drm: rcar-du: fix backport bug
[linux/fpc-iii.git] / kernel / fork.c
blob68cfda1c180078a67470b58e2401d6ec4a14479d
1 /*
2 * linux/kernel/fork.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
79 #include <asm/pgtable.h>
80 #include <asm/pgalloc.h>
81 #include <asm/uaccess.h>
82 #include <asm/mmu_context.h>
83 #include <asm/cacheflush.h>
84 #include <asm/tlbflush.h>
86 #include <trace/events/sched.h>
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/task.h>
92 * Minimum number of threads to boot the kernel
94 #define MIN_THREADS 20
97 * Maximum number of threads
99 #define MAX_THREADS FUTEX_TID_MASK
102 * Protected counters by write_lock_irq(&tasklist_lock)
104 unsigned long total_forks; /* Handle normal Linux uptimes. */
105 int nr_threads; /* The idle threads do not count.. */
107 int max_threads; /* tunable limit on nr_threads */
109 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113 #ifdef CONFIG_PROVE_RCU
114 int lockdep_tasklist_lock_is_held(void)
116 return lockdep_is_held(&tasklist_lock);
118 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
119 #endif /* #ifdef CONFIG_PROVE_RCU */
121 int nr_processes(void)
123 int cpu;
124 int total = 0;
126 for_each_possible_cpu(cpu)
127 total += per_cpu(process_counts, cpu);
129 return total;
132 void __weak arch_release_task_struct(struct task_struct *tsk)
136 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
137 static struct kmem_cache *task_struct_cachep;
139 static inline struct task_struct *alloc_task_struct_node(int node)
141 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
144 static inline void free_task_struct(struct task_struct *tsk)
146 kmem_cache_free(task_struct_cachep, tsk);
148 #endif
150 void __weak arch_release_thread_info(struct thread_info *ti)
154 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
157 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
158 * kmemcache based allocator.
160 # if THREAD_SIZE >= PAGE_SIZE
161 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
162 int node)
164 struct page *page = alloc_kmem_pages_node(node, THREADINFO_GFP,
165 THREAD_SIZE_ORDER);
167 return page ? page_address(page) : NULL;
170 static inline void free_thread_info(struct thread_info *ti)
172 free_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
174 # else
175 static struct kmem_cache *thread_info_cache;
177 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
178 int node)
180 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
183 static void free_thread_info(struct thread_info *ti)
185 kmem_cache_free(thread_info_cache, ti);
188 void thread_info_cache_init(void)
190 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
191 THREAD_SIZE, 0, NULL);
192 BUG_ON(thread_info_cache == NULL);
194 # endif
195 #endif
197 /* SLAB cache for signal_struct structures (tsk->signal) */
198 static struct kmem_cache *signal_cachep;
200 /* SLAB cache for sighand_struct structures (tsk->sighand) */
201 struct kmem_cache *sighand_cachep;
203 /* SLAB cache for files_struct structures (tsk->files) */
204 struct kmem_cache *files_cachep;
206 /* SLAB cache for fs_struct structures (tsk->fs) */
207 struct kmem_cache *fs_cachep;
209 /* SLAB cache for vm_area_struct structures */
210 struct kmem_cache *vm_area_cachep;
212 /* SLAB cache for mm_struct structures (tsk->mm) */
213 static struct kmem_cache *mm_cachep;
215 static void account_kernel_stack(struct thread_info *ti, int account)
217 struct zone *zone = page_zone(virt_to_page(ti));
219 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
222 void free_task(struct task_struct *tsk)
224 account_kernel_stack(tsk->stack, -1);
225 arch_release_thread_info(tsk->stack);
226 free_thread_info(tsk->stack);
227 rt_mutex_debug_task_free(tsk);
228 ftrace_graph_exit_task(tsk);
229 put_seccomp_filter(tsk);
230 arch_release_task_struct(tsk);
231 free_task_struct(tsk);
233 EXPORT_SYMBOL(free_task);
235 static inline void free_signal_struct(struct signal_struct *sig)
237 taskstats_tgid_free(sig);
238 sched_autogroup_exit(sig);
239 kmem_cache_free(signal_cachep, sig);
242 static inline void put_signal_struct(struct signal_struct *sig)
244 if (atomic_dec_and_test(&sig->sigcnt))
245 free_signal_struct(sig);
248 void __put_task_struct(struct task_struct *tsk)
250 WARN_ON(!tsk->exit_state);
251 WARN_ON(atomic_read(&tsk->usage));
252 WARN_ON(tsk == current);
254 cgroup_free(tsk);
255 task_numa_free(tsk);
256 security_task_free(tsk);
257 exit_creds(tsk);
258 delayacct_tsk_free(tsk);
259 put_signal_struct(tsk->signal);
261 if (!profile_handoff_task(tsk))
262 free_task(tsk);
264 EXPORT_SYMBOL_GPL(__put_task_struct);
266 void __init __weak arch_task_cache_init(void) { }
269 * set_max_threads
271 static void set_max_threads(unsigned int max_threads_suggested)
273 u64 threads;
276 * The number of threads shall be limited such that the thread
277 * structures may only consume a small part of the available memory.
279 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
280 threads = MAX_THREADS;
281 else
282 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
283 (u64) THREAD_SIZE * 8UL);
285 if (threads > max_threads_suggested)
286 threads = max_threads_suggested;
288 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
291 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
292 /* Initialized by the architecture: */
293 int arch_task_struct_size __read_mostly;
294 #endif
296 void __init fork_init(void)
298 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
299 #ifndef ARCH_MIN_TASKALIGN
300 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
301 #endif
302 /* create a slab on which task_structs can be allocated */
303 task_struct_cachep =
304 kmem_cache_create("task_struct", arch_task_struct_size,
305 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
306 #endif
308 /* do the arch specific task caches init */
309 arch_task_cache_init();
311 set_max_threads(MAX_THREADS);
313 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
314 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
315 init_task.signal->rlim[RLIMIT_SIGPENDING] =
316 init_task.signal->rlim[RLIMIT_NPROC];
319 int __weak arch_dup_task_struct(struct task_struct *dst,
320 struct task_struct *src)
322 *dst = *src;
323 return 0;
326 void set_task_stack_end_magic(struct task_struct *tsk)
328 unsigned long *stackend;
330 stackend = end_of_stack(tsk);
331 *stackend = STACK_END_MAGIC; /* for overflow detection */
334 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
336 struct task_struct *tsk;
337 struct thread_info *ti;
338 int err;
340 if (node == NUMA_NO_NODE)
341 node = tsk_fork_get_node(orig);
342 tsk = alloc_task_struct_node(node);
343 if (!tsk)
344 return NULL;
346 ti = alloc_thread_info_node(tsk, node);
347 if (!ti)
348 goto free_tsk;
350 err = arch_dup_task_struct(tsk, orig);
351 if (err)
352 goto free_ti;
354 tsk->stack = ti;
355 #ifdef CONFIG_SECCOMP
357 * We must handle setting up seccomp filters once we're under
358 * the sighand lock in case orig has changed between now and
359 * then. Until then, filter must be NULL to avoid messing up
360 * the usage counts on the error path calling free_task.
