workqueue: fix how cpu number is stored in work->data
[linux/fpc-iii.git] / kernel / workqueue.c
blobe5cb7faac58ea83d29b25c35e35e8f260296c105
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #include <linux/idr.h>
38 #include "workqueue_sched.h"
40 enum {
41 /* global_cwq flags */
42 GCWQ_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
43 GCWQ_MANAGING_WORKERS = 1 << 1, /* managing workers */
44 GCWQ_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
45 GCWQ_FREEZING = 1 << 3, /* freeze in progress */
46 GCWQ_HIGHPRI_PENDING = 1 << 4, /* highpri works on queue */
48 /* worker flags */
49 WORKER_STARTED = 1 << 0, /* started */
50 WORKER_DIE = 1 << 1, /* die die die */
51 WORKER_IDLE = 1 << 2, /* is idle */
52 WORKER_PREP = 1 << 3, /* preparing to run works */
53 WORKER_ROGUE = 1 << 4, /* not bound to any cpu */
54 WORKER_REBIND = 1 << 5, /* mom is home, come back */
55 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
56 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
58 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_ROGUE | WORKER_REBIND |
59 WORKER_CPU_INTENSIVE | WORKER_UNBOUND,
61 /* gcwq->trustee_state */
62 TRUSTEE_START = 0, /* start */
63 TRUSTEE_IN_CHARGE = 1, /* trustee in charge of gcwq */
64 TRUSTEE_BUTCHER = 2, /* butcher workers */
65 TRUSTEE_RELEASE = 3, /* release workers */
66 TRUSTEE_DONE = 4, /* trustee is done */
68 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
69 BUSY_WORKER_HASH_SIZE = 1 << BUSY_WORKER_HASH_ORDER,
70 BUSY_WORKER_HASH_MASK = BUSY_WORKER_HASH_SIZE - 1,
72 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
73 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
75 MAYDAY_INITIAL_TIMEOUT = HZ / 100, /* call for help after 10ms */
76 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
77 CREATE_COOLDOWN = HZ, /* time to breath after fail */
78 TRUSTEE_COOLDOWN = HZ / 10, /* for trustee draining */
81 * Rescue workers are used only on emergencies and shared by
82 * all cpus. Give -20.
84 RESCUER_NICE_LEVEL = -20,
88 * Structure fields follow one of the following exclusion rules.
90 * I: Set during initialization and read-only afterwards.
92 * P: Preemption protected. Disabling preemption is enough and should
93 * only be modified and accessed from the local cpu.
95 * L: gcwq->lock protected. Access with gcwq->lock held.
97 * X: During normal operation, modification requires gcwq->lock and
98 * should be done only from local cpu. Either disabling preemption
99 * on local cpu or grabbing gcwq->lock is enough for read access.
100 * If GCWQ_DISASSOCIATED is set, it's identical to L.
102 * F: wq->flush_mutex protected.
104 * W: workqueue_lock protected.
107 struct global_cwq;
110 * The poor guys doing the actual heavy lifting. All on-duty workers
111 * are either serving the manager role, on idle list or on busy hash.
113 struct worker {
114 /* on idle list while idle, on busy hash table while busy */
115 union {
116 struct list_head entry; /* L: while idle */
117 struct hlist_node hentry; /* L: while busy */
120 struct work_struct *current_work; /* L: work being processed */
121 struct cpu_workqueue_struct *current_cwq; /* L: current_work's cwq */
122 struct list_head scheduled; /* L: scheduled works */
123 struct task_struct *task; /* I: worker task */
124 struct global_cwq *gcwq; /* I: the associated gcwq */
125 /* 64 bytes boundary on 64bit, 32 on 32bit */
126 unsigned long last_active; /* L: last active timestamp */
127 unsigned int flags; /* X: flags */
128 int id; /* I: worker id */
129 struct work_struct rebind_work; /* L: rebind worker to cpu */
133 * Global per-cpu workqueue. There's one and only one for each cpu
134 * and all works are queued and processed here regardless of their
135 * target workqueues.
137 struct global_cwq {
138 spinlock_t lock; /* the gcwq lock */
139 struct list_head worklist; /* L: list of pending works */
140 unsigned int cpu; /* I: the associated cpu */
141 unsigned int flags; /* L: GCWQ_* flags */
143 int nr_workers; /* L: total number of workers */
144 int nr_idle; /* L: currently idle ones */
146 /* workers are chained either in the idle_list or busy_hash */
147 struct list_head idle_list; /* X: list of idle workers */
148 struct hlist_head busy_hash[BUSY_WORKER_HASH_SIZE];
149 /* L: hash of busy workers */
151 struct timer_list idle_timer; /* L: worker idle timeout */
152 struct timer_list mayday_timer; /* L: SOS timer for dworkers */
154 struct ida worker_ida; /* L: for worker IDs */
156 struct task_struct *trustee; /* L: for gcwq shutdown */
157 unsigned int trustee_state; /* L: trustee state */
158 wait_queue_head_t trustee_wait; /* trustee wait */
159 struct worker *first_idle; /* L: first idle worker */
160 } ____cacheline_aligned_in_smp;
163 * The per-CPU workqueue. The lower WORK_STRUCT_FLAG_BITS of
164 * work_struct->data are used for flags and thus cwqs need to be
165 * aligned at two's power of the number of flag bits.
167 struct cpu_workqueue_struct {
168 struct global_cwq *gcwq; /* I: the associated gcwq */
169 struct workqueue_struct *wq; /* I: the owning workqueue */
170 int work_color; /* L: current color */
171 int flush_color; /* L: flushing color */
172 int nr_in_flight[WORK_NR_COLORS];
173 /* L: nr of in_flight works */
174 int nr_active; /* L: nr of active works */
175 int max_active; /* L: max active works */
176 struct list_head delayed_works; /* L: delayed works */
180 * Structure used to wait for workqueue flush.
182 struct wq_flusher {
183 struct list_head list; /* F: list of flushers */
184 int flush_color; /* F: flush color waiting for */
185 struct completion done; /* flush completion */
189 * All cpumasks are assumed to be always set on UP and thus can't be
190 * used to determine whether there's something to be done.
192 #ifdef CONFIG_SMP
193 typedef cpumask_var_t mayday_mask_t;
194 #define mayday_test_and_set_cpu(cpu, mask) \
195 cpumask_test_and_set_cpu((cpu), (mask))
196 #define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
197 #define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
198 #define alloc_mayday_mask(maskp, gfp) alloc_cpumask_var((maskp), (gfp))
199 #define free_mayday_mask(mask) free_cpumask_var((mask))
200 #else
201 typedef unsigned long mayday_mask_t;
202 #define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
203 #define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
204 #define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
205 #define alloc_mayday_mask(maskp, gfp) true
206 #define free_mayday_mask(mask) do { } while (0)
207 #endif
210 * The externally visible workqueue abstraction is an array of
211 * per-CPU workqueues:
213 struct workqueue_struct {
214 unsigned int flags; /* I: WQ_* flags */
215 union {
216 struct cpu_workqueue_struct __percpu *pcpu;
217 struct cpu_workqueue_struct *single;
218 unsigned long v;
219 } cpu_wq; /* I: cwq's */
220 struct list_head list; /* W: list of all workqueues */
222 struct mutex flush_mutex; /* protects wq flushing */
223 int work_color; /* F: current work color */
224 int flush_color; /* F: current flush color */
225 atomic_t nr_cwqs_to_flush; /* flush in progress */
226 struct wq_flusher *first_flusher; /* F: first flusher */
227 struct list_head flusher_queue; /* F: flush waiters */
228 struct list_head flusher_overflow; /* F: flush overflow list */
230 mayday_mask_t mayday_mask; /* cpus requesting rescue */
231 struct worker *rescuer; /* I: rescue worker */
233 int saved_max_active; /* W: saved cwq max_active */
234 const char *name; /* I: workqueue name */
235 #ifdef CONFIG_LOCKDEP
236 struct lockdep_map lockdep_map;
237 #endif
240 struct workqueue_struct *system_wq __read_mostly;
241 struct workqueue_struct *system_long_wq __read_mostly;
242 struct workqueue_struct *system_nrt_wq __read_mostly;
243 struct workqueue_struct *system_unbound_wq __read_mostly;
244 EXPORT_SYMBOL_GPL(system_wq);
245 EXPORT_SYMBOL_GPL(system_long_wq);
246 EXPORT_SYMBOL_GPL(system_nrt_wq);
247 EXPORT_SYMBOL_GPL(system_unbound_wq);
249 #define for_each_busy_worker(worker, i, pos, gcwq) \
250 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++) \
251 hlist_for_each_entry(worker, pos, &gcwq->busy_hash[i], hentry)
253 static inline int __next_gcwq_cpu(int cpu, const struct cpumask *mask,
254 unsigned int sw)
256 if (cpu < nr_cpu_ids) {
257 if (sw & 1) {
258 cpu = cpumask_next(cpu, mask);
259 if (cpu < nr_cpu_ids)
260 return cpu;
262 if (sw & 2)
263 return WORK_CPU_UNBOUND;
265 return WORK_CPU_NONE;
268 static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
269 struct workqueue_struct *wq)
271 return __next_gcwq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
274 #define for_each_gcwq_cpu(cpu) \
275 for ((cpu) = __next_gcwq_cpu(-1, cpu_possible_mask, 3); \
276 (cpu) < WORK_CPU_NONE; \
277 (cpu) = __next_gcwq_cpu((cpu), cpu_possible_mask, 3))
279 #define for_each_online_gcwq_cpu(cpu) \
280 for ((cpu) = __next_gcwq_cpu(-1, cpu_online_mask, 3); \
281 (cpu) < WORK_CPU_NONE; \
282 (cpu) = __next_gcwq_cpu((cpu), cpu_online_mask, 3))
284 #define for_each_cwq_cpu(cpu, wq) \
285 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, (wq)); \
286 (cpu) < WORK_CPU_NONE; \
287 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, (wq)))
289 #ifdef CONFIG_DEBUG_OBJECTS_WORK
291 static struct debug_obj_descr work_debug_descr;
294 * fixup_init is called when:
295 * - an active object is initialized
297 static int work_fixup_init(void *addr, enum debug_obj_state state)
299 struct work_struct *work = addr;
301 switch (state) {
302 case ODEBUG_STATE_ACTIVE:
303 cancel_work_sync(work);
304 debug_object_init(work, &work_debug_descr);
305 return 1;
306 default:
307 return 0;
312 * fixup_activate is called when:
313 * - an active object is activated
314 * - an unknown object is activated (might be a statically initialized object)
316 static int work_fixup_activate(void *addr, enum debug_obj_state state)
318 struct work_struct *work = addr;
320 switch (state) {
322 case ODEBUG_STATE_NOTAVAILABLE:
324 * This is not really a fixup. The work struct was
325 * statically initialized. We just make sure that it
326 * is tracked in the object tracker.
328 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
329 debug_object_init(work, &work_debug_descr);
330 debug_object_activate(work, &work_debug_descr);
331 return 0;
333 WARN_ON_ONCE(1);
334 return 0;
336 case ODEBUG_STATE_ACTIVE:
337 WARN_ON(1);
339 default:
340 return 0;
345 * fixup_free is called when:
346 * - an active object is freed
348 static int work_fixup_free(void *addr, enum debug_obj_state state)
350 struct work_struct *work = addr;
352 switch (state) {
353 case ODEBUG_STATE_ACTIVE:
354 cancel_work_sync(work);
355 debug_object_free(work, &work_debug_descr);
356 return 1;
357 default:
358 return 0;
362 static struct debug_obj_descr work_debug_descr = {
363 .name = "work_struct",
364 .fixup_init = work_fixup_init,
365 .fixup_activate = work_fixup_activate,
366 .fixup_free = work_fixup_free,
369 static inline void debug_work_activate(struct work_struct *work)
371 debug_object_activate(work, &work_debug_descr);
374 static inline void debug_work_deactivate(struct work_struct *work)
376 debug_object_deactivate(work, &work_debug_descr);
379 void __init_work(struct work_struct *work, int onstack)
381 if (onstack)
382 debug_object_init_on_stack(work, &work_debug_descr);
383 else
384 debug_object_init(work, &work_debug_descr);
386 EXPORT_SYMBOL_GPL(__init_work);
388 void destroy_work_on_stack(struct work_struct *work)
390 debug_object_free(work, &work_debug_descr);
392 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
394 #else
395 static inline void debug_work_activate(struct work_struct *work) { }
396 static inline void debug_work_deactivate(struct work_struct *work) { }
397 #endif
399 /* Serializes the accesses to the list of workqueues. */
400 static DEFINE_SPINLOCK(workqueue_lock);
401 static LIST_HEAD(workqueues);
402 static bool workqueue_freezing; /* W: have wqs started freezing? */
405 * The almighty global cpu workqueues. nr_running is the only field
406 * which is expected to be used frequently by other cpus via
407 * try_to_wake_up(). Put it in a separate cacheline.
409 static DEFINE_PER_CPU(struct global_cwq, global_cwq);
410 static DEFINE_PER_CPU_SHARED_ALIGNED(atomic_t, gcwq_nr_running);
413 * Global cpu workqueue and nr_running counter for unbound gcwq. The
414 * gcwq is always online, has GCWQ_DISASSOCIATED set, and all its
415 * workers have WORKER_UNBOUND set.
