Merge tag 'riscv-for-linus-4.15-rc2_cleanups' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / drivers / mmc / core / block.c
blobccfa98af1dd3fc93fdaa52b6ced6db3dc0f9db79
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
48 #include <linux/uaccess.h>
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
66 #define MMC_BLK_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
67 #define MMC_SANITIZE_REQ_TIMEOUT 240000
68 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
70 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
71 (rq_data_dir(req) == WRITE))
72 static DEFINE_MUTEX(block_mutex);
75 * The defaults come from config options but can be overriden by module
76 * or bootarg options.
78 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
81 * We've only got one major, so number of mmcblk devices is
82 * limited to (1 << 20) / number of minors per device. It is also
83 * limited by the MAX_DEVICES below.
85 static int max_devices;
87 #define MAX_DEVICES 256
89 static DEFINE_IDA(mmc_blk_ida);
90 static DEFINE_IDA(mmc_rpmb_ida);
93 * There is one mmc_blk_data per slot.
95 struct mmc_blk_data {
96 spinlock_t lock;
97 struct device *parent;
98 struct gendisk *disk;
99 struct mmc_queue queue;
100 struct list_head part;
101 struct list_head rpmbs;
103 unsigned int flags;
104 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
105 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
107 unsigned int usage;
108 unsigned int read_only;
109 unsigned int part_type;
110 unsigned int reset_done;
111 #define MMC_BLK_READ BIT(0)
112 #define MMC_BLK_WRITE BIT(1)
113 #define MMC_BLK_DISCARD BIT(2)
114 #define MMC_BLK_SECDISCARD BIT(3)
117 * Only set in main mmc_blk_data associated
118 * with mmc_card with dev_set_drvdata, and keeps
119 * track of the current selected device partition.
121 unsigned int part_curr;
122 struct device_attribute force_ro;
123 struct device_attribute power_ro_lock;
124 int area_type;
126 /* debugfs files (only in main mmc_blk_data) */
127 struct dentry *status_dentry;
128 struct dentry *ext_csd_dentry;
131 /* Device type for RPMB character devices */
132 static dev_t mmc_rpmb_devt;
134 /* Bus type for RPMB character devices */
135 static struct bus_type mmc_rpmb_bus_type = {
136 .name = "mmc_rpmb",
140 * struct mmc_rpmb_data - special RPMB device type for these areas
141 * @dev: the device for the RPMB area
142 * @chrdev: character device for the RPMB area
143 * @id: unique device ID number
144 * @part_index: partition index (0 on first)
145 * @md: parent MMC block device
146 * @node: list item, so we can put this device on a list
148 struct mmc_rpmb_data {
149 struct device dev;
150 struct cdev chrdev;
151 int id;
152 unsigned int part_index;
153 struct mmc_blk_data *md;
154 struct list_head node;
157 static DEFINE_MUTEX(open_lock);
159 module_param(perdev_minors, int, 0444);
160 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
162 static inline int mmc_blk_part_switch(struct mmc_card *card,
163 unsigned int part_type);
165 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
167 struct mmc_blk_data *md;
169 mutex_lock(&open_lock);
170 md = disk->private_data;
171 if (md && md->usage == 0)
172 md = NULL;
173 if (md)
174 md->usage++;
175 mutex_unlock(&open_lock);
177 return md;
180 static inline int mmc_get_devidx(struct gendisk *disk)
182 int devidx = disk->first_minor / perdev_minors;
183 return devidx;
186 static void mmc_blk_put(struct mmc_blk_data *md)
188 mutex_lock(&open_lock);
189 md->usage--;
190 if (md->usage == 0) {
191 int devidx = mmc_get_devidx(md->disk);
192 blk_cleanup_queue(md->queue.queue);
193 ida_simple_remove(&mmc_blk_ida, devidx);
194 put_disk(md->disk);
195 kfree(md);
197 mutex_unlock(&open_lock);
200 static ssize_t power_ro_lock_show(struct device *dev,
201 struct device_attribute *attr, char *buf)
203 int ret;
204 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
205 struct mmc_card *card = md->queue.card;
206 int locked = 0;
208 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
209 locked = 2;
210 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
211 locked = 1;
213 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
215 mmc_blk_put(md);
217 return ret;
220 static ssize_t power_ro_lock_store(struct device *dev,
221 struct device_attribute *attr, const char *buf, size_t count)
223 int ret;
224 struct mmc_blk_data *md, *part_md;
225 struct mmc_queue *mq;
226 struct request *req;
227 unsigned long set;
229 if (kstrtoul(buf, 0, &set))
230 return -EINVAL;
232 if (set != 1)
233 return count;
235 md = mmc_blk_get(dev_to_disk(dev));
236 mq = &md->queue;
238 /* Dispatch locking to the block layer */
239 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, __GFP_RECLAIM);
240 if (IS_ERR(req)) {
241 count = PTR_ERR(req);
242 goto out_put;
244 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
245 blk_execute_rq(mq->queue, NULL, req, 0);
246 ret = req_to_mmc_queue_req(req)->drv_op_result;
247 blk_put_request(req);
249 if (!ret) {
250 pr_info("%s: Locking boot partition ro until next power on\n",
251 md->disk->disk_name);
252 set_disk_ro(md->disk, 1);
254 list_for_each_entry(part_md, &md->part, part)
255 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
256 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
257 set_disk_ro(part_md->disk, 1);
260 out_put:
261 mmc_blk_put(md);
262 return count;
265 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
266 char *buf)
268 int ret;
269 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
271 ret = snprintf(buf, PAGE_SIZE, "%d\n",
272 get_disk_ro(dev_to_disk(dev)) ^
273 md->read_only);
274 mmc_blk_put(md);
275 return ret;
278 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
279 const char *buf, size_t count)
281 int ret;
282 char *end;
283 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
284 unsigned long set = simple_strtoul(buf, &end, 0);
285 if (end == buf) {
286 ret = -EINVAL;
287 goto out;
290 set_disk_ro(dev_to_disk(dev), set || md->read_only);
291 ret = count;
292 out:
293 mmc_blk_put(md);
294 return ret;
297 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
299 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
300 int ret = -ENXIO;
302 mutex_lock(&block_mutex);
303 if (md) {
304 if (md->usage == 2)
305 check_disk_change(bdev);
306 ret = 0;
308 if ((mode & FMODE_WRITE) && md->read_only) {
309 mmc_blk_put(md);
310 ret = -EROFS;
313 mutex_unlock(&block_mutex);
315 return ret;
318 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
320 struct mmc_blk_data *md = disk->private_data;
322 mutex_lock(&block_mutex);
323 mmc_blk_put(md);
324 mutex_unlock(&block_mutex);
327 static int
328 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
330 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
331 geo->heads = 4;
332 geo->sectors = 16;
333 return 0;
336 struct mmc_blk_ioc_data {
337 struct mmc_ioc_cmd ic;
338 unsigned char *buf;
339 u64 buf_bytes;
340 struct mmc_rpmb_data *rpmb;
343 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
344 struct mmc_ioc_cmd __user *user)
346 struct mmc_blk_ioc_data *idata;
347 int err;
349 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
350 if (!idata) {
351 err = -ENOMEM;
352 goto out;
355 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
356 err = -EFAULT;
357 goto idata_err;
360 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
361 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
362 err = -EOVERFLOW;
363 goto idata_err;
366 if (!idata->buf_bytes) {
367 idata->buf = NULL;
368 return idata;
371 idata->buf = kmalloc(idata->buf_bytes, GFP_KERNEL);
372 if (!idata->buf) {
373 err = -ENOMEM;
374 goto idata_err;
377 if (copy_from_user(idata->buf, (void __user *)(unsigned long)
378 idata->ic.data_ptr, idata->buf_bytes)) {
379 err = -EFAULT;
380 goto copy_err;
383 return idata;
385 copy_err:
386 kfree(idata->buf);
387 idata_err:
388 kfree(idata);
389 out:
390 return ERR_PTR(err);
393 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
394 struct mmc_blk_ioc_data *idata)
396 struct mmc_ioc_cmd *ic = &idata->ic;
398 if (copy_to_user(&(ic_ptr->response), ic->response,
399 sizeof(ic->response)))
400 return -EFAULT;
402 if (!idata->ic.write_flag) {
403 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
404 idata->buf, idata->buf_bytes))
405 return -EFAULT;
408 return 0;
411 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
412 u32 retries_max)
414 int err;
415 u32 retry_count = 0;
417 if (!status || !retries_max)
418 return -EINVAL;
420 do {
421 err = __mmc_send_status(card, status, 5);
422 if (err)
423 break;
425 if (!R1_STATUS(*status) &&
426 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
427 break; /* RPMB programming operation complete */
430 * Rechedule to give the MMC device a chance to continue
431 * processing the previous command without being polled too
432 * frequently.
434 usleep_range(1000, 5000);
435 } while (++retry_count < retries_max);
437 if (retry_count == retries_max)
438 err = -EPERM;
440 return err;
443 static int ioctl_do_sanitize(struct mmc_card *card)
445 int err;
447 if (!mmc_can_sanitize(card)) {
448 pr_warn("%s: %s - SANITIZE is not supported\n",
449 mmc_hostname(card->host), __func__);
450 err = -EOPNOTSUPP;
451 goto out;
454 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
455 mmc_hostname(card->host), __func__);
457 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
458 EXT_CSD_SANITIZE_START, 1,
459 MMC_SANITIZE_REQ_TIMEOUT);
461 if (err)
462 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
463 mmc_hostname(card->host), __func__, err);
465 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
466 __func__);
467 out:
468 return err;
471 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
472 struct mmc_blk_ioc_data *idata)
474 struct mmc_command cmd = {};
475 struct mmc_data data = {};
476 struct mmc_request mrq = {};
477 struct scatterlist sg;
478 int err;
479 unsigned int target_part;
480 u32 status = 0;
482 if (!card || !md || !idata)
483 return -EINVAL;
486 * The RPMB accesses comes in from the character device, so we
487 * need to target these explicitly. Else we just target the
488 * partition type for the block device the ioctl() was issued
489 * on.
