1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim
;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup
*target_mem_cgroup
;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage
:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap
:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap
:1;
92 * Cgroups are not reclaimed below their configured memory.low,
93 * unless we threaten to OOM. If any cgroups are skipped due to
94 * memory.low and nothing was reclaimed, go back for memory.low.
96 unsigned int memcg_low_reclaim
:1;
97 unsigned int memcg_low_skipped
:1;
99 unsigned int hibernation_mode
:1;
101 /* One of the zones is ready for compaction */
102 unsigned int compaction_ready
:1;
104 /* Allocation order */
107 /* Scan (total_size >> priority) pages at once */
110 /* The highest zone to isolate pages for reclaim from */
113 /* This context's GFP mask */
116 /* Incremented by the number of inactive pages that were scanned */
117 unsigned long nr_scanned
;
119 /* Number of pages freed so far during a call to shrink_zones() */
120 unsigned long nr_reclaimed
;
124 unsigned int unqueued_dirty
;
125 unsigned int congested
;
126 unsigned int writeback
;
127 unsigned int immediate
;
128 unsigned int file_taken
;
133 #ifdef ARCH_HAS_PREFETCH
134 #define prefetch_prev_lru_page(_page, _base, _field) \
136 if ((_page)->lru.prev != _base) { \
139 prev = lru_to_page(&(_page->lru)); \
140 prefetch(&prev->_field); \
144 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
147 #ifdef ARCH_HAS_PREFETCHW
148 #define prefetchw_prev_lru_page(_page, _base, _field) \
150 if ((_page)->lru.prev != _base) { \
153 prev = lru_to_page(&(_page->lru)); \
154 prefetchw(&prev->_field); \
158 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
162 * From 0 .. 100. Higher means more swappy.
164 int vm_swappiness
= 60;
166 * The total number of pages which are beyond the high watermark within all
169 unsigned long vm_total_pages
;
171 static LIST_HEAD(shrinker_list
);
172 static DECLARE_RWSEM(shrinker_rwsem
);
174 #ifdef CONFIG_MEMCG_KMEM
177 * We allow subsystems to populate their shrinker-related
178 * LRU lists before register_shrinker_prepared() is called
179 * for the shrinker, since we don't want to impose
180 * restrictions on their internal registration order.
181 * In this case shrink_slab_memcg() may find corresponding
182 * bit is set in the shrinkers map.
184 * This value is used by the function to detect registering
185 * shrinkers and to skip do_shrink_slab() calls for them.
187 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
189 static DEFINE_IDR(shrinker_idr
);
190 static int shrinker_nr_max
;
192 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
194 int id
, ret
= -ENOMEM
;
196 down_write(&shrinker_rwsem
);
197 /* This may call shrinker, so it must use down_read_trylock() */
198 id
= idr_alloc(&shrinker_idr
, SHRINKER_REGISTERING
, 0, 0, GFP_KERNEL
);
202 if (id
>= shrinker_nr_max
) {
203 if (memcg_expand_shrinker_maps(id
)) {
204 idr_remove(&shrinker_idr
, id
);
208 shrinker_nr_max
= id
+ 1;
213 up_write(&shrinker_rwsem
);
217 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
219 int id
= shrinker
->id
;
223 down_write(&shrinker_rwsem
);
224 idr_remove(&shrinker_idr
, id
);
225 up_write(&shrinker_rwsem
);
227 #else /* CONFIG_MEMCG_KMEM */
228 static int prealloc_memcg_shrinker(struct shrinker
*shrinker
)
233 static void unregister_memcg_shrinker(struct shrinker
*shrinker
)
236 #endif /* CONFIG_MEMCG_KMEM */
239 static bool global_reclaim(struct scan_control
*sc
)
241 return !sc
->target_mem_cgroup
;
245 * sane_reclaim - is the usual dirty throttling mechanism operational?
246 * @sc: scan_control in question
248 * The normal page dirty throttling mechanism in balance_dirty_pages() is
249 * completely broken with the legacy memcg and direct stalling in
250 * shrink_page_list() is used for throttling instead, which lacks all the
251 * niceties such as fairness, adaptive pausing, bandwidth proportional
252 * allocation and configurability.
254 * This function tests whether the vmscan currently in progress can assume
255 * that the normal dirty throttling mechanism is operational.
257 static bool sane_reclaim(struct scan_control
*sc
)
259 struct mem_cgroup
*memcg
= sc
->target_mem_cgroup
;
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 if (cgroup_subsys_on_dfl(memory_cgrp_subsys
))
270 static void set_memcg_congestion(pg_data_t
*pgdat
,
271 struct mem_cgroup
*memcg
,
274 struct mem_cgroup_per_node
*mn
;
279 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
280 WRITE_ONCE(mn
->congested
, congested
);
283 static bool memcg_congested(pg_data_t
*pgdat
,
284 struct mem_cgroup
*memcg
)
286 struct mem_cgroup_per_node
*mn
;
288 mn
= mem_cgroup_nodeinfo(memcg
, pgdat
->node_id
);
289 return READ_ONCE(mn
->congested
);
293 static bool global_reclaim(struct scan_control
*sc
)
298 static bool sane_reclaim(struct scan_control
*sc
)
303 static inline void set_memcg_congestion(struct pglist_data
*pgdat
,
304 struct mem_cgroup
*memcg
, bool congested
)
308 static inline bool memcg_congested(struct pglist_data
*pgdat
,
309 struct mem_cgroup
*memcg
)
317 * This misses isolated pages which are not accounted for to save counters.
318 * As the data only determines if reclaim or compaction continues, it is
319 * not expected that isolated pages will be a dominating factor.
321 unsigned long zone_reclaimable_pages(struct zone
*zone
)
325 nr
= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_FILE
) +
326 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_FILE
);
327 if (get_nr_swap_pages() > 0)
328 nr
+= zone_page_state_snapshot(zone
, NR_ZONE_INACTIVE_ANON
) +
329 zone_page_state_snapshot(zone
, NR_ZONE_ACTIVE_ANON
);
335 * lruvec_lru_size - Returns the number of pages on the given LRU list.
336 * @lruvec: lru vector
338 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
340 unsigned long lruvec_lru_size(struct lruvec
*lruvec
, enum lru_list lru
, int zone_idx
)
342 unsigned long lru_size
;
345 if (!mem_cgroup_disabled())
346 lru_size
= mem_cgroup_get_lru_size(lruvec
, lru
);
348 lru_size
= node_page_state(lruvec_pgdat(lruvec
), NR_LRU_BASE
+ lru
);
350 for (zid
= zone_idx
+ 1; zid
< MAX_NR_ZONES
; zid
++) {
351 struct zone
*zone
= &lruvec_pgdat(lruvec
)->node_zones
[zid
];
354 if (!managed_zone(zone
))
357 if (!mem_cgroup_disabled())
358 size
= mem_cgroup_get_zone_lru_size(lruvec
, lru
, zid
);
360 size
= zone_page_state(&lruvec_pgdat(lruvec
)->node_zones
[zid
],
361 NR_ZONE_LRU_BASE
+ lru
);
362 lru_size
-= min(size
, lru_size
);
370 * Add a shrinker callback to be called from the vm.
372 int prealloc_shrinker(struct shrinker
*shrinker
)
374 size_t size
= sizeof(*shrinker
->nr_deferred
);
376 if (shrinker
->flags
& SHRINKER_NUMA_AWARE
)
379 shrinker
->nr_deferred
= kzalloc(size
, GFP_KERNEL
);
380 if (!shrinker
->nr_deferred
)
383 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
) {
384 if (prealloc_memcg_shrinker(shrinker
))
391 kfree(shrinker
->nr_deferred
);
392 shrinker
->nr_deferred
= NULL
;
396 void free_prealloced_shrinker(struct shrinker
*shrinker
)
398 if (!shrinker
->nr_deferred
)
401 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
402 unregister_memcg_shrinker(shrinker
);
404 kfree(shrinker
->nr_deferred
);
405 shrinker
->nr_deferred
= NULL
;
408 void register_shrinker_prepared(struct shrinker
*shrinker
)
410 down_write(&shrinker_rwsem
);
411 list_add_tail(&shrinker
->list
, &shrinker_list
);
412 #ifdef CONFIG_MEMCG_KMEM
413 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
414 idr_replace(&shrinker_idr
, shrinker
, shrinker
->id
);
416 up_write(&shrinker_rwsem
);
419 int register_shrinker(struct shrinker
*shrinker
)
421 int err
= prealloc_shrinker(shrinker
);
425 register_shrinker_prepared(shrinker
);
428 EXPORT_SYMBOL(register_shrinker
);
433 void unregister_shrinker(struct shrinker
*shrinker
)
435 if (!shrinker
->nr_deferred
)
437 if (shrinker
->flags
& SHRINKER_MEMCG_AWARE
)
438 unregister_memcg_shrinker(shrinker
);
439 down_write(&shrinker_rwsem
);
440 list_del(&shrinker
->list
);
441 up_write(&shrinker_rwsem
);
442 kfree(shrinker
->nr_deferred
);
443 shrinker
->nr_deferred
= NULL
;
445 EXPORT_SYMBOL(unregister_shrinker
);
447 #define SHRINK_BATCH 128
449 static unsigned long do_shrink_slab(struct shrink_control
*shrinkctl
,
450 struct shrinker
*shrinker
, int priority
)
452 unsigned long freed
= 0;
453 unsigned long long delta
;
458 int nid
= shrinkctl
->nid
;
459 long batch_size
= shrinker
->batch
? shrinker
->batch
461 long scanned
= 0, next_deferred
;
463 if (!(shrinker
->flags
& SHRINKER_NUMA_AWARE
))
466 freeable
= shrinker
->count_objects(shrinker
, shrinkctl
);
467 if (freeable
== 0 || freeable
== SHRINK_EMPTY
)
471 * copy the current shrinker scan count into a local variable
472 * and zero it so that other concurrent shrinker invocations
473 * don't also do this scanning work.
475 nr
= atomic_long_xchg(&shrinker
->nr_deferred
[nid
], 0);
478 if (shrinker
->seeks
) {
479 delta
= freeable
>> priority
;
481 do_div(delta
, shrinker
->seeks
);
484 * These objects don't require any IO to create. Trim
485 * them aggressively under memory pressure to keep
486 * them from causing refetches in the IO caches.
488 delta
= freeable
/ 2;
492 * Make sure we apply some minimal pressure on default priority
493 * even on small cgroups. Stale objects are not only consuming memory
494 * by themselves, but can also hold a reference to a dying cgroup,
495 * preventing it from being reclaimed. A dying cgroup with all
496 * corresponding structures like per-cpu stats and kmem caches
497 * can be really big, so it may lead to a significant waste of memory.
499 delta
= max_t(unsigned long long, delta
, min(freeable
, batch_size
));
502 if (total_scan
< 0) {
503 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
504 shrinker
->scan_objects
, total_scan
);
505 total_scan
= freeable
;
508 next_deferred
= total_scan
;
511 * We need to avoid excessive windup on filesystem shrinkers
512 * due to large numbers of GFP_NOFS allocations causing the
513 * shrinkers to return -1 all the time. This results in a large
514 * nr being built up so when a shrink that can do some work
515 * comes along it empties the entire cache due to nr >>>
516 * freeable. This is bad for sustaining a working set in
519 * Hence only allow the shrinker to scan the entire cache when
520 * a large delta change is calculated directly.
522 if (delta
< freeable
/ 4)
523 total_scan
= min(total_scan
, freeable
/ 2);
526 * Avoid risking looping forever due to too large nr value:
527 * never try to free more than twice the estimate number of
530 if (total_scan
> freeable
* 2)
531 total_scan
= freeable
* 2;
533 trace_mm_shrink_slab_start(shrinker
, shrinkctl
, nr
,
534 freeable
, delta
, total_scan
, priority
);
537 * Normally, we should not scan less than batch_size objects in one
538 * pass to avoid too frequent shrinker calls, but if the slab has less
539 * than batch_size objects in total and we are really tight on memory,
540 * we will try to reclaim all available objects, otherwise we can end
541 * up failing allocations although there are plenty of reclaimable
542 * objects spread over several slabs with usage less than the
545 * We detect the "tight on memory" situations by looking at the total
546 * number of objects we want to scan (total_scan). If it is greater
547 * than the total number of objects on slab (freeable), we must be
548 * scanning at high prio and therefore should try to reclaim as much as
551 while (total_scan
>= batch_size
||
552 total_scan
>= freeable
) {
554 unsigned long nr_to_scan
= min(batch_size
, total_scan
);
556 shrinkctl
->nr_to_scan
= nr_to_scan
;
557 shrinkctl
->nr_scanned
= nr_to_scan
;
558 ret
= shrinker
->scan_objects(shrinker
, shrinkctl
);
559 if (ret
== SHRINK_STOP
)
563 count_vm_events(SLABS_SCANNED
, shrinkctl
->nr_scanned
);
564 total_scan
-= shrinkctl
->nr_scanned
;
565 scanned
+= shrinkctl
->nr_scanned
;
570 if (next_deferred
>= scanned
)
571 next_deferred
-= scanned
;
575 * move the unused scan count back into the shrinker in a
576 * manner that handles concurrent updates. If we exhausted the
577 * scan, there is no need to do an update.
579 if (next_deferred
> 0)
580 new_nr
= atomic_long_add_return(next_deferred
,
581 &shrinker
->nr_deferred
[nid
]);
583 new_nr
= atomic_long_read(&shrinker
->nr_deferred
[nid
]);
585 trace_mm_shrink_slab_end(shrinker
, nid
, freed
, nr
, new_nr
, total_scan
);
589 #ifdef CONFIG_MEMCG_KMEM
590 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
591 struct mem_cgroup
*memcg
, int priority
)
593 struct memcg_shrinker_map
*map
;
594 unsigned long ret
, freed
= 0;
597 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg
))
600 if (!down_read_trylock(&shrinker_rwsem
))
603 map
= rcu_dereference_protected(memcg
->nodeinfo
[nid
]->shrinker_map
,
608 for_each_set_bit(i
, map
->map
, shrinker_nr_max
) {
609 struct shrink_control sc
= {
610 .gfp_mask
= gfp_mask
,
614 struct shrinker
*shrinker
;
616 shrinker
= idr_find(&shrinker_idr
, i
);
617 if (unlikely(!shrinker
|| shrinker
== SHRINKER_REGISTERING
)) {
619 clear_bit(i
, map
->map
);
623 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
624 if (ret
== SHRINK_EMPTY
) {
625 clear_bit(i
, map
->map
);
627 * After the shrinker reported that it had no objects to
628 * free, but before we cleared the corresponding bit in
629 * the memcg shrinker map, a new object might have been
630 * added. To make sure, we have the bit set in this
631 * case, we invoke the shrinker one more time and reset
632 * the bit if it reports that it is not empty anymore.
633 * The memory barrier here pairs with the barrier in
634 * memcg_set_shrinker_bit():
636 * list_lru_add() shrink_slab_memcg()
637 * list_add_tail() clear_bit()
639 * set_bit() do_shrink_slab()
641 smp_mb__after_atomic();
642 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
643 if (ret
== SHRINK_EMPTY
)
646 memcg_set_shrinker_bit(memcg
, nid
, i
);
650 if (rwsem_is_contended(&shrinker_rwsem
)) {
656 up_read(&shrinker_rwsem
);
659 #else /* CONFIG_MEMCG_KMEM */
660 static unsigned long shrink_slab_memcg(gfp_t gfp_mask
, int nid
,
661 struct mem_cgroup
*memcg
, int priority
)
665 #endif /* CONFIG_MEMCG_KMEM */
668 * shrink_slab - shrink slab caches
669 * @gfp_mask: allocation context
670 * @nid: node whose slab caches to target
671 * @memcg: memory cgroup whose slab caches to target
672 * @priority: the reclaim priority
674 * Call the shrink functions to age shrinkable caches.