362 tsk->seccomp.filter = NULL;
363 #endif
365 setup_thread_stack(tsk, orig);
366 clear_user_return_notifier(tsk);
367 clear_tsk_need_resched(tsk);
368 set_task_stack_end_magic(tsk);
370 #ifdef CONFIG_CC_STACKPROTECTOR
371 tsk->stack_canary = get_random_long();
372 #endif
375 * One for us, one for whoever does the "release_task()" (usually
376 * parent)
378 atomic_set(&tsk->usage, 2);
379 #ifdef CONFIG_BLK_DEV_IO_TRACE
380 tsk->btrace_seq = 0;
381 #endif
382 tsk->splice_pipe = NULL;
383 tsk->task_frag.page = NULL;
384 tsk->wake_q.next = NULL;
386 account_kernel_stack(ti, 1);
388 return tsk;
390 free_ti:
391 free_thread_info(ti);
392 free_tsk:
393 free_task_struct(tsk);
394 return NULL;
397 #ifdef CONFIG_MMU
398 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
400 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
401 struct rb_node **rb_link, *rb_parent;
402 int retval;
403 unsigned long charge;
405 uprobe_start_dup_mmap();
406 down_write(&oldmm->mmap_sem);
407 flush_cache_dup_mm(oldmm);
408 uprobe_dup_mmap(oldmm, mm);
410 * Not linked in yet - no deadlock potential:
412 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
414 /* No ordering required: file already has been exposed. */
415 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
417 mm->total_vm = oldmm->total_vm;
418 mm->shared_vm = oldmm->shared_vm;
419 mm->exec_vm = oldmm->exec_vm;
420 mm->stack_vm = oldmm->stack_vm;
422 rb_link = &mm->mm_rb.rb_node;
423 rb_parent = NULL;
424 pprev = &mm->mmap;
425 retval = ksm_fork(mm, oldmm);
426 if (retval)
427 goto out;
428 retval = khugepaged_fork(mm, oldmm);
429 if (retval)
430 goto out;
432 prev = NULL;
433 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
434 struct file *file;
436 if (mpnt->vm_flags & VM_DONTCOPY) {
437 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
438 -vma_pages(mpnt));
439 continue;
441 charge = 0;
442 if (mpnt->vm_flags & VM_ACCOUNT) {
443 unsigned long len = vma_pages(mpnt);
445 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
446 goto fail_nomem;
447 charge = len;
449 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
450 if (!tmp)
451 goto fail_nomem;
452 *tmp = *mpnt;
453 INIT_LIST_HEAD(&tmp->anon_vma_chain);
454 retval = vma_dup_policy(mpnt, tmp);
455 if (retval)
456 goto fail_nomem_policy;
457 tmp->vm_mm = mm;
458 if (anon_vma_fork(tmp, mpnt))
459 goto fail_nomem_anon_vma_fork;
460 tmp->vm_flags &=
461 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
462 tmp->vm_next = tmp->vm_prev = NULL;
463 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
464 file = tmp->vm_file;
465 if (file) {
466 struct inode *inode = file_inode(file);
467 struct address_space *mapping = file->f_mapping;
469 get_file(file);
470 if (tmp->vm_flags & VM_DENYWRITE)
471 atomic_dec(&inode->i_writecount);
472 i_mmap_lock_write(mapping);
473 if (tmp->vm_flags & VM_SHARED)
474 atomic_inc(&mapping->i_mmap_writable);
475 flush_dcache_mmap_lock(mapping);
476 /* insert tmp into the share list, just after mpnt */
477 vma_interval_tree_insert_after(tmp, mpnt,
478 &mapping->i_mmap);
479 flush_dcache_mmap_unlock(mapping);
480 i_mmap_unlock_write(mapping);
484 * Clear hugetlb-related page reserves for children. This only
485 * affects MAP_PRIVATE mappings. Faults generated by the child
486 * are not guaranteed to succeed, even if read-only
488 if (is_vm_hugetlb_page(tmp))
489 reset_vma_resv_huge_pages(tmp);
492 * Link in the new vma and copy the page table entries.
494 *pprev = tmp;
495 pprev = &tmp->vm_next;
496 tmp->vm_prev = prev;
497 prev = tmp;
499 __vma_link_rb(mm, tmp, rb_link, rb_parent);
500 rb_link = &tmp->vm_rb.rb_right;
501 rb_parent = &tmp->vm_rb;
503 mm->map_count++;
504 retval = copy_page_range(mm, oldmm, mpnt);
506 if (tmp->vm_ops && tmp->vm_ops->open)
507 tmp->vm_ops->open(tmp);
509 if (retval)
510 goto out;
512 /* a new mm has just been created */
513 arch_dup_mmap(oldmm, mm);
514 retval = 0;
515 out:
516 up_write(&mm->mmap_sem);
517 flush_tlb_mm(oldmm);
518 up_write(&oldmm->mmap_sem);
519 uprobe_end_dup_mmap();
520 return retval;
521 fail_nomem_anon_vma_fork:
522 mpol_put(vma_policy(tmp));
523 fail_nomem_policy:
524 kmem_cache_free(vm_area_cachep, tmp);
525 fail_nomem:
526 retval = -ENOMEM;
527 vm_unacct_memory(charge);
528 goto out;
531 static inline int mm_alloc_pgd(struct mm_struct *mm)
533 mm->pgd = pgd_alloc(mm);
534 if (unlikely(!mm->pgd))
535 return -ENOMEM;
536 return 0;
539 static inline void mm_free_pgd(struct mm_struct *mm)
541 pgd_free(mm, mm->pgd);
543 #else
544 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
546 down_write(&oldmm->mmap_sem);
547 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
548 up_write(&oldmm->mmap_sem);
549 return 0;
551 #define mm_alloc_pgd(mm) (0)
552 #define mm_free_pgd(mm)
553 #endif /* CONFIG_MMU */
555 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
557 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
558 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
560 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
562 static int __init coredump_filter_setup(char *s)
564 default_dump_filter =
565 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
566 MMF_DUMP_FILTER_MASK;
567 return 1;
570 __setup("coredump_filter=", coredump_filter_setup);
572 #include <linux/init_task.h>
574 static void mm_init_aio(struct mm_struct *mm)
576 #ifdef CONFIG_AIO
577 spin_lock_init(&mm->ioctx_lock);
578 mm->ioctx_table = NULL;
579 #endif
582 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
584 #ifdef CONFIG_MEMCG
585 mm->owner = p;
586 #endif
589 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
590 struct user_namespace *user_ns)
592 mm->mmap = NULL;
593 mm->mm_rb = RB_ROOT;
594 mm->vmacache_seqnum = 0;
595 atomic_set(&mm->mm_users, 1);
596 atomic_set(&mm->mm_count, 1);
597 init_rwsem(&mm->mmap_sem);
598 INIT_LIST_HEAD(&mm->mmlist);
599 mm->core_state = NULL;
600 atomic_long_set(&mm->nr_ptes, 0);
601 mm_nr_pmds_init(mm);
602 mm->map_count = 0;
603 mm->locked_vm = 0;
604 mm->pinned_vm = 0;
605 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
606 spin_lock_init(&mm->page_table_lock);
607 mm_init_cpumask(mm);
608 mm_init_aio(mm);
609 mm_init_owner(mm, p);
610 mmu_notifier_mm_init(mm);
611 clear_tlb_flush_pending(mm);
612 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
613 mm->pmd_huge_pte = NULL;
614 #endif
616 if (current->mm) {
617 mm->flags = current->mm->flags & MMF_INIT_MASK;
618 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
619 } else {
620 mm->flags = default_dump_filter;
621 mm->def_flags = 0;
624 if (mm_alloc_pgd(mm))
625 goto fail_nopgd;
627 if (init_new_context(p, mm))
628 goto fail_nocontext;
630 mm->user_ns = get_user_ns(user_ns);
631 return mm;
633 fail_nocontext:
634 mm_free_pgd(mm);
635 fail_nopgd:
636 free_mm(mm);
637 return NULL;
640 static void check_mm(struct mm_struct *mm)
642 int i;
644 for (i = 0; i < NR_MM_COUNTERS; i++) {
645 long x = atomic_long_read(&mm->rss_stat.count[i]);
647 if (unlikely(x))
648 printk(KERN_ALERT "BUG: Bad rss-counter state "
649 "mm:%p idx:%d val:%ld\n", mm, i, x);
652 if (atomic_long_read(&mm->nr_ptes))
653 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
654 atomic_long_read(&mm->nr_ptes));
655 if (mm_nr_pmds(mm))
656 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
657 mm_nr_pmds(mm));
659 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
660 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
661 #endif
665 * Allocate and initialize an mm_struct.
