finish_copy(
2016 struct xlog_in_core
*iclog
,
2020 spin_lock(&log
->l_icloglock
);
2022 be32_add_cpu(&iclog
->ic_header
.h_num_logops
, record_cnt
);
2023 iclog
->ic_offset
+= copy_bytes
;
2025 spin_unlock(&log
->l_icloglock
);
2026 } /* xlog_state_finish_copy */
2032 * print out info relating to regions written which consume
2037 struct xfs_mount
*mp
,
2038 struct xlog_ticket
*ticket
)
2041 uint ophdr_spc
= ticket
->t_res_num_ophdrs
* (uint
)sizeof(xlog_op_header_t
);
2043 /* match with XLOG_REG_TYPE_* in xfs_log.h */
2044 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2045 static char *res_type_str
[XLOG_REG_TYPE_MAX
+ 1] = {
2046 REG_TYPE_STR(BFORMAT
, "bformat"),
2047 REG_TYPE_STR(BCHUNK
, "bchunk"),
2048 REG_TYPE_STR(EFI_FORMAT
, "efi_format"),
2049 REG_TYPE_STR(EFD_FORMAT
, "efd_format"),
2050 REG_TYPE_STR(IFORMAT
, "iformat"),
2051 REG_TYPE_STR(ICORE
, "icore"),
2052 REG_TYPE_STR(IEXT
, "iext"),
2053 REG_TYPE_STR(IBROOT
, "ibroot"),
2054 REG_TYPE_STR(ILOCAL
, "ilocal"),
2055 REG_TYPE_STR(IATTR_EXT
, "iattr_ext"),
2056 REG_TYPE_STR(IATTR_BROOT
, "iattr_broot"),
2057 REG_TYPE_STR(IATTR_LOCAL
, "iattr_local"),
2058 REG_TYPE_STR(QFORMAT
, "qformat"),
2059 REG_TYPE_STR(DQUOT
, "dquot"),
2060 REG_TYPE_STR(QUOTAOFF
, "quotaoff"),
2061 REG_TYPE_STR(LRHEADER
, "LR header"),
2062 REG_TYPE_STR(UNMOUNT
, "unmount"),
2063 REG_TYPE_STR(COMMIT
, "commit"),
2064 REG_TYPE_STR(TRANSHDR
, "trans header"),
2065 REG_TYPE_STR(ICREATE
, "inode create")
2069 xfs_warn(mp
, "xlog_write: reservation summary:");
2070 xfs_warn(mp
, " unit res = %d bytes",
2071 ticket
->t_unit_res
);
2072 xfs_warn(mp
, " current res = %d bytes",
2073 ticket
->t_curr_res
);
2074 xfs_warn(mp
, " total reg = %u bytes (o/flow = %u bytes)",
2075 ticket
->t_res_arr_sum
, ticket
->t_res_o_flow
);
2076 xfs_warn(mp
, " ophdrs = %u (ophdr space = %u bytes)",
2077 ticket
->t_res_num_ophdrs
, ophdr_spc
);
2078 xfs_warn(mp
, " ophdr + reg = %u bytes",
2079 ticket
->t_res_arr_sum
+ ticket
->t_res_o_flow
+ ophdr_spc
);
2080 xfs_warn(mp
, " num regions = %u",
2083 for (i
= 0; i
< ticket
->t_res_num
; i
++) {
2084 uint r_type
= ticket
->t_res_arr
[i
].r_type
;
2085 xfs_warn(mp
, "region[%u]: %s - %u bytes", i
,
2086 ((r_type
<= 0 || r_type
> XLOG_REG_TYPE_MAX
) ?
2087 "bad-rtype" : res_type_str
[r_type
]),
2088 ticket
->t_res_arr
[i
].r_len
);
2091 xfs_alert_tag(mp
, XFS_PTAG_LOGRES
,
2092 "xlog_write: reservation ran out. Need to up reservation");
2093 xfs_force_shutdown(mp
, SHUTDOWN_LOG_IO_ERROR
);
2097 * Calculate the potential space needed by the log vector. Each region gets
2098 * its own xlog_op_header_t and may need to be double word aligned.
2101 xlog_write_calc_vec_length(
2102 struct xlog_ticket
*ticket
,
2103 struct xfs_log_vec
*log_vector
)
2105 struct xfs_log_vec
*lv
;
2110 /* acct for start rec of xact */
2111 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2114 for (lv
= log_vector
; lv
; lv
= lv
->lv_next
) {
2115 /* we don't write ordered log vectors */
2116 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
)
2119 headers
+= lv
->lv_niovecs
;
2121 for (i
= 0; i
< lv
->lv_niovecs
; i
++) {
2122 struct xfs_log_iovec
*vecp
= &lv
->lv_iovecp
[i
];
2125 xlog_tic_add_region(ticket
, vecp
->i_len
, vecp
->i_type
);
2129 ticket
->t_res_num_ophdrs
+= headers
;
2130 len
+= headers
* sizeof(struct xlog_op_header
);
2136 * If first write for transaction, insert start record We can't be trying to
2137 * commit if we are inited. We can't have any "partial_copy" if we are inited.
2140 xlog_write_start_rec(
2141 struct xlog_op_header
*ophdr
,
2142 struct xlog_ticket
*ticket
)
2144 if (!(ticket
->t_flags
& XLOG_TIC_INITED
))
2147 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2148 ophdr
->oh_clientid
= ticket
->t_clientid
;
2150 ophdr
->oh_flags
= XLOG_START_TRANS
;
2153 ticket
->t_flags
&= ~XLOG_TIC_INITED
;
2155 return sizeof(struct xlog_op_header
);
2158 static xlog_op_header_t
*
2159 xlog_write_setup_ophdr(
2161 struct xlog_op_header
*ophdr
,
2162 struct xlog_ticket
*ticket
,
2165 ophdr
->oh_tid
= cpu_to_be32(ticket
->t_tid
);
2166 ophdr
->oh_clientid
= ticket
->t_clientid
;
2169 /* are we copying a commit or unmount record? */
2170 ophdr
->oh_flags
= flags
;
2173 * We've seen logs corrupted with bad transaction client ids. This
2174 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2175 * and shut down the filesystem.
2177 switch (ophdr
->oh_clientid
) {
2178 case XFS_TRANSACTION
:
2184 "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2185 ophdr
->oh_clientid
, ticket
);
2193 * Set up the parameters of the region copy into the log. This has
2194 * to handle region write split across multiple log buffers - this
2195 * state is kept external to this function so that this code can
2196 * be written in an obvious, self documenting manner.
2199 xlog_write_setup_copy(
2200 struct xlog_ticket
*ticket
,
2201 struct xlog_op_header
*ophdr
,
2202 int space_available
,
2206 int *last_was_partial_copy
,
2207 int *bytes_consumed
)
2211 still_to_copy
= space_required
- *bytes_consumed
;
2212 *copy_off
= *bytes_consumed
;
2214 if (still_to_copy
<= space_available
) {
2215 /* write of region completes here */
2216 *copy_len
= still_to_copy
;
2217 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2218 if (*last_was_partial_copy
)
2219 ophdr
->oh_flags
|= (XLOG_END_TRANS
|XLOG_WAS_CONT_TRANS
);
2220 *last_was_partial_copy
= 0;
2221 *bytes_consumed
= 0;
2225 /* partial write of region, needs extra log op header reservation */
2226 *copy_len
= space_available
;
2227 ophdr
->oh_len
= cpu_to_be32(*copy_len
);
2228 ophdr
->oh_flags
|= XLOG_CONTINUE_TRANS
;
2229 if (*last_was_partial_copy
)
2230 ophdr
->oh_flags
|= XLOG_WAS_CONT_TRANS
;
2231 *bytes_consumed
+= *copy_len
;
2232 (*last_was_partial_copy
)++;
2234 /* account for new log op header */
2235 ticket
->t_curr_res
-= sizeof(struct xlog_op_header
);
2236 ticket
->t_res_num_ophdrs
++;
2238 return sizeof(struct xlog_op_header
);
2242 xlog_write_copy_finish(
2244 struct xlog_in_core
*iclog
,
2249 int *partial_copy_len
,
2251 struct xlog_in_core
**commit_iclog
)
2253 if (*partial_copy
) {
2255 * This iclog has already been marked WANT_SYNC by
2256 * xlog_state_get_iclog_space.
