Merge tag 'm68k-for-v4.21-tag1' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux/fpc-iii.git] / mm / vmscan.c
blob24ab1f7394abaafa9e0dccac37597ae65ef77e0f
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/pagevec.h>
50 #include <linux/prefetch.h>
51 #include <linux/printk.h>
52 #include <linux/dax.h>
53 #include <linux/psi.h>
55 #include <asm/tlbflush.h>
56 #include <asm/div64.h>
58 #include <linux/swapops.h>
59 #include <linux/balloon_compaction.h>
61 #include "internal.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/vmscan.h>
66 struct scan_control {
67 /* How many pages shrink_list() should reclaim */
68 unsigned long nr_to_reclaim;
71 * Nodemask of nodes allowed by the caller. If NULL, all nodes
72 * are scanned.
74 nodemask_t *nodemask;
77 * The memory cgroup that hit its limit and as a result is the
78 * primary target of this reclaim invocation.
80 struct mem_cgroup *target_mem_cgroup;
82 /* Writepage batching in laptop mode; RECLAIM_WRITE */
83 unsigned int may_writepage:1;
85 /* Can mapped pages be reclaimed? */
86 unsigned int may_unmap:1;
88 /* Can pages be swapped as part of reclaim? */
89 unsigned int may_swap:1;
92 * Cgroups are not reclaimed below their configured memory.low,
93 * unless we threaten to OOM. If any cgroups are skipped due to
94 * memory.low and nothing was reclaimed, go back for memory.low.
96 unsigned int memcg_low_reclaim:1;
97 unsigned int memcg_low_skipped:1;
99 unsigned int hibernation_mode:1;
101 /* One of the zones is ready for compaction */
102 unsigned int compaction_ready:1;
104 /* Allocation order */
105 s8 order;
107 /* Scan (total_size >> priority) pages at once */
108 s8 priority;
110 /* The highest zone to isolate pages for reclaim from */
111 s8 reclaim_idx;
113 /* This context's GFP mask */
114 gfp_t gfp_mask;
116 /* Incremented by the number of inactive pages that were scanned */
117 unsigned long nr_scanned;
119 /* Number of pages freed so far during a call to shrink_zones() */
120 unsigned long nr_reclaimed;
122 struct {
123 unsigned int dirty;
124 unsigned int unqueued_dirty;
125 unsigned int congested;
126 unsigned int writeback;
127 unsigned int immediate;
128 unsigned int file_taken;
129 unsigned int taken;
130 } nr;
133 #ifdef ARCH_HAS_PREFETCH
134 #define prefetch_prev_lru_page(_page, _base, _field) \
135 do { \
136 if ((_page)->lru.prev != _base) { \
137 struct page *prev; \
139 prev = lru_to_page(&(_page->lru)); \
140 prefetch(&prev->_field); \
142 } while (0)
143 #else
144 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
145 #endif
147 #ifdef ARCH_HAS_PREFETCHW
148 #define prefetchw_prev_lru_page(_page, _base, _field) \
149 do { \
150 if ((_page)->lru.prev != _base) { \
151 struct page *prev; \
153 prev = lru_to_page(&(_page->lru)); \
154 prefetchw(&prev->_field); \
156 } while (0)
157 #else
158 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
159 #endif
162 * From 0 .. 100. Higher means more swappy.
164 int vm_swappiness = 60;
166 * The total number of pages which are beyond the high watermark within all
167 * zones.
169 unsigned long vm_total_pages;
171 static LIST_HEAD(shrinker_list);
172 static DECLARE_RWSEM(shrinker_rwsem);
174 #ifdef CONFIG_MEMCG_KMEM
177 * We allow subsystems to populate their shrinker-related
178 * LRU lists before register_shrinker_prepared() is called
179 * for the shrinker, since we don't want to impose
180 * restrictions on their internal registration order.
181 * In this case shrink_slab_memcg() may find corresponding
182 * bit is set in the shrinkers map.
184 * This value is used by the function to detect registering
185 * shrinkers and to skip do_shrink_slab() calls for them.
187 #define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
189 static DEFINE_IDR(shrinker_idr);
190 static int shrinker_nr_max;
192 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
194 int id, ret = -ENOMEM;
196 down_write(&shrinker_rwsem);
197 /* This may call shrinker, so it must use down_read_trylock() */
198 id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
199 if (id < 0)
200 goto unlock;
202 if (id >= shrinker_nr_max) {
203 if (memcg_expand_shrinker_maps(id)) {
204 idr_remove(&shrinker_idr, id);
205 goto unlock;
208 shrinker_nr_max = id + 1;
210 shrinker->id = id;
211 ret = 0;
212 unlock:
213 up_write(&shrinker_rwsem);
214 return ret;
217 static void unregister_memcg_shrinker(struct shrinker *shrinker)
219 int id = shrinker->id;
221 BUG_ON(id < 0);
223 down_write(&shrinker_rwsem);
224 idr_remove(&shrinker_idr, id);
225 up_write(&shrinker_rwsem);
227 #else /* CONFIG_MEMCG_KMEM */
228 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
230 return 0;
233 static void unregister_memcg_shrinker(struct shrinker *shrinker)
236 #endif /* CONFIG_MEMCG_KMEM */
238 #ifdef CONFIG_MEMCG
239 static bool global_reclaim(struct scan_control *sc)
241 return !sc->target_mem_cgroup;
245 * sane_reclaim - is the usual dirty throttling mechanism operational?
246 * @sc: scan_control in question
248 * The normal page dirty throttling mechanism in balance_dirty_pages() is
249 * completely broken with the legacy memcg and direct stalling in
250 * shrink_page_list() is used for throttling instead, which lacks all the
251 * niceties such as fairness, adaptive pausing, bandwidth proportional
252 * allocation and configurability.
254 * This function tests whether the vmscan currently in progress can assume
255 * that the normal dirty throttling mechanism is operational.
257 static bool sane_reclaim(struct scan_control *sc)
259 struct mem_cgroup *memcg = sc->target_mem_cgroup;
261 if (!memcg)
262 return true;
263 #ifdef CONFIG_CGROUP_WRITEBACK
264 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
265 return true;
266 #endif
267 return false;
270 static void set_memcg_congestion(pg_data_t *pgdat,
271 struct mem_cgroup *memcg,
272 bool congested)
274 struct mem_cgroup_per_node *mn;
276 if (!memcg)
277 return;
279 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
280 WRITE_ONCE(mn->congested, congested);
283 static bool memcg_congested(pg_data_t *pgdat,
284 struct mem_cgroup *memcg)
286 struct mem_cgroup_per_node *mn;
288 mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
289 return READ_ONCE(mn->congested);
292 #else
293 static bool global_reclaim(struct scan_control *sc)
295 return true;
298 static bool sane_reclaim(struct scan_control *sc)
300 return true;
303 static inline void set_memcg_congestion(struct pglist_data *pgdat,
304 struct mem_cgroup *memcg, bool congested)
308 static inline bool memcg_congested(struct pglist_data *pgdat,
309 struct mem_cgroup *memcg)
311 return false;
314 #endif
317 * This misses isolated pages which are not accounted for to save counters.
318 * As the data only determines if reclaim or compaction continues, it is
319 * not expected that isolated pages will be a dominating factor.
321 unsigned long zone_reclaimable_pages(struct zone *zone)
323 unsigned long nr;
325 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
326 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
327 if (get_nr_swap_pages() > 0)
328 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
329 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
331 return nr;
335 * lruvec_lru_size - Returns the number of pages on the given LRU list.
336 * @lruvec: lru vector
337 * @lru: lru to use
338 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
340 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
342 unsigned long lru_size;
343 int zid;
345 if (!mem_cgroup_disabled())
346 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
347 else
348 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
350 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
351 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
352 unsigned long size;
354 if (!managed_zone(zone))
355 continue;
357 if (!mem_cgroup_disabled())
358 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
359 else
360 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
361 NR_ZONE_LRU_BASE + lru);
362 lru_size -= min(size, lru_size);
365 return lru_size;
370 * Add a shrinker callback to be called from the vm.
372 int prealloc_shrinker(struct shrinker *shrinker)
374 size_t size = sizeof(*shrinker->nr_deferred);
376 if (shrinker->flags & SHRINKER_NUMA_AWARE)
377 size *= nr_node_ids;
379 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
380 if (!shrinker->nr_deferred)
381 return -ENOMEM;
383 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
384 if (prealloc_memcg_shrinker(shrinker))
385 goto free_deferred;
388 return 0;
390 free_deferred:
391 kfree(shrinker->nr_deferred);
392 shrinker->nr_deferred = NULL;
393 return -ENOMEM;
396 void free_prealloced_shrinker(struct shrinker *shrinker)
398 if (!shrinker->nr_deferred)
399 return;
401 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
402 unregister_memcg_shrinker(shrinker);
404 kfree(shrinker->nr_deferred);
405 shrinker->nr_deferred = NULL;
408 void register_shrinker_prepared(struct shrinker *shrinker)
410 down_write(&shrinker_rwsem);
411 list_add_tail(&shrinker->list, &shrinker_list);
412 #ifdef CONFIG_MEMCG_KMEM
413 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
414 idr_replace(&shrinker_idr, shrinker, shrinker->id);
415 #endif
416 up_write(&shrinker_rwsem);
419 int register_shrinker(struct shrinker *shrinker)
421 int err = prealloc_shrinker(shrinker);
423 if (err)
424 return err;
425 register_shrinker_prepared(shrinker);
426 return 0;
428 EXPORT_SYMBOL(register_shrinker);
431 * Remove one
433 void unregister_shrinker(struct shrinker *shrinker)
435 if (!shrinker->nr_deferred)
436 return;
437 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
438 unregister_memcg_shrinker(shrinker);
439 down_write(&shrinker_rwsem);
440 list_del(&shrinker->list);
441 up_write(&shrinker_rwsem);
442 kfree(shrinker->nr_deferred);
443 shrinker->nr_deferred = NULL;
445 EXPORT_SYMBOL(unregister_shrinker);
447 #define SHRINK_BATCH 128
449 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
450 struct shrinker *shrinker, int priority)
452 unsigned long freed = 0;
453 unsigned long long delta;
454 long total_scan;
455 long freeable;
456 long nr;
457 long new_nr;
458 int nid = shrinkctl->nid;
459 long batch_size = shrinker->batch ? shrinker->batch
460 : SHRINK_BATCH;
461 long scanned = 0, next_deferred;
463 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
464 nid = 0;
466 freeable = shrinker->count_objects(shrinker, shrinkctl);
467 if (freeable == 0 || freeable == SHRINK_EMPTY)
468 return freeable;
471 * copy the current shrinker scan count into a local variable
472 * and zero it so that other concurrent shrinker invocations
473 * don't also do this scanning work.
475 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
477 total_scan = nr;
478 if (shrinker->seeks) {
479 delta = freeable >> priority;
480 delta *= 4;
481 do_div(delta, shrinker->seeks);
482 } else {
484 * These objects don't require any IO to create. Trim
485 * them aggressively under memory pressure to keep
486 * them from causing refetches in the IO caches.
488 delta = freeable / 2;
492 * Make sure we apply some minimal pressure on default priority
493 * even on small cgroups. Stale objects are not only consuming memory
494 * by themselves, but can also hold a reference to a dying cgroup,
495 * preventing it from being reclaimed. A dying cgroup with all
496 * corresponding structures like per-cpu stats and kmem caches
497 * can be really big, so it may lead to a significant waste of memory.
499 delta = max_t(unsigned long long, delta, min(freeable, batch_size));
501 total_scan += delta;
502 if (total_scan < 0) {
503 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
504 shrinker->scan_objects, total_scan);
505 total_scan = freeable;
506 next_deferred = nr;
507 } else
508 next_deferred = total_scan;
511 * We need to avoid excessive windup on filesystem shrinkers
512 * due to large numbers of GFP_NOFS allocations causing the
513 * shrinkers to return -1 all the time. This results in a large
514 * nr being built up so when a shrink that can do some work
515 * comes along it empties the entire cache due to nr >>>
516 * freeable. This is bad for sustaining a working set in
517 * memory.
519 * Hence only allow the shrinker to scan the entire cache when
520 * a large delta change is calculated directly.
522 if (delta < freeable / 4)
523 total_scan = min(total_scan, freeable / 2);
526 * Avoid risking looping forever due to too large nr value:
527 * never try to free more than twice the estimate number of
528 * freeable entries.
530 if (total_scan > freeable * 2)
531 total_scan = freeable * 2;
533 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
534 freeable, delta, total_scan, priority);
537 * Normally, we should not scan less than batch_size objects in one
538 * pass to avoid too frequent shrinker calls, but if the slab has less
539 * than batch_size objects in total and we are really tight on memory,
540 * we will try to reclaim all available objects, otherwise we can end
541 * up failing allocations although there are plenty of reclaimable
542 * objects spread over several slabs with usage less than the
543 * batch_size.
545 * We detect the "tight on memory" situations by looking at the total
546 * number of objects we want to scan (total_scan). If it is greater
547 * than the total number of objects on slab (freeable), we must be
548 * scanning at high prio and therefore should try to reclaim as much as
549 * possible.
551 while (total_scan >= batch_size ||
552 total_scan >= freeable) {
553 unsigned long ret;
554 unsigned long nr_to_scan = min(batch_size, total_scan);
556 shrinkctl->nr_to_scan = nr_to_scan;
557 shrinkctl->nr_scanned = nr_to_scan;
558 ret = shrinker->scan_objects(shrinker, shrinkctl);
559 if (ret == SHRINK_STOP)
560 break;
561 freed += ret;
563 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
564 total_scan -= shrinkctl->nr_scanned;
565 scanned += shrinkctl->nr_scanned;
567 cond_resched();
570 if (next_deferred >= scanned)
571 next_deferred -= scanned;
572 else
573 next_deferred = 0;
575 * move the unused scan count back into the shrinker in a
576 * manner that handles concurrent updates. If we exhausted the
577 * scan, there is no need to do an update.