667 struct mm_struct *mm_alloc(void)
669 struct mm_struct *mm;
671 mm = allocate_mm();
672 if (!mm)
673 return NULL;
675 memset(mm, 0, sizeof(*mm));
676 return mm_init(mm, current, current_user_ns());
680 * Called when the last reference to the mm
681 * is dropped: either by a lazy thread or by
682 * mmput. Free the page directory and the mm.
684 void __mmdrop(struct mm_struct *mm)
686 BUG_ON(mm == &init_mm);
687 mm_free_pgd(mm);
688 destroy_context(mm);
689 mmu_notifier_mm_destroy(mm);
690 check_mm(mm);
691 put_user_ns(mm->user_ns);
692 free_mm(mm);
694 EXPORT_SYMBOL_GPL(__mmdrop);
697 * Decrement the use count and release all resources for an mm.
699 void mmput(struct mm_struct *mm)
701 might_sleep();
703 if (atomic_dec_and_test(&mm->mm_users)) {
704 uprobe_clear_state(mm);
705 exit_aio(mm);
706 ksm_exit(mm);
707 khugepaged_exit(mm); /* must run before exit_mmap */
708 exit_mmap(mm);
709 set_mm_exe_file(mm, NULL);
710 if (!list_empty(&mm->mmlist)) {
711 spin_lock(&mmlist_lock);
712 list_del(&mm->mmlist);
713 spin_unlock(&mmlist_lock);
715 if (mm->binfmt)
716 module_put(mm->binfmt->module);
717 mmdrop(mm);
720 EXPORT_SYMBOL_GPL(mmput);
723 * set_mm_exe_file - change a reference to the mm's executable file
725 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
727 * Main users are mmput() and sys_execve(). Callers prevent concurrent
728 * invocations: in mmput() nobody alive left, in execve task is single
729 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
730 * mm->exe_file, but does so without using set_mm_exe_file() in order
731 * to do avoid the need for any locks.
733 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
735 struct file *old_exe_file;
738 * It is safe to dereference the exe_file without RCU as
739 * this function is only called if nobody else can access
740 * this mm -- see comment above for justification.
742 old_exe_file = rcu_dereference_raw(mm->exe_file);
744 if (new_exe_file)
745 get_file(new_exe_file);
746 rcu_assign_pointer(mm->exe_file, new_exe_file);
747 if (old_exe_file)
748 fput(old_exe_file);
752 * get_mm_exe_file - acquire a reference to the mm's executable file
754 * Returns %NULL if mm has no associated executable file.
755 * User must release file via fput().
757 struct file *get_mm_exe_file(struct mm_struct *mm)
759 struct file *exe_file;
761 rcu_read_lock();
762 exe_file = rcu_dereference(mm->exe_file);
763 if (exe_file && !get_file_rcu(exe_file))
764 exe_file = NULL;
765 rcu_read_unlock();
766 return exe_file;
768 EXPORT_SYMBOL(get_mm_exe_file);
771 * get_task_exe_file - acquire a reference to the task's executable file
773 * Returns %NULL if task's mm (if any) has no associated executable file or
774 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
775 * User must release file via fput().
777 struct file *get_task_exe_file(struct task_struct *task)
779 struct file *exe_file = NULL;
780 struct mm_struct *mm;
782 task_lock(task);
783 mm = task->mm;
784 if (mm) {
785 if (!(task->flags & PF_KTHREAD))
786 exe_file = get_mm_exe_file(mm);
788 task_unlock(task);
789 return exe_file;
791 EXPORT_SYMBOL(get_task_exe_file);
794 * get_task_mm - acquire a reference to the task's mm
796 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
797 * this kernel workthread has transiently adopted a user mm with use_mm,
798 * to do its AIO) is not set and if so returns a reference to it, after
799 * bumping up the use count. User must release the mm via mmput()
800 * after use. Typically used by /proc and ptrace.
802 struct mm_struct *get_task_mm(struct task_struct *task)
804 struct mm_struct *mm;
806 task_lock(task);
807 mm = task->mm;
808 if (mm) {
809 if (task->flags & PF_KTHREAD)
810 mm = NULL;
811 else
812 atomic_inc(&mm->mm_users);
814 task_unlock(task);
815 return mm;
817 EXPORT_SYMBOL_GPL(get_task_mm);
819 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
821 struct mm_struct *mm;
822 int err;
824 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
825 if (err)
826 return ERR_PTR(err);
828 mm = get_task_mm(task);
829 if (mm && mm != current->mm &&
830 !ptrace_may_access(task, mode)) {
831 mmput(mm);
832 mm = ERR_PTR(-EACCES);
834 mutex_unlock(&task->signal->cred_guard_mutex);
836 return mm;
839 static void complete_vfork_done(struct task_struct *tsk)
841 struct completion *vfork;
843 task_lock(tsk);
844 vfork = tsk->vfork_done;
845 if (likely(vfork)) {
846 tsk->vfork_done = NULL;
847 complete(vfork);
849 task_unlock(tsk);
852 static int wait_for_vfork_done(struct task_struct *child,
853 struct completion *vfork)
855 int killed;
857 freezer_do_not_count();
858 killed = wait_for_completion_killable(vfork);
859 freezer_count();
861 if (killed) {
862 task_lock(child);
863 child->vfork_done = NULL;
864 task_unlock(child);
867 put_task_struct(child);
868 return killed;
871 /* Please note the differences between mmput and mm_release.
872 * mmput is called whenever we stop holding onto a mm_struct,
873 * error success whatever.
875 * mm_release is called after a mm_struct has been removed
876 * from the current process.
878 * This difference is important for error handling, when we
879 * only half set up a mm_struct for a new process and need to restore
880 * the old one. Because we mmput the new mm_struct before
881 * restoring the old one. . .
