2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
53 /* If the device is not responding */
54 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
57 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
59 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
67 module_param(use_spi_crc
, bool, 0);
69 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
73 * We use the system_freezable_wq, because of two reasons.
74 * First, it allows several works (not the same work item) to be
75 * executed simultaneously. Second, the queue becomes frozen when
76 * userspace becomes frozen during system PM.
78 return queue_delayed_work(system_freezable_wq
, work
, delay
);
81 #ifdef CONFIG_FAIL_MMC_REQUEST
84 * Internal function. Inject random data errors.
85 * If mmc_data is NULL no errors are injected.
87 static void mmc_should_fail_request(struct mmc_host
*host
,
88 struct mmc_request
*mrq
)
90 struct mmc_command
*cmd
= mrq
->cmd
;
91 struct mmc_data
*data
= mrq
->data
;
92 static const int data_errors
[] = {
101 if (cmd
->error
|| data
->error
||
102 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
105 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
106 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
109 #else /* CONFIG_FAIL_MMC_REQUEST */
111 static inline void mmc_should_fail_request(struct mmc_host
*host
,
112 struct mmc_request
*mrq
)
116 #endif /* CONFIG_FAIL_MMC_REQUEST */
118 static inline void mmc_complete_cmd(struct mmc_request
*mrq
)
120 if (mrq
->cap_cmd_during_tfr
&& !completion_done(&mrq
->cmd_completion
))
121 complete_all(&mrq
->cmd_completion
);
124 void mmc_command_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
126 if (!mrq
->cap_cmd_during_tfr
)
129 mmc_complete_cmd(mrq
);
131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 mmc_hostname(host
), mrq
->cmd
->opcode
);
134 EXPORT_SYMBOL(mmc_command_done
);
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
144 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
146 struct mmc_command
*cmd
= mrq
->cmd
;
147 int err
= cmd
->error
;
149 /* Flag re-tuning needed on CRC errors */
150 if ((cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
151 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
) &&
152 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
153 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
154 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
155 mmc_retune_needed(host
);
157 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
158 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
162 if (host
->ongoing_mrq
== mrq
)
163 host
->ongoing_mrq
= NULL
;
165 mmc_complete_cmd(mrq
);
167 trace_mmc_request_done(host
, mrq
);
170 * We list various conditions for the command to be considered
173 * - There was no error, OK fine then
174 * - We are not doing some kind of retry
175 * - The card was removed (...so just complete everything no matter
176 * if there are errors or retries)
178 if (!err
|| !cmd
->retries
|| mmc_card_removed(host
->card
)) {
179 mmc_should_fail_request(host
, mrq
);
181 if (!host
->ongoing_mrq
)
182 led_trigger_event(host
->led
, LED_OFF
);
185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 mmc_hostname(host
), mrq
->sbc
->opcode
,
188 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
189 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 mmc_hostname(host
), cmd
->opcode
, err
,
194 cmd
->resp
[0], cmd
->resp
[1],
195 cmd
->resp
[2], cmd
->resp
[3]);
198 pr_debug("%s: %d bytes transferred: %d\n",
200 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
205 mmc_hostname(host
), mrq
->stop
->opcode
,
207 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
208 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
212 * Request starter must handle retries - see
213 * mmc_wait_for_req_done().
219 EXPORT_SYMBOL(mmc_request_done
);
221 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err
= mmc_retune(host
);
228 mrq
->cmd
->error
= err
;
229 mmc_request_done(host
, mrq
);
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 * And bypass I/O abort, reset and bus suspend operations.
238 if (sdio_is_io_busy(mrq
->cmd
->opcode
, mrq
->cmd
->arg
) &&
239 host
->ops
->card_busy
) {
240 int tries
= 500; /* Wait aprox 500ms at maximum */
242 while (host
->ops
->card_busy(host
) && --tries
)
246 mrq
->cmd
->error
= -EBUSY
;
247 mmc_request_done(host
, mrq
);
252 if (mrq
->cap_cmd_during_tfr
) {
253 host
->ongoing_mrq
= mrq
;
255 * Retry path could come through here without having waiting on
256 * cmd_completion, so ensure it is reinitialised.
