4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
86 #include <trace/events/sched.h>
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
92 * Minimum number of threads to boot the kernel
94 #define MIN_THREADS 20
97 * Maximum number of threads
99 #define MAX_THREADS FUTEX_TID_MASK
102 * Protected counters by write_lock_irq(&tasklist_lock)
104 unsigned long total_forks
; /* Handle normal Linux uptimes. */
105 int nr_threads
; /* The idle threads do not count.. */
107 int max_threads
; /* tunable limit on nr_threads */
109 DEFINE_PER_CPU(unsigned long, process_counts
) = 0;
111 __cacheline_aligned
DEFINE_RWLOCK(tasklist_lock
); /* outer */
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
116 return lockdep_is_held(&tasklist_lock
);
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held
);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
121 int nr_processes(void)
126 for_each_possible_cpu(cpu
)
127 total
+= per_cpu(process_counts
, cpu
);
132 void __weak
arch_release_task_struct(struct task_struct
*tsk
)
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache
*task_struct_cachep
;
139 static inline struct task_struct
*alloc_task_struct_node(int node
)
141 return kmem_cache_alloc_node(task_struct_cachep
, GFP_KERNEL
, node
);
144 static inline void free_task_struct(struct task_struct
*tsk
)
146 kmem_cache_free(task_struct_cachep
, tsk
);
150 void __weak
arch_release_thread_info(struct thread_info
*ti
)
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
164 struct page
*page
= alloc_kmem_pages_node(node
, THREADINFO_GFP
,
167 return page
? page_address(page
) : NULL
;
170 static inline void free_thread_info(struct thread_info
*ti
)
172 free_kmem_pages((unsigned long)ti
, THREAD_SIZE_ORDER
);
175 static struct kmem_cache
*thread_info_cache
;
177 static struct thread_info
*alloc_thread_info_node(struct task_struct
*tsk
,
180 return kmem_cache_alloc_node(thread_info_cache
, THREADINFO_GFP
, node
);
183 static void free_thread_info(struct thread_info
*ti
)
185 kmem_cache_free(thread_info_cache
, ti
);
188 void thread_info_cache_init(void)
190 thread_info_cache
= kmem_cache_create("thread_info", THREAD_SIZE
,
191 THREAD_SIZE
, 0, NULL
);
192 BUG_ON(thread_info_cache
== NULL
);
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache
*signal_cachep
;
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache
*sighand_cachep
;
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache
*files_cachep
;
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache
*fs_cachep
;
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache
*vm_area_cachep
;
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache
*mm_cachep
;
215 static void account_kernel_stack(struct thread_info
*ti
, int account
)
217 struct zone
*zone
= page_zone(virt_to_page(ti
));
219 mod_zone_page_state(zone
, NR_KERNEL_STACK
, account
);
222 void free_task(struct task_struct
*tsk
)
224 account_kernel_stack(tsk
->stack
, -1);
225 arch_release_thread_info(tsk
->stack
);
226 free_thread_info(tsk
->stack
);
227 rt_mutex_debug_task_free(tsk
);
228 ftrace_graph_exit_task(tsk
);
229 put_seccomp_filter(tsk
);
230 arch_release_task_struct(tsk
);
231 free_task_struct(tsk
);
233 EXPORT_SYMBOL(free_task
);
235 static inline void free_signal_struct(struct signal_struct
*sig
)
237 taskstats_tgid_free(sig
);
238 sched_autogroup_exit(sig
);
239 kmem_cache_free(signal_cachep
, sig
);
242 static inline void put_signal_struct(struct signal_struct
*sig
)
244 if (atomic_dec_and_test(&sig
->sigcnt
))
245 free_signal_struct(sig
);
248 void __put_task_struct(struct task_struct
*tsk
)
250 WARN_ON(!tsk
->exit_state
);
251 WARN_ON(atomic_read(&tsk
->usage
));
252 WARN_ON(tsk
== current
);
256 security_task_free(tsk
);
258 delayacct_tsk_free(tsk
);
259 put_signal_struct(tsk
->signal
);
261 if (!profile_handoff_task(tsk
))
264 EXPORT_SYMBOL_GPL(__put_task_struct
);
266 void __init __weak
arch_task_cache_init(void) { }
271 static void set_max_threads(unsigned int max_threads_suggested
)
276 * The number of threads shall be limited such that the thread
277 * structures may only consume a small part of the available memory.
279 if (fls64(totalram_pages
) + fls64(PAGE_SIZE
) > 64)
280 threads
= MAX_THREADS
;
282 threads
= div64_u64((u64
) totalram_pages
* (u64
) PAGE_SIZE
,
283 (u64
) THREAD_SIZE
* 8UL);
285 if (threads
> max_threads_suggested
)
286 threads
= max_threads_suggested
;
288 max_threads
= clamp_t(u64
, threads
, MIN_THREADS
, MAX_THREADS
);
291 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
292 /* Initialized by the architecture: */
293 int arch_task_struct_size __read_mostly
;
296 void __init
fork_init(void)
298 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
299 #ifndef ARCH_MIN_TASKALIGN
300 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
302 /* create a slab on which task_structs can be allocated */
304 kmem_cache_create("task_struct", arch_task_struct_size
,
305 ARCH_MIN_TASKALIGN
, SLAB_PANIC
| SLAB_NOTRACK
, NULL
);
308 /* do the arch specific task caches init */
309 arch_task_cache_init();
311 set_max_threads(MAX_THREADS
);
313 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_cur
= max_threads
/2;
314 init_task
.signal
->rlim
[RLIMIT_NPROC
].rlim_max
= max_threads
/2;
315 init_task
.signal
->rlim
[RLIMIT_SIGPENDING
] =
316 init_task
.signal
->rlim
[RLIMIT_NPROC
];
319 int __weak
arch_dup_task_struct(struct task_struct
*dst
,
320 struct task_struct
*src
)
326 void set_task_stack_end_magic(struct task_struct
*tsk
)
328 unsigned long *stackend
;
330 stackend
= end_of_stack(tsk
);
331 *stackend
= STACK_END_MAGIC
; /* for overflow detection */
334 static struct task_struct
*dup_task_struct(struct task_struct
*orig
, int node
)
336 struct task_struct
*tsk
;
337 struct thread_info
*ti
;
340 if (node
== NUMA_NO_NODE
)
341 node
= tsk_fork_get_node(orig
);
342 tsk
= alloc_task_struct_node(node
);
346 ti
= alloc_thread_info_node(tsk
, node
);
350 err
= arch_dup_task_struct(tsk
, orig
);
355 #ifdef CONFIG_SECCOMP
357 * We must handle setting up seccomp filters once we're under
358 * the sighand lock in case orig has changed between now and
359 * then. Until then, filter must be NULL to avoid messing up
360 * the usage counts on the error path calling free_task.