882 * Eric Biederman 10 January 1998
884 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
886 /* Get rid of any futexes when releasing the mm */
887 #ifdef CONFIG_FUTEX
888 if (unlikely(tsk->robust_list)) {
889 exit_robust_list(tsk);
890 tsk->robust_list = NULL;
892 #ifdef CONFIG_COMPAT
893 if (unlikely(tsk->compat_robust_list)) {
894 compat_exit_robust_list(tsk);
895 tsk->compat_robust_list = NULL;
897 #endif
898 if (unlikely(!list_empty(&tsk->pi_state_list)))
899 exit_pi_state_list(tsk);
900 #endif
902 uprobe_free_utask(tsk);
904 /* Get rid of any cached register state */
905 deactivate_mm(tsk, mm);
908 * Signal userspace if we're not exiting with a core dump
909 * because we want to leave the value intact for debugging
910 * purposes.
912 if (tsk->clear_child_tid) {
913 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
914 atomic_read(&mm->mm_users) > 1) {
916 * We don't check the error code - if userspace has
917 * not set up a proper pointer then tough luck.
919 put_user(0, tsk->clear_child_tid);
920 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
921 1, NULL, NULL, 0);
923 tsk->clear_child_tid = NULL;
927 * All done, finally we can wake up parent and return this mm to him.
928 * Also kthread_stop() uses this completion for synchronization.
930 if (tsk->vfork_done)
931 complete_vfork_done(tsk);
935 * Allocate a new mm structure and copy contents from the
936 * mm structure of the passed in task structure.
938 static struct mm_struct *dup_mm(struct task_struct *tsk)
940 struct mm_struct *mm, *oldmm = current->mm;
941 int err;
943 mm = allocate_mm();
944 if (!mm)
945 goto fail_nomem;
947 memcpy(mm, oldmm, sizeof(*mm));
949 if (!mm_init(mm, tsk, mm->user_ns))
950 goto fail_nomem;
952 err = dup_mmap(mm, oldmm);
953 if (err)
954 goto free_pt;
956 mm->hiwater_rss = get_mm_rss(mm);
957 mm->hiwater_vm = mm->total_vm;
959 if (mm->binfmt && !try_module_get(mm->binfmt->module))
960 goto free_pt;
962 return mm;
964 free_pt:
965 /* don't put binfmt in mmput, we haven't got module yet */
966 mm->binfmt = NULL;
967 mmput(mm);
969 fail_nomem:
970 return NULL;
973 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
975 struct mm_struct *mm, *oldmm;
976 int retval;
978 tsk->min_flt = tsk->maj_flt = 0;
979 tsk->nvcsw = tsk->nivcsw = 0;
980 #ifdef CONFIG_DETECT_HUNG_TASK
981 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
982 #endif
984 tsk->mm = NULL;
985 tsk->active_mm = NULL;
988 * Are we cloning a kernel thread?
990 * We need to steal a active VM for that..
992 oldmm = current->mm;
993 if (!oldmm)
994 return 0;
996 /* initialize the new vmacache entries */
997 vmacache_flush(tsk);
999 if (clone_flags & CLONE_VM) {
1000 atomic_inc(&oldmm->mm_users);
1001 mm = oldmm;
1002 goto good_mm;
1005 retval = -ENOMEM;
1006 mm = dup_mm(tsk);
1007 if (!mm)
1008 goto fail_nomem;
1010 good_mm:
1011 tsk->mm = mm;
1012 tsk->active_mm = mm;
1013 return 0;
1015 fail_nomem:
1016 return retval;
1019 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1021 struct fs_struct *fs = current->fs;
1022 if (clone_flags & CLONE_FS) {
1023 /* tsk->fs is already what we want */
1024 spin_lock(&fs->lock);
1025 if (fs->in_exec) {
1026 spin_unlock(&fs->lock);
1027 return -EAGAIN;
1029 fs->users++;
1030 spin_unlock(&fs->lock);
1031 return 0;
1033 tsk->fs = copy_fs_struct(fs);
1034 if (!tsk->fs)
1035 return -ENOMEM;
1036 return 0;
1039 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1041 struct files_struct *oldf, *newf;
1042 int error = 0;
1045 * A background process may not have any files ...
1047 oldf = current->files;
1048 if (!oldf)
1049 goto out;
1051 if (clone_flags & CLONE_FILES) {
1052 atomic_inc(&oldf->count);
1053 goto out;
1056 newf = dup_fd(oldf, &error);
1057 if (!newf)
1058 goto out;
1060 tsk->files = newf;
1061 error = 0;
1062 out:
1063 return error;
1066 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1068 #ifdef CONFIG_BLOCK
1069 struct io_context *ioc = current->io_context;
1070 struct io_context *new_ioc;
1072 if (!ioc)
1073 return 0;
1075 * Share io context with parent, if CLONE_IO is set
1077 if (clone_flags & CLONE_IO) {
1078 ioc_task_link(ioc);
1079 tsk->io_context = ioc;
1080 } else if (ioprio_valid(ioc->ioprio)) {
1081 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1082 if (unlikely(!new_ioc))
1083 return -ENOMEM;
1085 new_ioc->ioprio = ioc->ioprio;
1086 put_io_context(new_ioc);
1088 #endif
1089 return 0;
1092 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1094 struct sighand_struct *sig;
1096 if (clone_flags & CLONE_SIGHAND) {
1097 atomic_inc(&current->sighand->count);
1098 return 0;
1100 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1101 rcu_assign_pointer(tsk->sighand, sig);
1102 if (!sig)
1103 return -ENOMEM;
1105 atomic_set(&sig->count, 1);
1106 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1107 return 0;
1110 void __cleanup_sighand(struct sighand_struct *sighand)
1112 if (atomic_dec_and_test(&sighand->count)) {
1113 signalfd_cleanup(sighand);
1115 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1116 * without an RCU grace period, see __lock_task_sighand().
1118 kmem_cache_free(sighand_cachep, sighand);
1123 * Initialize POSIX timer handling for a thread group.
1125 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1127 unsigned long cpu_limit;
1129 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1130 if (cpu_limit != RLIM_INFINITY) {
1131 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1132 sig->cputimer.running = true;
1135 /* The timer lists. */
1136 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1137 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1138 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1141 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1143 struct signal_struct *sig;
1145 if (clone_flags & CLONE_THREAD)
1146 return 0;
1148 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1149 tsk->signal = sig;
1150 if (!sig)
1151 return -ENOMEM;
1153 sig->nr_threads = 1;
1154 atomic_set(&sig->live, 1);
1155 atomic_set(&sig->sigcnt, 1);
1157 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1158 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1159 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1161 init_waitqueue_head(&sig->wait_chldexit);
1162 sig->curr_target = tsk;
1163 init_sigpending(&sig->shared_pending);
1164 INIT_LIST_HEAD(&sig->posix_timers);
1165 seqlock_init(&sig->stats_lock);
1166 prev_cputime_init(&sig->prev_cputime);
1168 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1169 sig->real_timer.function = it_real_fn;
1171 task_lock(current->group_leader);
1172 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1173 task_unlock(current->group_leader);
1175 posix_cpu_timers_init_group(sig);
1177 tty_audit_fork(sig);
1178 sched_autogroup_fork(sig);
1180 sig->oom_score_adj = current->signal->oom_score_adj;
1181 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1183 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1184 current->signal->is_child_subreaper;
1186 mutex_init(&sig->cred_guard_mutex);
1188 return 0;
1191 static void copy_seccomp(struct task_struct *p)
1193 #ifdef CONFIG_SECCOMP
1195 * Must be called with sighand->lock held, which is common to
1196 * all threads in the group. Holding cred_guard_mutex is not
1197 * needed because this new task is not yet running and cannot
1198 * be racing exec.
