1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/user_namespace.h>
31 #include <linux/personality.h>
34 * If a non-root user executes a setuid-root binary in
35 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
36 * However if fE is also set, then the intent is for only
37 * the file capabilities to be applied, and the setuid-root
38 * bit is left on either to change the uid (plausible) or
39 * to get full privilege on a kernel without file capabilities
40 * support. So in that case we do not raise capabilities.
42 * Warn if that happens, once per boot.
44 static void warn_setuid_and_fcaps_mixed(const char *fname
)
48 printk(KERN_INFO
"warning: `%s' has both setuid-root and"
49 " effective capabilities. Therefore not raising all"
50 " capabilities.\n", fname
);
55 int cap_netlink_send(struct sock
*sk
, struct sk_buff
*skb
)
61 * cap_capable - Determine whether a task has a particular effective capability
62 * @cred: The credentials to use
63 * @ns: The user namespace in which we need the capability
64 * @cap: The capability to check for
65 * @audit: Whether to write an audit message or not
67 * Determine whether the nominated task has the specified capability amongst
68 * its effective set, returning 0 if it does, -ve if it does not.
70 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
71 * and has_capability() functions. That is, it has the reverse semantics:
72 * cap_has_capability() returns 0 when a task has a capability, but the
73 * kernel's capable() and has_capability() returns 1 for this case.
75 int cap_capable(const struct cred
*cred
, struct user_namespace
*targ_ns
,
79 /* The creator of the user namespace has all caps. */
80 if (targ_ns
!= &init_user_ns
&& targ_ns
->creator
== cred
->user
)
83 /* Do we have the necessary capabilities? */
84 if (targ_ns
== cred
->user
->user_ns
)
85 return cap_raised(cred
->cap_effective
, cap
) ? 0 : -EPERM
;
87 /* Have we tried all of the parent namespaces? */
88 if (targ_ns
== &init_user_ns
)
92 *If you have a capability in a parent user ns, then you have
93 * it over all children user namespaces as well.
95 targ_ns
= targ_ns
->creator
->user_ns
;
98 /* We never get here */
102 * cap_settime - Determine whether the current process may set the system clock
103 * @ts: The time to set
104 * @tz: The timezone to set
106 * Determine whether the current process may set the system clock and timezone
107 * information, returning 0 if permission granted, -ve if denied.
109 int cap_settime(const struct timespec
*ts
, const struct timezone
*tz
)
111 if (!capable(CAP_SYS_TIME
))
117 * cap_ptrace_access_check - Determine whether the current process may access
119 * @child: The process to be accessed
120 * @mode: The mode of attachment.
122 * If we are in the same or an ancestor user_ns and have all the target
123 * task's capabilities, then ptrace access is allowed.
124 * If we have the ptrace capability to the target user_ns, then ptrace
128 * Determine whether a process may access another, returning 0 if permission
129 * granted, -ve if denied.
131 int cap_ptrace_access_check(struct task_struct
*child
, unsigned int mode
)
134 const struct cred
*cred
, *child_cred
;
137 cred
= current_cred();
138 child_cred
= __task_cred(child
);
139 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
140 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
142 if (ns_capable(child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
151 * cap_ptrace_traceme - Determine whether another process may trace the current
152 * @parent: The task proposed to be the tracer
154 * If parent is in the same or an ancestor user_ns and has all current's
155 * capabilities, then ptrace access is allowed.
156 * If parent has the ptrace capability to current's user_ns, then ptrace
160 * Determine whether the nominated task is permitted to trace the current
161 * process, returning 0 if permission is granted, -ve if denied.
163 int cap_ptrace_traceme(struct task_struct
*parent
)
166 const struct cred
*cred
, *child_cred
;
169 cred
= __task_cred(parent
);
170 child_cred
= current_cred();
171 if (cred
->user
->user_ns
== child_cred
->user
->user_ns
&&
172 cap_issubset(child_cred
->cap_permitted
, cred
->cap_permitted
))
174 if (has_ns_capability(parent
, child_cred
->user
->user_ns
, CAP_SYS_PTRACE
))
183 * cap_capget - Retrieve a task's capability sets
184 * @target: The task from which to retrieve the capability sets
185 * @effective: The place to record the effective set
186 * @inheritable: The place to record the inheritable set
187 * @permitted: The place to record the permitted set
189 * This function retrieves the capabilities of the nominated task and returns
190 * them to the caller.
