1 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
3 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/kernel.h>
9 #include <linux/module.h>
11 #include <linux/of_device.h>
12 #include <linux/cpumask.h>
13 #include <linux/slab.h>
14 #include <linux/interrupt.h>
15 #include <linux/crypto.h>
16 #include <crypto/md5.h>
17 #include <crypto/sha.h>
18 #include <crypto/aes.h>
19 #include <crypto/des.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
24 #include <crypto/internal/hash.h>
25 #include <crypto/scatterwalk.h>
26 #include <crypto/algapi.h>
28 #include <asm/hypervisor.h>
29 #include <asm/mdesc.h>
33 #define DRV_MODULE_NAME "n2_crypto"
34 #define DRV_MODULE_VERSION "0.2"
35 #define DRV_MODULE_RELDATE "July 28, 2011"
37 static const char version
[] =
38 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
40 MODULE_AUTHOR("David S. Miller (davem@davemloft.net)");
41 MODULE_DESCRIPTION("Niagara2 Crypto driver");
42 MODULE_LICENSE("GPL");
43 MODULE_VERSION(DRV_MODULE_VERSION
);
45 #define N2_CRA_PRIORITY 200
47 static DEFINE_MUTEX(spu_lock
);
51 unsigned long qhandle
;
58 struct list_head jobs
;
65 struct list_head list
;
69 struct spu_queue
*queue
;
73 static struct spu_queue
**cpu_to_cwq
;
74 static struct spu_queue
**cpu_to_mau
;
76 static unsigned long spu_next_offset(struct spu_queue
*q
, unsigned long off
)
78 if (q
->q_type
== HV_NCS_QTYPE_MAU
) {
79 off
+= MAU_ENTRY_SIZE
;
80 if (off
== (MAU_ENTRY_SIZE
* MAU_NUM_ENTRIES
))
83 off
+= CWQ_ENTRY_SIZE
;
84 if (off
== (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
))
90 struct n2_request_common
{
91 struct list_head entry
;
94 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
96 /* An async job request records the final tail value it used in
97 * n2_request_common->offset, test to see if that offset is in
98 * the range old_head, new_head, inclusive.
100 static inline bool job_finished(struct spu_queue
*q
, unsigned int offset
,
101 unsigned long old_head
, unsigned long new_head
)
103 if (old_head
<= new_head
) {
104 if (offset
> old_head
&& offset
<= new_head
)
107 if (offset
> old_head
|| offset
<= new_head
)
113 /* When the HEAD marker is unequal to the actual HEAD, we get
114 * a virtual device INO interrupt. We should process the
115 * completed CWQ entries and adjust the HEAD marker to clear
118 static irqreturn_t
cwq_intr(int irq
, void *dev_id
)
120 unsigned long off
, new_head
, hv_ret
;
121 struct spu_queue
*q
= dev_id
;
123 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
124 smp_processor_id(), q
->qhandle
);
128 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &new_head
);
130 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
131 smp_processor_id(), new_head
, hv_ret
);
133 for (off
= q
->head
; off
!= new_head
; off
= spu_next_offset(q
, off
)) {
137 hv_ret
= sun4v_ncs_sethead_marker(q
->qhandle
, new_head
);
138 if (hv_ret
== HV_EOK
)
141 spin_unlock(&q
->lock
);
146 static irqreturn_t
mau_intr(int irq
, void *dev_id
)
148 struct spu_queue
*q
= dev_id
;
149 unsigned long head
, hv_ret
;
153 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
154 smp_processor_id(), q
->qhandle
);
156 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &head
);
158 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
159 smp_processor_id(), head
, hv_ret
);
161 sun4v_ncs_sethead_marker(q
->qhandle
, head
);
163 spin_unlock(&q
->lock
);
168 static void *spu_queue_next(struct spu_queue
*q
, void *cur
)
170 return q
->q
+ spu_next_offset(q
, cur
- q
->q
);
173 static int spu_queue_num_free(struct spu_queue
*q
)
175 unsigned long head
= q
->head
;
176 unsigned long tail
= q
->tail
;
177 unsigned long end
= (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
);
183 diff
= (end
- tail
) + head
;
185 return (diff
/ CWQ_ENTRY_SIZE
) - 1;
188 static void *spu_queue_alloc(struct spu_queue
*q
, int num_entries
)
190 int avail
= spu_queue_num_free(q
);
192 if (avail
>= num_entries
)
193 return q
->q
+ q
->tail
;
198 static unsigned long spu_queue_submit(struct spu_queue
*q
, void *last
)
200 unsigned long hv_ret
, new_tail
;
202 new_tail
= spu_next_offset(q
, last
- q
->q
);
204 hv_ret
= sun4v_ncs_settail(q
->qhandle
, new_tail
);
205 if (hv_ret
== HV_EOK
)
210 static u64
control_word_base(unsigned int len
, unsigned int hmac_key_len
,
211 int enc_type
, int auth_type
,
212 unsigned int hash_len
,
213 bool sfas
, bool sob
, bool eob
, bool encrypt
,
216 u64 word
= (len
- 1) & CONTROL_LEN
;
218 word
|= ((u64
) opcode
<< CONTROL_OPCODE_SHIFT
);
219 word
|= ((u64
) enc_type
<< CONTROL_ENC_TYPE_SHIFT
);
220 word
|= ((u64
) auth_type
<< CONTROL_AUTH_TYPE_SHIFT
);
222 word
|= CONTROL_STORE_FINAL_AUTH_STATE
;
224 word
|= CONTROL_START_OF_BLOCK
;
226 word
|= CONTROL_END_OF_BLOCK
;
228 word
|= CONTROL_ENCRYPT
;
230 word
|= ((u64
) (hmac_key_len
- 1)) << CONTROL_HMAC_KEY_LEN_SHIFT
;
232 word
|= ((u64
) (hash_len
- 1)) << CONTROL_HASH_LEN_SHIFT
;
238 static inline bool n2_should_run_async(struct spu_queue
*qp
, int this_len
)
240 if (this_len
>= 64 ||
241 qp
->head
!= qp
->tail
)
247 struct n2_ahash_alg
{
248 struct list_head entry
;
250 const u32
*hash_init
;
255 struct ahash_alg alg
;
258 static inline struct n2_ahash_alg
*n2_ahash_alg(struct crypto_tfm
*tfm
)
260 struct crypto_alg
*alg
= tfm
->__crt_alg
;
261 struct ahash_alg
*ahash_alg
;
263 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
265 return container_of(ahash_alg
, struct n2_ahash_alg
, alg
);
269 const char *child_alg
;
270 struct n2_ahash_alg derived
;
273 static inline struct n2_hmac_alg
*n2_hmac_alg(struct crypto_tfm
*tfm
)
275 struct crypto_alg
*alg
= tfm
->__crt_alg
;
276 struct ahash_alg
*ahash_alg
;
278 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
280 return container_of(ahash_alg
, struct n2_hmac_alg
, derived
.alg
);
284 struct crypto_ahash
*fallback_tfm
;
287 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
290 struct n2_hash_ctx base
;
292 struct crypto_shash
*child_shash
;
295 unsigned char hash_key
[N2_HASH_KEY_MAX
];
298 struct n2_hash_req_ctx
{
300 struct md5_state md5
;
301 struct sha1_state sha1
;
302 struct sha256_state sha256
;
305 struct ahash_request fallback_req
;
308 static int n2_hash_async_init(struct ahash_request
*req
)
310 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
311 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
312 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
314 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
315 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
317 return crypto_ahash_init(&rctx
->fallback_req
);
320 static int n2_hash_async_update(struct ahash_request
*req
)
322 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
323 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
324 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
326 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
327 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
328 rctx
->fallback_req
.nbytes
= req
->nbytes
;
329 rctx
->fallback_req
.src
= req
->src
;
331 return crypto_ahash_update(&rctx
->fallback_req
);
334 static int n2_hash_async_final(struct ahash_request
*req
)
336 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
337 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
338 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
340 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
341 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
342 rctx
->fallback_req
.result
= req
->result
;
344 return crypto_ahash_final(&rctx
->fallback_req
);
347 static int n2_hash_async_finup(struct ahash_request
*req
)
349 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
350 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
351 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
353 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
354 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
355 rctx
->fallback_req
.nbytes
= req
->nbytes
;
356 rctx
->fallback_req
.src
= req
->src
;
357 rctx
->fallback_req
.result
= req
->result
;