1200 assert_spin_locked(&current->sighand->siglock);
1202 /* Ref-count the new filter user, and assign it. */
1203 get_seccomp_filter(current);
1204 p->seccomp = current->seccomp;
1207 * Explicitly enable no_new_privs here in case it got set
1208 * between the task_struct being duplicated and holding the
1209 * sighand lock. The seccomp state and nnp must be in sync.
1211 if (task_no_new_privs(current))
1212 task_set_no_new_privs(p);
1215 * If the parent gained a seccomp mode after copying thread
1216 * flags and between before we held the sighand lock, we have
1217 * to manually enable the seccomp thread flag here.
1219 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1220 set_tsk_thread_flag(p, TIF_SECCOMP);
1221 #endif
1224 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1226 current->clear_child_tid = tidptr;
1228 return task_pid_vnr(current);
1231 static void rt_mutex_init_task(struct task_struct *p)
1233 raw_spin_lock_init(&p->pi_lock);
1234 #ifdef CONFIG_RT_MUTEXES
1235 p->pi_waiters = RB_ROOT;
1236 p->pi_waiters_leftmost = NULL;
1237 p->pi_blocked_on = NULL;
1238 #endif
1242 * Initialize POSIX timer handling for a single task.
1244 static void posix_cpu_timers_init(struct task_struct *tsk)
1246 tsk->cputime_expires.prof_exp = 0;
1247 tsk->cputime_expires.virt_exp = 0;
1248 tsk->cputime_expires.sched_exp = 0;
1249 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1250 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1251 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1254 static inline void
1255 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1257 task->pids[type].pid = pid;
1261 * This creates a new process as a copy of the old one,
1262 * but does not actually start it yet.
1264 * It copies the registers, and all the appropriate
1265 * parts of the process environment (as per the clone
1266 * flags). The actual kick-off is left to the caller.
1268 static struct task_struct *copy_process(unsigned long clone_flags,
1269 unsigned long stack_start,
1270 unsigned long stack_size,
1271 int __user *child_tidptr,
1272 struct pid *pid,
1273 int trace,
1274 unsigned long tls,
1275 int node)
1277 int retval;
1278 struct task_struct *p;
1279 void *cgrp_ss_priv[CGROUP_CANFORK_COUNT] = {};
1281 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1282 return ERR_PTR(-EINVAL);
1284 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1285 return ERR_PTR(-EINVAL);
1288 * Thread groups must share signals as well, and detached threads
1289 * can only be started up within the thread group.
1291 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1292 return ERR_PTR(-EINVAL);
1295 * Shared signal handlers imply shared VM. By way of the above,
1296 * thread groups also imply shared VM. Blocking this case allows
1297 * for various simplifications in other code.
1299 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1300 return ERR_PTR(-EINVAL);
1303 * Siblings of global init remain as zombies on exit since they are
1304 * not reaped by their parent (swapper). To solve this and to avoid
1305 * multi-rooted process trees, prevent global and container-inits
1306 * from creating siblings.
1308 if ((clone_flags & CLONE_PARENT) &&
1309 current->signal->flags & SIGNAL_UNKILLABLE)
1310 return ERR_PTR(-EINVAL);
1313 * If the new process will be in a different pid or user namespace
1314 * do not allow it to share a thread group with the forking task.
1316 if (clone_flags & CLONE_THREAD) {
1317 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1318 (task_active_pid_ns(current) !=
1319 current->nsproxy->pid_ns_for_children))
1320 return ERR_PTR(-EINVAL);
1323 retval = security_task_create(clone_flags);
1324 if (retval)
1325 goto fork_out;
1327 retval = -ENOMEM;
1328 p = dup_task_struct(current, node);
1329 if (!p)
1330 goto fork_out;
1332 ftrace_graph_init_task(p);
1334 rt_mutex_init_task(p);
1336 #ifdef CONFIG_PROVE_LOCKING
1337 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1338 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1339 #endif
1340 retval = -EAGAIN;
1341 if (atomic_read(&p->real_cred->user->processes) >=
1342 task_rlimit(p, RLIMIT_NPROC)) {
1343 if (p->real_cred->user != INIT_USER &&
1344 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1345 goto bad_fork_free;
1347 current->flags &= ~PF_NPROC_EXCEEDED;
1349 retval = copy_creds(p, clone_flags);
1350 if (retval < 0)
1351 goto bad_fork_free;
1354 * If multiple threads are within copy_process(), then this check
1355 * triggers too late. This doesn't hurt, the check is only there
1356 * to stop root fork bombs.
1358 retval = -EAGAIN;
1359 if (nr_threads >= max_threads)
1360 goto bad_fork_cleanup_count;
1362 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1363 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1364 p->flags |= PF_FORKNOEXEC;
1365 INIT_LIST_HEAD(&p->children);
1366 INIT_LIST_HEAD(&p->sibling);
1367 rcu_copy_process(p);
1368 p->vfork_done = NULL;
1369 spin_lock_init(&p->alloc_lock);
1371 init_sigpending(&p->pending);
1373 p->utime = p->stime = p->gtime = 0;
1374 p->utimescaled = p->stimescaled = 0;
1375 prev_cputime_init(&p->prev_cputime);
1377 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1378 seqlock_init(&p->vtime_seqlock);
1379 p->vtime_snap = 0;
1380 p->vtime_snap_whence = VTIME_SLEEPING;
1381 #endif
1383 #if defined(SPLIT_RSS_COUNTING)
1384 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1385 #endif
1387 p->default_timer_slack_ns = current->timer_slack_ns;
1389 task_io_accounting_init(&p->ioac);
1390 acct_clear_integrals(p);
1392 posix_cpu_timers_init(p);
1394 p->start_time = ktime_get_ns();
1395 p->real_start_time = ktime_get_boot_ns();
1396 p->io_context = NULL;