579 if (next_deferred > 0)
580 new_nr = atomic_long_add_return(next_deferred,
581 &shrinker->nr_deferred[nid]);
582 else
583 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
585 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
586 return freed;
589 #ifdef CONFIG_MEMCG_KMEM
590 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
591 struct mem_cgroup *memcg, int priority)
593 struct memcg_shrinker_map *map;
594 unsigned long ret, freed = 0;
595 int i;
597 if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
598 return 0;
600 if (!down_read_trylock(&shrinker_rwsem))
601 return 0;
603 map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
604 true);
605 if (unlikely(!map))
606 goto unlock;
608 for_each_set_bit(i, map->map, shrinker_nr_max) {
609 struct shrink_control sc = {
610 .gfp_mask = gfp_mask,
611 .nid = nid,
612 .memcg = memcg,
614 struct shrinker *shrinker;
616 shrinker = idr_find(&shrinker_idr, i);
617 if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
618 if (!shrinker)
619 clear_bit(i, map->map);
620 continue;
623 ret = do_shrink_slab(&sc, shrinker, priority);
624 if (ret == SHRINK_EMPTY) {
625 clear_bit(i, map->map);
627 * After the shrinker reported that it had no objects to
628 * free, but before we cleared the corresponding bit in
629 * the memcg shrinker map, a new object might have been
630 * added. To make sure, we have the bit set in this
631 * case, we invoke the shrinker one more time and reset
632 * the bit if it reports that it is not empty anymore.
633 * The memory barrier here pairs with the barrier in
634 * memcg_set_shrinker_bit():
636 * list_lru_add() shrink_slab_memcg()
637 * list_add_tail() clear_bit()
638 * <MB> <MB>
639 * set_bit() do_shrink_slab()
641 smp_mb__after_atomic();
642 ret = do_shrink_slab(&sc, shrinker, priority);
643 if (ret == SHRINK_EMPTY)
644 ret = 0;
645 else
646 memcg_set_shrinker_bit(memcg, nid, i);
648 freed += ret;
650 if (rwsem_is_contended(&shrinker_rwsem)) {
651 freed = freed ? : 1;
652 break;
655 unlock:
656 up_read(&shrinker_rwsem);
657 return freed;
659 #else /* CONFIG_MEMCG_KMEM */
660 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
661 struct mem_cgroup *memcg, int priority)
663 return 0;
665 #endif /* CONFIG_MEMCG_KMEM */
668 * shrink_slab - shrink slab caches
669 * @gfp_mask: allocation context
670 * @nid: node whose slab caches to target
671 * @memcg: memory cgroup whose slab caches to target
672 * @priority: the reclaim priority
674 * Call the shrink functions to age shrinkable caches.
676 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
677 * unaware shrinkers will receive a node id of 0 instead.
679 * @memcg specifies the memory cgroup to target. Unaware shrinkers
680 * are called only if it is the root cgroup.
682 * @priority is sc->priority, we take the number of objects and >> by priority
683 * in order to get the scan target.
685 * Returns the number of reclaimed slab objects.
687 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
688 struct mem_cgroup *memcg,
689 int priority)
691 unsigned long ret, freed = 0;
692 struct shrinker *shrinker;
694 if (!mem_cgroup_is_root(memcg))
695 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
697 if (!down_read_trylock(&shrinker_rwsem))
698 goto out;
700 list_for_each_entry(shrinker, &shrinker_list, list) {
701 struct shrink_control sc = {
702 .gfp_mask = gfp_mask,
703 .nid = nid,
704 .memcg = memcg,
707 ret = do_shrink_slab(&sc, shrinker, priority);
708 if (ret == SHRINK_EMPTY)
709 ret = 0;
710 freed += ret;
712 * Bail out if someone want to register a new shrinker to
713 * prevent the regsitration from being stalled for long periods
714 * by parallel ongoing shrinking.
716 if (rwsem_is_contended(&shrinker_rwsem)) {
717 freed = freed ? : 1;
718 break;
722 up_read(&shrinker_rwsem);
723 out:
724 cond_resched();
725 return freed;
728 void drop_slab_node(int nid)
730 unsigned long freed;
732 do {
733 struct mem_cgroup *memcg = NULL;
735 freed = 0;
736 memcg = mem_cgroup_iter(NULL, NULL, NULL);
737 do {
738 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
739 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
740 } while (freed > 10);
743 void drop_slab(void)
745 int nid;
747 for_each_online_node(nid)
748 drop_slab_node(nid);
751 static inline int is_page_cache_freeable(struct page *page)
754 * A freeable page cache page is referenced only by the caller
755 * that isolated the page, the page cache and optional buffer
756 * heads at page->private.
758 int page_cache_pins = PageTransHuge(page) && PageSwapCache(page) ?
759 HPAGE_PMD_NR : 1;
760 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
763 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
765 if (current->flags & PF_SWAPWRITE)
766 return 1;
767 if (!inode_write_congested(inode))
768 return 1;
769 if (inode_to_bdi(inode) == current->backing_dev_info)
770 return 1;
771 return 0;
775 * We detected a synchronous write error writing a page out. Probably
776 * -ENOSPC. We need to propagate that into the address_space for a subsequent
777 * fsync(), msync() or close().
779 * The tricky part is that after writepage we cannot touch the mapping: nothing
780 * prevents it from being freed up. But we have a ref on the page and once
781 * that page is locked, the mapping is pinned.
783 * We're allowed to run sleeping lock_page() here because we know the caller has
784 * __GFP_FS.
786 static void handle_write_error(struct address_space *mapping,
787 struct page *page, int error)
789 lock_page(page);
790 if (page_mapping(page) == mapping)
791 mapping_set_error(mapping, error);
792 unlock_page(page);
795 /* possible outcome of pageout() */
796 typedef enum {
797 /* failed to write page out, page is locked */
798 PAGE_KEEP,
799 /* move page to the active list, page is locked */
800 PAGE_ACTIVATE,
801 /* page has been sent to the disk successfully, page is unlocked */
802 PAGE_SUCCESS,
803 /* page is clean and locked */
804 PAGE_CLEAN,
805 } pageout_t;
808 * pageout is called by shrink_page_list() for each dirty page.
809 * Calls ->writepage().
811 static pageout_t pageout(struct page *page, struct address_space *mapping,
812 struct scan_control *sc)
815 * If the page is dirty, only perform writeback if that write
816 * will be non-blocking. To prevent this allocation from being
817 * stalled by pagecache activity. But note that there may be
818 * stalls if we need to run get_block(). We could test
819 * PagePrivate for that.
821 * If this process is currently in __generic_file_write_iter() against
822 * this page's queue, we can perform writeback even if that
823 * will block.
825 * If the page is swapcache, write it back even if that would
826 * block, for some throttling. This happens by accident, because
827 * swap_backing_dev_info is bust: it doesn't reflect the
828 * congestion state of the swapdevs. Easy to fix, if needed.
830 if (!is_page_cache_freeable(page))
831 return PAGE_KEEP;
832 if (!mapping) {
834 * Some data journaling orphaned pages can have
835 * page->mapping == NULL while being dirty with clean buffers.
837 if (page_has_private(page)) {
838 if (try_to_free_buffers(page)) {
839 ClearPageDirty(page);
840 pr_info("%s: orphaned page\n", __func__);
841 return PAGE_CLEAN;
844 return PAGE_KEEP;
846 if (mapping->a_ops->writepage == NULL)
847 return PAGE_ACTIVATE;
848 if (!may_write_to_inode(mapping->host, sc))
849 return PAGE_KEEP;
851 if (clear_page_dirty_for_io(page)) {
852 int res;
853 struct writeback_control wbc = {
854 .sync_mode = WB_SYNC_NONE,
855 .nr_to_write = SWAP_CLUSTER_MAX,
856 .range_start = 0,
857 .range_end = LLONG_MAX,
858 .for_reclaim = 1,
861 SetPageReclaim(page);
862 res = mapping->a_ops->writepage(page, &wbc);
863 if (res < 0)
864 handle_write_error(mapping, page, res);
865 if (res == AOP_WRITEPAGE_ACTIVATE) {
866 ClearPageReclaim(page);
867 return PAGE_ACTIVATE;
870 if (!PageWriteback(page)) {
871 /* synchronous write or broken a_ops? */
872 ClearPageReclaim(page);
874 trace_mm_vmscan_writepage(page);
875 inc_node_page_state(page, NR_VMSCAN_WRITE);
876 return PAGE_SUCCESS;
879 return PAGE_CLEAN;
883 * Same as remove_mapping, but if the page is removed from the mapping, it
884 * gets returned with a refcount of 0.
886 static int __remove_mapping(struct address_space *mapping, struct page *page,
887 bool reclaimed)
889 unsigned long flags;
890 int refcount;
892 BUG_ON(!PageLocked(page));
893 BUG_ON(mapping != page_mapping(page));
895 xa_lock_irqsave(&mapping->i_pages, flags);
897 * The non racy check for a busy page.
899 * Must be careful with the order of the tests. When someone has
900 * a ref to the page, it may be possible that they dirty it then
901 * drop the reference. So if PageDirty is tested before page_count
902 * here, then the following race may occur:
904 * get_user_pages(&page);
905 * [user mapping goes away]
906 * write_to(page);
907 * !PageDirty(page) [good]
908 * SetPageDirty(page);
909 * put_page(page);
910 * !page_count(page) [good, discard it]
912 * [oops, our write_to data is lost]
914 * Reversing the order of the tests ensures such a situation cannot
915 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
916 * load is not satisfied before that of page->_refcount.
918 * Note that if SetPageDirty is always performed via set_page_dirty,
919 * and thus under the i_pages lock, then this ordering is not required.
921 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
922 refcount = 1 + HPAGE_PMD_NR;
923 else
924 refcount = 2;
925 if (!page_ref_freeze(page, refcount))
926 goto cannot_free;
927 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
928 if (unlikely(PageDirty(page))) {
929 page_ref_unfreeze(page, refcount);
930 goto cannot_free;
933 if (PageSwapCache(page)) {
934 swp_entry_t swap = { .val = page_private(page) };
935 mem_cgroup_swapout(page, swap);
936 __delete_from_swap_cache(page, swap);
937 xa_unlock_irqrestore(&mapping->i_pages, flags);
938 put_swap_page(page, swap);
939 } else {
940 void (*freepage)(struct page *);
941 void *shadow = NULL;
943 freepage = mapping->a_ops->freepage;
945 * Remember a shadow entry for reclaimed file cache in
946 * order to detect refaults, thus thrashing, later on.
948 * But don't store shadows in an address space that is
949 * already exiting. This is not just an optizimation,
950 * inode reclaim needs to empty out the radix tree or
951 * the nodes are lost. Don't plant shadows behind its
952 * back.
954 * We also don't store shadows for DAX mappings because the
955 * only page cache pages found in these are zero pages
956 * covering holes, and because we don't want to mix DAX
957 * exceptional entries and shadow exceptional entries in the
958 * same address_space.
960 if (reclaimed && page_is_file_cache(page) &&
961 !mapping_exiting(mapping) && !dax_mapping(mapping))
962 shadow = workingset_eviction(mapping, page);
963 __delete_from_page_cache(page, shadow);
964 xa_unlock_irqrestore(&mapping->i_pages, flags);
966 if (freepage != NULL)
967 freepage(page);
970 return 1;
972 cannot_free:
973 xa_unlock_irqrestore(&mapping->i_pages, flags);
974 return 0;
978 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
979 * someone else has a ref on the page, abort and return 0. If it was
980 * successfully detached, return 1. Assumes the caller has a single ref on
981 * this page.
983 int remove_mapping(struct address_space *mapping, struct page *page)
985 if (__remove_mapping(mapping, page, false)) {
987 * Unfreezing the refcount with 1 rather than 2 effectively
988 * drops the pagecache ref for us without requiring another
989 * atomic operation.
991 page_ref_unfreeze(page, 1);
992 return 1;
994 return 0;
998 * putback_lru_page - put previously isolated page onto appropriate LRU list
999 * @page: page to be put back to appropriate lru list
1001 * Add previously isolated @page to appropriate LRU list.
1002 * Page may still be unevictable for other reasons.
1004 * lru_lock must not be held, interrupts must be enabled.
1006 void putback_lru_page(struct page *page)
1008 lru_cache_add(page);
1009 put_page(page); /* drop ref from isolate */
1012 enum page_references {
1013 PAGEREF_RECLAIM,
1014 PAGEREF_RECLAIM_CLEAN,
1015 PAGEREF_KEEP,
1016 PAGEREF_ACTIVATE,
1019 static enum page_references page_check_references(struct page *page,
1020 struct scan_control *sc)
1022 int referenced_ptes, referenced_page;
1023 unsigned long vm_flags;
1025 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1026 &vm_flags);
1027 referenced_page = TestClearPageReferenced(page);
1030 * Mlock lost the isolation race with us. Let try_to_unmap()
1031 * move the page to the unevictable list.
1033 if (vm_flags & VM_LOCKED)
1034 return PAGEREF_RECLAIM;
1036 if (referenced_ptes) {
1037 if (PageSwapBacked(page))
1038 return PAGEREF_ACTIVATE;
1040 * All mapped pages start out with page table
1041 * references from the instantiating fault, so we need
1042 * to look twice if a mapped file page is used more
1043 * than once.
1045 * Mark it and spare it for another trip around the
1046 * inactive list. Another page table reference will
1047 * lead to its activation.
1049 * Note: the mark is set for activated pages as well
1050 * so that recently deactivated but used pages are
1051 * quickly recovered.
1053 SetPageReferenced(page);
1055 if (referenced_page || referenced_ptes > 1)
1056 return PAGEREF_ACTIVATE;
1059 * Activate file-backed executable pages after first usage.
1061 if (vm_flags & VM_EXEC)
1062 return PAGEREF_ACTIVATE;
1064 return PAGEREF_KEEP;
1067 /* Reclaim if clean, defer dirty pages to writeback */
1068 if (referenced_page && !PageSwapBacked(page))
1069 return PAGEREF_RECLAIM_CLEAN;
1071 return PAGEREF_RECLAIM;
1074 /* Check if a page is dirty or under writeback */
1075 static void page_check_dirty_writeback(struct page *page,
1076 bool *dirty, bool *writeback)
1078 struct address_space *mapping;
1081 * Anonymous pages are not handled by flushers and must be written
1082 * from reclaim context. Do not stall reclaim based on them
1084 if (!page_is_file_cache(page) ||
1085 (PageAnon(page) && !PageSwapBacked(page))) {
1086 *dirty = false;
1087 *writeback = false;
1088 return;
1091 /* By default assume that the page flags are accurate */
1092 *dirty = PageDirty(page);
1093 *writeback = PageWriteback(page);
1095 /* Verify dirty/writeback state if the filesystem supports it */
1096 if (!page_has_private(page))
1097 return;
1099 mapping = page_mapping(page);
1100 if (mapping && mapping->a_ops->is_dirty_writeback)
1101 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1105 * shrink_page_list() returns the number of reclaimed pages
1107 static unsigned long shrink_page_list(struct list_head *page_list,
1108 struct pglist_data *pgdat,
1109 struct scan_control *sc,
1110 enum ttu_flags ttu_flags,
1111 struct reclaim_stat *stat,
1112 bool force_reclaim)
1114 LIST_HEAD(ret_pages);
1115 LIST_HEAD(free_pages);
1116 int pgactivate = 0;
1117 unsigned nr_unqueued_dirty = 0;
1118 unsigned nr_dirty = 0;
1119 unsigned nr_congested = 0;
1120 unsigned nr_reclaimed = 0;
1121 unsigned nr_writeback = 0;
1122 unsigned nr_immediate = 0;
1123 unsigned nr_ref_keep = 0;
1124 unsigned nr_unmap_fail = 0;
1126 cond_resched();
1128 while (!list_empty(page_list)) {
1129 struct address_space *mapping;
1130 struct page *page;
1131 int may_enter_fs;
1132 enum page_references references = PAGEREF_RECLAIM_CLEAN;
1133 bool dirty, writeback;
1135 cond_resched();
1137 page = lru_to_page(page_list);
1138 list_del(&page->lru);
1140 if (!trylock_page(page))
1141 goto keep;
1143 VM_BUG_ON_PAGE(PageActive(page), page);
1145 sc->nr_scanned++;
1147 if (unlikely(!page_evictable(page)))
1148 goto activate_locked;
1150 if (!sc->may_unmap && page_mapped(page))
1151 goto keep_locked;
1153 /* Double the slab pressure for mapped and swapcache pages */
1154 if ((page_mapped(page) || PageSwapCache(page)) &&
1155 !(PageAnon(page) && !PageSwapBacked(page)))
1156 sc->nr_scanned++;
1158 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1159 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1162 * The number of dirty pages determines if a node is marked
1163 * reclaim_congested which affects wait_iff_congested. kswapd
1164 * will stall and start writing pages if the tail of the LRU
1165 * is all dirty unqueued pages.