192 int cap_capget(struct task_struct
*target
, kernel_cap_t
*effective
,
193 kernel_cap_t
*inheritable
, kernel_cap_t
*permitted
)
195 const struct cred
*cred
;
197 /* Derived from kernel/capability.c:sys_capget. */
199 cred
= __task_cred(target
);
200 *effective
= cred
->cap_effective
;
201 *inheritable
= cred
->cap_inheritable
;
202 *permitted
= cred
->cap_permitted
;
208 * Determine whether the inheritable capabilities are limited to the old
209 * permitted set. Returns 1 if they are limited, 0 if they are not.
211 static inline int cap_inh_is_capped(void)
214 /* they are so limited unless the current task has the CAP_SETPCAP
217 if (cap_capable(current_cred(), current_cred()->user
->user_ns
,
218 CAP_SETPCAP
, SECURITY_CAP_AUDIT
) == 0)
224 * cap_capset - Validate and apply proposed changes to current's capabilities
225 * @new: The proposed new credentials; alterations should be made here
226 * @old: The current task's current credentials
227 * @effective: A pointer to the proposed new effective capabilities set
228 * @inheritable: A pointer to the proposed new inheritable capabilities set
229 * @permitted: A pointer to the proposed new permitted capabilities set
231 * This function validates and applies a proposed mass change to the current
232 * process's capability sets. The changes are made to the proposed new
233 * credentials, and assuming no error, will be committed by the caller of LSM.
235 int cap_capset(struct cred
*new,
236 const struct cred
*old
,
237 const kernel_cap_t
*effective
,
238 const kernel_cap_t
*inheritable
,
239 const kernel_cap_t
*permitted
)
241 if (cap_inh_is_capped() &&
242 !cap_issubset(*inheritable
,
243 cap_combine(old
->cap_inheritable
,
244 old
->cap_permitted
)))
245 /* incapable of using this inheritable set */
248 if (!cap_issubset(*inheritable
,
249 cap_combine(old
->cap_inheritable
,
251 /* no new pI capabilities outside bounding set */
254 /* verify restrictions on target's new Permitted set */
255 if (!cap_issubset(*permitted
, old
->cap_permitted
))
258 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
259 if (!cap_issubset(*effective
, *permitted
))
262 new->cap_effective
= *effective
;
263 new->cap_inheritable
= *inheritable
;
264 new->cap_permitted
= *permitted
;
269 * Clear proposed capability sets for execve().
271 static inline void bprm_clear_caps(struct linux_binprm
*bprm
)
273 cap_clear(bprm
->cred
->cap_permitted
);
274 bprm
->cap_effective
= false;
278 * cap_inode_need_killpriv - Determine if inode change affects privileges
279 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
281 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
282 * affects the security markings on that inode, and if it is, should
283 * inode_killpriv() be invoked or the change rejected?
285 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
286 * -ve to deny the change.
288 int cap_inode_need_killpriv(struct dentry
*dentry
)
290 struct inode
*inode
= dentry
->d_inode
;
293 if (!inode
->i_op
->getxattr
)
296 error
= inode
->i_op
->getxattr(dentry
, XATTR_NAME_CAPS
, NULL
, 0);
303 * cap_inode_killpriv - Erase the security markings on an inode
304 * @dentry: The inode/dentry to alter
306 * Erase the privilege-enhancing security markings on an inode.
308 * Returns 0 if successful, -ve on error.
310 int cap_inode_killpriv(struct dentry
*dentry
)
312 struct inode
*inode
= dentry
->d_inode
;
314 if (!inode
->i_op
->removexattr
)
317 return inode
->i_op
->removexattr(dentry
, XATTR_NAME_CAPS
);
321 * Calculate the new process capability sets from the capability sets attached
324 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data
*caps
,
325 struct linux_binprm
*bprm
,
329 struct cred
*new = bprm
->cred
;
333 if (caps
->magic_etc
& VFS_CAP_FLAGS_EFFECTIVE
)
336 if (caps
->magic_etc
& VFS_CAP_REVISION_MASK
)
339 CAP_FOR_EACH_U32(i
) {
340 __u32 permitted
= caps
->permitted
.cap
[i
];
341 __u32 inheritable
= caps
->inheritable
.cap
[i
];
344 * pP' = (X & fP) | (pI & fI)
346 new->cap_permitted
.cap
[i
] =
347 (new->cap_bset
.cap
[i
] & permitted
) |
348 (new->cap_inheritable
.cap
[i
] & inheritable
);
350 if (permitted
& ~new->cap_permitted
.cap
[i
])
351 /* insufficient to execute correctly */
356 * For legacy apps, with no internal support for recognizing they
357 * do not have enough capabilities, we return an error if they are
358 * missing some "forced" (aka file-permitted) capabilities.