1397 p->audit_context = NULL;
1398 cgroup_fork(p);
1399 #ifdef CONFIG_NUMA
1400 p->mempolicy = mpol_dup(p->mempolicy);
1401 if (IS_ERR(p->mempolicy)) {
1402 retval = PTR_ERR(p->mempolicy);
1403 p->mempolicy = NULL;
1404 goto bad_fork_cleanup_threadgroup_lock;
1406 #endif
1407 #ifdef CONFIG_CPUSETS
1408 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1409 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1410 seqcount_init(&p->mems_allowed_seq);
1411 #endif
1412 #ifdef CONFIG_TRACE_IRQFLAGS
1413 p->irq_events = 0;
1414 p->hardirqs_enabled = 0;
1415 p->hardirq_enable_ip = 0;
1416 p->hardirq_enable_event = 0;
1417 p->hardirq_disable_ip = _THIS_IP_;
1418 p->hardirq_disable_event = 0;
1419 p->softirqs_enabled = 1;
1420 p->softirq_enable_ip = _THIS_IP_;
1421 p->softirq_enable_event = 0;
1422 p->softirq_disable_ip = 0;
1423 p->softirq_disable_event = 0;
1424 p->hardirq_context = 0;
1425 p->softirq_context = 0;
1426 #endif
1428 p->pagefault_disabled = 0;
1430 #ifdef CONFIG_LOCKDEP
1431 p->lockdep_depth = 0; /* no locks held yet */
1432 p->curr_chain_key = 0;
1433 p->lockdep_recursion = 0;
1434 #endif
1436 #ifdef CONFIG_DEBUG_MUTEXES
1437 p->blocked_on = NULL; /* not blocked yet */
1438 #endif
1439 #ifdef CONFIG_BCACHE
1440 p->sequential_io = 0;
1441 p->sequential_io_avg = 0;
1442 #endif
1444 /* Perform scheduler related setup. Assign this task to a CPU. */
1445 retval = sched_fork(clone_flags, p);
1446 if (retval)
1447 goto bad_fork_cleanup_policy;
1449 retval = perf_event_init_task(p);
1450 if (retval)
1451 goto bad_fork_cleanup_policy;
1452 retval = audit_alloc(p);
1453 if (retval)
1454 goto bad_fork_cleanup_perf;
1455 /* copy all the process information */
1456 shm_init_task(p);
1457 retval = copy_semundo(clone_flags, p);
1458 if (retval)
1459 goto bad_fork_cleanup_audit;
1460 retval = copy_files(clone_flags, p);
1461 if (retval)
1462 goto bad_fork_cleanup_semundo;
1463 retval = copy_fs(clone_flags, p);
1464 if (retval)
1465 goto bad_fork_cleanup_files;
1466 retval = copy_sighand(clone_flags, p);
1467 if (retval)
1468 goto bad_fork_cleanup_fs;
1469 retval = copy_signal(clone_flags, p);
1470 if (retval)
1471 goto bad_fork_cleanup_sighand;
1472 retval = copy_mm(clone_flags, p);
1473 if (retval)
1474 goto bad_fork_cleanup_signal;
1475 retval = copy_namespaces(clone_flags, p);
1476 if (retval)
1477 goto bad_fork_cleanup_mm;
1478 retval = copy_io(clone_flags, p);
1479 if (retval)
1480 goto bad_fork_cleanup_namespaces;
1481 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1482 if (retval)
1483 goto bad_fork_cleanup_io;
1485 if (pid != &init_struct_pid) {
1486 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1487 if (IS_ERR(pid)) {
1488 retval = PTR_ERR(pid);
1489 goto bad_fork_cleanup_io;
1493 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1495 * Clear TID on mm_release()?
1497 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1498 #ifdef CONFIG_BLOCK
1499 p->plug = NULL;
1500 #endif
1501 #ifdef CONFIG_FUTEX
1502 p->robust_list = NULL;
1503 #ifdef CONFIG_COMPAT
1504 p->compat_robust_list = NULL;
1505 #endif
1506 INIT_LIST_HEAD(&p->pi_state_list);
1507 p->pi_state_cache = NULL;
1508 #endif
1510 * sigaltstack should be cleared when sharing the same VM
1512 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1513 p->sas_ss_sp = p->sas_ss_size = 0;
1516 * Syscall tracing and stepping should be turned off in the
1517 * child regardless of CLONE_PTRACE.
1519 user_disable_single_step(p);
1520 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1521 #ifdef TIF_SYSCALL_EMU
1522 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1523 #endif
1524 clear_all_latency_tracing(p);
1526 /* ok, now we should be set up.. */
1527 p->pid = pid_nr(pid);
1528 if (clone_flags & CLONE_THREAD) {
1529 p->exit_signal = -1;
1530 p->group_leader = current->group_leader;
1531 p->tgid = current->tgid;
1532 } else {
1533 if (clone_flags & CLONE_PARENT)
1534 p->exit_signal = current->group_leader->exit_signal;
1535 else
1536 p->exit_signal = (clone_flags & CSIGNAL);
1537 p->group_leader = p;
1538 p->tgid = p->pid;
1541 p->nr_dirtied = 0;
1542 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1543 p->dirty_paused_when = 0;
1545 p->pdeath_signal = 0;
1546 INIT_LIST_HEAD(&p->thread_group);
1547 p->task_works = NULL;
1549 threadgroup_change_begin(current);
1551 * Ensure that the cgroup subsystem policies allow the new process to be
1552 * forked. It should be noted the the new process's css_set can be changed
1553 * between here and cgroup_post_fork() if an organisation operation is in
1554 * progress.
1556 retval = cgroup_can_fork(p, cgrp_ss_priv);
1557 if (retval)
1558 goto bad_fork_free_pid;
1561 * Make it visible to the rest of the system, but dont wake it up yet.
1562 * Need tasklist lock for parent etc handling!
1564 write_lock_irq(&tasklist_lock);
1566 /* CLONE_PARENT re-uses the old parent */
1567 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1568 p->real_parent = current->real_parent;
1569 p->parent_exec_id = current->parent_exec_id;
1570 } else {
1571 p->real_parent = current;
1572 p->parent_exec_id = current->self_exec_id;
1575 spin_lock(&current->sighand->siglock);
1578 * Copy seccomp details explicitly here, in case they were changed
1579 * before holding sighand lock.
1581 copy_seccomp(p);
1584 * Process group and session signals need to be delivered to just the
1585 * parent before the fork or both the parent and the child after the
1586 * fork. Restart if a signal comes in before we add the new process to
1587 * it's process group.
1588 * A fatal signal pending means that current will exit, so the new
1589 * thread can't slip out of an OOM kill (or normal SIGKILL).