1167 page_check_dirty_writeback(page, &dirty, &writeback);
1168 if (dirty || writeback)
1169 nr_dirty++;
1171 if (dirty && !writeback)
1172 nr_unqueued_dirty++;
1175 * Treat this page as congested if the underlying BDI is or if
1176 * pages are cycling through the LRU so quickly that the
1177 * pages marked for immediate reclaim are making it to the
1178 * end of the LRU a second time.
1180 mapping = page_mapping(page);
1181 if (((dirty || writeback) && mapping &&
1182 inode_write_congested(mapping->host)) ||
1183 (writeback && PageReclaim(page)))
1184 nr_congested++;
1187 * If a page at the tail of the LRU is under writeback, there
1188 * are three cases to consider.
1190 * 1) If reclaim is encountering an excessive number of pages
1191 * under writeback and this page is both under writeback and
1192 * PageReclaim then it indicates that pages are being queued
1193 * for IO but are being recycled through the LRU before the
1194 * IO can complete. Waiting on the page itself risks an
1195 * indefinite stall if it is impossible to writeback the
1196 * page due to IO error or disconnected storage so instead
1197 * note that the LRU is being scanned too quickly and the
1198 * caller can stall after page list has been processed.
1200 * 2) Global or new memcg reclaim encounters a page that is
1201 * not marked for immediate reclaim, or the caller does not
1202 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1203 * not to fs). In this case mark the page for immediate
1204 * reclaim and continue scanning.
1206 * Require may_enter_fs because we would wait on fs, which
1207 * may not have submitted IO yet. And the loop driver might
1208 * enter reclaim, and deadlock if it waits on a page for
1209 * which it is needed to do the write (loop masks off
1210 * __GFP_IO|__GFP_FS for this reason); but more thought
1211 * would probably show more reasons.
1213 * 3) Legacy memcg encounters a page that is already marked
1214 * PageReclaim. memcg does not have any dirty pages
1215 * throttling so we could easily OOM just because too many
1216 * pages are in writeback and there is nothing else to
1217 * reclaim. Wait for the writeback to complete.
1219 * In cases 1) and 2) we activate the pages to get them out of
1220 * the way while we continue scanning for clean pages on the
1221 * inactive list and refilling from the active list. The
1222 * observation here is that waiting for disk writes is more
1223 * expensive than potentially causing reloads down the line.
1224 * Since they're marked for immediate reclaim, they won't put
1225 * memory pressure on the cache working set any longer than it
1226 * takes to write them to disk.
1228 if (PageWriteback(page)) {
1229 /* Case 1 above */
1230 if (current_is_kswapd() &&
1231 PageReclaim(page) &&
1232 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1233 nr_immediate++;
1234 goto activate_locked;
1236 /* Case 2 above */
1237 } else if (sane_reclaim(sc) ||
1238 !PageReclaim(page) || !may_enter_fs) {
1240 * This is slightly racy - end_page_writeback()
1241 * might have just cleared PageReclaim, then
1242 * setting PageReclaim here end up interpreted
1243 * as PageReadahead - but that does not matter
1244 * enough to care. What we do want is for this
1245 * page to have PageReclaim set next time memcg
1246 * reclaim reaches the tests above, so it will
1247 * then wait_on_page_writeback() to avoid OOM;
1248 * and it's also appropriate in global reclaim.
1250 SetPageReclaim(page);
1251 nr_writeback++;
1252 goto activate_locked;
1254 /* Case 3 above */
1255 } else {
1256 unlock_page(page);
1257 wait_on_page_writeback(page);
1258 /* then go back and try same page again */
1259 list_add_tail(&page->lru, page_list);
1260 continue;
1264 if (!force_reclaim)
1265 references = page_check_references(page, sc);
1267 switch (references) {
1268 case PAGEREF_ACTIVATE:
1269 goto activate_locked;
1270 case PAGEREF_KEEP:
1271 nr_ref_keep++;
1272 goto keep_locked;
1273 case PAGEREF_RECLAIM:
1274 case PAGEREF_RECLAIM_CLEAN:
1275 ; /* try to reclaim the page below */
1279 * Anonymous process memory has backing store?
1280 * Try to allocate it some swap space here.
1281 * Lazyfree page could be freed directly
1283 if (PageAnon(page) && PageSwapBacked(page)) {
1284 if (!PageSwapCache(page)) {
1285 if (!(sc->gfp_mask & __GFP_IO))
1286 goto keep_locked;
1287 if (PageTransHuge(page)) {
1288 /* cannot split THP, skip it */
1289 if (!can_split_huge_page(page, NULL))
1290 goto activate_locked;
1292 * Split pages without a PMD map right
1293 * away. Chances are some or all of the
1294 * tail pages can be freed without IO.
1296 if (!compound_mapcount(page) &&
1297 split_huge_page_to_list(page,
1298 page_list))
1299 goto activate_locked;
1301 if (!add_to_swap(page)) {
1302 if (!PageTransHuge(page))
1303 goto activate_locked;
1304 /* Fallback to swap normal pages */
1305 if (split_huge_page_to_list(page,
1306 page_list))
1307 goto activate_locked;
1308 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1309 count_vm_event(THP_SWPOUT_FALLBACK);
1310 #endif
1311 if (!add_to_swap(page))
1312 goto activate_locked;
1315 may_enter_fs = 1;
1317 /* Adding to swap updated mapping */
1318 mapping = page_mapping(page);
1320 } else if (unlikely(PageTransHuge(page))) {
1321 /* Split file THP */
1322 if (split_huge_page_to_list(page, page_list))
1323 goto keep_locked;
1327 * The page is mapped into the page tables of one or more
1328 * processes. Try to unmap it here.
1330 if (page_mapped(page)) {
1331 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1333 if (unlikely(PageTransHuge(page)))
1334 flags |= TTU_SPLIT_HUGE_PMD;
1335 if (!try_to_unmap(page, flags)) {
1336 nr_unmap_fail++;
1337 goto activate_locked;
1341 if (PageDirty(page)) {
1343 * Only kswapd can writeback filesystem pages
1344 * to avoid risk of stack overflow. But avoid
1345 * injecting inefficient single-page IO into
1346 * flusher writeback as much as possible: only
1347 * write pages when we've encountered many
1348 * dirty pages, and when we've already scanned
1349 * the rest of the LRU for clean pages and see
1350 * the same dirty pages again (PageReclaim).
1352 if (page_is_file_cache(page) &&
1353 (!current_is_kswapd() || !PageReclaim(page) ||
1354 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1356 * Immediately reclaim when written back.
1357 * Similar in principal to deactivate_page()
1358 * except we already have the page isolated
1359 * and know it's dirty
1361 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1362 SetPageReclaim(page);
1364 goto activate_locked;
1367 if (references == PAGEREF_RECLAIM_CLEAN)
1368 goto keep_locked;
1369 if (!may_enter_fs)
1370 goto keep_locked;
1371 if (!sc->may_writepage)
1372 goto keep_locked;
1375 * Page is dirty. Flush the TLB if a writable entry
1376 * potentially exists to avoid CPU writes after IO
1377 * starts and then write it out here.
1379 try_to_unmap_flush_dirty();
1380 switch (pageout(page, mapping, sc)) {
1381 case PAGE_KEEP:
1382 goto keep_locked;
1383 case PAGE_ACTIVATE:
1384 goto activate_locked;
1385 case PAGE_SUCCESS:
1386 if (PageWriteback(page))
1387 goto keep;
1388 if (PageDirty(page))
1389 goto keep;
1392 * A synchronous write - probably a ramdisk. Go
1393 * ahead and try to reclaim the page.
1395 if (!trylock_page(page))
1396 goto keep;
1397 if (PageDirty(page) || PageWriteback(page))
1398 goto keep_locked;
1399 mapping = page_mapping(page);
1400 case PAGE_CLEAN:
1401 ; /* try to free the page below */
1406 * If the page has buffers, try to free the buffer mappings
1407 * associated with this page. If we succeed we try to free
1408 * the page as well.
1410 * We do this even if the page is PageDirty().
1411 * try_to_release_page() does not perform I/O, but it is
1412 * possible for a page to have PageDirty set, but it is actually
1413 * clean (all its buffers are clean). This happens if the
1414 * buffers were written out directly, with submit_bh(). ext3
1415 * will do this, as well as the blockdev mapping.
1416 * try_to_release_page() will discover that cleanness and will
1417 * drop the buffers and mark the page clean - it can be freed.
1419 * Rarely, pages can have buffers and no ->mapping. These are
1420 * the pages which were not successfully invalidated in
1421 * truncate_complete_page(). We try to drop those buffers here
1422 * and if that worked, and the page is no longer mapped into
1423 * process address space (page_count == 1) it can be freed.
1424 * Otherwise, leave the page on the LRU so it is swappable.
1426 if (page_has_private(page)) {
1427 if (!try_to_release_page(page, sc->gfp_mask))
1428 goto activate_locked;
1429 if (!mapping && page_count(page) == 1) {
1430 unlock_page(page);
1431 if (put_page_testzero(page))
1432 goto free_it;
1433 else {
1435 * rare race with speculative reference.
1436 * the speculative reference will free
1437 * this page shortly, so we may
1438 * increment nr_reclaimed here (and
1439 * leave it off the LRU).
1441 nr_reclaimed++;
1442 continue;
1447 if (PageAnon(page) && !PageSwapBacked(page)) {
1448 /* follow __remove_mapping for reference */
1449 if (!page_ref_freeze(page, 1))
1450 goto keep_locked;
1451 if (PageDirty(page)) {
1452 page_ref_unfreeze(page, 1);
1453 goto keep_locked;
1456 count_vm_event(PGLAZYFREED);
1457 count_memcg_page_event(page, PGLAZYFREED);
1458 } else if (!mapping || !__remove_mapping(mapping, page, true))
1459 goto keep_locked;
1461 * At this point, we have no other references and there is
1462 * no way to pick any more up (removed from LRU, removed
1463 * from pagecache). Can use non-atomic bitops now (and
1464 * we obviously don't have to worry about waking up a process
1465 * waiting on the page lock, because there are no references.
1467 __ClearPageLocked(page);
1468 free_it:
1469 nr_reclaimed++;
1472 * Is there need to periodically free_page_list? It would
1473 * appear not as the counts should be low
1475 if (unlikely(PageTransHuge(page))) {
1476 mem_cgroup_uncharge(page);
1477 (*get_compound_page_dtor(page))(page);
1478 } else
1479 list_add(&page->lru, &free_pages);
1480 continue;
1482 activate_locked:
1483 /* Not a candidate for swapping, so reclaim swap space. */
1484 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1485 PageMlocked(page)))
1486 try_to_free_swap(page);
1487 VM_BUG_ON_PAGE(PageActive(page), page);
1488 if (!PageMlocked(page)) {
1489 SetPageActive(page);
1490 pgactivate++;
1491 count_memcg_page_event(page, PGACTIVATE);
1493 keep_locked:
1494 unlock_page(page);
1495 keep:
1496 list_add(&page->lru, &ret_pages);
1497 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1500 mem_cgroup_uncharge_list(&free_pages);
1501 try_to_unmap_flush();
1502 free_unref_page_list(&free_pages);
1504 list_splice(&ret_pages, page_list);
1505 count_vm_events(PGACTIVATE, pgactivate);
1507 if (stat) {
1508 stat->nr_dirty = nr_dirty;
1509 stat->nr_congested = nr_congested;
1510 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1511 stat->nr_writeback = nr_writeback;
1512 stat->nr_immediate = nr_immediate;
1513 stat->nr_activate = pgactivate;
1514 stat->nr_ref_keep = nr_ref_keep;
1515 stat->nr_unmap_fail = nr_unmap_fail;
1517 return nr_reclaimed;
1520 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1521 struct list_head *page_list)
1523 struct scan_control sc = {
1524 .gfp_mask = GFP_KERNEL,
1525 .priority = DEF_PRIORITY,
1526 .may_unmap = 1,
1528 unsigned long ret;
1529 struct page *page, *next;
1530 LIST_HEAD(clean_pages);
1532 list_for_each_entry_safe(page, next, page_list, lru) {
1533 if (page_is_file_cache(page) && !PageDirty(page) &&
1534 !__PageMovable(page)) {
1535 ClearPageActive(page);
1536 list_move(&page->lru, &clean_pages);
1540 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1541 TTU_IGNORE_ACCESS, NULL, true);
1542 list_splice(&clean_pages, page_list);
1543 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1544 return ret;
1548 * Attempt to remove the specified page from its LRU. Only take this page
1549 * if it is of the appropriate PageActive status. Pages which are being
1550 * freed elsewhere are also ignored.
1552 * page: page to consider
1553 * mode: one of the LRU isolation modes defined above
1555 * returns 0 on success, -ve errno on failure.
1557 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1559 int ret = -EINVAL;
1561 /* Only take pages on the LRU. */
1562 if (!PageLRU(page))
1563 return ret;
1565 /* Compaction should not handle unevictable pages but CMA can do so */
1566 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1567 return ret;
1569 ret = -EBUSY;
1572 * To minimise LRU disruption, the caller can indicate that it only
1573 * wants to isolate pages it will be able to operate on without
1574 * blocking - clean pages for the most part.