359 return crypto_ahash_finup(&rctx
->fallback_req
);
362 static int n2_hash_cra_init(struct crypto_tfm
*tfm
)
364 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
365 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
366 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
367 struct crypto_ahash
*fallback_tfm
;
370 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
371 CRYPTO_ALG_NEED_FALLBACK
);
372 if (IS_ERR(fallback_tfm
)) {
373 pr_warning("Fallback driver '%s' could not be loaded!\n",
374 fallback_driver_name
);
375 err
= PTR_ERR(fallback_tfm
);
379 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
380 crypto_ahash_reqsize(fallback_tfm
)));
382 ctx
->fallback_tfm
= fallback_tfm
;
389 static void n2_hash_cra_exit(struct crypto_tfm
*tfm
)
391 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
392 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
394 crypto_free_ahash(ctx
->fallback_tfm
);
397 static int n2_hmac_cra_init(struct crypto_tfm
*tfm
)
399 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
400 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
401 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
402 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(tfm
);
403 struct crypto_ahash
*fallback_tfm
;
404 struct crypto_shash
*child_shash
;
407 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
408 CRYPTO_ALG_NEED_FALLBACK
);
409 if (IS_ERR(fallback_tfm
)) {
410 pr_warning("Fallback driver '%s' could not be loaded!\n",
411 fallback_driver_name
);
412 err
= PTR_ERR(fallback_tfm
);
416 child_shash
= crypto_alloc_shash(n2alg
->child_alg
, 0, 0);
417 if (IS_ERR(child_shash
)) {
418 pr_warning("Child shash '%s' could not be loaded!\n",
420 err
= PTR_ERR(child_shash
);
421 goto out_free_fallback
;
424 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
425 crypto_ahash_reqsize(fallback_tfm
)));
427 ctx
->child_shash
= child_shash
;
428 ctx
->base
.fallback_tfm
= fallback_tfm
;
432 crypto_free_ahash(fallback_tfm
);
438 static void n2_hmac_cra_exit(struct crypto_tfm
*tfm
)
440 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
441 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
443 crypto_free_ahash(ctx
->base
.fallback_tfm
);
444 crypto_free_shash(ctx
->child_shash
);
447 static int n2_hmac_async_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
450 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
451 struct crypto_shash
*child_shash
= ctx
->child_shash
;
452 struct crypto_ahash
*fallback_tfm
;
453 SHASH_DESC_ON_STACK(shash
, child_shash
);
456 fallback_tfm
= ctx
->base
.fallback_tfm
;
457 err
= crypto_ahash_setkey(fallback_tfm
, key
, keylen
);
461 shash
->tfm
= child_shash
;
462 shash
->flags
= crypto_ahash_get_flags(tfm
) &
463 CRYPTO_TFM_REQ_MAY_SLEEP
;
465 bs
= crypto_shash_blocksize(child_shash
);
466 ds
= crypto_shash_digestsize(child_shash
);
467 BUG_ON(ds
> N2_HASH_KEY_MAX
);
469 err
= crypto_shash_digest(shash
, key
, keylen
,
474 } else if (keylen
<= N2_HASH_KEY_MAX
)
475 memcpy(ctx
->hash_key
, key
, keylen
);
477 ctx
->hash_key_len
= keylen
;
482 static unsigned long wait_for_tail(struct spu_queue
*qp
)
484 unsigned long head
, hv_ret
;
487 hv_ret
= sun4v_ncs_gethead(qp
->qhandle
, &head
);
488 if (hv_ret
!= HV_EOK
) {
489 pr_err("Hypervisor error on gethead\n");
492 if (head
== qp
->tail
) {
500 static unsigned long submit_and_wait_for_tail(struct spu_queue
*qp
,
501 struct cwq_initial_entry
*ent
)
503 unsigned long hv_ret
= spu_queue_submit(qp
, ent
);
505 if (hv_ret
== HV_EOK
)
506 hv_ret
= wait_for_tail(qp
);
511 static int n2_do_async_digest(struct ahash_request
*req
,
512 unsigned int auth_type
, unsigned int digest_size
,
513 unsigned int result_size
, void *hash_loc
,
514 unsigned long auth_key
, unsigned int auth_key_len
)
516 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
517 struct cwq_initial_entry
*ent
;
518 struct crypto_hash_walk walk
;
519 struct spu_queue
*qp
;
524 /* The total effective length of the operation may not
527 if (unlikely(req
->nbytes
> (1 << 16))) {
528 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
529 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
531 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
532 rctx
->fallback_req
.base
.flags
=
533 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
534 rctx
->fallback_req
.nbytes
= req
->nbytes
;
535 rctx
->fallback_req
.src
= req
->src
;
536 rctx
->fallback_req
.result
= req
->result
;
538 return crypto_ahash_digest(&rctx
->fallback_req
);
541 nbytes
= crypto_hash_walk_first(req
, &walk
);
544 qp
= cpu_to_cwq
[cpu
];
548 spin_lock_irqsave(&qp
->lock
, flags
);
550 /* XXX can do better, improve this later by doing a by-hand scatterlist
553 ent
= qp
->q
+ qp
->tail
;
555 ent
->control
= control_word_base(nbytes
, auth_key_len
, 0,
556 auth_type
, digest_size
,
557 false, true, false, false,
560 ent
->src_addr
= __pa(walk
.data
);
561 ent
->auth_key_addr
= auth_key
;
562 ent
->auth_iv_addr
= __pa(hash_loc
);
563 ent
->final_auth_state_addr
= 0UL;
564 ent
->enc_key_addr
= 0UL;
565 ent
->enc_iv_addr
= 0UL;
566 ent
->dest_addr
= __pa(hash_loc
);
568 nbytes
= crypto_hash_walk_done(&walk
, 0);
570 ent
= spu_queue_next(qp
, ent
);
572 ent
->control
= (nbytes
- 1);
573 ent
->src_addr
= __pa(walk
.data
);
574 ent
->auth_key_addr
= 0UL;
575 ent
->auth_iv_addr
= 0UL;
576 ent
->final_auth_state_addr
= 0UL;
577 ent
->enc_key_addr
= 0UL;
578 ent
->enc_iv_addr
= 0UL;
579 ent
->dest_addr
= 0UL;
581 nbytes
= crypto_hash_walk_done(&walk
, 0);
583 ent
->control
|= CONTROL_END_OF_BLOCK
;
585 if (submit_and_wait_for_tail(qp
, ent
) != HV_EOK
)
590 spin_unlock_irqrestore(&qp
->lock
, flags
);
593 memcpy(req
->result
, hash_loc
, result_size
);
600 static int n2_hash_async_digest(struct ahash_request
*req
)
602 struct n2_ahash_alg
*n2alg
= n2_ahash_alg(req
->base
.tfm
);
603 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
606 ds
= n2alg
->digest_size
;
607 if (unlikely(req
->nbytes
== 0)) {
608 memcpy(req
->result
, n2alg
->hash_zero
, ds
);
611 memcpy(&rctx
->u
, n2alg
->hash_init
, n2alg
->hw_op_hashsz
);
613 return n2_do_async_digest(req
, n2alg
->auth_type
,
614 n2alg
->hw_op_hashsz
, ds
,
618 static int n2_hmac_async_digest(struct ahash_request
*req
)
620 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(req
->base
.tfm
);
621 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
622 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
623 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
626 ds
= n2alg
->derived
.digest_size
;
627 if (unlikely(req
->nbytes
== 0) ||
628 unlikely(ctx
->hash_key_len
> N2_HASH_KEY_MAX
)) {
629 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
630 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
632 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
633 rctx
->fallback_req
.base
.flags
=
634 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
635 rctx
->fallback_req
.nbytes
= req
->nbytes
;
636 rctx
->fallback_req
.src
= req
->src
;
637 rctx
->fallback_req
.result
= req
->result
;
639 return crypto_ahash_digest(&rctx
->fallback_req
);
641 memcpy(&rctx
->u
, n2alg
->derived
.hash_init
,
642 n2alg
->derived
.hw_op_hashsz
);
644 return n2_do_async_digest(req
, n2alg
->derived
.hmac_type
,
645 n2alg
->derived
.hw_op_hashsz
, ds
,
647 __pa(&ctx
->hash_key
),
651 struct n2_cipher_context
{
655 u8 aes
[AES_MAX_KEY_SIZE
];
656 u8 des
[DES_KEY_SIZE
];
657 u8 des3
[3 * DES_KEY_SIZE
];
658 u8 arc4
[258]; /* S-box, X, Y */
662 #define N2_CHUNK_ARR_LEN 16
664 struct n2_crypto_chunk
{
665 struct list_head entry
;
666 unsigned long iv_paddr
: 44;
667 unsigned long arr_len
: 20;
668 unsigned long dest_paddr
;
669 unsigned long dest_final
;
671 unsigned long src_paddr
: 44;
672 unsigned long src_len
: 20;
673 } arr
[N2_CHUNK_ARR_LEN
];
676 struct n2_request_context
{
677 struct ablkcipher_walk walk
;
678 struct list_head chunk_list
;
679 struct n2_crypto_chunk chunk
;
683 /* The SPU allows some level of flexibility for partial cipher blocks
684 * being specified in a descriptor.