676 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
677 * unaware shrinkers will receive a node id of 0 instead.
679 * @memcg specifies the memory cgroup to target. Unaware shrinkers
680 * are called only if it is the root cgroup.
682 * @priority is sc->priority, we take the number of objects and >> by priority
683 * in order to get the scan target.
685 * Returns the number of reclaimed slab objects.
687 static unsigned long shrink_slab(gfp_t gfp_mask
, int nid
,
688 struct mem_cgroup
*memcg
,
691 unsigned long ret
, freed
= 0;
692 struct shrinker
*shrinker
;
694 if (!mem_cgroup_is_root(memcg
))
695 return shrink_slab_memcg(gfp_mask
, nid
, memcg
, priority
);
697 if (!down_read_trylock(&shrinker_rwsem
))
700 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
701 struct shrink_control sc
= {
702 .gfp_mask
= gfp_mask
,
707 ret
= do_shrink_slab(&sc
, shrinker
, priority
);
708 if (ret
== SHRINK_EMPTY
)
712 * Bail out if someone want to register a new shrinker to
713 * prevent the regsitration from being stalled for long periods
714 * by parallel ongoing shrinking.
716 if (rwsem_is_contended(&shrinker_rwsem
)) {
722 up_read(&shrinker_rwsem
);
728 void drop_slab_node(int nid
)
733 struct mem_cgroup
*memcg
= NULL
;
736 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
738 freed
+= shrink_slab(GFP_KERNEL
, nid
, memcg
, 0);
739 } while ((memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
)) != NULL
);
740 } while (freed
> 10);
747 for_each_online_node(nid
)
751 static inline int is_page_cache_freeable(struct page
*page
)
754 * A freeable page cache page is referenced only by the caller
755 * that isolated the page, the page cache and optional buffer
756 * heads at page->private.
758 int page_cache_pins
= PageTransHuge(page
) && PageSwapCache(page
) ?
760 return page_count(page
) - page_has_private(page
) == 1 + page_cache_pins
;
763 static int may_write_to_inode(struct inode
*inode
, struct scan_control
*sc
)
765 if (current
->flags
& PF_SWAPWRITE
)
767 if (!inode_write_congested(inode
))
769 if (inode_to_bdi(inode
) == current
->backing_dev_info
)
775 * We detected a synchronous write error writing a page out. Probably
776 * -ENOSPC. We need to propagate that into the address_space for a subsequent
777 * fsync(), msync() or close().
779 * The tricky part is that after writepage we cannot touch the mapping: nothing
780 * prevents it from being freed up. But we have a ref on the page and once
781 * that page is locked, the mapping is pinned.
783 * We're allowed to run sleeping lock_page() here because we know the caller has
786 static void handle_write_error(struct address_space
*mapping
,
787 struct page
*page
, int error
)
790 if (page_mapping(page
) == mapping
)
791 mapping_set_error(mapping
, error
);
795 /* possible outcome of pageout() */
797 /* failed to write page out, page is locked */
799 /* move page to the active list, page is locked */
801 /* page has been sent to the disk successfully, page is unlocked */
803 /* page is clean and locked */
808 * pageout is called by shrink_page_list() for each dirty page.
809 * Calls ->writepage().
811 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
812 struct scan_control
*sc
)
815 * If the page is dirty, only perform writeback if that write
816 * will be non-blocking. To prevent this allocation from being
817 * stalled by pagecache activity. But note that there may be
818 * stalls if we need to run get_block(). We could test
819 * PagePrivate for that.
821 * If this process is currently in __generic_file_write_iter() against
822 * this page's queue, we can perform writeback even if that
825 * If the page is swapcache, write it back even if that would
826 * block, for some throttling. This happens by accident, because
827 * swap_backing_dev_info is bust: it doesn't reflect the
828 * congestion state of the swapdevs. Easy to fix, if needed.
830 if (!is_page_cache_freeable(page
))
834 * Some data journaling orphaned pages can have
835 * page->mapping == NULL while being dirty with clean buffers.
837 if (page_has_private(page
)) {
838 if (try_to_free_buffers(page
)) {
839 ClearPageDirty(page
);
840 pr_info("%s: orphaned page\n", __func__
);
846 if (mapping
->a_ops
->writepage
== NULL
)
847 return PAGE_ACTIVATE
;
848 if (!may_write_to_inode(mapping
->host
, sc
))
851 if (clear_page_dirty_for_io(page
)) {
853 struct writeback_control wbc
= {
854 .sync_mode
= WB_SYNC_NONE
,
855 .nr_to_write
= SWAP_CLUSTER_MAX
,
857 .range_end
= LLONG_MAX
,
861 SetPageReclaim(page
);
862 res
= mapping
->a_ops
->writepage(page
, &wbc
);
864 handle_write_error(mapping
, page
, res
);
865 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
866 ClearPageReclaim(page
);
867 return PAGE_ACTIVATE
;
870 if (!PageWriteback(page
)) {
871 /* synchronous write or broken a_ops? */
872 ClearPageReclaim(page
);
874 trace_mm_vmscan_writepage(page
);
875 inc_node_page_state(page
, NR_VMSCAN_WRITE
);
883 * Same as remove_mapping, but if the page is removed from the mapping, it
884 * gets returned with a refcount of 0.
886 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
,
892 BUG_ON(!PageLocked(page
));
893 BUG_ON(mapping
!= page_mapping(page
));
895 xa_lock_irqsave(&mapping
->i_pages
, flags
);
897 * The non racy check for a busy page.
899 * Must be careful with the order of the tests. When someone has
900 * a ref to the page, it may be possible that they dirty it then
901 * drop the reference. So if PageDirty is tested before page_count
902 * here, then the following race may occur:
904 * get_user_pages(&page);
905 * [user mapping goes away]
907 * !PageDirty(page) [good]
908 * SetPageDirty(page);
910 * !page_count(page) [good, discard it]
912 * [oops, our write_to data is lost]
914 * Reversing the order of the tests ensures such a situation cannot
915 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
916 * load is not satisfied before that of page->_refcount.
918 * Note that if SetPageDirty is always performed via set_page_dirty,
919 * and thus under the i_pages lock, then this ordering is not required.
921 if (unlikely(PageTransHuge(page
)) && PageSwapCache(page
))
922 refcount
= 1 + HPAGE_PMD_NR
;
925 if (!page_ref_freeze(page
, refcount
))
927 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
928 if (unlikely(PageDirty(page
))) {
929 page_ref_unfreeze(page
, refcount
);
933 if (PageSwapCache(page
)) {
934 swp_entry_t swap
= { .val
= page_private(page
) };
935 mem_cgroup_swapout(page
, swap
);
936 __delete_from_swap_cache(page
, swap
);
937 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
938 put_swap_page(page
, swap
);
940 void (*freepage
)(struct page
*);
943 freepage
= mapping
->a_ops
->freepage
;
945 * Remember a shadow entry for reclaimed file cache in
946 * order to detect refaults, thus thrashing, later on.
948 * But don't store shadows in an address space that is
949 * already exiting. This is not just an optizimation,
950 * inode reclaim needs to empty out the radix tree or
951 * the nodes are lost. Don't plant shadows behind its
954 * We also don't store shadows for DAX mappings because the
955 * only page cache pages found in these are zero pages
956 * covering holes, and because we don't want to mix DAX
957 * exceptional entries and shadow exceptional entries in the
958 * same address_space.
960 if (reclaimed
&& page_is_file_cache(page
) &&
961 !mapping_exiting(mapping
) && !dax_mapping(mapping
))
962 shadow
= workingset_eviction(mapping
, page
);
963 __delete_from_page_cache(page
, shadow
);
964 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
966 if (freepage
!= NULL
)
973 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
978 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
979 * someone else has a ref on the page, abort and return 0. If it was
980 * successfully detached, return 1. Assumes the caller has a single ref on
983 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
985 if (__remove_mapping(mapping
, page
, false)) {
987 * Unfreezing the refcount with 1 rather than 2 effectively
988 * drops the pagecache ref for us without requiring another
991 page_ref_unfreeze(page
, 1);
998 * putback_lru_page - put previously isolated page onto appropriate LRU list
999 * @page: page to be put back to appropriate lru list
1001 * Add previously isolated @page to appropriate LRU list.
1002 * Page may still be unevictable for other reasons.
1004 * lru_lock must not be held, interrupts must be enabled.
1006 void putback_lru_page(struct page
*page
)
1008 lru_cache_add(page
);
1009 put_page(page
); /* drop ref from isolate */
1012 enum page_references
{
1014 PAGEREF_RECLAIM_CLEAN
,
1019 static enum page_references
page_check_references(struct page
*page
,
1020 struct scan_control
*sc
)
1022 int referenced_ptes
, referenced_page
;
1023 unsigned long vm_flags
;
1025 referenced_ptes
= page_referenced(page
, 1, sc
->target_mem_cgroup
,
1027 referenced_page
= TestClearPageReferenced(page
);
1030 * Mlock lost the isolation race with us. Let try_to_unmap()
1031 * move the page to the unevictable list.
1033 if (vm_flags
& VM_LOCKED
)
1034 return PAGEREF_RECLAIM
;
1036 if (referenced_ptes
) {
1037 if (PageSwapBacked(page
))
1038 return PAGEREF_ACTIVATE
;
1040 * All mapped pages start out with page table
1041 * references from the instantiating fault, so we need
1042 * to look twice if a mapped file page is used more
1045 * Mark it and spare it for another trip around the
1046 * inactive list. Another page table reference will
1047 * lead to its activation.
1049 * Note: the mark is set for activated pages as well
1050 * so that recently deactivated but used pages are
1051 * quickly recovered.
1053 SetPageReferenced(page
);
1055 if (referenced_page
|| referenced_ptes
> 1)
1056 return PAGEREF_ACTIVATE
;
1059 * Activate file-backed executable pages after first usage.
1061 if (vm_flags
& VM_EXEC
)
1062 return PAGEREF_ACTIVATE
;
1064 return PAGEREF_KEEP
;
1067 /* Reclaim if clean, defer dirty pages to writeback */
1068 if (referenced_page
&& !PageSwapBacked(page
))
1069 return PAGEREF_RECLAIM_CLEAN
;
1071 return PAGEREF_RECLAIM
;
1074 /* Check if a page is dirty or under writeback */
1075 static void page_check_dirty_writeback(struct page
*page
,
1076 bool *dirty
, bool *writeback
)
1078 struct address_space
*mapping
;
1081 * Anonymous pages are not handled by flushers and must be written
1082 * from reclaim context. Do not stall reclaim based on them
1084 if (!page_is_file_cache(page
) ||
1085 (PageAnon(page
) && !PageSwapBacked(page
))) {
1091 /* By default assume that the page flags are accurate */
1092 *dirty
= PageDirty(page
);
1093 *writeback
= PageWriteback(page
);
1095 /* Verify dirty/writeback state if the filesystem supports it */
1096 if (!page_has_private(page
))
1099 mapping
= page_mapping(page
);
1100 if (mapping
&& mapping
->a_ops
->is_dirty_writeback
)
1101 mapping
->a_ops
->is_dirty_writeback(page
, dirty
, writeback
);
1105 * shrink_page_list() returns the number of reclaimed pages
1107 static unsigned long shrink_page_list(struct list_head
*page_list
,
1108 struct pglist_data
*pgdat
,
1109 struct scan_control
*sc
,
1110 enum ttu_flags ttu_flags
,
1111 struct reclaim_stat
*stat
,
1114 LIST_HEAD(ret_pages
);
1115 LIST_HEAD(free_pages
);
1117 unsigned nr_unqueued_dirty
= 0;
1118 unsigned nr_dirty
= 0;
1119 unsigned nr_congested
= 0;
1120 unsigned nr_reclaimed
= 0;
1121 unsigned nr_writeback
= 0;
1122 unsigned nr_immediate
= 0;
1123 unsigned nr_ref_keep
= 0;
1124 unsigned nr_unmap_fail
= 0;
1128 while (!list_empty(page_list
)) {
1129 struct address_space
*mapping
;
1132 enum page_references references
= PAGEREF_RECLAIM_CLEAN
;
1133 bool dirty
, writeback
;
1137 page
= lru_to_page(page_list
);
1138 list_del(&page
->lru
);
1140 if (!trylock_page(page
))
1143 VM_BUG_ON_PAGE(PageActive(page
), page
);
1147 if (unlikely(!page_evictable(page
)))
1148 goto activate_locked
;
1150 if (!sc
->may_unmap
&& page_mapped(page
))
1153 /* Double the slab pressure for mapped and swapcache pages */
1154 if ((page_mapped(page
) || PageSwapCache(page
)) &&
1155 !(PageAnon(page
) && !PageSwapBacked(page
)))
1158 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
1159 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
1162 * The number of dirty pages determines if a node is marked
1163 * reclaim_congested which affects wait_iff_congested. kswapd
1164 * will stall and start writing pages if the tail of the LRU
1165 * is all dirty unqueued pages.
1167 page_check_dirty_writeback(page
, &dirty
, &writeback
);
1168 if (dirty
|| writeback
)
1171 if (dirty
&& !writeback
)
1172 nr_unqueued_dirty
++;
1175 * Treat this page as congested if the underlying BDI is or if
1176 * pages are cycling through the LRU so quickly that the
1177 * pages marked for immediate reclaim are making it to the
1178 * end of the LRU a second time.
1180 mapping
= page_mapping(page
);
1181 if (((dirty
|| writeback
) && mapping
&&
1182 inode_write_congested(mapping
->host
)) ||
1183 (writeback
&& PageReclaim(page
)))
1187 * If a page at the tail of the LRU is under writeback, there
1188 * are three cases to consider.
1190 * 1) If reclaim is encountering an excessive number of pages
1191 * under writeback and this page is both under writeback and
1192 * PageReclaim then it indicates that pages are being queued
1193 * for IO but are being recycled through the LRU before the
1194 * IO can complete. Waiting on the page itself risks an
1195 * indefinite stall if it is impossible to writeback the
1196 * page due to IO error or disconnected storage so instead
1197 * note that the LRU is being scanned too quickly and the
1198 * caller can stall after page list has been processed.
1200 * 2) Global or new memcg reclaim encounters a page that is
1201 * not marked for immediate reclaim, or the caller does not
1202 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1203 * not to fs). In this case mark the page for immediate
1204 * reclaim and continue scanning.
1206 * Require may_enter_fs because we would wait on fs, which
1207 * may not have submitted IO yet. And the loop driver might
1208 * enter reclaim, and deadlock if it waits on a page for
1209 * which it is needed to do the write (loop masks off
1210 * __GFP_IO|__GFP_FS for this reason); but more thought
1211 * would probably show more reasons.
1213 * 3) Legacy memcg encounters a page that is already marked
1214 * PageReclaim. memcg does not have any dirty pages
1215 * throttling so we could easily OOM just because too many
1216 * pages are in writeback and there is nothing else to
1217 * reclaim. Wait for the writeback to complete.
1219 * In cases 1) and 2) we activate the pages to get them out of
1220 * the way while we continue scanning for clean pages on the
1221 * inactive list and refilling from the active list. The
1222 * observation here is that waiting for disk writes is more
1223 * expensive than potentially causing reloads down the line.
1224 * Since they're marked for immediate reclaim, they won't put
1225 * memory pressure on the cache working set any longer than it
1226 * takes to write them to disk.