362 tsk
->seccomp
.filter
= NULL
;
365 setup_thread_stack(tsk
, orig
);
366 clear_user_return_notifier(tsk
);
367 clear_tsk_need_resched(tsk
);
368 set_task_stack_end_magic(tsk
);
370 #ifdef CONFIG_CC_STACKPROTECTOR
371 tsk
->stack_canary
= get_random_long();
375 * One for us, one for whoever does the "release_task()" (usually
378 atomic_set(&tsk
->usage
, 2);
379 #ifdef CONFIG_BLK_DEV_IO_TRACE
382 tsk
->splice_pipe
= NULL
;
383 tsk
->task_frag
.page
= NULL
;
384 tsk
->wake_q
.next
= NULL
;
386 account_kernel_stack(ti
, 1);
391 free_thread_info(ti
);
393 free_task_struct(tsk
);
398 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
400 struct vm_area_struct
*mpnt
, *tmp
, *prev
, **pprev
;
401 struct rb_node
**rb_link
, *rb_parent
;
403 unsigned long charge
;
405 uprobe_start_dup_mmap();
406 down_write(&oldmm
->mmap_sem
);
407 flush_cache_dup_mm(oldmm
);
408 uprobe_dup_mmap(oldmm
, mm
);
410 * Not linked in yet - no deadlock potential:
412 down_write_nested(&mm
->mmap_sem
, SINGLE_DEPTH_NESTING
);
414 /* No ordering required: file already has been exposed. */
415 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
417 mm
->total_vm
= oldmm
->total_vm
;
418 mm
->shared_vm
= oldmm
->shared_vm
;
419 mm
->exec_vm
= oldmm
->exec_vm
;
420 mm
->stack_vm
= oldmm
->stack_vm
;
422 rb_link
= &mm
->mm_rb
.rb_node
;
425 retval
= ksm_fork(mm
, oldmm
);
428 retval
= khugepaged_fork(mm
, oldmm
);
433 for (mpnt
= oldmm
->mmap
; mpnt
; mpnt
= mpnt
->vm_next
) {
436 if (mpnt
->vm_flags
& VM_DONTCOPY
) {
437 vm_stat_account(mm
, mpnt
->vm_flags
, mpnt
->vm_file
,
442 if (mpnt
->vm_flags
& VM_ACCOUNT
) {
443 unsigned long len
= vma_pages(mpnt
);
445 if (security_vm_enough_memory_mm(oldmm
, len
)) /* sic */
449 tmp
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
453 INIT_LIST_HEAD(&tmp
->anon_vma_chain
);
454 retval
= vma_dup_policy(mpnt
, tmp
);
456 goto fail_nomem_policy
;
458 if (anon_vma_fork(tmp
, mpnt
))
459 goto fail_nomem_anon_vma_fork
;
461 ~(VM_LOCKED
|VM_LOCKONFAULT
|VM_UFFD_MISSING
|VM_UFFD_WP
);
462 tmp
->vm_next
= tmp
->vm_prev
= NULL
;
463 tmp
->vm_userfaultfd_ctx
= NULL_VM_UFFD_CTX
;
466 struct inode
*inode
= file_inode(file
);
467 struct address_space
*mapping
= file
->f_mapping
;
470 if (tmp
->vm_flags
& VM_DENYWRITE
)
471 atomic_dec(&inode
->i_writecount
);
472 i_mmap_lock_write(mapping
);
473 if (tmp
->vm_flags
& VM_SHARED
)
474 atomic_inc(&mapping
->i_mmap_writable
);
475 flush_dcache_mmap_lock(mapping
);
476 /* insert tmp into the share list, just after mpnt */
477 vma_interval_tree_insert_after(tmp
, mpnt
,
479 flush_dcache_mmap_unlock(mapping
);
480 i_mmap_unlock_write(mapping
);
484 * Clear hugetlb-related page reserves for children. This only
485 * affects MAP_PRIVATE mappings. Faults generated by the child
486 * are not guaranteed to succeed, even if read-only
488 if (is_vm_hugetlb_page(tmp
))
489 reset_vma_resv_huge_pages(tmp
);
492 * Link in the new vma and copy the page table entries.
495 pprev
= &tmp
->vm_next
;
499 __vma_link_rb(mm
, tmp
, rb_link
, rb_parent
);
500 rb_link
= &tmp
->vm_rb
.rb_right
;
501 rb_parent
= &tmp
->vm_rb
;
504 retval
= copy_page_range(mm
, oldmm
, mpnt
);
506 if (tmp
->vm_ops
&& tmp
->vm_ops
->open
)
507 tmp
->vm_ops
->open(tmp
);
512 /* a new mm has just been created */
513 arch_dup_mmap(oldmm
, mm
);
516 up_write(&mm
->mmap_sem
);
518 up_write(&oldmm
->mmap_sem
);
519 uprobe_end_dup_mmap();
521 fail_nomem_anon_vma_fork
:
522 mpol_put(vma_policy(tmp
));
524 kmem_cache_free(vm_area_cachep
, tmp
);
527 vm_unacct_memory(charge
);
531 static inline int mm_alloc_pgd(struct mm_struct
*mm
)
533 mm
->pgd
= pgd_alloc(mm
);
534 if (unlikely(!mm
->pgd
))
539 static inline void mm_free_pgd(struct mm_struct
*mm
)
541 pgd_free(mm
, mm
->pgd
);
544 static int dup_mmap(struct mm_struct
*mm
, struct mm_struct
*oldmm
)
546 down_write(&oldmm
->mmap_sem
);
547 RCU_INIT_POINTER(mm
->exe_file
, get_mm_exe_file(oldmm
));
548 up_write(&oldmm
->mmap_sem
);
551 #define mm_alloc_pgd(mm) (0)
552 #define mm_free_pgd(mm)
553 #endif /* CONFIG_MMU */
555 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(mmlist_lock
);
557 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
558 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
560 static unsigned long default_dump_filter
= MMF_DUMP_FILTER_DEFAULT
;
562 static int __init
coredump_filter_setup(char *s
)
564 default_dump_filter
=
565 (simple_strtoul(s
, NULL
, 0) << MMF_DUMP_FILTER_SHIFT
) &
566 MMF_DUMP_FILTER_MASK
;
570 __setup("coredump_filter=", coredump_filter_setup
);
572 #include <linux/init_task.h>
574 static void mm_init_aio(struct mm_struct
*mm
)
577 spin_lock_init(&mm
->ioctx_lock
);
578 mm
->ioctx_table
= NULL
;
582 static void mm_init_owner(struct mm_struct
*mm
, struct task_struct
*p
)
589 static struct mm_struct
*mm_init(struct mm_struct
*mm
, struct task_struct
*p
,
590 struct user_namespace
*user_ns
)
594 mm
->vmacache_seqnum
= 0;
595 atomic_set(&mm
->mm_users
, 1);
596 atomic_set(&mm
->mm_count
, 1);
597 init_rwsem(&mm
->mmap_sem
);
598 INIT_LIST_HEAD(&mm
->mmlist
);
599 mm
->core_state
= NULL
;
600 atomic_long_set(&mm
->nr_ptes
, 0);
605 memset(&mm
->rss_stat
, 0, sizeof(mm
->rss_stat
));
606 spin_lock_init(&mm
->page_table_lock
);
609 mm_init_owner(mm
, p
);
610 mmu_notifier_mm_init(mm
);
611 clear_tlb_flush_pending(mm
);
612 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
613 mm
->pmd_huge_pte
= NULL
;
617 mm
->flags
= current
->mm
->flags
& MMF_INIT_MASK
;
618 mm
->def_flags
= current
->mm
->def_flags
& VM_INIT_DEF_MASK
;
620 mm
->flags
= default_dump_filter
;
624 if (mm_alloc_pgd(mm
))
627 if (init_new_context(p
, mm
))
630 mm
->user_ns
= get_user_ns(user_ns
);
640 static void check_mm(struct mm_struct
*mm
)
644 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
645 long x
= atomic_long_read(&mm
->rss_stat
.count
[i
]);
648 printk(KERN_ALERT
"BUG: Bad rss-counter state "
649 "mm:%p idx:%d val:%ld\n", mm
, i
, x
);
652 if (atomic_long_read(&mm
->nr_ptes
))
653 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
654 atomic_long_read(&mm
->nr_ptes
));
656 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
659 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
660 VM_BUG_ON_MM(mm
->pmd_huge_pte
, mm
);
665 * Allocate and initialize an mm_struct.