686 * It merely requires that every descriptor's length field is at least
687 * as large as the cipher block size. This means that a cipher block
688 * can span at most 2 descriptors. However, this does not allow a
689 * partial block to span into the final descriptor as that would
690 * violate the rule (since every descriptor's length must be at lest
691 * the block size). So, for example, assuming an 8 byte block size:
693 * 0xe --> 0xa --> 0x8
695 * is a valid length sequence, whereas:
697 * 0xe --> 0xb --> 0x7
699 * is not a valid sequence.
702 struct n2_cipher_alg
{
703 struct list_head entry
;
705 struct crypto_alg alg
;
708 static inline struct n2_cipher_alg
*n2_cipher_alg(struct crypto_tfm
*tfm
)
710 struct crypto_alg
*alg
= tfm
->__crt_alg
;
712 return container_of(alg
, struct n2_cipher_alg
, alg
);
715 struct n2_cipher_request_context
{
716 struct ablkcipher_walk walk
;
719 static int n2_aes_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
722 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
723 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
724 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
726 ctx
->enc_type
= (n2alg
->enc_type
& ENC_TYPE_CHAINING_MASK
);
729 case AES_KEYSIZE_128
:
730 ctx
->enc_type
|= ENC_TYPE_ALG_AES128
;
732 case AES_KEYSIZE_192
:
733 ctx
->enc_type
|= ENC_TYPE_ALG_AES192
;
735 case AES_KEYSIZE_256
:
736 ctx
->enc_type
|= ENC_TYPE_ALG_AES256
;
739 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
743 ctx
->key_len
= keylen
;
744 memcpy(ctx
->key
.aes
, key
, keylen
);
748 static int n2_des_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
751 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
752 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
753 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
754 u32 tmp
[DES_EXPKEY_WORDS
];
757 ctx
->enc_type
= n2alg
->enc_type
;
759 if (keylen
!= DES_KEY_SIZE
) {
760 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
764 err
= des_ekey(tmp
, key
);
765 if (err
== 0 && (tfm
->crt_flags
& CRYPTO_TFM_REQ_WEAK_KEY
)) {
766 tfm
->crt_flags
|= CRYPTO_TFM_RES_WEAK_KEY
;
770 ctx
->key_len
= keylen
;
771 memcpy(ctx
->key
.des
, key
, keylen
);
775 static int n2_3des_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
778 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
779 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
780 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
782 ctx
->enc_type
= n2alg
->enc_type
;
784 if (keylen
!= (3 * DES_KEY_SIZE
)) {
785 crypto_ablkcipher_set_flags(cipher
, CRYPTO_TFM_RES_BAD_KEY_LEN
);
788 ctx
->key_len
= keylen
;
789 memcpy(ctx
->key
.des3
, key
, keylen
);
793 static int n2_arc4_setkey(struct crypto_ablkcipher
*cipher
, const u8
*key
,
796 struct crypto_tfm
*tfm
= crypto_ablkcipher_tfm(cipher
);
797 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
798 struct n2_cipher_alg
*n2alg
= n2_cipher_alg(tfm
);
799 u8
*s
= ctx
->key
.arc4
;
804 ctx
->enc_type
= n2alg
->enc_type
;
809 for (i
= 0; i
< 256; i
++)
811 for (i
= 0; i
< 256; i
++) {
813 j
= (j
+ key
[k
] + a
) & 0xff;
823 static inline int cipher_descriptor_len(int nbytes
, unsigned int block_size
)
825 int this_len
= nbytes
;
827 this_len
-= (nbytes
& (block_size
- 1));
828 return this_len
> (1 << 16) ? (1 << 16) : this_len
;
831 static int __n2_crypt_chunk(struct crypto_tfm
*tfm
, struct n2_crypto_chunk
*cp
,
832 struct spu_queue
*qp
, bool encrypt
)
834 struct n2_cipher_context
*ctx
= crypto_tfm_ctx(tfm
);
835 struct cwq_initial_entry
*ent
;
839 ent
= spu_queue_alloc(qp
, cp
->arr_len
);
841 pr_info("queue_alloc() of %d fails\n",
846 in_place
= (cp
->dest_paddr
== cp
->arr
[0].src_paddr
);
848 ent
->control
= control_word_base(cp
->arr
[0].src_len
,
849 0, ctx
->enc_type
, 0, 0,
850 false, true, false, encrypt
,
852 (in_place
? OPCODE_INPLACE_BIT
: 0));
853 ent
->src_addr
= cp
->arr
[0].src_paddr
;
854 ent
->auth_key_addr
= 0UL;
855 ent
->auth_iv_addr
= 0UL;
856 ent
->final_auth_state_addr
= 0UL;
857 ent
->enc_key_addr
= __pa(&ctx
->key
);
858 ent
->enc_iv_addr
= cp
->iv_paddr
;
859 ent
->dest_addr
= (in_place
? 0UL : cp
->dest_paddr
);
861 for (i
= 1; i
< cp
->arr_len
; i
++) {
862 ent
= spu_queue_next(qp
, ent
);
864 ent
->control
= cp
->arr
[i
].src_len
- 1;
865 ent
->src_addr
= cp
->arr
[i
].src_paddr
;
866 ent
->auth_key_addr
= 0UL;
867 ent
->auth_iv_addr
= 0UL;
868 ent
->final_auth_state_addr
= 0UL;
869 ent
->enc_key_addr
= 0UL;
870 ent
->enc_iv_addr
= 0UL;
871 ent
->dest_addr
= 0UL;
873 ent
->control
|= CONTROL_END_OF_BLOCK
;
875 return (spu_queue_submit(qp
, ent
) != HV_EOK
) ? -EINVAL
: 0;
878 static int n2_compute_chunks(struct ablkcipher_request
*req
)
880 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
881 struct ablkcipher_walk
*walk
= &rctx
->walk
;
882 struct n2_crypto_chunk
*chunk
;
883 unsigned long dest_prev
;
884 unsigned int tot_len
;
888 ablkcipher_walk_init(walk
, req
->dst
, req
->src
, req
->nbytes
);
889 err
= ablkcipher_walk_phys(req
, walk
);
893 INIT_LIST_HEAD(&rctx
->chunk_list
);
895 chunk
= &rctx
->chunk
;
896 INIT_LIST_HEAD(&chunk
->entry
);
898 chunk
->iv_paddr
= 0UL;
900 chunk
->dest_paddr
= 0UL;
902 prev_in_place
= false;
906 while ((nbytes
= walk
->nbytes
) != 0) {