1576 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1577 * that it is possible to migrate without blocking
1579 if (mode & ISOLATE_ASYNC_MIGRATE) {
1580 /* All the caller can do on PageWriteback is block */
1581 if (PageWriteback(page))
1582 return ret;
1584 if (PageDirty(page)) {
1585 struct address_space *mapping;
1586 bool migrate_dirty;
1589 * Only pages without mappings or that have a
1590 * ->migratepage callback are possible to migrate
1591 * without blocking. However, we can be racing with
1592 * truncation so it's necessary to lock the page
1593 * to stabilise the mapping as truncation holds
1594 * the page lock until after the page is removed
1595 * from the page cache.
1597 if (!trylock_page(page))
1598 return ret;
1600 mapping = page_mapping(page);
1601 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1602 unlock_page(page);
1603 if (!migrate_dirty)
1604 return ret;
1608 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1609 return ret;
1611 if (likely(get_page_unless_zero(page))) {
1613 * Be careful not to clear PageLRU until after we're
1614 * sure the page is not being freed elsewhere -- the
1615 * page release code relies on it.
1617 ClearPageLRU(page);
1618 ret = 0;
1621 return ret;
1626 * Update LRU sizes after isolating pages. The LRU size updates must
1627 * be complete before mem_cgroup_update_lru_size due to a santity check.
1629 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1630 enum lru_list lru, unsigned long *nr_zone_taken)
1632 int zid;
1634 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1635 if (!nr_zone_taken[zid])
1636 continue;
1638 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1639 #ifdef CONFIG_MEMCG
1640 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1641 #endif
1647 * zone_lru_lock is heavily contended. Some of the functions that
1648 * shrink the lists perform better by taking out a batch of pages
1649 * and working on them outside the LRU lock.
1651 * For pagecache intensive workloads, this function is the hottest
1652 * spot in the kernel (apart from copy_*_user functions).
1654 * Appropriate locks must be held before calling this function.
1656 * @nr_to_scan: The number of eligible pages to look through on the list.
1657 * @lruvec: The LRU vector to pull pages from.
1658 * @dst: The temp list to put pages on to.
1659 * @nr_scanned: The number of pages that were scanned.
1660 * @sc: The scan_control struct for this reclaim session
1661 * @mode: One of the LRU isolation modes
1662 * @lru: LRU list id for isolating
1664 * returns how many pages were moved onto *@dst.
1666 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1667 struct lruvec *lruvec, struct list_head *dst,
1668 unsigned long *nr_scanned, struct scan_control *sc,
1669 isolate_mode_t mode, enum lru_list lru)
1671 struct list_head *src = &lruvec->lists[lru];
1672 unsigned long nr_taken = 0;
1673 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1674 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1675 unsigned long skipped = 0;
1676 unsigned long scan, total_scan, nr_pages;
1677 LIST_HEAD(pages_skipped);
1679 scan = 0;
1680 for (total_scan = 0;
1681 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1682 total_scan++) {
1683 struct page *page;
1685 page = lru_to_page(src);
1686 prefetchw_prev_lru_page(page, src, flags);
1688 VM_BUG_ON_PAGE(!PageLRU(page), page);
1690 if (page_zonenum(page) > sc->reclaim_idx) {
1691 list_move(&page->lru, &pages_skipped);
1692 nr_skipped[page_zonenum(page)]++;
1693 continue;
1697 * Do not count skipped pages because that makes the function
1698 * return with no isolated pages if the LRU mostly contains
1699 * ineligible pages. This causes the VM to not reclaim any
1700 * pages, triggering a premature OOM.
1702 scan++;
1703 switch (__isolate_lru_page(page, mode)) {
1704 case 0:
1705 nr_pages = hpage_nr_pages(page);
1706 nr_taken += nr_pages;
1707 nr_zone_taken[page_zonenum(page)] += nr_pages;
1708 list_move(&page->lru, dst);
1709 break;
1711 case -EBUSY:
1712 /* else it is being freed elsewhere */
1713 list_move(&page->lru, src);
1714 continue;
1716 default:
1717 BUG();
1722 * Splice any skipped pages to the start of the LRU list. Note that
1723 * this disrupts the LRU order when reclaiming for lower zones but
1724 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1725 * scanning would soon rescan the same pages to skip and put the
1726 * system at risk of premature OOM.
1728 if (!list_empty(&pages_skipped)) {
1729 int zid;
1731 list_splice(&pages_skipped, src);
1732 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1733 if (!nr_skipped[zid])
1734 continue;
1736 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1737 skipped += nr_skipped[zid];
1740 *nr_scanned = total_scan;
1741 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1742 total_scan, skipped, nr_taken, mode, lru);
1743 update_lru_sizes(lruvec, lru, nr_zone_taken);
1744 return nr_taken;
1748 * isolate_lru_page - tries to isolate a page from its LRU list
1749 * @page: page to isolate from its LRU list
1751 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1752 * vmstat statistic corresponding to whatever LRU list the page was on.
1754 * Returns 0 if the page was removed from an LRU list.
1755 * Returns -EBUSY if the page was not on an LRU list.
1757 * The returned page will have PageLRU() cleared. If it was found on
1758 * the active list, it will have PageActive set. If it was found on
1759 * the unevictable list, it will have the PageUnevictable bit set. That flag
1760 * may need to be cleared by the caller before letting the page go.
1762 * The vmstat statistic corresponding to the list on which the page was
1763 * found will be decremented.
1765 * Restrictions:
1767 * (1) Must be called with an elevated refcount on the page. This is a
1768 * fundamentnal difference from isolate_lru_pages (which is called
1769 * without a stable reference).
1770 * (2) the lru_lock must not be held.
1771 * (3) interrupts must be enabled.
1773 int isolate_lru_page(struct page *page)
1775 int ret = -EBUSY;
1777 VM_BUG_ON_PAGE(!page_count(page), page);
1778 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1780 if (PageLRU(page)) {
1781 struct zone *zone = page_zone(page);
1782 struct lruvec *lruvec;
1784 spin_lock_irq(zone_lru_lock(zone));
1785 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1786 if (PageLRU(page)) {
1787 int lru = page_lru(page);
1788 get_page(page);
1789 ClearPageLRU(page);
1790 del_page_from_lru_list(page, lruvec, lru);
1791 ret = 0;
1793 spin_unlock_irq(zone_lru_lock(zone));
1795 return ret;
1799 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1800 * then get resheduled. When there are massive number of tasks doing page
1801 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1802 * the LRU list will go small and be scanned faster than necessary, leading to
1803 * unnecessary swapping, thrashing and OOM.
1805 static int too_many_isolated(struct pglist_data *pgdat, int file,
1806 struct scan_control *sc)
1808 unsigned long inactive, isolated;
1810 if (current_is_kswapd())
1811 return 0;
1813 if (!sane_reclaim(sc))
1814 return 0;
1816 if (file) {
1817 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1818 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1819 } else {
1820 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1821 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1825 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1826 * won't get blocked by normal direct-reclaimers, forming a circular
1827 * deadlock.
1829 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1830 inactive >>= 3;
1832 return isolated > inactive;
1835 static noinline_for_stack void
1836 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1838 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1839 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1840 LIST_HEAD(pages_to_free);
1843 * Put back any unfreeable pages.
1845 while (!list_empty(page_list)) {
1846 struct page *page = lru_to_page(page_list);
1847 int lru;
1849 VM_BUG_ON_PAGE(PageLRU(page), page);
1850 list_del(&page->lru);
1851 if (unlikely(!page_evictable(page))) {
1852 spin_unlock_irq(&pgdat->lru_lock);
1853 putback_lru_page(page);
1854 spin_lock_irq(&pgdat->lru_lock);
1855 continue;
1858 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1860 SetPageLRU(page);
1861 lru = page_lru(page);
1862 add_page_to_lru_list(page, lruvec, lru);
1864 if (is_active_lru(lru)) {
1865 int file = is_file_lru(lru);
1866 int numpages = hpage_nr_pages(page);
1867 reclaim_stat->recent_rotated[file] += numpages;
1869 if (put_page_testzero(page)) {
1870 __ClearPageLRU(page);
1871 __ClearPageActive(page);
1872 del_page_from_lru_list(page, lruvec, lru);
1874 if (unlikely(PageCompound(page))) {
1875 spin_unlock_irq(&pgdat->lru_lock);
1876 mem_cgroup_uncharge(page);
1877 (*get_compound_page_dtor(page))(page);
1878 spin_lock_irq(&pgdat->lru_lock);
1879 } else
1880 list_add(&page->lru, &pages_to_free);
1885 * To save our caller's stack, now use input list for pages to free.
1887 list_splice(&pages_to_free, page_list);
1891 * If a kernel thread (such as nfsd for loop-back mounts) services
1892 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1893 * In that case we should only throttle if the backing device it is
1894 * writing to is congested. In other cases it is safe to throttle.
1896 static int current_may_throttle(void)
1898 return !(current->flags & PF_LESS_THROTTLE) ||
1899 current->backing_dev_info == NULL ||
1900 bdi_write_congested(current->backing_dev_info);
1904 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1905 * of reclaimed pages
1907 static noinline_for_stack unsigned long
1908 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1909 struct scan_control *sc, enum lru_list lru)
1911 LIST_HEAD(page_list);
1912 unsigned long nr_scanned;
1913 unsigned long nr_reclaimed = 0;
1914 unsigned long nr_taken;
1915 struct reclaim_stat stat = {};
1916 isolate_mode_t isolate_mode = 0;
1917 int file = is_file_lru(lru);
1918 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1919 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1920 bool stalled = false;
1922 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1923 if (stalled)
1924 return 0;
1926 /* wait a bit for the reclaimer. */
1927 msleep(100);
1928 stalled = true;
1930 /* We are about to die and free our memory. Return now. */
1931 if (fatal_signal_pending(current))
1932 return SWAP_CLUSTER_MAX;
1935 lru_add_drain();
1937 if (!sc->may_unmap)
1938 isolate_mode |= ISOLATE_UNMAPPED;
1940 spin_lock_irq(&pgdat->lru_lock);
1942 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1943 &nr_scanned, sc, isolate_mode, lru);
1945 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1946 reclaim_stat->recent_scanned[file] += nr_taken;
1948 if (current_is_kswapd()) {
1949 if (global_reclaim(sc))
1950 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1951 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1952 nr_scanned);
1953 } else {
1954 if (global_reclaim(sc))
1955 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1956 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1957 nr_scanned);
1959 spin_unlock_irq(&pgdat->lru_lock);
1961 if (nr_taken == 0)
1962 return 0;
1964 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1965 &stat, false);
1967 spin_lock_irq(&pgdat->lru_lock);
1969 if (current_is_kswapd()) {
1970 if (global_reclaim(sc))
1971 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1972 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1973 nr_reclaimed);
1974 } else {
1975 if (global_reclaim(sc))
1976 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1977 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1978 nr_reclaimed);
1981 putback_inactive_pages(lruvec, &page_list);
1983 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1985 spin_unlock_irq(&pgdat->lru_lock);
1987 mem_cgroup_uncharge_list(&page_list);
1988 free_unref_page_list(&page_list);
1991 * If dirty pages are scanned that are not queued for IO, it
1992 * implies that flushers are not doing their job. This can
1993 * happen when memory pressure pushes dirty pages to the end of
1994 * the LRU before the dirty limits are breached and the dirty
1995 * data has expired. It can also happen when the proportion of
1996 * dirty pages grows not through writes but through memory
1997 * pressure reclaiming all the clean cache. And in some cases,
1998 * the flushers simply cannot keep up with the allocation
1999 * rate. Nudge the flusher threads in case they are asleep.
2001 if (stat.nr_unqueued_dirty == nr_taken)
2002 wakeup_flusher_threads(WB_REASON_VMSCAN);
2004 sc->nr.dirty += stat.nr_dirty;
2005 sc->nr.congested += stat.nr_congested;
2006 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2007 sc->nr.writeback += stat.nr_writeback;
2008 sc->nr.immediate += stat.nr_immediate;
2009 sc->nr.taken += nr_taken;
2010 if (file)
2011 sc->nr.file_taken += nr_taken;
2013 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2014 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2015 return nr_reclaimed;
2019 * This moves pages from the active list to the inactive list.
2021 * We move them the other way if the page is referenced by one or more
2022 * processes, from rmap.
2024 * If the pages are mostly unmapped, the processing is fast and it is
2025 * appropriate to hold zone_lru_lock across the whole operation. But if
2026 * the pages are mapped, the processing is slow (page_referenced()) so we
2027 * should drop zone_lru_lock around each page. It's impossible to balance
2028 * this, so instead we remove the pages from the LRU while processing them.
2029 * It is safe to rely on PG_active against the non-LRU pages in here because
2030 * nobody will play with that bit on a non-LRU page.
2032 * The downside is that we have to touch page->_refcount against each page.
2033 * But we had to alter page->flags anyway.
2035 * Returns the number of pages moved to the given lru.