1228 if (PageWriteback(page
)) {
1230 if (current_is_kswapd() &&
1231 PageReclaim(page
) &&
1232 test_bit(PGDAT_WRITEBACK
, &pgdat
->flags
)) {
1234 goto activate_locked
;
1237 } else if (sane_reclaim(sc
) ||
1238 !PageReclaim(page
) || !may_enter_fs
) {
1240 * This is slightly racy - end_page_writeback()
1241 * might have just cleared PageReclaim, then
1242 * setting PageReclaim here end up interpreted
1243 * as PageReadahead - but that does not matter
1244 * enough to care. What we do want is for this
1245 * page to have PageReclaim set next time memcg
1246 * reclaim reaches the tests above, so it will
1247 * then wait_on_page_writeback() to avoid OOM;
1248 * and it's also appropriate in global reclaim.
1250 SetPageReclaim(page
);
1252 goto activate_locked
;
1257 wait_on_page_writeback(page
);
1258 /* then go back and try same page again */
1259 list_add_tail(&page
->lru
, page_list
);
1265 references
= page_check_references(page
, sc
);
1267 switch (references
) {
1268 case PAGEREF_ACTIVATE
:
1269 goto activate_locked
;
1273 case PAGEREF_RECLAIM
:
1274 case PAGEREF_RECLAIM_CLEAN
:
1275 ; /* try to reclaim the page below */
1279 * Anonymous process memory has backing store?
1280 * Try to allocate it some swap space here.
1281 * Lazyfree page could be freed directly
1283 if (PageAnon(page
) && PageSwapBacked(page
)) {
1284 if (!PageSwapCache(page
)) {
1285 if (!(sc
->gfp_mask
& __GFP_IO
))
1287 if (PageTransHuge(page
)) {
1288 /* cannot split THP, skip it */
1289 if (!can_split_huge_page(page
, NULL
))
1290 goto activate_locked
;
1292 * Split pages without a PMD map right
1293 * away. Chances are some or all of the
1294 * tail pages can be freed without IO.
1296 if (!compound_mapcount(page
) &&
1297 split_huge_page_to_list(page
,
1299 goto activate_locked
;
1301 if (!add_to_swap(page
)) {
1302 if (!PageTransHuge(page
))
1303 goto activate_locked
;
1304 /* Fallback to swap normal pages */
1305 if (split_huge_page_to_list(page
,
1307 goto activate_locked
;
1308 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1309 count_vm_event(THP_SWPOUT_FALLBACK
);
1311 if (!add_to_swap(page
))
1312 goto activate_locked
;
1317 /* Adding to swap updated mapping */
1318 mapping
= page_mapping(page
);
1320 } else if (unlikely(PageTransHuge(page
))) {
1321 /* Split file THP */
1322 if (split_huge_page_to_list(page
, page_list
))
1327 * The page is mapped into the page tables of one or more
1328 * processes. Try to unmap it here.
1330 if (page_mapped(page
)) {
1331 enum ttu_flags flags
= ttu_flags
| TTU_BATCH_FLUSH
;
1333 if (unlikely(PageTransHuge(page
)))
1334 flags
|= TTU_SPLIT_HUGE_PMD
;
1335 if (!try_to_unmap(page
, flags
)) {
1337 goto activate_locked
;
1341 if (PageDirty(page
)) {
1343 * Only kswapd can writeback filesystem pages
1344 * to avoid risk of stack overflow. But avoid
1345 * injecting inefficient single-page IO into
1346 * flusher writeback as much as possible: only
1347 * write pages when we've encountered many
1348 * dirty pages, and when we've already scanned
1349 * the rest of the LRU for clean pages and see
1350 * the same dirty pages again (PageReclaim).
1352 if (page_is_file_cache(page
) &&
1353 (!current_is_kswapd() || !PageReclaim(page
) ||
1354 !test_bit(PGDAT_DIRTY
, &pgdat
->flags
))) {
1356 * Immediately reclaim when written back.
1357 * Similar in principal to deactivate_page()
1358 * except we already have the page isolated
1359 * and know it's dirty
1361 inc_node_page_state(page
, NR_VMSCAN_IMMEDIATE
);
1362 SetPageReclaim(page
);
1364 goto activate_locked
;
1367 if (references
== PAGEREF_RECLAIM_CLEAN
)
1371 if (!sc
->may_writepage
)
1375 * Page is dirty. Flush the TLB if a writable entry
1376 * potentially exists to avoid CPU writes after IO
1377 * starts and then write it out here.
1379 try_to_unmap_flush_dirty();
1380 switch (pageout(page
, mapping
, sc
)) {
1384 goto activate_locked
;
1386 if (PageWriteback(page
))
1388 if (PageDirty(page
))
1392 * A synchronous write - probably a ramdisk. Go
1393 * ahead and try to reclaim the page.
1395 if (!trylock_page(page
))
1397 if (PageDirty(page
) || PageWriteback(page
))
1399 mapping
= page_mapping(page
);
1401 ; /* try to free the page below */
1406 * If the page has buffers, try to free the buffer mappings
1407 * associated with this page. If we succeed we try to free
1410 * We do this even if the page is PageDirty().
1411 * try_to_release_page() does not perform I/O, but it is
1412 * possible for a page to have PageDirty set, but it is actually
1413 * clean (all its buffers are clean). This happens if the
1414 * buffers were written out directly, with submit_bh(). ext3
1415 * will do this, as well as the blockdev mapping.
1416 * try_to_release_page() will discover that cleanness and will
1417 * drop the buffers and mark the page clean - it can be freed.
1419 * Rarely, pages can have buffers and no ->mapping. These are
1420 * the pages which were not successfully invalidated in
1421 * truncate_complete_page(). We try to drop those buffers here
1422 * and if that worked, and the page is no longer mapped into
1423 * process address space (page_count == 1) it can be freed.
1424 * Otherwise, leave the page on the LRU so it is swappable.
1426 if (page_has_private(page
)) {
1427 if (!try_to_release_page(page
, sc
->gfp_mask
))
1428 goto activate_locked
;
1429 if (!mapping
&& page_count(page
) == 1) {
1431 if (put_page_testzero(page
))
1435 * rare race with speculative reference.
1436 * the speculative reference will free
1437 * this page shortly, so we may
1438 * increment nr_reclaimed here (and
1439 * leave it off the LRU).
1447 if (PageAnon(page
) && !PageSwapBacked(page
)) {
1448 /* follow __remove_mapping for reference */
1449 if (!page_ref_freeze(page
, 1))
1451 if (PageDirty(page
)) {
1452 page_ref_unfreeze(page
, 1);
1456 count_vm_event(PGLAZYFREED
);
1457 count_memcg_page_event(page
, PGLAZYFREED
);
1458 } else if (!mapping
|| !__remove_mapping(mapping
, page
, true))
1461 * At this point, we have no other references and there is
1462 * no way to pick any more up (removed from LRU, removed
1463 * from pagecache). Can use non-atomic bitops now (and
1464 * we obviously don't have to worry about waking up a process
1465 * waiting on the page lock, because there are no references.
1467 __ClearPageLocked(page
);
1472 * Is there need to periodically free_page_list? It would
1473 * appear not as the counts should be low
1475 if (unlikely(PageTransHuge(page
))) {
1476 mem_cgroup_uncharge(page
);
1477 (*get_compound_page_dtor(page
))(page
);
1479 list_add(&page
->lru
, &free_pages
);
1483 /* Not a candidate for swapping, so reclaim swap space. */
1484 if (PageSwapCache(page
) && (mem_cgroup_swap_full(page
) ||
1486 try_to_free_swap(page
);
1487 VM_BUG_ON_PAGE(PageActive(page
), page
);
1488 if (!PageMlocked(page
)) {
1489 SetPageActive(page
);
1491 count_memcg_page_event(page
, PGACTIVATE
);
1496 list_add(&page
->lru
, &ret_pages
);
1497 VM_BUG_ON_PAGE(PageLRU(page
) || PageUnevictable(page
), page
);
1500 mem_cgroup_uncharge_list(&free_pages
);
1501 try_to_unmap_flush();
1502 free_unref_page_list(&free_pages
);
1504 list_splice(&ret_pages
, page_list
);
1505 count_vm_events(PGACTIVATE
, pgactivate
);
1508 stat
->nr_dirty
= nr_dirty
;
1509 stat
->nr_congested
= nr_congested
;
1510 stat
->nr_unqueued_dirty
= nr_unqueued_dirty
;
1511 stat
->nr_writeback
= nr_writeback
;
1512 stat
->nr_immediate
= nr_immediate
;
1513 stat
->nr_activate
= pgactivate
;
1514 stat
->nr_ref_keep
= nr_ref_keep
;
1515 stat
->nr_unmap_fail
= nr_unmap_fail
;
1517 return nr_reclaimed
;
1520 unsigned long reclaim_clean_pages_from_list(struct zone
*zone
,
1521 struct list_head
*page_list
)
1523 struct scan_control sc
= {
1524 .gfp_mask
= GFP_KERNEL
,
1525 .priority
= DEF_PRIORITY
,
1529 struct page
*page
, *next
;
1530 LIST_HEAD(clean_pages
);
1532 list_for_each_entry_safe(page
, next
, page_list
, lru
) {
1533 if (page_is_file_cache(page
) && !PageDirty(page
) &&
1534 !__PageMovable(page
)) {
1535 ClearPageActive(page
);
1536 list_move(&page
->lru
, &clean_pages
);
1540 ret
= shrink_page_list(&clean_pages
, zone
->zone_pgdat
, &sc
,
1541 TTU_IGNORE_ACCESS
, NULL
, true);
1542 list_splice(&clean_pages
, page_list
);
1543 mod_node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
, -ret
);
1548 * Attempt to remove the specified page from its LRU. Only take this page
1549 * if it is of the appropriate PageActive status. Pages which are being
1550 * freed elsewhere are also ignored.
1552 * page: page to consider
1553 * mode: one of the LRU isolation modes defined above
1555 * returns 0 on success, -ve errno on failure.
1557 int __isolate_lru_page(struct page
*page
, isolate_mode_t mode
)
1561 /* Only take pages on the LRU. */
1565 /* Compaction should not handle unevictable pages but CMA can do so */
1566 if (PageUnevictable(page
) && !(mode
& ISOLATE_UNEVICTABLE
))
1572 * To minimise LRU disruption, the caller can indicate that it only
1573 * wants to isolate pages it will be able to operate on without
1574 * blocking - clean pages for the most part.
1576 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1577 * that it is possible to migrate without blocking
1579 if (mode
& ISOLATE_ASYNC_MIGRATE
) {
1580 /* All the caller can do on PageWriteback is block */
1581 if (PageWriteback(page
))
1584 if (PageDirty(page
)) {
1585 struct address_space
*mapping
;
1589 * Only pages without mappings or that have a
1590 * ->migratepage callback are possible to migrate
1591 * without blocking. However, we can be racing with
1592 * truncation so it's necessary to lock the page
1593 * to stabilise the mapping as truncation holds
1594 * the page lock until after the page is removed
1595 * from the page cache.
1597 if (!trylock_page(page
))
1600 mapping
= page_mapping(page
);
1601 migrate_dirty
= !mapping
|| mapping
->a_ops
->migratepage
;
1608 if ((mode
& ISOLATE_UNMAPPED
) && page_mapped(page
))
1611 if (likely(get_page_unless_zero(page
))) {
1613 * Be careful not to clear PageLRU until after we're
1614 * sure the page is not being freed elsewhere -- the
1615 * page release code relies on it.
1626 * Update LRU sizes after isolating pages. The LRU size updates must
1627 * be complete before mem_cgroup_update_lru_size due to a santity check.
1629 static __always_inline
void update_lru_sizes(struct lruvec
*lruvec
,
1630 enum lru_list lru
, unsigned long *nr_zone_taken
)
1634 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1635 if (!nr_zone_taken
[zid
])
1638 __update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1640 mem_cgroup_update_lru_size(lruvec
, lru
, zid
, -nr_zone_taken
[zid
]);
1647 * zone_lru_lock is heavily contended. Some of the functions that
1648 * shrink the lists perform better by taking out a batch of pages
1649 * and working on them outside the LRU lock.
1651 * For pagecache intensive workloads, this function is the hottest
1652 * spot in the kernel (apart from copy_*_user functions).
1654 * Appropriate locks must be held before calling this function.
1656 * @nr_to_scan: The number of eligible pages to look through on the list.
1657 * @lruvec: The LRU vector to pull pages from.
1658 * @dst: The temp list to put pages on to.
1659 * @nr_scanned: The number of pages that were scanned.
1660 * @sc: The scan_control struct for this reclaim session
1661 * @mode: One of the LRU isolation modes
1662 * @lru: LRU list id for isolating
1664 * returns how many pages were moved onto *@dst.
1666 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
1667 struct lruvec
*lruvec
, struct list_head
*dst
,
1668 unsigned long *nr_scanned
, struct scan_control
*sc
,
1669 isolate_mode_t mode
, enum lru_list lru
)
1671 struct list_head
*src
= &lruvec
->lists
[lru
];
1672 unsigned long nr_taken
= 0;
1673 unsigned long nr_zone_taken
[MAX_NR_ZONES
] = { 0 };
1674 unsigned long nr_skipped
[MAX_NR_ZONES
] = { 0, };
1675 unsigned long skipped
= 0;
1676 unsigned long scan
, total_scan
, nr_pages
;
1677 LIST_HEAD(pages_skipped
);
1680 for (total_scan
= 0;
1681 scan
< nr_to_scan
&& nr_taken
< nr_to_scan
&& !list_empty(src
);
1685 page
= lru_to_page(src
);
1686 prefetchw_prev_lru_page(page
, src
, flags
);
1688 VM_BUG_ON_PAGE(!PageLRU(page
), page
);
1690 if (page_zonenum(page
) > sc
->reclaim_idx
) {
1691 list_move(&page
->lru
, &pages_skipped
);
1692 nr_skipped
[page_zonenum(page
)]++;
1697 * Do not count skipped pages because that makes the function
1698 * return with no isolated pages if the LRU mostly contains
1699 * ineligible pages. This causes the VM to not reclaim any
1700 * pages, triggering a premature OOM.
1703 switch (__isolate_lru_page(page
, mode
)) {
1705 nr_pages
= hpage_nr_pages(page
);
1706 nr_taken
+= nr_pages
;
1707 nr_zone_taken
[page_zonenum(page
)] += nr_pages
;
1708 list_move(&page
->lru
, dst
);
1712 /* else it is being freed elsewhere */
1713 list_move(&page
->lru
, src
);
1722 * Splice any skipped pages to the start of the LRU list. Note that
1723 * this disrupts the LRU order when reclaiming for lower zones but
1724 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1725 * scanning would soon rescan the same pages to skip and put the
1726 * system at risk of premature OOM.
1728 if (!list_empty(&pages_skipped
)) {
1731 list_splice(&pages_skipped
, src
);
1732 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1733 if (!nr_skipped
[zid
])
1736 __count_zid_vm_events(PGSCAN_SKIP
, zid
, nr_skipped
[zid
]);
1737 skipped
+= nr_skipped
[zid
];
1740 *nr_scanned
= total_scan
;
1741 trace_mm_vmscan_lru_isolate(sc
->reclaim_idx
, sc
->order
, nr_to_scan
,
1742 total_scan
, skipped
, nr_taken
, mode
, lru
);
1743 update_lru_sizes(lruvec
, lru
, nr_zone_taken
);
1748 * isolate_lru_page - tries to isolate a page from its LRU list
1749 * @page: page to isolate from its LRU list
1751 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1752 * vmstat statistic corresponding to whatever LRU list the page was on.
1754 * Returns 0 if the page was removed from an LRU list.
1755 * Returns -EBUSY if the page was not on an LRU list.
1757 * The returned page will have PageLRU() cleared. If it was found on
1758 * the active list, it will have PageActive set. If it was found on
1759 * the unevictable list, it will have the PageUnevictable bit set. That flag
1760 * may need to be cleared by the caller before letting the page go.