907 unsigned long dest_paddr
, src_paddr
;
911 src_paddr
= (page_to_phys(walk
->src
.page
) +
913 dest_paddr
= (page_to_phys(walk
->dst
.page
) +
915 in_place
= (src_paddr
== dest_paddr
);
916 this_len
= cipher_descriptor_len(nbytes
, walk
->blocksize
);
918 if (chunk
->arr_len
!= 0) {
919 if (in_place
!= prev_in_place
||
921 dest_paddr
!= dest_prev
) ||
922 chunk
->arr_len
== N2_CHUNK_ARR_LEN
||
923 tot_len
+ this_len
> (1 << 16)) {
924 chunk
->dest_final
= dest_prev
;
925 list_add_tail(&chunk
->entry
,
927 chunk
= kzalloc(sizeof(*chunk
), GFP_ATOMIC
);
932 INIT_LIST_HEAD(&chunk
->entry
);
935 if (chunk
->arr_len
== 0) {
936 chunk
->dest_paddr
= dest_paddr
;
939 chunk
->arr
[chunk
->arr_len
].src_paddr
= src_paddr
;
940 chunk
->arr
[chunk
->arr_len
].src_len
= this_len
;
943 dest_prev
= dest_paddr
+ this_len
;
944 prev_in_place
= in_place
;
947 err
= ablkcipher_walk_done(req
, walk
, nbytes
- this_len
);
951 if (!err
&& chunk
->arr_len
!= 0) {
952 chunk
->dest_final
= dest_prev
;
953 list_add_tail(&chunk
->entry
, &rctx
->chunk_list
);
959 static void n2_chunk_complete(struct ablkcipher_request
*req
, void *final_iv
)
961 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
962 struct n2_crypto_chunk
*c
, *tmp
;
965 memcpy(rctx
->walk
.iv
, final_iv
, rctx
->walk
.blocksize
);
967 ablkcipher_walk_complete(&rctx
->walk
);
968 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
970 if (unlikely(c
!= &rctx
->chunk
))
976 static int n2_do_ecb(struct ablkcipher_request
*req
, bool encrypt
)
978 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
979 struct crypto_tfm
*tfm
= req
->base
.tfm
;
980 int err
= n2_compute_chunks(req
);
981 struct n2_crypto_chunk
*c
, *tmp
;
982 unsigned long flags
, hv_ret
;
983 struct spu_queue
*qp
;
988 qp
= cpu_to_cwq
[get_cpu()];
993 spin_lock_irqsave(&qp
->lock
, flags
);
995 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
996 err
= __n2_crypt_chunk(tfm
, c
, qp
, encrypt
);
1000 if (unlikely(c
!= &rctx
->chunk
))
1004 hv_ret
= wait_for_tail(qp
);
1005 if (hv_ret
!= HV_EOK
)
1009 spin_unlock_irqrestore(&qp
->lock
, flags
);
1014 n2_chunk_complete(req
, NULL
);
1018 static int n2_encrypt_ecb(struct ablkcipher_request
*req
)
1020 return n2_do_ecb(req
, true);
1023 static int n2_decrypt_ecb(struct ablkcipher_request
*req
)
1025 return n2_do_ecb(req
, false);
1028 static int n2_do_chaining(struct ablkcipher_request
*req
, bool encrypt
)
1030 struct n2_request_context
*rctx
= ablkcipher_request_ctx(req
);
1031 struct crypto_tfm
*tfm
= req
->base
.tfm
;
1032 unsigned long flags
, hv_ret
, iv_paddr
;
1033 int err
= n2_compute_chunks(req
);
1034 struct n2_crypto_chunk
*c
, *tmp
;
1035 struct spu_queue
*qp
;
1036 void *final_iv_addr
;
1038 final_iv_addr
= NULL
;
1043 qp
= cpu_to_cwq
[get_cpu()];
1048 spin_lock_irqsave(&qp
->lock
, flags
);
1051 iv_paddr
= __pa(rctx
->walk
.iv
);
1052 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
,
1054 c
->iv_paddr
= iv_paddr
;
1055 err
= __n2_crypt_chunk(tfm
, c
, qp
, true);
1058 iv_paddr
= c
->dest_final
- rctx
->walk
.blocksize
;
1059 list_del(&c
->entry
);
1060 if (unlikely(c
!= &rctx
->chunk
))
1063 final_iv_addr
= __va(iv_paddr
);
1065 list_for_each_entry_safe_reverse(c
, tmp
, &rctx
->chunk_list
,
1067 if (c
== &rctx
->chunk
) {
1068 iv_paddr
= __pa(rctx
->walk
.iv
);
1070 iv_paddr
= (tmp
->arr
[tmp
->arr_len
-1].src_paddr
+
1071 tmp
->arr
[tmp
->arr_len
-1].src_len
-
1072 rctx
->walk
.blocksize
);
1074 if (!final_iv_addr
) {
1077 pa
= (c
->arr
[c
->arr_len
-1].src_paddr
+
1078 c
->arr
[c
->arr_len
-1].src_len
-
1079 rctx
->walk
.blocksize
);
1080 final_iv_addr
= rctx
->temp_iv
;
1081 memcpy(rctx
->temp_iv
, __va(pa
),
1082 rctx
->walk
.blocksize
);
1084 c
->iv_paddr
= iv_paddr
;
1085 err
= __n2_crypt_chunk(tfm
, c
, qp
, false);
1088 list_del(&c
->entry
);
1089 if (unlikely(c
!= &rctx
->chunk
))
1094 hv_ret
= wait_for_tail(qp
);
1095 if (hv_ret
!= HV_EOK
)
1099 spin_unlock_irqrestore(&qp
->lock
, flags
);
1104 n2_chunk_complete(req
, err
? NULL
: final_iv_addr
);
1108 static int n2_encrypt_chaining(struct ablkcipher_request
*req
)
1110 return n2_do_chaining(req
, true);
1113 static int n2_decrypt_chaining(struct ablkcipher_request
*req
)
1115 return n2_do_chaining(req
, false);
1118 struct n2_cipher_tmpl
{
1120 const char *drv_name
;
1123 struct ablkcipher_alg ablkcipher
;
1126 static const struct n2_cipher_tmpl cipher_tmpls
[] = {
1127 /* ARC4: only ECB is supported (chaining bits ignored) */
1128 { .name
= "ecb(arc4)",
1129 .drv_name
= "ecb-arc4",
1131 .enc_type
= (ENC_TYPE_ALG_RC4_STREAM
|
1132 ENC_TYPE_CHAINING_ECB
),
1136 .setkey
= n2_arc4_setkey
,
1137 .encrypt
= n2_encrypt_ecb
,
1138 .decrypt
= n2_decrypt_ecb
,
1142 /* DES: ECB CBC and CFB are supported */
1143 { .name
= "ecb(des)",
1144 .drv_name
= "ecb-des",
1145 .block_size
= DES_BLOCK_SIZE
,
1146 .enc_type
= (ENC_TYPE_ALG_DES
|
1147 ENC_TYPE_CHAINING_ECB
),
1149 .min_keysize
= DES_KEY_SIZE
,
1150 .max_keysize
= DES_KEY_SIZE
,
1151 .setkey
= n2_des_setkey
,
1152 .encrypt
= n2_encrypt_ecb
,
1153 .decrypt
= n2_decrypt_ecb
,
1156 { .name
= "cbc(des)",
1157 .drv_name
= "cbc-des",
1158 .block_size
= DES_BLOCK_SIZE
,
1159 .enc_type
= (ENC_TYPE_ALG_DES
|
1160 ENC_TYPE_CHAINING_CBC
),
1162 .ivsize
= DES_BLOCK_SIZE
,
1163 .min_keysize