2038 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2039 struct list_head *list,
2040 struct list_head *pages_to_free,
2041 enum lru_list lru)
2043 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2044 struct page *page;
2045 int nr_pages;
2046 int nr_moved = 0;
2048 while (!list_empty(list)) {
2049 page = lru_to_page(list);
2050 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2052 VM_BUG_ON_PAGE(PageLRU(page), page);
2053 SetPageLRU(page);
2055 nr_pages = hpage_nr_pages(page);
2056 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2057 list_move(&page->lru, &lruvec->lists[lru]);
2059 if (put_page_testzero(page)) {
2060 __ClearPageLRU(page);
2061 __ClearPageActive(page);
2062 del_page_from_lru_list(page, lruvec, lru);
2064 if (unlikely(PageCompound(page))) {
2065 spin_unlock_irq(&pgdat->lru_lock);
2066 mem_cgroup_uncharge(page);
2067 (*get_compound_page_dtor(page))(page);
2068 spin_lock_irq(&pgdat->lru_lock);
2069 } else
2070 list_add(&page->lru, pages_to_free);
2071 } else {
2072 nr_moved += nr_pages;
2076 if (!is_active_lru(lru)) {
2077 __count_vm_events(PGDEACTIVATE, nr_moved);
2078 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2079 nr_moved);
2082 return nr_moved;
2085 static void shrink_active_list(unsigned long nr_to_scan,
2086 struct lruvec *lruvec,
2087 struct scan_control *sc,
2088 enum lru_list lru)
2090 unsigned long nr_taken;
2091 unsigned long nr_scanned;
2092 unsigned long vm_flags;
2093 LIST_HEAD(l_hold); /* The pages which were snipped off */
2094 LIST_HEAD(l_active);
2095 LIST_HEAD(l_inactive);
2096 struct page *page;
2097 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2098 unsigned nr_deactivate, nr_activate;
2099 unsigned nr_rotated = 0;
2100 isolate_mode_t isolate_mode = 0;
2101 int file = is_file_lru(lru);
2102 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2104 lru_add_drain();
2106 if (!sc->may_unmap)
2107 isolate_mode |= ISOLATE_UNMAPPED;
2109 spin_lock_irq(&pgdat->lru_lock);
2111 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2112 &nr_scanned, sc, isolate_mode, lru);
2114 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2115 reclaim_stat->recent_scanned[file] += nr_taken;
2117 __count_vm_events(PGREFILL, nr_scanned);
2118 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2120 spin_unlock_irq(&pgdat->lru_lock);
2122 while (!list_empty(&l_hold)) {
2123 cond_resched();
2124 page = lru_to_page(&l_hold);
2125 list_del(&page->lru);
2127 if (unlikely(!page_evictable(page))) {
2128 putback_lru_page(page);
2129 continue;
2132 if (unlikely(buffer_heads_over_limit)) {
2133 if (page_has_private(page) && trylock_page(page)) {
2134 if (page_has_private(page))
2135 try_to_release_page(page, 0);
2136 unlock_page(page);
2140 if (page_referenced(page, 0, sc->target_mem_cgroup,
2141 &vm_flags)) {
2142 nr_rotated += hpage_nr_pages(page);
2144 * Identify referenced, file-backed active pages and
2145 * give them one more trip around the active list. So
2146 * that executable code get better chances to stay in
2147 * memory under moderate memory pressure. Anon pages
2148 * are not likely to be evicted by use-once streaming
2149 * IO, plus JVM can create lots of anon VM_EXEC pages,
2150 * so we ignore them here.
2152 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2153 list_add(&page->lru, &l_active);
2154 continue;
2158 ClearPageActive(page); /* we are de-activating */
2159 SetPageWorkingset(page);
2160 list_add(&page->lru, &l_inactive);
2164 * Move pages back to the lru list.
2166 spin_lock_irq(&pgdat->lru_lock);
2168 * Count referenced pages from currently used mappings as rotated,
2169 * even though only some of them are actually re-activated. This
2170 * helps balance scan pressure between file and anonymous pages in
2171 * get_scan_count.
2173 reclaim_stat->recent_rotated[file] += nr_rotated;
2175 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2176 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2177 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2178 spin_unlock_irq(&pgdat->lru_lock);
2180 mem_cgroup_uncharge_list(&l_hold);
2181 free_unref_page_list(&l_hold);
2182 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2183 nr_deactivate, nr_rotated, sc->priority, file);
2187 * The inactive anon list should be small enough that the VM never has
2188 * to do too much work.
2190 * The inactive file list should be small enough to leave most memory
2191 * to the established workingset on the scan-resistant active list,
2192 * but large enough to avoid thrashing the aggregate readahead window.
2194 * Both inactive lists should also be large enough that each inactive
2195 * page has a chance to be referenced again before it is reclaimed.
2197 * If that fails and refaulting is observed, the inactive list grows.
2199 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2200 * on this LRU, maintained by the pageout code. An inactive_ratio
2201 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2203 * total target max
2204 * memory ratio inactive
2205 * -------------------------------------
2206 * 10MB 1 5MB
2207 * 100MB 1 50MB
2208 * 1GB 3 250MB
2209 * 10GB 10 0.9GB
2210 * 100GB 31 3GB
2211 * 1TB 101 10GB
2212 * 10TB 320 32GB
2214 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2215 struct mem_cgroup *memcg,
2216 struct scan_control *sc, bool actual_reclaim)
2218 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2219 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2220 enum lru_list inactive_lru = file * LRU_FILE;
2221 unsigned long inactive, active;
2222 unsigned long inactive_ratio;
2223 unsigned long refaults;
2224 unsigned long gb;
2227 * If we don't have swap space, anonymous page deactivation
2228 * is pointless.
2230 if (!file && !total_swap_pages)
2231 return false;
2233 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2234 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2236 if (memcg)
2237 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2238 else
2239 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2242 * When refaults are being observed, it means a new workingset
2243 * is being established. Disable active list protection to get
2244 * rid of the stale workingset quickly.
2246 if (file && actual_reclaim && lruvec->refaults != refaults) {
2247 inactive_ratio = 0;
2248 } else {
2249 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2250 if (gb)
2251 inactive_ratio = int_sqrt(10 * gb);
2252 else
2253 inactive_ratio = 1;
2256 if (actual_reclaim)
2257 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2258 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2259 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2260 inactive_ratio, file);
2262 return inactive * inactive_ratio < active;
2265 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2266 struct lruvec *lruvec, struct mem_cgroup *memcg,
2267 struct scan_control *sc)
2269 if (is_active_lru(lru)) {
2270 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2271 memcg, sc, true))
2272 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2273 return 0;
2276 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2279 enum scan_balance {
2280 SCAN_EQUAL,
2281 SCAN_FRACT,
2282 SCAN_ANON,
2283 SCAN_FILE,
2287 * Determine how aggressively the anon and file LRU lists should be
2288 * scanned. The relative value of each set of LRU lists is determined
2289 * by looking at the fraction of the pages scanned we did rotate back
2290 * onto the active list instead of evict.
2292 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2293 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2295 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2296 struct scan_control *sc, unsigned long *nr,
2297 unsigned long *lru_pages)
2299 int swappiness = mem_cgroup_swappiness(memcg);
2300 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2301 u64 fraction[2];
2302 u64 denominator = 0; /* gcc */
2303 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2304 unsigned long anon_prio, file_prio;
2305 enum scan_balance scan_balance;
2306 unsigned long anon, file;
2307 unsigned long ap, fp;
2308 enum lru_list lru;
2310 /* If we have no swap space, do not bother scanning anon pages. */
2311 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2312 scan_balance = SCAN_FILE;
2313 goto out;
2317 * Global reclaim will swap to prevent OOM even with no
2318 * swappiness, but memcg users want to use this knob to
2319 * disable swapping for individual groups completely when
2320 * using the memory controller's swap limit feature would be
2321 * too expensive.
2323 if (!global_reclaim(sc) && !swappiness) {
2324 scan_balance = SCAN_FILE;
2325 goto out;
2329 * Do not apply any pressure balancing cleverness when the
2330 * system is close to OOM, scan both anon and file equally
2331 * (unless the swappiness setting disagrees with swapping).
2333 if (!sc->priority && swappiness) {
2334 scan_balance = SCAN_EQUAL;
2335 goto out;
2339 * Prevent the reclaimer from falling into the cache trap: as
2340 * cache pages start out inactive, every cache fault will tip
2341 * the scan balance towards the file LRU. And as the file LRU
2342 * shrinks, so does the window for rotation from references.
2343 * This means we have a runaway feedback loop where a tiny
2344 * thrashing file LRU becomes infinitely more attractive than
2345 * anon pages. Try to detect this based on file LRU size.
2347 if (global_reclaim(sc)) {
2348 unsigned long pgdatfile;
2349 unsigned long pgdatfree;
2350 int z;
2351 unsigned long total_high_wmark = 0;
2353 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2354 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2355 node_page_state(pgdat, NR_INACTIVE_FILE);
2357 for (z = 0; z < MAX_NR_ZONES; z++) {
2358 struct zone *zone = &pgdat->node_zones[z];
2359 if (!managed_zone(zone))
2360 continue;
2362 total_high_wmark += high_wmark_pages(zone);
2365 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2367 * Force SCAN_ANON if there are enough inactive
2368 * anonymous pages on the LRU in eligible zones.
2369 * Otherwise, the small LRU gets thrashed.
2371 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2372 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2373 >> sc->priority) {
2374 scan_balance = SCAN_ANON;
2375 goto out;
2381 * If there is enough inactive page cache, i.e. if the size of the
2382 * inactive list is greater than that of the active list *and* the
2383 * inactive list actually has some pages to scan on this priority, we
2384 * do not reclaim anything from the anonymous working set right now.
2385 * Without the second condition we could end up never scanning an
2386 * lruvec even if it has plenty of old anonymous pages unless the
2387 * system is under heavy pressure.
2389 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2390 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2391 scan_balance = SCAN_FILE;
2392 goto out;
2395 scan_balance = SCAN_FRACT;
2398 * With swappiness at 100, anonymous and file have the same priority.
2399 * This scanning priority is essentially the inverse of IO cost.
2401 anon_prio = swappiness;
2402 file_prio = 200 - anon_prio;
2405 * OK, so we have swap space and a fair amount of page cache
2406 * pages. We use the recently rotated / recently scanned
2407 * ratios to determine how valuable each cache is.
2409 * Because workloads change over time (and to avoid overflow)
2410 * we keep these statistics as a floating average, which ends
2411 * up weighing recent references more than old ones.
2413 * anon in [0], file in [1]
2416 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2417 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2418 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2419 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2421 spin_lock_irq(&pgdat->lru_lock);
2422 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2423 reclaim_stat->recent_scanned[0] /= 2;
2424 reclaim_stat->recent_rotated[0] /= 2;
2427 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2428 reclaim_stat->recent_scanned[1] /= 2;
2429 reclaim_stat->recent_rotated[1] /= 2;
2433 * The amount of pressure on anon vs file pages is inversely
2434 * proportional to the fraction of recently scanned pages on
2435 * each list that were recently referenced and in active use.
2437 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2438 ap /= reclaim_stat->recent_rotated[0] + 1;
2440 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2441 fp /= reclaim_stat->recent_rotated[1] + 1;
2442 spin_unlock_irq(&pgdat->lru_lock);
2444 fraction[0] = ap;
2445 fraction[1] = fp;
2446 denominator = ap + fp + 1;
2447 out:
2448 *lru_pages = 0;
2449 for_each_evictable_lru(lru) {
2450 int file = is_file_lru(lru);
2451 unsigned long size;
2452 unsigned long scan;
2454 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2455 scan = size >> sc->priority;
2457 * If the cgroup's already been deleted, make sure to
2458 * scrape out the remaining cache.
2460 if (!scan && !mem_cgroup_online(memcg))
2461 scan = min(size, SWAP_CLUSTER_MAX);
2463 switch (scan_balance) {
2464 case SCAN_EQUAL:
2465 /* Scan lists relative to size */
2466 break;
2467 case SCAN_FRACT:
2469 * Scan types proportional to swappiness and
2470 * their relative recent reclaim efficiency.
2471 * Make sure we don't miss the last page
2472 * because of a round-off error.
2474 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2475 denominator);
2476 break;
2477 case SCAN_FILE:
2478 case SCAN_ANON:
2479 /* Scan one type exclusively */
2480 if ((scan_balance == SCAN_FILE) != file) {
2481 size = 0;
2482 scan = 0;
2484 break;
2485 default:
2486 /* Look ma, no brain */
2487 BUG();
2490 *lru_pages += size;
2491 nr[lru] = scan;
2496 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2498 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2499 struct scan_control *sc, unsigned long *lru_pages)
2501 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2502 unsigned long nr[NR_LRU_LISTS];
2503 unsigned long targets[NR_LRU_LISTS];
2504 unsigned long nr_to_scan;
2505 enum lru_list lru;
2506 unsigned long nr_reclaimed = 0;
2507 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2508 struct blk_plug plug;
2509 bool scan_adjusted;
2511 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2513 /* Record the original scan target for proportional adjustments later */
2514 memcpy(targets, nr, sizeof(nr));
2517 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2518 * event that can occur when there is little memory pressure e.g.
2519 * multiple streaming readers/writers. Hence, we do not abort scanning
2520 * when the requested number of pages are reclaimed when scanning at
2521 * DEF_PRIORITY on the assumption that the fact we are direct
2522 * reclaiming implies that kswapd is not keeping up and it is best to
2523 * do a batch of work at once. For memcg reclaim one check is made to
2524 * abort proportional reclaim if either the file or anon lru has already
2525 * dropped to zero at the first pass.
2527 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2528 sc->priority == DEF_PRIORITY);
2530 blk_start_plug(&plug);
2531 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2532 nr[LRU_INACTIVE_FILE]) {
2533 unsigned long nr_anon, nr_file, percentage;
2534 unsigned long nr_scanned;
2536 for_each_evictable_lru(lru) {
2537 if (nr[lru]) {
2538 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2539 nr[lru] -= nr_to_scan;
2541 nr_reclaimed += shrink_list(lru, nr_to_scan,
2542 lruvec, memcg, sc);
2546 cond_resched();
2548 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2549 continue;
2552 * For kswapd and memcg, reclaim at least the number of pages
2553 * requested. Ensure that the anon and file LRUs are scanned
2554 * proportionally what was requested by get_scan_count(). We
2555 * stop reclaiming one LRU and reduce the amount scanning
2556 * proportional to the original scan target.
2558 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2559 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2562 * It's just vindictive to attack the larger once the smaller
2563 * has gone to zero. And given the way we stop scanning the
2564 * smaller below, this makes sure that we only make one nudge
2565 * towards proportionality once we've got nr_to_reclaim.
2567 if (!nr_file || !nr_anon)
2568 break;
2570 if (nr_file > nr_anon) {
2571 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2572 targets[LRU_ACTIVE_ANON] + 1;
2573 lru = LRU_BASE;
2574 percentage = nr_anon * 100 / scan_target;
2575 } else {
2576 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2577 targets[LRU_ACTIVE_FILE] + 1;
2578 lru = LRU_FILE;
2579 percentage = nr_file * 100 / scan_target;
2582 /* Stop scanning the smaller of the LRU */
2583 nr[lru] = 0;
2584 nr[lru + LRU_ACTIVE] = 0;
2587 * Recalculate the other LRU scan count based on its original
2588 * scan target and the percentage scanning already complete
2590 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2591 nr_scanned = targets[lru] - nr[lru];
2592 nr[lru] = targets[lru] * (100 - percentage) / 100;
2593 nr[lru] -= min(nr[lru], nr_scanned);
2595 lru += LRU_ACTIVE;
2596 nr_scanned = targets[lru] - nr[lru];
2597 nr[lru] = targets[lru] * (100 - percentage) / 100;
2598 nr[lru] -= min(nr[lru], nr_scanned);
2600 scan_adjusted = true;
2602 blk_finish_plug(&plug);
2603 sc->nr_reclaimed += nr_reclaimed;
2606 * Even if we did not try to evict anon pages at all, we want to
2607 * rebalance the anon lru active/inactive ratio.