491 if (idata->rpmb) {
492 /* Support multiple RPMB partitions */
493 target_part = idata->rpmb->part_index;
494 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
495 } else {
496 target_part = md->part_type;
499 cmd.opcode = idata->ic.opcode;
500 cmd.arg = idata->ic.arg;
501 cmd.flags = idata->ic.flags;
503 if (idata->buf_bytes) {
504 data.sg = &sg;
505 data.sg_len = 1;
506 data.blksz = idata->ic.blksz;
507 data.blocks = idata->ic.blocks;
509 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
511 if (idata->ic.write_flag)
512 data.flags = MMC_DATA_WRITE;
513 else
514 data.flags = MMC_DATA_READ;
516 /* data.flags must already be set before doing this. */
517 mmc_set_data_timeout(&data, card);
519 /* Allow overriding the timeout_ns for empirical tuning. */
520 if (idata->ic.data_timeout_ns)
521 data.timeout_ns = idata->ic.data_timeout_ns;
523 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
525 * Pretend this is a data transfer and rely on the
526 * host driver to compute timeout. When all host
527 * drivers support cmd.cmd_timeout for R1B, this
528 * can be changed to:
530 * mrq.data = NULL;
531 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
533 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
536 mrq.data = &data;
539 mrq.cmd = &cmd;
541 err = mmc_blk_part_switch(card, target_part);
542 if (err)
543 return err;
545 if (idata->ic.is_acmd) {
546 err = mmc_app_cmd(card->host, card);
547 if (err)
548 return err;
551 if (idata->rpmb) {
552 err = mmc_set_blockcount(card, data.blocks,
553 idata->ic.write_flag & (1 << 31));
554 if (err)
555 return err;
558 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
559 (cmd.opcode == MMC_SWITCH)) {
560 err = ioctl_do_sanitize(card);
562 if (err)
563 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
564 __func__, err);
566 return err;
569 mmc_wait_for_req(card->host, &mrq);
571 if (cmd.error) {
572 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
573 __func__, cmd.error);
574 return cmd.error;
576 if (data.error) {
577 dev_err(mmc_dev(card->host), "%s: data error %d\n",
578 __func__, data.error);
579 return data.error;
583 * According to the SD specs, some commands require a delay after
584 * issuing the command.
586 if (idata->ic.postsleep_min_us)
587 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
589 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
591 if (idata->rpmb) {
593 * Ensure RPMB command has completed by polling CMD13
594 * "Send Status".
596 err = ioctl_rpmb_card_status_poll(card, &status, 5);
597 if (err)
598 dev_err(mmc_dev(card->host),
599 "%s: Card Status=0x%08X, error %d\n",
600 __func__, status, err);
603 return err;
606 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
607 struct mmc_ioc_cmd __user *ic_ptr,
608 struct mmc_rpmb_data *rpmb)
610 struct mmc_blk_ioc_data *idata;
611 struct mmc_blk_ioc_data *idatas[1];
612 struct mmc_queue *mq;
613 struct mmc_card *card;
614 int err = 0, ioc_err = 0;
615 struct request *req;
617 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
618 if (IS_ERR(idata))
619 return PTR_ERR(idata);
620 /* This will be NULL on non-RPMB ioctl():s */
621 idata->rpmb = rpmb;
623 card = md->queue.card;
624 if (IS_ERR(card)) {
625 err = PTR_ERR(card);
626 goto cmd_done;
630 * Dispatch the ioctl() into the block request queue.
632 mq = &md->queue;
633 req = blk_get_request(mq->queue,
634 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
635 __GFP_RECLAIM);
636 if (IS_ERR(req)) {
637 err = PTR_ERR(req);
638 goto cmd_done;
640 idatas[0] = idata;
641 req_to_mmc_queue_req(req)->drv_op =
642 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
643 req_to_mmc_queue_req(req)->drv_op_data = idatas;
644 req_to_mmc_queue_req(req)->ioc_count = 1;
645 blk_execute_rq(mq->queue, NULL, req, 0);
646 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
647 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
648 blk_put_request(req);
650 cmd_done:
651 kfree(idata->buf);
652 kfree(idata);
653 return ioc_err ? ioc_err : err;
656 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
657 struct mmc_ioc_multi_cmd __user *user,
658 struct mmc_rpmb_data *rpmb)
660 struct mmc_blk_ioc_data **idata = NULL;
661 struct mmc_ioc_cmd __user *cmds = user->cmds;
662 struct mmc_card *card;
663 struct mmc_queue *mq;
664 int i, err = 0, ioc_err = 0;
665 __u64 num_of_cmds;
666 struct request *req;
668 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
669 sizeof(num_of_cmds)))
670 return -EFAULT;
672 if (!num_of_cmds)
673 return 0;
675 if (num_of_cmds > MMC_IOC_MAX_CMDS)
676 return -EINVAL;
678 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
679 if (!idata)
680 return -ENOMEM;
682 for (i = 0; i < num_of_cmds; i++) {
683 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
684 if (IS_ERR(idata[i])) {
685 err = PTR_ERR(idata[i]);
686 num_of_cmds = i;
687 goto cmd_err;
689 /* This will be NULL on non-RPMB ioctl():s */
690 idata[i]->rpmb = rpmb;
693 card = md->queue.card;
694 if (IS_ERR(card)) {
695 err = PTR_ERR(card);
696 goto cmd_err;
701 * Dispatch the ioctl()s into the block request queue.
703 mq = &md->queue;
704 req = blk_get_request(mq->queue,
705 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN,
706 __GFP_RECLAIM);
707 if (IS_ERR(req)) {
708 err = PTR_ERR(req);
709 goto cmd_err;
711 req_to_mmc_queue_req(req)->drv_op =
712 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
713 req_to_mmc_queue_req(req)->drv_op_data = idata;
714 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
715 blk_execute_rq(mq->queue, NULL, req, 0);
716 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
718 /* copy to user if data and response */
719 for (i = 0; i < num_of_cmds && !err; i++)
720 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
722 blk_put_request(req);
724 cmd_err:
725 for (i = 0; i < num_of_cmds; i++) {
726 kfree(idata[i]->buf);
727 kfree(idata[i]);
729 kfree(idata);
730 return ioc_err ? ioc_err : err;
733 static int mmc_blk_check_blkdev(struct block_device *bdev)
736 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
737 * whole block device, not on a partition. This prevents overspray
738 * between sibling partitions.
740 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
741 return -EPERM;
742 return 0;
745 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
746 unsigned int cmd, unsigned long arg)
748 struct mmc_blk_data *md;
749 int ret;
751 switch (cmd) {
752 case MMC_IOC_CMD:
753 ret = mmc_blk_check_blkdev(bdev);
754 if (ret)
755 return ret;
756 md = mmc_blk_get(bdev->bd_disk);
757 if (!md)
758 return -EINVAL;
759 ret = mmc_blk_ioctl_cmd(md,
760 (struct mmc_ioc_cmd __user *)arg,
761 NULL);
762 mmc_blk_put(md);
763 return ret;
764 case MMC_IOC_MULTI_CMD:
765 ret = mmc_blk_check_blkdev(bdev);
766 if (ret)
767 return ret;
768 md = mmc_blk_get(bdev->bd_disk);
769 if (!md)
770 return -EINVAL;
771 ret = mmc_blk_ioctl_multi_cmd(md,
772 (struct mmc_ioc_multi_cmd __user *)arg,
773 NULL);
774 mmc_blk_put(md);
775 return ret;
776 default:
777 return -EINVAL;
781 #ifdef CONFIG_COMPAT
782 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
783 unsigned int cmd, unsigned long arg)
785 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
787 #endif
789 static const struct block_device_operations mmc_bdops = {
790 .open = mmc_blk_open,
791 .release = mmc_blk_release,
792 .getgeo = mmc_blk_getgeo,
793 .owner = THIS_MODULE,
794 .ioctl = mmc_blk_ioctl,
795 #ifdef CONFIG_COMPAT
796 .compat_ioctl = mmc_blk_compat_ioctl,
797 #endif
800 static int mmc_blk_part_switch_pre(struct mmc_card *card,
801 unsigned int part_type)
803 int ret = 0;
805 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
806 if (card->ext_csd.cmdq_en) {
807 ret = mmc_cmdq_disable(card);
808 if (ret)
809 return ret;
811 mmc_retune_pause(card->host);
814 return ret;
817 static int mmc_blk_part_switch_post(struct mmc_card *card,
818 unsigned int part_type)
820 int ret = 0;
822 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
823 mmc_retune_unpause(card->host);
824 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
825 ret = mmc_cmdq_enable(card);
828 return ret;
831 static inline int mmc_blk_part_switch(struct mmc_card *card,
832 unsigned int part_type)
834 int ret = 0;
835 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
837 if (main_md->part_curr == part_type)
838 return 0;
840 if (mmc_card_mmc(card)) {
841 u8 part_config = card->ext_csd.part_config;
843 ret = mmc_blk_part_switch_pre(card, part_type);
844 if (ret)
845 return ret;
847 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
848 part_config |= part_type;
850 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
851 EXT_CSD_PART_CONFIG, part_config,
852 card->ext_csd.part_time);
853 if (ret) {
854 mmc_blk_part_switch_post(card, part_type);
855 return ret;
858 card->ext_csd.part_config = part_config;
860 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
863 main_md->part_curr = part_type;
864 return ret;
867 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
869 int err;
870 u32 result;
871 __be32 *blocks;
873 struct mmc_request mrq = {};
874 struct mmc_command cmd = {};
875 struct mmc_data data = {};
877 struct scatterlist sg;
879 cmd.opcode = MMC_APP_CMD;
880 cmd.arg = card->rca << 16;
881 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
883 err = mmc_wait_for_cmd(card->host, &cmd, 0);
884 if (err)
885 return err;
886 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
887 return -EIO;
889 memset(&cmd, 0, sizeof(struct mmc_command));
891 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
892 cmd.arg = 0;
893 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
895 data.blksz = 4;
896 data.blocks = 1;
897 data.flags = MMC_DATA_READ;
898 data.sg = &sg;
899 data.sg_len = 1;
900 mmc_set_data_timeout(&data, card);
902 mrq.cmd = &cmd;
903 mrq.data = &data;
905 blocks = kmalloc(4, GFP_KERNEL);
906 if (!blocks)
907 return -ENOMEM;
909 sg_init_one(&sg, blocks, 4);
911 mmc_wait_for_req(card->host, &mrq);
913 result = ntohl(*blocks);
914 kfree(blocks);
916 if (cmd.error || data.error)
917 return -EIO;
919 *written_blocks = result;
921 return 0;
924 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
925 bool hw_busy_detect, struct request *req, bool *gen_err)
927 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
928 int err = 0;
929 u32 status;
931 do {
932 err = __mmc_send_status(card, &status, 5);
933 if (err) {
934 pr_err("%s: error %d requesting status\n",
935 req->rq_disk->disk_name, err);
936 return err;
939 if (status & R1_ERROR) {
940 pr_err("%s: %s: error sending status cmd, status %#x\n",
941 req->rq_disk->disk_name, __func__, status);
942 *gen_err = true;
945 /* We may rely on the host hw to handle busy detection.*/
946 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) &&
947 hw_busy_detect)
948 break;
951 * Timeout if the device never becomes ready for data and never
952 * leaves the program state.