258 reinit_completion(&mrq
->cmd_completion
);
261 trace_mmc_request_start(host
, mrq
);
264 host
->cqe_ops
->cqe_off(host
);
266 host
->ops
->request(host
, mrq
);
269 static void mmc_mrq_pr_debug(struct mmc_host
*host
, struct mmc_request
*mrq
,
273 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
274 mmc_hostname(host
), mrq
->sbc
->opcode
,
275 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
279 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
280 mmc_hostname(host
), cqe
? "CQE direct " : "",
281 mrq
->cmd
->opcode
, mrq
->cmd
->arg
, mrq
->cmd
->flags
);
283 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
284 mmc_hostname(host
), mrq
->tag
, mrq
->data
->blk_addr
);
288 pr_debug("%s: blksz %d blocks %d flags %08x "
289 "tsac %d ms nsac %d\n",
290 mmc_hostname(host
), mrq
->data
->blksz
,
291 mrq
->data
->blocks
, mrq
->data
->flags
,
292 mrq
->data
->timeout_ns
/ 1000000,
293 mrq
->data
->timeout_clks
);
297 pr_debug("%s: CMD%u arg %08x flags %08x\n",
298 mmc_hostname(host
), mrq
->stop
->opcode
,
299 mrq
->stop
->arg
, mrq
->stop
->flags
);
303 static int mmc_mrq_prep(struct mmc_host
*host
, struct mmc_request
*mrq
)
305 unsigned int i
, sz
= 0;
306 struct scatterlist
*sg
;
311 mrq
->cmd
->data
= mrq
->data
;
318 if (mrq
->data
->blksz
> host
->max_blk_size
||
319 mrq
->data
->blocks
> host
->max_blk_count
||
320 mrq
->data
->blocks
* mrq
->data
->blksz
> host
->max_req_size
)
323 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
325 if (sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
)
328 mrq
->data
->error
= 0;
329 mrq
->data
->mrq
= mrq
;
331 mrq
->data
->stop
= mrq
->stop
;
332 mrq
->stop
->error
= 0;
333 mrq
->stop
->mrq
= mrq
;
340 int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
344 mmc_retune_hold(host
);
346 if (mmc_card_removed(host
->card
))
349 mmc_mrq_pr_debug(host
, mrq
, false);
351 WARN_ON(!host
->claimed
);
353 err
= mmc_mrq_prep(host
, mrq
);
357 led_trigger_event(host
->led
, LED_FULL
);
358 __mmc_start_request(host
, mrq
);
362 EXPORT_SYMBOL(mmc_start_request
);
365 * mmc_wait_data_done() - done callback for data request
366 * @mrq: done data request
368 * Wakes up mmc context, passed as a callback to host controller driver
370 static void mmc_wait_data_done(struct mmc_request
*mrq
)
372 struct mmc_context_info
*context_info
= &mrq
->host
->context_info
;
374 context_info
->is_done_rcv
= true;
375 wake_up_interruptible(&context_info
->wait
);
378 static void mmc_wait_done(struct mmc_request
*mrq
)
380 complete(&mrq
->completion
);
383 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host
*host
)
385 struct mmc_request
*ongoing_mrq
= READ_ONCE(host
->ongoing_mrq
);
388 * If there is an ongoing transfer, wait for the command line to become
391 if (ongoing_mrq
&& !completion_done(&ongoing_mrq
->cmd_completion
))
392 wait_for_completion(&ongoing_mrq
->cmd_completion
);
396 *__mmc_start_data_req() - starts data request
397 * @host: MMC host to start the request
398 * @mrq: data request to start
400 * Sets the done callback to be called when request is completed by the card.