2609 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2610 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2611 sc, LRU_ACTIVE_ANON);
2614 /* Use reclaim/compaction for costly allocs or under memory pressure */
2615 static bool in_reclaim_compaction(struct scan_control *sc)
2617 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2618 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2619 sc->priority < DEF_PRIORITY - 2))
2620 return true;
2622 return false;
2626 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2627 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2628 * true if more pages should be reclaimed such that when the page allocator
2629 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2630 * It will give up earlier than that if there is difficulty reclaiming pages.
2632 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2633 unsigned long nr_reclaimed,
2634 unsigned long nr_scanned,
2635 struct scan_control *sc)
2637 unsigned long pages_for_compaction;
2638 unsigned long inactive_lru_pages;
2639 int z;
2641 /* If not in reclaim/compaction mode, stop */
2642 if (!in_reclaim_compaction(sc))
2643 return false;
2645 /* Consider stopping depending on scan and reclaim activity */
2646 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2648 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2649 * full LRU list has been scanned and we are still failing
2650 * to reclaim pages. This full LRU scan is potentially
2651 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2653 if (!nr_reclaimed && !nr_scanned)
2654 return false;
2655 } else {
2657 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2658 * fail without consequence, stop if we failed to reclaim
2659 * any pages from the last SWAP_CLUSTER_MAX number of
2660 * pages that were scanned. This will return to the
2661 * caller faster at the risk reclaim/compaction and
2662 * the resulting allocation attempt fails
2664 if (!nr_reclaimed)
2665 return false;
2669 * If we have not reclaimed enough pages for compaction and the
2670 * inactive lists are large enough, continue reclaiming
2672 pages_for_compaction = compact_gap(sc->order);
2673 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2674 if (get_nr_swap_pages() > 0)
2675 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2676 if (sc->nr_reclaimed < pages_for_compaction &&
2677 inactive_lru_pages > pages_for_compaction)
2678 return true;
2680 /* If compaction would go ahead or the allocation would succeed, stop */
2681 for (z = 0; z <= sc->reclaim_idx; z++) {
2682 struct zone *zone = &pgdat->node_zones[z];
2683 if (!managed_zone(zone))
2684 continue;
2686 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2687 case COMPACT_SUCCESS:
2688 case COMPACT_CONTINUE:
2689 return false;
2690 default:
2691 /* check next zone */
2695 return true;
2698 static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2700 return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2701 (memcg && memcg_congested(pgdat, memcg));
2704 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2706 struct reclaim_state *reclaim_state = current->reclaim_state;
2707 unsigned long nr_reclaimed, nr_scanned;
2708 bool reclaimable = false;
2710 do {
2711 struct mem_cgroup *root = sc->target_mem_cgroup;
2712 struct mem_cgroup_reclaim_cookie reclaim = {
2713 .pgdat = pgdat,
2714 .priority = sc->priority,
2716 unsigned long node_lru_pages = 0;
2717 struct mem_cgroup *memcg;
2719 memset(&sc->nr, 0, sizeof(sc->nr));
2721 nr_reclaimed = sc->nr_reclaimed;
2722 nr_scanned = sc->nr_scanned;
2724 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2725 do {
2726 unsigned long lru_pages;
2727 unsigned long reclaimed;
2728 unsigned long scanned;
2730 switch (mem_cgroup_protected(root, memcg)) {
2731 case MEMCG_PROT_MIN:
2733 * Hard protection.
2734 * If there is no reclaimable memory, OOM.
2736 continue;
2737 case MEMCG_PROT_LOW:
2739 * Soft protection.
2740 * Respect the protection only as long as
2741 * there is an unprotected supply
2742 * of reclaimable memory from other cgroups.
2744 if (!sc->memcg_low_reclaim) {
2745 sc->memcg_low_skipped = 1;
2746 continue;
2748 memcg_memory_event(memcg, MEMCG_LOW);
2749 break;
2750 case MEMCG_PROT_NONE:
2751 break;
2754 reclaimed = sc->nr_reclaimed;
2755 scanned = sc->nr_scanned;
2756 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2757 node_lru_pages += lru_pages;
2759 shrink_slab(sc->gfp_mask, pgdat->node_id,
2760 memcg, sc->priority);
2762 /* Record the group's reclaim efficiency */
2763 vmpressure(sc->gfp_mask, memcg, false,
2764 sc->nr_scanned - scanned,
2765 sc->nr_reclaimed - reclaimed);
2768 * Direct reclaim and kswapd have to scan all memory
2769 * cgroups to fulfill the overall scan target for the
2770 * node.
2772 * Limit reclaim, on the other hand, only cares about
2773 * nr_to_reclaim pages to be reclaimed and it will
2774 * retry with decreasing priority if one round over the
2775 * whole hierarchy is not sufficient.
2777 if (!global_reclaim(sc) &&
2778 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2779 mem_cgroup_iter_break(root, memcg);
2780 break;
2782 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2784 if (reclaim_state) {
2785 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2786 reclaim_state->reclaimed_slab = 0;
2789 /* Record the subtree's reclaim efficiency */
2790 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2791 sc->nr_scanned - nr_scanned,
2792 sc->nr_reclaimed - nr_reclaimed);
2794 if (sc->nr_reclaimed - nr_reclaimed)
2795 reclaimable = true;
2797 if (current_is_kswapd()) {
2799 * If reclaim is isolating dirty pages under writeback,
2800 * it implies that the long-lived page allocation rate
2801 * is exceeding the page laundering rate. Either the
2802 * global limits are not being effective at throttling
2803 * processes due to the page distribution throughout
2804 * zones or there is heavy usage of a slow backing
2805 * device. The only option is to throttle from reclaim
2806 * context which is not ideal as there is no guarantee
2807 * the dirtying process is throttled in the same way
2808 * balance_dirty_pages() manages.
2810 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2811 * count the number of pages under pages flagged for
2812 * immediate reclaim and stall if any are encountered
2813 * in the nr_immediate check below.
2815 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2816 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2819 * Tag a node as congested if all the dirty pages
2820 * scanned were backed by a congested BDI and
2821 * wait_iff_congested will stall.
2823 if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2824 set_bit(PGDAT_CONGESTED, &pgdat->flags);
2826 /* Allow kswapd to start writing pages during reclaim.*/
2827 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2828 set_bit(PGDAT_DIRTY, &pgdat->flags);
2831 * If kswapd scans pages marked marked for immediate
2832 * reclaim and under writeback (nr_immediate), it
2833 * implies that pages are cycling through the LRU
2834 * faster than they are written so also forcibly stall.
2836 if (sc->nr.immediate)
2837 congestion_wait(BLK_RW_ASYNC, HZ/10);
2841 * Legacy memcg will stall in page writeback so avoid forcibly
2842 * stalling in wait_iff_congested().
2844 if (!global_reclaim(sc) && sane_reclaim(sc) &&
2845 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2846 set_memcg_congestion(pgdat, root, true);
2849 * Stall direct reclaim for IO completions if underlying BDIs
2850 * and node is congested. Allow kswapd to continue until it
2851 * starts encountering unqueued dirty pages or cycling through
2852 * the LRU too quickly.
2854 if (!sc->hibernation_mode && !current_is_kswapd() &&
2855 current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2856 wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2858 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2859 sc->nr_scanned - nr_scanned, sc));
2862 * Kswapd gives up on balancing particular nodes after too
2863 * many failures to reclaim anything from them and goes to
2864 * sleep. On reclaim progress, reset the failure counter. A
2865 * successful direct reclaim run will revive a dormant kswapd.
2867 if (reclaimable)
2868 pgdat->kswapd_failures = 0;
2870 return reclaimable;
2874 * Returns true if compaction should go ahead for a costly-order request, or
2875 * the allocation would already succeed without compaction. Return false if we
2876 * should reclaim first.
2878 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2880 unsigned long watermark;
2881 enum compact_result suitable;
2883 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2884 if (suitable == COMPACT_SUCCESS)
2885 /* Allocation should succeed already. Don't reclaim. */
2886 return true;
2887 if (suitable == COMPACT_SKIPPED)
2888 /* Compaction cannot yet proceed. Do reclaim. */
2889 return false;
2892 * Compaction is already possible, but it takes time to run and there
2893 * are potentially other callers using the pages just freed. So proceed
2894 * with reclaim to make a buffer of free pages available to give
2895 * compaction a reasonable chance of completing and allocating the page.
2896 * Note that we won't actually reclaim the whole buffer in one attempt
2897 * as the target watermark in should_continue_reclaim() is lower. But if
2898 * we are already above the high+gap watermark, don't reclaim at all.
2900 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2902 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2906 * This is the direct reclaim path, for page-allocating processes. We only
2907 * try to reclaim pages from zones which will satisfy the caller's allocation
2908 * request.
2910 * If a zone is deemed to be full of pinned pages then just give it a light
2911 * scan then give up on it.
2913 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2915 struct zoneref *z;
2916 struct zone *zone;
2917 unsigned long nr_soft_reclaimed;
2918 unsigned long nr_soft_scanned;
2919 gfp_t orig_mask;
2920 pg_data_t *last_pgdat = NULL;
2923 * If the number of buffer_heads in the machine exceeds the maximum
2924 * allowed level, force direct reclaim to scan the highmem zone as
2925 * highmem pages could be pinning lowmem pages storing buffer_heads
2927 orig_mask = sc->gfp_mask;
2928 if (buffer_heads_over_limit) {
2929 sc->gfp_mask |= __GFP_HIGHMEM;
2930 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2933 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2934 sc->reclaim_idx, sc->nodemask) {
2936 * Take care memory controller reclaiming has small influence
2937 * to global LRU.
2939 if (global_reclaim(sc)) {
2940 if (!cpuset_zone_allowed(zone,
2941 GFP_KERNEL | __GFP_HARDWALL))
2942 continue;
2945 * If we already have plenty of memory free for
2946 * compaction in this zone, don't free any more.
2947 * Even though compaction is invoked for any
2948 * non-zero order, only frequent costly order
2949 * reclamation is disruptive enough to become a
2950 * noticeable problem, like transparent huge
2951 * page allocations.
2953 if (IS_ENABLED(CONFIG_COMPACTION) &&
2954 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2955 compaction_ready(zone, sc)) {
2956 sc->compaction_ready = true;
2957 continue;
2961 * Shrink each node in the zonelist once. If the
2962 * zonelist is ordered by zone (not the default) then a
2963 * node may be shrunk multiple times but in that case
2964 * the user prefers lower zones being preserved.
2966 if (zone->zone_pgdat == last_pgdat)
2967 continue;
2970 * This steals pages from memory cgroups over softlimit
2971 * and returns the number of reclaimed pages and
2972 * scanned pages. This works for global memory pressure
2973 * and balancing, not for a memcg's limit.
2975 nr_soft_scanned = 0;
2976 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2977 sc->order, sc->gfp_mask,
2978 &nr_soft_scanned);
2979 sc->nr_reclaimed += nr_soft_reclaimed;
2980 sc->nr_scanned += nr_soft_scanned;
2981 /* need some check for avoid more shrink_zone() */
2984 /* See comment about same check for global reclaim above */
2985 if (zone->zone_pgdat == last_pgdat)
2986 continue;
2987 last_pgdat = zone->zone_pgdat;
2988 shrink_node(zone->zone_pgdat, sc);
2992 * Restore to original mask to avoid the impact on the caller if we
2993 * promoted it to __GFP_HIGHMEM.
2995 sc->gfp_mask = orig_mask;
2998 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
3000 struct mem_cgroup *memcg;
3002 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
3003 do {
3004 unsigned long refaults;
3005 struct lruvec *lruvec;
3007 if (memcg)
3008 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
3009 else
3010 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
3012 lruvec = mem_cgroup_lruvec(pgdat, memcg);
3013 lruvec->refaults = refaults;
3014 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3018 * This is the main entry point to direct page reclaim.
3020 * If a full scan of the inactive list fails to free enough memory then we
3021 * are "out of memory" and something needs to be killed.
3023 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3024 * high - the zone may be full of dirty or under-writeback pages, which this
3025 * caller can't do much about. We kick the writeback threads and take explicit
3026 * naps in the hope that some of these pages can be written. But if the
3027 * allocating task holds filesystem locks which prevent writeout this might not
3028 * work, and the allocation attempt will fail.
3030 * returns: 0, if no pages reclaimed
3031 * else, the number of pages reclaimed
3033 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3034 struct scan_control *sc)
3036 int initial_priority = sc->priority;
3037 pg_data_t *last_pgdat;
3038 struct zoneref *z;
3039 struct zone *zone;
3040 retry:
3041 delayacct_freepages_start();
3043 if (global_reclaim(sc))
3044 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3046 do {
3047 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3048 sc->priority);
3049 sc->nr_scanned = 0;
3050 shrink_zones(zonelist, sc);
3052 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3053 break;
3055 if (sc->compaction_ready)
3056 break;
3059 * If we're getting trouble reclaiming, start doing
3060 * writepage even in laptop mode.
3062 if (sc->priority < DEF_PRIORITY - 2)
3063 sc->may_writepage = 1;
3064 } while (--sc->priority >= 0);
3066 last_pgdat = NULL;
3067 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3068 sc->nodemask) {
3069 if (zone->zone_pgdat == last_pgdat)
3070 continue;
3071 last_pgdat = zone->zone_pgdat;
3072 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3073 set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3076 delayacct_freepages_end();
3078 if (sc->nr_reclaimed)
3079 return sc->nr_reclaimed;
3081 /* Aborted reclaim to try compaction? don't OOM, then */
3082 if (sc->compaction_ready)
3083 return 1;
3085 /* Untapped cgroup reserves? Don't OOM, retry. */
3086 if (sc->memcg_low_skipped) {
3087 sc->priority = initial_priority;
3088 sc->memcg_low_reclaim = 1;
3089 sc->memcg_low_skipped = 0;
3090 goto retry;
3093 return 0;
3096 static bool allow_direct_reclaim(pg_data_t *pgdat)
3098 struct zone *zone;
3099 unsigned long pfmemalloc_reserve = 0;
3100 unsigned long free_pages = 0;
3101 int i;
3102 bool wmark_ok;
3104 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3105 return true;
3107 for (i = 0; i <= ZONE_NORMAL; i++) {
3108 zone = &pgdat->node_zones[i];
3109 if (!managed_zone(zone))
3110 continue;
3112 if (!zone_reclaimable_pages(zone))
3113 continue;
3115 pfmemalloc_reserve += min_wmark_pages(zone);
3116 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3119 /* If there are no reserves (unexpected config) then do not throttle */
3120 if (!pfmemalloc_reserve)
3121 return true;
3123 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3125 /* kswapd must be awake if processes are being throttled */
3126 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3127 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3128 (enum zone_type)ZONE_NORMAL);
3129 wake_up_interruptible(&pgdat->kswapd_wait);
3132 return wmark_ok;
3136 * Throttle direct reclaimers if backing storage is backed by the network
3137 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3138 * depleted. kswapd will continue to make progress and wake the processes
3139 * when the low watermark is reached.