1762 * The vmstat statistic corresponding to the list on which the page was
1763 * found will be decremented.
1767 * (1) Must be called with an elevated refcount on the page. This is a
1768 * fundamentnal difference from isolate_lru_pages (which is called
1769 * without a stable reference).
1770 * (2) the lru_lock must not be held.
1771 * (3) interrupts must be enabled.
1773 int isolate_lru_page(struct page
*page
)
1777 VM_BUG_ON_PAGE(!page_count(page
), page
);
1778 WARN_RATELIMIT(PageTail(page
), "trying to isolate tail page");
1780 if (PageLRU(page
)) {
1781 struct zone
*zone
= page_zone(page
);
1782 struct lruvec
*lruvec
;
1784 spin_lock_irq(zone_lru_lock(zone
));
1785 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
1786 if (PageLRU(page
)) {
1787 int lru
= page_lru(page
);
1790 del_page_from_lru_list(page
, lruvec
, lru
);
1793 spin_unlock_irq(zone_lru_lock(zone
));
1799 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1800 * then get resheduled. When there are massive number of tasks doing page
1801 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1802 * the LRU list will go small and be scanned faster than necessary, leading to
1803 * unnecessary swapping, thrashing and OOM.
1805 static int too_many_isolated(struct pglist_data
*pgdat
, int file
,
1806 struct scan_control
*sc
)
1808 unsigned long inactive
, isolated
;
1810 if (current_is_kswapd())
1813 if (!sane_reclaim(sc
))
1817 inactive
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
1818 isolated
= node_page_state(pgdat
, NR_ISOLATED_FILE
);
1820 inactive
= node_page_state(pgdat
, NR_INACTIVE_ANON
);
1821 isolated
= node_page_state(pgdat
, NR_ISOLATED_ANON
);
1825 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1826 * won't get blocked by normal direct-reclaimers, forming a circular
1829 if ((sc
->gfp_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
1832 return isolated
> inactive
;
1835 static noinline_for_stack
void
1836 putback_inactive_pages(struct lruvec
*lruvec
, struct list_head
*page_list
)
1838 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1839 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1840 LIST_HEAD(pages_to_free
);
1843 * Put back any unfreeable pages.
1845 while (!list_empty(page_list
)) {
1846 struct page
*page
= lru_to_page(page_list
);
1849 VM_BUG_ON_PAGE(PageLRU(page
), page
);
1850 list_del(&page
->lru
);
1851 if (unlikely(!page_evictable(page
))) {
1852 spin_unlock_irq(&pgdat
->lru_lock
);
1853 putback_lru_page(page
);
1854 spin_lock_irq(&pgdat
->lru_lock
);
1858 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
1861 lru
= page_lru(page
);
1862 add_page_to_lru_list(page
, lruvec
, lru
);
1864 if (is_active_lru(lru
)) {
1865 int file
= is_file_lru(lru
);
1866 int numpages
= hpage_nr_pages(page
);
1867 reclaim_stat
->recent_rotated
[file
] += numpages
;
1869 if (put_page_testzero(page
)) {
1870 __ClearPageLRU(page
);
1871 __ClearPageActive(page
);
1872 del_page_from_lru_list(page
, lruvec
, lru
);
1874 if (unlikely(PageCompound(page
))) {
1875 spin_unlock_irq(&pgdat
->lru_lock
);
1876 mem_cgroup_uncharge(page
);
1877 (*get_compound_page_dtor(page
))(page
);
1878 spin_lock_irq(&pgdat
->lru_lock
);
1880 list_add(&page
->lru
, &pages_to_free
);
1885 * To save our caller's stack, now use input list for pages to free.
1887 list_splice(&pages_to_free
, page_list
);
1891 * If a kernel thread (such as nfsd for loop-back mounts) services
1892 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1893 * In that case we should only throttle if the backing device it is
1894 * writing to is congested. In other cases it is safe to throttle.
1896 static int current_may_throttle(void)
1898 return !(current
->flags
& PF_LESS_THROTTLE
) ||
1899 current
->backing_dev_info
== NULL
||
1900 bdi_write_congested(current
->backing_dev_info
);
1904 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1905 * of reclaimed pages
1907 static noinline_for_stack
unsigned long
1908 shrink_inactive_list(unsigned long nr_to_scan
, struct lruvec
*lruvec
,
1909 struct scan_control
*sc
, enum lru_list lru
)
1911 LIST_HEAD(page_list
);
1912 unsigned long nr_scanned
;
1913 unsigned long nr_reclaimed
= 0;
1914 unsigned long nr_taken
;
1915 struct reclaim_stat stat
= {};
1916 isolate_mode_t isolate_mode
= 0;
1917 int file
= is_file_lru(lru
);
1918 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
1919 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
1920 bool stalled
= false;
1922 while (unlikely(too_many_isolated(pgdat
, file
, sc
))) {
1926 /* wait a bit for the reclaimer. */
1930 /* We are about to die and free our memory. Return now. */
1931 if (fatal_signal_pending(current
))
1932 return SWAP_CLUSTER_MAX
;
1938 isolate_mode
|= ISOLATE_UNMAPPED
;
1940 spin_lock_irq(&pgdat
->lru_lock
);
1942 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &page_list
,
1943 &nr_scanned
, sc
, isolate_mode
, lru
);
1945 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
1946 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
1948 if (current_is_kswapd()) {
1949 if (global_reclaim(sc
))
1950 __count_vm_events(PGSCAN_KSWAPD
, nr_scanned
);
1951 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_KSWAPD
,
1954 if (global_reclaim(sc
))
1955 __count_vm_events(PGSCAN_DIRECT
, nr_scanned
);
1956 count_memcg_events(lruvec_memcg(lruvec
), PGSCAN_DIRECT
,
1959 spin_unlock_irq(&pgdat
->lru_lock
);
1964 nr_reclaimed
= shrink_page_list(&page_list
, pgdat
, sc
, 0,
1967 spin_lock_irq(&pgdat
->lru_lock
);
1969 if (current_is_kswapd()) {
1970 if (global_reclaim(sc
))
1971 __count_vm_events(PGSTEAL_KSWAPD
, nr_reclaimed
);
1972 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_KSWAPD
,
1975 if (global_reclaim(sc
))
1976 __count_vm_events(PGSTEAL_DIRECT
, nr_reclaimed
);
1977 count_memcg_events(lruvec_memcg(lruvec
), PGSTEAL_DIRECT
,
1981 putback_inactive_pages(lruvec
, &page_list
);
1983 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
1985 spin_unlock_irq(&pgdat
->lru_lock
);
1987 mem_cgroup_uncharge_list(&page_list
);
1988 free_unref_page_list(&page_list
);
1991 * If dirty pages are scanned that are not queued for IO, it
1992 * implies that flushers are not doing their job. This can
1993 * happen when memory pressure pushes dirty pages to the end of
1994 * the LRU before the dirty limits are breached and the dirty
1995 * data has expired. It can also happen when the proportion of
1996 * dirty pages grows not through writes but through memory
1997 * pressure reclaiming all the clean cache. And in some cases,
1998 * the flushers simply cannot keep up with the allocation
1999 * rate. Nudge the flusher threads in case they are asleep.
2001 if (stat
.nr_unqueued_dirty
== nr_taken
)
2002 wakeup_flusher_threads(WB_REASON_VMSCAN
);
2004 sc
->nr
.dirty
+= stat
.nr_dirty
;
2005 sc
->nr
.congested
+= stat
.nr_congested
;
2006 sc
->nr
.unqueued_dirty
+= stat
.nr_unqueued_dirty
;
2007 sc
->nr
.writeback
+= stat
.nr_writeback
;
2008 sc
->nr
.immediate
+= stat
.nr_immediate
;
2009 sc
->nr
.taken
+= nr_taken
;
2011 sc
->nr
.file_taken
+= nr_taken
;
2013 trace_mm_vmscan_lru_shrink_inactive(pgdat
->node_id
,
2014 nr_scanned
, nr_reclaimed
, &stat
, sc
->priority
, file
);
2015 return nr_reclaimed
;
2019 * This moves pages from the active list to the inactive list.
2021 * We move them the other way if the page is referenced by one or more
2022 * processes, from rmap.
2024 * If the pages are mostly unmapped, the processing is fast and it is
2025 * appropriate to hold zone_lru_lock across the whole operation. But if
2026 * the pages are mapped, the processing is slow (page_referenced()) so we
2027 * should drop zone_lru_lock around each page. It's impossible to balance
2028 * this, so instead we remove the pages from the LRU while processing them.
2029 * It is safe to rely on PG_active against the non-LRU pages in here because
2030 * nobody will play with that bit on a non-LRU page.
2032 * The downside is that we have to touch page->_refcount against each page.
2033 * But we had to alter page->flags anyway.
2035 * Returns the number of pages moved to the given lru.
2038 static unsigned move_active_pages_to_lru(struct lruvec
*lruvec
,
2039 struct list_head
*list
,
2040 struct list_head
*pages_to_free
,
2043 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2048 while (!list_empty(list
)) {
2049 page
= lru_to_page(list
);
2050 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
2052 VM_BUG_ON_PAGE(PageLRU(page
), page
);
2055 nr_pages
= hpage_nr_pages(page
);
2056 update_lru_size(lruvec
, lru
, page_zonenum(page
), nr_pages
);
2057 list_move(&page
->lru
, &lruvec
->lists
[lru
]);
2059 if (put_page_testzero(page
)) {
2060 __ClearPageLRU(page
);
2061 __ClearPageActive(page
);
2062 del_page_from_lru_list(page
, lruvec
, lru
);
2064 if (unlikely(PageCompound(page
))) {
2065 spin_unlock_irq(&pgdat
->lru_lock
);
2066 mem_cgroup_uncharge(page
);
2067 (*get_compound_page_dtor(page
))(page
);
2068 spin_lock_irq(&pgdat
->lru_lock
);
2070 list_add(&page
->lru
, pages_to_free
);
2072 nr_moved
+= nr_pages
;
2076 if (!is_active_lru(lru
)) {
2077 __count_vm_events(PGDEACTIVATE
, nr_moved
);
2078 count_memcg_events(lruvec_memcg(lruvec
), PGDEACTIVATE
,
2085 static void shrink_active_list(unsigned long nr_to_scan
,
2086 struct lruvec
*lruvec
,
2087 struct scan_control
*sc
,
2090 unsigned long nr_taken
;
2091 unsigned long nr_scanned
;
2092 unsigned long vm_flags
;
2093 LIST_HEAD(l_hold
); /* The pages which were snipped off */
2094 LIST_HEAD(l_active
);
2095 LIST_HEAD(l_inactive
);
2097 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2098 unsigned nr_deactivate
, nr_activate
;
2099 unsigned nr_rotated
= 0;
2100 isolate_mode_t isolate_mode
= 0;
2101 int file
= is_file_lru(lru
);
2102 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2107 isolate_mode
|= ISOLATE_UNMAPPED
;
2109 spin_lock_irq(&pgdat
->lru_lock
);
2111 nr_taken
= isolate_lru_pages(nr_to_scan
, lruvec
, &l_hold
,
2112 &nr_scanned
, sc
, isolate_mode
, lru
);
2114 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, nr_taken
);
2115 reclaim_stat
->recent_scanned
[file
] += nr_taken
;
2117 __count_vm_events(PGREFILL
, nr_scanned
);
2118 count_memcg_events(lruvec_memcg(lruvec
), PGREFILL
, nr_scanned
);
2120 spin_unlock_irq(&pgdat
->lru_lock
);
2122 while (!list_empty(&l_hold
)) {
2124 page
= lru_to_page(&l_hold
);
2125 list_del(&page
->lru
);
2127 if (unlikely(!page_evictable(page
))) {
2128 putback_lru_page(page
);
2132 if (unlikely(buffer_heads_over_limit
)) {
2133 if (page_has_private(page
) && trylock_page(page
)) {
2134 if (page_has_private(page
))
2135 try_to_release_page(page
, 0);
2140 if (page_referenced(page
, 0, sc
->target_mem_cgroup
,
2142 nr_rotated
+= hpage_nr_pages(page
);
2144 * Identify referenced, file-backed active pages and
2145 * give them one more trip around the active list. So
2146 * that executable code get better chances to stay in
2147 * memory under moderate memory pressure. Anon pages
2148 * are not likely to be evicted by use-once streaming
2149 * IO, plus JVM can create lots of anon VM_EXEC pages,
2150 * so we ignore them here.
2152 if ((vm_flags
& VM_EXEC
) && page_is_file_cache(page
)) {
2153 list_add(&page
->lru
, &l_active
);
2158 ClearPageActive(page
); /* we are de-activating */
2159 SetPageWorkingset(page
);
2160 list_add(&page
->lru
, &l_inactive
);
2164 * Move pages back to the lru list.
2166 spin_lock_irq(&pgdat
->lru_lock
);
2168 * Count referenced pages from currently used mappings as rotated,
2169 * even though only some of them are actually re-activated. This
2170 * helps balance scan pressure between file and anonymous pages in
2173 reclaim_stat
->recent_rotated
[file
] += nr_rotated
;
2175 nr_activate
= move_active_pages_to_lru(lruvec
, &l_active
, &l_hold
, lru
);
2176 nr_deactivate
= move_active_pages_to_lru(lruvec
, &l_inactive
, &l_hold
, lru
- LRU_ACTIVE
);
2177 __mod_node_page_state(pgdat
, NR_ISOLATED_ANON
+ file
, -nr_taken
);
2178 spin_unlock_irq(&pgdat
->lru_lock
);
2180 mem_cgroup_uncharge_list(&l_hold
);
2181 free_unref_page_list(&l_hold
);
2182 trace_mm_vmscan_lru_shrink_active(pgdat
->node_id
, nr_taken
, nr_activate
,
2183 nr_deactivate
, nr_rotated
, sc
->priority
, file
);
2187 * The inactive anon list should be small enough that the VM never has
2188 * to do too much work.
2190 * The inactive file list should be small enough to leave most memory
2191 * to the established workingset on the scan-resistant active list,
2192 * but large enough to avoid thrashing the aggregate readahead window.
2194 * Both inactive lists should also be large enough that each inactive
2195 * page has a chance to be referenced again before it is reclaimed.
2197 * If that fails and refaulting is observed, the inactive list grows.
2199 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2200 * on this LRU, maintained by the pageout code. An inactive_ratio
2201 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2204 * memory ratio inactive
2205 * -------------------------------------
2214 static bool inactive_list_is_low(struct lruvec
*lruvec
, bool file
,
2215 struct mem_cgroup
*memcg
,
2216 struct scan_control
*sc
, bool actual_reclaim
)
2218 enum lru_list active_lru
= file
* LRU_FILE
+ LRU_ACTIVE
;
2219 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2220 enum lru_list inactive_lru
= file
* LRU_FILE
;
2221 unsigned long inactive
, active
;
2222 unsigned long inactive_ratio
;
2223 unsigned long refaults
;
2227 * If we don't have swap space, anonymous page deactivation
2230 if (!file
&& !total_swap_pages
)
2233 inactive
= lruvec_lru_size(lruvec
, inactive_lru
, sc
->reclaim_idx
);
2234 active
= lruvec_lru_size(lruvec
, active_lru
, sc
->reclaim_idx
);
2237 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
2239 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
2242 * When refaults are being observed, it means a new workingset
2243 * is being established. Disable active list protection to get
2244 * rid of the stale workingset quickly.