= DES_KEY_SIZE
,
1164 .max_keysize
= DES_KEY_SIZE
,
1165 .setkey
= n2_des_setkey
,
1166 .encrypt
= n2_encrypt_chaining
,
1167 .decrypt
= n2_decrypt_chaining
,
1170 { .name
= "cfb(des)",
1171 .drv_name
= "cfb-des",
1172 .block_size
= DES_BLOCK_SIZE
,
1173 .enc_type
= (ENC_TYPE_ALG_DES
|
1174 ENC_TYPE_CHAINING_CFB
),
1176 .min_keysize
= DES_KEY_SIZE
,
1177 .max_keysize
= DES_KEY_SIZE
,
1178 .setkey
= n2_des_setkey
,
1179 .encrypt
= n2_encrypt_chaining
,
1180 .decrypt
= n2_decrypt_chaining
,
1184 /* 3DES: ECB CBC and CFB are supported */
1185 { .name
= "ecb(des3_ede)",
1186 .drv_name
= "ecb-3des",
1187 .block_size
= DES_BLOCK_SIZE
,
1188 .enc_type
= (ENC_TYPE_ALG_3DES
|
1189 ENC_TYPE_CHAINING_ECB
),
1191 .min_keysize
= 3 * DES_KEY_SIZE
,
1192 .max_keysize
= 3 * DES_KEY_SIZE
,
1193 .setkey
= n2_3des_setkey
,
1194 .encrypt
= n2_encrypt_ecb
,
1195 .decrypt
= n2_decrypt_ecb
,
1198 { .name
= "cbc(des3_ede)",
1199 .drv_name
= "cbc-3des",
1200 .block_size
= DES_BLOCK_SIZE
,
1201 .enc_type
= (ENC_TYPE_ALG_3DES
|
1202 ENC_TYPE_CHAINING_CBC
),
1204 .ivsize
= DES_BLOCK_SIZE
,
1205 .min_keysize
= 3 * DES_KEY_SIZE
,
1206 .max_keysize
= 3 * DES_KEY_SIZE
,
1207 .setkey
= n2_3des_setkey
,
1208 .encrypt
= n2_encrypt_chaining
,
1209 .decrypt
= n2_decrypt_chaining
,
1212 { .name
= "cfb(des3_ede)",
1213 .drv_name
= "cfb-3des",
1214 .block_size
= DES_BLOCK_SIZE
,
1215 .enc_type
= (ENC_TYPE_ALG_3DES
|
1216 ENC_TYPE_CHAINING_CFB
),
1218 .min_keysize
= 3 * DES_KEY_SIZE
,
1219 .max_keysize
= 3 * DES_KEY_SIZE
,
1220 .setkey
= n2_3des_setkey
,
1221 .encrypt
= n2_encrypt_chaining
,
1222 .decrypt
= n2_decrypt_chaining
,
1225 /* AES: ECB CBC and CTR are supported */
1226 { .name
= "ecb(aes)",
1227 .drv_name
= "ecb-aes",
1228 .block_size
= AES_BLOCK_SIZE
,
1229 .enc_type
= (ENC_TYPE_ALG_AES128
|
1230 ENC_TYPE_CHAINING_ECB
),
1232 .min_keysize
= AES_MIN_KEY_SIZE
,
1233 .max_keysize
= AES_MAX_KEY_SIZE
,
1234 .setkey
= n2_aes_setkey
,
1235 .encrypt
= n2_encrypt_ecb
,
1236 .decrypt
= n2_decrypt_ecb
,
1239 { .name
= "cbc(aes)",
1240 .drv_name
= "cbc-aes",
1241 .block_size
= AES_BLOCK_SIZE
,
1242 .enc_type
= (ENC_TYPE_ALG_AES128
|
1243 ENC_TYPE_CHAINING_CBC
),
1245 .ivsize
= AES_BLOCK_SIZE
,
1246 .min_keysize
= AES_MIN_KEY_SIZE
,
1247 .max_keysize
= AES_MAX_KEY_SIZE
,
1248 .setkey
= n2_aes_setkey
,
1249 .encrypt
= n2_encrypt_chaining
,
1250 .decrypt
= n2_decrypt_chaining
,
1253 { .name
= "ctr(aes)",
1254 .drv_name
= "ctr-aes",
1255 .block_size
= AES_BLOCK_SIZE
,
1256 .enc_type
= (ENC_TYPE_ALG_AES128
|
1257 ENC_TYPE_CHAINING_COUNTER
),
1259 .ivsize
= AES_BLOCK_SIZE
,
1260 .min_keysize
= AES_MIN_KEY_SIZE
,
1261 .max_keysize
= AES_MAX_KEY_SIZE
,
1262 .setkey
= n2_aes_setkey
,
1263 .encrypt
= n2_encrypt_chaining
,
1264 .decrypt
= n2_encrypt_chaining
,
1269 #define NUM_CIPHER_TMPLS ARRAY_SIZE(cipher_tmpls)
1271 static LIST_HEAD(cipher_algs
);
1273 struct n2_hash_tmpl
{
1275 const u8
*hash_zero
;
1276 const u32
*hash_init
;
1284 static const u32 md5_init
[MD5_HASH_WORDS
] = {
1285 cpu_to_le32(MD5_H0
),
1286 cpu_to_le32(MD5_H1
),
1287 cpu_to_le32(MD5_H2
),
1288 cpu_to_le32(MD5_H3
),
1290 static const u32 sha1_init
[SHA1_DIGEST_SIZE
/ 4] = {
1291 SHA1_H0
, SHA1_H1
, SHA1_H2
, SHA1_H3
, SHA1_H4
,
1293 static const u32 sha256_init
[SHA256_DIGEST_SIZE
/ 4] = {
1294 SHA256_H0
, SHA256_H1
, SHA256_H2
, SHA256_H3
,
1295 SHA256_H4
, SHA256_H5
, SHA256_H6
, SHA256_H7
,
1297 static const u32 sha224_init
[SHA256_DIGEST_SIZE
/ 4] = {
1298 SHA224_H0
, SHA224_H1
, SHA224_H2
, SHA224_H3
,
1299 SHA224_H4
, SHA224_H5
, SHA224_H6
, SHA224_H7
,
1302 static const struct n2_hash_tmpl hash_tmpls
[] = {
1304 .hash_zero
= md5_zero_message_hash
,
1305 .hash_init
= md5_init
,
1306 .auth_type
= AUTH_TYPE_MD5
,
1307 .hmac_type
= AUTH_TYPE_HMAC_MD5
,
1308 .hw_op_hashsz
= MD5_DIGEST_SIZE
,
1309 .digest_size
= MD5_DIGEST_SIZE
,
1310 .block_size
= MD5_HMAC_BLOCK_SIZE
},
1312 .hash_zero
= sha1_zero_message_hash
,
1313 .hash_init
= sha1_init
,
1314 .auth_type
= AUTH_TYPE_SHA1
,
1315 .hmac_type
= AUTH_TYPE_HMAC_SHA1
,
1316 .hw_op_hashsz
= SHA1_DIGEST_SIZE
,
1317 .digest_size
= SHA1_DIGEST_SIZE
,
1318 .block_size
= SHA1_BLOCK_SIZE
},
1320 .hash_zero
= sha256_zero_message_hash
,
1321 .hash_init
= sha256_init
,
1322 .auth_type
= AUTH_TYPE_SHA256
,
1323 .hmac_type
= AUTH_TYPE_HMAC_SHA256
,
1324 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1325 .digest_size
= SHA256_DIGEST_SIZE
,
1326 .block_size
= SHA256_BLOCK_SIZE
},
1328 .hash_zero
= sha224_zero_message_hash
,
1329 .hash_init
= sha224_init
,
1330 .auth_type
= AUTH_TYPE_SHA256
,
1331 .hmac_type
= AUTH_TYPE_RESERVED
,
1332 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1333 .digest_size
= SHA224_DIGEST_SIZE
,
1334 .block_size
= SHA224_BLOCK_SIZE
},
1336 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1338 static LIST_HEAD(ahash_algs
);
1339 static LIST_HEAD(hmac_algs
);
1341 static int algs_registered
;
1343 static void __n2_unregister_algs(void)
1345 struct n2_cipher_alg
*cipher
, *cipher_tmp
;
1346 struct n2_ahash_alg
*alg
, *alg_tmp
;
1347 struct n2_hmac_alg
*hmac
, *hmac_tmp
;
1349 list_for_each_entry_safe(cipher
, cipher_tmp
, &cipher_algs
, entry
) {
1350 crypto_unregister_alg(&cipher
->alg
);
1351 list_del(&cipher
->entry
);
1354 list_for_each_entry_safe(hmac