667 struct mm_struct
*mm_alloc(void)
669 struct mm_struct
*mm
;
675 memset(mm
, 0, sizeof(*mm
));
676 return mm_init(mm
, current
, current_user_ns());
680 * Called when the last reference to the mm
681 * is dropped: either by a lazy thread or by
682 * mmput. Free the page directory and the mm.
684 void __mmdrop(struct mm_struct
*mm
)
686 BUG_ON(mm
== &init_mm
);
689 mmu_notifier_mm_destroy(mm
);
691 put_user_ns(mm
->user_ns
);
694 EXPORT_SYMBOL_GPL(__mmdrop
);
697 * Decrement the use count and release all resources for an mm.
699 void mmput(struct mm_struct
*mm
)
703 if (atomic_dec_and_test(&mm
->mm_users
)) {
704 uprobe_clear_state(mm
);
707 khugepaged_exit(mm
); /* must run before exit_mmap */
709 set_mm_exe_file(mm
, NULL
);
710 if (!list_empty(&mm
->mmlist
)) {
711 spin_lock(&mmlist_lock
);
712 list_del(&mm
->mmlist
);
713 spin_unlock(&mmlist_lock
);
716 module_put(mm
->binfmt
->module
);
720 EXPORT_SYMBOL_GPL(mmput
);
723 * set_mm_exe_file - change a reference to the mm's executable file
725 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
727 * Main users are mmput() and sys_execve(). Callers prevent concurrent
728 * invocations: in mmput() nobody alive left, in execve task is single
729 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
730 * mm->exe_file, but does so without using set_mm_exe_file() in order
731 * to do avoid the need for any locks.
733 void set_mm_exe_file(struct mm_struct
*mm
, struct file
*new_exe_file
)
735 struct file
*old_exe_file
;
738 * It is safe to dereference the exe_file without RCU as
739 * this function is only called if nobody else can access
740 * this mm -- see comment above for justification.
742 old_exe_file
= rcu_dereference_raw(mm
->exe_file
);
745 get_file(new_exe_file
);
746 rcu_assign_pointer(mm
->exe_file
, new_exe_file
);
752 * get_mm_exe_file - acquire a reference to the mm's executable file
754 * Returns %NULL if mm has no associated executable file.
755 * User must release file via fput().
757 struct file
*get_mm_exe_file(struct mm_struct
*mm
)
759 struct file
*exe_file
;
762 exe_file
= rcu_dereference(mm
->exe_file
);
763 if (exe_file
&& !get_file_rcu(exe_file
))
768 EXPORT_SYMBOL(get_mm_exe_file
);
771 * get_task_exe_file - acquire a reference to the task's executable file
773 * Returns %NULL if task's mm (if any) has no associated executable file or
774 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
775 * User must release file via fput().
777 struct file
*get_task_exe_file(struct task_struct
*task
)
779 struct file
*exe_file
= NULL
;
780 struct mm_struct
*mm
;
785 if (!(task
->flags
& PF_KTHREAD
))
786 exe_file
= get_mm_exe_file(mm
);
791 EXPORT_SYMBOL(get_task_exe_file
);
794 * get_task_mm - acquire a reference to the task's mm
796 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
797 * this kernel workthread has transiently adopted a user mm with use_mm,
798 * to do its AIO) is not set and if so returns a reference to it, after
799 * bumping up the use count. User must release the mm via mmput()
800 * after use. Typically used by /proc and ptrace.
802 struct mm_struct
*get_task_mm(struct task_struct
*task
)
804 struct mm_struct
*mm
;
809 if (task
->flags
& PF_KTHREAD
)
812 atomic_inc(&mm
->mm_users
);
817 EXPORT_SYMBOL_GPL(get_task_mm
);
819 struct mm_struct
*mm_access(struct task_struct
*task
, unsigned int mode
)
821 struct mm_struct
*mm
;
824 err
= mutex_lock_killable(&task
->signal
->cred_guard_mutex
);
828 mm
= get_task_mm(task
);
829 if (mm
&& mm
!= current
->mm
&&
830 !ptrace_may_access(task
, mode
)) {
832 mm
= ERR_PTR(-EACCES
);
834 mutex_unlock(&task
->signal
->cred_guard_mutex
);
839 static void complete_vfork_done(struct task_struct
*tsk
)
841 struct completion
*vfork
;
844 vfork
= tsk
->vfork_done
;
846 tsk
->vfork_done
= NULL
;
852 static int wait_for_vfork_done(struct task_struct
*child
,
853 struct completion
*vfork
)
857 freezer_do_not_count();
858 killed
= wait_for_completion_killable(vfork
);
863 child
->vfork_done
= NULL
;
867 put_task_struct(child
);
871 /* Please note the differences between mmput and mm_release.
872 * mmput is called whenever we stop holding onto a mm_struct,
873 * error success whatever.
875 * mm_release is called after a mm_struct has been removed
876 * from the current process.
878 * This difference is important for error handling, when we
879 * only half set up a mm_struct for a new process and need to restore
880 * the old one. Because we mmput the new mm_struct before
881 * restoring the old one. . .
882 * Eric Biederman 10 January 1998
884 void mm_release(struct task_struct
*tsk
, struct mm_struct
*mm
)
886 /* Get rid of any futexes when releasing the mm */
888 if (unlikely(tsk
->robust_list
)) {
889 exit_robust_list(tsk
);
890 tsk
->robust_list
= NULL
;
893 if (unlikely(tsk
->compat_robust_list
)) {
894 compat_exit_robust_list(tsk
);
895 tsk
->compat_robust_list
= NULL
;
898 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
899 exit_pi_state_list(tsk
);
902 uprobe_free_utask(tsk
);
904 /* Get rid of any cached register state */
905 deactivate_mm(tsk
, mm
);
908 * Signal userspace if we're not exiting with a core dump
909 * because we want to leave the value intact for debugging
912 if (tsk
->clear_child_tid
) {
913 if (!(tsk
->signal
->flags
& SIGNAL_GROUP_COREDUMP
) &&
914 atomic_read(&mm
->mm_users
) > 1) {
916 * We don't check the error code - if userspace has
917 * not set up a proper pointer then tough luck.
919 put_user(0, tsk
->clear_child_tid
);
920 sys_futex(tsk
->clear_child_tid
, FUTEX_WAKE
,
923 tsk
->clear_child_tid
= NULL
;
927 * All done, finally we can wake up parent and return this mm to him.
928 * Also kthread_stop() uses this completion for synchronization.
931 complete_vfork_done(tsk
);
935 * Allocate a new mm structure and copy contents from the
936 * mm structure of the passed in task structure.