401 * Starts data mmc request execution
402 * If an ongoing transfer is already in progress, wait for the command line
403 * to become available before sending another command.
405 static int __mmc_start_data_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
409 mmc_wait_ongoing_tfr_cmd(host
);
411 mrq
->done
= mmc_wait_data_done
;
414 init_completion(&mrq
->cmd_completion
);
416 err
= mmc_start_request(host
, mrq
);
418 mrq
->cmd
->error
= err
;
419 mmc_complete_cmd(mrq
);
420 mmc_wait_data_done(mrq
);
426 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
430 mmc_wait_ongoing_tfr_cmd(host
);
432 init_completion(&mrq
->completion
);
433 mrq
->done
= mmc_wait_done
;
435 init_completion(&mrq
->cmd_completion
);
437 err
= mmc_start_request(host
, mrq
);
439 mrq
->cmd
->error
= err
;
440 mmc_complete_cmd(mrq
);
441 complete(&mrq
->completion
);
447 void mmc_wait_for_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
449 struct mmc_command
*cmd
;
452 wait_for_completion(&mrq
->completion
);
457 * If host has timed out waiting for the sanitize
458 * to complete, card might be still in programming state
459 * so let's try to bring the card out of programming
462 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
463 if (!mmc_interrupt_hpi(host
->card
)) {
464 pr_warn("%s: %s: Interrupted sanitize\n",
465 mmc_hostname(host
), __func__
);
469 pr_err("%s: %s: Failed to interrupt sanitize\n",
470 mmc_hostname(host
), __func__
);
473 if (!cmd
->error
|| !cmd
->retries
||
474 mmc_card_removed(host
->card
))
477 mmc_retune_recheck(host
);
479 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
480 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
483 __mmc_start_request(host
, mrq
);
486 mmc_retune_release(host
);
488 EXPORT_SYMBOL(mmc_wait_for_req_done
);
491 * mmc_cqe_start_req - Start a CQE request.
492 * @host: MMC host to start the request
493 * @mrq: request to start
495 * Start the request, re-tuning if needed and it is possible. Returns an error
496 * code if the request fails to start or -EBUSY if CQE is busy.
498 int mmc_cqe_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
503 * CQE cannot process re-tuning commands. Caller must hold retuning
504 * while CQE is in use. Re-tuning can happen here only when CQE has no
505 * active requests i.e. this is the first. Note, re-tuning will call
508 err
= mmc_retune(host
);
514 mmc_mrq_pr_debug(host
, mrq
, true);
516 err
= mmc_mrq_prep(host
, mrq
);
520 err
= host
->cqe_ops
->cqe_request(host
, mrq
);
524 trace_mmc_request_start(host
, mrq
);
530 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
531 mmc_hostname(host
), mrq
->cmd
->opcode
, err
);
533 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
534 mmc_hostname(host
), mrq
->tag
, err
);
538 EXPORT_SYMBOL(mmc_cqe_start_req
);
541 * mmc_cqe_request_done - CQE has finished processing an MMC request
542 * @host: MMC host which completed request
543 * @mrq: MMC request which completed
545 * CQE drivers should call this function when they have completed
546 * their processing of a request.
548 void mmc_cqe_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
550 mmc_should_fail_request(host
, mrq
);
552 /* Flag re-tuning needed on CRC errors */
553 if ((mrq
->cmd
&& mrq
->cmd
->error
== -EILSEQ
) ||
554 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
))
555 mmc_retune_needed(host
);
557 trace_mmc_request_done(host
, mrq
);
560 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
561 mmc_hostname(host
), mrq
->cmd
->opcode
, mrq
->cmd
->error
);
563 pr_debug("%s: CQE transfer done tag %d\n",
564 mmc_hostname(host
), mrq
->tag
);
568 pr_debug("%s: %d bytes transferred: %d\n",
570 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
575 EXPORT_SYMBOL(mmc_cqe_request_done
);
578 * mmc_cqe_post_req - CQE post process of a completed MMC request
580 * @mrq: MMC request to be processed
582 void mmc_cqe_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
584 if (host
->cqe_ops
->cqe_post_req
)
585 host
->cqe_ops
->cqe_post_req(host
, mrq
);
587 EXPORT_SYMBOL(mmc_cqe_post_req
);
589 /* Arbitrary 1 second timeout */
590 #define MMC_CQE_RECOVERY_TIMEOUT 1000
593 * mmc_cqe_recovery - Recover from CQE errors.