1591 recalc_sigpending();
1592 if (signal_pending(current)) {
1593 retval = -ERESTARTNOINTR;
1594 goto bad_fork_cancel_cgroup;
1596 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1597 retval = -ENOMEM;
1598 goto bad_fork_cancel_cgroup;
1601 if (likely(p->pid)) {
1602 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1604 init_task_pid(p, PIDTYPE_PID, pid);
1605 if (thread_group_leader(p)) {
1606 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1607 init_task_pid(p, PIDTYPE_SID, task_session(current));
1609 if (is_child_reaper(pid)) {
1610 ns_of_pid(pid)->child_reaper = p;
1611 p->signal->flags |= SIGNAL_UNKILLABLE;
1614 p->signal->leader_pid = pid;
1615 p->signal->tty = tty_kref_get(current->signal->tty);
1616 list_add_tail(&p->sibling, &p->real_parent->children);
1617 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1618 attach_pid(p, PIDTYPE_PGID);
1619 attach_pid(p, PIDTYPE_SID);
1620 __this_cpu_inc(process_counts);
1621 } else {
1622 current->signal->nr_threads++;
1623 atomic_inc(&current->signal->live);
1624 atomic_inc(&current->signal->sigcnt);
1625 list_add_tail_rcu(&p->thread_group,
1626 &p->group_leader->thread_group);
1627 list_add_tail_rcu(&p->thread_node,
1628 &p->signal->thread_head);
1630 attach_pid(p, PIDTYPE_PID);
1631 nr_threads++;
1634 total_forks++;
1635 spin_unlock(&current->sighand->siglock);
1636 syscall_tracepoint_update(p);
1637 write_unlock_irq(&tasklist_lock);
1639 proc_fork_connector(p);
1640 cgroup_post_fork(p, cgrp_ss_priv);
1641 threadgroup_change_end(current);
1642 perf_event_fork(p);
1644 trace_task_newtask(p, clone_flags);
1645 uprobe_copy_process(p, clone_flags);
1647 return p;
1649 bad_fork_cancel_cgroup:
1650 spin_unlock(&current->sighand->siglock);
1651 write_unlock_irq(&tasklist_lock);
1652 cgroup_cancel_fork(p, cgrp_ss_priv);
1653 bad_fork_free_pid:
1654 threadgroup_change_end(current);
1655 if (pid != &init_struct_pid)
1656 free_pid(pid);
1657 bad_fork_cleanup_io:
1658 if (p->io_context)
1659 exit_io_context(p);
1660 bad_fork_cleanup_namespaces:
1661 exit_task_namespaces(p);
1662 bad_fork_cleanup_mm:
1663 if (p->mm)
1664 mmput(p->mm);
1665 bad_fork_cleanup_signal:
1666 if (!(clone_flags & CLONE_THREAD))
1667 free_signal_struct(p->signal);
1668 bad_fork_cleanup_sighand:
1669 __cleanup_sighand(p->sighand);
1670 bad_fork_cleanup_fs:
1671 exit_fs(p); /* blocking */
1672 bad_fork_cleanup_files:
1673 exit_files(p); /* blocking */
1674 bad_fork_cleanup_semundo:
1675 exit_sem(p);
1676 bad_fork_cleanup_audit:
1677 audit_free(p);
1678 bad_fork_cleanup_perf:
1679 perf_event_free_task(p);
1680 bad_fork_cleanup_policy:
1681 #ifdef CONFIG_NUMA
1682 mpol_put(p->mempolicy);
1683 bad_fork_cleanup_threadgroup_lock:
1684 #endif
1685 delayacct_tsk_free(p);
1686 bad_fork_cleanup_count:
1687 atomic_dec(&p->cred->user->processes);
1688 exit_creds(p);
1689 bad_fork_free:
1690 free_task(p);
1691 fork_out:
1692 return ERR_PTR(retval);
1695 static inline void init_idle_pids(struct pid_link *links)
1697 enum pid_type type;
1699 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1700 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1701 links[type].pid = &init_struct_pid;
1705 struct task_struct *fork_idle(int cpu)
1707 struct task_struct *task;
1708 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1709 cpu_to_node(cpu));
1710 if (!IS_ERR(task)) {
1711 init_idle_pids(task->pids);
1712 init_idle(task, cpu);
1715 return task;
1719 * Ok, this is the main fork-routine.
1721 * It copies the process, and if successful kick-starts
1722 * it and waits for it to finish using the VM if required.
1724 long _do_fork(unsigned long clone_flags,
1725 unsigned long stack_start,
1726 unsigned long stack_size,
1727 int __user *parent_tidptr,
1728 int __user *child_tidptr,
1729 unsigned long tls)
1731 struct task_struct *p;
1732 int trace = 0;
1733 long nr;
1736 * Determine whether and which event to report to ptracer. When
1737 * called from kernel_thread or CLONE_UNTRACED is explicitly
1738 * requested, no event is reported; otherwise, report if the event
1739 * for the type of forking is enabled.
1741 if (!(clone_flags & CLONE_UNTRACED)) {
1742 if (clone_flags & CLONE_VFORK)
1743 trace = PTRACE_EVENT_VFORK;
1744 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1745 trace = PTRACE_EVENT_CLONE;
1746 else
1747 trace = PTRACE_EVENT_FORK;
1749 if (likely(!ptrace_event_enabled(current, trace)))
1750 trace = 0;
1753 p = copy_process(clone_flags, stack_start, stack_size,
1754 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1756 * Do this prior waking up the new thread - the thread pointer
1757 * might get invalid after that point, if the thread exits quickly.
1759 if (!IS_ERR(p)) {
1760 struct completion vfork;
1761 struct pid *pid;
1763 trace_sched_process_fork(current, p);
1765 pid = get_task_pid(p, PIDTYPE_PID);
1766 nr = pid_vnr(pid);
1768 if (clone_flags & CLONE_PARENT_SETTID)
1769 put_user(nr, parent_tidptr);
1771 if (clone_flags & CLONE_VFORK) {
1772 p->vfork_done = &vfork;
1773 init_completion(&vfork);
1774 get_task_struct(p);
1777 wake_up_new_task(p);
1779 /* forking complete and child started to run, tell ptracer */
1780 if (unlikely(trace))
1781 ptrace_event_pid(trace, pid);
1783 if (clone_flags & CLONE_VFORK) {
1784 if (!wait_for_vfork_done(p, &vfork))
1785 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1788 put_pid(pid);
1789 } else {
1790 nr = PTR_ERR(p);
1792 return nr;
1795 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1796 /* For compatibility with architectures that call do_fork directly rather than
1797 * using the syscall entry points below. */
1798 long do_fork(unsigned long clone_flags,
1799 unsigned long stack_start,
1800 unsigned long stack_size,
1801 int __user *parent_tidptr,
1802 int __user *child_tidptr)
1804 return _do_fork(clone_flags, stack_start, stack_size,
1805 parent_tidptr, child_tidptr, 0);
1807 #endif
1810 * Create a kernel thread.
1812 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1814 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1815 (unsigned long)arg, NULL, NULL, 0);
1818 #ifdef __ARCH_WANT_SYS_FORK
1819 SYSCALL_DEFINE0(fork)
1821 #ifdef CONFIG_MMU
1822 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1823 #else
1824 /* can not support in nommu mode */
1825 return -EINVAL;
1826 #endif
1828 #endif
1830 #ifdef __ARCH_WANT_SYS_VFORK
1831 SYSCALL_DEFINE0(vfork)
1833 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1834 0, NULL, NULL, 0);
1836 #endif
1838 #ifdef __ARCH_WANT_SYS_CLONE
1839 #ifdef CONFIG_CLONE_BACKWARDS
1840 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1841 int __user *, parent_tidptr,
1842 unsigned long, tls,
1843 int __user *, child_tidptr)
1844 #elif defined(CONFIG_CLONE_BACKWARDS2)
1845 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1846 int __user *, parent_tidptr,
1847 int __user *, child_tidptr,
1848 unsigned long, tls)
1849 #elif defined(CONFIG_CLONE_BACKWARDS3)
1850 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1851 int, stack_size,
1852 int __user *, parent_tidptr,
1853 int __user *, child_tidptr,
1854 unsigned long, tls)
1855 #else
1856 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1857 int __user *, parent_tidptr,
1858 int __user *, child_tidptr,
1859 unsigned long, tls)
1860 #endif
1862 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1864 #endif
1866 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1867 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1868 #endif
1870 static void sighand_ctor(void *data)
1872 struct sighand_struct *sighand = data;
1874 spin_lock_init(&sighand->siglock);
1875 init_waitqueue_head(&sighand->signalfd_wqh);
1878 void __init proc_caches_init(void)
1880 sighand_cachep = kmem_cache_create("sighand_cache",
1881 sizeof(struct sighand_struct), 0,
1882 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1883 SLAB_NOTRACK, sighand_ctor);
1884 signal_cachep = kmem_cache_create("signal_cache",
1885 sizeof(struct signal_struct), 0,
1886 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1887 files_cachep = kmem_cache_create("files_cache",
1888 sizeof(struct files_struct), 0,
1889 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1890 fs_cachep = kmem_cache_create("fs_cache",
1891 sizeof(struct fs_struct), 0,
1892 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1894 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1895 * whole struct cpumask for the OFFSTACK case. We could change
1896 * this to *only* allocate as much of it as required by the
1897 * maximum number of CPU's we can ever have. The cpumask_allocation
1898 * is at the end of the structure, exactly for that reason.