2258 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2261 return xlog_state_release_iclog(log
, iclog
);
2265 *partial_copy_len
= 0;
2267 if (iclog
->ic_size
- log_offset
<= sizeof(xlog_op_header_t
)) {
2268 /* no more space in this iclog - push it. */
2269 xlog_state_finish_copy(log
, iclog
, *record_cnt
, *data_cnt
);
2273 spin_lock(&log
->l_icloglock
);
2274 xlog_state_want_sync(log
, iclog
);
2275 spin_unlock(&log
->l_icloglock
);
2278 return xlog_state_release_iclog(log
, iclog
);
2279 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2280 *commit_iclog
= iclog
;
2287 * Write some region out to in-core log
2289 * This will be called when writing externally provided regions or when
2290 * writing out a commit record for a given transaction.
2292 * General algorithm:
2293 * 1. Find total length of this write. This may include adding to the
2294 * lengths passed in.
2295 * 2. Check whether we violate the tickets reservation.
2296 * 3. While writing to this iclog
2297 * A. Reserve as much space in this iclog as can get
2298 * B. If this is first write, save away start lsn
2299 * C. While writing this region:
2300 * 1. If first write of transaction, write start record
2301 * 2. Write log operation header (header per region)
2302 * 3. Find out if we can fit entire region into this iclog
2303 * 4. Potentially, verify destination memcpy ptr
2304 * 5. Memcpy (partial) region
2305 * 6. If partial copy, release iclog; otherwise, continue
2306 * copying more regions into current iclog
2307 * 4. Mark want sync bit (in simulation mode)
2308 * 5. Release iclog for potential flush to on-disk log.
2311 * 1. Panic if reservation is overrun. This should never happen since
2312 * reservation amounts are generated internal to the filesystem.
2314 * 1. Tickets are single threaded data structures.
2315 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2316 * syncing routine. When a single log_write region needs to span
2317 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2318 * on all log operation writes which don't contain the end of the
2319 * region. The XLOG_END_TRANS bit is used for the in-core log
2320 * operation which contains the end of the continued log_write region.
2321 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2322 * we don't really know exactly how much space will be used. As a result,
2323 * we don't update ic_offset until the end when we know exactly how many
2324 * bytes have been written out.
2329 struct xfs_log_vec
*log_vector
,
2330 struct xlog_ticket
*ticket
,
2331 xfs_lsn_t
*start_lsn
,
2332 struct xlog_in_core
**commit_iclog
,
2335 struct xlog_in_core
*iclog
= NULL
;
2336 struct xfs_log_iovec
*vecp
;
2337 struct xfs_log_vec
*lv
;
2340 int partial_copy
= 0;
2341 int partial_copy_len
= 0;
2349 len
= xlog_write_calc_vec_length(ticket
, log_vector
);
2352 * Region headers and bytes are already accounted for.
2353 * We only need to take into account start records and
2354 * split regions in this function.
2356 if (ticket
->t_flags
& XLOG_TIC_INITED
)
2357 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2360 * Commit record headers need to be accounted for. These
2361 * come in as separate writes so are easy to detect.
2363 if (flags
& (XLOG_COMMIT_TRANS
| XLOG_UNMOUNT_TRANS
))
2364 ticket
->t_curr_res
-= sizeof(xlog_op_header_t
);
2366 if (ticket
->t_curr_res
< 0)
2367 xlog_print_tic_res(log
->l_mp
, ticket
);
2371 vecp
= lv
->lv_iovecp
;
2372 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2376 error
= xlog_state_get_iclog_space(log
, len
, &iclog
, ticket
,
2377 &contwr
, &log_offset
);
2381 ASSERT(log_offset
<= iclog
->ic_size
- 1);
2382 ptr
= iclog
->ic_datap
+ log_offset
;
2384 /* start_lsn is the first lsn written to. That's all we need. */
2386 *start_lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
2389 * This loop writes out as many regions as can fit in the amount
2390 * of space which was allocated by xlog_state_get_iclog_space().
2392 while (lv
&& (!lv
->lv_niovecs
|| index
< lv
->lv_niovecs
)) {
2393 struct xfs_log_iovec
*reg
;
2394 struct xlog_op_header
*ophdr
;
2398 bool ordered
= false;
2400 /* ordered log vectors have no regions to write */
2401 if (lv
->lv_buf_len
== XFS_LOG_VEC_ORDERED
) {
2402 ASSERT(lv
->lv_niovecs
== 0);
2408 ASSERT(reg
->i_len
% sizeof(__int32_t
) == 0);
2409 ASSERT((unsigned long)ptr
% sizeof(__int32_t
) == 0);
2411 start_rec_copy
= xlog_write_start_rec(ptr
, ticket
);
2412 if (start_rec_copy
) {
2414 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2418 ophdr
= xlog_write_setup_ophdr(log
, ptr
, ticket
, flags
);
2422 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2423 sizeof(struct xlog_op_header
));
2425 len
+= xlog_write_setup_copy(ticket
, ophdr
,
2426 iclog
->ic_size
-log_offset
,
2428 ©_off
, ©_len
,
2431 xlog_verify_dest_ptr(log
, ptr
);
2436 * Unmount records just log an opheader, so can have
2437 * empty payloads with no data region to copy. Hence we
2438 * only copy the payload if the vector says it has data
2441 ASSERT(copy_len
>= 0);
2443 memcpy(ptr
, reg
->i_addr
+ copy_off
, copy_len
);
2444 xlog_write_adv_cnt(&ptr
, &len
, &log_offset
,
2447 copy_len
+= start_rec_copy
+ sizeof(xlog_op_header_t
);
2449 data_cnt
+= contwr
? copy_len
: 0;
2451 error
= xlog_write_copy_finish(log
, iclog
, flags
,
2452 &record_cnt
, &data_cnt
,
2461 * if we had a partial copy, we need to get more iclog
2462 * space but we don't want to increment the region
2463 * index because there is still more is this region to
2466 * If we completed writing this region, and we flushed
2467 * the iclog (indicated by resetting of the record
2468 * count), then we also need to get more log space. If
2469 * this was the last record, though, we are done and
2475 if (++index
== lv
->lv_niovecs
) {
2480 vecp
= lv
->lv_iovecp
;
2482 if (record_cnt
== 0 && ordered
== false) {
2492 xlog_state_finish_copy(log
, iclog
, record_cnt
, data_cnt
);
2494 return xlog_state_release_iclog(log
, iclog
);
2496 ASSERT(flags
& XLOG_COMMIT_TRANS
);
2497 *commit_iclog
= iclog
;
2502 /*****************************************************************************
2504 * State Machine functions
2506 *****************************************************************************
2509 /* Clean iclogs starting from the head. This ordering must be
2510 * maintained, so an iclog doesn't become ACTIVE beyond one that
2511 * is SYNCING. This is also required to maintain the notion that we use
2512 * a ordered wait queue to hold off would be writers to the log when every
2513 * iclog is trying to sync to disk.
2515 * State Change: DIRTY -> ACTIVE
2518 xlog_state_clean_log(
2521 xlog_in_core_t
*iclog
;
2524 iclog
= log
->l_iclog
;
2526 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
2527 iclog
->ic_state
= XLOG_STATE_ACTIVE
;
2528 iclog
->ic_offset
= 0;
2529 ASSERT(iclog
->ic_callback
== NULL
);
2531 * If the number of ops in this iclog indicate it just
2532 * contains the dummy transaction, we can
2533 * change state into IDLE (the second time around).
2534 * Otherwise we should change the state into
2536 * We don't need to cover the dummy.
2539 (be32_to_cpu(iclog
->ic_header
.h_num_logops
) ==
2544 * We have two dirty iclogs so start over
2545 * This could also be num of ops indicates
2546 * this is not the dummy going out.