594 * @host: MMC host to recover
596 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
597 * in eMMC, and discarding the queue in CQE. CQE must call
598 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
599 * fails to discard its queue.
601 int mmc_cqe_recovery(struct mmc_host
*host
)
603 struct mmc_command cmd
;
606 mmc_retune_hold_now(host
);
609 * Recovery is expected seldom, if at all, but it reduces performance,
610 * so make sure it is not completely silent.
612 pr_warn("%s: running CQE recovery\n", mmc_hostname(host
));
614 host
->cqe_ops
->cqe_recovery_start(host
);
616 memset(&cmd
, 0, sizeof(cmd
));
617 cmd
.opcode
= MMC_STOP_TRANSMISSION
,
618 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
,
619 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
620 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
621 mmc_wait_for_cmd(host
, &cmd
, 0);
623 memset(&cmd
, 0, sizeof(cmd
));
624 cmd
.opcode
= MMC_CMDQ_TASK_MGMT
;
625 cmd
.arg
= 1; /* Discard entire queue */
626 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
627 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
628 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
629 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
631 host
->cqe_ops
->cqe_recovery_finish(host
);
633 mmc_retune_release(host
);
637 EXPORT_SYMBOL(mmc_cqe_recovery
);
640 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
644 * mmc_is_req_done() is used with requests that have
645 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
646 * starting a request and before waiting for it to complete. That is,
647 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
648 * and before mmc_wait_for_req_done(). If it is called at other times the
649 * result is not meaningful.
651 bool mmc_is_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
654 return host
->context_info
.is_done_rcv
;
656 return completion_done(&mrq
->completion
);
658 EXPORT_SYMBOL(mmc_is_req_done
);
661 * mmc_pre_req - Prepare for a new request
662 * @host: MMC host to prepare command
663 * @mrq: MMC request to prepare for
665 * mmc_pre_req() is called in prior to mmc_start_req() to let
666 * host prepare for the new request. Preparation of a request may be
667 * performed while another request is running on the host.
669 static void mmc_pre_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
671 if (host
->ops
->pre_req
)
672 host
->ops
->pre_req(host
, mrq
);
676 * mmc_post_req - Post process a completed request
677 * @host: MMC host to post process command
678 * @mrq: MMC request to post process for
679 * @err: Error, if non zero, clean up any resources made in pre_req
681 * Let the host post process a completed request. Post processing of
682 * a request may be performed while another reuqest is running.
684 static void mmc_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
,
687 if (host
->ops
->post_req
)
688 host
->ops
->post_req(host
, mrq
, err
);
692 * mmc_finalize_areq() - finalize an asynchronous request
693 * @host: MMC host to finalize any ongoing request on
695 * Returns the status of the ongoing asynchronous request, but
696 * MMC_BLK_SUCCESS if no request was going on.