938 static struct mm_struct
*dup_mm(struct task_struct
*tsk
)
940 struct mm_struct
*mm
, *oldmm
= current
->mm
;
947 memcpy(mm
, oldmm
, sizeof(*mm
));
949 if (!mm_init(mm
, tsk
, mm
->user_ns
))
952 err
= dup_mmap(mm
, oldmm
);
956 mm
->hiwater_rss
= get_mm_rss(mm
);
957 mm
->hiwater_vm
= mm
->total_vm
;
959 if (mm
->binfmt
&& !try_module_get(mm
->binfmt
->module
))
965 /* don't put binfmt in mmput, we haven't got module yet */
973 static int copy_mm(unsigned long clone_flags
, struct task_struct
*tsk
)
975 struct mm_struct
*mm
, *oldmm
;
978 tsk
->min_flt
= tsk
->maj_flt
= 0;
979 tsk
->nvcsw
= tsk
->nivcsw
= 0;
980 #ifdef CONFIG_DETECT_HUNG_TASK
981 tsk
->last_switch_count
= tsk
->nvcsw
+ tsk
->nivcsw
;
985 tsk
->active_mm
= NULL
;
988 * Are we cloning a kernel thread?
990 * We need to steal a active VM for that..
996 /* initialize the new vmacache entries */
999 if (clone_flags
& CLONE_VM
) {
1000 atomic_inc(&oldmm
->mm_users
);
1012 tsk
->active_mm
= mm
;
1019 static int copy_fs(unsigned long clone_flags
, struct task_struct
*tsk
)
1021 struct fs_struct
*fs
= current
->fs
;
1022 if (clone_flags
& CLONE_FS
) {
1023 /* tsk->fs is already what we want */
1024 spin_lock(&fs
->lock
);
1026 spin_unlock(&fs
->lock
);
1030 spin_unlock(&fs
->lock
);
1033 tsk
->fs
= copy_fs_struct(fs
);
1039 static int copy_files(unsigned long clone_flags
, struct task_struct
*tsk
)
1041 struct files_struct
*oldf
, *newf
;
1045 * A background process may not have any files ...
1047 oldf
= current
->files
;
1051 if (clone_flags
& CLONE_FILES
) {
1052 atomic_inc(&oldf
->count
);
1056 newf
= dup_fd(oldf
, &error
);
1066 static int copy_io(unsigned long clone_flags
, struct task_struct
*tsk
)
1069 struct io_context
*ioc
= current
->io_context
;
1070 struct io_context
*new_ioc
;
1075 * Share io context with parent, if CLONE_IO is set
1077 if (clone_flags
& CLONE_IO
) {
1079 tsk
->io_context
= ioc
;
1080 } else if (ioprio_valid(ioc
->ioprio
)) {
1081 new_ioc
= get_task_io_context(tsk
, GFP_KERNEL
, NUMA_NO_NODE
);
1082 if (unlikely(!new_ioc
))
1085 new_ioc
->ioprio
= ioc
->ioprio
;
1086 put_io_context(new_ioc
);
1092 static int copy_sighand(unsigned long clone_flags
, struct task_struct
*tsk
)
1094 struct sighand_struct
*sig
;
1096 if (clone_flags
& CLONE_SIGHAND
) {
1097 atomic_inc(¤t
->sighand
->count
);
1100 sig
= kmem_cache_alloc(sighand_cachep
, GFP_KERNEL
);
1101 rcu_assign_pointer(tsk
->sighand
, sig
);
1105 atomic_set(&sig
->count
, 1);
1106 memcpy(sig
->action
, current
->sighand
->action
, sizeof(sig
->action
));
1110 void __cleanup_sighand(struct sighand_struct
*sighand
)
1112 if (atomic_dec_and_test(&sighand
->count
)) {
1113 signalfd_cleanup(sighand
);
1115 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1116 * without an RCU grace period, see __lock_task_sighand().
1118 kmem_cache_free(sighand_cachep
, sighand
);
1123 * Initialize POSIX timer handling for a thread group.
1125 static void posix_cpu_timers_init_group(struct signal_struct
*sig
)
1127 unsigned long cpu_limit
;
1129 cpu_limit
= READ_ONCE(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1130 if (cpu_limit
!= RLIM_INFINITY
) {
1131 sig
->cputime_expires
.prof_exp
= secs_to_cputime(cpu_limit
);
1132 sig
->cputimer
.running
= true;
1135 /* The timer lists. */
1136 INIT_LIST_HEAD(&sig
->cpu_timers
[0]);
1137 INIT_LIST_HEAD(&sig
->cpu_timers
[1]);
1138 INIT_LIST_HEAD(&sig
->cpu_timers
[2]);
1141 static int copy_signal(unsigned long clone_flags
, struct task_struct
*tsk
)
1143 struct signal_struct
*sig
;
1145 if (clone_flags
& CLONE_THREAD
)
1148 sig
= kmem_cache_zalloc(signal_cachep
, GFP_KERNEL
);
1153 sig
->nr_threads
= 1;
1154 atomic_set(&sig
->live
, 1);
1155 atomic_set(&sig
->sigcnt
, 1);
1157 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1158 sig
->thread_head
= (struct list_head
)LIST_HEAD_INIT(tsk
->thread_node
);
1159 tsk
->thread_node
= (struct list_head
)LIST_HEAD_INIT(sig
->thread_head
);
1161 init_waitqueue_head(&sig
->wait_chldexit
);
1162 sig
->curr_target
= tsk
;
1163 init_sigpending(&sig
->shared_pending
);
1164 INIT_LIST_HEAD(&sig
->posix_timers
);
1165 seqlock_init(&sig
->stats_lock
);
1166 prev_cputime_init(&sig
->prev_cputime
);
1168 hrtimer_init(&sig
->real_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1169 sig
->real_timer
.function
= it_real_fn
;
1171 task_lock(current
->group_leader
);
1172 memcpy(sig
->rlim
, current
->signal
->rlim
, sizeof sig
->rlim
);
1173 task_unlock(current
->group_leader
);
1175 posix_cpu_timers_init_group(sig
);
1177 tty_audit_fork(sig
);
1178 sched_autogroup_fork(sig
);
1180 sig
->oom_score_adj
= current
->signal
->oom_score_adj
;
1181 sig
->oom_score_adj_min
= current
->signal
->oom_score_adj_min
;
1183 sig
->has_child_subreaper
= current
->signal
->has_child_subreaper
||
1184 current
->signal
->is_child_subreaper
;
1186 mutex_init(&sig
->cred_guard_mutex
);
1191 static void copy_seccomp(struct task_struct
*p
)
1193 #ifdef CONFIG_SECCOMP
1195 * Must be called with sighand->lock held, which is common to
1196 * all threads in the group. Holding cred_guard_mutex is not
1197 * needed because this new task is not yet running and cannot
1200 assert_spin_locked(¤t
->sighand
->siglock
);
1202 /* Ref-count the new filter user, and assign it. */
1203 get_seccomp_filter(current
);
1204 p
->seccomp
= current
->seccomp
;
1207 * Explicitly enable no_new_privs here in case it got set
1208 * between the task_struct being duplicated and holding the
1209 * sighand lock. The seccomp state and nnp must be in sync.
1211 if (task_no_new_privs(current
))
1212 task_set_no_new_privs(p
);
1215 * If the parent gained a seccomp mode after copying thread
1216 * flags and between before we held the sighand lock, we have
1217 * to manually enable the seccomp thread flag here.
1219 if (p
->seccomp
.mode
!= SECCOMP_MODE_DISABLED
)
1220 set_tsk_thread_flag(p
, TIF_SECCOMP
);
1224 SYSCALL_DEFINE1(set_tid_address
, int __user
*, tidptr
)
1226 current
->clear_child_tid
= tidptr
;
1228 return task_pid_vnr(current
);
1231 static void rt_mutex_init_task(struct task_struct
*p
)
1233 raw_spin_lock_init(&p
->pi_lock
);
1234 #ifdef CONFIG_RT_MUTEXES
1235 p
->pi_waiters
= RB_ROOT
;
1236 p
->pi_waiters_leftmost
= NULL
;
1237 p
->pi_blocked_on
= NULL
;
1242 * Initialize POSIX timer handling for a single task.