954 if (time_after(jiffies, timeout)) {
955 pr_err("%s: Card stuck in programming state! %s %s\n",
956 mmc_hostname(card->host),
957 req->rq_disk->disk_name, __func__);
958 return -ETIMEDOUT;
962 * Some cards mishandle the status bits,
963 * so make sure to check both the busy
964 * indication and the card state.
966 } while (!(status & R1_READY_FOR_DATA) ||
967 (R1_CURRENT_STATE(status) == R1_STATE_PRG));
969 return err;
972 static int send_stop(struct mmc_card *card, unsigned int timeout_ms,
973 struct request *req, bool *gen_err, u32 *stop_status)
975 struct mmc_host *host = card->host;
976 struct mmc_command cmd = {};
977 int err;
978 bool use_r1b_resp = rq_data_dir(req) == WRITE;
981 * Normally we use R1B responses for WRITE, but in cases where the host
982 * has specified a max_busy_timeout we need to validate it. A failure
983 * means we need to prevent the host from doing hw busy detection, which
984 * is done by converting to a R1 response instead.
986 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout))
987 use_r1b_resp = false;
989 cmd.opcode = MMC_STOP_TRANSMISSION;
990 if (use_r1b_resp) {
991 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
992 cmd.busy_timeout = timeout_ms;
993 } else {
994 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
997 err = mmc_wait_for_cmd(host, &cmd, 5);
998 if (err)
999 return err;
1001 *stop_status = cmd.resp[0];
1003 /* No need to check card status in case of READ. */
1004 if (rq_data_dir(req) == READ)
1005 return 0;
1007 if (!mmc_host_is_spi(host) &&
1008 (*stop_status & R1_ERROR)) {
1009 pr_err("%s: %s: general error sending stop command, resp %#x\n",
1010 req->rq_disk->disk_name, __func__, *stop_status);
1011 *gen_err = true;
1014 return card_busy_detect(card, timeout_ms, use_r1b_resp, req, gen_err);
1017 #define ERR_NOMEDIUM 3
1018 #define ERR_RETRY 2
1019 #define ERR_ABORT 1
1020 #define ERR_CONTINUE 0
1022 static int mmc_blk_cmd_error(struct request *req, const char *name, int error,
1023 bool status_valid, u32 status)
1025 switch (error) {
1026 case -EILSEQ:
1027 /* response crc error, retry the r/w cmd */
1028 pr_err("%s: %s sending %s command, card status %#x\n",
1029 req->rq_disk->disk_name, "response CRC error",
1030 name, status);
1031 return ERR_RETRY;
1033 case -ETIMEDOUT:
1034 pr_err("%s: %s sending %s command, card status %#x\n",
1035 req->rq_disk->disk_name, "timed out", name, status);
1037 /* If the status cmd initially failed, retry the r/w cmd */
1038 if (!status_valid) {
1039 pr_err("%s: status not valid, retrying timeout\n",
1040 req->rq_disk->disk_name);
1041 return ERR_RETRY;
1045 * If it was a r/w cmd crc error, or illegal command
1046 * (eg, issued in wrong state) then retry - we should
1047 * have corrected the state problem above.
1049 if (status & (R1_COM_CRC_ERROR | R1_ILLEGAL_COMMAND)) {
1050 pr_err("%s: command error, retrying timeout\n",
1051 req->rq_disk->disk_name);
1052 return ERR_RETRY;
1055 /* Otherwise abort the command */
1056 return ERR_ABORT;
1058 default:
1059 /* We don't understand the error code the driver gave us */
1060 pr_err("%s: unknown error %d sending read/write command, card status %#x\n",
1061 req->rq_disk->disk_name, error, status);
1062 return ERR_ABORT;
1067 * Initial r/w and stop cmd error recovery.
1068 * We don't know whether the card received the r/w cmd or not, so try to
1069 * restore things back to a sane state. Essentially, we do this as follows:
1070 * - Obtain card status. If the first attempt to obtain card status fails,
1071 * the status word will reflect the failed status cmd, not the failed
1072 * r/w cmd. If we fail to obtain card status, it suggests we can no
1073 * longer communicate with the card.
1074 * - Check the card state. If the card received the cmd but there was a
1075 * transient problem with the response, it might still be in a data transfer
1076 * mode. Try to send it a stop command. If this fails, we can't recover.
1077 * - If the r/w cmd failed due to a response CRC error, it was probably
1078 * transient, so retry the cmd.
1079 * - If the r/w cmd timed out, but we didn't get the r/w cmd status, retry.
1080 * - If the r/w cmd timed out, and the r/w cmd failed due to CRC error or
1081 * illegal cmd, retry.
1082 * Otherwise we don't understand what happened, so abort.
1084 static int mmc_blk_cmd_recovery(struct mmc_card *card, struct request *req,
1085 struct mmc_blk_request *brq, bool *ecc_err, bool *gen_err)
1087 bool prev_cmd_status_valid = true;
1088 u32 status, stop_status = 0;
1089 int err, retry;
1091 if (mmc_card_removed(card))
1092 return ERR_NOMEDIUM;
1095 * Try to get card status which indicates both the card state
1096 * and why there was no response. If the first attempt fails,
1097 * we can't be sure the returned status is for the r/w command.
1099 for (retry = 2; retry >= 0; retry--) {
1100 err = __mmc_send_status(card, &status, 0);
1101 if (!err)
1102 break;
1104 /* Re-tune if needed */
1105 mmc_retune_recheck(card->host);
1107 prev_cmd_status_valid = false;
1108 pr_err("%s: error %d sending status command, %sing\n",
1109 req->rq_disk->disk_name, err, retry ? "retry" : "abort");
1112 /* We couldn't get a response from the card. Give up. */
1113 if (err) {
1114 /* Check if the card is removed */
1115 if (mmc_detect_card_removed(card->host))
1116 return ERR_NOMEDIUM;
1117 return ERR_ABORT;
1120 /* Flag ECC errors */
1121 if ((status & R1_CARD_ECC_FAILED) ||
1122 (brq->stop.resp[0] & R1_CARD_ECC_FAILED) ||
1123 (brq->cmd.resp[0] & R1_CARD_ECC_FAILED))
1124 *ecc_err = true;
1126 /* Flag General errors */
1127 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ)
1128 if ((status & R1_ERROR) ||
1129 (brq->stop.resp[0] & R1_ERROR)) {
1130 pr_err("%s: %s: general error sending stop or status command, stop cmd response %#x, card status %#x\n",
1131 req->rq_disk->disk_name, __func__,
1132 brq->stop.resp[0], status);
1133 *gen_err = true;
1137 * Check the current card state. If it is in some data transfer
1138 * mode, tell it to stop (and hopefully transition back to TRAN.)
1140 if (R1_CURRENT_STATE(status) == R1_STATE_DATA ||
1141 R1_CURRENT_STATE(status) == R1_STATE_RCV) {
1142 err = send_stop(card,
1143 DIV_ROUND_UP(brq->data.timeout_ns, 1000000),
1144 req, gen_err, &stop_status);
1145 if (err) {
1146 pr_err("%s: error %d sending stop command\n",
1147 req->rq_disk->disk_name, err);
1149 * If the stop cmd also timed out, the card is probably
1150 * not present, so abort. Other errors are bad news too.
1152 return ERR_ABORT;
1155 if (stop_status & R1_CARD_ECC_FAILED)
1156 *ecc_err = true;
1159 /* Check for set block count errors */
1160 if (brq->sbc.error)
1161 return mmc_blk_cmd_error(req, "SET_BLOCK_COUNT", brq->sbc.error,
1162 prev_cmd_status_valid, status);
1164 /* Check for r/w command errors */
1165 if (brq->cmd.error)
1166 return mmc_blk_cmd_error(req, "r/w cmd", brq->cmd.error,
1167 prev_cmd_status_valid, status);
1169 /* Data errors */
1170 if (!brq->stop.error)
1171 return ERR_CONTINUE;
1173 /* Now for stop errors. These aren't fatal to the transfer. */
1174 pr_info("%s: error %d sending stop command, original cmd response %#x, card status %#x\n",
1175 req->rq_disk->disk_name, brq->stop.error,
1176 brq->cmd.resp[0], status);
1179 * Subsitute in our own stop status as this will give the error
1180 * state which happened during the execution of the r/w command.