360 return *effective
? ret
: 0;
364 * Extract the on-exec-apply capability sets for an executable file.
366 int get_vfs_caps_from_disk(const struct dentry
*dentry
, struct cpu_vfs_cap_data
*cpu_caps
)
368 struct inode
*inode
= dentry
->d_inode
;
372 struct vfs_cap_data caps
;
374 memset(cpu_caps
, 0, sizeof(struct cpu_vfs_cap_data
));
376 if (!inode
|| !inode
->i_op
->getxattr
)
379 size
= inode
->i_op
->getxattr((struct dentry
*)dentry
, XATTR_NAME_CAPS
, &caps
,
381 if (size
== -ENODATA
|| size
== -EOPNOTSUPP
)
382 /* no data, that's ok */
387 if (size
< sizeof(magic_etc
))
390 cpu_caps
->magic_etc
= magic_etc
= le32_to_cpu(caps
.magic_etc
);
392 switch (magic_etc
& VFS_CAP_REVISION_MASK
) {
393 case VFS_CAP_REVISION_1
:
394 if (size
!= XATTR_CAPS_SZ_1
)
396 tocopy
= VFS_CAP_U32_1
;
398 case VFS_CAP_REVISION_2
:
399 if (size
!= XATTR_CAPS_SZ_2
)
401 tocopy
= VFS_CAP_U32_2
;
407 CAP_FOR_EACH_U32(i
) {
410 cpu_caps
->permitted
.cap
[i
] = le32_to_cpu(caps
.data
[i
].permitted
);
411 cpu_caps
->inheritable
.cap
[i
] = le32_to_cpu(caps
.data
[i
].inheritable
);
418 * Attempt to get the on-exec apply capability sets for an executable file from
419 * its xattrs and, if present, apply them to the proposed credentials being
420 * constructed by execve().
422 static int get_file_caps(struct linux_binprm
*bprm
, bool *effective
, bool *has_cap
)
424 struct dentry
*dentry
;
426 struct cpu_vfs_cap_data vcaps
;
428 bprm_clear_caps(bprm
);
430 if (!file_caps_enabled
)
433 if (bprm
->file
->f_vfsmnt
->mnt_flags
& MNT_NOSUID
)
436 dentry
= dget(bprm
->file
->f_dentry
);
438 rc
= get_vfs_caps_from_disk(dentry
, &vcaps
);
441 printk(KERN_NOTICE
"%s: get_vfs_caps_from_disk returned %d for %s\n",
442 __func__
, rc
, bprm
->filename
);
443 else if (rc
== -ENODATA
)
448 rc
= bprm_caps_from_vfs_caps(&vcaps
, bprm
, effective
, has_cap
);
450 printk(KERN_NOTICE
"%s: cap_from_disk returned %d for %s\n",
451 __func__
, rc
, bprm
->filename
);
456 bprm_clear_caps(bprm
);
462 * cap_bprm_set_creds - Set up the proposed credentials for execve().
463 * @bprm: The execution parameters, including the proposed creds
465 * Set up the proposed credentials for a new execution context being
466 * constructed by execve(). The proposed creds in @bprm->cred is altered,
467 * which won't take effect immediately. Returns 0 if successful, -ve on error.
469 int cap_bprm_set_creds(struct linux_binprm
*bprm
)
471 const struct cred
*old
= current_cred();
472 struct cred
*new = bprm
->cred
;
473 bool effective
, has_cap
= false;
477 ret
= get_file_caps(bprm
, &effective
, &has_cap
);
481 if (!issecure(SECURE_NOROOT
)) {
483 * If the legacy file capability is set, then don't set privs
484 * for a setuid root binary run by a non-root user. Do set it
485 * for a root user just to cause least surprise to an admin.
487 if (has_cap
&& new->uid
!= 0 && new->euid
== 0) {
488 warn_setuid_and_fcaps_mixed(bprm
->filename
);
492 * To support inheritance of root-permissions and suid-root
493 * executables under compatibility mode, we override the
494 * capability sets for the file.