698 static enum mmc_blk_status
mmc_finalize_areq(struct mmc_host
*host
)
700 struct mmc_context_info
*context_info
= &host
->context_info
;
701 enum mmc_blk_status status
;
704 return MMC_BLK_SUCCESS
;
707 wait_event_interruptible(context_info
->wait
,
708 (context_info
->is_done_rcv
||
709 context_info
->is_new_req
));
711 if (context_info
->is_done_rcv
) {
712 struct mmc_command
*cmd
;
714 context_info
->is_done_rcv
= false;
715 cmd
= host
->areq
->mrq
->cmd
;
717 if (!cmd
->error
|| !cmd
->retries
||
718 mmc_card_removed(host
->card
)) {
719 status
= host
->areq
->err_check(host
->card
,
721 break; /* return status */
723 mmc_retune_recheck(host
);
724 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
726 cmd
->opcode
, cmd
->error
);
729 __mmc_start_request(host
, host
->areq
->mrq
);
730 continue; /* wait for done/new event again */
734 return MMC_BLK_NEW_REQUEST
;
737 mmc_retune_release(host
);
740 * Check BKOPS urgency for each R1 response
742 if (host
->card
&& mmc_card_mmc(host
->card
) &&
743 ((mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1
) ||
744 (mmc_resp_type(host
->areq
->mrq
->cmd
) == MMC_RSP_R1B
)) &&
745 (host
->areq
->mrq
->cmd
->resp
[0] & R1_EXCEPTION_EVENT
)) {
746 mmc_start_bkops(host
->card
, true);
753 * mmc_start_areq - start an asynchronous request
754 * @host: MMC host to start command
755 * @areq: asynchronous request to start
756 * @ret_stat: out parameter for status
758 * Start a new MMC custom command request for a host.
759 * If there is on ongoing async request wait for completion
760 * of that request and start the new one and return.
761 * Does not wait for the new request to complete.
763 * Returns the completed request, NULL in case of none completed.
764 * Wait for the an ongoing request (previoulsy started) to complete and
765 * return the completed request. If there is no ongoing request, NULL
766 * is returned without waiting. NULL is not an error condition.
768 struct mmc_async_req
*mmc_start_areq(struct mmc_host
*host
,
769 struct mmc_async_req
*areq
,
770 enum mmc_blk_status
*ret_stat
)
772 enum mmc_blk_status status
;
774 struct mmc_async_req
*previous
= host
->areq
;
776 /* Prepare a new request */
778 mmc_pre_req(host
, areq
->mrq
);
780 /* Finalize previous request */
781 status
= mmc_finalize_areq(host
);
785 /* The previous request is still going on... */
786 if (status
== MMC_BLK_NEW_REQUEST
)
789 /* Fine so far, start the new request! */
790 if (status
== MMC_BLK_SUCCESS
&& areq
)
791 start_err
= __mmc_start_data_req(host
, areq
->mrq
);
793 /* Postprocess the old request at this point */
795 mmc_post_req(host
, host
->areq
->mrq
, 0);
797 /* Cancel a prepared request if it was not started. */
798 if ((status
!= MMC_BLK_SUCCESS
|| start_err
) && areq
)
799 mmc_post_req(host
, areq
->mrq
, -EINVAL
);
801 if (status
!= MMC_BLK_SUCCESS
)
808 EXPORT_SYMBOL(mmc_start_areq
);
811 * mmc_wait_for_req - start a request and wait for completion
812 * @host: MMC host to start command
813 * @mrq: MMC request to start
815 * Start a new MMC custom command request for a host, and wait
816 * for the command to complete. In the case of 'cap_cmd_during_tfr'
817 * requests, the transfer is ongoing and the caller can issue further
818 * commands that do not use the data lines, and then wait by calling
819 * mmc_wait_for_req_done().
820 * Does not attempt to parse the response.
822 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
824 __mmc_start_req(host
, mrq
);
826 if (!mrq
->cap_cmd_during_tfr
)
827 mmc_wait_for_req_done(host
, mrq
);
829 EXPORT_SYMBOL(mmc_wait_for_req
);
832 * mmc_wait_for_cmd - start a command and wait for completion
833 * @host: MMC host to start command
834 * @cmd: MMC command to start
835 * @retries: maximum number of retries
837 * Start a new MMC command for a host, and wait for the command
838 * to complete. Return any error that occurred while the command
839 * was executing. Do not attempt to parse the response.
