2 * Generic address resultion entity
6 * net_ratelimit Andi Kleen
7 * in{4,6}_pton YOSHIFUJI Hideaki, Copyright (C)2006 USAGI/WIDE Project
9 * Created by Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
17 #include <linux/module.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel.h>
20 #include <linux/ctype.h>
21 #include <linux/inet.h>
23 #include <linux/net.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/percpu.h>
27 #include <linux/init.h>
28 #include <linux/ratelimit.h>
31 #include <net/net_ratelimit.h>
33 #include <asm/byteorder.h>
34 #include <asm/uaccess.h>
36 int net_msg_warn __read_mostly
= 1;
37 EXPORT_SYMBOL(net_msg_warn
);
39 DEFINE_RATELIMIT_STATE(net_ratelimit_state
, 5 * HZ
, 10);
41 * All net warning printk()s should be guarded by this function.
43 int net_ratelimit(void)
45 return __ratelimit(&net_ratelimit_state
);
47 EXPORT_SYMBOL(net_ratelimit
);
50 * Convert an ASCII string to binary IP.
51 * This is outside of net/ipv4/ because various code that uses IP addresses
52 * is otherwise not dependent on the TCP/IP stack.
55 __be32
in_aton(const char *str
)
62 for (i
= 0; i
< 4; i
++) {
66 while (*str
!= '\0' && *str
!= '.' && *str
!= '\n') {
78 EXPORT_SYMBOL(in_aton
);
80 #define IN6PTON_XDIGIT 0x00010000
81 #define IN6PTON_DIGIT 0x00020000
82 #define IN6PTON_COLON_MASK 0x00700000
83 #define IN6PTON_COLON_1 0x00100000 /* single : requested */
84 #define IN6PTON_COLON_2 0x00200000 /* second : requested */
85 #define IN6PTON_COLON_1_2 0x00400000 /* :: requested */
86 #define IN6PTON_DOT 0x00800000 /* . */
87 #define IN6PTON_DELIM 0x10000000
88 #define IN6PTON_NULL 0x20000000 /* first/tail */
89 #define IN6PTON_UNKNOWN 0x40000000
91 static inline int xdigit2bin(char c
, int delim
)
95 if (c
== delim
|| c
== '\0')
98 return IN6PTON_COLON_MASK
;
104 return val
| IN6PTON_XDIGIT
| (val
< 10 ? IN6PTON_DIGIT
: 0);
107 return IN6PTON_DELIM
;
108 return IN6PTON_UNKNOWN
;
112 * in4_pton - convert an IPv4 address from literal to binary representation
113 * @src: the start of the IPv4 address string
114 * @srclen: the length of the string, -1 means strlen(src)
115 * @dst: the binary (u8[4] array) representation of the IPv4 address
116 * @delim: the delimiter of the IPv4 address in @src, -1 means no delimiter
117 * @end: A pointer to the end of the parsed string will be placed here
119 * Return one on success, return zero when any error occurs
120 * and @end will point to the end of the parsed string.
123 int in4_pton(const char *src
, int srclen
,
125 int delim
, const char **end
)
135 srclen
= strlen(src
);
141 c
= xdigit2bin(srclen
> 0 ? *s
: '\0', delim
);
142 if (!(c
& (IN6PTON_DIGIT
| IN6PTON_DOT
| IN6PTON_DELIM
| IN6PTON_COLON_MASK
))) {
145 if (c
& (IN6PTON_DOT
| IN6PTON_DELIM
| IN6PTON_COLON_MASK
)) {
151 if (c
& (IN6PTON_DELIM
| IN6PTON_COLON_MASK
)) {
159 if ((w
& 0xffff) > 255) {
169 memcpy(dst
, dbuf
, sizeof(dbuf
));
175 EXPORT_SYMBOL(in4_pton
);
178 * in6_pton - convert an IPv6 address from literal to binary representation
179 * @src: the start of the IPv6 address string
180 * @srclen: the length of the string, -1 means strlen(src)
181 * @dst: the binary (u8[16] array) representation of the IPv6 address
182 * @delim: the delimiter of the IPv6 address in @src, -1 means no delimiter
183 * @end: A pointer to the end of the parsed string will be placed here
185 * Return one on success, return zero when any error occurs
186 * and @end will point to the end of the parsed string.