2550 iclog
->ic_header
.h_num_logops
= 0;
2551 memset(iclog
->ic_header
.h_cycle_data
, 0,
2552 sizeof(iclog
->ic_header
.h_cycle_data
));
2553 iclog
->ic_header
.h_lsn
= 0;
2554 } else if (iclog
->ic_state
== XLOG_STATE_ACTIVE
)
2557 break; /* stop cleaning */
2558 iclog
= iclog
->ic_next
;
2559 } while (iclog
!= log
->l_iclog
);
2561 /* log is locked when we are called */
2563 * Change state for the dummy log recording.
2564 * We usually go to NEED. But we go to NEED2 if the changed indicates
2565 * we are done writing the dummy record.
2566 * If we are done with the second dummy recored (DONE2), then
2570 switch (log
->l_covered_state
) {
2571 case XLOG_STATE_COVER_IDLE
:
2572 case XLOG_STATE_COVER_NEED
:
2573 case XLOG_STATE_COVER_NEED2
:
2574 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2577 case XLOG_STATE_COVER_DONE
:
2579 log
->l_covered_state
= XLOG_STATE_COVER_NEED2
;
2581 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2584 case XLOG_STATE_COVER_DONE2
:
2586 log
->l_covered_state
= XLOG_STATE_COVER_IDLE
;
2588 log
->l_covered_state
= XLOG_STATE_COVER_NEED
;
2595 } /* xlog_state_clean_log */
2598 xlog_get_lowest_lsn(
2601 xlog_in_core_t
*lsn_log
;
2602 xfs_lsn_t lowest_lsn
, lsn
;
2604 lsn_log
= log
->l_iclog
;
2607 if (!(lsn_log
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
))) {
2608 lsn
= be64_to_cpu(lsn_log
->ic_header
.h_lsn
);
2609 if ((lsn
&& !lowest_lsn
) ||
2610 (XFS_LSN_CMP(lsn
, lowest_lsn
) < 0)) {
2614 lsn_log
= lsn_log
->ic_next
;
2615 } while (lsn_log
!= log
->l_iclog
);
2621 xlog_state_do_callback(
2624 struct xlog_in_core
*ciclog
)
2626 xlog_in_core_t
*iclog
;
2627 xlog_in_core_t
*first_iclog
; /* used to know when we've
2628 * processed all iclogs once */
2629 xfs_log_callback_t
*cb
, *cb_next
;
2631 xfs_lsn_t lowest_lsn
;
2632 int ioerrors
; /* counter: iclogs with errors */
2633 int loopdidcallbacks
; /* flag: inner loop did callbacks*/
2634 int funcdidcallbacks
; /* flag: function did callbacks */
2635 int repeats
; /* for issuing console warnings if
2636 * looping too many times */
2639 spin_lock(&log
->l_icloglock
);
2640 first_iclog
= iclog
= log
->l_iclog
;
2642 funcdidcallbacks
= 0;
2647 * Scan all iclogs starting with the one pointed to by the
2648 * log. Reset this starting point each time the log is
2649 * unlocked (during callbacks).
2651 * Keep looping through iclogs until one full pass is made
2652 * without running any callbacks.
2654 first_iclog
= log
->l_iclog
;
2655 iclog
= log
->l_iclog
;
2656 loopdidcallbacks
= 0;
2661 /* skip all iclogs in the ACTIVE & DIRTY states */
2662 if (iclog
->ic_state
&
2663 (XLOG_STATE_ACTIVE
|XLOG_STATE_DIRTY
)) {
2664 iclog
= iclog
->ic_next
;
2669 * Between marking a filesystem SHUTDOWN and stopping
2670 * the log, we do flush all iclogs to disk (if there
2671 * wasn't a log I/O error). So, we do want things to
2672 * go smoothly in case of just a SHUTDOWN w/o a
2675 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
2677 * Can only perform callbacks in order. Since
2678 * this iclog is not in the DONE_SYNC/
2679 * DO_CALLBACK state, we skip the rest and
2680 * just try to clean up. If we set our iclog
2681 * to DO_CALLBACK, we will not process it when
2682 * we retry since a previous iclog is in the
2683 * CALLBACK and the state cannot change since
2684 * we are holding the l_icloglock.
2686 if (!(iclog
->ic_state
&
2687 (XLOG_STATE_DONE_SYNC
|
2688 XLOG_STATE_DO_CALLBACK
))) {
2689 if (ciclog
&& (ciclog
->ic_state
==
2690 XLOG_STATE_DONE_SYNC
)) {
2691 ciclog
->ic_state
= XLOG_STATE_DO_CALLBACK
;
2696 * We now have an iclog that is in either the
2697 * DO_CALLBACK or DONE_SYNC states. The other
2698 * states (WANT_SYNC, SYNCING, or CALLBACK were
2699 * caught by the above if and are going to
2700 * clean (i.e. we aren't doing their callbacks)
2705 * We will do one more check here to see if we
2706 * have chased our tail around.
2709 lowest_lsn
= xlog_get_lowest_lsn(log
);
2711 XFS_LSN_CMP(lowest_lsn
,
2712 be64_to_cpu(iclog
->ic_header
.h_lsn
)) < 0) {
2713 iclog
= iclog
->ic_next
;
2714 continue; /* Leave this iclog for
2718 iclog
->ic_state
= XLOG_STATE_CALLBACK
;
2722 * Completion of a iclog IO does not imply that
2723 * a transaction has completed, as transactions
2724 * can be large enough to span many iclogs. We
2725 * cannot change the tail of the log half way
2726 * through a transaction as this may be the only
2727 * transaction in the log and moving th etail to
2728 * point to the middle of it will prevent
2729 * recovery from finding the start of the
2730 * transaction. Hence we should only update the
2731 * last_sync_lsn if this iclog contains
2732 * transaction completion callbacks on it.
2734 * We have to do this before we drop the
2735 * icloglock to ensure we are the only one that
2738 ASSERT(XFS_LSN_CMP(atomic64_read(&log
->l_last_sync_lsn
),
2739 be64_to_cpu(iclog
->ic_header
.h_lsn
)) <= 0);
2740 if (iclog
->ic_callback
)
2741 atomic64_set(&log
->l_last_sync_lsn
,
2742 be64_to_cpu(iclog
->ic_header
.h_lsn
));
2747 spin_unlock(&log
->l_icloglock
);
2750 * Keep processing entries in the callback list until
2751 * we come around and it is empty. We need to
2752 * atomically see that the list is empty and change the
2753 * state to DIRTY so that we don't miss any more
2754 * callbacks being added.
2756 spin_lock(&iclog
->ic_callback_lock
);
2757 cb
= iclog
->ic_callback
;
2759 iclog
->ic_callback_tail
= &(iclog
->ic_callback
);
2760 iclog
->ic_callback
= NULL
;
2761 spin_unlock(&iclog
->ic_callback_lock
);
2763 /* perform callbacks in the order given */
2764 for (; cb
; cb
= cb_next
) {
2765 cb_next
= cb
->cb_next
;
2766 cb
->cb_func(cb
->cb_arg
, aborted
);
2768 spin_lock(&iclog
->ic_callback_lock
);
2769 cb
= iclog
->ic_callback
;
2775 spin_lock(&log
->l_icloglock
);
2776 ASSERT(iclog
->ic_callback
== NULL
);
2777 spin_unlock(&iclog
->ic_callback_lock
);
2778 if (!(iclog
->ic_state
& XLOG_STATE_IOERROR
))
2779 iclog
->ic_state
= XLOG_STATE_DIRTY
;
2782 * Transition from DIRTY to ACTIVE if applicable.
2783 * NOP if STATE_IOERROR.
2785 xlog_state_clean_log(log
);
2787 /* wake up threads waiting in xfs_log_force() */
2788 wake_up_all(&iclog
->ic_force_wait
);
2790 iclog
= iclog
->ic_next
;
2791 } while (first_iclog
!= iclog
);
2793 if (repeats
> 5000) {
2794 flushcnt
+= repeats
;
2797 "%s: possible infinite loop (%d iterations)",
2798 __func__
, flushcnt
);
2800 } while (!ioerrors
&& loopdidcallbacks
);
2804 * Make one last gasp attempt to see if iclogs are being left in limbo.