417 static struct global_cwq unbound_global_cwq;
418 static atomic_t unbound_gcwq_nr_running = ATOMIC_INIT(0); /* always 0 */
420 static int worker_thread(void *__worker);
422 static struct global_cwq *get_gcwq(unsigned int cpu)
424 if (cpu != WORK_CPU_UNBOUND)
425 return &per_cpu(global_cwq, cpu);
426 else
427 return &unbound_global_cwq;
430 static atomic_t *get_gcwq_nr_running(unsigned int cpu)
432 if (cpu != WORK_CPU_UNBOUND)
433 return &per_cpu(gcwq_nr_running, cpu);
434 else
435 return &unbound_gcwq_nr_running;
438 static struct cpu_workqueue_struct *get_cwq(unsigned int cpu,
439 struct workqueue_struct *wq)
441 if (!(wq->flags & WQ_UNBOUND)) {
442 if (likely(cpu < nr_cpu_ids)) {
443 #ifdef CONFIG_SMP
444 return per_cpu_ptr(wq->cpu_wq.pcpu, cpu);
445 #else
446 return wq->cpu_wq.single;
447 #endif
449 } else if (likely(cpu == WORK_CPU_UNBOUND))
450 return wq->cpu_wq.single;
451 return NULL;
454 static unsigned int work_color_to_flags(int color)
456 return color << WORK_STRUCT_COLOR_SHIFT;
459 static int get_work_color(struct work_struct *work)
461 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
462 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
465 static int work_next_color(int color)
467 return (color + 1) % WORK_NR_COLORS;
471 * A work's data points to the cwq with WORK_STRUCT_CWQ set while the
472 * work is on queue. Once execution starts, WORK_STRUCT_CWQ is
473 * cleared and the work data contains the cpu number it was last on.
475 * set_work_{cwq|cpu}() and clear_work_data() can be used to set the
476 * cwq, cpu or clear work->data. These functions should only be
477 * called while the work is owned - ie. while the PENDING bit is set.
479 * get_work_[g]cwq() can be used to obtain the gcwq or cwq
480 * corresponding to a work. gcwq is available once the work has been
481 * queued anywhere after initialization. cwq is available only from
482 * queueing until execution starts.
484 static inline void set_work_data(struct work_struct *work, unsigned long data,
485 unsigned long flags)
487 BUG_ON(!work_pending(work));
488 atomic_long_set(&work->data, data | flags | work_static(work));
491 static void set_work_cwq(struct work_struct *work,
492 struct cpu_workqueue_struct *cwq,
493 unsigned long extra_flags)
495 set_work_data(work, (unsigned long)cwq,
496 WORK_STRUCT_PENDING | WORK_STRUCT_CWQ | extra_flags);
499 static void set_work_cpu(struct work_struct *work, unsigned int cpu)
501 set_work_data(work, cpu << WORK_STRUCT_FLAG_BITS, WORK_STRUCT_PENDING);
504 static void clear_work_data(struct work_struct *work)
506 set_work_data(work, WORK_STRUCT_NO_CPU, 0);
509 static struct cpu_workqueue_struct *get_work_cwq(struct work_struct *work)
511 unsigned long data = atomic_long_read(&work->data);
513 if (data & WORK_STRUCT_CWQ)
514 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
515 else
516 return NULL;
519 static struct global_cwq *get_work_gcwq(struct work_struct *work)
521 unsigned long data = atomic_long_read(&work->data);
522 unsigned int cpu;
524 if (data & WORK_STRUCT_CWQ)
525 return ((struct cpu_workqueue_struct *)
526 (data & WORK_STRUCT_WQ_DATA_MASK))->gcwq;
528 cpu = data >> WORK_STRUCT_FLAG_BITS;
529 if (cpu == WORK_CPU_NONE)
530 return NULL;
532 BUG_ON(cpu >= nr_cpu_ids && cpu != WORK_CPU_UNBOUND);
533 return get_gcwq(cpu);
537 * Policy functions. These define the policies on how the global
538 * worker pool is managed. Unless noted otherwise, these functions
539 * assume that they're being called with gcwq->lock held.
542 static bool __need_more_worker(struct global_cwq *gcwq)
544 return !atomic_read(get_gcwq_nr_running(gcwq->cpu)) ||
545 gcwq->flags & GCWQ_HIGHPRI_PENDING;
549 * Need to wake up a worker? Called from anything but currently
550 * running workers.
552 static bool need_more_worker(struct global_cwq *gcwq)
554 return !list_empty(&gcwq->worklist) && __need_more_worker(gcwq);
557 /* Can I start working? Called from busy but !running workers. */
558 static bool may_start_working(struct global_cwq *gcwq)
560 return gcwq->nr_idle;
563 /* Do I need to keep working? Called from currently running workers. */
564 static bool keep_working(struct global_cwq *gcwq)
566 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
568 return !list_empty(&gcwq->worklist) && atomic_read(nr_running) <= 1;
571 /* Do we need a new worker? Called from manager. */
572 static bool need_to_create_worker(struct global_cwq *gcwq)
574 return need_more_worker(gcwq) && !may_start_working(gcwq);
577 /* Do I need to be the manager? */
578 static bool need_to_manage_workers(struct global_cwq *gcwq)
580 return need_to_create_worker(gcwq) || gcwq->flags & GCWQ_MANAGE_WORKERS;
583 /* Do we have too many workers and should some go away? */
584 static bool too_many_workers(struct global_cwq *gcwq)
586 bool managing = gcwq->flags & GCWQ_MANAGING_WORKERS;
587 int nr_idle = gcwq->nr_idle + managing; /* manager is considered idle */
588 int nr_busy = gcwq->nr_workers - nr_idle;
590 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
594 * Wake up functions.
597 /* Return the first worker. Safe with preemption disabled */
598 static struct worker *first_worker(struct global_cwq *gcwq)
600 if (unlikely(list_empty(&gcwq->idle_list)))
601 return NULL;
603 return list_first_entry(&gcwq->idle_list, struct worker, entry);
607 * wake_up_worker - wake up an idle worker
608 * @gcwq: gcwq to wake worker for
610 * Wake up the first idle worker of @gcwq.
612 * CONTEXT:
613 * spin_lock_irq(gcwq->lock).
615 static void wake_up_worker(struct global_cwq *gcwq)
617 struct worker *worker = first_worker(gcwq);
619 if (likely(worker))
620 wake_up_process(worker->task);
624 * wq_worker_waking_up - a worker is waking up
625 * @task: task waking up
626 * @cpu: CPU @task is waking up to
628 * This function is called during try_to_wake_up() when a worker is
629 * being awoken.
631 * CONTEXT:
632 * spin_lock_irq(rq->lock)
634 void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
636 struct worker *worker = kthread_data(task);
638 if (likely(!(worker->flags & WORKER_NOT_RUNNING)))
639 atomic_inc(get_gcwq_nr_running(cpu));
643 * wq_worker_sleeping - a worker is going to sleep
644 * @task: task going to sleep
645 * @cpu: CPU in question, must be the current CPU number
647 * This function is called during schedule() when a busy worker is
648 * going to sleep. Worker on the same cpu can be woken up by
649 * returning pointer to its task.
651 * CONTEXT:
652 * spin_lock_irq(rq->lock)
654 * RETURNS:
655 * Worker task on @cpu to wake up, %NULL if none.
657 struct task_struct *wq_worker_sleeping(struct task_struct *task,
658 unsigned int cpu)
660 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
661 struct global_cwq *gcwq = get_gcwq(cpu);
662 atomic_t *nr_running = get_gcwq_nr_running(cpu);
664 if (unlikely(worker->flags & WORKER_NOT_RUNNING))
665 return NULL;
667 /* this can only happen on the local cpu */
668 BUG_ON(cpu != raw_smp_processor_id());
671 * The counterpart of the following dec_and_test, implied mb,
672 * worklist not empty test sequence is in insert_work().
673 * Please read comment there.
675 * NOT_RUNNING is clear. This means that trustee is not in
676 * charge and we're running on the local cpu w/ rq lock held
677 * and preemption disabled, which in turn means that none else
678 * could be manipulating idle_list, so dereferencing idle_list
679 * without gcwq lock is safe.
681 if (atomic_dec_and_test(nr_running) && !list_empty(&gcwq->worklist))
682 to_wakeup = first_worker(gcwq);
683 return to_wakeup ? to_wakeup->task : NULL;
687 * worker_set_flags - set worker flags and adjust nr_running accordingly
688 * @worker: self
689 * @flags: flags to set
690 * @wakeup: wakeup an idle worker if necessary
692 * Set @flags in @worker->flags and adjust nr_running accordingly. If
693 * nr_running becomes zero and @wakeup is %true, an idle worker is
694 * woken up.
696 * CONTEXT:
697 * spin_lock_irq(gcwq->lock)
699 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
700 bool wakeup)
702 struct global_cwq *gcwq = worker->gcwq;
704 WARN_ON_ONCE(worker->task != current);
707 * If transitioning into NOT_RUNNING, adjust nr_running and
708 * wake up an idle worker as necessary if requested by
709 * @wakeup.
711 if ((flags & WORKER_NOT_RUNNING) &&
712 !(worker->flags & WORKER_NOT_RUNNING)) {
713 atomic_t *nr_running = get_gcwq_nr_running(gcwq->cpu);
715 if (wakeup) {
716 if (atomic_dec_and_test(nr_running) &&
717 !list_empty(&gcwq->worklist))
718 wake_up_worker(gcwq);
719 } else
720 atomic_dec(nr_running);
723 worker->flags |= flags;
727 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
728 * @worker: self
729 * @flags: flags to clear
731 * Clear @flags in @worker->flags and adjust nr_running accordingly.
733 * CONTEXT:
734 * spin_lock_irq(gcwq->lock)
736 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
738 struct global_cwq *gcwq = worker->gcwq;
739 unsigned int oflags = worker->flags;
741 WARN_ON_ONCE(worker->task != current);
743 worker->flags &= ~flags;
745 /* if transitioning out of NOT_RUNNING, increment nr_running */
746 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
747 if (!(worker->flags & WORKER_NOT_RUNNING))
748 atomic_inc(get_gcwq_nr_running(gcwq->cpu));
752 * busy_worker_head - return the busy hash head for a work
753 * @gcwq: gcwq of interest
754 * @work: work to be hashed
756 * Return hash head of @gcwq for @work.
758 * CONTEXT:
759 * spin_lock_irq(gcwq->lock).
761 * RETURNS:
762 * Pointer to the hash head.
764 static struct hlist_head *busy_worker_head(struct global_cwq *gcwq,
765 struct work_struct *work)
767 const int base_shift = ilog2(sizeof(struct work_struct));
768 unsigned long v = (unsigned long)work;
770 /* simple shift and fold hash, do we need something better? */
771 v >>= base_shift;
772 v += v >> BUSY_WORKER_HASH_ORDER;
773 v &= BUSY_WORKER_HASH_MASK;
775 return &gcwq->busy_hash[v];
779 * __find_worker_executing_work - find worker which is executing a work
780 * @gcwq: gcwq of interest
781 * @bwh: hash head as returned by busy_worker_head()
782 * @work: work to find worker for
784 * Find a worker which is executing @work on @gcwq. @bwh should be
785 * the hash head obtained by calling busy_worker_head() with the same
786 * work.
788 * CONTEXT:
789 * spin_lock_irq(gcwq->lock).
791 * RETURNS:
792 * Pointer to worker which is executing @work if found, NULL
793 * otherwise.
795 static struct worker *__find_worker_executing_work(struct global_cwq *gcwq,
796 struct hlist_head *bwh,
797 struct work_struct *work)
799 struct worker *worker;
800 struct hlist_node *tmp;
802 hlist_for_each_entry(worker, tmp, bwh, hentry)
803 if (worker->current_work == work)
804 return worker;
805 return NULL;
809 * find_worker_executing_work - find worker which is executing a work
810 * @gcwq: gcwq of interest
811 * @work: work to find worker for
813 * Find a worker which is executing @work on @gcwq. This function is
814 * identical to __find_worker_executing_work() except that this
815 * function calculates @bwh itself.
817 * CONTEXT:
818 * spin_lock_irq(gcwq->lock).
820 * RETURNS:
821 * Pointer to worker which is executing @work if found, NULL
822 * otherwise.
824 static struct worker *find_worker_executing_work(struct global_cwq *gcwq,
825 struct work_struct *work)
827 return __find_worker_executing_work(gcwq, busy_worker_head(gcwq, work),
828 work);
832 * gcwq_determine_ins_pos - find insertion position
833 * @gcwq: gcwq of interest
834 * @cwq: cwq a work is being queued for
836 * A work for @cwq is about to be queued on @gcwq, determine insertion
837 * position for the work. If @cwq is for HIGHPRI wq, the work is
838 * queued at the head of the queue but in FIFO order with respect to
839 * other HIGHPRI works; otherwise, at the end of the queue. This
840 * function also sets GCWQ_HIGHPRI_PENDING flag to hint @gcwq that
841 * there are HIGHPRI works pending.
843 * CONTEXT:
844 * spin_lock_irq(gcwq->lock).
846 * RETURNS:
847 * Pointer to inserstion position.
849 static inline struct list_head *gcwq_determine_ins_pos(struct global_cwq *gcwq,
850 struct cpu_workqueue_struct *cwq)
852 struct work_struct *twork;
854 if (likely(!(cwq->wq->flags & WQ_HIGHPRI)))
855 return &gcwq->worklist;
857 list_for_each_entry(twork, &gcwq->worklist, entry) {
858 struct cpu_workqueue_struct *tcwq = get_work_cwq(twork);
860 if (!(tcwq->wq->flags & WQ_HIGHPRI))
861 break;
864 gcwq->flags |= GCWQ_HIGHPRI_PENDING;
865 return &twork->entry;
869 * insert_work - insert a work into gcwq
870 * @cwq: cwq @work belongs to
871 * @work: work to insert
872 * @head: insertion point
873 * @extra_flags: extra WORK_STRUCT_* flags to set
875 * Insert @work which belongs to @cwq into @gcwq after @head.
876 * @extra_flags is or'd to work_struct flags.
878 * CONTEXT:
879 * spin_lock_irq(gcwq->lock).
881 static void insert_work(struct cpu_workqueue_struct *cwq,
882 struct work_struct *work, struct list_head *head,
883 unsigned int extra_flags)
885 struct global_cwq *gcwq = cwq->gcwq;
887 /* we own @work, set data and link */
888 set_work_cwq(work, cwq, extra_flags);
891 * Ensure that we get the right work->data if we see the
892 * result of list_add() below, see try_to_grab_pending().