496 * If only the real uid is 0, we do not set the effective bit.
498 if (new->euid
== 0 || new->uid
== 0) {
499 /* pP' = (cap_bset & ~0) | (pI & ~0) */
500 new->cap_permitted
= cap_combine(old
->cap_bset
,
501 old
->cap_inheritable
);
508 /* if we have fs caps, clear dangerous personality flags */
509 if (!cap_issubset(new->cap_permitted
, old
->cap_permitted
))
510 bprm
->per_clear
|= PER_CLEAR_ON_SETID
;
513 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
514 * credentials unless they have the appropriate permit
516 if ((new->euid
!= old
->uid
||
517 new->egid
!= old
->gid
||
518 !cap_issubset(new->cap_permitted
, old
->cap_permitted
)) &&
519 bprm
->unsafe
& ~LSM_UNSAFE_PTRACE_CAP
) {
520 /* downgrade; they get no more than they had, and maybe less */
521 if (!capable(CAP_SETUID
)) {
522 new->euid
= new->uid
;
523 new->egid
= new->gid
;
525 new->cap_permitted
= cap_intersect(new->cap_permitted
,
529 new->suid
= new->fsuid
= new->euid
;
530 new->sgid
= new->fsgid
= new->egid
;
533 new->cap_effective
= new->cap_permitted
;
535 cap_clear(new->cap_effective
);
536 bprm
->cap_effective
= effective
;
539 * Audit candidate if current->cap_effective is set
541 * We do not bother to audit if 3 things are true:
542 * 1) cap_effective has all caps
544 * 3) root is supposed to have all caps (SECURE_NOROOT)
545 * Since this is just a normal root execing a process.
547 * Number 1 above might fail if you don't have a full bset, but I think
548 * that is interesting information to audit.
550 if (!cap_isclear(new->cap_effective
)) {
551 if (!cap_issubset(CAP_FULL_SET
, new->cap_effective
) ||
552 new->euid
!= 0 || new->uid
!= 0 ||
553 issecure(SECURE_NOROOT
)) {
554 ret
= audit_log_bprm_fcaps(bprm
, new, old
);
560 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
565 * cap_bprm_secureexec - Determine whether a secure execution is required
566 * @bprm: The execution parameters
568 * Determine whether a secure execution is required, return 1 if it is, and 0
571 * The credentials have been committed by this point, and so are no longer
572 * available through @bprm->cred.
574 int cap_bprm_secureexec(struct linux_binprm
*bprm
)
576 const struct cred
*cred
= current_cred();
578 if (cred
->uid
!= 0) {
579 if (bprm
->cap_effective
)
581 if (!cap_isclear(cred
->cap_permitted
))
585 return (cred
->euid
!= cred
->uid
||
586 cred
->egid
!= cred
->gid
);
590 * cap_inode_setxattr - Determine whether an xattr may be altered
591 * @dentry: The inode/dentry being altered
592 * @name: The name of the xattr to be changed
593 * @value: The value that the xattr will be changed to
594 * @size: The size of value
595 * @flags: The replacement flag
597 * Determine whether an xattr may be altered or set on an inode, returning 0 if
598 * permission is granted, -ve if denied.
600 * This is used to make sure security xattrs don't get updated or set by those
601 * who aren't privileged to do so.
603 int cap_inode_setxattr(struct dentry
*dentry
, const char *name
,
604 const void *value
, size_t size
, int flags
)
606 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
607 if (!capable(CAP_SETFCAP
))
612 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
613 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
614 !capable(CAP_SYS_ADMIN
))
620 * cap_inode_removexattr - Determine whether an xattr may be removed
621 * @dentry: The inode/dentry being altered
622 * @name: The name of the xattr to be changed
624 * Determine whether an xattr may be removed from an inode, returning 0 if
625 * permission is granted, -ve if denied.
627 * This is used to make sure security xattrs don't get removed by those who
628 * aren't privileged to remove them.
630 int cap_inode_removexattr(struct dentry
*dentry
, const char *name
)
632 if (!strcmp(name
, XATTR_NAME_CAPS
)) {
633 if (!capable(CAP_SETFCAP
))
638 if (!strncmp(name
, XATTR_SECURITY_PREFIX
,
639 sizeof(XATTR_SECURITY_PREFIX
) - 1) &&
640 !capable(CAP_SYS_ADMIN
))
646 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
647 * a process after a call to setuid, setreuid, or setresuid.