841 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
843 struct mmc_request mrq
= {};
845 WARN_ON(!host
->claimed
);
847 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
848 cmd
->retries
= retries
;
853 mmc_wait_for_req(host
, &mrq
);
858 EXPORT_SYMBOL(mmc_wait_for_cmd
);
861 * mmc_set_data_timeout - set the timeout for a data command
862 * @data: data phase for command
863 * @card: the MMC card associated with the data transfer
865 * Computes the data timeout parameters according to the
866 * correct algorithm given the card type.
868 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
873 * SDIO cards only define an upper 1 s limit on access.
875 if (mmc_card_sdio(card
)) {
876 data
->timeout_ns
= 1000000000;
877 data
->timeout_clks
= 0;
882 * SD cards use a 100 multiplier rather than 10
884 mult
= mmc_card_sd(card
) ? 100 : 10;
887 * Scale up the multiplier (and therefore the timeout) by
888 * the r2w factor for writes.
890 if (data
->flags
& MMC_DATA_WRITE
)
891 mult
<<= card
->csd
.r2w_factor
;
893 data
->timeout_ns
= card
->csd
.taac_ns
* mult
;
894 data
->timeout_clks
= card
->csd
.taac_clks
* mult
;
897 * SD cards also have an upper limit on the timeout.
899 if (mmc_card_sd(card
)) {
900 unsigned int timeout_us
, limit_us
;
902 timeout_us
= data
->timeout_ns
/ 1000;
903 if (card
->host
->ios
.clock
)
904 timeout_us
+= data
->timeout_clks
* 1000 /
905 (card
->host
->ios
.clock
/ 1000);
907 if (data
->flags
& MMC_DATA_WRITE
)
909 * The MMC spec "It is strongly recommended
910 * for hosts to implement more than 500ms
911 * timeout value even if the card indicates
912 * the 250ms maximum busy length." Even the
913 * previous value of 300ms is known to be
914 * insufficient for some cards.
921 * SDHC cards always use these fixed values.
923 if (timeout_us
> limit_us
) {
924 data
->timeout_ns
= limit_us
* 1000;
925 data
->timeout_clks
= 0;
928 /* assign limit value if invalid */
930 data
->timeout_ns
= limit_us
* 1000;
934 * Some cards require longer data read timeout than indicated in CSD.
935 * Address this by setting the read timeout to a "reasonably high"
936 * value. For the cards tested, 600ms has proven enough. If necessary,
937 * this value can be increased if other problematic cards require this.
939 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
940 data
->timeout_ns
= 600000000;
941 data
->timeout_clks
= 0;
945 * Some cards need very high timeouts if driven in SPI mode.
946 * The worst observed timeout was 900ms after writing a
947 * continuous stream of data until the internal logic
950 if (mmc_host_is_spi(card
->host
)) {
951 if (data
->flags
& MMC_DATA_WRITE
) {
952 if (data
->timeout_ns
< 1000000000)
953 data
->timeout_ns
= 1000000000; /* 1s */
955 if (data
->timeout_ns
< 100000000)
956 data
->timeout_ns
= 100000000; /* 100ms */
960 EXPORT_SYMBOL(mmc_set_data_timeout
);
963 * mmc_align_data_size - pads a transfer size to a more optimal value
964 * @card: the MMC card associated with the data transfer
965 * @sz: original transfer size
967 * Pads the original data size with a number of extra bytes in
968 * order to avoid controller bugs and/or performance hits
969 * (e.g. some controllers revert to PIO for certain sizes).
971 * Returns the improved size, which might be unmodified.
973 * Note that this function is only relevant when issuing a
974 * single scatter gather entry.
976 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
979 * FIXME: We don't have a system for the controller to tell
980 * the core about its problems yet, so for now we just 32-bit
983 sz
= ((sz
+ 3) / 4) * 4;
987 EXPORT_SYMBOL(mmc_align_data_size
);
990 * Allow claiming an already claimed host if the context is the same or there is
991 * no context but the task is the same.