1182 if (stop_status) {
1183 brq->stop.resp[0] = stop_status;
1184 brq->stop.error = 0;
1186 return ERR_CONTINUE;
1189 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1190 int type)
1192 int err;
1194 if (md->reset_done & type)
1195 return -EEXIST;
1197 md->reset_done |= type;
1198 err = mmc_hw_reset(host);
1199 /* Ensure we switch back to the correct partition */
1200 if (err != -EOPNOTSUPP) {
1201 struct mmc_blk_data *main_md =
1202 dev_get_drvdata(&host->card->dev);
1203 int part_err;
1205 main_md->part_curr = main_md->part_type;
1206 part_err = mmc_blk_part_switch(host->card, md->part_type);
1207 if (part_err) {
1209 * We have failed to get back into the correct
1210 * partition, so we need to abort the whole request.
1212 return -ENODEV;
1215 return err;
1218 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1220 md->reset_done &= ~type;
1224 * The non-block commands come back from the block layer after it queued it and
1225 * processed it with all other requests and then they get issued in this
1226 * function.
1228 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1230 struct mmc_queue_req *mq_rq;
1231 struct mmc_card *card = mq->card;
1232 struct mmc_blk_data *md = mq->blkdata;
1233 struct mmc_blk_ioc_data **idata;
1234 bool rpmb_ioctl;
1235 u8 **ext_csd;
1236 u32 status;
1237 int ret;
1238 int i;
1240 mq_rq = req_to_mmc_queue_req(req);
1241 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1243 switch (mq_rq->drv_op) {
1244 case MMC_DRV_OP_IOCTL:
1245 case MMC_DRV_OP_IOCTL_RPMB:
1246 idata = mq_rq->drv_op_data;
1247 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1248 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1249 if (ret)
1250 break;
1252 /* Always switch back to main area after RPMB access */
1253 if (rpmb_ioctl)
1254 mmc_blk_part_switch(card, 0);
1255 break;
1256 case MMC_DRV_OP_BOOT_WP:
1257 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1258 card->ext_csd.boot_ro_lock |
1259 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1260 card->ext_csd.part_time);
1261 if (ret)
1262 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1263 md->disk->disk_name, ret);
1264 else
1265 card->ext_csd.boot_ro_lock |=
1266 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1267 break;
1268 case MMC_DRV_OP_GET_CARD_STATUS:
1269 ret = mmc_send_status(card, &status);
1270 if (!ret)
1271 ret = status;
1272 break;
1273 case MMC_DRV_OP_GET_EXT_CSD:
1274 ext_csd = mq_rq->drv_op_data;
1275 ret = mmc_get_ext_csd(card, ext_csd);
1276 break;
1277 default:
1278 pr_err("%s: unknown driver specific operation\n",
1279 md->disk->disk_name);
1280 ret = -EINVAL;
1281 break;
1283 mq_rq->drv_op_result = ret;
1284 blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1287 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1289 struct mmc_blk_data *md = mq->blkdata;
1290 struct mmc_card *card = md->queue.card;
1291 unsigned int from, nr, arg;
1292 int err = 0, type = MMC_BLK_DISCARD;
1293 blk_status_t status = BLK_STS_OK;
1295 if (!mmc_can_erase(card)) {
1296 status = BLK_STS_NOTSUPP;
1297 goto fail;
1300 from = blk_rq_pos(req);
1301 nr = blk_rq_sectors(req);
1303 if (mmc_can_discard(card))
1304 arg = MMC_DISCARD_ARG;
1305 else if (mmc_can_trim(card))
1306 arg = MMC_TRIM_ARG;
1307 else
1308 arg = MMC_ERASE_ARG;
1309 do {
1310 err = 0;
1311 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1312 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1313 INAND_CMD38_ARG_EXT_CSD,
1314 arg == MMC_TRIM_ARG ?
1315 INAND_CMD38_ARG_TRIM :
1316 INAND_CMD38_ARG_ERASE,
1319 if (!err)
1320 err = mmc_erase(card, from, nr, arg);
1321 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1322 if (err)
1323 status = BLK_STS_IOERR;
1324 else
1325 mmc_blk_reset_success(md, type);
1326 fail:
1327 blk_end_request(req, status, blk_rq_bytes(req));
1330 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1331 struct request *req)
1333 struct mmc_blk_data *md = mq->blkdata;
1334 struct mmc_card *card = md->queue.card;
1335 unsigned int from, nr, arg;
1336 int err = 0, type = MMC_BLK_SECDISCARD;
1337 blk_status_t status = BLK_STS_OK;
1339 if (!(mmc_can_secure_erase_trim(card))) {
1340 status = BLK_STS_NOTSUPP;
1341 goto out;
1344 from = blk_rq_pos(req);
1345 nr = blk_rq_sectors(req);
1347 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1348 arg = MMC_SECURE_TRIM1_ARG;
1349 else
1350 arg = MMC_SECURE_ERASE_ARG;
1352 retry:
1353 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1354 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1355 INAND_CMD38_ARG_EXT_CSD,
1356 arg == MMC_SECURE_TRIM1_ARG ?
1357 INAND_CMD38_ARG_SECTRIM1 :
1358 INAND_CMD38_ARG_SECERASE,
1360 if (err)
1361 goto out_retry;
1364 err = mmc_erase(card, from, nr, arg);
1365 if (err == -EIO)
1366 goto out_retry;
1367 if (err) {
1368 status = BLK_STS_IOERR;
1369 goto out;
1372 if (arg == MMC_SECURE_TRIM1_ARG) {
1373 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1374 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1375 INAND_CMD38_ARG_EXT_CSD,
1376 INAND_CMD38_ARG_SECTRIM2,
1378 if (err)
1379 goto out_retry;
1382 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1383 if (err == -EIO)
1384 goto out_retry;
1385 if (err) {
1386 status = BLK_STS_IOERR;
1387 goto out;
1391 out_retry:
1392 if (err && !mmc_blk_reset(md, card->host, type))
1393 goto retry;
1394 if (!err)
1395 mmc_blk_reset_success(md, type);
1396 out:
1397 blk_end_request(req, status, blk_rq_bytes(req));
1400 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1402 struct mmc_blk_data *md = mq->blkdata;
1403 struct mmc_card *card = md->queue.card;
1404 int ret = 0;
1406 ret = mmc_flush_cache(card);
1407 blk_end_request_all(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1411 * Reformat current write as a reliable write, supporting
1412 * both legacy and the enhanced reliable write MMC cards.
1413 * In each transfer we'll handle only as much as a single
1414 * reliable write can handle, thus finish the request in
1415 * partial completions.
1417 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1418 struct mmc_card *card,
1419 struct request *req)
1421 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1422 /* Legacy mode imposes restrictions on transfers. */
1423 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1424 brq->data.blocks = 1;
1426 if (brq->data.blocks > card->ext_csd.rel_sectors)
1427 brq->data.blocks = card->ext_csd.rel_sectors;
1428 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1429 brq->data.blocks = 1;
1433 #define CMD_ERRORS \
1434 (R1_OUT_OF_RANGE | /* Command argument out of range */ \
1435 R1_ADDRESS_ERROR | /* Misaligned address */ \
1436 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1437 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1438 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1439 R1_CC_ERROR | /* Card controller error */ \
1440 R1_ERROR) /* General/unknown error */
1442 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1444 u32 val;
1447 * Per the SD specification(physical layer version 4.10)[1],
1448 * section 4.3.3, it explicitly states that "When the last
1449 * block of user area is read using CMD18, the host should
1450 * ignore OUT_OF_RANGE error that may occur even the sequence
1451 * is correct". And JESD84-B51 for eMMC also has a similar
1452 * statement on section 6.8.3.
1454 * Multiple block read/write could be done by either predefined
1455 * method, namely CMD23, or open-ending mode. For open-ending mode,
1456 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1458 * However the spec[1] doesn't tell us whether we should also
1459 * ignore that for predefined method. But per the spec[1], section
1460 * 4.15 Set Block Count Command, it says"If illegal block count
1461 * is set, out of range error will be indicated during read/write
1462 * operation (For example, data transfer is stopped at user area
1463 * boundary)." In another word, we could expect a out of range error
1464 * in the response for the following CMD18/25. And if argument of
1465 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1466 * we could also expect to get a -ETIMEDOUT or any error number from
1467 * the host drivers due to missing data response(for write)/data(for
1468 * read), as the cards will stop the data transfer by itself per the
1469 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1472 if (!brq->stop.error) {
1473 bool oor_with_open_end;
1474 /* If there is no error yet, check R1 response */
1476 val = brq->stop.resp[0] & CMD_ERRORS;
1477 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1479 if (val && !oor_with_open_end)
1480 brq->stop.error = -EIO;
1484 static enum mmc_blk_status mmc_blk_err_check(struct mmc_card *card,
1485 struct mmc_async_req *areq)
1487 struct mmc_queue_req *mq_mrq = container_of(areq, struct mmc_queue_req,
1488 areq);
1489 struct mmc_blk_request *brq = &mq_mrq->brq;
1490 struct request *req = mmc_queue_req_to_req(mq_mrq);
1491 int need_retune = card->host->need_retune;
1492 bool ecc_err = false;
1493 bool gen_err = false;
1496 * sbc.error indicates a problem with the set block count
1497 * command. No data will have been transferred.
1499 * cmd.error indicates a problem with the r/w command. No
1500 * data will have been transferred.
1502 * stop.error indicates a problem with the stop command. Data
1503 * may have been transferred, or may still be transferring.
1506 mmc_blk_eval_resp_error(brq);
1508 if (brq->sbc.error || brq->cmd.error ||
1509 brq->stop.error || brq->data.error) {
1510 switch (mmc_blk_cmd_recovery(card, req, brq, &ecc_err, &gen_err)) {
1511 case ERR_RETRY:
1512 return MMC_BLK_RETRY;
1513 case ERR_ABORT:
1514 return MMC_BLK_ABORT;
1515 case ERR_NOMEDIUM:
1516 return MMC_BLK_NOMEDIUM;
1517 case ERR_CONTINUE:
1518 break;
1523 * Check for errors relating to the execution of the
1524 * initial command - such as address errors. No data
1525 * has been transferred.