894 smp_wmb();
896 list_add_tail(&work->entry, head);
899 * Ensure either worker_sched_deactivated() sees the above
900 * list_add_tail() or we see zero nr_running to avoid workers
901 * lying around lazily while there are works to be processed.
903 smp_mb();
905 if (__need_more_worker(gcwq))
906 wake_up_worker(gcwq);
909 static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
910 struct work_struct *work)
912 struct global_cwq *gcwq;
913 struct cpu_workqueue_struct *cwq;
914 struct list_head *worklist;
915 unsigned long flags;
917 debug_work_activate(work);
919 /* determine gcwq to use */
920 if (!(wq->flags & WQ_UNBOUND)) {
921 struct global_cwq *last_gcwq;
923 if (unlikely(cpu == WORK_CPU_UNBOUND))
924 cpu = raw_smp_processor_id();
927 * It's multi cpu. If @wq is non-reentrant and @work
928 * was previously on a different cpu, it might still
929 * be running there, in which case the work needs to
930 * be queued on that cpu to guarantee non-reentrance.
932 gcwq = get_gcwq(cpu);
933 if (wq->flags & WQ_NON_REENTRANT &&
934 (last_gcwq = get_work_gcwq(work)) && last_gcwq != gcwq) {
935 struct worker *worker;
937 spin_lock_irqsave(&last_gcwq->lock, flags);
939 worker = find_worker_executing_work(last_gcwq, work);
941 if (worker && worker->current_cwq->wq == wq)
942 gcwq = last_gcwq;
943 else {
944 /* meh... not running there, queue here */
945 spin_unlock_irqrestore(&last_gcwq->lock, flags);
946 spin_lock_irqsave(&gcwq->lock, flags);
948 } else
949 spin_lock_irqsave(&gcwq->lock, flags);
950 } else {
951 gcwq = get_gcwq(WORK_CPU_UNBOUND);
952 spin_lock_irqsave(&gcwq->lock, flags);
955 /* gcwq determined, get cwq and queue */
956 cwq = get_cwq(gcwq->cpu, wq);
958 BUG_ON(!list_empty(&work->entry));
960 cwq->nr_in_flight[cwq->work_color]++;
962 if (likely(cwq->nr_active < cwq->max_active)) {
963 cwq->nr_active++;
964 worklist = gcwq_determine_ins_pos(gcwq, cwq);
965 } else
966 worklist = &cwq->delayed_works;
968 insert_work(cwq, work, worklist, work_color_to_flags(cwq->work_color));
970 spin_unlock_irqrestore(&gcwq->lock, flags);
974 * queue_work - queue work on a workqueue
975 * @wq: workqueue to use
976 * @work: work to queue
978 * Returns 0 if @work was already on a queue, non-zero otherwise.
980 * We queue the work to the CPU on which it was submitted, but if the CPU dies
981 * it can be processed by another CPU.
983 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
985 int ret;
987 ret = queue_work_on(get_cpu(), wq, work);
988 put_cpu();
990 return ret;
992 EXPORT_SYMBOL_GPL(queue_work);
995 * queue_work_on - queue work on specific cpu
996 * @cpu: CPU number to execute work on
997 * @wq: workqueue to use
998 * @work: work to queue
1000 * Returns 0 if @work was already on a queue, non-zero otherwise.
1002 * We queue the work to a specific CPU, the caller must ensure it
1003 * can't go away.
1006 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
1008 int ret = 0;
1010 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1011 __queue_work(cpu, wq, work);
1012 ret = 1;
1014 return ret;
1016 EXPORT_SYMBOL_GPL(queue_work_on);
1018 static void delayed_work_timer_fn(unsigned long __data)
1020 struct delayed_work *dwork = (struct delayed_work *)__data;
1021 struct cpu_workqueue_struct *cwq = get_work_cwq(&dwork->work);
1023 __queue_work(smp_processor_id(), cwq->wq, &dwork->work);
1027 * queue_delayed_work - queue work on a workqueue after delay
1028 * @wq: workqueue to use
1029 * @dwork: delayable work to queue
1030 * @delay: number of jiffies to wait before queueing
1032 * Returns 0 if @work was already on a queue, non-zero otherwise.
1034 int queue_delayed_work(struct workqueue_struct *wq,
1035 struct delayed_work *dwork, unsigned long delay)
1037 if (delay == 0)
1038 return queue_work(wq, &dwork->work);
1040 return queue_delayed_work_on(-1, wq, dwork, delay);
1042 EXPORT_SYMBOL_GPL(queue_delayed_work);
1045 * queue_delayed_work_on - queue work on specific CPU after delay
1046 * @cpu: CPU number to execute work on
1047 * @wq: workqueue to use
1048 * @dwork: work to queue
1049 * @delay: number of jiffies to wait before queueing
1051 * Returns 0 if @work was already on a queue, non-zero otherwise.
1053 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1054 struct delayed_work *dwork, unsigned long delay)
1056 int ret = 0;
1057 struct timer_list *timer = &dwork->timer;
1058 struct work_struct *work = &dwork->work;
1060 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1061 unsigned int lcpu;
1063 BUG_ON(timer_pending(timer));
1064 BUG_ON(!list_empty(&work->entry));
1066 timer_stats_timer_set_start_info(&dwork->timer);
1069 * This stores cwq for the moment, for the timer_fn.
1070 * Note that the work's gcwq is preserved to allow
1071 * reentrance detection for delayed works.
1073 if (!(wq->flags & WQ_UNBOUND)) {
1074 struct global_cwq *gcwq = get_work_gcwq(work);
1076 if (gcwq && gcwq->cpu != WORK_CPU_UNBOUND)
1077 lcpu = gcwq->cpu;
1078 else
1079 lcpu = raw_smp_processor_id();
1080 } else
1081 lcpu = WORK_CPU_UNBOUND;
1083 set_work_cwq(work, get_cwq(lcpu, wq), 0);
1085 timer->expires = jiffies + delay;
1086 timer->data = (unsigned long)dwork;
1087 timer->function = delayed_work_timer_fn;
1089 if (unlikely(cpu >= 0))
1090 add_timer_on(timer, cpu);
1091 else
1092 add_timer(timer);
1093 ret = 1;
1095 return ret;
1097 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
1100 * worker_enter_idle - enter idle state
1101 * @worker: worker which is entering idle state
1103 * @worker is entering idle state. Update stats and idle timer if
1104 * necessary.
1106 * LOCKING:
1107 * spin_lock_irq(gcwq->lock).
1109 static void worker_enter_idle(struct worker *worker)
1111 struct global_cwq *gcwq = worker->gcwq;
1113 BUG_ON(worker->flags & WORKER_IDLE);
1114 BUG_ON(!list_empty(&worker->entry) &&
1115 (worker->hentry.next || worker->hentry.pprev));
1117 /* can't use worker_set_flags(), also called from start_worker() */
1118 worker->flags |= WORKER_IDLE;
1119 gcwq->nr_idle++;
1120 worker->last_active = jiffies;
1122 /* idle_list is LIFO */
1123 list_add(&worker->entry, &gcwq->idle_list);
1125 if (likely(!(worker->flags & WORKER_ROGUE))) {
1126 if (too_many_workers(gcwq) && !timer_pending(&gcwq->idle_timer))
1127 mod_timer(&gcwq->idle_timer,
1128 jiffies + IDLE_WORKER_TIMEOUT);
1129 } else
1130 wake_up_all(&gcwq->trustee_wait);
1132 /* sanity check nr_running */
1133 WARN_ON_ONCE(gcwq->nr_workers == gcwq->nr_idle &&
1134 atomic_read(get_gcwq_nr_running(gcwq->cpu)));
1138 * worker_leave_idle - leave idle state
1139 * @worker: worker which is leaving idle state
1141 * @worker is leaving idle state. Update stats.
1143 * LOCKING:
1144 * spin_lock_irq(gcwq->lock).
1146 static void worker_leave_idle(struct worker *worker)
1148 struct global_cwq *gcwq = worker->gcwq;
1150 BUG_ON(!(worker->flags & WORKER_IDLE));
1151 worker_clr_flags(worker, WORKER_IDLE);
1152 gcwq->nr_idle--;
1153 list_del_init(&worker->entry);
1157 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock gcwq
1158 * @worker: self
1160 * Works which are scheduled while the cpu is online must at least be
1161 * scheduled to a worker which is bound to the cpu so that if they are
1162 * flushed from cpu callbacks while cpu is going down, they are
1163 * guaranteed to execute on the cpu.
1165 * This function is to be used by rogue workers and rescuers to bind
1166 * themselves to the target cpu and may race with cpu going down or
1167 * coming online. kthread_bind() can't be used because it may put the
1168 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1169 * verbatim as it's best effort and blocking and gcwq may be
1170 * [dis]associated in the meantime.
1172 * This function tries set_cpus_allowed() and locks gcwq and verifies
1173 * the binding against GCWQ_DISASSOCIATED which is set during
1174 * CPU_DYING and cleared during CPU_ONLINE, so if the worker enters
1175 * idle state or fetches works without dropping lock, it can guarantee
1176 * the scheduling requirement described in the first paragraph.
1178 * CONTEXT:
1179 * Might sleep. Called without any lock but returns with gcwq->lock
1180 * held.
1182 * RETURNS:
1183 * %true if the associated gcwq is online (@worker is successfully
1184 * bound), %false if offline.
1186 static bool worker_maybe_bind_and_lock(struct worker *worker)
1188 struct global_cwq *gcwq = worker->gcwq;
1189 struct task_struct *task = worker->task;
1191 while (true) {
1193 * The following call may fail, succeed or succeed
1194 * without actually migrating the task to the cpu if
1195 * it races with cpu hotunplug operation. Verify
1196 * against GCWQ_DISASSOCIATED.
1198 if (!(gcwq->flags & GCWQ_DISASSOCIATED))
1199 set_cpus_allowed_ptr(task, get_cpu_mask(gcwq->cpu));
1201 spin_lock_irq(&gcwq->lock);
1202 if (gcwq->flags & GCWQ_DISASSOCIATED)
1203 return false;
1204 if (task_cpu(task) == gcwq->cpu &&
1205 cpumask_equal(&current->cpus_allowed,
1206 get_cpu_mask(gcwq->cpu)))
1207 return true;
1208 spin_unlock_irq(&gcwq->lock);
1210 /* CPU has come up inbetween, retry migration */
1211 cpu_relax();
1216 * Function for worker->rebind_work used to rebind rogue busy workers
1217 * to the associated cpu which is coming back online. This is
1218 * scheduled by cpu up but can race with other cpu hotplug operations
1219 * and may be executed twice without intervening cpu down.
1221 static void worker_rebind_fn(struct work_struct *work)
1223 struct worker *worker = container_of(work, struct worker, rebind_work);
1224 struct global_cwq *gcwq = worker->gcwq;
1226 if (worker_maybe_bind_and_lock(worker))
1227 worker_clr_flags(worker, WORKER_REBIND);
1229 spin_unlock_irq(&gcwq->lock);
1232 static struct worker *alloc_worker(void)
1234 struct worker *worker;
1236 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1237 if (worker) {
1238 INIT_LIST_HEAD(&worker->entry);
1239 INIT_LIST_HEAD(&worker->scheduled);
1240 INIT_WORK(&worker->rebind_work, worker_rebind_fn);
1241 /* on creation a worker is in !idle && prep state */
1242 worker->flags = WORKER_PREP;
1244 return worker;
1248 * create_worker - create a new workqueue worker
1249 * @gcwq: gcwq the new worker will belong to
1250 * @bind: whether to set affinity to @cpu or not
1252 * Create a new worker which is bound to @gcwq. The returned worker
1253 * can be started by calling start_worker() or destroyed using
1254 * destroy_worker().
1256 * CONTEXT:
1257 * Might sleep. Does GFP_KERNEL allocations.
1259 * RETURNS:
1260 * Pointer to the newly created worker.
1262 static struct worker *create_worker(struct global_cwq *gcwq, bool bind)
1264 bool on_unbound_cpu = gcwq->cpu == WORK_CPU_UNBOUND;
1265 struct worker *worker = NULL;
1266 int id = -1;
1268 spin_lock_irq(&gcwq->lock);
1269 while (ida_get_new(&gcwq->worker_ida, &id)) {
1270 spin_unlock_irq(&gcwq->lock);
1271 if (!ida_pre_get(&gcwq->worker_ida, GFP_KERNEL))
1272 goto fail;
1273 spin_lock_irq(&gcwq->lock);
1275 spin_unlock_irq(&gcwq->lock);
1277 worker = alloc_worker();
1278 if (!worker)
1279 goto fail;
1281 worker->gcwq = gcwq;
1282 worker->id = id;
1284 if (!on_unbound_cpu)
1285 worker->task = kthread_create(worker_thread, worker,
1286 "kworker/%u:%d", gcwq->cpu, id);
1287 else
1288 worker->task = kthread_create(worker_thread, worker,
1289 "kworker/u:%d", id);
1290 if (IS_ERR(worker->task))
1291 goto fail;
1294 * A rogue worker will become a regular one if CPU comes
1295 * online later on. Make sure every worker has
1296 * PF_THREAD_BOUND set.
1298 if (bind && !on_unbound_cpu)
1299 kthread_bind(worker->task, gcwq->cpu);
1300 else {
1301 worker->task->flags |= PF_THREAD_BOUND;
1302 if (on_unbound_cpu)
1303 worker->flags |= WORKER_UNBOUND;
1306 return worker;
1307 fail:
1308 if (id >= 0) {
1309 spin_lock_irq(&gcwq->lock);
1310 ida_remove(&gcwq->worker_ida, id);
1311 spin_unlock_irq(&gcwq->lock);
1313 kfree(worker);
1314 return NULL;
1318 * start_worker - start a newly created worker
1319 * @worker: worker to start
1321 * Make the gcwq aware of @worker and start it.
1323 * CONTEXT:
1324 * spin_lock_irq(gcwq->lock).