2805 * If the above loop finds an iclog earlier than the current iclog and
2806 * in one of the syncing states, the current iclog is put into
2807 * DO_CALLBACK and the callbacks are deferred to the completion of the
2808 * earlier iclog. Walk the iclogs in order and make sure that no iclog
2809 * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2812 * Note that SYNCING|IOABORT is a valid state so we cannot just check
2813 * for ic_state == SYNCING.
2815 if (funcdidcallbacks
) {
2816 first_iclog
= iclog
= log
->l_iclog
;
2818 ASSERT(iclog
->ic_state
!= XLOG_STATE_DO_CALLBACK
);
2820 * Terminate the loop if iclogs are found in states
2821 * which will cause other threads to clean up iclogs.
2823 * SYNCING - i/o completion will go through logs
2824 * DONE_SYNC - interrupt thread should be waiting for
2826 * IOERROR - give up hope all ye who enter here
2828 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
||
2829 iclog
->ic_state
& XLOG_STATE_SYNCING
||
2830 iclog
->ic_state
== XLOG_STATE_DONE_SYNC
||
2831 iclog
->ic_state
== XLOG_STATE_IOERROR
)
2833 iclog
= iclog
->ic_next
;
2834 } while (first_iclog
!= iclog
);
2838 if (log
->l_iclog
->ic_state
& (XLOG_STATE_ACTIVE
|XLOG_STATE_IOERROR
))
2840 spin_unlock(&log
->l_icloglock
);
2843 wake_up_all(&log
->l_flush_wait
);
2848 * Finish transitioning this iclog to the dirty state.
2850 * Make sure that we completely execute this routine only when this is
2851 * the last call to the iclog. There is a good chance that iclog flushes,
2852 * when we reach the end of the physical log, get turned into 2 separate
2853 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2854 * routine. By using the reference count bwritecnt, we guarantee that only
2855 * the second completion goes through.
2857 * Callbacks could take time, so they are done outside the scope of the
2858 * global state machine log lock.
2861 xlog_state_done_syncing(
2862 xlog_in_core_t
*iclog
,
2865 struct xlog
*log
= iclog
->ic_log
;
2867 spin_lock(&log
->l_icloglock
);
2869 ASSERT(iclog
->ic_state
== XLOG_STATE_SYNCING
||
2870 iclog
->ic_state
== XLOG_STATE_IOERROR
);
2871 ASSERT(atomic_read(&iclog
->ic_refcnt
) == 0);
2872 ASSERT(iclog
->ic_bwritecnt
== 1 || iclog
->ic_bwritecnt
== 2);
2876 * If we got an error, either on the first buffer, or in the case of
2877 * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2878 * and none should ever be attempted to be written to disk
2881 if (iclog
->ic_state
!= XLOG_STATE_IOERROR
) {
2882 if (--iclog
->ic_bwritecnt
== 1) {
2883 spin_unlock(&log
->l_icloglock
);
2886 iclog
->ic_state
= XLOG_STATE_DONE_SYNC
;
2890 * Someone could be sleeping prior to writing out the next
2891 * iclog buffer, we wake them all, one will get to do the
2892 * I/O, the others get to wait for the result.
2894 wake_up_all(&iclog
->ic_write_wait
);
2895 spin_unlock(&log
->l_icloglock
);
2896 xlog_state_do_callback(log
, aborted
, iclog
); /* also cleans log */
2897 } /* xlog_state_done_syncing */
2901 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2902 * sleep. We wait on the flush queue on the head iclog as that should be
2903 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2904 * we will wait here and all new writes will sleep until a sync completes.
2906 * The in-core logs are used in a circular fashion. They are not used
2907 * out-of-order even when an iclog past the head is free.
2910 * * log_offset where xlog_write() can start writing into the in-core
2912 * * in-core log pointer to which xlog_write() should write.
2913 * * boolean indicating this is a continued write to an in-core log.
2914 * If this is the last write, then the in-core log's offset field
2915 * needs to be incremented, depending on the amount of data which
2919 xlog_state_get_iclog_space(
2922 struct xlog_in_core
**iclogp
,
2923 struct xlog_ticket
*ticket
,
2924 int *continued_write
,
2928 xlog_rec_header_t
*head
;
2929 xlog_in_core_t
*iclog
;
2933 spin_lock(&log
->l_icloglock
);
2934 if (XLOG_FORCED_SHUTDOWN(log
)) {
2935 spin_unlock(&log
->l_icloglock
);
2939 iclog
= log
->l_iclog
;
2940 if (iclog
->ic_state
!= XLOG_STATE_ACTIVE
) {
2941 XFS_STATS_INC(log
->l_mp
, xs_log_noiclogs
);
2943 /* Wait for log writes to have flushed */
2944 xlog_wait(&log
->l_flush_wait
, &log
->l_icloglock
);
2948 head
= &iclog
->ic_header
;
2950 atomic_inc(&iclog
->ic_refcnt
); /* prevents sync */
2951 log_offset
= iclog
->ic_offset
;
2953 /* On the 1st write to an iclog, figure out lsn. This works
2954 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2955 * committing to. If the offset is set, that's how many blocks
2958 if (log_offset
== 0) {
2959 ticket
->t_curr_res
-= log
->l_iclog_hsize
;
2960 xlog_tic_add_region(ticket
,
2962 XLOG_REG_TYPE_LRHEADER
);
2963 head
->h_cycle
= cpu_to_be32(log
->l_curr_cycle
);
2964 head
->h_lsn
= cpu_to_be64(
2965 xlog_assign_lsn(log
->l_curr_cycle
, log
->l_curr_block
));
2966 ASSERT(log
->l_curr_block
>= 0);
2969 /* If there is enough room to write everything, then do it. Otherwise,
2970 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2971 * bit is on, so this will get flushed out. Don't update ic_offset
2972 * until you know exactly how many bytes get copied. Therefore, wait
2973 * until later to update ic_offset.
2975 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2976 * can fit into remaining data section.
2978 if (iclog
->ic_size
- iclog
->ic_offset
< 2*sizeof(xlog_op_header_t
)) {
2979 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
2982 * If I'm the only one writing to this iclog, sync it to disk.
2983 * We need to do an atomic compare and decrement here to avoid
2984 * racing with concurrent atomic_dec_and_lock() calls in
2985 * xlog_state_release_iclog() when there is more than one
2986 * reference to the iclog.
2988 if (!atomic_add_unless(&iclog
->ic_refcnt
, -1, 1)) {
2989 /* we are the only one */
2990 spin_unlock(&log
->l_icloglock
);
2991 error
= xlog_state_release_iclog(log
, iclog
);
2995 spin_unlock(&log
->l_icloglock
);
3000 /* Do we have enough room to write the full amount in the remainder
3001 * of this iclog? Or must we continue a write on the next iclog and
3002 * mark this iclog as completely taken? In the case where we switch
3003 * iclogs (to mark it taken), this particular iclog will release/sync
3004 * to disk in xlog_write().
3006 if (len
<= iclog
->ic_size
- iclog
->ic_offset
) {
3007 *continued_write
= 0;
3008 iclog
->ic_offset
+= len
;
3010 *continued_write
= 1;
3011 xlog_state_switch_iclogs(log
, iclog
, iclog
->ic_size
);
3015 ASSERT(iclog
->ic_offset
<= iclog
->ic_size
);
3016 spin_unlock(&log
->l_icloglock
);
3018 *logoffsetp
= log_offset
;
3020 } /* xlog_state_get_iclog_space */
3022 /* The first cnt-1 times through here we don't need to
3023 * move the grant write head because the permanent
3024 * reservation has reserved cnt times the unit amount.
3025 * Release part of current permanent unit reservation and
3026 * reset current reservation to be one units worth. Also
3027 * move grant reservation head forward.