1527 if (brq->cmd.resp[0] & CMD_ERRORS) {
1528 pr_err("%s: r/w command failed, status = %#x\n",
1529 req->rq_disk->disk_name, brq->cmd.resp[0]);
1530 return MMC_BLK_ABORT;
1534 * Everything else is either success, or a data error of some
1535 * kind. If it was a write, we may have transitioned to
1536 * program mode, which we have to wait for it to complete.
1538 if (!mmc_host_is_spi(card->host) && rq_data_dir(req) != READ) {
1539 int err;
1541 /* Check stop command response */
1542 if (brq->stop.resp[0] & R1_ERROR) {
1543 pr_err("%s: %s: general error sending stop command, stop cmd response %#x\n",
1544 req->rq_disk->disk_name, __func__,
1545 brq->stop.resp[0]);
1546 gen_err = true;
1549 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, false, req,
1550 &gen_err);
1551 if (err)
1552 return MMC_BLK_CMD_ERR;
1555 /* if general error occurs, retry the write operation. */
1556 if (gen_err) {
1557 pr_warn("%s: retrying write for general error\n",
1558 req->rq_disk->disk_name);
1559 return MMC_BLK_RETRY;
1562 /* Some errors (ECC) are flagged on the next commmand, so check stop, too */
1563 if (brq->data.error || brq->stop.error) {
1564 if (need_retune && !brq->retune_retry_done) {
1565 pr_debug("%s: retrying because a re-tune was needed\n",
1566 req->rq_disk->disk_name);
1567 brq->retune_retry_done = 1;
1568 return MMC_BLK_RETRY;
1570 pr_err("%s: error %d transferring data, sector %u, nr %u, cmd response %#x, card status %#x\n",
1571 req->rq_disk->disk_name, brq->data.error ?: brq->stop.error,
1572 (unsigned)blk_rq_pos(req),
1573 (unsigned)blk_rq_sectors(req),
1574 brq->cmd.resp[0], brq->stop.resp[0]);
1576 if (rq_data_dir(req) == READ) {
1577 if (ecc_err)
1578 return MMC_BLK_ECC_ERR;
1579 return MMC_BLK_DATA_ERR;
1580 } else {
1581 return MMC_BLK_CMD_ERR;
1585 if (!brq->data.bytes_xfered)
1586 return MMC_BLK_RETRY;
1588 if (blk_rq_bytes(req) != brq->data.bytes_xfered)
1589 return MMC_BLK_PARTIAL;
1591 return MMC_BLK_SUCCESS;
1594 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1595 int disable_multi, bool *do_rel_wr_p,
1596 bool *do_data_tag_p)
1598 struct mmc_blk_data *md = mq->blkdata;
1599 struct mmc_card *card = md->queue.card;
1600 struct mmc_blk_request *brq = &mqrq->brq;
1601 struct request *req = mmc_queue_req_to_req(mqrq);
1602 bool do_rel_wr, do_data_tag;
1605 * Reliable writes are used to implement Forced Unit Access and
1606 * are supported only on MMCs.
1608 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1609 rq_data_dir(req) == WRITE &&
1610 (md->flags & MMC_BLK_REL_WR);
1612 memset(brq, 0, sizeof(struct mmc_blk_request));
1614 brq->mrq.data = &brq->data;
1615 brq->mrq.tag = req->tag;
1617 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1618 brq->stop.arg = 0;
1620 if (rq_data_dir(req) == READ) {
1621 brq->data.flags = MMC_DATA_READ;
1622 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1623 } else {
1624 brq->data.flags = MMC_DATA_WRITE;
1625 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1628 brq->data.blksz = 512;
1629 brq->data.blocks = blk_rq_sectors(req);
1630 brq->data.blk_addr = blk_rq_pos(req);
1633 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1634 * The eMMC will give "high" priority tasks priority over "simple"
1635 * priority tasks. Here we always set "simple" priority by not setting
1636 * MMC_DATA_PRIO.
1640 * The block layer doesn't support all sector count
1641 * restrictions, so we need to be prepared for too big
1642 * requests.
1644 if (brq->data.blocks > card->host->max_blk_count)
1645 brq->data.blocks = card->host->max_blk_count;
1647 if (brq->data.blocks > 1) {
1649 * After a read error, we redo the request one sector
1650 * at a time in order to accurately determine which
1651 * sectors can be read successfully.
1653 if (disable_multi)
1654 brq->data.blocks = 1;
1657 * Some controllers have HW issues while operating
1658 * in multiple I/O mode
1660 if (card->host->ops->multi_io_quirk)
1661 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1662 (rq_data_dir(req) == READ) ?
1663 MMC_DATA_READ : MMC_DATA_WRITE,
1664 brq->data.blocks);
1667 if (do_rel_wr) {
1668 mmc_apply_rel_rw(brq, card, req);
1669 brq->data.flags |= MMC_DATA_REL_WR;
1673 * Data tag is used only during writing meta data to speed
1674 * up write and any subsequent read of this meta data
1676 do_data_tag = card->ext_csd.data_tag_unit_size &&
1677 (req->cmd_flags & REQ_META) &&
1678 (rq_data_dir(req) == WRITE) &&
1679 ((brq->data.blocks * brq->data.blksz) >=
1680 card->ext_csd.data_tag_unit_size);
1682 if (do_data_tag)
1683 brq->data.flags |= MMC_DATA_DAT_TAG;
1685 mmc_set_data_timeout(&brq->data, card);
1687 brq->data.sg = mqrq->sg;
1688 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1691 * Adjust the sg list so it is the same size as the
1692 * request.
1694 if (brq->data.blocks != blk_rq_sectors(req)) {
1695 int i, data_size = brq->data.blocks << 9;
1696 struct scatterlist *sg;
1698 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1699 data_size -= sg->length;
1700 if (data_size <= 0) {
1701 sg->length += data_size;
1702 i++;
1703 break;
1706 brq->data.sg_len = i;
1709 mqrq->areq.mrq = &brq->mrq;
1711 if (do_rel_wr_p)
1712 *do_rel_wr_p = do_rel_wr;
1714 if (do_data_tag_p)
1715 *do_data_tag_p = do_data_tag;
1718 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1719 struct mmc_card *card,
1720 int disable_multi,
1721 struct mmc_queue *mq)
1723 u32 readcmd, writecmd;
1724 struct mmc_blk_request *brq = &mqrq->brq;
1725 struct request *req = mmc_queue_req_to_req(mqrq);
1726 struct mmc_blk_data *md = mq->blkdata;
1727 bool do_rel_wr, do_data_tag;
1729 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1731 brq->mrq.cmd = &brq->cmd;
1733 brq->cmd.arg = blk_rq_pos(req);
1734 if (!mmc_card_blockaddr(card))
1735 brq->cmd.arg <<= 9;
1736 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1738 if (brq->data.blocks > 1 || do_rel_wr) {
1739 /* SPI multiblock writes terminate using a special
1740 * token, not a STOP_TRANSMISSION request.
1742 if (!mmc_host_is_spi(card->host) ||
1743 rq_data_dir(req) == READ)
1744 brq->mrq.stop = &brq->stop;
1745 readcmd = MMC_READ_MULTIPLE_BLOCK;
1746 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1747 } else {
1748 brq->mrq.stop = NULL;
1749 readcmd = MMC_READ_SINGLE_BLOCK;
1750 writecmd = MMC_WRITE_BLOCK;
1752 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1755 * Pre-defined multi-block transfers are preferable to
1756 * open ended-ones (and necessary for reliable writes).
1757 * However, it is not sufficient to just send CMD23,
1758 * and avoid the final CMD12, as on an error condition
1759 * CMD12 (stop) needs to be sent anyway. This, coupled
1760 * with Auto-CMD23 enhancements provided by some
1761 * hosts, means that the complexity of dealing
1762 * with this is best left to the host. If CMD23 is
1763 * supported by card and host, we'll fill sbc in and let
1764 * the host deal with handling it correctly. This means
1765 * that for hosts that don't expose MMC_CAP_CMD23, no
1766 * change of behavior will be observed.
1768 * N.B: Some MMC cards experience perf degradation.
1769 * We'll avoid using CMD23-bounded multiblock writes for
1770 * these, while retaining features like reliable writes.
1772 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1773 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1774 do_data_tag)) {
1775 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1776 brq->sbc.arg = brq->data.blocks |
1777 (do_rel_wr ? (1 << 31) : 0) |
1778 (do_data_tag ? (1 << 29) : 0);
1779 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1780 brq->mrq.sbc = &brq->sbc;
1783 mqrq->areq.err_check = mmc_blk_err_check;
1786 static bool mmc_blk_rw_cmd_err(struct mmc_blk_data *md, struct mmc_card *card,
1787 struct mmc_blk_request *brq, struct request *req,
1788 bool old_req_pending)
1790 bool req_pending;
1793 * If this is an SD card and we're writing, we can first
1794 * mark the known good sectors as ok.
1796 * If the card is not SD, we can still ok written sectors
1797 * as reported by the controller (which might be less than
1798 * the real number of written sectors, but never more).
1800 if (mmc_card_sd(card)) {
1801 u32 blocks;
1802 int err;
1804 err = mmc_sd_num_wr_blocks(card, &blocks);
1805 if (err)
1806 req_pending = old_req_pending;
1807 else
1808 req_pending = blk_end_request(req, BLK_STS_OK, blocks << 9);
1809 } else {
1810 req_pending = blk_end_request(req, BLK_STS_OK, brq->data.bytes_xfered);
1812 return req_pending;
1815 static void mmc_blk_rw_cmd_abort(struct mmc_queue *mq, struct mmc_card *card,
1816 struct request *req,
1817 struct mmc_queue_req *mqrq)
1819 if (mmc_card_removed(card))
1820 req->rq_flags |= RQF_QUIET;
1821 while (blk_end_request(req, BLK_STS_IOERR, blk_rq_cur_bytes(req)));
1822 mq->qcnt--;
1826 * mmc_blk_rw_try_restart() - tries to restart the current async request
1827 * @mq: the queue with the card and host to restart
1828 * @req: a new request that want to be started after the current one
1830 static void mmc_blk_rw_try_restart(struct mmc_queue *mq, struct request *req,
1831 struct mmc_queue_req *mqrq)
1833 if (!req)
1834 return;
1837 * If the card was removed, just cancel everything and return.