1326 static void start_worker(struct worker *worker)
1328 worker->flags |= WORKER_STARTED;
1329 worker->gcwq->nr_workers++;
1330 worker_enter_idle(worker);
1331 wake_up_process(worker->task);
1335 * destroy_worker - destroy a workqueue worker
1336 * @worker: worker to be destroyed
1338 * Destroy @worker and adjust @gcwq stats accordingly.
1340 * CONTEXT:
1341 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1343 static void destroy_worker(struct worker *worker)
1345 struct global_cwq *gcwq = worker->gcwq;
1346 int id = worker->id;
1348 /* sanity check frenzy */
1349 BUG_ON(worker->current_work);
1350 BUG_ON(!list_empty(&worker->scheduled));
1352 if (worker->flags & WORKER_STARTED)
1353 gcwq->nr_workers--;
1354 if (worker->flags & WORKER_IDLE)
1355 gcwq->nr_idle--;
1357 list_del_init(&worker->entry);
1358 worker->flags |= WORKER_DIE;
1360 spin_unlock_irq(&gcwq->lock);
1362 kthread_stop(worker->task);
1363 kfree(worker);
1365 spin_lock_irq(&gcwq->lock);
1366 ida_remove(&gcwq->worker_ida, id);
1369 static void idle_worker_timeout(unsigned long __gcwq)
1371 struct global_cwq *gcwq = (void *)__gcwq;
1373 spin_lock_irq(&gcwq->lock);
1375 if (too_many_workers(gcwq)) {
1376 struct worker *worker;
1377 unsigned long expires;
1379 /* idle_list is kept in LIFO order, check the last one */
1380 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1381 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1383 if (time_before(jiffies, expires))
1384 mod_timer(&gcwq->idle_timer, expires);
1385 else {
1386 /* it's been idle for too long, wake up manager */
1387 gcwq->flags |= GCWQ_MANAGE_WORKERS;
1388 wake_up_worker(gcwq);
1392 spin_unlock_irq(&gcwq->lock);
1395 static bool send_mayday(struct work_struct *work)
1397 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1398 struct workqueue_struct *wq = cwq->wq;
1399 unsigned int cpu;
1401 if (!(wq->flags & WQ_RESCUER))
1402 return false;
1404 /* mayday mayday mayday */
1405 cpu = cwq->gcwq->cpu;
1406 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1407 if (cpu == WORK_CPU_UNBOUND)
1408 cpu = 0;
1409 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
1410 wake_up_process(wq->rescuer->task);
1411 return true;
1414 static void gcwq_mayday_timeout(unsigned long __gcwq)
1416 struct global_cwq *gcwq = (void *)__gcwq;
1417 struct work_struct *work;
1419 spin_lock_irq(&gcwq->lock);
1421 if (need_to_create_worker(gcwq)) {
1423 * We've been trying to create a new worker but
1424 * haven't been successful. We might be hitting an
1425 * allocation deadlock. Send distress signals to
1426 * rescuers.
1428 list_for_each_entry(work, &gcwq->worklist, entry)
1429 send_mayday(work);
1432 spin_unlock_irq(&gcwq->lock);
1434 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INTERVAL);
1438 * maybe_create_worker - create a new worker if necessary
1439 * @gcwq: gcwq to create a new worker for
1441 * Create a new worker for @gcwq if necessary. @gcwq is guaranteed to
1442 * have at least one idle worker on return from this function. If
1443 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1444 * sent to all rescuers with works scheduled on @gcwq to resolve
1445 * possible allocation deadlock.
1447 * On return, need_to_create_worker() is guaranteed to be false and
1448 * may_start_working() true.
1450 * LOCKING:
1451 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1452 * multiple times. Does GFP_KERNEL allocations. Called only from
1453 * manager.
1455 * RETURNS:
1456 * false if no action was taken and gcwq->lock stayed locked, true
1457 * otherwise.
1459 static bool maybe_create_worker(struct global_cwq *gcwq)
1461 if (!need_to_create_worker(gcwq))
1462 return false;
1463 restart:
1464 spin_unlock_irq(&gcwq->lock);
1466 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1467 mod_timer(&gcwq->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1469 while (true) {
1470 struct worker *worker;
1472 worker = create_worker(gcwq, true);
1473 if (worker) {
1474 del_timer_sync(&gcwq->mayday_timer);
1475 spin_lock_irq(&gcwq->lock);
1476 start_worker(worker);
1477 BUG_ON(need_to_create_worker(gcwq));
1478 return true;
1481 if (!need_to_create_worker(gcwq))
1482 break;
1484 __set_current_state(TASK_INTERRUPTIBLE);
1485 schedule_timeout(CREATE_COOLDOWN);
1487 if (!need_to_create_worker(gcwq))
1488 break;
1491 del_timer_sync(&gcwq->mayday_timer);
1492 spin_lock_irq(&gcwq->lock);
1493 if (need_to_create_worker(gcwq))
1494 goto restart;
1495 return true;
1499 * maybe_destroy_worker - destroy workers which have been idle for a while
1500 * @gcwq: gcwq to destroy workers for
1502 * Destroy @gcwq workers which have been idle for longer than
1503 * IDLE_WORKER_TIMEOUT.
1505 * LOCKING:
1506 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1507 * multiple times. Called only from manager.
1509 * RETURNS:
1510 * false if no action was taken and gcwq->lock stayed locked, true
1511 * otherwise.
1513 static bool maybe_destroy_workers(struct global_cwq *gcwq)
1515 bool ret = false;
1517 while (too_many_workers(gcwq)) {
1518 struct worker *worker;
1519 unsigned long expires;
1521 worker = list_entry(gcwq->idle_list.prev, struct worker, entry);
1522 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1524 if (time_before(jiffies, expires)) {
1525 mod_timer(&gcwq->idle_timer, expires);
1526 break;
1529 destroy_worker(worker);
1530 ret = true;
1533 return ret;
1537 * manage_workers - manage worker pool
1538 * @worker: self
1540 * Assume the manager role and manage gcwq worker pool @worker belongs
1541 * to. At any given time, there can be only zero or one manager per
1542 * gcwq. The exclusion is handled automatically by this function.
1544 * The caller can safely start processing works on false return. On
1545 * true return, it's guaranteed that need_to_create_worker() is false
1546 * and may_start_working() is true.
1548 * CONTEXT:
1549 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1550 * multiple times. Does GFP_KERNEL allocations.
1552 * RETURNS:
1553 * false if no action was taken and gcwq->lock stayed locked, true if
1554 * some action was taken.
1556 static bool manage_workers(struct worker *worker)
1558 struct global_cwq *gcwq = worker->gcwq;
1559 bool ret = false;
1561 if (gcwq->flags & GCWQ_MANAGING_WORKERS)
1562 return ret;
1564 gcwq->flags &= ~GCWQ_MANAGE_WORKERS;
1565 gcwq->flags |= GCWQ_MANAGING_WORKERS;
1568 * Destroy and then create so that may_start_working() is true
1569 * on return.
1571 ret |= maybe_destroy_workers(gcwq);
1572 ret |= maybe_create_worker(gcwq);
1574 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
1577 * The trustee might be waiting to take over the manager
1578 * position, tell it we're done.
1580 if (unlikely(gcwq->trustee))
1581 wake_up_all(&gcwq->trustee_wait);
1583 return ret;
1587 * move_linked_works - move linked works to a list
1588 * @work: start of series of works to be scheduled
1589 * @head: target list to append @work to
1590 * @nextp: out paramter for nested worklist walking
1592 * Schedule linked works starting from @work to @head. Work series to
1593 * be scheduled starts at @work and includes any consecutive work with
1594 * WORK_STRUCT_LINKED set in its predecessor.
1596 * If @nextp is not NULL, it's updated to point to the next work of
1597 * the last scheduled work. This allows move_linked_works() to be
1598 * nested inside outer list_for_each_entry_safe().
1600 * CONTEXT:
1601 * spin_lock_irq(gcwq->lock).
1603 static void move_linked_works(struct work_struct *work, struct list_head *head,
1604 struct work_struct **nextp)
1606 struct work_struct *n;
1609 * Linked worklist will always end before the end of the list,
1610 * use NULL for list head.
1612 list_for_each_entry_safe_from(work, n, NULL, entry) {
1613 list_move_tail(&work->entry, head);
1614 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1615 break;
1619 * If we're already inside safe list traversal and have moved
1620 * multiple works to the scheduled queue, the next position
1621 * needs to be updated.
1623 if (nextp)
1624 *nextp = n;
1627 static void cwq_activate_first_delayed(struct cpu_workqueue_struct *cwq)
1629 struct work_struct *work = list_first_entry(&cwq->delayed_works,
1630 struct work_struct, entry);
1631 struct list_head *pos = gcwq_determine_ins_pos(cwq->gcwq, cwq);
1633 move_linked_works(work, pos, NULL);
1634 cwq->nr_active++;
1638 * cwq_dec_nr_in_flight - decrement cwq's nr_in_flight
1639 * @cwq: cwq of interest
1640 * @color: color of work which left the queue
1642 * A work either has completed or is removed from pending queue,
1643 * decrement nr_in_flight of its cwq and handle workqueue flushing.
1645 * CONTEXT:
1646 * spin_lock_irq(gcwq->lock).
1648 static void cwq_dec_nr_in_flight(struct cpu_workqueue_struct *cwq, int color)
1650 /* ignore uncolored works */
1651 if (color == WORK_NO_COLOR)
1652 return;
1654 cwq->nr_in_flight[color]--;
1655 cwq->nr_active--;
1657 if (!list_empty(&cwq->delayed_works)) {
1658 /* one down, submit a delayed one */
1659 if (cwq->nr_active < cwq->max_active)
1660 cwq_activate_first_delayed(cwq);
1663 /* is flush in progress and are we at the flushing tip? */
1664 if (likely(cwq->flush_color != color))
1665 return;
1667 /* are there still in-flight works? */
1668 if (cwq->nr_in_flight[color])
1669 return;
1671 /* this cwq is done, clear flush_color */
1672 cwq->flush_color = -1;
1675 * If this was the last cwq, wake up the first flusher. It
1676 * will handle the rest.
1678 if (atomic_dec_and_test(&cwq->wq->nr_cwqs_to_flush))
1679 complete(&cwq->wq->first_flusher->done);
1683 * process_one_work - process single work
1684 * @worker: self
1685 * @work: work to process
1687 * Process @work. This function contains all the logics necessary to
1688 * process a single work including synchronization against and
1689 * interaction with other workers on the same cpu, queueing and
1690 * flushing. As long as context requirement is met, any worker can
1691 * call this function to process a work.
1693 * CONTEXT:
1694 * spin_lock_irq(gcwq->lock) which is released and regrabbed.
1696 static void process_one_work(struct worker *worker, struct work_struct *work)
1698 struct cpu_workqueue_struct *cwq = get_work_cwq(work);
1699 struct global_cwq *gcwq = cwq->gcwq;
1700 struct hlist_head *bwh = busy_worker_head(gcwq, work);
1701 bool cpu_intensive = cwq->wq->flags & WQ_CPU_INTENSIVE;
1702 work_func_t f = work->func;
1703 int work_color;
1704 struct worker *collision;
1705 #ifdef CONFIG_LOCKDEP
1707 * It is permissible to free the struct work_struct from
1708 * inside the function that is called from it, this we need to
1709 * take into account for lockdep too. To avoid bogus "held
1710 * lock freed" warnings as well as problems when looking into
1711 * work->lockdep_map, make a copy and use that here.
1713 struct lockdep_map lockdep_map = work->lockdep_map;
1714 #endif
1716 * A single work shouldn't be executed concurrently by
1717 * multiple workers on a single cpu. Check whether anyone is
1718 * already processing the work. If so, defer the work to the
1719 * currently executing one.
1721 collision = __find_worker_executing_work(gcwq, bwh, work);
1722 if (unlikely(collision)) {
1723 move_linked_works(work, &collision->scheduled, NULL);
1724 return;
1727 /* claim and process */
1728 debug_work_deactivate(work);
1729 hlist_add_head(&worker->hentry, bwh);
1730 worker->current_work = work;
1731 worker->current_cwq = cwq;
1732 work_color = get_work_color(work);
1734 /* record the current cpu number in the work data and dequeue */
1735 set_work_cpu(work, gcwq->cpu);
1736 list_del_init(&work->entry);
1739 * If HIGHPRI_PENDING, check the next work, and, if HIGHPRI,
1740 * wake up another worker; otherwise, clear HIGHPRI_PENDING.
1742 if (unlikely(gcwq->flags & GCWQ_HIGHPRI_PENDING)) {
1743 struct work_struct *nwork = list_first_entry(&gcwq->worklist,
1744 struct work_struct, entry);
1746 if (!list_empty(&gcwq->worklist) &&
1747 get_work_cwq(nwork)->wq->flags & WQ_HIGHPRI)
1748 wake_up_worker(gcwq);
1749 else
1750 gcwq->flags &= ~GCWQ_HIGHPRI_PENDING;
1754 * CPU intensive works don't participate in concurrency
1755 * management. They're the scheduler's responsibility.
1757 if (unlikely(cpu_intensive))
1758 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
1760 spin_unlock_irq(&gcwq->lock);
1762 work_clear_pending(work);
1763 lock_map_acquire(&cwq->wq->lockdep_map);
1764 lock_map_acquire(&lockdep_map);
1765 f(work);
1766 lock_map_release(&lockdep_map);
1767 lock_map_release(&cwq->wq->lockdep_map);
1769 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
1770 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
1771 "%s/0x%08x/%d\n",
1772 current->comm, preempt_count(), task_pid_nr(current));
1773 printk(KERN_ERR " last function: ");
1774 print_symbol("%s\n", (unsigned long)f);
1775 debug_show_held_locks(current);
1776 dump_stack();
1779 spin_lock_irq(&gcwq->lock);
1781 /* clear cpu intensive status */
1782 if (unlikely(cpu_intensive))
1783 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
1785 /* we're done with it, release */
1786 hlist_del_init(&worker->hentry);
1787 worker->current_work = NULL;
1788 worker->current_cwq = NULL;
1789 cwq_dec_nr_in_flight(cwq, work_color);
1793 * process_scheduled_works - process scheduled works
1794 * @worker: self
1796 * Process all scheduled works. Please note that the scheduled list
1797 * may change while processing a work, so this function repeatedly
1798 * fetches a work from the top and executes it.