3030 xlog_regrant_reserve_log_space(
3032 struct xlog_ticket
*ticket
)
3034 trace_xfs_log_regrant_reserve_enter(log
, ticket
);
3036 if (ticket
->t_cnt
> 0)
3039 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
,
3040 ticket
->t_curr_res
);
3041 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
,
3042 ticket
->t_curr_res
);
3043 ticket
->t_curr_res
= ticket
->t_unit_res
;
3044 xlog_tic_reset_res(ticket
);
3046 trace_xfs_log_regrant_reserve_sub(log
, ticket
);
3048 /* just return if we still have some of the pre-reserved space */
3049 if (ticket
->t_cnt
> 0)
3052 xlog_grant_add_space(log
, &log
->l_reserve_head
.grant
,
3053 ticket
->t_unit_res
);
3055 trace_xfs_log_regrant_reserve_exit(log
, ticket
);
3057 ticket
->t_curr_res
= ticket
->t_unit_res
;
3058 xlog_tic_reset_res(ticket
);
3059 } /* xlog_regrant_reserve_log_space */
3063 * Give back the space left from a reservation.
3065 * All the information we need to make a correct determination of space left
3066 * is present. For non-permanent reservations, things are quite easy. The
3067 * count should have been decremented to zero. We only need to deal with the
3068 * space remaining in the current reservation part of the ticket. If the
3069 * ticket contains a permanent reservation, there may be left over space which
3070 * needs to be released. A count of N means that N-1 refills of the current
3071 * reservation can be done before we need to ask for more space. The first
3072 * one goes to fill up the first current reservation. Once we run out of
3073 * space, the count will stay at zero and the only space remaining will be
3074 * in the current reservation field.
3077 xlog_ungrant_log_space(
3079 struct xlog_ticket
*ticket
)
3083 if (ticket
->t_cnt
> 0)
3086 trace_xfs_log_ungrant_enter(log
, ticket
);
3087 trace_xfs_log_ungrant_sub(log
, ticket
);
3090 * If this is a permanent reservation ticket, we may be able to free
3091 * up more space based on the remaining count.
3093 bytes
= ticket
->t_curr_res
;
3094 if (ticket
->t_cnt
> 0) {
3095 ASSERT(ticket
->t_flags
& XLOG_TIC_PERM_RESERV
);
3096 bytes
+= ticket
->t_unit_res
*ticket
->t_cnt
;
3099 xlog_grant_sub_space(log
, &log
->l_reserve_head
.grant
, bytes
);
3100 xlog_grant_sub_space(log
, &log
->l_write_head
.grant
, bytes
);
3102 trace_xfs_log_ungrant_exit(log
, ticket
);
3104 xfs_log_space_wake(log
->l_mp
);
3108 * Flush iclog to disk if this is the last reference to the given iclog and
3109 * the WANT_SYNC bit is set.
3111 * When this function is entered, the iclog is not necessarily in the
3112 * WANT_SYNC state. It may be sitting around waiting to get filled.
3117 xlog_state_release_iclog(
3119 struct xlog_in_core
*iclog
)
3121 int sync
= 0; /* do we sync? */
3123 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3126 ASSERT(atomic_read(&iclog
->ic_refcnt
) > 0);
3127 if (!atomic_dec_and_lock(&iclog
->ic_refcnt
, &log
->l_icloglock
))
3130 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3131 spin_unlock(&log
->l_icloglock
);
3134 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3135 iclog
->ic_state
== XLOG_STATE_WANT_SYNC
);
3137 if (iclog
->ic_state
== XLOG_STATE_WANT_SYNC
) {
3138 /* update tail before writing to iclog */
3139 xfs_lsn_t tail_lsn
= xlog_assign_tail_lsn(log
->l_mp
);
3141 iclog
->ic_state
= XLOG_STATE_SYNCING
;
3142 iclog
->ic_header
.h_tail_lsn
= cpu_to_be64(tail_lsn
);
3143 xlog_verify_tail_lsn(log
, iclog
, tail_lsn
);
3144 /* cycle incremented when incrementing curr_block */
3146 spin_unlock(&log
->l_icloglock
);
3149 * We let the log lock go, so it's possible that we hit a log I/O
3150 * error or some other SHUTDOWN condition that marks the iclog
3151 * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3152 * this iclog has consistent data, so we ignore IOERROR
3153 * flags after this point.
3156 return xlog_sync(log
, iclog
);
3158 } /* xlog_state_release_iclog */
3162 * This routine will mark the current iclog in the ring as WANT_SYNC
3163 * and move the current iclog pointer to the next iclog in the ring.
3164 * When this routine is called from xlog_state_get_iclog_space(), the
3165 * exact size of the iclog has not yet been determined. All we know is
3166 * that every data block. We have run out of space in this log record.
3169 xlog_state_switch_iclogs(
3171 struct xlog_in_core
*iclog
,
3174 ASSERT(iclog
->ic_state
== XLOG_STATE_ACTIVE
);
3176 eventual_size
= iclog
->ic_offset
;
3177 iclog
->ic_state
= XLOG_STATE_WANT_SYNC
;
3178 iclog
->ic_header
.h_prev_block
= cpu_to_be32(log
->l_prev_block
);
3179 log
->l_prev_block
= log
->l_curr_block
;
3180 log
->l_prev_cycle
= log
->l_curr_cycle
;
3182 /* roll log?: ic_offset changed later */
3183 log
->l_curr_block
+= BTOBB(eventual_size
)+BTOBB(log
->l_iclog_hsize
);
3185 /* Round up to next log-sunit */
3186 if (xfs_sb_version_haslogv2(&log
->l_mp
->m_sb
) &&
3187 log
->l_mp
->m_sb
.sb_logsunit
> 1) {
3188 __uint32_t sunit_bb
= BTOBB(log
->l_mp
->m_sb
.sb_logsunit
);
3189 log
->l_curr_block
= roundup(log
->l_curr_block
, sunit_bb
);
3192 if (log
->l_curr_block
>= log
->l_logBBsize
) {
3194 * Rewind the current block before the cycle is bumped to make
3195 * sure that the combined LSN never transiently moves forward
3196 * when the log wraps to the next cycle. This is to support the
3197 * unlocked sample of these fields from xlog_valid_lsn(). Most
3198 * other cases should acquire l_icloglock.
3200 log
->l_curr_block
-= log
->l_logBBsize
;
3201 ASSERT(log
->l_curr_block
>= 0);
3203 log
->l_curr_cycle
++;
3204 if (log
->l_curr_cycle
== XLOG_HEADER_MAGIC_NUM
)
3205 log
->l_curr_cycle
++;
3207 ASSERT(iclog
== log
->l_iclog
);
3208 log
->l_iclog
= iclog
->ic_next
;
3209 } /* xlog_state_switch_iclogs */
3212 * Write out all data in the in-core log as of this exact moment in time.
3214 * Data may be written to the in-core log during this call. However,
3215 * we don't guarantee this data will be written out. A change from past
3216 * implementation means this routine will *not* write out zero length LRs.
3218 * Basically, we try and perform an intelligent scan of the in-core logs.
3219 * If we determine there is no flushable data, we just return. There is no
3220 * flushable data if:
3222 * 1. the current iclog is active and has no data; the previous iclog
3223 * is in the active or dirty state.
3224 * 2. the current iclog is drity, and the previous iclog is in the
3225 * active or dirty state.
3229 * 1. the current iclog is not in the active nor dirty state.
3230 * 2. the current iclog dirty, and the previous iclog is not in the
3231 * active nor dirty state.
3232 * 3. the current iclog is active, and there is another thread writing
3233 * to this particular iclog.
3234 * 4. a) the current iclog is active and has no other writers
3235 * b) when we return from flushing out this iclog, it is still
3236 * not in the active nor dirty state.
3240 struct xfs_mount
*mp
,
3244 struct xlog
*log
= mp
->m_log
;
3245 struct xlog_in_core
*iclog
;
3248 XFS_STATS_INC(mp
, xs_log_force
);
3250 xlog_cil_force(log
);
3252 spin_lock(&log
->l_icloglock
);
3254 iclog
= log
->l_iclog
;
3255 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3256 spin_unlock(&log
->l_icloglock
);
3260 /* If the head iclog is not active nor dirty, we just attach
3261 * ourselves to the head and go to sleep.