1839 if (mmc_card_removed(mq->card)) {
1840 req->rq_flags |= RQF_QUIET;
1841 blk_end_request_all(req, BLK_STS_IOERR);
1842 mq->qcnt--; /* FIXME: just set to 0? */
1843 return;
1845 /* Else proceed and try to restart the current async request */
1846 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1847 mmc_start_areq(mq->card->host, &mqrq->areq, NULL);
1850 static void mmc_blk_issue_rw_rq(struct mmc_queue *mq, struct request *new_req)
1852 struct mmc_blk_data *md = mq->blkdata;
1853 struct mmc_card *card = md->queue.card;
1854 struct mmc_blk_request *brq;
1855 int disable_multi = 0, retry = 0, type, retune_retry_done = 0;
1856 enum mmc_blk_status status;
1857 struct mmc_queue_req *mqrq_cur = NULL;
1858 struct mmc_queue_req *mq_rq;
1859 struct request *old_req;
1860 struct mmc_async_req *new_areq;
1861 struct mmc_async_req *old_areq;
1862 bool req_pending = true;
1864 if (new_req) {
1865 mqrq_cur = req_to_mmc_queue_req(new_req);
1866 mq->qcnt++;
1869 if (!mq->qcnt)
1870 return;
1872 do {
1873 if (new_req) {
1875 * When 4KB native sector is enabled, only 8 blocks
1876 * multiple read or write is allowed
1878 if (mmc_large_sector(card) &&
1879 !IS_ALIGNED(blk_rq_sectors(new_req), 8)) {
1880 pr_err("%s: Transfer size is not 4KB sector size aligned\n",
1881 new_req->rq_disk->disk_name);
1882 mmc_blk_rw_cmd_abort(mq, card, new_req, mqrq_cur);
1883 return;
1886 mmc_blk_rw_rq_prep(mqrq_cur, card, 0, mq);
1887 new_areq = &mqrq_cur->areq;
1888 } else
1889 new_areq = NULL;
1891 old_areq = mmc_start_areq(card->host, new_areq, &status);
1892 if (!old_areq) {
1894 * We have just put the first request into the pipeline
1895 * and there is nothing more to do until it is
1896 * complete.
1898 return;
1902 * An asynchronous request has been completed and we proceed
1903 * to handle the result of it.
1905 mq_rq = container_of(old_areq, struct mmc_queue_req, areq);
1906 brq = &mq_rq->brq;
1907 old_req = mmc_queue_req_to_req(mq_rq);
1908 type = rq_data_dir(old_req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1910 switch (status) {
1911 case MMC_BLK_SUCCESS:
1912 case MMC_BLK_PARTIAL:
1914 * A block was successfully transferred.
1916 mmc_blk_reset_success(md, type);
1918 req_pending = blk_end_request(old_req, BLK_STS_OK,
1919 brq->data.bytes_xfered);
1921 * If the blk_end_request function returns non-zero even
1922 * though all data has been transferred and no errors
1923 * were returned by the host controller, it's a bug.
1925 if (status == MMC_BLK_SUCCESS && req_pending) {
1926 pr_err("%s BUG rq_tot %d d_xfer %d\n",
1927 __func__, blk_rq_bytes(old_req),
1928 brq->data.bytes_xfered);
1929 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1930 return;
1932 break;
1933 case MMC_BLK_CMD_ERR:
1934 req_pending = mmc_blk_rw_cmd_err(md, card, brq, old_req, req_pending);
1935 if (mmc_blk_reset(md, card->host, type)) {
1936 if (req_pending)
1937 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1938 else
1939 mq->qcnt--;
1940 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1941 return;
1943 if (!req_pending) {
1944 mq->qcnt--;
1945 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1946 return;
1948 break;
1949 case MMC_BLK_RETRY:
1950 retune_retry_done = brq->retune_retry_done;
1951 if (retry++ < 5)
1952 break;
1953 /* Fall through */
1954 case MMC_BLK_ABORT:
1955 if (!mmc_blk_reset(md, card->host, type))
1956 break;
1957 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1958 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1959 return;
1960 case MMC_BLK_DATA_ERR: {
1961 int err;
1963 err = mmc_blk_reset(md, card->host, type);
1964 if (!err)
1965 break;
1966 if (err == -ENODEV) {
1967 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1968 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1969 return;
1971 /* Fall through */
1973 case MMC_BLK_ECC_ERR:
1974 if (brq->data.blocks > 1) {
1975 /* Redo read one sector at a time */
1976 pr_warn("%s: retrying using single block read\n",
1977 old_req->rq_disk->disk_name);
1978 disable_multi = 1;
1979 break;
1982 * After an error, we redo I/O one sector at a
1983 * time, so we only reach here after trying to
1984 * read a single sector.
1986 req_pending = blk_end_request(old_req, BLK_STS_IOERR,
1987 brq->data.blksz);
1988 if (!req_pending) {
1989 mq->qcnt--;
1990 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1991 return;
1993 break;
1994 case MMC_BLK_NOMEDIUM:
1995 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
1996 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
1997 return;
1998 default:
1999 pr_err("%s: Unhandled return value (%d)",
2000 old_req->rq_disk->disk_name, status);
2001 mmc_blk_rw_cmd_abort(mq, card, old_req, mq_rq);
2002 mmc_blk_rw_try_restart(mq, new_req, mqrq_cur);
2003 return;
2006 if (req_pending) {
2008 * In case of a incomplete request
2009 * prepare it again and resend.
2011 mmc_blk_rw_rq_prep(mq_rq, card,
2012 disable_multi, mq);
2013 mmc_start_areq(card->host,
2014 &mq_rq->areq, NULL);
2015 mq_rq->brq.retune_retry_done = retune_retry_done;
2017 } while (req_pending);
2019 mq->qcnt--;
2022 void mmc_blk_issue_rq(struct mmc_queue *mq, struct request *req)
2024 int ret;
2025 struct mmc_blk_data *md = mq->blkdata;
2026 struct mmc_card *card = md->queue.card;
2028 if (req && !mq->qcnt)
2029 /* claim host only for the first request */
2030 mmc_get_card(card, NULL);
2032 ret = mmc_blk_part_switch(card, md->part_type);
2033 if (ret) {
2034 if (req) {
2035 blk_end_request_all(req, BLK_STS_IOERR);
2037 goto out;
2040 if (req) {
2041 switch (req_op(req)) {
2042 case REQ_OP_DRV_IN:
2043 case REQ_OP_DRV_OUT:
2045 * Complete ongoing async transfer before issuing
2046 * ioctl()s
2048 if (mq->qcnt)
2049 mmc_blk_issue_rw_rq(mq, NULL);
2050 mmc_blk_issue_drv_op(mq, req);
2051 break;
2052 case REQ_OP_DISCARD:
2054 * Complete ongoing async transfer before issuing
2055 * discard.
2057 if (mq->qcnt)
2058 mmc_blk_issue_rw_rq(mq, NULL);
2059 mmc_blk_issue_discard_rq(mq, req);
2060 break;
2061 case REQ_OP_SECURE_ERASE:
2063 * Complete ongoing async transfer before issuing
2064 * secure erase.
2066 if (mq->qcnt)
2067 mmc_blk_issue_rw_rq(mq, NULL);
2068 mmc_blk_issue_secdiscard_rq(mq, req);
2069 break;
2070 case REQ_OP_FLUSH:
2072 * Complete ongoing async transfer before issuing
2073 * flush.
2075 if (mq->qcnt)
2076 mmc_blk_issue_rw_rq(mq, NULL);
2077 mmc_blk_issue_flush(mq, req);
2078 break;
2079 default:
2080 /* Normal request, just issue it */
2081 mmc_blk_issue_rw_rq(mq, req);
2082 card->host->context_info.is_waiting_last_req = false;
2083 break;
2085 } else {
2086 /* No request, flushing the pipeline with NULL */
2087 mmc_blk_issue_rw_rq(mq, NULL);
2088 card->host->context_info.is_waiting_last_req = false;
2091 out:
2092 if (!mq->qcnt)
2093 mmc_put_card(card, NULL);
2096 static inline int mmc_blk_readonly(struct mmc_card *card)
2098 return mmc_card_readonly(card) ||
2099 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2102 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2103 struct device *parent,
2104 sector_t size,
2105 bool default_ro,
2106 const char *subname,
2107 int area_type)
2109 struct mmc_blk_data *md;
2110 int devidx, ret;
2112 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2113 if (devidx < 0) {
2115 * We get -ENOSPC because there are no more any available
2116 * devidx. The reason may be that, either userspace haven't yet
2117 * unmounted the partitions, which postpones mmc_blk_release()
2118 * from being called, or the device has more partitions than
2119 * what we support.
2121 if (devidx == -ENOSPC)
2122 dev_err(mmc_dev(card->host),
2123 "no more device IDs available\n");
2125 return ERR_PTR(devidx);
2128 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2129 if (!md) {
2130 ret = -ENOMEM;
2131 goto out;
2134 md->area_type = area_type;
2137 * Set the read-only status based on the supported commands
2138 * and the write protect switch.