1800 * CONTEXT:
1801 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
1802 * multiple times.
1804 static void process_scheduled_works(struct worker *worker)
1806 while (!list_empty(&worker->scheduled)) {
1807 struct work_struct *work = list_first_entry(&worker->scheduled,
1808 struct work_struct, entry);
1809 process_one_work(worker, work);
1814 * worker_thread - the worker thread function
1815 * @__worker: self
1817 * The gcwq worker thread function. There's a single dynamic pool of
1818 * these per each cpu. These workers process all works regardless of
1819 * their specific target workqueue. The only exception is works which
1820 * belong to workqueues with a rescuer which will be explained in
1821 * rescuer_thread().
1823 static int worker_thread(void *__worker)
1825 struct worker *worker = __worker;
1826 struct global_cwq *gcwq = worker->gcwq;
1828 /* tell the scheduler that this is a workqueue worker */
1829 worker->task->flags |= PF_WQ_WORKER;
1830 woke_up:
1831 spin_lock_irq(&gcwq->lock);
1833 /* DIE can be set only while we're idle, checking here is enough */
1834 if (worker->flags & WORKER_DIE) {
1835 spin_unlock_irq(&gcwq->lock);
1836 worker->task->flags &= ~PF_WQ_WORKER;
1837 return 0;
1840 worker_leave_idle(worker);
1841 recheck:
1842 /* no more worker necessary? */
1843 if (!need_more_worker(gcwq))
1844 goto sleep;
1846 /* do we need to manage? */
1847 if (unlikely(!may_start_working(gcwq)) && manage_workers(worker))
1848 goto recheck;
1851 * ->scheduled list can only be filled while a worker is
1852 * preparing to process a work or actually processing it.
1853 * Make sure nobody diddled with it while I was sleeping.
1855 BUG_ON(!list_empty(&worker->scheduled));
1858 * When control reaches this point, we're guaranteed to have
1859 * at least one idle worker or that someone else has already
1860 * assumed the manager role.
1862 worker_clr_flags(worker, WORKER_PREP);
1864 do {
1865 struct work_struct *work =
1866 list_first_entry(&gcwq->worklist,
1867 struct work_struct, entry);
1869 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
1870 /* optimization path, not strictly necessary */
1871 process_one_work(worker, work);
1872 if (unlikely(!list_empty(&worker->scheduled)))
1873 process_scheduled_works(worker);
1874 } else {
1875 move_linked_works(work, &worker->scheduled, NULL);
1876 process_scheduled_works(worker);
1878 } while (keep_working(gcwq));
1880 worker_set_flags(worker, WORKER_PREP, false);
1881 sleep:
1882 if (unlikely(need_to_manage_workers(gcwq)) && manage_workers(worker))
1883 goto recheck;
1886 * gcwq->lock is held and there's no work to process and no
1887 * need to manage, sleep. Workers are woken up only while
1888 * holding gcwq->lock or from local cpu, so setting the
1889 * current state before releasing gcwq->lock is enough to
1890 * prevent losing any event.
1892 worker_enter_idle(worker);
1893 __set_current_state(TASK_INTERRUPTIBLE);
1894 spin_unlock_irq(&gcwq->lock);
1895 schedule();
1896 goto woke_up;
1900 * rescuer_thread - the rescuer thread function
1901 * @__wq: the associated workqueue
1903 * Workqueue rescuer thread function. There's one rescuer for each
1904 * workqueue which has WQ_RESCUER set.
1906 * Regular work processing on a gcwq may block trying to create a new
1907 * worker which uses GFP_KERNEL allocation which has slight chance of
1908 * developing into deadlock if some works currently on the same queue
1909 * need to be processed to satisfy the GFP_KERNEL allocation. This is
1910 * the problem rescuer solves.
1912 * When such condition is possible, the gcwq summons rescuers of all
1913 * workqueues which have works queued on the gcwq and let them process
1914 * those works so that forward progress can be guaranteed.
1916 * This should happen rarely.
1918 static int rescuer_thread(void *__wq)
1920 struct workqueue_struct *wq = __wq;
1921 struct worker *rescuer = wq->rescuer;
1922 struct list_head *scheduled = &rescuer->scheduled;
1923 bool is_unbound = wq->flags & WQ_UNBOUND;
1924 unsigned int cpu;
1926 set_user_nice(current, RESCUER_NICE_LEVEL);
1927 repeat:
1928 set_current_state(TASK_INTERRUPTIBLE);
1930 if (kthread_should_stop())
1931 return 0;
1934 * See whether any cpu is asking for help. Unbounded
1935 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
1937 for_each_mayday_cpu(cpu, wq->mayday_mask) {
1938 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
1939 struct cpu_workqueue_struct *cwq = get_cwq(tcpu, wq);
1940 struct global_cwq *gcwq = cwq->gcwq;
1941 struct work_struct *work, *n;
1943 __set_current_state(TASK_RUNNING);
1944 mayday_clear_cpu(cpu, wq->mayday_mask);
1946 /* migrate to the target cpu if possible */
1947 rescuer->gcwq = gcwq;
1948 worker_maybe_bind_and_lock(rescuer);
1951 * Slurp in all works issued via this workqueue and
1952 * process'em.
1954 BUG_ON(!list_empty(&rescuer->scheduled));
1955 list_for_each_entry_safe(work, n, &gcwq->worklist, entry)
1956 if (get_work_cwq(work) == cwq)
1957 move_linked_works(work, scheduled, &n);
1959 process_scheduled_works(rescuer);
1960 spin_unlock_irq(&gcwq->lock);
1963 schedule();
1964 goto repeat;
1967 struct wq_barrier {
1968 struct work_struct work;
1969 struct completion done;
1972 static void wq_barrier_func(struct work_struct *work)
1974 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
1975 complete(&barr->done);
1979 * insert_wq_barrier - insert a barrier work
1980 * @cwq: cwq to insert barrier into
1981 * @barr: wq_barrier to insert
1982 * @target: target work to attach @barr to
1983 * @worker: worker currently executing @target, NULL if @target is not executing
1985 * @barr is linked to @target such that @barr is completed only after
1986 * @target finishes execution. Please note that the ordering
1987 * guarantee is observed only with respect to @target and on the local
1988 * cpu.
1990 * Currently, a queued barrier can't be canceled. This is because
1991 * try_to_grab_pending() can't determine whether the work to be
1992 * grabbed is at the head of the queue and thus can't clear LINKED
1993 * flag of the previous work while there must be a valid next work
1994 * after a work with LINKED flag set.
1996 * Note that when @worker is non-NULL, @target may be modified
1997 * underneath us, so we can't reliably determine cwq from @target.
1999 * CONTEXT:
2000 * spin_lock_irq(gcwq->lock).
2002 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
2003 struct wq_barrier *barr,
2004 struct work_struct *target, struct worker *worker)
2006 struct list_head *head;
2007 unsigned int linked = 0;
2010 * debugobject calls are safe here even with gcwq->lock locked
2011 * as we know for sure that this will not trigger any of the
2012 * checks and call back into the fixup functions where we
2013 * might deadlock.
2015 INIT_WORK_ON_STACK(&barr->work, wq_barrier_func);
2016 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2017 init_completion(&barr->done);
2020 * If @target is currently being executed, schedule the
2021 * barrier to the worker; otherwise, put it after @target.
2023 if (worker)
2024 head = worker->scheduled.next;
2025 else {
2026 unsigned long *bits = work_data_bits(target);
2028 head = target->entry.next;
2029 /* there can already be other linked works, inherit and set */
2030 linked = *bits & WORK_STRUCT_LINKED;
2031 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2034 debug_work_activate(&barr->work);
2035 insert_work(cwq, &barr->work, head,
2036 work_color_to_flags(WORK_NO_COLOR) | linked);
2040 * flush_workqueue_prep_cwqs - prepare cwqs for workqueue flushing
2041 * @wq: workqueue being flushed
2042 * @flush_color: new flush color, < 0 for no-op
2043 * @work_color: new work color, < 0 for no-op
2045 * Prepare cwqs for workqueue flushing.
2047 * If @flush_color is non-negative, flush_color on all cwqs should be
2048 * -1. If no cwq has in-flight commands at the specified color, all
2049 * cwq->flush_color's stay at -1 and %false is returned. If any cwq
2050 * has in flight commands, its cwq->flush_color is set to
2051 * @flush_color, @wq->nr_cwqs_to_flush is updated accordingly, cwq
2052 * wakeup logic is armed and %true is returned.
2054 * The caller should have initialized @wq->first_flusher prior to
2055 * calling this function with non-negative @flush_color. If
2056 * @flush_color is negative, no flush color update is done and %false
2057 * is returned.
2059 * If @work_color is non-negative, all cwqs should have the same
2060 * work_color which is previous to @work_color and all will be
2061 * advanced to @work_color.
2063 * CONTEXT:
2064 * mutex_lock(wq->flush_mutex).
2066 * RETURNS:
2067 * %true if @flush_color >= 0 and there's something to flush. %false
2068 * otherwise.
2070 static bool flush_workqueue_prep_cwqs(struct workqueue_struct *wq,
2071 int flush_color, int work_color)
2073 bool wait = false;
2074 unsigned int cpu;
2076 if (flush_color >= 0) {
2077 BUG_ON(atomic_read(&wq->nr_cwqs_to_flush));
2078 atomic_set(&wq->nr_cwqs_to_flush, 1);
2081 for_each_cwq_cpu(cpu, wq) {
2082 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2083 struct global_cwq *gcwq = cwq->gcwq;
2085 spin_lock_irq(&gcwq->lock);
2087 if (flush_color >= 0) {
2088 BUG_ON(cwq->flush_color != -1);
2090 if (cwq->nr_in_flight[flush_color]) {
2091 cwq->flush_color = flush_color;
2092 atomic_inc(&wq->nr_cwqs_to_flush);
2093 wait = true;
2097 if (work_color >= 0) {
2098 BUG_ON(work_color != work_next_color(cwq->work_color));
2099 cwq->work_color = work_color;
2102 spin_unlock_irq(&gcwq->lock);
2105 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_cwqs_to_flush))
2106 complete(&wq->first_flusher->done);
2108 return wait;
2112 * flush_workqueue - ensure that any scheduled work has run to completion.
2113 * @wq: workqueue to flush
2115 * Forces execution of the workqueue and blocks until its completion.
2116 * This is typically used in driver shutdown handlers.
2118 * We sleep until all works which were queued on entry have been handled,
2119 * but we are not livelocked by new incoming ones.
2121 void flush_workqueue(struct workqueue_struct *wq)
2123 struct wq_flusher this_flusher = {
2124 .list = LIST_HEAD_INIT(this_flusher.list),
2125 .flush_color = -1,
2126 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2128 int next_color;
2130 lock_map_acquire(&wq->lockdep_map);
2131 lock_map_release(&wq->lockdep_map);
2133 mutex_lock(&wq->flush_mutex);
2136 * Start-to-wait phase
2138 next_color = work_next_color(wq->work_color);
2140 if (next_color != wq->flush_color) {
2142 * Color space is not full. The current work_color
2143 * becomes our flush_color and work_color is advanced
2144 * by one.
2146 BUG_ON(!list_empty(&wq->flusher_overflow));
2147 this_flusher.flush_color = wq->work_color;
2148 wq->work_color = next_color;
2150 if (!wq->first_flusher) {
2151 /* no flush in progress, become the first flusher */
2152 BUG_ON(wq->flush_color != this_flusher.flush_color);
2154 wq->first_flusher = &this_flusher;
2156 if (!flush_workqueue_prep_cwqs(wq, wq->flush_color,
2157 wq->work_color)) {
2158 /* nothing to flush, done */
2159 wq->flush_color = next_color;
2160 wq->first_flusher = NULL;
2161 goto out_unlock;
2163 } else {
2164 /* wait in queue */
2165 BUG_ON(wq->flush_color == this_flusher.flush_color);
2166 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2167 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2169 } else {
2171 * Oops, color space is full, wait on overflow queue.
2172 * The next flush completion will assign us
2173 * flush_color and transfer to flusher_queue.
2175 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2178 mutex_unlock(&wq->flush_mutex);
2180 wait_for_completion(&this_flusher.done);
2183 * Wake-up-and-cascade phase
2185 * First flushers are responsible for cascading flushes and
2186 * handling overflow. Non-first flushers can simply return.
2188 if (wq->first_flusher != &this_flusher)
2189 return;
2191 mutex_lock(&wq->flush_mutex);
2193 /* we might have raced, check again with mutex held */
2194 if (wq->first_flusher != &this_flusher)
2195 goto out_unlock;
2197 wq->first_flusher = NULL;
2199 BUG_ON(!list_empty(&this_flusher.list));
2200 BUG_ON(wq->flush_color != this_flusher.flush_color);
2202 while (true) {
2203 struct wq_flusher *next, *tmp;
2205 /* complete all the flushers sharing the current flush color */
2206 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2207 if (next->flush_color != wq->flush_color)
2208 break;
2209 list_del_init(&next->list);
2210 complete(&next->done);
2213 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2214 wq->flush_color != work_next_color(wq->work_color));
2216 /* this flush_color is finished, advance by one */
2217 wq->flush_color = work_next_color(wq->flush_color);
2219 /* one color has been freed, handle overflow queue */
2220 if (!list_empty(&wq->flusher_overflow)) {
2222 * Assign the same color to all overflowed
2223 * flushers, advance work_color and append to
2224 * flusher_queue. This is the start-to-wait
2225 * phase for these overflowed flushers.