2246 if (file
&& actual_reclaim
&& lruvec
->refaults
!= refaults
) {
2249 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
2251 inactive_ratio
= int_sqrt(10 * gb
);
2257 trace_mm_vmscan_inactive_list_is_low(pgdat
->node_id
, sc
->reclaim_idx
,
2258 lruvec_lru_size(lruvec
, inactive_lru
, MAX_NR_ZONES
), inactive
,
2259 lruvec_lru_size(lruvec
, active_lru
, MAX_NR_ZONES
), active
,
2260 inactive_ratio
, file
);
2262 return inactive
* inactive_ratio
< active
;
2265 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
2266 struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2267 struct scan_control
*sc
)
2269 if (is_active_lru(lru
)) {
2270 if (inactive_list_is_low(lruvec
, is_file_lru(lru
),
2272 shrink_active_list(nr_to_scan
, lruvec
, sc
, lru
);
2276 return shrink_inactive_list(nr_to_scan
, lruvec
, sc
, lru
);
2287 * Determine how aggressively the anon and file LRU lists should be
2288 * scanned. The relative value of each set of LRU lists is determined
2289 * by looking at the fraction of the pages scanned we did rotate back
2290 * onto the active list instead of evict.
2292 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2293 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2295 static void get_scan_count(struct lruvec
*lruvec
, struct mem_cgroup
*memcg
,
2296 struct scan_control
*sc
, unsigned long *nr
,
2297 unsigned long *lru_pages
)
2299 int swappiness
= mem_cgroup_swappiness(memcg
);
2300 struct zone_reclaim_stat
*reclaim_stat
= &lruvec
->reclaim_stat
;
2302 u64 denominator
= 0; /* gcc */
2303 struct pglist_data
*pgdat
= lruvec_pgdat(lruvec
);
2304 unsigned long anon_prio
, file_prio
;
2305 enum scan_balance scan_balance
;
2306 unsigned long anon
, file
;
2307 unsigned long ap
, fp
;
2310 /* If we have no swap space, do not bother scanning anon pages. */
2311 if (!sc
->may_swap
|| mem_cgroup_get_nr_swap_pages(memcg
) <= 0) {
2312 scan_balance
= SCAN_FILE
;
2317 * Global reclaim will swap to prevent OOM even with no
2318 * swappiness, but memcg users want to use this knob to
2319 * disable swapping for individual groups completely when
2320 * using the memory controller's swap limit feature would be
2323 if (!global_reclaim(sc
) && !swappiness
) {
2324 scan_balance
= SCAN_FILE
;
2329 * Do not apply any pressure balancing cleverness when the
2330 * system is close to OOM, scan both anon and file equally
2331 * (unless the swappiness setting disagrees with swapping).
2333 if (!sc
->priority
&& swappiness
) {
2334 scan_balance
= SCAN_EQUAL
;
2339 * Prevent the reclaimer from falling into the cache trap: as
2340 * cache pages start out inactive, every cache fault will tip
2341 * the scan balance towards the file LRU. And as the file LRU
2342 * shrinks, so does the window for rotation from references.
2343 * This means we have a runaway feedback loop where a tiny
2344 * thrashing file LRU becomes infinitely more attractive than
2345 * anon pages. Try to detect this based on file LRU size.
2347 if (global_reclaim(sc
)) {
2348 unsigned long pgdatfile
;
2349 unsigned long pgdatfree
;
2351 unsigned long total_high_wmark
= 0;
2353 pgdatfree
= sum_zone_node_page_state(pgdat
->node_id
, NR_FREE_PAGES
);
2354 pgdatfile
= node_page_state(pgdat
, NR_ACTIVE_FILE
) +
2355 node_page_state(pgdat
, NR_INACTIVE_FILE
);
2357 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
2358 struct zone
*zone
= &pgdat
->node_zones
[z
];
2359 if (!managed_zone(zone
))
2362 total_high_wmark
+= high_wmark_pages(zone
);
2365 if (unlikely(pgdatfile
+ pgdatfree
<= total_high_wmark
)) {
2367 * Force SCAN_ANON if there are enough inactive
2368 * anonymous pages on the LRU in eligible zones.
2369 * Otherwise, the small LRU gets thrashed.
2371 if (!inactive_list_is_low(lruvec
, false, memcg
, sc
, false) &&
2372 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, sc
->reclaim_idx
)
2374 scan_balance
= SCAN_ANON
;
2381 * If there is enough inactive page cache, i.e. if the size of the
2382 * inactive list is greater than that of the active list *and* the
2383 * inactive list actually has some pages to scan on this priority, we
2384 * do not reclaim anything from the anonymous working set right now.
2385 * Without the second condition we could end up never scanning an
2386 * lruvec even if it has plenty of old anonymous pages unless the
2387 * system is under heavy pressure.
2389 if (!inactive_list_is_low(lruvec
, true, memcg
, sc
, false) &&
2390 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, sc
->reclaim_idx
) >> sc
->priority
) {
2391 scan_balance
= SCAN_FILE
;
2395 scan_balance
= SCAN_FRACT
;
2398 * With swappiness at 100, anonymous and file have the same priority.
2399 * This scanning priority is essentially the inverse of IO cost.
2401 anon_prio
= swappiness
;
2402 file_prio
= 200 - anon_prio
;
2405 * OK, so we have swap space and a fair amount of page cache
2406 * pages. We use the recently rotated / recently scanned
2407 * ratios to determine how valuable each cache is.
2409 * Because workloads change over time (and to avoid overflow)
2410 * we keep these statistics as a floating average, which ends
2411 * up weighing recent references more than old ones.
2413 * anon in [0], file in [1]
2416 anon
= lruvec_lru_size(lruvec
, LRU_ACTIVE_ANON
, MAX_NR_ZONES
) +
2417 lruvec_lru_size(lruvec
, LRU_INACTIVE_ANON
, MAX_NR_ZONES
);
2418 file
= lruvec_lru_size(lruvec
, LRU_ACTIVE_FILE
, MAX_NR_ZONES
) +
2419 lruvec_lru_size(lruvec
, LRU_INACTIVE_FILE
, MAX_NR_ZONES
);
2421 spin_lock_irq(&pgdat
->lru_lock
);
2422 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
2423 reclaim_stat
->recent_scanned
[0] /= 2;
2424 reclaim_stat
->recent_rotated
[0] /= 2;
2427 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
2428 reclaim_stat
->recent_scanned
[1] /= 2;
2429 reclaim_stat
->recent_rotated
[1] /= 2;
2433 * The amount of pressure on anon vs file pages is inversely
2434 * proportional to the fraction of recently scanned pages on
2435 * each list that were recently referenced and in active use.
2437 ap
= anon_prio
* (reclaim_stat
->recent_scanned
[0] + 1);
2438 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
2440 fp
= file_prio
* (reclaim_stat
->recent_scanned
[1] + 1);
2441 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
2442 spin_unlock_irq(&pgdat
->lru_lock
);
2446 denominator
= ap
+ fp
+ 1;
2449 for_each_evictable_lru(lru
) {
2450 int file
= is_file_lru(lru
);
2454 size
= lruvec_lru_size(lruvec
, lru
, sc
->reclaim_idx
);
2455 scan
= size
>> sc
->priority
;
2457 * If the cgroup's already been deleted, make sure to
2458 * scrape out the remaining cache.
2460 if (!scan
&& !mem_cgroup_online(memcg
))
2461 scan
= min(size
, SWAP_CLUSTER_MAX
);
2463 switch (scan_balance
) {
2465 /* Scan lists relative to size */
2469 * Scan types proportional to swappiness and
2470 * their relative recent reclaim efficiency.
2471 * Make sure we don't miss the last page
2472 * because of a round-off error.
2474 scan
= DIV64_U64_ROUND_UP(scan
* fraction
[file
],
2479 /* Scan one type exclusively */
2480 if ((scan_balance
== SCAN_FILE
) != file
) {
2486 /* Look ma, no brain */
2496 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2498 static void shrink_node_memcg(struct pglist_data
*pgdat
, struct mem_cgroup
*memcg
,
2499 struct scan_control
*sc
, unsigned long *lru_pages
)
2501 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
2502 unsigned long nr
[NR_LRU_LISTS
];
2503 unsigned long targets
[NR_LRU_LISTS
];
2504 unsigned long nr_to_scan
;
2506 unsigned long nr_reclaimed
= 0;
2507 unsigned long nr_to_reclaim
= sc
->nr_to_reclaim
;
2508 struct blk_plug plug
;
2511 get_scan_count(lruvec
, memcg
, sc
, nr
, lru_pages
);
2513 /* Record the original scan target for proportional adjustments later */
2514 memcpy(targets
, nr
, sizeof(nr
));
2517 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2518 * event that can occur when there is little memory pressure e.g.
2519 * multiple streaming readers/writers. Hence, we do not abort scanning
2520 * when the requested number of pages are reclaimed when scanning at
2521 * DEF_PRIORITY on the assumption that the fact we are direct
2522 * reclaiming implies that kswapd is not keeping up and it is best to
2523 * do a batch of work at once. For memcg reclaim one check is made to
2524 * abort proportional reclaim if either the file or anon lru has already
2525 * dropped to zero at the first pass.
2527 scan_adjusted
= (global_reclaim(sc
) && !current_is_kswapd() &&
2528 sc
->priority
== DEF_PRIORITY
);
2530 blk_start_plug(&plug
);
2531 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
2532 nr
[LRU_INACTIVE_FILE
]) {
2533 unsigned long nr_anon
, nr_file
, percentage
;
2534 unsigned long nr_scanned
;
2536 for_each_evictable_lru(lru
) {
2538 nr_to_scan
= min(nr
[lru
], SWAP_CLUSTER_MAX
);
2539 nr
[lru
] -= nr_to_scan
;
2541 nr_reclaimed
+= shrink_list(lru
, nr_to_scan
,
2548 if (nr_reclaimed
< nr_to_reclaim
|| scan_adjusted
)
2552 * For kswapd and memcg, reclaim at least the number of pages
2553 * requested. Ensure that the anon and file LRUs are scanned
2554 * proportionally what was requested by get_scan_count(). We
2555 * stop reclaiming one LRU and reduce the amount scanning
2556 * proportional to the original scan target.
2558 nr_file
= nr
[LRU_INACTIVE_FILE
] + nr
[LRU_ACTIVE_FILE
];
2559 nr_anon
= nr
[LRU_INACTIVE_ANON
] + nr
[LRU_ACTIVE_ANON
];
2562 * It's just vindictive to attack the larger once the smaller
2563 * has gone to zero. And given the way we stop scanning the
2564 * smaller below, this makes sure that we only make one nudge
2565 * towards proportionality once we've got nr_to_reclaim.
2567 if (!nr_file
|| !nr_anon
)
2570 if (nr_file
> nr_anon
) {
2571 unsigned long scan_target
= targets
[LRU_INACTIVE_ANON
] +
2572 targets
[LRU_ACTIVE_ANON
] + 1;
2574 percentage
= nr_anon
* 100 / scan_target
;
2576 unsigned long scan_target
= targets
[LRU_INACTIVE_FILE
] +
2577 targets
[LRU_ACTIVE_FILE
] + 1;
2579 percentage
= nr_file
* 100 / scan_target
;
2582 /* Stop scanning the smaller of the LRU */
2584 nr
[lru
+ LRU_ACTIVE
] = 0;
2587 * Recalculate the other LRU scan count based on its original
2588 * scan target and the percentage scanning already complete
2590 lru
= (lru
== LRU_FILE
) ? LRU_BASE
: LRU_FILE
;
2591 nr_scanned
= targets
[lru
] - nr
[lru
];
2592 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2593 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2596 nr_scanned
= targets
[lru
] - nr
[lru
];
2597 nr
[lru
] = targets
[lru
] * (100 - percentage
) / 100;
2598 nr
[lru
] -= min(nr
[lru
], nr_scanned
);
2600 scan_adjusted
= true;
2602 blk_finish_plug(&plug
);
2603 sc
->nr_reclaimed
+= nr_reclaimed
;
2606 * Even if we did not try to evict anon pages at all, we want to
2607 * rebalance the anon lru active/inactive ratio.
2609 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
2610 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
2611 sc
, LRU_ACTIVE_ANON
);
2614 /* Use reclaim/compaction for costly allocs or under memory pressure */
2615 static bool in_reclaim_compaction(struct scan_control
*sc
)
2617 if (IS_ENABLED(CONFIG_COMPACTION
) && sc
->order
&&
2618 (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
||
2619 sc
->priority
< DEF_PRIORITY
- 2))
2626 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2627 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2628 * true if more pages should be reclaimed such that when the page allocator
2629 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2630 * It will give up earlier than that if there is difficulty reclaiming pages.
2632 static inline bool should_continue_reclaim(struct pglist_data
*pgdat
,
2633 unsigned long nr_reclaimed
,
2634 unsigned long nr_scanned
,
2635 struct scan_control
*sc
)
2637 unsigned long pages_for_compaction
;
2638 unsigned long inactive_lru_pages
;
2641 /* If not in reclaim/compaction mode, stop */
2642 if (!in_reclaim_compaction(sc
))
2645 /* Consider stopping depending on scan and reclaim activity */
2646 if (sc
->gfp_mask
& __GFP_RETRY_MAYFAIL
) {
2648 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2649 * full LRU list has been scanned and we are still failing
2650 * to reclaim pages. This full LRU scan is potentially
2651 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2653 if (!nr_reclaimed
&& !nr_scanned
)
2657 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2658 * fail without consequence, stop if we failed to reclaim
2659 * any pages from the last SWAP_CLUSTER_MAX number of
2660 * pages that were scanned. This will return to the
2661 * caller faster at the risk reclaim/compaction and
2662 * the resulting allocation attempt fails
2669 * If we have not reclaimed enough pages for compaction and the
2670 * inactive lists are large enough, continue reclaiming
2672 pages_for_compaction
= compact_gap(sc
->order
);
2673 inactive_lru_pages
= node_page_state(pgdat
, NR_INACTIVE_FILE
);
2674 if (get_nr_swap_pages() > 0)
2675 inactive_lru_pages
+= node_page_state(pgdat
, NR_INACTIVE_ANON
);
2676 if (sc
->nr_reclaimed
< pages_for_compaction
&&
2677 inactive_lru_pages
> pages_for_compaction
)
2680 /* If compaction would go ahead or the allocation would succeed, stop */
2681 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
2682 struct zone
*zone
= &pgdat
->node_zones
[z
];
2683 if (!managed_zone(zone
))
2686 switch (compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
)) {
2687 case COMPACT_SUCCESS
:
2688 case COMPACT_CONTINUE
:
2691 /* check next zone */
2698 static bool pgdat_memcg_congested(pg_data_t
*pgdat
, struct mem_cgroup
*memcg
)
2700 return test_bit(PGDAT_CONGESTED
, &pgdat
->flags
) ||
2701 (memcg
&& memcg_congested(pgdat
, memcg
));
2704 static bool shrink_node(pg_data_t
*pgdat
, struct scan_control
*sc
)
2706 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
2707 unsigned long nr_reclaimed
, nr_scanned
;
2708 bool reclaimable
= false;
2711 struct mem_cgroup
*root
= sc
->target_mem_cgroup
;
2712 struct mem_cgroup_reclaim_cookie reclaim
= {
2714 .priority
= sc
->priority
,
2716 unsigned long node_lru_pages
= 0;
2717 struct mem_cgroup
*memcg
;
2719 memset(&sc
->nr
, 0, sizeof(sc
->nr
));
2721 nr_reclaimed
= sc
->nr_reclaimed
;
2722 nr_scanned
= sc
->nr_scanned
;
2724 memcg
= mem_cgroup_iter(root
, NULL
, &reclaim
);
2726 unsigned long lru_pages
;
2727 unsigned long reclaimed
;
2728 unsigned long scanned
;
2730 switch (mem_cgroup_protected(root
, memcg
)) {
2731 case MEMCG_PROT_MIN
:
2734 * If there is no reclaimable memory, OOM.