1244 static void posix_cpu_timers_init(struct task_struct
*tsk
)
1246 tsk
->cputime_expires
.prof_exp
= 0;
1247 tsk
->cputime_expires
.virt_exp
= 0;
1248 tsk
->cputime_expires
.sched_exp
= 0;
1249 INIT_LIST_HEAD(&tsk
->cpu_timers
[0]);
1250 INIT_LIST_HEAD(&tsk
->cpu_timers
[1]);
1251 INIT_LIST_HEAD(&tsk
->cpu_timers
[2]);
1255 init_task_pid(struct task_struct
*task
, enum pid_type type
, struct pid
*pid
)
1257 task
->pids
[type
].pid
= pid
;
1261 * This creates a new process as a copy of the old one,
1262 * but does not actually start it yet.
1264 * It copies the registers, and all the appropriate
1265 * parts of the process environment (as per the clone
1266 * flags). The actual kick-off is left to the caller.
1268 static struct task_struct
*copy_process(unsigned long clone_flags
,
1269 unsigned long stack_start
,
1270 unsigned long stack_size
,
1271 int __user
*child_tidptr
,
1278 struct task_struct
*p
;
1279 void *cgrp_ss_priv
[CGROUP_CANFORK_COUNT
] = {};
1281 if ((clone_flags
& (CLONE_NEWNS
|CLONE_FS
)) == (CLONE_NEWNS
|CLONE_FS
))
1282 return ERR_PTR(-EINVAL
);
1284 if ((clone_flags
& (CLONE_NEWUSER
|CLONE_FS
)) == (CLONE_NEWUSER
|CLONE_FS
))
1285 return ERR_PTR(-EINVAL
);
1288 * Thread groups must share signals as well, and detached threads
1289 * can only be started up within the thread group.
1291 if ((clone_flags
& CLONE_THREAD
) && !(clone_flags
& CLONE_SIGHAND
))
1292 return ERR_PTR(-EINVAL
);
1295 * Shared signal handlers imply shared VM. By way of the above,
1296 * thread groups also imply shared VM. Blocking this case allows
1297 * for various simplifications in other code.
1299 if ((clone_flags
& CLONE_SIGHAND
) && !(clone_flags
& CLONE_VM
))
1300 return ERR_PTR(-EINVAL
);
1303 * Siblings of global init remain as zombies on exit since they are
1304 * not reaped by their parent (swapper). To solve this and to avoid
1305 * multi-rooted process trees, prevent global and container-inits
1306 * from creating siblings.
1308 if ((clone_flags
& CLONE_PARENT
) &&
1309 current
->signal
->flags
& SIGNAL_UNKILLABLE
)
1310 return ERR_PTR(-EINVAL
);
1313 * If the new process will be in a different pid or user namespace
1314 * do not allow it to share a thread group with the forking task.
1316 if (clone_flags
& CLONE_THREAD
) {
1317 if ((clone_flags
& (CLONE_NEWUSER
| CLONE_NEWPID
)) ||
1318 (task_active_pid_ns(current
) !=
1319 current
->nsproxy
->pid_ns_for_children
))
1320 return ERR_PTR(-EINVAL
);
1323 retval
= security_task_create(clone_flags
);
1328 p
= dup_task_struct(current
, node
);
1332 ftrace_graph_init_task(p
);
1334 rt_mutex_init_task(p
);
1336 #ifdef CONFIG_PROVE_LOCKING
1337 DEBUG_LOCKS_WARN_ON(!p
->hardirqs_enabled
);
1338 DEBUG_LOCKS_WARN_ON(!p
->softirqs_enabled
);
1341 if (atomic_read(&p
->real_cred
->user
->processes
) >=
1342 task_rlimit(p
, RLIMIT_NPROC
)) {
1343 if (p
->real_cred
->user
!= INIT_USER
&&
1344 !capable(CAP_SYS_RESOURCE
) && !capable(CAP_SYS_ADMIN
))
1347 current
->flags
&= ~PF_NPROC_EXCEEDED
;
1349 retval
= copy_creds(p
, clone_flags
);
1354 * If multiple threads are within copy_process(), then this check
1355 * triggers too late. This doesn't hurt, the check is only there
1356 * to stop root fork bombs.
1359 if (nr_threads
>= max_threads
)
1360 goto bad_fork_cleanup_count
;
1362 delayacct_tsk_init(p
); /* Must remain after dup_task_struct() */
1363 p
->flags
&= ~(PF_SUPERPRIV
| PF_WQ_WORKER
);
1364 p
->flags
|= PF_FORKNOEXEC
;
1365 INIT_LIST_HEAD(&p
->children
);
1366 INIT_LIST_HEAD(&p
->sibling
);
1367 rcu_copy_process(p
);
1368 p
->vfork_done
= NULL
;
1369 spin_lock_init(&p
->alloc_lock
);
1371 init_sigpending(&p
->pending
);
1373 p
->utime
= p
->stime
= p
->gtime
= 0;
1374 p
->utimescaled
= p
->stimescaled
= 0;
1375 prev_cputime_init(&p
->prev_cputime
);
1377 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1378 seqlock_init(&p
->vtime_seqlock
);
1380 p
->vtime_snap_whence
= VTIME_SLEEPING
;
1383 #if defined(SPLIT_RSS_COUNTING)
1384 memset(&p
->rss_stat
, 0, sizeof(p
->rss_stat
));
1387 p
->default_timer_slack_ns
= current
->timer_slack_ns
;
1389 task_io_accounting_init(&p
->ioac
);
1390 acct_clear_integrals(p
);
1392 posix_cpu_timers_init(p
);
1394 p
->start_time
= ktime_get_ns();
1395 p
->real_start_time
= ktime_get_boot_ns();
1396 p
->io_context
= NULL
;
1397 p
->audit_context
= NULL
;
1400 p
->mempolicy
= mpol_dup(p
->mempolicy
);
1401 if (IS_ERR(p
->mempolicy
)) {
1402 retval
= PTR_ERR(p
->mempolicy
);
1403 p
->mempolicy
= NULL
;
1404 goto bad_fork_cleanup_threadgroup_lock
;
1407 #ifdef CONFIG_CPUSETS
1408 p
->cpuset_mem_spread_rotor
= NUMA_NO_NODE
;
1409 p
->cpuset_slab_spread_rotor
= NUMA_NO_NODE
;
1410 seqcount_init(&p
->mems_allowed_seq
);
1412 #ifdef CONFIG_TRACE_IRQFLAGS
1414 p
->hardirqs_enabled