2227 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2228 tmp->flush_color = wq->work_color;
2230 wq->work_color = work_next_color(wq->work_color);
2232 list_splice_tail_init(&wq->flusher_overflow,
2233 &wq->flusher_queue);
2234 flush_workqueue_prep_cwqs(wq, -1, wq->work_color);
2237 if (list_empty(&wq->flusher_queue)) {
2238 BUG_ON(wq->flush_color != wq->work_color);
2239 break;
2243 * Need to flush more colors. Make the next flusher
2244 * the new first flusher and arm cwqs.
2246 BUG_ON(wq->flush_color == wq->work_color);
2247 BUG_ON(wq->flush_color != next->flush_color);
2249 list_del_init(&next->list);
2250 wq->first_flusher = next;
2252 if (flush_workqueue_prep_cwqs(wq, wq->flush_color, -1))
2253 break;
2256 * Meh... this color is already done, clear first
2257 * flusher and repeat cascading.
2259 wq->first_flusher = NULL;
2262 out_unlock:
2263 mutex_unlock(&wq->flush_mutex);
2265 EXPORT_SYMBOL_GPL(flush_workqueue);
2268 * flush_work - block until a work_struct's callback has terminated
2269 * @work: the work which is to be flushed
2271 * Returns false if @work has already terminated.
2273 * It is expected that, prior to calling flush_work(), the caller has
2274 * arranged for the work to not be requeued, otherwise it doesn't make
2275 * sense to use this function.
2277 int flush_work(struct work_struct *work)
2279 struct worker *worker = NULL;
2280 struct global_cwq *gcwq;
2281 struct cpu_workqueue_struct *cwq;
2282 struct wq_barrier barr;
2284 might_sleep();
2285 gcwq = get_work_gcwq(work);
2286 if (!gcwq)
2287 return 0;
2289 spin_lock_irq(&gcwq->lock);
2290 if (!list_empty(&work->entry)) {
2292 * See the comment near try_to_grab_pending()->smp_rmb().
2293 * If it was re-queued to a different gcwq under us, we
2294 * are not going to wait.
2296 smp_rmb();
2297 cwq = get_work_cwq(work);
2298 if (unlikely(!cwq || gcwq != cwq->gcwq))
2299 goto already_gone;
2300 } else {
2301 worker = find_worker_executing_work(gcwq, work);
2302 if (!worker)
2303 goto already_gone;
2304 cwq = worker->current_cwq;
2307 insert_wq_barrier(cwq, &barr, work, worker);
2308 spin_unlock_irq(&gcwq->lock);
2310 lock_map_acquire(&cwq->wq->lockdep_map);
2311 lock_map_release(&cwq->wq->lockdep_map);
2313 wait_for_completion(&barr.done);
2314 destroy_work_on_stack(&barr.work);
2315 return 1;
2316 already_gone:
2317 spin_unlock_irq(&gcwq->lock);
2318 return 0;
2320 EXPORT_SYMBOL_GPL(flush_work);
2323 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
2324 * so this work can't be re-armed in any way.
2326 static int try_to_grab_pending(struct work_struct *work)
2328 struct global_cwq *gcwq;
2329 int ret = -1;
2331 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
2332 return 0;
2335 * The queueing is in progress, or it is already queued. Try to
2336 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
2338 gcwq = get_work_gcwq(work);
2339 if (!gcwq)
2340 return ret;
2342 spin_lock_irq(&gcwq->lock);
2343 if (!list_empty(&work->entry)) {
2345 * This work is queued, but perhaps we locked the wrong gcwq.
2346 * In that case we must see the new value after rmb(), see
2347 * insert_work()->wmb().
2349 smp_rmb();
2350 if (gcwq == get_work_gcwq(work)) {
2351 debug_work_deactivate(work);
2352 list_del_init(&work->entry);
2353 cwq_dec_nr_in_flight(get_work_cwq(work),
2354 get_work_color(work));
2355 ret = 1;
2358 spin_unlock_irq(&gcwq->lock);
2360 return ret;
2363 static void wait_on_cpu_work(struct global_cwq *gcwq, struct work_struct *work)
2365 struct wq_barrier barr;
2366 struct worker *worker;
2368 spin_lock_irq(&gcwq->lock);
2370 worker = find_worker_executing_work(gcwq, work);
2371 if (unlikely(worker))
2372 insert_wq_barrier(worker->current_cwq, &barr, work, worker);
2374 spin_unlock_irq(&gcwq->lock);
2376 if (unlikely(worker)) {
2377 wait_for_completion(&barr.done);
2378 destroy_work_on_stack(&barr.work);
2382 static void wait_on_work(struct work_struct *work)
2384 int cpu;
2386 might_sleep();
2388 lock_map_acquire(&work->lockdep_map);
2389 lock_map_release(&work->lockdep_map);
2391 for_each_gcwq_cpu(cpu)
2392 wait_on_cpu_work(get_gcwq(cpu), work);
2395 static int __cancel_work_timer(struct work_struct *work,
2396 struct timer_list* timer)
2398 int ret;
2400 do {
2401 ret = (timer && likely(del_timer(timer)));
2402 if (!ret)
2403 ret = try_to_grab_pending(work);
2404 wait_on_work(work);
2405 } while (unlikely(ret < 0));
2407 clear_work_data(work);
2408 return ret;
2412 * cancel_work_sync - block until a work_struct's callback has terminated
2413 * @work: the work which is to be flushed
2415 * Returns true if @work was pending.
2417 * cancel_work_sync() will cancel the work if it is queued. If the work's
2418 * callback appears to be running, cancel_work_sync() will block until it
2419 * has completed.
2421 * It is possible to use this function if the work re-queues itself. It can
2422 * cancel the work even if it migrates to another workqueue, however in that
2423 * case it only guarantees that work->func() has completed on the last queued
2424 * workqueue.
2426 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
2427 * pending, otherwise it goes into a busy-wait loop until the timer expires.
2429 * The caller must ensure that workqueue_struct on which this work was last
2430 * queued can't be destroyed before this function returns.
2432 int cancel_work_sync(struct work_struct *work)
2434 return __cancel_work_timer(work, NULL);
2436 EXPORT_SYMBOL_GPL(cancel_work_sync);
2439 * cancel_delayed_work_sync - reliably kill off a delayed work.
2440 * @dwork: the delayed work struct
2442 * Returns true if @dwork was pending.
2444 * It is possible to use this function if @dwork rearms itself via queue_work()
2445 * or queue_delayed_work(). See also the comment for cancel_work_sync().
2447 int cancel_delayed_work_sync(struct delayed_work *dwork)
2449 return __cancel_work_timer(&dwork->work, &dwork->timer);
2451 EXPORT_SYMBOL(cancel_delayed_work_sync);
2454 * schedule_work - put work task in global workqueue
2455 * @work: job to be done
2457 * Returns zero if @work was already on the kernel-global workqueue and
2458 * non-zero otherwise.
2460 * This puts a job in the kernel-global workqueue if it was not already
2461 * queued and leaves it in the same position on the kernel-global
2462 * workqueue otherwise.
2464 int schedule_work(struct work_struct *work)
2466 return queue_work(system_wq, work);
2468 EXPORT_SYMBOL(schedule_work);
2471 * schedule_work_on - put work task on a specific cpu
2472 * @cpu: cpu to put the work task on
2473 * @work: job to be done
2475 * This puts a job on a specific cpu
2477 int schedule_work_on(int cpu, struct work_struct *work)
2479 return queue_work_on(cpu, system_wq, work);
2481 EXPORT_SYMBOL(schedule_work_on);
2484 * schedule_delayed_work - put work task in global workqueue after delay
2485 * @dwork: job to be done
2486 * @delay: number of jiffies to wait or 0 for immediate execution
2488 * After waiting for a given time this puts a job in the kernel-global
2489 * workqueue.
2491 int schedule_delayed_work(struct delayed_work *dwork,
2492 unsigned long delay)
2494 return queue_delayed_work(system_wq, dwork, delay);
2496 EXPORT_SYMBOL(schedule_delayed_work);
2499 * flush_delayed_work - block until a dwork_struct's callback has terminated
2500 * @dwork: the delayed work which is to be flushed
2502 * Any timeout is cancelled, and any pending work is run immediately.
2504 void flush_delayed_work(struct delayed_work *dwork)
2506 if (del_timer_sync(&dwork->timer)) {
2507 __queue_work(get_cpu(), get_work_cwq(&dwork->work)->wq,
2508 &dwork->work);
2509 put_cpu();
2511 flush_work(&dwork->work);
2513 EXPORT_SYMBOL(flush_delayed_work);
2516 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2517 * @cpu: cpu to use
2518 * @dwork: job to be done
2519 * @delay: number of jiffies to wait
2521 * After waiting for a given time this puts a job in the kernel-global
2522 * workqueue on the specified CPU.
2524 int schedule_delayed_work_on(int cpu,
2525 struct delayed_work *dwork, unsigned long delay)
2527 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
2529 EXPORT_SYMBOL(schedule_delayed_work_on);
2532 * schedule_on_each_cpu - call a function on each online CPU from keventd
2533 * @func: the function to call
2535 * Returns zero on success.
2536 * Returns -ve errno on failure.
2538 * schedule_on_each_cpu() is very slow.
2540 int schedule_on_each_cpu(work_func_t func)
2542 int cpu;
2543 struct work_struct *works;
2545 works = alloc_percpu(struct work_struct);
2546 if (!works)
2547 return -ENOMEM;
2549 get_online_cpus();
2551 for_each_online_cpu(cpu) {
2552 struct work_struct *work = per_cpu_ptr(works, cpu);
2554 INIT_WORK(work, func);
2555 schedule_work_on(cpu, work);
2558 for_each_online_cpu(cpu)
2559 flush_work(per_cpu_ptr(works, cpu));
2561 put_online_cpus();
2562 free_percpu(works);
2563 return 0;
2567 * flush_scheduled_work - ensure that any scheduled work has run to completion.
2569 * Forces execution of the kernel-global workqueue and blocks until its
2570 * completion.
2572 * Think twice before calling this function! It's very easy to get into
2573 * trouble if you don't take great care. Either of the following situations
2574 * will lead to deadlock:
2576 * One of the work items currently on the workqueue needs to acquire
2577 * a lock held by your code or its caller.
2579 * Your code is running in the context of a work routine.
2581 * They will be detected by lockdep when they occur, but the first might not
2582 * occur very often. It depends on what work items are on the workqueue and
2583 * what locks they need, which you have no control over.
2585 * In most situations flushing the entire workqueue is overkill; you merely
2586 * need to know that a particular work item isn't queued and isn't running.
2587 * In such cases you should use cancel_delayed_work_sync() or
2588 * cancel_work_sync() instead.
2590 void flush_scheduled_work(void)
2592 flush_workqueue(system_wq);
2594 EXPORT_SYMBOL(flush_scheduled_work);
2597 * execute_in_process_context - reliably execute the routine with user context
2598 * @fn: the function to execute
2599 * @ew: guaranteed storage for the execute work structure (must
2600 * be available when the work executes)
2602 * Executes the function immediately if process context is available,
2603 * otherwise schedules the function for delayed execution.
2605 * Returns: 0 - function was executed
2606 * 1 - function was scheduled for execution
2608 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
2610 if (!in_interrupt()) {
2611 fn(&ew->work);
2612 return 0;
2615 INIT_WORK(&ew->work, fn);
2616 schedule_work(&ew->work);
2618 return 1;
2620 EXPORT_SYMBOL_GPL(execute_in_process_context);
2622 int keventd_up(void)
2624 return system_wq != NULL;
2627 static int alloc_cwqs(struct workqueue_struct *wq)
2630 * cwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
2631 * Make sure that the alignment isn't lower than that of
2632 * unsigned long long.
2634 const size_t size = sizeof(struct cpu_workqueue_struct);
2635 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
2636 __alignof__(unsigned long long));
2637 #ifdef CONFIG_SMP
2638 bool percpu = !(wq->flags & WQ_UNBOUND);
2639 #else
2640 bool percpu = false;
2641 #endif
2643 if (percpu)
2644 wq->cpu_wq.pcpu = __alloc_percpu(size, align);
2645 else {
2646 void *ptr;
2649 * Allocate enough room to align cwq and put an extra
2650 * pointer at the end pointing back to the originally
2651 * allocated pointer which will be used for free.
2653 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
2654 if (ptr) {
2655 wq->cpu_wq.single = PTR_ALIGN(ptr, align);
2656 *(void **)(wq->cpu_wq.single + 1) = ptr;
2660 /* just in case, make sure it's actually aligned */
2661 BUG_ON(!IS_ALIGNED(wq->cpu_wq.v, align));
2662 return wq->cpu_wq.v ? 0 : -ENOMEM;
2665 static void free_cwqs(struct workqueue_struct *wq)
2667 #ifdef CONFIG_SMP
2668 bool percpu = !(wq->flags & WQ_UNBOUND);
2669 #else
2670 bool percpu = false;
2671 #endif
2673 if (percpu)
2674 free_percpu(wq->cpu_wq.pcpu);
2675 else if (wq->cpu_wq.single) {
2676 /* the pointer to free is stored right after the cwq */
2677 kfree(*(void **)(wq->cpu_wq.single + 1));
2681 static int wq_clamp_max_active(int max_active, unsigned int flags,
2682 const char *name)
2684 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
2686 if (max_active < 1 || max_active > lim)
2687 printk(KERN_WARNING "workqueue: max_active %d requested for %s "
2688 "is out of range, clamping between %d and %d\n",
2689 max_active, name, 1, lim);
2691 return clamp_val(max_active, 1, lim);
2694 struct workqueue_struct *__alloc_workqueue_key(const char *name,
2695 unsigned int flags,
2696 int max_active,
2697 struct lock_class_key *key,
2698 const char *lock_name)
2700 struct workqueue_struct *wq;
2701 unsigned int cpu;
2704 * Unbound workqueues aren't concurrency managed and should be
2705 * dispatched to workers immediately.