3263 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3264 iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3266 * If the head is dirty or (active and empty), then
3267 * we need to look at the previous iclog. If the previous
3268 * iclog is active or dirty we are done. There is nothing
3269 * to sync out. Otherwise, we attach ourselves to the
3270 * previous iclog and go to sleep.
3272 if (iclog
->ic_state
== XLOG_STATE_DIRTY
||
3273 (atomic_read(&iclog
->ic_refcnt
) == 0
3274 && iclog
->ic_offset
== 0)) {
3275 iclog
= iclog
->ic_prev
;
3276 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
||
3277 iclog
->ic_state
== XLOG_STATE_DIRTY
)
3282 if (atomic_read(&iclog
->ic_refcnt
) == 0) {
3283 /* We are the only one with access to this
3284 * iclog. Flush it out now. There should
3285 * be a roundoff of zero to show that someone
3286 * has already taken care of the roundoff from
3287 * the previous sync.
3289 atomic_inc(&iclog
->ic_refcnt
);
3290 lsn
= be64_to_cpu(iclog
->ic_header
.h_lsn
);
3291 xlog_state_switch_iclogs(log
, iclog
, 0);
3292 spin_unlock(&log
->l_icloglock
);
3294 if (xlog_state_release_iclog(log
, iclog
))
3299 spin_lock(&log
->l_icloglock
);
3300 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) == lsn
&&
3301 iclog
->ic_state
!= XLOG_STATE_DIRTY
)
3306 /* Someone else is writing to this iclog.
3307 * Use its call to flush out the data. However,
3308 * the other thread may not force out this LR,
3309 * so we mark it WANT_SYNC.
3311 xlog_state_switch_iclogs(log
, iclog
, 0);
3317 /* By the time we come around again, the iclog could've been filled
3318 * which would give it another lsn. If we have a new lsn, just
3319 * return because the relevant data has been flushed.
3322 if (flags
& XFS_LOG_SYNC
) {
3324 * We must check if we're shutting down here, before
3325 * we wait, while we're holding the l_icloglock.
3326 * Then we check again after waking up, in case our
3327 * sleep was disturbed by a bad news.
3329 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3330 spin_unlock(&log
->l_icloglock
);
3333 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3334 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3336 * No need to grab the log lock here since we're
3337 * only deciding whether or not to return EIO
3338 * and the memory read should be atomic.
3340 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3345 spin_unlock(&log
->l_icloglock
);
3351 * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3352 * about errors or whether the log was flushed or not. This is the normal
3353 * interface to use when trying to unpin items or move the log forward.
3360 trace_xfs_log_force(mp
, 0, _RET_IP_
);
3361 _xfs_log_force(mp
, flags
, NULL
);
3365 * Force the in-core log to disk for a specific LSN.
3367 * Find in-core log with lsn.
3368 * If it is in the DIRTY state, just return.
3369 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3370 * state and go to sleep or return.
3371 * If it is in any other state, go to sleep or return.
3373 * Synchronous forces are implemented with a signal variable. All callers
3374 * to force a given lsn to disk will wait on a the sv attached to the
3375 * specific in-core log. When given in-core log finally completes its
3376 * write to disk, that thread will wake up all threads waiting on the
3381 struct xfs_mount
*mp
,
3386 struct xlog
*log
= mp
->m_log
;
3387 struct xlog_in_core
*iclog
;
3388 int already_slept
= 0;
3392 XFS_STATS_INC(mp
, xs_log_force
);
3394 lsn
= xlog_cil_force_lsn(log
, lsn
);
3395 if (lsn
== NULLCOMMITLSN
)
3399 spin_lock(&log
->l_icloglock
);
3400 iclog
= log
->l_iclog
;
3401 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3402 spin_unlock(&log
->l_icloglock
);
3407 if (be64_to_cpu(iclog
->ic_header
.h_lsn
) != lsn
) {
3408 iclog
= iclog
->ic_next
;
3412 if (iclog
->ic_state
== XLOG_STATE_DIRTY
) {
3413 spin_unlock(&log
->l_icloglock
);
3417 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3419 * We sleep here if we haven't already slept (e.g.
3420 * this is the first time we've looked at the correct
3421 * iclog buf) and the buffer before us is going to
3422 * be sync'ed. The reason for this is that if we
3423 * are doing sync transactions here, by waiting for
3424 * the previous I/O to complete, we can allow a few
3425 * more transactions into this iclog before we close
3428 * Otherwise, we mark the buffer WANT_SYNC, and bump
3429 * up the refcnt so we can release the log (which
3430 * drops the ref count). The state switch keeps new
3431 * transaction commits from using this buffer. When
3432 * the current commits finish writing into the buffer,
3433 * the refcount will drop to zero and the buffer will
3436 if (!already_slept
&&
3437 (iclog
->ic_prev
->ic_state
&
3438 (XLOG_STATE_WANT_SYNC
| XLOG_STATE_SYNCING
))) {
3439 ASSERT(!(iclog
->ic_state
& XLOG_STATE_IOERROR
));
3441 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3443 xlog_wait(&iclog
->ic_prev
->ic_write_wait
,
3448 atomic_inc(&iclog
->ic_refcnt
);
3449 xlog_state_switch_iclogs(log
, iclog
, 0);
3450 spin_unlock(&log
->l_icloglock
);
3451 if (xlog_state_release_iclog(log
, iclog
))
3455 spin_lock(&log
->l_icloglock
);
3458 if ((flags
& XFS_LOG_SYNC
) && /* sleep */
3460 (XLOG_STATE_ACTIVE
| XLOG_STATE_DIRTY
))) {
3462 * Don't wait on completion if we know that we've
3463 * gotten a log write error.
3465 if (iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3466 spin_unlock(&log
->l_icloglock
);
3469 XFS_STATS_INC(mp
, xs_log_force_sleep
);
3470 xlog_wait(&iclog
->ic_force_wait
, &log
->l_icloglock
);
3472 * No need to grab the log lock here since we're
3473 * only deciding whether or not to return EIO
3474 * and the memory read should be atomic.
3476 if (iclog
->ic_state
& XLOG_STATE_IOERROR
)
3478 } else { /* just return */
3479 spin_unlock(&log
->l_icloglock
);
3483 } while (iclog
!= log
->l_iclog
);
3485 spin_unlock(&log
->l_icloglock
);
3490 * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3491 * about errors or whether the log was flushed or not. This is the normal
3492 * interface to use when trying to unpin items or move the log forward.
3500 trace_xfs_log_force(mp
, lsn
, _RET_IP_
);
3501 _xfs_log_force_lsn(mp
, lsn
, flags
, NULL
);
3505 * Called when we want to mark the current iclog as being ready to sync to
3509 xlog_state_want_sync(
3511 struct xlog_in_core
*iclog
)
3513 assert_spin_locked(&log
->l_icloglock
);
3515 if (iclog
->ic_state
== XLOG_STATE_ACTIVE
) {
3516 xlog_state_switch_iclogs(log
, iclog
, 0);
3518 ASSERT(iclog
->ic_state
&
3519 (XLOG_STATE_WANT_SYNC
|XLOG_STATE_IOERROR
));
3524 /*****************************************************************************
3528 *****************************************************************************
3532 * Free a used ticket when its refcount falls to zero.
3536 xlog_ticket_t
*ticket
)
3538 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3539 if (atomic_dec_and_test(&ticket
->t_ref
))
3540 kmem_zone_free(xfs_log_ticket_zone
, ticket
);
3545 xlog_ticket_t
*ticket
)
3547 ASSERT(atomic_read(&ticket
->t_ref
) > 0);
3548 atomic_inc(&ticket
->t_ref
);
3553 * Figure out the total log space unit (in bytes) that would be
3554 * required for a log ticket.
3557 xfs_log_calc_unit_res(
3558 struct xfs_mount
*mp
,
3561 struct xlog
*log
= mp
->m_log
;
3566 * Permanent reservations have up to 'cnt'-1 active log operations
3567 * in the log. A unit in this case is the amount of space for one
3568 * of these log operations. Normal reservations have a cnt of 1
3569 * and their unit amount is the total amount of space required.
3571 * The following lines of code account for non-transaction data
3572 * which occupy space in the on-disk log.