649 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
650 * {r,e,s}uid != 0, the permitted and effective capabilities are
653 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
654 * capabilities of the process are cleared.
656 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
657 * capabilities are set to the permitted capabilities.
659 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
664 * cevans - New behaviour, Oct '99
665 * A process may, via prctl(), elect to keep its capabilities when it
666 * calls setuid() and switches away from uid==0. Both permitted and
667 * effective sets will be retained.
668 * Without this change, it was impossible for a daemon to drop only some
669 * of its privilege. The call to setuid(!=0) would drop all privileges!
670 * Keeping uid 0 is not an option because uid 0 owns too many vital
672 * Thanks to Olaf Kirch and Peter Benie for spotting this.
674 static inline void cap_emulate_setxuid(struct cred
*new, const struct cred
*old
)
676 if ((old
->uid
== 0 || old
->euid
== 0 || old
->suid
== 0) &&
677 (new->uid
!= 0 && new->euid
!= 0 && new->suid
!= 0) &&
678 !issecure(SECURE_KEEP_CAPS
)) {
679 cap_clear(new->cap_permitted
);
680 cap_clear(new->cap_effective
);
682 if (old
->euid
== 0 && new->euid
!= 0)
683 cap_clear(new->cap_effective
);
684 if (old
->euid
!= 0 && new->euid
== 0)
685 new->cap_effective
= new->cap_permitted
;
689 * cap_task_fix_setuid - Fix up the results of setuid() call
690 * @new: The proposed credentials
691 * @old: The current task's current credentials
692 * @flags: Indications of what has changed
694 * Fix up the results of setuid() call before the credential changes are
695 * actually applied, returning 0 to grant the changes, -ve to deny them.
697 int cap_task_fix_setuid(struct cred
*new, const struct cred
*old
, int flags
)
703 /* juggle the capabilities to follow [RES]UID changes unless
704 * otherwise suppressed */
705 if (!issecure(SECURE_NO_SETUID_FIXUP
))
706 cap_emulate_setxuid(new, old
);
710 /* juggle the capabilties to follow FSUID changes, unless
711 * otherwise suppressed
713 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
714 * if not, we might be a bit too harsh here.
716 if (!issecure(SECURE_NO_SETUID_FIXUP
)) {
717 if (old
->fsuid
== 0 && new->fsuid
!= 0)
719 cap_drop_fs_set(new->cap_effective
);
721 if (old
->fsuid
!= 0 && new->fsuid
== 0)
723 cap_raise_fs_set(new->cap_effective
,
736 * Rationale: code calling task_setscheduler, task_setioprio, and
737 * task_setnice, assumes that
738 * . if capable(cap_sys_nice), then those actions should be allowed
739 * . if not capable(cap_sys_nice), but acting on your own processes,
740 * then those actions should be allowed
741 * This is insufficient now since you can call code without suid, but
742 * yet with increased caps.
743 * So we check for increased caps on the target process.
745 static int cap_safe_nice(struct task_struct
*p
)
750 is_subset
= cap_issubset(__task_cred(p
)->cap_permitted
,
751 current_cred()->cap_permitted
);
754 if (!is_subset
&& !capable(CAP_SYS_NICE
))
760 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
761 * @p: The task to affect
763 * Detemine if the requested scheduler policy change is permitted for the
764 * specified task, returning 0 if permission is granted, -ve if denied.
766 int cap_task_setscheduler(struct task_struct
*p
)
768 return cap_safe_nice(p
);
772 * cap_task_ioprio - Detemine if I/O priority change is permitted
773 * @p: The task to affect
774 * @ioprio: The I/O priority to set
776 * Detemine if the requested I/O priority change is permitted for the specified
777 * task, returning 0 if permission is granted, -ve if denied.
779 int cap_task_setioprio(struct task_struct
*p
, int ioprio
)
781 return cap_safe_nice(p
);
785 * cap_task_ioprio - Detemine if task priority change is permitted
786 * @p: The task to affect
787 * @nice: The nice value to set
789 * Detemine if the requested task priority change is permitted for the
790 * specified task, returning 0 if permission is granted, -ve if denied.
792 int cap_task_setnice(struct task_struct
*p
, int nice
)
794 return cap_safe_nice(p
);
798 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
799 * the current task's bounding set. Returns 0 on success, -ve on error.