= 0;
1415 p
->hardirq_enable_ip
= 0;
1416 p
->hardirq_enable_event
= 0;
1417 p
->hardirq_disable_ip
= _THIS_IP_
;
1418 p
->hardirq_disable_event
= 0;
1419 p
->softirqs_enabled
= 1;
1420 p
->softirq_enable_ip
= _THIS_IP_
;
1421 p
->softirq_enable_event
= 0;
1422 p
->softirq_disable_ip
= 0;
1423 p
->softirq_disable_event
= 0;
1424 p
->hardirq_context
= 0;
1425 p
->softirq_context
= 0;
1428 p
->pagefault_disabled
= 0;
1430 #ifdef CONFIG_LOCKDEP
1431 p
->lockdep_depth
= 0; /* no locks held yet */
1432 p
->curr_chain_key
= 0;
1433 p
->lockdep_recursion
= 0;
1436 #ifdef CONFIG_DEBUG_MUTEXES
1437 p
->blocked_on
= NULL
; /* not blocked yet */
1439 #ifdef CONFIG_BCACHE
1440 p
->sequential_io
= 0;
1441 p
->sequential_io_avg
= 0;
1444 /* Perform scheduler related setup. Assign this task to a CPU. */
1445 retval
= sched_fork(clone_flags
, p
);
1447 goto bad_fork_cleanup_policy
;
1449 retval
= perf_event_init_task(p
);
1451 goto bad_fork_cleanup_policy
;
1452 retval
= audit_alloc(p
);
1454 goto bad_fork_cleanup_perf
;
1455 /* copy all the process information */
1457 retval
= copy_semundo(clone_flags
, p
);
1459 goto bad_fork_cleanup_audit
;
1460 retval
= copy_files(clone_flags
, p
);
1462 goto bad_fork_cleanup_semundo
;
1463 retval
= copy_fs(clone_flags
, p
);
1465 goto bad_fork_cleanup_files
;
1466 retval
= copy_sighand(clone_flags
, p
);
1468 goto bad_fork_cleanup_fs
;
1469 retval
= copy_signal(clone_flags
, p
);
1471 goto bad_fork_cleanup_sighand
;
1472 retval
= copy_mm(clone_flags
, p
);
1474 goto bad_fork_cleanup_signal
;
1475 retval
= copy_namespaces(clone_flags
, p
);
1477 goto bad_fork_cleanup_mm
;
1478 retval
= copy_io(clone_flags
, p
);
1480 goto bad_fork_cleanup_namespaces
;
1481 retval
= copy_thread_tls(clone_flags
, stack_start
, stack_size
, p
, tls
);
1483 goto bad_fork_cleanup_io
;
1485 if (pid
!= &init_struct_pid
) {
1486 pid
= alloc_pid(p
->nsproxy
->pid_ns_for_children
);
1488 retval
= PTR_ERR(pid
);
1489 goto bad_fork_cleanup_io
;
1493 p
->set_child_tid
= (clone_flags
& CLONE_CHILD_SETTID
) ? child_tidptr
: NULL
;
1495 * Clear TID on mm_release()?
1497 p
->clear_child_tid
= (clone_flags
& CLONE_CHILD_CLEARTID
) ? child_tidptr
: NULL
;
1502 p
->robust_list
= NULL
;
1503 #ifdef CONFIG_COMPAT
1504 p
->compat_robust_list
= NULL
;
1506 INIT_LIST_HEAD(&p
->pi_state_list
);
1507 p
->pi_state_cache
= NULL
;
1510 * sigaltstack should be cleared when sharing the same VM
1512 if ((clone_flags
& (CLONE_VM
|CLONE_VFORK
)) == CLONE_VM
)
1513 p
->sas_ss_sp
= p
->sas_ss_size
= 0;
1516 * Syscall tracing and stepping should be turned off in the
1517 * child regardless of CLONE_PTRACE.
1519 user_disable_single_step(p
);
1520 clear_tsk_thread_flag(p
, TIF_SYSCALL_TRACE
);
1521 #ifdef TIF_SYSCALL_EMU
1522 clear_tsk_thread_flag(p
, TIF_SYSCALL_EMU
);
1524 clear_all_latency_tracing(p
);
1526 /* ok, now we should be set up.. */
1527 p
->pid
= pid_nr(pid
);
1528 if (clone_flags
& CLONE_THREAD
) {
1529 p
->exit_signal
= -1;
1530 p
->group_leader
= current
->group_leader
;
1531 p
->tgid
= current
->tgid
;
1533 if (clone_flags
& CLONE_PARENT
)
1534 p
->exit_signal
= current
->group_leader
->exit_signal
;
1536 p
->exit_signal
= (clone_flags
& CSIGNAL
);
1537 p
->group_leader
= p
;
1542 p
->nr_dirtied_pause
= 128 >> (PAGE_SHIFT
- 10);
1543 p
->dirty_paused_when
= 0;
1545 p
->pdeath_signal
= 0;
1546 INIT_LIST_HEAD(&p
->thread_group
);
1547 p
->task_works
= NULL
;
1549 threadgroup_change_begin(current
);
1551 * Ensure that the cgroup subsystem policies allow the new process to be
1552 * forked. It should be noted the the new process's css_set can be changed
1553 * between here and cgroup_post_fork() if an organisation operation is in
1556 retval
= cgroup_can_fork(p
, cgrp_ss_priv
);
1558 goto bad_fork_free_pid
;
1561 * Make it visible to the rest of the system, but dont wake it up yet.
1562 * Need tasklist lock for parent etc handling!
1564 write_lock_irq(&tasklist_lock
);
1566 /* CLONE_PARENT re-uses the old parent */
1567 if (clone_flags
& (CLONE_PARENT
|CLONE_THREAD
)) {
1568 p
->real_parent
= current
->real_parent
;
1569 p
->parent_exec_id
= current
->parent_exec_id
;
1571 p
->real_parent
= current
;
1572 p
->parent_exec_id
= current
->self_exec_id
;
1575 spin_lock(¤t
->sighand
->siglock
);
1578 * Copy seccomp details explicitly here, in case they were changed
1579 * before holding sighand lock.
1584 * Process group and session signals need to be delivered to just the
1585 * parent before the fork or both the parent and the child after the
1586 * fork. Restart if a signal comes in before we add the new process to
1587 * it's process group.
1588 * A fatal signal pending means that current will exit, so the new
1589 * thread can't slip out of an OOM kill (or normal SIGKILL).