2707 if (flags & WQ_UNBOUND)
2708 flags |= WQ_HIGHPRI;
2710 max_active = max_active ?: WQ_DFL_ACTIVE;
2711 max_active = wq_clamp_max_active(max_active, flags, name);
2713 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
2714 if (!wq)
2715 goto err;
2717 wq->flags = flags;
2718 wq->saved_max_active = max_active;
2719 mutex_init(&wq->flush_mutex);
2720 atomic_set(&wq->nr_cwqs_to_flush, 0);
2721 INIT_LIST_HEAD(&wq->flusher_queue);
2722 INIT_LIST_HEAD(&wq->flusher_overflow);
2724 wq->name = name;
2725 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
2726 INIT_LIST_HEAD(&wq->list);
2728 if (alloc_cwqs(wq) < 0)
2729 goto err;
2731 for_each_cwq_cpu(cpu, wq) {
2732 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2733 struct global_cwq *gcwq = get_gcwq(cpu);
2735 BUG_ON((unsigned long)cwq & WORK_STRUCT_FLAG_MASK);
2736 cwq->gcwq = gcwq;
2737 cwq->wq = wq;
2738 cwq->flush_color = -1;
2739 cwq->max_active = max_active;
2740 INIT_LIST_HEAD(&cwq->delayed_works);
2743 if (flags & WQ_RESCUER) {
2744 struct worker *rescuer;
2746 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
2747 goto err;
2749 wq->rescuer = rescuer = alloc_worker();
2750 if (!rescuer)
2751 goto err;
2753 rescuer->task = kthread_create(rescuer_thread, wq, "%s", name);
2754 if (IS_ERR(rescuer->task))
2755 goto err;
2757 wq->rescuer = rescuer;
2758 rescuer->task->flags |= PF_THREAD_BOUND;
2759 wake_up_process(rescuer->task);
2763 * workqueue_lock protects global freeze state and workqueues
2764 * list. Grab it, set max_active accordingly and add the new
2765 * workqueue to workqueues list.
2767 spin_lock(&workqueue_lock);
2769 if (workqueue_freezing && wq->flags & WQ_FREEZEABLE)
2770 for_each_cwq_cpu(cpu, wq)
2771 get_cwq(cpu, wq)->max_active = 0;
2773 list_add(&wq->list, &workqueues);
2775 spin_unlock(&workqueue_lock);
2777 return wq;
2778 err:
2779 if (wq) {
2780 free_cwqs(wq);
2781 free_mayday_mask(wq->mayday_mask);
2782 kfree(wq->rescuer);
2783 kfree(wq);
2785 return NULL;
2787 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
2790 * destroy_workqueue - safely terminate a workqueue
2791 * @wq: target workqueue
2793 * Safely destroy a workqueue. All work currently pending will be done first.
2795 void destroy_workqueue(struct workqueue_struct *wq)
2797 unsigned int cpu;
2799 flush_workqueue(wq);
2802 * wq list is used to freeze wq, remove from list after
2803 * flushing is complete in case freeze races us.
2805 spin_lock(&workqueue_lock);
2806 list_del(&wq->list);
2807 spin_unlock(&workqueue_lock);
2809 /* sanity check */
2810 for_each_cwq_cpu(cpu, wq) {
2811 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2812 int i;
2814 for (i = 0; i < WORK_NR_COLORS; i++)
2815 BUG_ON(cwq->nr_in_flight[i]);
2816 BUG_ON(cwq->nr_active);
2817 BUG_ON(!list_empty(&cwq->delayed_works));
2820 if (wq->flags & WQ_RESCUER) {
2821 kthread_stop(wq->rescuer->task);
2822 free_mayday_mask(wq->mayday_mask);
2825 free_cwqs(wq);
2826 kfree(wq);
2828 EXPORT_SYMBOL_GPL(destroy_workqueue);
2831 * workqueue_set_max_active - adjust max_active of a workqueue
2832 * @wq: target workqueue
2833 * @max_active: new max_active value.
2835 * Set max_active of @wq to @max_active.
2837 * CONTEXT:
2838 * Don't call from IRQ context.
2840 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
2842 unsigned int cpu;
2844 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
2846 spin_lock(&workqueue_lock);
2848 wq->saved_max_active = max_active;
2850 for_each_cwq_cpu(cpu, wq) {
2851 struct global_cwq *gcwq = get_gcwq(cpu);
2853 spin_lock_irq(&gcwq->lock);
2855 if (!(wq->flags & WQ_FREEZEABLE) ||
2856 !(gcwq->flags & GCWQ_FREEZING))
2857 get_cwq(gcwq->cpu, wq)->max_active = max_active;
2859 spin_unlock_irq(&gcwq->lock);
2862 spin_unlock(&workqueue_lock);
2864 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
2867 * workqueue_congested - test whether a workqueue is congested
2868 * @cpu: CPU in question
2869 * @wq: target workqueue
2871 * Test whether @wq's cpu workqueue for @cpu is congested. There is
2872 * no synchronization around this function and the test result is
2873 * unreliable and only useful as advisory hints or for debugging.
2875 * RETURNS:
2876 * %true if congested, %false otherwise.
2878 bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
2880 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
2882 return !list_empty(&cwq->delayed_works);
2884 EXPORT_SYMBOL_GPL(workqueue_congested);
2887 * work_cpu - return the last known associated cpu for @work
2888 * @work: the work of interest
2890 * RETURNS:
2891 * CPU number if @work was ever queued. WORK_CPU_NONE otherwise.
2893 unsigned int work_cpu(struct work_struct *work)
2895 struct global_cwq *gcwq = get_work_gcwq(work);
2897 return gcwq ? gcwq->cpu : WORK_CPU_NONE;
2899 EXPORT_SYMBOL_GPL(work_cpu);
2902 * work_busy - test whether a work is currently pending or running
2903 * @work: the work to be tested
2905 * Test whether @work is currently pending or running. There is no
2906 * synchronization around this function and the test result is
2907 * unreliable and only useful as advisory hints or for debugging.
2908 * Especially for reentrant wqs, the pending state might hide the
2909 * running state.
2911 * RETURNS:
2912 * OR'd bitmask of WORK_BUSY_* bits.
2914 unsigned int work_busy(struct work_struct *work)
2916 struct global_cwq *gcwq = get_work_gcwq(work);
2917 unsigned long flags;
2918 unsigned int ret = 0;
2920 if (!gcwq)
2921 return false;
2923 spin_lock_irqsave(&gcwq->lock, flags);
2925 if (work_pending(work))
2926 ret |= WORK_BUSY_PENDING;
2927 if (find_worker_executing_work(gcwq, work))
2928 ret |= WORK_BUSY_RUNNING;
2930 spin_unlock_irqrestore(&gcwq->lock, flags);
2932 return ret;
2934 EXPORT_SYMBOL_GPL(work_busy);
2937 * CPU hotplug.
2939 * There are two challenges in supporting CPU hotplug. Firstly, there
2940 * are a lot of assumptions on strong associations among work, cwq and
2941 * gcwq which make migrating pending and scheduled works very
2942 * difficult to implement without impacting hot paths. Secondly,
2943 * gcwqs serve mix of short, long and very long running works making
2944 * blocked draining impractical.
2946 * This is solved by allowing a gcwq to be detached from CPU, running
2947 * it with unbound (rogue) workers and allowing it to be reattached
2948 * later if the cpu comes back online. A separate thread is created
2949 * to govern a gcwq in such state and is called the trustee of the
2950 * gcwq.
2952 * Trustee states and their descriptions.
2954 * START Command state used on startup. On CPU_DOWN_PREPARE, a
2955 * new trustee is started with this state.
2957 * IN_CHARGE Once started, trustee will enter this state after
2958 * assuming the manager role and making all existing
2959 * workers rogue. DOWN_PREPARE waits for trustee to
2960 * enter this state. After reaching IN_CHARGE, trustee
2961 * tries to execute the pending worklist until it's empty
2962 * and the state is set to BUTCHER, or the state is set
2963 * to RELEASE.
2965 * BUTCHER Command state which is set by the cpu callback after
2966 * the cpu has went down. Once this state is set trustee
2967 * knows that there will be no new works on the worklist
2968 * and once the worklist is empty it can proceed to
2969 * killing idle workers.
2971 * RELEASE Command state which is set by the cpu callback if the
2972 * cpu down has been canceled or it has come online
2973 * again. After recognizing this state, trustee stops
2974 * trying to drain or butcher and clears ROGUE, rebinds
2975 * all remaining workers back to the cpu and releases
2976 * manager role.
2978 * DONE Trustee will enter this state after BUTCHER or RELEASE
2979 * is complete.
2981 * trustee CPU draining
2982 * took over down complete
2983 * START -----------> IN_CHARGE -----------> BUTCHER -----------> DONE
2984 * | | ^
2985 * | CPU is back online v return workers |
2986 * ----------------> RELEASE --------------
2990 * trustee_wait_event_timeout - timed event wait for trustee
2991 * @cond: condition to wait for
2992 * @timeout: timeout in jiffies
2994 * wait_event_timeout() for trustee to use. Handles locking and
2995 * checks for RELEASE request.
2997 * CONTEXT:
2998 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
2999 * multiple times. To be used by trustee.
3001 * RETURNS:
3002 * Positive indicating left time if @cond is satisfied, 0 if timed
3003 * out, -1 if canceled.
3005 #define trustee_wait_event_timeout(cond, timeout) ({ \
3006 long __ret = (timeout); \
3007 while (!((cond) || (gcwq->trustee_state == TRUSTEE_RELEASE)) && \
3008 __ret) { \
3009 spin_unlock_irq(&gcwq->lock); \
3010 __wait_event_timeout(gcwq->trustee_wait, (cond) || \
3011 (gcwq->trustee_state == TRUSTEE_RELEASE), \
3012 __ret); \
3013 spin_lock_irq(&gcwq->lock); \
3015 gcwq->trustee_state == TRUSTEE_RELEASE ? -1 : (__ret); \
3019 * trustee_wait_event - event wait for trustee
3020 * @cond: condition to wait for
3022 * wait_event() for trustee to use. Automatically handles locking and
3023 * checks for CANCEL request.
3025 * CONTEXT:
3026 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3027 * multiple times. To be used by trustee.
3029 * RETURNS:
3030 * 0 if @cond is satisfied, -1 if canceled.
3032 #define trustee_wait_event(cond) ({ \
3033 long __ret1; \
3034 __ret1 = trustee_wait_event_timeout(cond, MAX_SCHEDULE_TIMEOUT);\
3035 __ret1 < 0 ? -1 : 0; \
3038 static int __cpuinit trustee_thread(void *__gcwq)
3040 struct global_cwq *gcwq = __gcwq;
3041 struct worker *worker;
3042 struct work_struct *work;
3043 struct hlist_node *pos;
3044 long rc;
3045 int i;
3047 BUG_ON(gcwq->cpu != smp_processor_id());
3049 spin_lock_irq(&gcwq->lock);
3051 * Claim the manager position and make all workers rogue.
3052 * Trustee must be bound to the target cpu and can't be
3053 * cancelled.
3055 BUG_ON(gcwq->cpu != smp_processor_id());
3056 rc = trustee_wait_event(!(gcwq->flags & GCWQ_MANAGING_WORKERS));
3057 BUG_ON(rc < 0);
3059 gcwq->flags |= GCWQ_MANAGING_WORKERS;
3061 list_for_each_entry(worker, &gcwq->idle_list, entry)
3062 worker->flags |= WORKER_ROGUE;
3064 for_each_busy_worker(worker, i, pos, gcwq)
3065 worker->flags |= WORKER_ROGUE;
3068 * Call schedule() so that we cross rq->lock and thus can
3069 * guarantee sched callbacks see the rogue flag. This is
3070 * necessary as scheduler callbacks may be invoked from other
3071 * cpus.
3073 spin_unlock_irq(&gcwq->lock);
3074 schedule();
3075 spin_lock_irq(&gcwq->lock);
3078 * Sched callbacks are disabled now. Zap nr_running. After
3079 * this, nr_running stays zero and need_more_worker() and
3080 * keep_working() are always true as long as the worklist is
3081 * not empty.
3083 atomic_set(get_gcwq_nr_running(gcwq->cpu), 0);
3085 spin_unlock_irq(&gcwq->lock);
3086 del_timer_sync(&gcwq->idle_timer);
3087 spin_lock_irq(&gcwq->lock);
3090 * We're now in charge. Notify and proceed to drain. We need
3091 * to keep the gcwq running during the whole CPU down
3092 * procedure as other cpu hotunplug callbacks may need to
3093 * flush currently running tasks.
3095 gcwq->trustee_state = TRUSTEE_IN_CHARGE;
3096 wake_up_all(&gcwq->trustee_wait);
3099 * The original cpu is in the process of dying and may go away
3100 * anytime now. When that happens, we and all workers would
3101 * be migrated to other cpus. Try draining any left work. We
3102 * want to get it over with ASAP - spam rescuers, wake up as
3103 * many idlers as necessary and create new ones till the
3104 * worklist is empty. Note that if the gcwq is frozen, there
3105 * may be frozen works in freezeable cwqs. Don't declare
3106 * completion while frozen.
3108 while (gcwq->nr_workers != gcwq->nr_idle ||
3109 gcwq->flags & GCWQ_FREEZING ||
3110 gcwq->trustee_state == TRUSTEE_IN_CHARGE) {
3111 int nr_works = 0;
3113 list_for_each_entry(work, &gcwq->worklist, entry) {
3114 send_mayday(work);
3115 nr_works++;
3118 list_for_each_entry(worker, &gcwq->idle_list, entry) {
3119 if (!nr_works--)
3120 break;
3121 wake_up_process(worker->task);
3124 if (need_to_create_worker(gcwq)) {
3125 spin_unlock_irq(&gcwq->lock);
3126 worker = create_worker(gcwq, false);
3127 spin_lock_irq(&gcwq->lock);
3128 if (worker) {
3129 worker->flags |= WORKER_ROGUE;
3130 start_worker(worker);
3134 /* give a breather */
3135 if (trustee_wait_event_timeout(false, TRUSTEE_COOLDOWN) < 0)
3136 break;
3140 * Either all works have been scheduled and cpu is down, or
3141 * cpu down has already been canceled. Wait for and butcher
3142 * all workers till we're canceled.