801 static long cap_prctl_drop(struct cred
*new, unsigned long cap
)
803 if (!capable(CAP_SETPCAP
))
808 cap_lower(new->cap_bset
, cap
);
813 * cap_task_prctl - Implement process control functions for this security module
814 * @option: The process control function requested
815 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
817 * Allow process control functions (sys_prctl()) to alter capabilities; may
818 * also deny access to other functions not otherwise implemented here.
820 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
821 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
822 * modules will consider performing the function.
824 int cap_task_prctl(int option
, unsigned long arg2
, unsigned long arg3
,
825 unsigned long arg4
, unsigned long arg5
)
830 new = prepare_creds();
835 case PR_CAPBSET_READ
:
837 if (!cap_valid(arg2
))
839 error
= !!cap_raised(new->cap_bset
, arg2
);
842 case PR_CAPBSET_DROP
:
843 error
= cap_prctl_drop(new, arg2
);
849 * The next four prctl's remain to assist with transitioning a
850 * system from legacy UID=0 based privilege (when filesystem
851 * capabilities are not in use) to a system using filesystem
852 * capabilities only - as the POSIX.1e draft intended.
856 * PR_SET_SECUREBITS =
857 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
858 * | issecure_mask(SECURE_NOROOT)
859 * | issecure_mask(SECURE_NOROOT_LOCKED)
860 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
861 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
863 * will ensure that the current process and all of its
864 * children will be locked into a pure
865 * capability-based-privilege environment.
867 case PR_SET_SECUREBITS
:
869 if ((((new->securebits
& SECURE_ALL_LOCKS
) >> 1)
870 & (new->securebits
^ arg2
)) /*[1]*/
871 || ((new->securebits
& SECURE_ALL_LOCKS
& ~arg2
)) /*[2]*/
872 || (arg2
& ~(SECURE_ALL_LOCKS
| SECURE_ALL_BITS
)) /*[3]*/
873 || (cap_capable(current_cred(),
874 current_cred()->user
->user_ns
, CAP_SETPCAP
,
875 SECURITY_CAP_AUDIT
) != 0) /*[4]*/
877 * [1] no changing of bits that are locked
878 * [2] no unlocking of locks
879 * [3] no setting of unsupported bits
880 * [4] doing anything requires privilege (go read about
881 * the "sendmail capabilities bug")
884 /* cannot change a locked bit */
886 new->securebits
= arg2
;
889 case PR_GET_SECUREBITS
:
890 error
= new->securebits
;
893 case PR_GET_KEEPCAPS
:
894 if (issecure(SECURE_KEEP_CAPS
))
898 case PR_SET_KEEPCAPS
:
900 if (arg2
> 1) /* Note, we rely on arg2 being unsigned here */
903 if (issecure(SECURE_KEEP_CAPS_LOCKED
))
906 new->securebits
|= issecure_mask(SECURE_KEEP_CAPS
);
908 new->securebits
&= ~issecure_mask(SECURE_KEEP_CAPS
);
912 /* No functionality available - continue with default */
917 /* Functionality provided */
919 return commit_creds(new);
928 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
929 * @mm: The VM space in which the new mapping is to be made
930 * @pages: The size of the mapping
932 * Determine whether the allocation of a new virtual mapping by the current
933 * task is permitted, returning 0 if permission is granted, -ve if not.
935 int cap_vm_enough_memory(struct mm_struct
*mm
, long pages
)
937 int cap_sys_admin
= 0;
939 if (cap_capable(current_cred(), &init_user_ns
, CAP_SYS_ADMIN
,
940 SECURITY_CAP_NOAUDIT
) == 0)
942 return __vm_enough_memory(mm
, pages
, cap_sys_admin
);
946 * cap_file_mmap - check if able to map given addr
951 * @addr: address attempting to be mapped
954 * If the process is attempting to map memory below dac_mmap_min_addr they need
955 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
956 * capability security module. Returns 0 if this mapping should be allowed
959 int cap_file_mmap(struct file
*file
, unsigned long reqprot
,
960 unsigned long prot
, unsigned long flags
,
961 unsigned long addr
, unsigned long addr_only
)
965 if (addr
< dac_mmap_min_addr
) {
966 ret
= cap_capable(current_cred(), &init_user_ns
, CAP_SYS_RAWIO
,
968 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
970 current
->flags
|= PF_SUPERPRIV
;