, hmac_tmp
, &hmac_algs
, derived
.entry
) {
1355 crypto_unregister_ahash(&hmac
->derived
.alg
);
1356 list_del(&hmac
->derived
.entry
);
1359 list_for_each_entry_safe(alg
, alg_tmp
, &ahash_algs
, entry
) {
1360 crypto_unregister_ahash(&alg
->alg
);
1361 list_del(&alg
->entry
);
1366 static int n2_cipher_cra_init(struct crypto_tfm
*tfm
)
1368 tfm
->crt_ablkcipher
.reqsize
= sizeof(struct n2_request_context
);
1372 static int __n2_register_one_cipher(const struct n2_cipher_tmpl
*tmpl
)
1374 struct n2_cipher_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1375 struct crypto_alg
*alg
;
1383 snprintf(alg
->cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1384 snprintf(alg
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->drv_name
);
1385 alg
->cra_priority
= N2_CRA_PRIORITY
;
1386 alg
->cra_flags
= CRYPTO_ALG_TYPE_ABLKCIPHER
|
1387 CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
;
1388 alg
->cra_blocksize
= tmpl
->block_size
;
1389 p
->enc_type
= tmpl
->enc_type
;
1390 alg
->cra_ctxsize
= sizeof(struct n2_cipher_context
);
1391 alg
->cra_type
= &crypto_ablkcipher_type
;
1392 alg
->cra_u
.ablkcipher
= tmpl
->ablkcipher
;
1393 alg
->cra_init
= n2_cipher_cra_init
;
1394 alg
->cra_module
= THIS_MODULE
;
1396 list_add(&p
->entry
, &cipher_algs
);
1397 err
= crypto_register_alg(alg
);
1399 pr_err("%s alg registration failed\n", alg
->cra_name
);
1400 list_del(&p
->entry
);
1403 pr_info("%s alg registered\n", alg
->cra_name
);
1408 static int __n2_register_one_hmac(struct n2_ahash_alg
*n2ahash
)
1410 struct n2_hmac_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1411 struct ahash_alg
*ahash
;
1412 struct crypto_alg
*base
;
1418 p
->child_alg
= n2ahash
->alg
.halg
.base
.cra_name
;
1419 memcpy(&p
->derived
, n2ahash
, sizeof(struct n2_ahash_alg
));
1420 INIT_LIST_HEAD(&p
->derived
.entry
);
1422 ahash
= &p
->derived
.alg
;
1423 ahash
->digest
= n2_hmac_async_digest
;
1424 ahash
->setkey
= n2_hmac_async_setkey
;
1426 base
= &ahash
->halg
.base
;
1427 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "hmac(%s)", p
->child_alg
);
1428 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "hmac-%s-n2", p
->child_alg
);
1430 base
->cra_ctxsize
= sizeof(struct n2_hmac_ctx
);
1431 base
->cra_init
= n2_hmac_cra_init
;
1432 base
->cra_exit
= n2_hmac_cra_exit
;
1434 list_add(&p
->derived
.entry
, &hmac_algs
);
1435 err
= crypto_register_ahash(ahash
);
1437 pr_err("%s alg registration failed\n", base
->cra_name
);
1438 list_del(&p
->derived
.entry
);
1441 pr_info("%s alg registered\n", base
->cra_name
);
1446 static int __n2_register_one_ahash(const struct n2_hash_tmpl
*tmpl
)
1448 struct n2_ahash_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1449 struct hash_alg_common
*halg
;
1450 struct crypto_alg
*base
;
1451 struct ahash_alg
*ahash
;
1457 p
->hash_zero
= tmpl
->hash_zero
;
1458 p
->hash_init
= tmpl
->hash_init
;
1459 p
->auth_type
= tmpl
->auth_type
;
1460 p
->hmac_type
= tmpl
->hmac_type
;
1461 p
->hw_op_hashsz
= tmpl
->hw_op_hashsz
;
1462 p
->digest_size
= tmpl
->digest_size
;
1465 ahash
->init
= n2_hash_async_init
;
1466 ahash
->update
= n2_hash_async_update
;
1467 ahash
->final
= n2_hash_async_final
;
1468 ahash
->finup
= n2_hash_async_finup
;
1469 ahash
->digest
= n2_hash_async_digest
;
1471 halg
= &ahash
->halg
;
1472 halg
->digestsize
= tmpl
->digest_size
;
1475 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1476 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->name
);
1477 base
->cra_priority
= N2_CRA_PRIORITY
;
1478 base
->cra_flags
= CRYPTO_ALG_TYPE_AHASH
|
1479 CRYPTO_ALG_KERN_DRIVER_ONLY
|
1480 CRYPTO_ALG_NEED_FALLBACK
;
1481 base
->cra_blocksize
= tmpl
->block_size
;
1482 base
->cra_ctxsize
= sizeof(struct n2_hash_ctx
);
1483 base
->cra_module
= THIS_MODULE
;
1484 base
->cra_init
= n2_hash_cra_init
;
1485 base
->cra_exit
= n2_hash_cra_exit
;
1487 list_add(&p
->entry
, &ahash_algs
);
1488 err
= crypto_register_ahash(ahash
);
1490 pr_err("%s alg registration failed\n", base
->cra_name
);
1491 list_del(&p
->entry
);
1494 pr_info("%s alg registered\n", base
->cra_name
);
1496 if (!err
&& p
->hmac_type
!= AUTH_TYPE_RESERVED
)
1497 err
= __n2_register_one_hmac(p
);
1501 static int n2_register_algs(void)
1505 mutex_lock(&spu_lock
);
1506 if (algs_registered
++)
1509 for (i
= 0; i
< NUM_HASH_TMPLS
; i
++) {
1510 err
= __n2_register_one_ahash(&hash_tmpls
[i
]);
1512 __n2_unregister_algs();
1516 for (i
= 0; i
< NUM_CIPHER_TMPLS
; i
++) {
1517 err
= __n2_register_one_cipher(&cipher_tmpls
[i
]);
1519 __n2_unregister_algs();
1525 mutex_unlock(&spu_lock
);
1529 static void n2_unregister_algs(void)
1531 mutex_lock(&spu_lock
);
1532 if (!--algs_registered
)
1533 __n2_unregister_algs();
1534 mutex_unlock(&spu_lock
);
1537 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1538 * a devino. This isn't very useful to us because all of the
1539 * interrupts listed in the device_node have been translated to
1540 * Linux virtual IRQ cookie numbers.
1542 * So we have to back-translate, going through the 'intr' and 'ino'
1543 * property tables of the n2cp MDESC node, matching it with the OF
1544 * 'interrupts' property entries, in order to to figure out which
1545 * devino goes to which already-translated IRQ.