2737 case MEMCG_PROT_LOW
:
2740 * Respect the protection only as long as
2741 * there is an unprotected supply
2742 * of reclaimable memory from other cgroups.
2744 if (!sc
->memcg_low_reclaim
) {
2745 sc
->memcg_low_skipped
= 1;
2748 memcg_memory_event(memcg
, MEMCG_LOW
);
2750 case MEMCG_PROT_NONE
:
2754 reclaimed
= sc
->nr_reclaimed
;
2755 scanned
= sc
->nr_scanned
;
2756 shrink_node_memcg(pgdat
, memcg
, sc
, &lru_pages
);
2757 node_lru_pages
+= lru_pages
;
2759 shrink_slab(sc
->gfp_mask
, pgdat
->node_id
,
2760 memcg
, sc
->priority
);
2762 /* Record the group's reclaim efficiency */
2763 vmpressure(sc
->gfp_mask
, memcg
, false,
2764 sc
->nr_scanned
- scanned
,
2765 sc
->nr_reclaimed
- reclaimed
);
2768 * Direct reclaim and kswapd have to scan all memory
2769 * cgroups to fulfill the overall scan target for the
2772 * Limit reclaim, on the other hand, only cares about
2773 * nr_to_reclaim pages to be reclaimed and it will
2774 * retry with decreasing priority if one round over the
2775 * whole hierarchy is not sufficient.
2777 if (!global_reclaim(sc
) &&
2778 sc
->nr_reclaimed
>= sc
->nr_to_reclaim
) {
2779 mem_cgroup_iter_break(root
, memcg
);
2782 } while ((memcg
= mem_cgroup_iter(root
, memcg
, &reclaim
)));
2784 if (reclaim_state
) {
2785 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
2786 reclaim_state
->reclaimed_slab
= 0;
2789 /* Record the subtree's reclaim efficiency */
2790 vmpressure(sc
->gfp_mask
, sc
->target_mem_cgroup
, true,
2791 sc
->nr_scanned
- nr_scanned
,
2792 sc
->nr_reclaimed
- nr_reclaimed
);
2794 if (sc
->nr_reclaimed
- nr_reclaimed
)
2797 if (current_is_kswapd()) {
2799 * If reclaim is isolating dirty pages under writeback,
2800 * it implies that the long-lived page allocation rate
2801 * is exceeding the page laundering rate. Either the
2802 * global limits are not being effective at throttling
2803 * processes due to the page distribution throughout
2804 * zones or there is heavy usage of a slow backing
2805 * device. The only option is to throttle from reclaim
2806 * context which is not ideal as there is no guarantee
2807 * the dirtying process is throttled in the same way
2808 * balance_dirty_pages() manages.
2810 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2811 * count the number of pages under pages flagged for
2812 * immediate reclaim and stall if any are encountered
2813 * in the nr_immediate check below.
2815 if (sc
->nr
.writeback
&& sc
->nr
.writeback
== sc
->nr
.taken
)
2816 set_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
2819 * Tag a node as congested if all the dirty pages
2820 * scanned were backed by a congested BDI and
2821 * wait_iff_congested will stall.
2823 if (sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2824 set_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
2826 /* Allow kswapd to start writing pages during reclaim.*/
2827 if (sc
->nr
.unqueued_dirty
== sc
->nr
.file_taken
)
2828 set_bit(PGDAT_DIRTY
, &pgdat
->flags
);
2831 * If kswapd scans pages marked marked for immediate
2832 * reclaim and under writeback (nr_immediate), it
2833 * implies that pages are cycling through the LRU
2834 * faster than they are written so also forcibly stall.
2836 if (sc
->nr
.immediate
)
2837 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
2841 * Legacy memcg will stall in page writeback so avoid forcibly
2842 * stalling in wait_iff_congested().
2844 if (!global_reclaim(sc
) && sane_reclaim(sc
) &&
2845 sc
->nr
.dirty
&& sc
->nr
.dirty
== sc
->nr
.congested
)
2846 set_memcg_congestion(pgdat
, root
, true);
2849 * Stall direct reclaim for IO completions if underlying BDIs
2850 * and node is congested. Allow kswapd to continue until it
2851 * starts encountering unqueued dirty pages or cycling through
2852 * the LRU too quickly.
2854 if (!sc
->hibernation_mode
&& !current_is_kswapd() &&
2855 current_may_throttle() && pgdat_memcg_congested(pgdat
, root
))
2856 wait_iff_congested(BLK_RW_ASYNC
, HZ
/10);
2858 } while (should_continue_reclaim(pgdat
, sc
->nr_reclaimed
- nr_reclaimed
,
2859 sc
->nr_scanned
- nr_scanned
, sc
));
2862 * Kswapd gives up on balancing particular nodes after too
2863 * many failures to reclaim anything from them and goes to
2864 * sleep. On reclaim progress, reset the failure counter. A
2865 * successful direct reclaim run will revive a dormant kswapd.
2868 pgdat
->kswapd_failures
= 0;
2874 * Returns true if compaction should go ahead for a costly-order request, or
2875 * the allocation would already succeed without compaction. Return false if we
2876 * should reclaim first.
2878 static inline bool compaction_ready(struct zone
*zone
, struct scan_control
*sc
)
2880 unsigned long watermark
;
2881 enum compact_result suitable
;
2883 suitable
= compaction_suitable(zone
, sc
->order
, 0, sc
->reclaim_idx
);
2884 if (suitable
== COMPACT_SUCCESS
)
2885 /* Allocation should succeed already. Don't reclaim. */
2887 if (suitable
== COMPACT_SKIPPED
)
2888 /* Compaction cannot yet proceed. Do reclaim. */
2892 * Compaction is already possible, but it takes time to run and there
2893 * are potentially other callers using the pages just freed. So proceed
2894 * with reclaim to make a buffer of free pages available to give
2895 * compaction a reasonable chance of completing and allocating the page.
2896 * Note that we won't actually reclaim the whole buffer in one attempt
2897 * as the target watermark in should_continue_reclaim() is lower. But if
2898 * we are already above the high+gap watermark, don't reclaim at all.
2900 watermark
= high_wmark_pages(zone
) + compact_gap(sc
->order
);
2902 return zone_watermark_ok_safe(zone
, 0, watermark
, sc
->reclaim_idx
);
2906 * This is the direct reclaim path, for page-allocating processes. We only
2907 * try to reclaim pages from zones which will satisfy the caller's allocation
2910 * If a zone is deemed to be full of pinned pages then just give it a light
2911 * scan then give up on it.
2913 static void shrink_zones(struct zonelist
*zonelist
, struct scan_control
*sc
)
2917 unsigned long nr_soft_reclaimed
;
2918 unsigned long nr_soft_scanned
;
2920 pg_data_t
*last_pgdat
= NULL
;
2923 * If the number of buffer_heads in the machine exceeds the maximum
2924 * allowed level, force direct reclaim to scan the highmem zone as
2925 * highmem pages could be pinning lowmem pages storing buffer_heads
2927 orig_mask
= sc
->gfp_mask
;
2928 if (buffer_heads_over_limit
) {
2929 sc
->gfp_mask
|= __GFP_HIGHMEM
;
2930 sc
->reclaim_idx
= gfp_zone(sc
->gfp_mask
);
2933 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
2934 sc
->reclaim_idx
, sc
->nodemask
) {
2936 * Take care memory controller reclaiming has small influence
2939 if (global_reclaim(sc
)) {
2940 if (!cpuset_zone_allowed(zone
,
2941 GFP_KERNEL
| __GFP_HARDWALL
))
2945 * If we already have plenty of memory free for
2946 * compaction in this zone, don't free any more.
2947 * Even though compaction is invoked for any
2948 * non-zero order, only frequent costly order
2949 * reclamation is disruptive enough to become a
2950 * noticeable problem, like transparent huge
2953 if (IS_ENABLED(CONFIG_COMPACTION
) &&
2954 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
&&
2955 compaction_ready(zone
, sc
)) {
2956 sc
->compaction_ready
= true;
2961 * Shrink each node in the zonelist once. If the
2962 * zonelist is ordered by zone (not the default) then a
2963 * node may be shrunk multiple times but in that case
2964 * the user prefers lower zones being preserved.
2966 if (zone
->zone_pgdat
== last_pgdat
)
2970 * This steals pages from memory cgroups over softlimit
2971 * and returns the number of reclaimed pages and
2972 * scanned pages. This works for global memory pressure
2973 * and balancing, not for a memcg's limit.
2975 nr_soft_scanned
= 0;
2976 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(zone
->zone_pgdat
,
2977 sc
->order
, sc
->gfp_mask
,
2979 sc
->nr_reclaimed
+= nr_soft_reclaimed
;
2980 sc
->nr_scanned
+= nr_soft_scanned
;
2981 /* need some check for avoid more shrink_zone() */
2984 /* See comment about same check for global reclaim above */
2985 if (zone
->zone_pgdat
== last_pgdat
)
2987 last_pgdat
= zone
->zone_pgdat
;
2988 shrink_node(zone
->zone_pgdat
, sc
);
2992 * Restore to original mask to avoid the impact on the caller if we
2993 * promoted it to __GFP_HIGHMEM.
2995 sc
->gfp_mask
= orig_mask
;
2998 static void snapshot_refaults(struct mem_cgroup
*root_memcg
, pg_data_t
*pgdat
)
3000 struct mem_cgroup
*memcg
;
3002 memcg
= mem_cgroup_iter(root_memcg
, NULL
, NULL
);
3004 unsigned long refaults
;
3005 struct lruvec
*lruvec
;
3008 refaults
= memcg_page_state(memcg
, WORKINGSET_ACTIVATE
);
3010 refaults
= node_page_state(pgdat
, WORKINGSET_ACTIVATE
);
3012 lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3013 lruvec
->refaults
= refaults
;
3014 } while ((memcg
= mem_cgroup_iter(root_memcg
, memcg
, NULL
)));
3018 * This is the main entry point to direct page reclaim.
3020 * If a full scan of the inactive list fails to free enough memory then we
3021 * are "out of memory" and something needs to be killed.
3023 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3024 * high - the zone may be full of dirty or under-writeback pages, which this
3025 * caller can't do much about. We kick the writeback threads and take explicit
3026 * naps in the hope that some of these pages can be written. But if the
3027 * allocating task holds filesystem locks which prevent writeout this might not
3028 * work, and the allocation attempt will fail.
3030 * returns: 0, if no pages reclaimed
3031 * else, the number of pages reclaimed
3033 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
3034 struct scan_control
*sc
)
3036 int initial_priority
= sc
->priority
;
3037 pg_data_t
*last_pgdat
;
3041 delayacct_freepages_start();
3043 if (global_reclaim(sc
))
3044 __count_zid_vm_events(ALLOCSTALL
, sc
->reclaim_idx
, 1);
3047 vmpressure_prio(sc
->gfp_mask
, sc
->target_mem_cgroup
,
3050 shrink_zones(zonelist
, sc
);
3052 if (sc
->nr_reclaimed
>= sc
->nr_to_reclaim
)
3055 if (sc
->compaction_ready
)
3059 * If we're getting trouble reclaiming, start doing
3060 * writepage even in laptop mode.
3062 if (sc
->priority
< DEF_PRIORITY
- 2)
3063 sc
->may_writepage
= 1;
3064 } while (--sc
->priority
>= 0);
3067 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, sc
->reclaim_idx
,
3069 if (zone
->zone_pgdat
== last_pgdat
)
3071 last_pgdat
= zone
->zone_pgdat
;
3072 snapshot_refaults(sc
->target_mem_cgroup
, zone
->zone_pgdat
);
3073 set_memcg_congestion(last_pgdat
, sc
->target_mem_cgroup
, false);
3076 delayacct_freepages_end();
3078 if (sc
->nr_reclaimed
)
3079 return sc
->nr_reclaimed
;
3081 /* Aborted reclaim to try compaction? don't OOM, then */
3082 if (sc
->compaction_ready
)
3085 /* Untapped cgroup reserves? Don't OOM, retry. */
3086 if (sc
->memcg_low_skipped
) {
3087 sc
->priority
= initial_priority
;
3088 sc
->memcg_low_reclaim
= 1;
3089 sc
->memcg_low_skipped
= 0;
3096 static bool allow_direct_reclaim(pg_data_t
*pgdat
)
3099 unsigned long pfmemalloc_reserve
= 0;
3100 unsigned long free_pages
= 0;
3104 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3107 for (i
= 0; i
<= ZONE_NORMAL
; i
++) {
3108 zone
= &pgdat
->node_zones
[i
];
3109 if (!managed_zone(zone
))
3112 if (!zone_reclaimable_pages(zone
))
3115 pfmemalloc_reserve
+= min_wmark_pages(zone
);
3116 free_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
3119 /* If there are no reserves (unexpected config) then do not throttle */
3120 if (!pfmemalloc_reserve
)
3123 wmark_ok
= free_pages
> pfmemalloc_reserve
/ 2;
3125 /* kswapd must be awake if processes are being throttled */
3126 if (!wmark_ok
&& waitqueue_active(&pgdat
->kswapd_wait
)) {
3127 pgdat
->kswapd_classzone_idx
= min(pgdat
->kswapd_classzone_idx
,
3128 (enum zone_type
)ZONE_NORMAL
);
3129 wake_up_interruptible(&pgdat
->kswapd_wait
);
3136 * Throttle direct reclaimers if backing storage is backed by the network
3137 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3138 * depleted. kswapd will continue to make progress and wake the processes
3139 * when the low watermark is reached.
3141 * Returns true if a fatal signal was delivered during throttling. If this
3142 * happens, the page allocator should not consider triggering the OOM killer.
3144 static bool throttle_direct_reclaim(gfp_t gfp_mask
, struct zonelist
*zonelist
,
3145 nodemask_t
*nodemask
)
3149 pg_data_t
*pgdat
= NULL
;
3152 * Kernel threads should not be throttled as they may be indirectly
3153 * responsible for cleaning pages necessary for reclaim to make forward
3154 * progress. kjournald for example may enter direct reclaim while
3155 * committing a transaction where throttling it could forcing other
3156 * processes to block on log_wait_commit().
3158 if (current
->flags
& PF_KTHREAD
)
3162 * If a fatal signal is pending, this process should not throttle.
3163 * It should return quickly so it can exit and free its memory
3165 if (fatal_signal_pending(current
))
3169 * Check if the pfmemalloc reserves are ok by finding the first node
3170 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3171 * GFP_KERNEL will be required for allocating network buffers when
3172 * swapping over the network so ZONE_HIGHMEM is unusable.
3174 * Throttling is based on the first usable node and throttled processes
3175 * wait on a queue until kswapd makes progress and wakes them. There
3176 * is an affinity then between processes waking up and where reclaim
3177 * progress has been made assuming the process wakes on the same node.
3178 * More importantly, processes running on remote nodes will not compete
3179 * for remote pfmemalloc reserves and processes on different nodes
3180 * should make reasonable progress.
3182 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
3183 gfp_zone(gfp_mask
), nodemask
) {
3184 if (zone_idx(zone
) > ZONE_NORMAL
)
3187 /* Throttle based on the first usable node */
3188 pgdat
= zone
->zone_pgdat
;
3189 if (allow_direct_reclaim(pgdat
))
3194 /* If no zone was usable by the allocation flags then do not throttle */
3198 /* Account for the throttling */
3199 count_vm_event(PGSCAN_DIRECT_THROTTLE
);
3202 * If the caller cannot enter the filesystem, it's possible that it
3203 * is due to the caller holding an FS lock or performing a journal
3204 * transaction in the case of a filesystem like ext[3|4]. In this case,
3205 * it is not safe to block on pfmemalloc_wait as kswapd could be
3206 * blocked waiting on the same lock. Instead, throttle for up to a
3207 * second before continuing.