1591 recalc_sigpending();
1592 if (signal_pending(current
)) {
1593 retval
= -ERESTARTNOINTR
;
1594 goto bad_fork_cancel_cgroup
;
1596 if (unlikely(!(ns_of_pid(pid
)->nr_hashed
& PIDNS_HASH_ADDING
))) {
1598 goto bad_fork_cancel_cgroup
;
1601 if (likely(p
->pid
)) {
1602 ptrace_init_task(p
, (clone_flags
& CLONE_PTRACE
) || trace
);
1604 init_task_pid(p
, PIDTYPE_PID
, pid
);
1605 if (thread_group_leader(p
)) {
1606 init_task_pid(p
, PIDTYPE_PGID
, task_pgrp(current
));
1607 init_task_pid(p
, PIDTYPE_SID
, task_session(current
));
1609 if (is_child_reaper(pid
)) {
1610 ns_of_pid(pid
)->child_reaper
= p
;
1611 p
->signal
->flags
|= SIGNAL_UNKILLABLE
;
1614 p
->signal
->leader_pid
= pid
;
1615 p
->signal
->tty
= tty_kref_get(current
->signal
->tty
);
1616 list_add_tail(&p
->sibling
, &p
->real_parent
->children
);
1617 list_add_tail_rcu(&p
->tasks
, &init_task
.tasks
);
1618 attach_pid(p
, PIDTYPE_PGID
);
1619 attach_pid(p
, PIDTYPE_SID
);
1620 __this_cpu_inc(process_counts
);
1622 current
->signal
->nr_threads
++;
1623 atomic_inc(¤t
->signal
->live
);
1624 atomic_inc(¤t
->signal
->sigcnt
);
1625 list_add_tail_rcu(&p
->thread_group
,
1626 &p
->group_leader
->thread_group
);
1627 list_add_tail_rcu(&p
->thread_node
,
1628 &p
->signal
->thread_head
);
1630 attach_pid(p
, PIDTYPE_PID
);
1635 spin_unlock(¤t
->sighand
->siglock
);
1636 syscall_tracepoint_update(p
);
1637 write_unlock_irq(&tasklist_lock
);
1639 proc_fork_connector(p
);
1640 cgroup_post_fork(p
, cgrp_ss_priv
);
1641 threadgroup_change_end(current
);
1644 trace_task_newtask(p
, clone_flags
);
1645 uprobe_copy_process(p
, clone_flags
);
1649 bad_fork_cancel_cgroup
:
1650 spin_unlock(¤t
->sighand
->siglock
);
1651 write_unlock_irq(&tasklist_lock
);
1652 cgroup_cancel_fork(p
, cgrp_ss_priv
);
1654 threadgroup_change_end(current
);
1655 if (pid
!= &init_struct_pid
)
1657 bad_fork_cleanup_io
:
1660 bad_fork_cleanup_namespaces
:
1661 exit_task_namespaces(p
);
1662 bad_fork_cleanup_mm
:
1665 bad_fork_cleanup_signal
:
1666 if (!(clone_flags
& CLONE_THREAD
))
1667 free_signal_struct(p
->signal
);
1668 bad_fork_cleanup_sighand
:
1669 __cleanup_sighand(p
->sighand
);
1670 bad_fork_cleanup_fs
:
1671 exit_fs(p
); /* blocking */
1672 bad_fork_cleanup_files
:
1673 exit_files(p
); /* blocking */
1674 bad_fork_cleanup_semundo
:
1676 bad_fork_cleanup_audit
:
1678 bad_fork_cleanup_perf
:
1679 perf_event_free_task(p
);
1680 bad_fork_cleanup_policy
:
1682 mpol_put(p
->mempolicy
);
1683 bad_fork_cleanup_threadgroup_lock
:
1685 delayacct_tsk_free(p
);
1686 bad_fork_cleanup_count
:
1687 atomic_dec(&p
->cred
->user
->processes
);
1692 return ERR_PTR(retval
);
1695 static inline void init_idle_pids(struct pid_link
*links
)
1699 for (type
= PIDTYPE_PID
; type
< PIDTYPE_MAX
; ++type
) {
1700 INIT_HLIST_NODE(&links
[type
].node
); /* not really needed */
1701 links
[type
].pid
= &init_struct_pid
;
1705 struct task_struct
*fork_idle(int cpu
)
1707 struct task_struct
*task
;
1708 task
= copy_process(CLONE_VM
, 0, 0, NULL
, &init_struct_pid
, 0, 0,
1710 if (!IS_ERR(task
)) {
1711 init_idle_pids(task
->pids
);
1712 init_idle(task
, cpu
);
1719 * Ok, this is the main fork-routine.
1721 * It copies the process, and if successful kick-starts
1722 * it and waits for it to finish using the VM if required.
1724 long _do_fork(unsigned long clone_flags
,
1725 unsigned long stack_start
,
1726 unsigned long stack_size
,
1727 int __user
*parent_tidptr
,
1728 int __user
*child_tidptr
,
1731 struct task_struct
*p
;
1736 * Determine whether and which event to report to ptracer. When
1737 * called from kernel_thread or CLONE_UNTRACED is explicitly
1738 * requested, no event is reported; otherwise, report if the event
1739 * for the type of forking is enabled.
1741 if (!(clone_flags
& CLONE_UNTRACED
)) {
1742 if (clone_flags
& CLONE_VFORK
)
1743 trace
= PTRACE_EVENT_VFORK
;
1744 else if ((clone_flags
& CSIGNAL
) != SIGCHLD
)
1745 trace
= PTRACE_EVENT_CLONE
;
1747 trace
= PTRACE_EVENT_FORK
;
1749 if (likely(!ptrace_event_enabled(current
, trace
)))
1753 p
= copy_process(clone_flags
, stack_start
, stack_size
,
1754 child_tidptr
, NULL
, trace
, tls
, NUMA_NO_NODE
);
1756 * Do this prior waking up the new thread - the thread pointer
1757 * might get invalid after that point, if the thread exits quickly.
1760 struct completion vfork
;
1763 trace_sched_process_fork(current
, p
);
1765 pid
= get_task_pid(p
, PIDTYPE_PID
);
1768 if (clone_flags
& CLONE_PARENT_SETTID
)
1769 put_user(nr
, parent_tidptr
);
1771 if (clone_flags
& CLONE_VFORK
) {
1772 p
->vfork_done
= &vfork
;
1773 init_completion(&vfork
);
1777 wake_up_new_task(p
);
1779 /* forking complete and child started to run, tell ptracer */
1780 if (unlikely(trace
))
1781 ptrace_event_pid(trace
, pid
);
1783 if (clone_flags
& CLONE_VFORK
) {
1784 if (!wait_for_vfork_done(p
, &vfork
))
1785 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE
, pid
);
1795 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1796 /* For compatibility with architectures that call do_fork directly rather than
1797 * using the syscall entry points below. */
1798 long do_fork(unsigned long clone_flags
,
1799 unsigned long stack_start
,
1800 unsigned long stack_size
,
1801 int __user
*parent_tidptr
,
1802 int __user
*child_tidptr
)
1804 return _do_fork(clone_flags
, stack_start
, stack_size
,
1805 parent_tidptr
, child_tidptr
, 0);
1810 * Create a kernel thread.
1812 pid_t
kernel_thread(int (*fn
)(void *), void *arg
, unsigned long flags
)
1814 return _do_fork(flags
|CLONE_VM
|CLONE_UNTRACED
, (unsigned long)fn
,
1815 (unsigned long)arg
, NULL
, NULL
, 0);
1818 #ifdef __ARCH_WANT_SYS_FORK
1819 SYSCALL_DEFINE0(fork
)
1822 return _do_fork(SIGCHLD
, 0, 0, NULL
, NULL
, 0);
1824 /* can not support in nommu mode */
1830 #ifdef __ARCH_WANT_SYS_VFORK
1831 SYSCALL_DEFINE0(vfork
)
1833 return _do_fork(CLONE_VFORK
| CLONE_VM
| SIGCHLD
, 0,
1838 #ifdef __ARCH_WANT_SYS_CLONE
1839 #ifdef CONFIG_CLONE_BACKWARDS
1840 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1841 int __user
*, parent_tidptr
,
1843 int __user
*, child_tidptr
)
1844 #elif defined(CONFIG_CLONE_BACKWARDS2)
1845 SYSCALL_DEFINE5(clone
, unsigned long, newsp
, unsigned long, clone_flags
,
1846 int __user
*, parent_tidptr
,
1847 int __user
*, child_tidptr
,
1849 #elif defined(CONFIG_CLONE_BACKWARDS3)
1850 SYSCALL_DEFINE6(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1852 int __user
*, parent_tidptr
,
1853 int __user
*, child_tidptr
,
1856 SYSCALL_DEFINE5(clone
, unsigned long, clone_flags
, unsigned long, newsp
,
1857 int __user
*, parent_tidptr
,
1858 int __user
*, child_tidptr
,
1862 return _do_fork(clone_flags
, newsp
, 0, parent_tidptr
, child_tidptr
, tls
);
1866 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1867 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1870 static void sighand_ctor(void *data
)
1872 struct sighand_struct
*sighand
= data
;
1874 spin_lock_init(&sighand
->siglock
);
1875 init_waitqueue_head(&sighand
->signalfd_wqh
);
1878 void __init
proc_caches_init(void)
1880 sighand_cachep
= kmem_cache_create("sighand_cache",
1881 sizeof(struct sighand_struct
), 0,
1882 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_DESTROY_BY_RCU
|
1883 SLAB_NOTRACK
, sighand_ctor
);
1884 signal_cachep
= kmem_cache_create("signal_cache",
1885 sizeof(struct signal_struct
), 0,
1886 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1887 files_cachep
= kmem_cache_create("files_cache",
1888 sizeof(struct files_struct
), 0,
1889 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1890 fs_cachep
= kmem_cache_create("fs_cache",
1891 sizeof(struct fs_struct
), 0,
1892 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1894 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1895 * whole struct cpumask for the OFFSTACK case. We could change
1896 * this to *only* allocate as much of it as required by the
1897 * maximum number of CPU's we can ever have. The cpumask_allocation
1898 * is at the end of the structure, exactly for that reason.