1547 static int find_devino_index(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1548 unsigned long dev_ino
)
1550 const unsigned int *dev_intrs
;
1554 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1555 if (ip
->ino_table
[i
].ino
== dev_ino
)
1558 if (i
== ip
->num_intrs
)
1561 intr
= ip
->ino_table
[i
].intr
;
1563 dev_intrs
= of_get_property(dev
->dev
.of_node
, "interrupts", NULL
);
1567 for (i
= 0; i
< dev
->archdata
.num_irqs
; i
++) {
1568 if (dev_intrs
[i
] == intr
)
1575 static int spu_map_ino(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1576 const char *irq_name
, struct spu_queue
*p
,
1577 irq_handler_t handler
)
1582 herr
= sun4v_ncs_qhandle_to_devino(p
->qhandle
, &p
->devino
);
1586 index
= find_devino_index(dev
, ip
, p
->devino
);
1590 p
->irq
= dev
->archdata
.irqs
[index
];
1592 sprintf(p
->irq_name
, "%s-%d", irq_name
, index
);
1594 return request_irq(p
->irq
, handler
, 0, p
->irq_name
, p
);
1597 static struct kmem_cache
*queue_cache
[2];
1599 static void *new_queue(unsigned long q_type
)
1601 return kmem_cache_zalloc(queue_cache
[q_type
- 1], GFP_KERNEL
);
1604 static void free_queue(void *p
, unsigned long q_type
)
1606 kmem_cache_free(queue_cache
[q_type
- 1], p
);
1609 static int queue_cache_init(void)
1611 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1612 queue_cache
[HV_NCS_QTYPE_MAU
- 1] =
1613 kmem_cache_create("mau_queue",
1616 MAU_ENTRY_SIZE
, 0, NULL
);
1617 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1620 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1])
1621 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] =
1622 kmem_cache_create("cwq_queue",
1625 CWQ_ENTRY_SIZE
, 0, NULL
);
1626 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1]) {
1627 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1633 static void queue_cache_destroy(void)
1635 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1636 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_CWQ
- 1]);
1639 static long spu_queue_register_workfn(void *arg
)
1641 struct spu_qreg
*qr
= arg
;
1642 struct spu_queue
*p
= qr
->queue
;
1643 unsigned long q_type
= qr
->type
;
1644 unsigned long hv_ret
;
1646 hv_ret
= sun4v_ncs_qconf(q_type
, __pa(p
->q
),
1647 CWQ_NUM_ENTRIES
, &p
->qhandle
);
1649 sun4v_ncs_sethead_marker(p
->qhandle
, 0);
1651 return hv_ret
? -EINVAL
: 0;
1654 static int spu_queue_register(struct spu_queue
*p
, unsigned long q_type
)
1656 int cpu
= cpumask_any_and(&p
->sharing
, cpu_online_mask
);
1657 struct spu_qreg qr
= { .queue
= p
, .type
= q_type
};
1659 return work_on_cpu_safe(cpu
, spu_queue_register_workfn
, &qr
);
1662 static int spu_queue_setup(struct spu_queue
*p
)
1666 p
->q
= new_queue(p
->q_type
);
1670 err
= spu_queue_register(p
, p
->q_type
);
1672 free_queue(p
->q
, p
->q_type
);
1679 static void spu_queue_destroy(struct spu_queue
*p
)
1681 unsigned long hv_ret
;
1686 hv_ret
= sun4v_ncs_qconf(p
->q_type
, p
->qhandle
, 0, &p
->qhandle
);
1689 free_queue(p
->q
, p
->q_type
);
1692 static void spu_list_destroy(struct list_head
*list
)
1694 struct spu_queue
*p
, *n
;
1696 list_for_each_entry_safe(p
, n
, list
, list
) {
1699 for (i
= 0; i
< NR_CPUS
; i
++) {
1700 if (cpu_to_cwq
[i
] == p
)
1701 cpu_to_cwq
[i
] = NULL
;
1705 free_irq(p
->irq
, p
);
1708 spu_queue_destroy(p
);
1714 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1715 * gathering cpu membership information.
1717 static int spu_mdesc_walk_arcs(struct mdesc_handle
*mdesc
,
1718 struct platform_device
*dev
,
1719 u64 node
, struct spu_queue
*p
,
1720 struct spu_queue
**table
)
1724 mdesc_for_each_arc(arc
, mdesc
, node
, MDESC_ARC_TYPE_BACK
) {
1725 u64 tgt
= mdesc_arc_target(mdesc
, arc
);
1726 const char *name
= mdesc_node_name(mdesc
, tgt
);
1729 if (strcmp(name
, "cpu"))
1731 id
= mdesc_get_property(mdesc
, tgt
, "id", NULL
);
1732 if (table
[*id
] != NULL
) {
1733 dev_err(&dev
->dev
, "%pOF: SPU cpu slot already set.\n",
1737 cpumask_set_cpu(*id
, &p
->sharing
);
1743 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1744 static int handle_exec_unit(struct spu_mdesc_info
*ip
, struct list_head
*list
,
1745 struct platform_device
*dev
, struct mdesc_handle
*mdesc
,
1746 u64 node
, const char *iname
, unsigned long q_type
,
1747 irq_handler_t handler
, struct spu_queue
**table
)
1749 struct spu_queue
*p
;
1752 p
= kzalloc(sizeof(struct spu_queue
), GFP_KERNEL
);
1754 dev_err(&dev
->dev
, "%pOF: Could not allocate SPU queue.\n",
1759 cpumask_clear(&p
->sharing
);
1760 spin_lock_init(&p
->lock
);
1762 INIT_LIST_HEAD(&p
->jobs
);
1763 list_add(&p
->list
, list
);
1765 err
= spu_mdesc_walk_arcs(mdesc
, dev
, node
, p
, table
);
1769 err
= spu_queue_setup(p
);
1773 return spu_map_ino(dev
, ip
, iname
, p
, handler
);
1776 static int spu_mdesc_scan(struct mdesc_handle
*mdesc
, struct platform_device
*dev
,
1777 struct spu_mdesc_info
*ip
, struct list_head
*list
,
1778 const char *exec_name
, unsigned long q_type
,
1779 irq_handler_t handler
, struct spu_queue
**table
)
1784 mdesc_for_each_node_by_name(mdesc
, node
, "exec-unit") {
1787 type
= mdesc_get_property(mdesc
, node
, "type", NULL
);
1788 if (!type
|| strcmp(type
, exec_name
))
1791 err
= handle_exec_unit(ip
, list
, dev
, mdesc
, node
,
1792 exec_name
, q_type
, handler
, table
);
1794 spu_list_destroy(list
);
1802 static int get_irq_props(struct mdesc_handle
*mdesc
, u64 node
,
1803 struct spu_mdesc_info
*ip
)
1809 ino
= mdesc_get_property(mdesc
, node
, "ino", &ino_len
);
1811 printk("NO 'ino'\n");
1815 ip
->num_intrs
= ino_len
/ sizeof(u64
);
1816 ip
->ino_table
= kzalloc((sizeof(struct ino_blob
) *
1822 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1823 struct ino_blob
*b
= &ip
->ino_table
[i
];
1831 static int grab_mdesc_irq_props(struct mdesc_handle
*mdesc
,
1832 struct platform_device
*dev
,
1833 struct spu_mdesc_info
*ip
,
1834 const char *node_name
)
1836 const unsigned int *reg