3141 * Returns true if a fatal signal was delivered during throttling. If this
3142 * happens, the page allocator should not consider triggering the OOM killer.
3144 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3145 nodemask_t *nodemask)
3147 struct zoneref *z;
3148 struct zone *zone;
3149 pg_data_t *pgdat = NULL;
3152 * Kernel threads should not be throttled as they may be indirectly
3153 * responsible for cleaning pages necessary for reclaim to make forward
3154 * progress. kjournald for example may enter direct reclaim while
3155 * committing a transaction where throttling it could forcing other
3156 * processes to block on log_wait_commit().
3158 if (current->flags & PF_KTHREAD)
3159 goto out;
3162 * If a fatal signal is pending, this process should not throttle.
3163 * It should return quickly so it can exit and free its memory
3165 if (fatal_signal_pending(current))
3166 goto out;
3169 * Check if the pfmemalloc reserves are ok by finding the first node
3170 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3171 * GFP_KERNEL will be required for allocating network buffers when
3172 * swapping over the network so ZONE_HIGHMEM is unusable.
3174 * Throttling is based on the first usable node and throttled processes
3175 * wait on a queue until kswapd makes progress and wakes them. There
3176 * is an affinity then between processes waking up and where reclaim
3177 * progress has been made assuming the process wakes on the same node.
3178 * More importantly, processes running on remote nodes will not compete
3179 * for remote pfmemalloc reserves and processes on different nodes
3180 * should make reasonable progress.
3182 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3183 gfp_zone(gfp_mask), nodemask) {
3184 if (zone_idx(zone) > ZONE_NORMAL)
3185 continue;
3187 /* Throttle based on the first usable node */
3188 pgdat = zone->zone_pgdat;
3189 if (allow_direct_reclaim(pgdat))
3190 goto out;
3191 break;
3194 /* If no zone was usable by the allocation flags then do not throttle */
3195 if (!pgdat)
3196 goto out;
3198 /* Account for the throttling */
3199 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3202 * If the caller cannot enter the filesystem, it's possible that it
3203 * is due to the caller holding an FS lock or performing a journal
3204 * transaction in the case of a filesystem like ext[3|4]. In this case,
3205 * it is not safe to block on pfmemalloc_wait as kswapd could be
3206 * blocked waiting on the same lock. Instead, throttle for up to a
3207 * second before continuing.
3209 if (!(gfp_mask & __GFP_FS)) {
3210 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3211 allow_direct_reclaim(pgdat), HZ);
3213 goto check_pending;
3216 /* Throttle until kswapd wakes the process */
3217 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3218 allow_direct_reclaim(pgdat));
3220 check_pending:
3221 if (fatal_signal_pending(current))
3222 return true;
3224 out:
3225 return false;
3228 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3229 gfp_t gfp_mask, nodemask_t *nodemask)
3231 unsigned long nr_reclaimed;
3232 struct scan_control sc = {
3233 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3234 .gfp_mask = current_gfp_context(gfp_mask),
3235 .reclaim_idx = gfp_zone(gfp_mask),
3236 .order = order,
3237 .nodemask = nodemask,
3238 .priority = DEF_PRIORITY,
3239 .may_writepage = !laptop_mode,
3240 .may_unmap = 1,
3241 .may_swap = 1,
3245 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3246 * Confirm they are large enough for max values.
3248 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3249 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3250 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3253 * Do not enter reclaim if fatal signal was delivered while throttled.
3254 * 1 is returned so that the page allocator does not OOM kill at this
3255 * point.
3257 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3258 return 1;
3260 trace_mm_vmscan_direct_reclaim_begin(order,
3261 sc.may_writepage,
3262 sc.gfp_mask,
3263 sc.reclaim_idx);
3265 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3267 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3269 return nr_reclaimed;
3272 #ifdef CONFIG_MEMCG
3274 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3275 gfp_t gfp_mask, bool noswap,
3276 pg_data_t *pgdat,
3277 unsigned long *nr_scanned)
3279 struct scan_control sc = {
3280 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3281 .target_mem_cgroup = memcg,
3282 .may_writepage = !laptop_mode,
3283 .may_unmap = 1,
3284 .reclaim_idx = MAX_NR_ZONES - 1,
3285 .may_swap = !noswap,
3287 unsigned long lru_pages;
3289 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3290 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3292 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3293 sc.may_writepage,
3294 sc.gfp_mask,
3295 sc.reclaim_idx);
3298 * NOTE: Although we can get the priority field, using it
3299 * here is not a good idea, since it limits the pages we can scan.
3300 * if we don't reclaim here, the shrink_node from balance_pgdat
3301 * will pick up pages from other mem cgroup's as well. We hack
3302 * the priority and make it zero.
3304 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3306 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3308 *nr_scanned = sc.nr_scanned;
3309 return sc.nr_reclaimed;
3312 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3313 unsigned long nr_pages,
3314 gfp_t gfp_mask,
3315 bool may_swap)
3317 struct zonelist *zonelist;
3318 unsigned long nr_reclaimed;
3319 unsigned long pflags;
3320 int nid;
3321 unsigned int noreclaim_flag;
3322 struct scan_control sc = {
3323 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3324 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3325 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3326 .reclaim_idx = MAX_NR_ZONES - 1,
3327 .target_mem_cgroup = memcg,
3328 .priority = DEF_PRIORITY,
3329 .may_writepage = !laptop_mode,
3330 .may_unmap = 1,
3331 .may_swap = may_swap,
3335 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3336 * take care of from where we get pages. So the node where we start the
3337 * scan does not need to be the current node.
3339 nid = mem_cgroup_select_victim_node(memcg);
3341 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3343 trace_mm_vmscan_memcg_reclaim_begin(0,
3344 sc.may_writepage,
3345 sc.gfp_mask,
3346 sc.reclaim_idx);
3348 psi_memstall_enter(&pflags);
3349 noreclaim_flag = memalloc_noreclaim_save();
3351 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3353 memalloc_noreclaim_restore(noreclaim_flag);
3354 psi_memstall_leave(&pflags);
3356 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3358 return nr_reclaimed;
3360 #endif
3362 static void age_active_anon(struct pglist_data *pgdat,
3363 struct scan_control *sc)
3365 struct mem_cgroup *memcg;
3367 if (!total_swap_pages)
3368 return;
3370 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3371 do {
3372 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3374 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3375 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3376 sc, LRU_ACTIVE_ANON);
3378 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3379 } while (memcg);
3383 * Returns true if there is an eligible zone balanced for the request order
3384 * and classzone_idx
3386 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3388 int i;
3389 unsigned long mark = -1;
3390 struct zone *zone;
3392 for (i = 0; i <= classzone_idx; i++) {
3393 zone = pgdat->node_zones + i;
3395 if (!managed_zone(zone))
3396 continue;
3398 mark = high_wmark_pages(zone);
3399 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3400 return true;
3404 * If a node has no populated zone within classzone_idx, it does not
3405 * need balancing by definition. This can happen if a zone-restricted
3406 * allocation tries to wake a remote kswapd.
3408 if (mark == -1)
3409 return true;
3411 return false;
3414 /* Clear pgdat state for congested, dirty or under writeback. */
3415 static void clear_pgdat_congested(pg_data_t *pgdat)
3417 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3418 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3419 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3423 * Prepare kswapd for sleeping. This verifies that there are no processes
3424 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3426 * Returns true if kswapd is ready to sleep
3428 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3431 * The throttled processes are normally woken up in balance_pgdat() as
3432 * soon as allow_direct_reclaim() is true. But there is a potential
3433 * race between when kswapd checks the watermarks and a process gets
3434 * throttled. There is also a potential race if processes get
3435 * throttled, kswapd wakes, a large process exits thereby balancing the
3436 * zones, which causes kswapd to exit balance_pgdat() before reaching
3437 * the wake up checks. If kswapd is going to sleep, no process should
3438 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3439 * the wake up is premature, processes will wake kswapd and get
3440 * throttled again. The difference from wake ups in balance_pgdat() is
3441 * that here we are under prepare_to_wait().
3443 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3444 wake_up_all(&pgdat->pfmemalloc_wait);
3446 /* Hopeless node, leave it to direct reclaim */
3447 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3448 return true;
3450 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3451 clear_pgdat_congested(pgdat);
3452 return true;
3455 return false;
3459 * kswapd shrinks a node of pages that are at or below the highest usable
3460 * zone that is currently unbalanced.
3462 * Returns true if kswapd scanned at least the requested number of pages to
3463 * reclaim or if the lack of progress was due to pages under writeback.
3464 * This is used to determine if the scanning priority needs to be raised.
3466 static bool kswapd_shrink_node(pg_data_t *pgdat,
3467 struct scan_control *sc)
3469 struct zone *zone;
3470 int z;
3472 /* Reclaim a number of pages proportional to the number of zones */
3473 sc->nr_to_reclaim = 0;
3474 for (z = 0; z <= sc->reclaim_idx; z++) {
3475 zone = pgdat->node_zones + z;
3476 if (!managed_zone(zone))
3477 continue;
3479 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3483 * Historically care was taken to put equal pressure on all zones but
3484 * now pressure is applied based on node LRU order.
3486 shrink_node(pgdat, sc);
3489 * Fragmentation may mean that the system cannot be rebalanced for
3490 * high-order allocations. If twice the allocation size has been
3491 * reclaimed then recheck watermarks only at order-0 to prevent
3492 * excessive reclaim. Assume that a process requested a high-order
3493 * can direct reclaim/compact.
3495 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3496 sc->order = 0;
3498 return sc->nr_scanned >= sc->nr_to_reclaim;
3502 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3503 * that are eligible for use by the caller until at least one zone is
3504 * balanced.
3506 * Returns the order kswapd finished reclaiming at.
3508 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3509 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3510 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3511 * or lower is eligible for reclaim until at least one usable zone is
3512 * balanced.
3514 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3516 int i;
3517 unsigned long nr_soft_reclaimed;
3518 unsigned long nr_soft_scanned;
3519 unsigned long pflags;
3520 struct zone *zone;
3521 struct scan_control sc = {
3522 .gfp_mask = GFP_KERNEL,
3523 .order = order,
3524 .priority = DEF_PRIORITY,
3525 .may_writepage = !laptop_mode,
3526 .may_unmap = 1,
3527 .may_swap = 1,
3530 psi_memstall_enter(&pflags);
3531 __fs_reclaim_acquire();
3533 count_vm_event(PAGEOUTRUN);
3535 do {
3536 unsigned long nr_reclaimed = sc.nr_reclaimed;
3537 bool raise_priority = true;
3538 bool ret;
3540 sc.reclaim_idx = classzone_idx;
3543 * If the number of buffer_heads exceeds the maximum allowed
3544 * then consider reclaiming from all zones. This has a dual
3545 * purpose -- on 64-bit systems it is expected that
3546 * buffer_heads are stripped during active rotation. On 32-bit
3547 * systems, highmem pages can pin lowmem memory and shrinking
3548 * buffers can relieve lowmem pressure. Reclaim may still not
3549 * go ahead if all eligible zones for the original allocation
3550 * request are balanced to avoid excessive reclaim from kswapd.
3552 if (buffer_heads_over_limit) {
3553 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3554 zone = pgdat->node_zones + i;
3555 if (!managed_zone(zone))
3556 continue;
3558 sc.reclaim_idx = i;
3559 break;
3564 * Only reclaim if there are no eligible zones. Note that
3565 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3566 * have adjusted it.
3568 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3569 goto out;
3572 * Do some background aging of the anon list, to give
3573 * pages a chance to be referenced before reclaiming. All
3574 * pages are rotated regardless of classzone as this is
3575 * about consistent aging.
3577 age_active_anon(pgdat, &sc);
3580 * If we're getting trouble reclaiming, start doing writepage
3581 * even in laptop mode.
3583 if (sc.priority < DEF_PRIORITY - 2)
3584 sc.may_writepage = 1;
3586 /* Call soft limit reclaim before calling shrink_node. */
3587 sc.nr_scanned = 0;
3588 nr_soft_scanned = 0;
3589 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3590 sc.gfp_mask, &nr_soft_scanned);
3591 sc.nr_reclaimed += nr_soft_reclaimed;
3594 * There should be no need to raise the scanning priority if
3595 * enough pages are already being scanned that that high
3596 * watermark would be met at 100% efficiency.
3598 if (kswapd_shrink_node(pgdat, &sc))
3599 raise_priority = false;
3602 * If the low watermark is met there is no need for processes
3603 * to be throttled on pfmemalloc_wait as they should not be
3604 * able to safely make forward progress. Wake them
3606 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3607 allow_direct_reclaim(pgdat))
3608 wake_up_all(&pgdat->pfmemalloc_wait);
3610 /* Check if kswapd should be suspending */
3611 __fs_reclaim_release();
3612 ret = try_to_freeze();
3613 __fs_reclaim_acquire();
3614 if (ret || kthread_should_stop())
3615 break;
3618 * Raise priority if scanning rate is too low or there was no
3619 * progress in reclaiming pages
3621 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3622 if (raise_priority || !nr_reclaimed)
3623 sc.priority--;
3624 } while (sc.priority >= 1);
3626 if (!sc.nr_reclaimed)
3627 pgdat->kswapd_failures++;
3629 out:
3630 snapshot_refaults(NULL, pgdat);
3631 __fs_reclaim_release();
3632 psi_memstall_leave(&pflags);
3634 * Return the order kswapd stopped reclaiming at as
3635 * prepare_kswapd_sleep() takes it into account. If another caller
3636 * entered the allocator slow path while kswapd was awake, order will
3637 * remain at the higher level.
3639 return sc.order;
3643 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3644 * allocation request woke kswapd for. When kswapd has not woken recently,
3645 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3646 * given classzone and returns it or the highest classzone index kswapd
3647 * was recently woke for.
3649 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3650 enum zone_type classzone_idx)
3652 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3653 return classzone_idx;
3655 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3658 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3659 unsigned int classzone_idx)
3661 long remaining = 0;
3662 DEFINE_WAIT(wait);
3664 if (freezing(current) || kthread_should_stop())
3665 return;
3667 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3670 * Try to sleep for a short interval. Note that kcompactd will only be
3671 * woken if it is possible to sleep for a short interval. This is
3672 * deliberate on the assumption that if reclaim cannot keep an
3673 * eligible zone balanced that it's also unlikely that compaction will
3674 * succeed.
3676 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3678 * Compaction records what page blocks it recently failed to
3679 * isolate pages from and skips them in the future scanning.
3680 * When kswapd is going to sleep, it is reasonable to assume
3681 * that pages and compaction may succeed so reset the cache.