3209 if (!(gfp_mask
& __GFP_FS
)) {
3210 wait_event_interruptible_timeout(pgdat
->pfmemalloc_wait
,
3211 allow_direct_reclaim(pgdat
), HZ
);
3216 /* Throttle until kswapd wakes the process */
3217 wait_event_killable(zone
->zone_pgdat
->pfmemalloc_wait
,
3218 allow_direct_reclaim(pgdat
));
3221 if (fatal_signal_pending(current
))
3228 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
3229 gfp_t gfp_mask
, nodemask_t
*nodemask
)
3231 unsigned long nr_reclaimed
;
3232 struct scan_control sc
= {
3233 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3234 .gfp_mask
= current_gfp_context(gfp_mask
),
3235 .reclaim_idx
= gfp_zone(gfp_mask
),
3237 .nodemask
= nodemask
,
3238 .priority
= DEF_PRIORITY
,
3239 .may_writepage
= !laptop_mode
,
3245 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3246 * Confirm they are large enough for max values.
3248 BUILD_BUG_ON(MAX_ORDER
> S8_MAX
);
3249 BUILD_BUG_ON(DEF_PRIORITY
> S8_MAX
);
3250 BUILD_BUG_ON(MAX_NR_ZONES
> S8_MAX
);
3253 * Do not enter reclaim if fatal signal was delivered while throttled.
3254 * 1 is returned so that the page allocator does not OOM kill at this
3257 if (throttle_direct_reclaim(sc
.gfp_mask
, zonelist
, nodemask
))
3260 trace_mm_vmscan_direct_reclaim_begin(order
,
3265 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3267 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed
);
3269 return nr_reclaimed
;
3274 unsigned long mem_cgroup_shrink_node(struct mem_cgroup
*memcg
,
3275 gfp_t gfp_mask
, bool noswap
,
3277 unsigned long *nr_scanned
)
3279 struct scan_control sc
= {
3280 .nr_to_reclaim
= SWAP_CLUSTER_MAX
,
3281 .target_mem_cgroup
= memcg
,
3282 .may_writepage
= !laptop_mode
,
3284 .reclaim_idx
= MAX_NR_ZONES
- 1,
3285 .may_swap
= !noswap
,
3287 unsigned long lru_pages
;
3289 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
3290 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
3292 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc
.order
,
3298 * NOTE: Although we can get the priority field, using it
3299 * here is not a good idea, since it limits the pages we can scan.
3300 * if we don't reclaim here, the shrink_node from balance_pgdat
3301 * will pick up pages from other mem cgroup's as well. We hack
3302 * the priority and make it zero.
3304 shrink_node_memcg(pgdat
, memcg
, &sc
, &lru_pages
);
3306 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc
.nr_reclaimed
);
3308 *nr_scanned
= sc
.nr_scanned
;
3309 return sc
.nr_reclaimed
;
3312 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*memcg
,
3313 unsigned long nr_pages
,
3317 struct zonelist
*zonelist
;
3318 unsigned long nr_reclaimed
;
3319 unsigned long pflags
;
3321 unsigned int noreclaim_flag
;
3322 struct scan_control sc
= {
3323 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
3324 .gfp_mask
= (current_gfp_context(gfp_mask
) & GFP_RECLAIM_MASK
) |
3325 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
),
3326 .reclaim_idx
= MAX_NR_ZONES
- 1,
3327 .target_mem_cgroup
= memcg
,
3328 .priority
= DEF_PRIORITY
,
3329 .may_writepage
= !laptop_mode
,
3331 .may_swap
= may_swap
,
3335 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3336 * take care of from where we get pages. So the node where we start the
3337 * scan does not need to be the current node.
3339 nid
= mem_cgroup_select_victim_node(memcg
);
3341 zonelist
= &NODE_DATA(nid
)->node_zonelists
[ZONELIST_FALLBACK
];
3343 trace_mm_vmscan_memcg_reclaim_begin(0,
3348 psi_memstall_enter(&pflags
);
3349 noreclaim_flag
= memalloc_noreclaim_save();
3351 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3353 memalloc_noreclaim_restore(noreclaim_flag
);
3354 psi_memstall_leave(&pflags
);
3356 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed
);
3358 return nr_reclaimed
;
3362 static void age_active_anon(struct pglist_data
*pgdat
,
3363 struct scan_control
*sc
)
3365 struct mem_cgroup
*memcg
;
3367 if (!total_swap_pages
)
3370 memcg
= mem_cgroup_iter(NULL
, NULL
, NULL
);
3372 struct lruvec
*lruvec
= mem_cgroup_lruvec(pgdat
, memcg
);
3374 if (inactive_list_is_low(lruvec
, false, memcg
, sc
, true))
3375 shrink_active_list(SWAP_CLUSTER_MAX
, lruvec
,
3376 sc
, LRU_ACTIVE_ANON
);
3378 memcg
= mem_cgroup_iter(NULL
, memcg
, NULL
);
3383 * Returns true if there is an eligible zone balanced for the request order
3386 static bool pgdat_balanced(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3389 unsigned long mark
= -1;
3392 for (i
= 0; i
<= classzone_idx
; i
++) {
3393 zone
= pgdat
->node_zones
+ i
;
3395 if (!managed_zone(zone
))
3398 mark
= high_wmark_pages(zone
);
3399 if (zone_watermark_ok_safe(zone
, order
, mark
, classzone_idx
))
3404 * If a node has no populated zone within classzone_idx, it does not
3405 * need balancing by definition. This can happen if a zone-restricted
3406 * allocation tries to wake a remote kswapd.
3414 /* Clear pgdat state for congested, dirty or under writeback. */
3415 static void clear_pgdat_congested(pg_data_t
*pgdat
)
3417 clear_bit(PGDAT_CONGESTED
, &pgdat
->flags
);
3418 clear_bit(PGDAT_DIRTY
, &pgdat
->flags
);
3419 clear_bit(PGDAT_WRITEBACK
, &pgdat
->flags
);
3423 * Prepare kswapd for sleeping. This verifies that there are no processes
3424 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3426 * Returns true if kswapd is ready to sleep
3428 static bool prepare_kswapd_sleep(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3431 * The throttled processes are normally woken up in balance_pgdat() as
3432 * soon as allow_direct_reclaim() is true. But there is a potential
3433 * race between when kswapd checks the watermarks and a process gets
3434 * throttled. There is also a potential race if processes get
3435 * throttled, kswapd wakes, a large process exits thereby balancing the
3436 * zones, which causes kswapd to exit balance_pgdat() before reaching
3437 * the wake up checks. If kswapd is going to sleep, no process should
3438 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3439 * the wake up is premature, processes will wake kswapd and get
3440 * throttled again. The difference from wake ups in balance_pgdat() is
3441 * that here we are under prepare_to_wait().
3443 if (waitqueue_active(&pgdat
->pfmemalloc_wait
))
3444 wake_up_all(&pgdat
->pfmemalloc_wait
);
3446 /* Hopeless node, leave it to direct reclaim */
3447 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
)
3450 if (pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3451 clear_pgdat_congested(pgdat
);
3459 * kswapd shrinks a node of pages that are at or below the highest usable
3460 * zone that is currently unbalanced.
3462 * Returns true if kswapd scanned at least the requested number of pages to
3463 * reclaim or if the lack of progress was due to pages under writeback.
3464 * This is used to determine if the scanning priority needs to be raised.
3466 static bool kswapd_shrink_node(pg_data_t
*pgdat
,
3467 struct scan_control
*sc
)
3472 /* Reclaim a number of pages proportional to the number of zones */
3473 sc
->nr_to_reclaim
= 0;
3474 for (z
= 0; z
<= sc
->reclaim_idx
; z
++) {
3475 zone
= pgdat
->node_zones
+ z
;
3476 if (!managed_zone(zone
))
3479 sc
->nr_to_reclaim
+= max(high_wmark_pages(zone
), SWAP_CLUSTER_MAX
);
3483 * Historically care was taken to put equal pressure on all zones but
3484 * now pressure is applied based on node LRU order.
3486 shrink_node(pgdat
, sc
);
3489 * Fragmentation may mean that the system cannot be rebalanced for
3490 * high-order allocations. If twice the allocation size has been
3491 * reclaimed then recheck watermarks only at order-0 to prevent
3492 * excessive reclaim. Assume that a process requested a high-order
3493 * can direct reclaim/compact.
3495 if (sc
->order
&& sc
->nr_reclaimed
>= compact_gap(sc
->order
))
3498 return sc
->nr_scanned
>= sc
->nr_to_reclaim
;
3502 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3503 * that are eligible for use by the caller until at least one zone is
3506 * Returns the order kswapd finished reclaiming at.
3508 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3509 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3510 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3511 * or lower is eligible for reclaim until at least one usable zone is
3514 static int balance_pgdat(pg_data_t
*pgdat
, int order
, int classzone_idx
)
3517 unsigned long nr_soft_reclaimed
;
3518 unsigned long nr_soft_scanned
;
3519 unsigned long pflags
;
3521 struct scan_control sc
= {
3522 .gfp_mask
= GFP_KERNEL
,
3524 .priority
= DEF_PRIORITY
,
3525 .may_writepage
= !laptop_mode
,
3530 psi_memstall_enter(&pflags
);
3531 __fs_reclaim_acquire();
3533 count_vm_event(PAGEOUTRUN
);
3536 unsigned long nr_reclaimed
= sc
.nr_reclaimed
;
3537 bool raise_priority
= true;
3540 sc
.reclaim_idx
= classzone_idx
;
3543 * If the number of buffer_heads exceeds the maximum allowed
3544 * then consider reclaiming from all zones. This has a dual
3545 * purpose -- on 64-bit systems it is expected that
3546 * buffer_heads are stripped during active rotation. On 32-bit
3547 * systems, highmem pages can pin lowmem memory and shrinking
3548 * buffers can relieve lowmem pressure. Reclaim may still not
3549 * go ahead if all eligible zones for the original allocation
3550 * request are balanced to avoid excessive reclaim from kswapd.
3552 if (buffer_heads_over_limit
) {
3553 for (i
= MAX_NR_ZONES
- 1; i
>= 0; i
--) {
3554 zone
= pgdat
->node_zones
+ i
;
3555 if (!managed_zone(zone
))
3564 * Only reclaim if there are no eligible zones. Note that
3565 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3568 if (pgdat_balanced(pgdat
, sc
.order
, classzone_idx
))
3572 * Do some background aging of the anon list, to give
3573 * pages a chance to be referenced before reclaiming. All
3574 * pages are rotated regardless of classzone as this is
3575 * about consistent aging.
3577 age_active_anon(pgdat
, &sc
);
3580 * If we're getting trouble reclaiming, start doing writepage
3581 * even in laptop mode.
3583 if (sc
.priority
< DEF_PRIORITY
- 2)
3584 sc
.may_writepage
= 1;
3586 /* Call soft limit reclaim before calling shrink_node. */
3588 nr_soft_scanned
= 0;
3589 nr_soft_reclaimed
= mem_cgroup_soft_limit_reclaim(pgdat
, sc
.order
,
3590 sc
.gfp_mask
, &nr_soft_scanned
);
3591 sc
.nr_reclaimed
+= nr_soft_reclaimed
;
3594 * There should be no need to raise the scanning priority if
3595 * enough pages are already being scanned that that high
3596 * watermark would be met at 100% efficiency.
3598 if (kswapd_shrink_node(pgdat
, &sc
))
3599 raise_priority
= false;
3602 * If the low watermark is met there is no need for processes
3603 * to be throttled on pfmemalloc_wait as they should not be
3604 * able to safely make forward progress. Wake them
3606 if (waitqueue_active(&pgdat
->pfmemalloc_wait
) &&
3607 allow_direct_reclaim(pgdat
))
3608 wake_up_all(&pgdat
->pfmemalloc_wait
);
3610 /* Check if kswapd should be suspending */
3611 __fs_reclaim_release();
3612 ret
= try_to_freeze();
3613 __fs_reclaim_acquire();
3614 if (ret
|| kthread_should_stop())
3618 * Raise priority if scanning rate is too low or there was no
3619 * progress in reclaiming pages
3621 nr_reclaimed
= sc
.nr_reclaimed
- nr_reclaimed
;
3622 if (raise_priority
|| !nr_reclaimed
)
3624 } while (sc
.priority
>= 1);
3626 if (!sc
.nr_reclaimed
)
3627 pgdat
->kswapd_failures
++;
3630 snapshot_refaults(NULL
, pgdat
);
3631 __fs_reclaim_release();
3632 psi_memstall_leave(&pflags
);
3634 * Return the order kswapd stopped reclaiming at as
3635 * prepare_kswapd_sleep() takes it into account. If another caller
3636 * entered the allocator slow path while kswapd was awake, order will
3637 * remain at the higher level.
3643 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3644 * allocation request woke kswapd for. When kswapd has not woken recently,
3645 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3646 * given classzone and returns it or the highest classzone index kswapd
3647 * was recently woke for.
3649 static enum zone_type
kswapd_classzone_idx(pg_data_t
*pgdat
,
3650 enum zone_type classzone_idx
)
3652 if (pgdat
->kswapd_classzone_idx
== MAX_NR_ZONES
)
3653 return classzone_idx
;
3655 return max(pgdat
->kswapd_classzone_idx
, classzone_idx
);
3658 static void kswapd_try_to_sleep(pg_data_t
*pgdat
, int alloc_order
, int reclaim_order
,
3659 unsigned int classzone_idx
)
3664 if (freezing(current
) || kthread_should_stop())
3667 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3670 * Try to sleep for a short interval. Note that kcompactd will only be
3671 * woken if it is possible to sleep for a short interval. This is
3672 * deliberate on the assumption that if reclaim cannot keep an
3673 * eligible zone balanced that it's also unlikely that compaction will
3676 if (prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3678 * Compaction records what page blocks it recently failed to
3679 * isolate pages from and skips them in the future scanning.
3680 * When kswapd is going to sleep, it is reasonable to assume
3681 * that pages and compaction may succeed so reset the cache.
3683 reset_isolation_suitable(pgdat
);
3686 * We have freed the memory, now we should compact it to make
3687 * allocation of the requested order possible.
3689 wakeup_kcompactd(pgdat
, alloc_order
, classzone_idx
);
3691 remaining
= schedule_timeout(HZ
/10);
3694 * If woken prematurely then reset kswapd_classzone_idx and
3695 * order. The values will either be from a wakeup request or
3696 * the previous request that slept prematurely.
3699 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3700 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, reclaim_order
);
3703 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3704 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
3708 * After a short sleep, check if it was a premature sleep. If not, then
3709 * go fully to sleep until explicitly woken up.
3712 prepare_kswapd_sleep(pgdat
, reclaim_order
, classzone_idx
)) {
3713 trace_mm_vmscan_kswapd_sleep(pgdat
->node_id
);
3716 * vmstat counters are not perfectly accurate and the estimated
3717 * value for counters such as NR_FREE_PAGES can deviate from the
3718 * true value by nr_online_cpus * threshold. To avoid the zone
3719 * watermarks being breached while under pressure, we reduce the
3720 * per-cpu vmstat threshold while kswapd is awake and restore
3721 * them before going back to sleep.
3723 set_pgdat_percpu_threshold(pgdat
, calculate_normal_threshold
);
3725 if (!kthread_should_stop())
3728 set_pgdat_percpu_threshold(pgdat
, calculate_pressure_threshold
);
3731 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY
);
3733 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY
);
3735 finish_wait(&pgdat
->kswapd_wait
, &wait
);
3739 * The background pageout daemon, started as a kernel thread
3740 * from the init process.
3742 * This basically trickles out pages so that we have _some_
3743 * free memory available even if there is no other activity
3744 * that frees anything up. This is needed for things like routing
3745 * etc, where we otherwise might have all activity going on in
3746 * asynchronous contexts that cannot page things out.