1900 mm_cachep = kmem_cache_create("mm_struct",
1901 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1902 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1903 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1904 mmap_init();
1905 nsproxy_cache_init();
1909 * Check constraints on flags passed to the unshare system call.
1911 static int check_unshare_flags(unsigned long unshare_flags)
1913 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1914 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1915 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1916 CLONE_NEWUSER|CLONE_NEWPID))
1917 return -EINVAL;
1919 * Not implemented, but pretend it works if there is nothing
1920 * to unshare. Note that unsharing the address space or the
1921 * signal handlers also need to unshare the signal queues (aka
1922 * CLONE_THREAD).
1924 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1925 if (!thread_group_empty(current))
1926 return -EINVAL;
1928 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
1929 if (atomic_read(&current->sighand->count) > 1)
1930 return -EINVAL;
1932 if (unshare_flags & CLONE_VM) {
1933 if (!current_is_single_threaded())
1934 return -EINVAL;
1937 return 0;
1941 * Unshare the filesystem structure if it is being shared
1943 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1945 struct fs_struct *fs = current->fs;
1947 if (!(unshare_flags & CLONE_FS) || !fs)
1948 return 0;
1950 /* don't need lock here; in the worst case we'll do useless copy */
1951 if (fs->users == 1)
1952 return 0;
1954 *new_fsp = copy_fs_struct(fs);
1955 if (!*new_fsp)
1956 return -ENOMEM;
1958 return 0;
1962 * Unshare file descriptor table if it is being shared
1964 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1966 struct files_struct *fd = current->files;
1967 int error = 0;
1969 if ((unshare_flags & CLONE_FILES) &&
1970 (fd && atomic_read(&fd->count) > 1)) {
1971 *new_fdp = dup_fd(fd, &error);
1972 if (!*new_fdp)
1973 return error;
1976 return 0;
1980 * unshare allows a process to 'unshare' part of the process
1981 * context which was originally shared using clone. copy_*
1982 * functions used by do_fork() cannot be used here directly
1983 * because they modify an inactive task_struct that is being
1984 * constructed. Here we are modifying the current, active,
1985 * task_struct.
1987 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1989 struct fs_struct *fs, *new_fs = NULL;
1990 struct files_struct *fd, *new_fd = NULL;
1991 struct cred *new_cred = NULL;
1992 struct nsproxy *new_nsproxy = NULL;
1993 int do_sysvsem = 0;
1994 int err;
1997 * If unsharing a user namespace must also unshare the thread group
1998 * and unshare the filesystem root and working directories.
2000 if (unshare_flags & CLONE_NEWUSER)
2001 unshare_flags |= CLONE_THREAD | CLONE_FS;
2003 * If unsharing vm, must also unshare signal handlers.
2005 if (unshare_flags & CLONE_VM)
2006 unshare_flags |= CLONE_SIGHAND;
2008 * If unsharing a signal handlers, must also unshare the signal queues.
2010 if (unshare_flags & CLONE_SIGHAND)
2011 unshare_flags |= CLONE_THREAD;
2013 * If unsharing namespace, must also unshare filesystem information.
2015 if (unshare_flags & CLONE_NEWNS)
2016 unshare_flags |= CLONE_FS;
2018 err = check_unshare_flags(unshare_flags);
2019 if (err)
2020 goto bad_unshare_out;
2022 * CLONE_NEWIPC must also detach from the undolist: after switching
2023 * to a new ipc namespace, the semaphore arrays from the old
2024 * namespace are unreachable.
2026 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2027 do_sysvsem = 1;
2028 err = unshare_fs(unshare_flags, &new_fs);
2029 if (err)
2030 goto bad_unshare_out;
2031 err = unshare_fd(unshare_flags, &new_fd);
2032 if (err)
2033 goto bad_unshare_cleanup_fs;
2034 err = unshare_userns(unshare_flags, &new_cred);
2035 if (err)
2036 goto bad_unshare_cleanup_fd;
2037 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2038 new_cred, new_fs);
2039 if (err)
2040 goto bad_unshare_cleanup_cred;
2042 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2043 if (do_sysvsem) {
2045 * CLONE_SYSVSEM is equivalent to sys_exit().
2047 exit_sem(current);
2049 if (unshare_flags & CLONE_NEWIPC) {
2050 /* Orphan segments in old ns (see sem above). */
2051 exit_shm(current);
2052 shm_init_task(current);
2055 if (new_nsproxy)
2056 switch_task_namespaces(current, new_nsproxy);
2058 task_lock(current);
2060 if (new_fs) {
2061 fs = current->fs;
2062 spin_lock(&fs->lock);
2063 current->fs = new_fs;
2064 if (--fs->users)
2065 new_fs = NULL;
2066 else
2067 new_fs = fs;
2068 spin_unlock(&fs->lock);
2071 if (new_fd) {
2072 fd = current->files;
2073 current->files = new_fd;
2074 new_fd = fd;
2077 task_unlock(current);
2079 if (new_cred) {
2080 /* Install the new user namespace */
2081 commit_creds(new_cred);
2082 new_cred = NULL;
2086 bad_unshare_cleanup_cred:
2087 if (new_cred)
2088 put_cred(new_cred);
2089 bad_unshare_cleanup_fd:
2090 if (new_fd)
2091 put_files_struct(new_fd);
2093 bad_unshare_cleanup_fs:
2094 if (new_fs)
2095 free_fs_struct(new_fs);
2097 bad_unshare_out:
2098 return err;
2102 * Helper to unshare the files of the current task.
2103 * We don't want to expose copy_files internals to
2104 * the exec layer of the kernel.
2107 int unshare_files(struct files_struct **displaced)
2109 struct task_struct *task = current;
2110 struct files_struct *copy = NULL;
2111 int error;
2113 error = unshare_fd(CLONE_FILES, &copy);
2114 if (error || !copy) {
2115 *displaced = NULL;
2116 return error;
2118 *displaced = task->files;
2119 task_lock(task);
2120 task->files = copy;
2121 task_unlock(task);
2122 return 0;
2125 int sysctl_max_threads(struct ctl_table *table, int write,
2126 void __user *buffer, size_t *lenp, loff_t *ppos)
2128 struct ctl_table t;
2129 int ret;
2130 int threads = max_threads;
2131 int min = MIN_THREADS;
2132 int max = MAX_THREADS;
2134 t = *table;
2135 t.data = &threads;
2136 t.extra1 = &min;
2137 t.extra2 = &max;
2139 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2140 if (ret || !write)
2141 return ret;
2143 set_max_threads(threads);
2145 return 0;