;
1839 reg
= of_get_property(dev
->dev
.of_node
, "reg", NULL
);
1843 mdesc_for_each_node_by_name(mdesc
, node
, "virtual-device") {
1847 name
= mdesc_get_property(mdesc
, node
, "name", NULL
);
1848 if (!name
|| strcmp(name
, node_name
))
1850 chdl
= mdesc_get_property(mdesc
, node
, "cfg-handle", NULL
);
1851 if (!chdl
|| (*chdl
!= *reg
))
1853 ip
->cfg_handle
= *chdl
;
1854 return get_irq_props(mdesc
, node
, ip
);
1860 static unsigned long n2_spu_hvapi_major
;
1861 static unsigned long n2_spu_hvapi_minor
;
1863 static int n2_spu_hvapi_register(void)
1867 n2_spu_hvapi_major
= 2;
1868 n2_spu_hvapi_minor
= 0;
1870 err
= sun4v_hvapi_register(HV_GRP_NCS
,
1872 &n2_spu_hvapi_minor
);
1875 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1877 n2_spu_hvapi_minor
);
1882 static void n2_spu_hvapi_unregister(void)
1884 sun4v_hvapi_unregister(HV_GRP_NCS
);
1887 static int global_ref
;
1889 static int grab_global_resources(void)
1893 mutex_lock(&spu_lock
);
1898 err
= n2_spu_hvapi_register();
1902 err
= queue_cache_init();
1904 goto out_hvapi_release
;
1907 cpu_to_cwq
= kzalloc(sizeof(struct spu_queue
*) * NR_CPUS
,
1910 goto out_queue_cache_destroy
;
1912 cpu_to_mau
= kzalloc(sizeof(struct spu_queue
*) * NR_CPUS
,
1915 goto out_free_cwq_table
;
1922 mutex_unlock(&spu_lock
);
1929 out_queue_cache_destroy
:
1930 queue_cache_destroy();
1933 n2_spu_hvapi_unregister();
1937 static void release_global_resources(void)
1939 mutex_lock(&spu_lock
);
1940 if (!--global_ref
) {
1947 queue_cache_destroy();
1948 n2_spu_hvapi_unregister();
1950 mutex_unlock(&spu_lock
);
1953 static struct n2_crypto
*alloc_n2cp(void)
1955 struct n2_crypto
*np
= kzalloc(sizeof(struct n2_crypto
), GFP_KERNEL
);
1958 INIT_LIST_HEAD(&np
->cwq_list
);
1963 static void free_n2cp(struct n2_crypto
*np
)
1965 kfree(np
->cwq_info
.ino_table
);
1966 np
->cwq_info
.ino_table
= NULL
;
1971 static void n2_spu_driver_version(void)
1973 static int n2_spu_version_printed
;
1975 if (n2_spu_version_printed
++ == 0)
1976 pr_info("%s", version
);
1979 static int n2_crypto_probe(struct platform_device
*dev
)
1981 struct mdesc_handle
*mdesc
;
1982 struct n2_crypto
*np
;
1985 n2_spu_driver_version();
1987 pr_info("Found N2CP at %pOF\n", dev
->dev
.of_node
);
1991 dev_err(&dev
->dev
, "%pOF: Unable to allocate n2cp.\n",
1996 err
= grab_global_resources();
1998 dev_err(&dev
->dev
, "%pOF: Unable to grab global resources.\n",
2003 mdesc
= mdesc_grab();
2006 dev_err(&dev
->dev
, "%pOF: Unable to grab MDESC.\n",
2009 goto out_free_global
;
2011 err
= grab_mdesc_irq_props(mdesc
, dev
, &np
->cwq_info
, "n2cp");
2013 dev_err(&dev
->dev
, "%pOF: Unable to grab IRQ props.\n",
2015 mdesc_release(mdesc
);
2016 goto out_free_global
;
2019 err
= spu_mdesc_scan(mdesc
, dev
, &np
->cwq_info
, &np
->cwq_list
,
2020 "cwq", HV_NCS_QTYPE_CWQ
, cwq_intr
,
2022 mdesc_release(mdesc
);
2025 dev_err(&dev
->dev
, "%pOF: CWQ MDESC scan failed.\n",
2027 goto out_free_global
;
2030 err
= n2_register_algs();
2032 dev_err(&dev
->dev
, "%pOF: Unable to register algorithms.\n",
2034 goto out_free_spu_list
;
2037 dev_set_drvdata(&dev
->dev
, np
);
2042 spu_list_destroy(&np
->cwq_list
);
2045 release_global_resources();
2053 static int n2_crypto_remove(struct platform_device
*dev
)
2055 struct n2_crypto
*np
= dev_get_drvdata(&dev
->dev
);
2057 n2_unregister_algs();
2059 spu_list_destroy(&np
->cwq_list
);
2061 release_global_resources();
2068 static struct n2_mau
*alloc_ncp(void)
2070 struct n2_mau
*mp
= kzalloc(sizeof(struct n2_mau
), GFP_KERNEL
);
2073 INIT_LIST_HEAD(&mp
->mau_list
);
2078 static void free_ncp(struct n2_mau
*mp
)
2080 kfree(mp
->mau_info
.ino_table
);
2081 mp
->mau_info
.ino_table
= NULL
;
2086 static int n2_mau_probe(struct platform_device
*dev
)
2088 struct mdesc_handle
*mdesc
;
2092 n2_spu_driver_version();
2094 pr_info("Found NCP at %pOF\n", dev
->dev
.of_node
);
2098 dev_err(&dev
->dev
, "%pOF: Unable to allocate ncp.\n",
2103 err
= grab_global_resources();
2105 dev_err(&dev
->dev
, "%pOF: Unable to grab global resources.\n",
2110 mdesc
= mdesc_grab();
2113 dev_err(&dev
->dev
, "%pOF: Unable to grab MDESC.\n",
2116 goto out_free_global
;
2119 err
= grab_mdesc_irq_props(mdesc
, dev
, &mp
->mau_info
, "ncp");
2121 dev_err(&dev
->dev
, "%pOF: Unable to grab IRQ props.\n",
2123 mdesc_release(mdesc
);
2124 goto out_free_global
;
2127 err
= spu_mdesc_scan(mdesc
, dev
, &mp
->mau_info
, &mp
->mau_list
,
2128 "mau", HV_NCS_QTYPE_MAU
, mau_intr
,
2130 mdesc_release(mdesc
);
2133 dev_err(&dev
->dev
, "%pOF: MAU MDESC scan failed.\n",
2135 goto out_free_global
;
2138 dev_set_drvdata(&dev
->dev
, mp
);
2143 release_global_resources();
2151 static int n2_mau_remove(struct platform_device
*dev
)
2153 struct n2_mau
*mp
= dev_get_drvdata(&dev
->dev
);
2155 spu_list_destroy(&mp
->mau_list
);
2157 release_global_resources();
2164 static const struct of_device_id n2_crypto_match
[] = {
2167 .compatible
= "SUNW,n2-cwq",
2171 .compatible
= "SUNW,vf-cwq",
2175 .compatible
= "SUNW,kt-cwq",
2180 MODULE_DEVICE_TABLE(of
, n2_crypto_match
);
2182 static struct platform_driver n2_crypto_driver
= {
2185 .of_match_table
= n2_crypto_match
,
2187 .probe
= n2_crypto_probe
,
2188 .remove
= n2_crypto_remove
,
2191 static const struct of_device_id n2_mau_match
[] = {
2194 .compatible
= "SUNW,n2-mau",
2198 .compatible
= "SUNW,vf-mau",
2202 .compatible
= "SUNW,kt-mau",
2207 MODULE_DEVICE_TABLE(of
, n2_mau_match
);
2209 static struct platform_driver n2_mau_driver
= {
2212 .of_match_table
= n2_mau_match
,
2214 .probe
= n2_mau_probe
,
2215 .remove
= n2_mau_remove
,
2218 static struct platform_driver
* const drivers
[] = {
2223 static int __init
n2_init(void)
2225 return platform_register_drivers(drivers
, ARRAY_SIZE(drivers
));
2228 static void __exit
n2_exit(void)
2230 platform_unregister_drivers(drivers
, ARRAY_SIZE(drivers
));
2233 module_init(n2_init
);
2234 module_exit(n2_exit
);