3574 * Normal form of a transaction is:
3575 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3576 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3578 * We need to account for all the leadup data and trailer data
3579 * around the transaction data.
3580 * And then we need to account for the worst case in terms of using
3582 * The worst case will happen if:
3583 * - the placement of the transaction happens to be such that the
3584 * roundoff is at its maximum
3585 * - the transaction data is synced before the commit record is synced
3586 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3587 * Therefore the commit record is in its own Log Record.
3588 * This can happen as the commit record is called with its
3589 * own region to xlog_write().
3590 * This then means that in the worst case, roundoff can happen for
3591 * the commit-rec as well.
3592 * The commit-rec is smaller than padding in this scenario and so it is
3593 * not added separately.
3596 /* for trans header */
3597 unit_bytes
+= sizeof(xlog_op_header_t
);
3598 unit_bytes
+= sizeof(xfs_trans_header_t
);
3601 unit_bytes
+= sizeof(xlog_op_header_t
);
3604 * for LR headers - the space for data in an iclog is the size minus
3605 * the space used for the headers. If we use the iclog size, then we
3606 * undercalculate the number of headers required.
3608 * Furthermore - the addition of op headers for split-recs might
3609 * increase the space required enough to require more log and op
3610 * headers, so take that into account too.
3612 * IMPORTANT: This reservation makes the assumption that if this
3613 * transaction is the first in an iclog and hence has the LR headers
3614 * accounted to it, then the remaining space in the iclog is
3615 * exclusively for this transaction. i.e. if the transaction is larger
3616 * than the iclog, it will be the only thing in that iclog.
3617 * Fundamentally, this means we must pass the entire log vector to
3618 * xlog_write to guarantee this.
3620 iclog_space
= log
->l_iclog_size
- log
->l_iclog_hsize
;
3621 num_headers
= howmany(unit_bytes
, iclog_space
);
3623 /* for split-recs - ophdrs added when data split over LRs */
3624 unit_bytes
+= sizeof(xlog_op_header_t
) * num_headers
;
3626 /* add extra header reservations if we overrun */
3627 while (!num_headers
||
3628 howmany(unit_bytes
, iclog_space
) > num_headers
) {
3629 unit_bytes
+= sizeof(xlog_op_header_t
);
3632 unit_bytes
+= log
->l_iclog_hsize
* num_headers
;
3634 /* for commit-rec LR header - note: padding will subsume the ophdr */
3635 unit_bytes
+= log
->l_iclog_hsize
;
3637 /* for roundoff padding for transaction data and one for commit record */
3638 if (xfs_sb_version_haslogv2(&mp
->m_sb
) && mp
->m_sb
.sb_logsunit
> 1) {
3639 /* log su roundoff */
3640 unit_bytes
+= 2 * mp
->m_sb
.sb_logsunit
;
3643 unit_bytes
+= 2 * BBSIZE
;
3650 * Allocate and initialise a new log ticket.
3652 struct xlog_ticket
*
3659 xfs_km_flags_t alloc_flags
)
3661 struct xlog_ticket
*tic
;
3664 tic
= kmem_zone_zalloc(xfs_log_ticket_zone
, alloc_flags
);
3668 unit_res
= xfs_log_calc_unit_res(log
->l_mp
, unit_bytes
);
3670 atomic_set(&tic
->t_ref
, 1);
3671 tic
->t_task
= current
;
3672 INIT_LIST_HEAD(&tic
->t_queue
);
3673 tic
->t_unit_res
= unit_res
;
3674 tic
->t_curr_res
= unit_res
;
3677 tic
->t_tid
= prandom_u32();
3678 tic
->t_clientid
= client
;
3679 tic
->t_flags
= XLOG_TIC_INITED
;
3681 tic
->t_flags
|= XLOG_TIC_PERM_RESERV
;
3683 xlog_tic_reset_res(tic
);
3689 /******************************************************************************
3691 * Log debug routines
3693 ******************************************************************************
3697 * Make sure that the destination ptr is within the valid data region of
3698 * one of the iclogs. This uses backup pointers stored in a different
3699 * part of the log in case we trash the log structure.
3702 xlog_verify_dest_ptr(
3709 for (i
= 0; i
< log
->l_iclog_bufs
; i
++) {
3710 if (ptr
>= log
->l_iclog_bak
[i
] &&
3711 ptr
<= log
->l_iclog_bak
[i
] + log
->l_iclog_size
)
3716 xfs_emerg(log
->l_mp
, "%s: invalid ptr", __func__
);
3720 * Check to make sure the grant write head didn't just over lap the tail. If
3721 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3722 * the cycles differ by exactly one and check the byte count.
3724 * This check is run unlocked, so can give false positives. Rather than assert
3725 * on failures, use a warn-once flag and a panic tag to allow the admin to
3726 * determine if they want to panic the machine when such an error occurs. For
3727 * debug kernels this will have the same effect as using an assert but, unlinke
3728 * an assert, it can be turned off at runtime.
3731 xlog_verify_grant_tail(
3734 int tail_cycle
, tail_blocks
;
3737 xlog_crack_grant_head(&log
->l_write_head
.grant
, &cycle
, &space
);
3738 xlog_crack_atomic_lsn(&log
->l_tail_lsn
, &tail_cycle
, &tail_blocks
);
3739 if (tail_cycle
!= cycle
) {
3740 if (cycle
- 1 != tail_cycle
&&
3741 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3742 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3743 "%s: cycle - 1 != tail_cycle", __func__
);
3744 log
->l_flags
|= XLOG_TAIL_WARN
;
3747 if (space
> BBTOB(tail_blocks
) &&
3748 !(log
->l_flags
& XLOG_TAIL_WARN
)) {
3749 xfs_alert_tag(log
->l_mp
, XFS_PTAG_LOGRES
,
3750 "%s: space > BBTOB(tail_blocks)", __func__
);
3751 log
->l_flags
|= XLOG_TAIL_WARN
;
3756 /* check if it will fit */
3758 xlog_verify_tail_lsn(
3760 struct xlog_in_core
*iclog
,
3765 if (CYCLE_LSN(tail_lsn
) == log
->l_prev_cycle
) {
3767 log
->l_logBBsize
- (log
->l_prev_block
- BLOCK_LSN(tail_lsn
));
3768 if (blocks
< BTOBB(iclog
->ic_offset
)+BTOBB(log
->l_iclog_hsize
))
3769 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3771 ASSERT(CYCLE_LSN(tail_lsn
)+1 == log
->l_prev_cycle
);
3773 if (BLOCK_LSN(tail_lsn
) == log
->l_prev_block
)
3774 xfs_emerg(log
->l_mp
, "%s: tail wrapped", __func__
);
3776 blocks
= BLOCK_LSN(tail_lsn
) - log
->l_prev_block
;
3777 if (blocks
< BTOBB(iclog
->ic_offset
) + 1)
3778 xfs_emerg(log
->l_mp
, "%s: ran out of log space", __func__
);
3780 } /* xlog_verify_tail_lsn */
3783 * Perform a number of checks on the iclog before writing to disk.
3785 * 1. Make sure the iclogs are still circular
3786 * 2. Make sure we have a good magic number
3787 * 3. Make sure we don't have magic numbers in the data
3788 * 4. Check fields of each log operation header for:
3789 * A. Valid client identifier
3790 * B. tid ptr value falls in valid ptr space (user space code)
3791 * C. Length in log record header is correct according to the
3792 * individual operation headers within record.
3793 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3794 * log, check the preceding blocks of the physical log to make sure all
3795 * the cycle numbers agree with the current cycle number.