3683 reset_isolation_suitable(pgdat);
3686 * We have freed the memory, now we should compact it to make
3687 * allocation of the requested order possible.
3689 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3691 remaining = schedule_timeout(HZ/10);
3694 * If woken prematurely then reset kswapd_classzone_idx and
3695 * order. The values will either be from a wakeup request or
3696 * the previous request that slept prematurely.
3698 if (remaining) {
3699 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3700 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3703 finish_wait(&pgdat->kswapd_wait, &wait);
3704 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3708 * After a short sleep, check if it was a premature sleep. If not, then
3709 * go fully to sleep until explicitly woken up.
3711 if (!remaining &&
3712 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3713 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3716 * vmstat counters are not perfectly accurate and the estimated
3717 * value for counters such as NR_FREE_PAGES can deviate from the
3718 * true value by nr_online_cpus * threshold. To avoid the zone
3719 * watermarks being breached while under pressure, we reduce the
3720 * per-cpu vmstat threshold while kswapd is awake and restore
3721 * them before going back to sleep.
3723 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3725 if (!kthread_should_stop())
3726 schedule();
3728 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3729 } else {
3730 if (remaining)
3731 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3732 else
3733 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3735 finish_wait(&pgdat->kswapd_wait, &wait);
3739 * The background pageout daemon, started as a kernel thread
3740 * from the init process.
3742 * This basically trickles out pages so that we have _some_
3743 * free memory available even if there is no other activity
3744 * that frees anything up. This is needed for things like routing
3745 * etc, where we otherwise might have all activity going on in
3746 * asynchronous contexts that cannot page things out.
3748 * If there are applications that are active memory-allocators
3749 * (most normal use), this basically shouldn't matter.
3751 static int kswapd(void *p)
3753 unsigned int alloc_order, reclaim_order;
3754 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3755 pg_data_t *pgdat = (pg_data_t*)p;
3756 struct task_struct *tsk = current;
3758 struct reclaim_state reclaim_state = {
3759 .reclaimed_slab = 0,
3761 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3763 if (!cpumask_empty(cpumask))
3764 set_cpus_allowed_ptr(tsk, cpumask);
3765 current->reclaim_state = &reclaim_state;
3768 * Tell the memory management that we're a "memory allocator",
3769 * and that if we need more memory we should get access to it
3770 * regardless (see "__alloc_pages()"). "kswapd" should
3771 * never get caught in the normal page freeing logic.
3773 * (Kswapd normally doesn't need memory anyway, but sometimes
3774 * you need a small amount of memory in order to be able to
3775 * page out something else, and this flag essentially protects
3776 * us from recursively trying to free more memory as we're
3777 * trying to free the first piece of memory in the first place).
3779 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3780 set_freezable();
3782 pgdat->kswapd_order = 0;
3783 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3784 for ( ; ; ) {
3785 bool ret;
3787 alloc_order = reclaim_order = pgdat->kswapd_order;
3788 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3790 kswapd_try_sleep:
3791 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3792 classzone_idx);
3794 /* Read the new order and classzone_idx */
3795 alloc_order = reclaim_order = pgdat->kswapd_order;
3796 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3797 pgdat->kswapd_order = 0;
3798 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3800 ret = try_to_freeze();
3801 if (kthread_should_stop())
3802 break;
3805 * We can speed up thawing tasks if we don't call balance_pgdat
3806 * after returning from the refrigerator
3808 if (ret)
3809 continue;
3812 * Reclaim begins at the requested order but if a high-order
3813 * reclaim fails then kswapd falls back to reclaiming for
3814 * order-0. If that happens, kswapd will consider sleeping
3815 * for the order it finished reclaiming at (reclaim_order)
3816 * but kcompactd is woken to compact for the original
3817 * request (alloc_order).
3819 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3820 alloc_order);
3821 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3822 if (reclaim_order < alloc_order)
3823 goto kswapd_try_sleep;
3826 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3827 current->reclaim_state = NULL;
3829 return 0;
3833 * A zone is low on free memory or too fragmented for high-order memory. If
3834 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3835 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
3836 * has failed or is not needed, still wake up kcompactd if only compaction is
3837 * needed.
3839 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3840 enum zone_type classzone_idx)
3842 pg_data_t *pgdat;
3844 if (!managed_zone(zone))
3845 return;
3847 if (!cpuset_zone_allowed(zone, gfp_flags))
3848 return;
3849 pgdat = zone->zone_pgdat;
3850 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3851 classzone_idx);
3852 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3853 if (!waitqueue_active(&pgdat->kswapd_wait))
3854 return;
3856 /* Hopeless node, leave it to direct reclaim if possible */
3857 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3858 pgdat_balanced(pgdat, order, classzone_idx)) {
3860 * There may be plenty of free memory available, but it's too
3861 * fragmented for high-order allocations. Wake up kcompactd
3862 * and rely on compaction_suitable() to determine if it's
3863 * needed. If it fails, it will defer subsequent attempts to
3864 * ratelimit its work.
3866 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3867 wakeup_kcompactd(pgdat, order, classzone_idx);
3868 return;
3871 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3872 gfp_flags);
3873 wake_up_interruptible(&pgdat->kswapd_wait);
3876 #ifdef CONFIG_HIBERNATION
3878 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3879 * freed pages.
3881 * Rather than trying to age LRUs the aim is to preserve the overall
3882 * LRU order by reclaiming preferentially
3883 * inactive > active > active referenced > active mapped
3885 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3887 struct reclaim_state reclaim_state;
3888 struct scan_control sc = {
3889 .nr_to_reclaim = nr_to_reclaim,
3890 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3891 .reclaim_idx = MAX_NR_ZONES - 1,
3892 .priority = DEF_PRIORITY,
3893 .may_writepage = 1,
3894 .may_unmap = 1,
3895 .may_swap = 1,
3896 .hibernation_mode = 1,
3898 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3899 struct task_struct *p = current;
3900 unsigned long nr_reclaimed;
3901 unsigned int noreclaim_flag;
3903 fs_reclaim_acquire(sc.gfp_mask);
3904 noreclaim_flag = memalloc_noreclaim_save();
3905 reclaim_state.reclaimed_slab = 0;
3906 p->reclaim_state = &reclaim_state;
3908 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3910 p->reclaim_state = NULL;
3911 memalloc_noreclaim_restore(noreclaim_flag);
3912 fs_reclaim_release(sc.gfp_mask);
3914 return nr_reclaimed;
3916 #endif /* CONFIG_HIBERNATION */
3918 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3919 not required for correctness. So if the last cpu in a node goes
3920 away, we get changed to run anywhere: as the first one comes back,
3921 restore their cpu bindings. */
3922 static int kswapd_cpu_online(unsigned int cpu)
3924 int nid;
3926 for_each_node_state(nid, N_MEMORY) {
3927 pg_data_t *pgdat = NODE_DATA(nid);
3928 const struct cpumask *mask;
3930 mask = cpumask_of_node(pgdat->node_id);
3932 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3933 /* One of our CPUs online: restore mask */
3934 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3936 return 0;
3940 * This kswapd start function will be called by init and node-hot-add.
3941 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3943 int kswapd_run(int nid)
3945 pg_data_t *pgdat = NODE_DATA(nid);
3946 int ret = 0;
3948 if (pgdat->kswapd)
3949 return 0;
3951 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3952 if (IS_ERR(pgdat->kswapd)) {
3953 /* failure at boot is fatal */
3954 BUG_ON(system_state < SYSTEM_RUNNING);
3955 pr_err("Failed to start kswapd on node %d\n", nid);
3956 ret = PTR_ERR(pgdat->kswapd);
3957 pgdat->kswapd = NULL;
3959 return ret;
3963 * Called by memory hotplug when all memory in a node is offlined. Caller must
3964 * hold mem_hotplug_begin/end().
3966 void kswapd_stop(int nid)
3968 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3970 if (kswapd) {
3971 kthread_stop(kswapd);
3972 NODE_DATA(nid)->kswapd = NULL;
3976 static int __init kswapd_init(void)
3978 int nid, ret;
3980 swap_setup();
3981 for_each_node_state(nid, N_MEMORY)
3982 kswapd_run(nid);
3983 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3984 "mm/vmscan:online", kswapd_cpu_online,
3985 NULL);
3986 WARN_ON(ret < 0);
3987 return 0;
3990 module_init(kswapd_init)
3992 #ifdef CONFIG_NUMA
3994 * Node reclaim mode
3996 * If non-zero call node_reclaim when the number of free pages falls below
3997 * the watermarks.
3999 int node_reclaim_mode __read_mostly;
4001 #define RECLAIM_OFF 0
4002 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
4003 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
4004 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
4007 * Priority for NODE_RECLAIM. This determines the fraction of pages
4008 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4009 * a zone.
4011 #define NODE_RECLAIM_PRIORITY 4
4014 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4015 * occur.
4017 int sysctl_min_unmapped_ratio = 1;
4020 * If the number of slab pages in a zone grows beyond this percentage then
4021 * slab reclaim needs to occur.
4023 int sysctl_min_slab_ratio = 5;
4025 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4027 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4028 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4029 node_page_state(pgdat, NR_ACTIVE_FILE);
4032 * It's possible for there to be more file mapped pages than
4033 * accounted for by the pages on the file LRU lists because
4034 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4036 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4039 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4040 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4042 unsigned long nr_pagecache_reclaimable;
4043 unsigned long delta = 0;
4046 * If RECLAIM_UNMAP is set, then all file pages are considered
4047 * potentially reclaimable. Otherwise, we have to worry about
4048 * pages like swapcache and node_unmapped_file_pages() provides
4049 * a better estimate
4051 if (node_reclaim_mode & RECLAIM_UNMAP)
4052 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4053 else
4054 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4056 /* If we can't clean pages, remove dirty pages from consideration */
4057 if (!(node_reclaim_mode & RECLAIM_WRITE))
4058 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4060 /* Watch for any possible underflows due to delta */
4061 if (unlikely(delta > nr_pagecache_reclaimable))
4062 delta = nr_pagecache_reclaimable;
4064 return nr_pagecache_reclaimable - delta;
4068 * Try to free up some pages from this node through reclaim.
4070 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4072 /* Minimum pages needed in order to stay on node */
4073 const unsigned long nr_pages = 1 << order;
4074 struct task_struct *p = current;
4075 struct reclaim_state reclaim_state;
4076 unsigned int noreclaim_flag;
4077 struct scan_control sc = {
4078 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4079 .gfp_mask = current_gfp_context(gfp_mask),
4080 .order = order,
4081 .priority = NODE_RECLAIM_PRIORITY,
4082 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4083 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4084 .may_swap = 1,
4085 .reclaim_idx = gfp_zone(gfp_mask),
4088 cond_resched();
4089 fs_reclaim_acquire(sc.gfp_mask);
4091 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4092 * and we also need to be able to write out pages for RECLAIM_WRITE
4093 * and RECLAIM_UNMAP.
4095 noreclaim_flag = memalloc_noreclaim_save();
4096 p->flags |= PF_SWAPWRITE;
4097 reclaim_state.reclaimed_slab = 0;
4098 p->reclaim_state = &reclaim_state;
4100 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4102 * Free memory by calling shrink node with increasing
4103 * priorities until we have enough memory freed.
4105 do {
4106 shrink_node(pgdat, &sc);
4107 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4110 p->reclaim_state = NULL;
4111 current->flags &= ~PF_SWAPWRITE;
4112 memalloc_noreclaim_restore(noreclaim_flag);
4113 fs_reclaim_release(sc.gfp_mask);
4114 return sc.nr_reclaimed >= nr_pages;
4117 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4119 int ret;
4122 * Node reclaim reclaims unmapped file backed pages and
4123 * slab pages if we are over the defined limits.
4125 * A small portion of unmapped file backed pages is needed for
4126 * file I/O otherwise pages read by file I/O will be immediately
4127 * thrown out if the node is overallocated. So we do not reclaim
4128 * if less than a specified percentage of the node is used by
4129 * unmapped file backed pages.
4131 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4132 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4133 return NODE_RECLAIM_FULL;
4136 * Do not scan if the allocation should not be delayed.
4138 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4139 return NODE_RECLAIM_NOSCAN;
4142 * Only run node reclaim on the local node or on nodes that do not
4143 * have associated processors. This will favor the local processor
4144 * over remote processors and spread off node memory allocations
4145 * as wide as possible.
4147 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4148 return NODE_RECLAIM_NOSCAN;
4150 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4151 return NODE_RECLAIM_NOSCAN;
4153 ret = __node_reclaim(pgdat, gfp_mask, order);
4154 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4156 if (!ret)
4157 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4159 return ret;
4161 #endif
4164 * page_evictable - test whether a page is evictable
4165 * @page: the page to test
4167 * Test whether page is evictable--i.e., should be placed on active/inactive
4168 * lists vs unevictable list.
4170 * Reasons page might not be evictable:
4171 * (1) page's mapping marked unevictable
4172 * (2) page is part of an mlocked VMA
4175 int page_evictable(struct page *page)
4177 int ret;
4179 /* Prevent address_space of inode and swap cache from being freed */
4180 rcu_read_lock();
4181 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4182 rcu_read_unlock();
4183 return ret;
4187 * check_move_unevictable_pages - check pages for evictability and move to
4188 * appropriate zone lru list
4189 * @pvec: pagevec with lru pages to check
4191 * Checks pages for evictability, if an evictable page is in the unevictable
4192 * lru list, moves it to the appropriate evictable lru list. This function
4193 * should be only used for lru pages.
4195 void check_move_unevictable_pages(struct pagevec *pvec)
4197 struct lruvec *lruvec;
4198 struct pglist_data *pgdat = NULL;
4199 int pgscanned = 0;
4200 int pgrescued = 0;
4201 int i;
4203 for (i = 0; i < pvec->nr; i++) {
4204 struct page *page = pvec->pages[i];
4205 struct pglist_data *pagepgdat = page_pgdat(page);
4207 pgscanned++;
4208 if (pagepgdat != pgdat) {
4209 if (pgdat)
4210 spin_unlock_irq(&pgdat->lru_lock);
4211 pgdat = pagepgdat;
4212 spin_lock_irq(&pgdat->lru_lock);
4214 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4216 if (!PageLRU(page) || !PageUnevictable(page))
4217 continue;
4219 if (page_evictable(page)) {
4220 enum lru_list lru = page_lru_base_type(page);
4222 VM_BUG_ON_PAGE(PageActive(page), page);
4223 ClearPageUnevictable(page);
4224 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4225 add_page_to_lru_list(page, lruvec, lru);
4226 pgrescued++;
4230 if (pgdat) {
4231 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4232 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4233 spin_unlock_irq(&pgdat->lru_lock);
4236 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);