3748 * If there are applications that are active memory-allocators
3749 * (most normal use), this basically shouldn't matter.
3751 static int kswapd(void *p
)
3753 unsigned int alloc_order
, reclaim_order
;
3754 unsigned int classzone_idx
= MAX_NR_ZONES
- 1;
3755 pg_data_t
*pgdat
= (pg_data_t
*)p
;
3756 struct task_struct
*tsk
= current
;
3758 struct reclaim_state reclaim_state
= {
3759 .reclaimed_slab
= 0,
3761 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
3763 if (!cpumask_empty(cpumask
))
3764 set_cpus_allowed_ptr(tsk
, cpumask
);
3765 current
->reclaim_state
= &reclaim_state
;
3768 * Tell the memory management that we're a "memory allocator",
3769 * and that if we need more memory we should get access to it
3770 * regardless (see "__alloc_pages()"). "kswapd" should
3771 * never get caught in the normal page freeing logic.
3773 * (Kswapd normally doesn't need memory anyway, but sometimes
3774 * you need a small amount of memory in order to be able to
3775 * page out something else, and this flag essentially protects
3776 * us from recursively trying to free more memory as we're
3777 * trying to free the first piece of memory in the first place).
3779 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
3782 pgdat
->kswapd_order
= 0;
3783 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3787 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3788 classzone_idx
= kswapd_classzone_idx(pgdat
, classzone_idx
);
3791 kswapd_try_to_sleep(pgdat
, alloc_order
, reclaim_order
,
3794 /* Read the new order and classzone_idx */
3795 alloc_order
= reclaim_order
= pgdat
->kswapd_order
;
3796 classzone_idx
= kswapd_classzone_idx(pgdat
, 0);
3797 pgdat
->kswapd_order
= 0;
3798 pgdat
->kswapd_classzone_idx
= MAX_NR_ZONES
;
3800 ret
= try_to_freeze();
3801 if (kthread_should_stop())
3805 * We can speed up thawing tasks if we don't call balance_pgdat
3806 * after returning from the refrigerator
3812 * Reclaim begins at the requested order but if a high-order
3813 * reclaim fails then kswapd falls back to reclaiming for
3814 * order-0. If that happens, kswapd will consider sleeping
3815 * for the order it finished reclaiming at (reclaim_order)
3816 * but kcompactd is woken to compact for the original
3817 * request (alloc_order).
3819 trace_mm_vmscan_kswapd_wake(pgdat
->node_id
, classzone_idx
,
3821 reclaim_order
= balance_pgdat(pgdat
, alloc_order
, classzone_idx
);
3822 if (reclaim_order
< alloc_order
)
3823 goto kswapd_try_sleep
;
3826 tsk
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
);
3827 current
->reclaim_state
= NULL
;
3833 * A zone is low on free memory or too fragmented for high-order memory. If
3834 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3835 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3836 * has failed or is not needed, still wake up kcompactd if only compaction is
3839 void wakeup_kswapd(struct zone
*zone
, gfp_t gfp_flags
, int order
,
3840 enum zone_type classzone_idx
)
3844 if (!managed_zone(zone
))
3847 if (!cpuset_zone_allowed(zone
, gfp_flags
))
3849 pgdat
= zone
->zone_pgdat
;
3850 pgdat
->kswapd_classzone_idx
= kswapd_classzone_idx(pgdat
,
3852 pgdat
->kswapd_order
= max(pgdat
->kswapd_order
, order
);
3853 if (!waitqueue_active(&pgdat
->kswapd_wait
))
3856 /* Hopeless node, leave it to direct reclaim if possible */
3857 if (pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
||
3858 pgdat_balanced(pgdat
, order
, classzone_idx
)) {
3860 * There may be plenty of free memory available, but it's too
3861 * fragmented for high-order allocations. Wake up kcompactd
3862 * and rely on compaction_suitable() to determine if it's
3863 * needed. If it fails, it will defer subsequent attempts to
3864 * ratelimit its work.
3866 if (!(gfp_flags
& __GFP_DIRECT_RECLAIM
))
3867 wakeup_kcompactd(pgdat
, order
, classzone_idx
);
3871 trace_mm_vmscan_wakeup_kswapd(pgdat
->node_id
, classzone_idx
, order
,
3873 wake_up_interruptible(&pgdat
->kswapd_wait
);
3876 #ifdef CONFIG_HIBERNATION
3878 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3881 * Rather than trying to age LRUs the aim is to preserve the overall
3882 * LRU order by reclaiming preferentially
3883 * inactive > active > active referenced > active mapped
3885 unsigned long shrink_all_memory(unsigned long nr_to_reclaim
)
3887 struct reclaim_state reclaim_state
;
3888 struct scan_control sc
= {
3889 .nr_to_reclaim
= nr_to_reclaim
,
3890 .gfp_mask
= GFP_HIGHUSER_MOVABLE
,
3891 .reclaim_idx
= MAX_NR_ZONES
- 1,
3892 .priority
= DEF_PRIORITY
,
3896 .hibernation_mode
= 1,
3898 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), sc
.gfp_mask
);
3899 struct task_struct
*p
= current
;
3900 unsigned long nr_reclaimed
;
3901 unsigned int noreclaim_flag
;
3903 fs_reclaim_acquire(sc
.gfp_mask
);
3904 noreclaim_flag
= memalloc_noreclaim_save();
3905 reclaim_state
.reclaimed_slab
= 0;
3906 p
->reclaim_state
= &reclaim_state
;
3908 nr_reclaimed
= do_try_to_free_pages(zonelist
, &sc
);
3910 p
->reclaim_state
= NULL
;
3911 memalloc_noreclaim_restore(noreclaim_flag
);
3912 fs_reclaim_release(sc
.gfp_mask
);
3914 return nr_reclaimed
;
3916 #endif /* CONFIG_HIBERNATION */
3918 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3919 not required for correctness. So if the last cpu in a node goes
3920 away, we get changed to run anywhere: as the first one comes back,
3921 restore their cpu bindings. */
3922 static int kswapd_cpu_online(unsigned int cpu
)
3926 for_each_node_state(nid
, N_MEMORY
) {
3927 pg_data_t
*pgdat
= NODE_DATA(nid
);
3928 const struct cpumask
*mask
;
3930 mask
= cpumask_of_node(pgdat
->node_id
);
3932 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
3933 /* One of our CPUs online: restore mask */
3934 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
3940 * This kswapd start function will be called by init and node-hot-add.
3941 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3943 int kswapd_run(int nid
)
3945 pg_data_t
*pgdat
= NODE_DATA(nid
);
3951 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
3952 if (IS_ERR(pgdat
->kswapd
)) {
3953 /* failure at boot is fatal */
3954 BUG_ON(system_state
< SYSTEM_RUNNING
);
3955 pr_err("Failed to start kswapd on node %d\n", nid
);
3956 ret
= PTR_ERR(pgdat
->kswapd
);
3957 pgdat
->kswapd
= NULL
;
3963 * Called by memory hotplug when all memory in a node is offlined. Caller must
3964 * hold mem_hotplug_begin/end().
3966 void kswapd_stop(int nid
)
3968 struct task_struct
*kswapd
= NODE_DATA(nid
)->kswapd
;
3971 kthread_stop(kswapd
);
3972 NODE_DATA(nid
)->kswapd
= NULL
;
3976 static int __init
kswapd_init(void)
3981 for_each_node_state(nid
, N_MEMORY
)
3983 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
3984 "mm/vmscan:online", kswapd_cpu_online
,
3990 module_init(kswapd_init
)
3996 * If non-zero call node_reclaim when the number of free pages falls below
3999 int node_reclaim_mode __read_mostly
;
4001 #define RECLAIM_OFF 0
4002 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4003 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4004 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4007 * Priority for NODE_RECLAIM. This determines the fraction of pages
4008 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4011 #define NODE_RECLAIM_PRIORITY 4
4014 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4017 int sysctl_min_unmapped_ratio
= 1;
4020 * If the number of slab pages in a zone grows beyond this percentage then
4021 * slab reclaim needs to occur.
4023 int sysctl_min_slab_ratio
= 5;
4025 static inline unsigned long node_unmapped_file_pages(struct pglist_data
*pgdat
)
4027 unsigned long file_mapped
= node_page_state(pgdat
, NR_FILE_MAPPED
);
4028 unsigned long file_lru
= node_page_state(pgdat
, NR_INACTIVE_FILE
) +
4029 node_page_state(pgdat
, NR_ACTIVE_FILE
);
4032 * It's possible for there to be more file mapped pages than
4033 * accounted for by the pages on the file LRU lists because
4034 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4036 return (file_lru
> file_mapped
) ? (file_lru
- file_mapped
) : 0;
4039 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4040 static unsigned long node_pagecache_reclaimable(struct pglist_data
*pgdat
)
4042 unsigned long nr_pagecache_reclaimable
;
4043 unsigned long delta
= 0;
4046 * If RECLAIM_UNMAP is set, then all file pages are considered
4047 * potentially reclaimable. Otherwise, we have to worry about
4048 * pages like swapcache and node_unmapped_file_pages() provides
4051 if (node_reclaim_mode
& RECLAIM_UNMAP
)
4052 nr_pagecache_reclaimable
= node_page_state(pgdat
, NR_FILE_PAGES
);
4054 nr_pagecache_reclaimable
= node_unmapped_file_pages(pgdat
);
4056 /* If we can't clean pages, remove dirty pages from consideration */
4057 if (!(node_reclaim_mode
& RECLAIM_WRITE
))
4058 delta
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
4060 /* Watch for any possible underflows due to delta */
4061 if (unlikely(delta
> nr_pagecache_reclaimable
))
4062 delta
= nr_pagecache_reclaimable
;
4064 return nr_pagecache_reclaimable
- delta
;
4068 * Try to free up some pages from this node through reclaim.
4070 static int __node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4072 /* Minimum pages needed in order to stay on node */
4073 const unsigned long nr_pages
= 1 << order
;
4074 struct task_struct
*p
= current
;
4075 struct reclaim_state reclaim_state
;
4076 unsigned int noreclaim_flag
;
4077 struct scan_control sc
= {
4078 .nr_to_reclaim
= max(nr_pages
, SWAP_CLUSTER_MAX
),
4079 .gfp_mask
= current_gfp_context(gfp_mask
),
4081 .priority
= NODE_RECLAIM_PRIORITY
,
4082 .may_writepage
= !!(node_reclaim_mode
& RECLAIM_WRITE
),
4083 .may_unmap
= !!(node_reclaim_mode
& RECLAIM_UNMAP
),
4085 .reclaim_idx
= gfp_zone(gfp_mask
),
4089 fs_reclaim_acquire(sc
.gfp_mask
);
4091 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4092 * and we also need to be able to write out pages for RECLAIM_WRITE
4093 * and RECLAIM_UNMAP.
4095 noreclaim_flag
= memalloc_noreclaim_save();
4096 p
->flags
|= PF_SWAPWRITE
;
4097 reclaim_state
.reclaimed_slab
= 0;
4098 p
->reclaim_state
= &reclaim_state
;
4100 if (node_pagecache_reclaimable(pgdat
) > pgdat
->min_unmapped_pages
) {
4102 * Free memory by calling shrink node with increasing
4103 * priorities until we have enough memory freed.
4106 shrink_node(pgdat
, &sc
);
4107 } while (sc
.nr_reclaimed
< nr_pages
&& --sc
.priority
>= 0);
4110 p
->reclaim_state
= NULL
;
4111 current
->flags
&= ~PF_SWAPWRITE
;
4112 memalloc_noreclaim_restore(noreclaim_flag
);
4113 fs_reclaim_release(sc
.gfp_mask
);
4114 return sc
.nr_reclaimed
>= nr_pages
;
4117 int node_reclaim(struct pglist_data
*pgdat
, gfp_t gfp_mask
, unsigned int order
)
4122 * Node reclaim reclaims unmapped file backed pages and
4123 * slab pages if we are over the defined limits.
4125 * A small portion of unmapped file backed pages is needed for
4126 * file I/O otherwise pages read by file I/O will be immediately
4127 * thrown out if the node is overallocated. So we do not reclaim
4128 * if less than a specified percentage of the node is used by
4129 * unmapped file backed pages.
4131 if (node_pagecache_reclaimable(pgdat
) <= pgdat
->min_unmapped_pages
&&
4132 node_page_state(pgdat
, NR_SLAB_RECLAIMABLE
) <= pgdat
->min_slab_pages
)
4133 return NODE_RECLAIM_FULL
;
4136 * Do not scan if the allocation should not be delayed.
4138 if (!gfpflags_allow_blocking(gfp_mask
) || (current
->flags
& PF_MEMALLOC
))
4139 return NODE_RECLAIM_NOSCAN
;
4142 * Only run node reclaim on the local node or on nodes that do not
4143 * have associated processors. This will favor the local processor
4144 * over remote processors and spread off node memory allocations
4145 * as wide as possible.
4147 if (node_state(pgdat
->node_id
, N_CPU
) && pgdat
->node_id
!= numa_node_id())
4148 return NODE_RECLAIM_NOSCAN
;
4150 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
))
4151 return NODE_RECLAIM_NOSCAN
;
4153 ret
= __node_reclaim(pgdat
, gfp_mask
, order
);
4154 clear_bit(PGDAT_RECLAIM_LOCKED
, &pgdat
->flags
);
4157 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED
);
4164 * page_evictable - test whether a page is evictable
4165 * @page: the page to test
4167 * Test whether page is evictable--i.e., should be placed on active/inactive
4168 * lists vs unevictable list.
4170 * Reasons page might not be evictable:
4171 * (1) page's mapping marked unevictable
4172 * (2) page is part of an mlocked VMA
4175 int page_evictable(struct page
*page
)
4179 /* Prevent address_space of inode and swap cache from being freed */
4181 ret
= !mapping_unevictable(page_mapping(page
)) && !PageMlocked(page
);
4187 * check_move_unevictable_pages - check pages for evictability and move to
4188 * appropriate zone lru list
4189 * @pvec: pagevec with lru pages to check
4191 * Checks pages for evictability, if an evictable page is in the unevictable
4192 * lru list, moves it to the appropriate evictable lru list. This function
4193 * should be only used for lru pages.
4195 void check_move_unevictable_pages(struct pagevec
*pvec
)
4197 struct lruvec
*lruvec
;
4198 struct pglist_data
*pgdat
= NULL
;
4203 for (i
= 0; i
< pvec
->nr
; i
++) {
4204 struct page
*page
= pvec
->pages
[i
];
4205 struct pglist_data
*pagepgdat
= page_pgdat(page
);
4208 if (pagepgdat
!= pgdat
) {
4210 spin_unlock_irq(&pgdat
->lru_lock
);
4212 spin_lock_irq(&pgdat
->lru_lock
);
4214 lruvec
= mem_cgroup_page_lruvec(page
, pgdat
);
4216 if (!PageLRU(page
) || !PageUnevictable(page
))
4219 if (page_evictable(page
)) {
4220 enum lru_list lru
= page_lru_base_type(page
);
4222 VM_BUG_ON_PAGE(PageActive(page
), page
);
4223 ClearPageUnevictable(page
);
4224 del_page_from_lru_list(page
, lruvec
, LRU_UNEVICTABLE
);
4225 add_page_to_lru_list(page
, lruvec
, lru
);
4231 __count_vm_events(UNEVICTABLE_PGRESCUED
, pgrescued
);
4232 __count_vm_events(UNEVICTABLE_PGSCANNED
, pgscanned
);
4233 spin_unlock_irq(&pgdat
->lru_lock
);
4236 EXPORT_SYMBOL_GPL(check_move_unevictable_pages
);