1900 mm_cachep
= kmem_cache_create("mm_struct",
1901 sizeof(struct mm_struct
), ARCH_MIN_MMSTRUCT_ALIGN
,
1902 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_NOTRACK
, NULL
);
1903 vm_area_cachep
= KMEM_CACHE(vm_area_struct
, SLAB_PANIC
);
1905 nsproxy_cache_init();
1909 * Check constraints on flags passed to the unshare system call.
1911 static int check_unshare_flags(unsigned long unshare_flags
)
1913 if (unshare_flags
& ~(CLONE_THREAD
|CLONE_FS
|CLONE_NEWNS
|CLONE_SIGHAND
|
1914 CLONE_VM
|CLONE_FILES
|CLONE_SYSVSEM
|
1915 CLONE_NEWUTS
|CLONE_NEWIPC
|CLONE_NEWNET
|
1916 CLONE_NEWUSER
|CLONE_NEWPID
))
1919 * Not implemented, but pretend it works if there is nothing
1920 * to unshare. Note that unsharing the address space or the
1921 * signal handlers also need to unshare the signal queues (aka
1924 if (unshare_flags
& (CLONE_THREAD
| CLONE_SIGHAND
| CLONE_VM
)) {
1925 if (!thread_group_empty(current
))
1928 if (unshare_flags
& (CLONE_SIGHAND
| CLONE_VM
)) {
1929 if (atomic_read(¤t
->sighand
->count
) > 1)
1932 if (unshare_flags
& CLONE_VM
) {
1933 if (!current_is_single_threaded())
1941 * Unshare the filesystem structure if it is being shared
1943 static int unshare_fs(unsigned long unshare_flags
, struct fs_struct
**new_fsp
)
1945 struct fs_struct
*fs
= current
->fs
;
1947 if (!(unshare_flags
& CLONE_FS
) || !fs
)
1950 /* don't need lock here; in the worst case we'll do useless copy */
1954 *new_fsp
= copy_fs_struct(fs
);
1962 * Unshare file descriptor table if it is being shared
1964 static int unshare_fd(unsigned long unshare_flags
, struct files_struct
**new_fdp
)
1966 struct files_struct
*fd
= current
->files
;
1969 if ((unshare_flags
& CLONE_FILES
) &&
1970 (fd
&& atomic_read(&fd
->count
) > 1)) {
1971 *new_fdp
= dup_fd(fd
, &error
);
1980 * unshare allows a process to 'unshare' part of the process
1981 * context which was originally shared using clone. copy_*
1982 * functions used by do_fork() cannot be used here directly
1983 * because they modify an inactive task_struct that is being
1984 * constructed. Here we are modifying the current, active,
1987 SYSCALL_DEFINE1(unshare
, unsigned long, unshare_flags
)
1989 struct fs_struct
*fs
, *new_fs
= NULL
;
1990 struct files_struct
*fd
, *new_fd
= NULL
;
1991 struct cred
*new_cred
= NULL
;
1992 struct nsproxy
*new_nsproxy
= NULL
;
1997 * If unsharing a user namespace must also unshare the thread group
1998 * and unshare the filesystem root and working directories.
2000 if (unshare_flags
& CLONE_NEWUSER
)
2001 unshare_flags
|= CLONE_THREAD
| CLONE_FS
;
2003 * If unsharing vm, must also unshare signal handlers.
2005 if (unshare_flags
& CLONE_VM
)
2006 unshare_flags
|= CLONE_SIGHAND
;
2008 * If unsharing a signal handlers, must also unshare the signal queues.
2010 if (unshare_flags
& CLONE_SIGHAND
)
2011 unshare_flags
|= CLONE_THREAD
;
2013 * If unsharing namespace, must also unshare filesystem information.
2015 if (unshare_flags
& CLONE_NEWNS
)
2016 unshare_flags
|= CLONE_FS
;
2018 err
= check_unshare_flags(unshare_flags
);
2020 goto bad_unshare_out
;
2022 * CLONE_NEWIPC must also detach from the undolist: after switching
2023 * to a new ipc namespace, the semaphore arrays from the old
2024 * namespace are unreachable.
2026 if (unshare_flags
& (CLONE_NEWIPC
|CLONE_SYSVSEM
))
2028 err
= unshare_fs(unshare_flags
, &new_fs
);
2030 goto bad_unshare_out
;
2031 err
= unshare_fd(unshare_flags
, &new_fd
);
2033 goto bad_unshare_cleanup_fs
;
2034 err
= unshare_userns(unshare_flags
, &new_cred
);
2036 goto bad_unshare_cleanup_fd
;
2037 err
= unshare_nsproxy_namespaces(unshare_flags
, &new_nsproxy
,
2040 goto bad_unshare_cleanup_cred
;
2042 if (new_fs
|| new_fd
|| do_sysvsem
|| new_cred
|| new_nsproxy
) {
2045 * CLONE_SYSVSEM is equivalent to sys_exit().
2049 if (unshare_flags
& CLONE_NEWIPC
) {
2050 /* Orphan segments in old ns (see sem above). */
2052 shm_init_task(current
);
2056 switch_task_namespaces(current
, new_nsproxy
);
2062 spin_lock(&fs
->lock
);
2063 current
->fs
= new_fs
;
2068 spin_unlock(&fs
->lock
);
2072 fd
= current
->files
;
2073 current
->files
= new_fd
;
2077 task_unlock(current
);
2080 /* Install the new user namespace */
2081 commit_creds(new_cred
);
2086 bad_unshare_cleanup_cred
:
2089 bad_unshare_cleanup_fd
:
2091 put_files_struct(new_fd
);
2093 bad_unshare_cleanup_fs
:
2095 free_fs_struct(new_fs
);
2102 * Helper to unshare the files of the current task.
2103 * We don't want to expose copy_files internals to
2104 * the exec layer of the kernel.
2107 int unshare_files(struct files_struct
**displaced
)
2109 struct task_struct
*task
= current
;
2110 struct files_struct
*copy
= NULL
;
2113 error
= unshare_fd(CLONE_FILES
, ©
);
2114 if (error
|| !copy
) {
2118 *displaced
= task
->files
;
2125 int sysctl_max_threads(struct ctl_table
*table
, int write
,
2126 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
2130 int threads
= max_threads
;
2131 int min
= MIN_THREADS
;
2132 int max
= MAX_THREADS
;
2139 ret
= proc_dointvec_minmax(&t
, write
, buffer
, lenp
, ppos
);
2143 set_max_threads(threads
);