3800 struct xlog_in_core
*iclog
,
3804 xlog_op_header_t
*ophead
;
3805 xlog_in_core_t
*icptr
;
3806 xlog_in_core_2_t
*xhdr
;
3807 void *base_ptr
, *ptr
, *p
;
3808 ptrdiff_t field_offset
;
3810 int len
, i
, j
, k
, op_len
;
3813 /* check validity of iclog pointers */
3814 spin_lock(&log
->l_icloglock
);
3815 icptr
= log
->l_iclog
;
3816 for (i
= 0; i
< log
->l_iclog_bufs
; i
++, icptr
= icptr
->ic_next
)
3819 if (icptr
!= log
->l_iclog
)
3820 xfs_emerg(log
->l_mp
, "%s: corrupt iclog ring", __func__
);
3821 spin_unlock(&log
->l_icloglock
);
3823 /* check log magic numbers */
3824 if (iclog
->ic_header
.h_magicno
!= cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3825 xfs_emerg(log
->l_mp
, "%s: invalid magic num", __func__
);
3827 base_ptr
= ptr
= &iclog
->ic_header
;
3828 p
= &iclog
->ic_header
;
3829 for (ptr
+= BBSIZE
; ptr
< base_ptr
+ count
; ptr
+= BBSIZE
) {
3830 if (*(__be32
*)ptr
== cpu_to_be32(XLOG_HEADER_MAGIC_NUM
))
3831 xfs_emerg(log
->l_mp
, "%s: unexpected magic num",
3836 len
= be32_to_cpu(iclog
->ic_header
.h_num_logops
);
3837 base_ptr
= ptr
= iclog
->ic_datap
;
3839 xhdr
= iclog
->ic_data
;
3840 for (i
= 0; i
< len
; i
++) {
3843 /* clientid is only 1 byte */
3844 p
= &ophead
->oh_clientid
;
3845 field_offset
= p
- base_ptr
;
3846 if (!syncing
|| (field_offset
& 0x1ff)) {
3847 clientid
= ophead
->oh_clientid
;
3849 idx
= BTOBBT((char *)&ophead
->oh_clientid
- iclog
->ic_datap
);
3850 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3851 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3852 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3853 clientid
= xlog_get_client_id(
3854 xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3856 clientid
= xlog_get_client_id(
3857 iclog
->ic_header
.h_cycle_data
[idx
]);
3860 if (clientid
!= XFS_TRANSACTION
&& clientid
!= XFS_LOG
)
3862 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3863 __func__
, clientid
, ophead
,
3864 (unsigned long)field_offset
);
3867 p
= &ophead
->oh_len
;
3868 field_offset
= p
- base_ptr
;
3869 if (!syncing
|| (field_offset
& 0x1ff)) {
3870 op_len
= be32_to_cpu(ophead
->oh_len
);
3872 idx
= BTOBBT((uintptr_t)&ophead
->oh_len
-
3873 (uintptr_t)iclog
->ic_datap
);
3874 if (idx
>= (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
)) {
3875 j
= idx
/ (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3876 k
= idx
% (XLOG_HEADER_CYCLE_SIZE
/ BBSIZE
);
3877 op_len
= be32_to_cpu(xhdr
[j
].hic_xheader
.xh_cycle_data
[k
]);
3879 op_len
= be32_to_cpu(iclog
->ic_header
.h_cycle_data
[idx
]);
3882 ptr
+= sizeof(xlog_op_header_t
) + op_len
;
3884 } /* xlog_verify_iclog */
3888 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3894 xlog_in_core_t
*iclog
, *ic
;
3896 iclog
= log
->l_iclog
;
3897 if (! (iclog
->ic_state
& XLOG_STATE_IOERROR
)) {
3899 * Mark all the incore logs IOERROR.
3900 * From now on, no log flushes will result.
3904 ic
->ic_state
= XLOG_STATE_IOERROR
;
3906 } while (ic
!= iclog
);
3910 * Return non-zero, if state transition has already happened.
3916 * This is called from xfs_force_shutdown, when we're forcibly
3917 * shutting down the filesystem, typically because of an IO error.
3918 * Our main objectives here are to make sure that:
3919 * a. if !logerror, flush the logs to disk. Anything modified
3920 * after this is ignored.
3921 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3922 * parties to find out, 'atomically'.
3923 * c. those who're sleeping on log reservations, pinned objects and
3924 * other resources get woken up, and be told the bad news.
3925 * d. nothing new gets queued up after (b) and (c) are done.
3927 * Note: for the !logerror case we need to flush the regions held in memory out
3928 * to disk first. This needs to be done before the log is marked as shutdown,
3929 * otherwise the iclog writes will fail.
3932 xfs_log_force_umount(
3933 struct xfs_mount
*mp
,
3942 * If this happens during log recovery, don't worry about
3943 * locking; the log isn't open for business yet.
3946 log
->l_flags
& XLOG_ACTIVE_RECOVERY
) {
3947 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3949 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3954 * Somebody could've already done the hard work for us.
3955 * No need to get locks for this.
3957 if (logerror
&& log
->l_iclog
->ic_state
& XLOG_STATE_IOERROR
) {
3958 ASSERT(XLOG_FORCED_SHUTDOWN(log
));
3963 * Flush all the completed transactions to disk before marking the log
3964 * being shut down. We need to do it in this order to ensure that
3965 * completed operations are safely on disk before we shut down, and that
3966 * we don't have to issue any buffer IO after the shutdown flags are set
3967 * to guarantee this.
3970 _xfs_log_force(mp
, XFS_LOG_SYNC
, NULL
);
3973 * mark the filesystem and the as in a shutdown state and wake
3974 * everybody up to tell them the bad news.
3976 spin_lock(&log
->l_icloglock
);
3977 mp
->m_flags
|= XFS_MOUNT_FS_SHUTDOWN
;
3979 mp
->m_sb_bp
->b_flags
|= XBF_DONE
;
3982 * Mark the log and the iclogs with IO error flags to prevent any
3983 * further log IO from being issued or completed.
3985 log
->l_flags
|= XLOG_IO_ERROR
;
3986 retval
= xlog_state_ioerror(log
);
3987 spin_unlock(&log
->l_icloglock
);
3990 * We don't want anybody waiting for log reservations after this. That
3991 * means we have to wake up everybody queued up on reserveq as well as
3992 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3993 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3994 * action is protected by the grant locks.
3996 xlog_grant_head_wake_all(&log
->l_reserve_head
);
3997 xlog_grant_head_wake_all(&log
->l_write_head
);
4000 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
4001 * as if the log writes were completed. The abort handling in the log
4002 * item committed callback functions will do this again under lock to
4005 wake_up_all(&log
->l_cilp
->xc_commit_wait
);
4006 xlog_state_do_callback(log
, XFS_LI_ABORTED
, NULL
);
4008 #ifdef XFSERRORDEBUG
4010 xlog_in_core_t
*iclog
;
4012 spin_lock(&log
->l_icloglock
);
4013 iclog
= log
->l_iclog
;
4015 ASSERT(iclog
->ic_callback
== 0);
4016 iclog
= iclog
->ic_next
;
4017 } while (iclog
!= log
->l_iclog
);
4018 spin_unlock(&log
->l_icloglock
);
4021 /* return non-zero if log IOERROR transition had already happened */
4029 xlog_in_core_t
*iclog
;
4031 iclog
= log
->l_iclog
;
4033 /* endianness does not matter here, zero is zero in
4036 if (iclog
->ic_header
.h_num_logops
)
4038 iclog
= iclog
->ic_next
;
4039 } while (iclog
!= log
->l_iclog
);
4044 * Verify that an LSN stamped into a piece of metadata is valid. This is
4045 * intended for use in read verifiers on v5 superblocks.
4049 struct xfs_mount
*mp
,
4052 struct xlog
*log
= mp
->m_log
;
4056 * norecovery mode skips mount-time log processing and unconditionally
4057 * resets the in-core LSN. We can't validate in this mode, but
4058 * modifications are not allowed anyways so just return true.
4060 if (mp
->m_flags
& XFS_MOUNT_NORECOVERY
)
4064 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4065 * handled by recovery and thus safe to ignore here.
4067 if (lsn
== NULLCOMMITLSN
)
4070 valid
= xlog_valid_lsn(mp
->m_log
, lsn
);
4072 /* warn the user about what's gone wrong before verifier failure */
4074 spin_lock(&log
->l_icloglock
);
4076 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4077 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4078 CYCLE_LSN(lsn
), BLOCK_LSN(lsn
),
4079 log
->l_curr_cycle
, log
->l_curr_block
);
4080 spin_unlock(&log
->l_icloglock
);