189 int in6_pton(const char *src
, int srclen
,
191 int delim
, const char **end
)
193 const char *s
, *tok
= NULL
;
198 int state
= IN6PTON_COLON_1_2
| IN6PTON_XDIGIT
| IN6PTON_NULL
;
201 memset(dbuf
, 0, sizeof(dbuf
));
206 srclen
= strlen(src
);
211 c
= xdigit2bin(srclen
> 0 ? *s
: '\0', delim
);
214 if (c
& (IN6PTON_DELIM
| IN6PTON_COLON_MASK
)) {
215 /* process one 16-bit word */
216 if (!(state
& IN6PTON_NULL
)) {
217 *d
++ = (w
>> 8) & 0xff;
221 if (c
& IN6PTON_DELIM
) {
222 /* We've processed last word */
227 * COLON_2 => XDIGIT|DELIM
228 * COLON_1_2 => COLON_2
230 switch (state
& IN6PTON_COLON_MASK
) {
231 case IN6PTON_COLON_2
:
233 state
= IN6PTON_XDIGIT
| IN6PTON_DELIM
;
234 if (dc
- dbuf
>= sizeof(dbuf
))
235 state
|= IN6PTON_NULL
;
237 case IN6PTON_COLON_1
|IN6PTON_COLON_1_2
:
238 state
= IN6PTON_XDIGIT
| IN6PTON_COLON_2
;
240 case IN6PTON_COLON_1
:
241 state
= IN6PTON_XDIGIT
;
243 case IN6PTON_COLON_1_2
:
244 state
= IN6PTON_COLON_2
;
253 if (c
& IN6PTON_DOT
) {
254 ret
= in4_pton(tok
? tok
: s
, srclen
+ (int)(s
- tok
), d
, delim
, &s
);
262 w
= (w
<< 4) | (0xff & c
);
263 state
= IN6PTON_COLON_1
| IN6PTON_DELIM
;
265 state
|= IN6PTON_XDIGIT
;
267 if (!dc
&& d
+ 2 < dbuf
+ sizeof(dbuf
)) {
268 state
|= IN6PTON_COLON_1_2
;
269 state
&= ~IN6PTON_DELIM
;
271 if (d
+ 2 >= dbuf
+ sizeof(dbuf
)) {
272 state
&= ~(IN6PTON_COLON_1
|IN6PTON_COLON_1_2
);
275 if ((dc
&& d
+ 4 < dbuf
+ sizeof(dbuf
)) ||
276 d
+ 4 == dbuf
+ sizeof(dbuf
)) {
277 state
|= IN6PTON_DOT
;
279 if (d
>= dbuf
+ sizeof(dbuf
)) {
280 state
&= ~(IN6PTON_XDIGIT
|IN6PTON_COLON_MASK
);
291 while(i
>= dc
- dbuf
)
296 memcpy(dst
, dbuf
, sizeof(dbuf
));
304 EXPORT_SYMBOL(in6_pton
);
306 void inet_proto_csum_replace4(__sum16
*sum
, struct sk_buff
*skb
,
307 __be32 from
, __be32 to
, int pseudohdr
)
309 __be32 diff
[] = { ~from
, to
};
310 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
311 *sum
= csum_fold(csum_partial(diff
, sizeof(diff
),
312 ~csum_unfold(*sum
)));
313 if (skb
->ip_summed
== CHECKSUM_COMPLETE
&& pseudohdr
)
314 skb
->csum
= ~csum_partial(diff
, sizeof(diff
),
316 } else if (pseudohdr
)
317 *sum
= ~csum_fold(csum_partial(diff
, sizeof(diff
),
320 EXPORT_SYMBOL(inet_proto_csum_replace4
);
322 void inet_proto_csum_replace16(__sum16
*sum
, struct sk_buff
*skb
,
323 const __be32
*from
, const __be32
*to
,
327 ~from
[0], ~from
[1], ~from
[2], ~from
[3],
328 to
[0], to
[1], to
[2], to
[3],
330 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
) {
331 *sum
= csum_fold(csum_partial(diff
, sizeof(diff
),
332 ~csum_unfold(*sum
)));
333 if (skb
->ip_summed
== CHECKSUM_COMPLETE
&& pseudohdr
)
334 skb
->csum
= ~csum_partial(diff
, sizeof(diff
),
336 } else if (pseudohdr
)
337 *sum
= ~csum_fold(csum_partial(diff
, sizeof(diff
),
340 EXPORT_SYMBOL(inet_proto_csum_replace16
);
342 struct __net_random_once_work
{
343 struct work_struct work
;
344 struct static_key
*key
;
347 static void __net_random_once_deferred(struct work_struct
*w
)
349 struct __net_random_once_work
*work
=
350 container_of(w
, struct __net_random_once_work
, work
);
351 BUG_ON(!static_key_enabled(work
->key
));
352 static_key_slow_dec(work
->key
);
356 static void __net_random_once_disable_jump(struct static_key
*key
)
358 struct __net_random_once_work
*w
;
360 w
= kmalloc(sizeof(*w
), GFP_ATOMIC
);
364 INIT_WORK(&w
->work
, __net_random_once_deferred
);
366 schedule_work(&w
->work
);
369 bool __net_get_random_once(void *buf
, int nbytes
, bool *done
,
370 struct static_key
*once_key
)
372 static DEFINE_SPINLOCK(lock
);
375 spin_lock_irqsave(&lock
, flags
);
377 spin_unlock_irqrestore(&lock
, flags
);
381 get_random_bytes(buf
, nbytes
);
383 spin_unlock_irqrestore(&lock
, flags
);
385 __net_random_once_disable_jump(once_key
);
389 EXPORT_SYMBOL(__net_get_random_once
);