2140 md->read_only = mmc_blk_readonly(card);
2142 md->disk = alloc_disk(perdev_minors);
2143 if (md->disk == NULL) {
2144 ret = -ENOMEM;
2145 goto err_kfree;
2148 spin_lock_init(&md->lock);
2149 INIT_LIST_HEAD(&md->part);
2150 INIT_LIST_HEAD(&md->rpmbs);
2151 md->usage = 1;
2153 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2154 if (ret)
2155 goto err_putdisk;
2157 md->queue.blkdata = md;
2159 md->disk->major = MMC_BLOCK_MAJOR;
2160 md->disk->first_minor = devidx * perdev_minors;
2161 md->disk->fops = &mmc_bdops;
2162 md->disk->private_data = md;
2163 md->disk->queue = md->queue.queue;
2164 md->parent = parent;
2165 set_disk_ro(md->disk, md->read_only || default_ro);
2166 md->disk->flags = GENHD_FL_EXT_DEVT;
2167 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2168 md->disk->flags |= GENHD_FL_NO_PART_SCAN;
2171 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2173 * - be set for removable media with permanent block devices
2174 * - be unset for removable block devices with permanent media
2176 * Since MMC block devices clearly fall under the second
2177 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2178 * should use the block device creation/destruction hotplug
2179 * messages to tell when the card is present.
2182 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2183 "mmcblk%u%s", card->host->index, subname ? subname : "");
2185 if (mmc_card_mmc(card))
2186 blk_queue_logical_block_size(md->queue.queue,
2187 card->ext_csd.data_sector_size);
2188 else
2189 blk_queue_logical_block_size(md->queue.queue, 512);
2191 set_capacity(md->disk, size);
2193 if (mmc_host_cmd23(card->host)) {
2194 if ((mmc_card_mmc(card) &&
2195 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2196 (mmc_card_sd(card) &&
2197 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2198 md->flags |= MMC_BLK_CMD23;
2201 if (mmc_card_mmc(card) &&
2202 md->flags & MMC_BLK_CMD23 &&
2203 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2204 card->ext_csd.rel_sectors)) {
2205 md->flags |= MMC_BLK_REL_WR;
2206 blk_queue_write_cache(md->queue.queue, true, true);
2209 return md;
2211 err_putdisk:
2212 put_disk(md->disk);
2213 err_kfree:
2214 kfree(md);
2215 out:
2216 ida_simple_remove(&mmc_blk_ida, devidx);
2217 return ERR_PTR(ret);
2220 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2222 sector_t size;
2224 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2226 * The EXT_CSD sector count is in number or 512 byte
2227 * sectors.
2229 size = card->ext_csd.sectors;
2230 } else {
2232 * The CSD capacity field is in units of read_blkbits.
2233 * set_capacity takes units of 512 bytes.
2235 size = (typeof(sector_t))card->csd.capacity
2236 << (card->csd.read_blkbits - 9);
2239 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2240 MMC_BLK_DATA_AREA_MAIN);
2243 static int mmc_blk_alloc_part(struct mmc_card *card,
2244 struct mmc_blk_data *md,
2245 unsigned int part_type,
2246 sector_t size,
2247 bool default_ro,
2248 const char *subname,
2249 int area_type)
2251 char cap_str[10];
2252 struct mmc_blk_data *part_md;
2254 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2255 subname, area_type);
2256 if (IS_ERR(part_md))
2257 return PTR_ERR(part_md);
2258 part_md->part_type = part_type;
2259 list_add(&part_md->part, &md->part);
2261 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2262 cap_str, sizeof(cap_str));
2263 pr_info("%s: %s %s partition %u %s\n",
2264 part_md->disk->disk_name, mmc_card_id(card),
2265 mmc_card_name(card), part_md->part_type, cap_str);
2266 return 0;
2270 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2271 * @filp: the character device file
2272 * @cmd: the ioctl() command
2273 * @arg: the argument from userspace
2275 * This will essentially just redirect the ioctl()s coming in over to
2276 * the main block device spawning the RPMB character device.
2278 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2279 unsigned long arg)
2281 struct mmc_rpmb_data *rpmb = filp->private_data;
2282 int ret;
2284 switch (cmd) {
2285 case MMC_IOC_CMD:
2286 ret = mmc_blk_ioctl_cmd(rpmb->md,
2287 (struct mmc_ioc_cmd __user *)arg,
2288 rpmb);
2289 break;
2290 case MMC_IOC_MULTI_CMD:
2291 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2292 (struct mmc_ioc_multi_cmd __user *)arg,
2293 rpmb);
2294 break;
2295 default:
2296 ret = -EINVAL;
2297 break;
2300 return 0;
2303 #ifdef CONFIG_COMPAT
2304 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2305 unsigned long arg)
2307 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2309 #endif
2311 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2313 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2314 struct mmc_rpmb_data, chrdev);
2316 get_device(&rpmb->dev);
2317 filp->private_data = rpmb;
2318 mmc_blk_get(rpmb->md->disk);
2320 return nonseekable_open(inode, filp);
2323 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2325 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2326 struct mmc_rpmb_data, chrdev);
2328 put_device(&rpmb->dev);
2329 mmc_blk_put(rpmb->md);
2331 return 0;
2334 static const struct file_operations mmc_rpmb_fileops = {
2335 .release = mmc_rpmb_chrdev_release,
2336 .open = mmc_rpmb_chrdev_open,
2337 .owner = THIS_MODULE,
2338 .llseek = no_llseek,
2339 .unlocked_ioctl = mmc_rpmb_ioctl,
2340 #ifdef CONFIG_COMPAT
2341 .compat_ioctl = mmc_rpmb_ioctl_compat,
2342 #endif
2345 static void mmc_blk_rpmb_device_release(struct device *dev)
2347 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2349 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2350 kfree(rpmb);
2353 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2354 struct mmc_blk_data *md,
2355 unsigned int part_index,
2356 sector_t size,
2357 const char *subname)
2359 int devidx, ret;
2360 char rpmb_name[DISK_NAME_LEN];
2361 char cap_str[10];
2362 struct mmc_rpmb_data *rpmb;
2364 /* This creates the minor number for the RPMB char device */
2365 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2366 if (devidx < 0)
2367 return devidx;
2369 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2370 if (!rpmb) {
2371 ida_simple_remove(&mmc_rpmb_ida, devidx);
2372 return -ENOMEM;
2375 snprintf(rpmb_name, sizeof(rpmb_name),
2376 "mmcblk%u%s", card->host->index, subname ? subname : "");
2378 rpmb->id = devidx;
2379 rpmb->part_index = part_index;
2380 rpmb->dev.init_name = rpmb_name;
2381 rpmb->dev.bus = &mmc_rpmb_bus_type;
2382 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2383 rpmb->dev.parent = &card->dev;
2384 rpmb->dev.release = mmc_blk_rpmb_device_release;
2385 device_initialize(&rpmb->dev);
2386 dev_set_drvdata(&rpmb->dev, rpmb);
2387 rpmb->md = md;
2389 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2390 rpmb->chrdev.owner = THIS_MODULE;
2391 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2392 if (ret) {
2393 pr_err("%s: could not add character device\n", rpmb_name);
2394 goto out_put_device;
2397 list_add(&rpmb->node, &md->rpmbs);
2399 string_get_size((u64)size, 512, STRING_UNITS_2,
2400 cap_str, sizeof(cap_str));
2402 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2403 rpmb_name, mmc_card_id(card),
2404 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2405 MAJOR(mmc_rpmb_devt), rpmb->id);
2407 return 0;
2409 out_put_device:
2410 put_device(&rpmb->dev);
2411 return ret;
2414 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2417 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2418 put_device(&rpmb->dev);
2421 /* MMC Physical partitions consist of two boot partitions and
2422 * up to four general purpose partitions.
2423 * For each partition enabled in EXT_CSD a block device will be allocatedi
2424 * to provide access to the partition.
2427 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2429 int idx, ret;
2431 if (!mmc_card_mmc(card))
2432 return 0;
2434 for (idx = 0; idx < card->nr_parts; idx++) {
2435 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2437 * RPMB partitions does not provide block access, they
2438 * are only accessed using ioctl():s. Thus create
2439 * special RPMB block devices that do not have a
2440 * backing block queue for these.
2442 ret = mmc_blk_alloc_rpmb_part(card, md,
2443 card->part[idx].part_cfg,
2444 card->part[idx].size >> 9,
2445 card->part[idx].name);
2446 if (ret)
2447 return ret;
2448 } else if (card->part[idx].size) {
2449 ret = mmc_blk_alloc_part(card, md,
2450 card->part[idx].part_cfg,
2451 card->part[idx].size >> 9,
2452 card->part[idx].force_ro,
2453 card->part[idx].name,
2454 card->part[idx].area_type);
2455 if (ret)
2456 return ret;
2460 return 0;
2463 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2465 struct mmc_card *card;
2467 if (md) {
2469 * Flush remaining requests and free queues. It
2470 * is freeing the queue that stops new requests
2471 * from being accepted.