3144 do {
3145 rc = trustee_wait_event(!list_empty(&gcwq->idle_list));
3146 while (!list_empty(&gcwq->idle_list))
3147 destroy_worker(list_first_entry(&gcwq->idle_list,
3148 struct worker, entry));
3149 } while (gcwq->nr_workers && rc >= 0);
3152 * At this point, either draining has completed and no worker
3153 * is left, or cpu down has been canceled or the cpu is being
3154 * brought back up. There shouldn't be any idle one left.
3155 * Tell the remaining busy ones to rebind once it finishes the
3156 * currently scheduled works by scheduling the rebind_work.
3158 WARN_ON(!list_empty(&gcwq->idle_list));
3160 for_each_busy_worker(worker, i, pos, gcwq) {
3161 struct work_struct *rebind_work = &worker->rebind_work;
3164 * Rebind_work may race with future cpu hotplug
3165 * operations. Use a separate flag to mark that
3166 * rebinding is scheduled.
3168 worker->flags |= WORKER_REBIND;
3169 worker->flags &= ~WORKER_ROGUE;
3171 /* queue rebind_work, wq doesn't matter, use the default one */
3172 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
3173 work_data_bits(rebind_work)))
3174 continue;
3176 debug_work_activate(rebind_work);
3177 insert_work(get_cwq(gcwq->cpu, system_wq), rebind_work,
3178 worker->scheduled.next,
3179 work_color_to_flags(WORK_NO_COLOR));
3182 /* relinquish manager role */
3183 gcwq->flags &= ~GCWQ_MANAGING_WORKERS;
3185 /* notify completion */
3186 gcwq->trustee = NULL;
3187 gcwq->trustee_state = TRUSTEE_DONE;
3188 wake_up_all(&gcwq->trustee_wait);
3189 spin_unlock_irq(&gcwq->lock);
3190 return 0;
3194 * wait_trustee_state - wait for trustee to enter the specified state
3195 * @gcwq: gcwq the trustee of interest belongs to
3196 * @state: target state to wait for
3198 * Wait for the trustee to reach @state. DONE is already matched.
3200 * CONTEXT:
3201 * spin_lock_irq(gcwq->lock) which may be released and regrabbed
3202 * multiple times. To be used by cpu_callback.
3204 static void __cpuinit wait_trustee_state(struct global_cwq *gcwq, int state)
3206 if (!(gcwq->trustee_state == state ||
3207 gcwq->trustee_state == TRUSTEE_DONE)) {
3208 spin_unlock_irq(&gcwq->lock);
3209 __wait_event(gcwq->trustee_wait,
3210 gcwq->trustee_state == state ||
3211 gcwq->trustee_state == TRUSTEE_DONE);
3212 spin_lock_irq(&gcwq->lock);
3216 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
3217 unsigned long action,
3218 void *hcpu)
3220 unsigned int cpu = (unsigned long)hcpu;
3221 struct global_cwq *gcwq = get_gcwq(cpu);
3222 struct task_struct *new_trustee = NULL;
3223 struct worker *uninitialized_var(new_worker);
3224 unsigned long flags;
3226 action &= ~CPU_TASKS_FROZEN;
3228 switch (action) {
3229 case CPU_DOWN_PREPARE:
3230 new_trustee = kthread_create(trustee_thread, gcwq,
3231 "workqueue_trustee/%d\n", cpu);
3232 if (IS_ERR(new_trustee))
3233 return notifier_from_errno(PTR_ERR(new_trustee));
3234 kthread_bind(new_trustee, cpu);
3235 /* fall through */
3236 case CPU_UP_PREPARE:
3237 BUG_ON(gcwq->first_idle);
3238 new_worker = create_worker(gcwq, false);
3239 if (!new_worker) {
3240 if (new_trustee)
3241 kthread_stop(new_trustee);
3242 return NOTIFY_BAD;
3246 /* some are called w/ irq disabled, don't disturb irq status */
3247 spin_lock_irqsave(&gcwq->lock, flags);
3249 switch (action) {
3250 case CPU_DOWN_PREPARE:
3251 /* initialize trustee and tell it to acquire the gcwq */
3252 BUG_ON(gcwq->trustee || gcwq->trustee_state != TRUSTEE_DONE);
3253 gcwq->trustee = new_trustee;
3254 gcwq->trustee_state = TRUSTEE_START;
3255 wake_up_process(gcwq->trustee);
3256 wait_trustee_state(gcwq, TRUSTEE_IN_CHARGE);
3257 /* fall through */
3258 case CPU_UP_PREPARE:
3259 BUG_ON(gcwq->first_idle);
3260 gcwq->first_idle = new_worker;
3261 break;
3263 case CPU_DYING:
3265 * Before this, the trustee and all workers except for
3266 * the ones which are still executing works from
3267 * before the last CPU down must be on the cpu. After
3268 * this, they'll all be diasporas.
3270 gcwq->flags |= GCWQ_DISASSOCIATED;
3271 break;
3273 case CPU_POST_DEAD:
3274 gcwq->trustee_state = TRUSTEE_BUTCHER;
3275 /* fall through */
3276 case CPU_UP_CANCELED:
3277 destroy_worker(gcwq->first_idle);
3278 gcwq->first_idle = NULL;
3279 break;
3281 case CPU_DOWN_FAILED:
3282 case CPU_ONLINE:
3283 gcwq->flags &= ~GCWQ_DISASSOCIATED;
3284 if (gcwq->trustee_state != TRUSTEE_DONE) {
3285 gcwq->trustee_state = TRUSTEE_RELEASE;
3286 wake_up_process(gcwq->trustee);
3287 wait_trustee_state(gcwq, TRUSTEE_DONE);
3291 * Trustee is done and there might be no worker left.
3292 * Put the first_idle in and request a real manager to
3293 * take a look.
3295 spin_unlock_irq(&gcwq->lock);
3296 kthread_bind(gcwq->first_idle->task, cpu);
3297 spin_lock_irq(&gcwq->lock);
3298 gcwq->flags |= GCWQ_MANAGE_WORKERS;
3299 start_worker(gcwq->first_idle);
3300 gcwq->first_idle = NULL;
3301 break;
3304 spin_unlock_irqrestore(&gcwq->lock, flags);
3306 return notifier_from_errno(0);
3309 #ifdef CONFIG_SMP
3311 struct work_for_cpu {
3312 struct completion completion;
3313 long (*fn)(void *);
3314 void *arg;
3315 long ret;
3318 static int do_work_for_cpu(void *_wfc)
3320 struct work_for_cpu *wfc = _wfc;
3321 wfc->ret = wfc->fn(wfc->arg);
3322 complete(&wfc->completion);
3323 return 0;
3327 * work_on_cpu - run a function in user context on a particular cpu
3328 * @cpu: the cpu to run on
3329 * @fn: the function to run
3330 * @arg: the function arg
3332 * This will return the value @fn returns.
3333 * It is up to the caller to ensure that the cpu doesn't go offline.
3334 * The caller must not hold any locks which would prevent @fn from completing.
3336 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3338 struct task_struct *sub_thread;
3339 struct work_for_cpu wfc = {
3340 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
3341 .fn = fn,
3342 .arg = arg,
3345 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
3346 if (IS_ERR(sub_thread))
3347 return PTR_ERR(sub_thread);
3348 kthread_bind(sub_thread, cpu);
3349 wake_up_process(sub_thread);
3350 wait_for_completion(&wfc.completion);
3351 return wfc.ret;
3353 EXPORT_SYMBOL_GPL(work_on_cpu);
3354 #endif /* CONFIG_SMP */
3356 #ifdef CONFIG_FREEZER
3359 * freeze_workqueues_begin - begin freezing workqueues
3361 * Start freezing workqueues. After this function returns, all
3362 * freezeable workqueues will queue new works to their frozen_works
3363 * list instead of gcwq->worklist.
3365 * CONTEXT:
3366 * Grabs and releases workqueue_lock and gcwq->lock's.
3368 void freeze_workqueues_begin(void)
3370 unsigned int cpu;
3372 spin_lock(&workqueue_lock);
3374 BUG_ON(workqueue_freezing);
3375 workqueue_freezing = true;
3377 for_each_gcwq_cpu(cpu) {
3378 struct global_cwq *gcwq = get_gcwq(cpu);
3379 struct workqueue_struct *wq;
3381 spin_lock_irq(&gcwq->lock);
3383 BUG_ON(gcwq->flags & GCWQ_FREEZING);
3384 gcwq->flags |= GCWQ_FREEZING;
3386 list_for_each_entry(wq, &workqueues, list) {
3387 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3389 if (cwq && wq->flags & WQ_FREEZEABLE)
3390 cwq->max_active = 0;
3393 spin_unlock_irq(&gcwq->lock);
3396 spin_unlock(&workqueue_lock);
3400 * freeze_workqueues_busy - are freezeable workqueues still busy?
3402 * Check whether freezing is complete. This function must be called
3403 * between freeze_workqueues_begin() and thaw_workqueues().
3405 * CONTEXT:
3406 * Grabs and releases workqueue_lock.
3408 * RETURNS:
3409 * %true if some freezeable workqueues are still busy. %false if
3410 * freezing is complete.
3412 bool freeze_workqueues_busy(void)
3414 unsigned int cpu;
3415 bool busy = false;
3417 spin_lock(&workqueue_lock);
3419 BUG_ON(!workqueue_freezing);
3421 for_each_gcwq_cpu(cpu) {
3422 struct workqueue_struct *wq;
3424 * nr_active is monotonically decreasing. It's safe
3425 * to peek without lock.
3427 list_for_each_entry(wq, &workqueues, list) {
3428 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3430 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3431 continue;
3433 BUG_ON(cwq->nr_active < 0);
3434 if (cwq->nr_active) {
3435 busy = true;
3436 goto out_unlock;
3440 out_unlock:
3441 spin_unlock(&workqueue_lock);
3442 return busy;
3446 * thaw_workqueues - thaw workqueues
3448 * Thaw workqueues. Normal queueing is restored and all collected
3449 * frozen works are transferred to their respective gcwq worklists.
3451 * CONTEXT:
3452 * Grabs and releases workqueue_lock and gcwq->lock's.
3454 void thaw_workqueues(void)
3456 unsigned int cpu;
3458 spin_lock(&workqueue_lock);
3460 if (!workqueue_freezing)
3461 goto out_unlock;
3463 for_each_gcwq_cpu(cpu) {
3464 struct global_cwq *gcwq = get_gcwq(cpu);
3465 struct workqueue_struct *wq;
3467 spin_lock_irq(&gcwq->lock);
3469 BUG_ON(!(gcwq->flags & GCWQ_FREEZING));
3470 gcwq->flags &= ~GCWQ_FREEZING;
3472 list_for_each_entry(wq, &workqueues, list) {
3473 struct cpu_workqueue_struct *cwq = get_cwq(cpu, wq);
3475 if (!cwq || !(wq->flags & WQ_FREEZEABLE))
3476 continue;
3478 /* restore max_active and repopulate worklist */
3479 cwq->max_active = wq->saved_max_active;
3481 while (!list_empty(&cwq->delayed_works) &&
3482 cwq->nr_active < cwq->max_active)
3483 cwq_activate_first_delayed(cwq);
3486 wake_up_worker(gcwq);
3488 spin_unlock_irq(&gcwq->lock);
3491 workqueue_freezing = false;
3492 out_unlock:
3493 spin_unlock(&workqueue_lock);
3495 #endif /* CONFIG_FREEZER */
3497 void __init init_workqueues(void)
3499 unsigned int cpu;
3500 int i;
3502 hotcpu_notifier(workqueue_cpu_callback, CPU_PRI_WORKQUEUE);
3504 /* initialize gcwqs */
3505 for_each_gcwq_cpu(cpu) {
3506 struct global_cwq *gcwq = get_gcwq(cpu);
3508 spin_lock_init(&gcwq->lock);
3509 INIT_LIST_HEAD(&gcwq->worklist);
3510 gcwq->cpu = cpu;
3511 if (cpu == WORK_CPU_UNBOUND)
3512 gcwq->flags |= GCWQ_DISASSOCIATED;
3514 INIT_LIST_HEAD(&gcwq->idle_list);
3515 for (i = 0; i < BUSY_WORKER_HASH_SIZE; i++)
3516 INIT_HLIST_HEAD(&gcwq->busy_hash[i]);
3518 init_timer_deferrable(&gcwq->idle_timer);
3519 gcwq->idle_timer.function = idle_worker_timeout;
3520 gcwq->idle_timer.data = (unsigned long)gcwq;
3522 setup_timer(&gcwq->mayday_timer, gcwq_mayday_timeout,
3523 (unsigned long)gcwq);
3525 ida_init(&gcwq->worker_ida);
3527 gcwq->trustee_state = TRUSTEE_DONE;
3528 init_waitqueue_head(&gcwq->trustee_wait);
3531 /* create the initial worker */
3532 for_each_online_gcwq_cpu(cpu) {
3533 struct global_cwq *gcwq = get_gcwq(cpu);
3534 struct worker *worker;
3536 worker = create_worker(gcwq, true);
3537 BUG_ON(!worker);
3538 spin_lock_irq(&gcwq->lock);
3539 start_worker(worker);
3540 spin_unlock_irq(&gcwq->lock);
3543 system_wq = alloc_workqueue("events", 0, 0);
3544 system_long_wq = alloc_workqueue("events_long", 0, 0);
3545 system_nrt_wq = alloc_workqueue("events_nrt", WQ_NON_REENTRANT, 0);
3546 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3547 WQ_UNBOUND_MAX_ACTIVE);
3548 BUG_ON(!system_wq || !system_long_wq || !system_nrt_wq);