2473 card = md->queue.card;
2474 spin_lock_irq(md->queue.queue->queue_lock);
2475 queue_flag_set(QUEUE_FLAG_BYPASS, md->queue.queue);
2476 spin_unlock_irq(md->queue.queue->queue_lock);
2477 blk_set_queue_dying(md->queue.queue);
2478 mmc_cleanup_queue(&md->queue);
2479 if (md->disk->flags & GENHD_FL_UP) {
2480 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2481 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2482 card->ext_csd.boot_ro_lockable)
2483 device_remove_file(disk_to_dev(md->disk),
2484 &md->power_ro_lock);
2486 del_gendisk(md->disk);
2488 mmc_blk_put(md);
2492 static void mmc_blk_remove_parts(struct mmc_card *card,
2493 struct mmc_blk_data *md)
2495 struct list_head *pos, *q;
2496 struct mmc_blk_data *part_md;
2497 struct mmc_rpmb_data *rpmb;
2499 /* Remove RPMB partitions */
2500 list_for_each_safe(pos, q, &md->rpmbs) {
2501 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2502 list_del(pos);
2503 mmc_blk_remove_rpmb_part(rpmb);
2505 /* Remove block partitions */
2506 list_for_each_safe(pos, q, &md->part) {
2507 part_md = list_entry(pos, struct mmc_blk_data, part);
2508 list_del(pos);
2509 mmc_blk_remove_req(part_md);
2513 static int mmc_add_disk(struct mmc_blk_data *md)
2515 int ret;
2516 struct mmc_card *card = md->queue.card;
2518 device_add_disk(md->parent, md->disk);
2519 md->force_ro.show = force_ro_show;
2520 md->force_ro.store = force_ro_store;
2521 sysfs_attr_init(&md->force_ro.attr);
2522 md->force_ro.attr.name = "force_ro";
2523 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2524 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2525 if (ret)
2526 goto force_ro_fail;
2528 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2529 card->ext_csd.boot_ro_lockable) {
2530 umode_t mode;
2532 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2533 mode = S_IRUGO;
2534 else
2535 mode = S_IRUGO | S_IWUSR;
2537 md->power_ro_lock.show = power_ro_lock_show;
2538 md->power_ro_lock.store = power_ro_lock_store;
2539 sysfs_attr_init(&md->power_ro_lock.attr);
2540 md->power_ro_lock.attr.mode = mode;
2541 md->power_ro_lock.attr.name =
2542 "ro_lock_until_next_power_on";
2543 ret = device_create_file(disk_to_dev(md->disk),
2544 &md->power_ro_lock);
2545 if (ret)
2546 goto power_ro_lock_fail;
2548 return ret;
2550 power_ro_lock_fail:
2551 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2552 force_ro_fail:
2553 del_gendisk(md->disk);
2555 return ret;
2558 #ifdef CONFIG_DEBUG_FS
2560 static int mmc_dbg_card_status_get(void *data, u64 *val)
2562 struct mmc_card *card = data;
2563 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2564 struct mmc_queue *mq = &md->queue;
2565 struct request *req;
2566 int ret;
2568 /* Ask the block layer about the card status */
2569 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2570 if (IS_ERR(req))
2571 return PTR_ERR(req);
2572 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2573 blk_execute_rq(mq->queue, NULL, req, 0);
2574 ret = req_to_mmc_queue_req(req)->drv_op_result;
2575 if (ret >= 0) {
2576 *val = ret;
2577 ret = 0;
2579 blk_put_request(req);
2581 return ret;
2583 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2584 NULL, "%08llx\n");
2586 /* That is two digits * 512 + 1 for newline */
2587 #define EXT_CSD_STR_LEN 1025
2589 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2591 struct mmc_card *card = inode->i_private;
2592 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2593 struct mmc_queue *mq = &md->queue;
2594 struct request *req;
2595 char *buf;
2596 ssize_t n = 0;
2597 u8 *ext_csd;
2598 int err, i;
2600 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2601 if (!buf)
2602 return -ENOMEM;
2604 /* Ask the block layer for the EXT CSD */
2605 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
2606 if (IS_ERR(req)) {
2607 err = PTR_ERR(req);
2608 goto out_free;
2610 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2611 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2612 blk_execute_rq(mq->queue, NULL, req, 0);
2613 err = req_to_mmc_queue_req(req)->drv_op_result;
2614 blk_put_request(req);
2615 if (err) {
2616 pr_err("FAILED %d\n", err);
2617 goto out_free;
2620 for (i = 0; i < 512; i++)
2621 n += sprintf(buf + n, "%02x", ext_csd[i]);
2622 n += sprintf(buf + n, "\n");
2624 if (n != EXT_CSD_STR_LEN) {
2625 err = -EINVAL;
2626 goto out_free;
2629 filp->private_data = buf;
2630 kfree(ext_csd);
2631 return 0;
2633 out_free:
2634 kfree(buf);
2635 return err;
2638 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2639 size_t cnt, loff_t *ppos)
2641 char *buf = filp->private_data;
2643 return simple_read_from_buffer(ubuf, cnt, ppos,
2644 buf, EXT_CSD_STR_LEN);
2647 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2649 kfree(file->private_data);
2650 return 0;
2653 static const struct file_operations mmc_dbg_ext_csd_fops = {
2654 .open = mmc_ext_csd_open,
2655 .read = mmc_ext_csd_read,
2656 .release = mmc_ext_csd_release,
2657 .llseek = default_llseek,
2660 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2662 struct dentry *root;
2664 if (!card->debugfs_root)
2665 return 0;
2667 root = card->debugfs_root;
2669 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2670 md->status_dentry =
2671 debugfs_create_file("status", S_IRUSR, root, card,
2672 &mmc_dbg_card_status_fops);
2673 if (!md->status_dentry)
2674 return -EIO;
2677 if (mmc_card_mmc(card)) {
2678 md->ext_csd_dentry =
2679 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2680 &mmc_dbg_ext_csd_fops);
2681 if (!md->ext_csd_dentry)
2682 return -EIO;
2685 return 0;
2688 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2689 struct mmc_blk_data *md)
2691 if (!card->debugfs_root)
2692 return;
2694 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2695 debugfs_remove(md->status_dentry);
2696 md->status_dentry = NULL;
2699 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2700 debugfs_remove(md->ext_csd_dentry);
2701 md->ext_csd_dentry = NULL;
2705 #else
2707 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2709 return 0;
2712 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2713 struct mmc_blk_data *md)
2717 #endif /* CONFIG_DEBUG_FS */
2719 static int mmc_blk_probe(struct mmc_card *card)
2721 struct mmc_blk_data *md, *part_md;
2722 char cap_str[10];
2725 * Check that the card supports the command class(es) we need.
2727 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2728 return -ENODEV;
2730 mmc_fixup_device(card, mmc_blk_fixups);
2732 md = mmc_blk_alloc(card);
2733 if (IS_ERR(md))
2734 return PTR_ERR(md);
2736 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2737 cap_str, sizeof(cap_str));
2738 pr_info("%s: %s %s %s %s\n",
2739 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2740 cap_str, md->read_only ? "(ro)" : "");
2742 if (mmc_blk_alloc_parts(card, md))
2743 goto out;
2745 dev_set_drvdata(&card->dev, md);
2747 if (mmc_add_disk(md))
2748 goto out;
2750 list_for_each_entry(part_md, &md->part, part) {
2751 if (mmc_add_disk(part_md))
2752 goto out;
2755 /* Add two debugfs entries */
2756 mmc_blk_add_debugfs(card, md);
2758 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2759 pm_runtime_use_autosuspend(&card->dev);
2762 * Don't enable runtime PM for SD-combo cards here. Leave that
2763 * decision to be taken during the SDIO init sequence instead.
2765 if (card->type != MMC_TYPE_SD_COMBO) {
2766 pm_runtime_set_active(&card->dev);
2767 pm_runtime_enable(&card->dev);
2770 return 0;
2772 out:
2773 mmc_blk_remove_parts(card, md);
2774 mmc_blk_remove_req(md);
2775 return 0;
2778 static void mmc_blk_remove(struct mmc_card *card)
2780 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2782 mmc_blk_remove_debugfs(card, md);
2783 mmc_blk_remove_parts(card, md);
2784 pm_runtime_get_sync(&card->dev);
2785 mmc_claim_host(card->host);
2786 mmc_blk_part_switch(card, md->part_type);
2787 mmc_release_host(card->host);
2788 if (card->type != MMC_TYPE_SD_COMBO)
2789 pm_runtime_disable(&card->dev);
2790 pm_runtime_put_noidle(&card->dev);
2791 mmc_blk_remove_req(md);
2792 dev_set_drvdata(&card->dev, NULL);
2795 static int _mmc_blk_suspend(struct mmc_card *card)
2797 struct mmc_blk_data *part_md;
2798 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2800 if (md) {
2801 mmc_queue_suspend(&md->queue);
2802 list_for_each_entry(part_md, &md->part, part) {
2803 mmc_queue_suspend(&part_md->queue);
2806 return 0;
2809 static void mmc_blk_shutdown(struct mmc_card *card)
2811 _mmc_blk_suspend(card);
2814 #ifdef CONFIG_PM_SLEEP
2815 static int mmc_blk_suspend(struct device *dev)
2817 struct mmc_card *card = mmc_dev_to_card(dev);
2819 return _mmc_blk_suspend(card);
2822 static int mmc_blk_resume(struct device *dev)
2824 struct mmc_blk_data *part_md;
2825 struct mmc_blk_data *md = dev_get_drvdata(dev);
2827 if (md) {
2829 * Resume involves the card going into idle state,
2830 * so current partition is always the main one.
2832 md->part_curr = md->part_type;
2833 mmc_queue_resume(&md->queue);
2834 list_for_each_entry(part_md, &md->part, part) {
2835 mmc_queue_resume(&part_md->queue);
2838 return 0;
2840 #endif
2842 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
2844 static struct mmc_driver mmc_driver = {
2845 .drv = {
2846 .name = "mmcblk",
2847 .pm = &mmc_blk_pm_ops,
2849 .probe = mmc_blk_probe,
2850 .remove = mmc_blk_remove,
2851 .shutdown = mmc_blk_shutdown,
2854 static int __init mmc_blk_init(void)
2856 int res;
2858 res = bus_register(&mmc_rpmb_bus_type);
2859 if (res < 0) {
2860 pr_err("mmcblk: could not register RPMB bus type\n");
2861 return res;
2863 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
2864 if (res < 0) {
2865 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
2866 goto out_bus_unreg;
2869 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
2870 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
2872 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
2874 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
2875 if (res)
2876 goto out_chrdev_unreg;
2878 res = mmc_register_driver(&mmc_driver);
2879 if (res)
2880 goto out_blkdev_unreg;
2882 return 0;
2884 out_blkdev_unreg:
2885 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2886 out_chrdev_unreg:
2887 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
2888 out_bus_unreg:
2889 bus_unregister(&mmc_rpmb_bus_type);
2890 return res;
2893 static void __exit mmc_blk_exit(void)
2895 mmc_unregister_driver(&mmc_driver);
2896 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
2897 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
2900 module_init(mmc_blk_init);
2901 module_exit(mmc_blk_exit);
2903 MODULE_LICENSE("GPL");
2904 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");