993 static inline bool mmc_ctx_matches(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
994 struct task_struct
*task
)
996 return host
->claimer
== ctx
||
997 (!ctx
&& task
&& host
->claimer
->task
== task
);
1000 static inline void mmc_ctx_set_claimer(struct mmc_host
*host
,
1001 struct mmc_ctx
*ctx
,
1002 struct task_struct
*task
)
1004 if (!host
->claimer
) {
1006 host
->claimer
= ctx
;
1008 host
->claimer
= &host
->default_ctx
;
1011 host
->claimer
->task
= task
;
1015 * __mmc_claim_host - exclusively claim a host
1016 * @host: mmc host to claim
1017 * @ctx: context that claims the host or NULL in which case the default
1018 * context will be used
1019 * @abort: whether or not the operation should be aborted
1021 * Claim a host for a set of operations. If @abort is non null and
1022 * dereference a non-zero value then this will return prematurely with
1023 * that non-zero value without acquiring the lock. Returns zero
1024 * with the lock held otherwise.
1026 int __mmc_claim_host(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
1029 struct task_struct
*task
= ctx
? NULL
: current
;
1030 DECLARE_WAITQUEUE(wait
, current
);
1031 unsigned long flags
;
1037 add_wait_queue(&host
->wq
, &wait
);
1038 spin_lock_irqsave(&host
->lock
, flags
);
1040 set_current_state(TASK_UNINTERRUPTIBLE
);
1041 stop
= abort
? atomic_read(abort
) : 0;
1042 if (stop
|| !host
->claimed
|| mmc_ctx_matches(host
, ctx
, task
))
1044 spin_unlock_irqrestore(&host
->lock
, flags
);
1046 spin_lock_irqsave(&host
->lock
, flags
);
1048 set_current_state(TASK_RUNNING
);
1051 mmc_ctx_set_claimer(host
, ctx
, task
);
1052 host
->claim_cnt
+= 1;
1053 if (host
->claim_cnt
== 1)
1057 spin_unlock_irqrestore(&host
->lock
, flags
);
1058 remove_wait_queue(&host
->wq
, &wait
);
1061 pm_runtime_get_sync(mmc_dev(host
));
1065 EXPORT_SYMBOL(__mmc_claim_host
);
1068 * mmc_release_host - release a host
1069 * @host: mmc host to release
1071 * Release a MMC host, allowing others to claim the host
1072 * for their operations.
1074 void mmc_release_host(struct mmc_host
*host
)
1076 unsigned long flags
;
1078 WARN_ON(!host
->claimed
);
1080 spin_lock_irqsave(&host
->lock
, flags
);
1081 if (--host
->claim_cnt
) {
1082 /* Release for nested claim */
1083 spin_unlock_irqrestore(&host
->lock
, flags
);
1086 host
->claimer
->task
= NULL
;
1087 host
->claimer
= NULL
;
1088 spin_unlock_irqrestore(&host
->lock
, flags
);
1090 pm_runtime_mark_last_busy(mmc_dev(host
));
1091 pm_runtime_put_autosuspend(mmc_dev(host
));
1094 EXPORT_SYMBOL(mmc_release_host
);
1097 * This is a helper function, which fetches a runtime pm reference for the
1098 * card device and also claims the host.
1100 void mmc_get_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
1102 pm_runtime_get_sync(&card
->dev
);
1103 __mmc_claim_host(card
->host
, ctx
, NULL
);
1105 EXPORT_SYMBOL(mmc_get_card
);
1108 * This is a helper function, which releases the host and drops the runtime
1109 * pm reference for the card device.
1111 void mmc_put_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
1113 struct mmc_host
*host
= card
->host
;
1115 WARN_ON(ctx
&& host
->claimer
!= ctx
);
1117 mmc_release_host(host
);
1118 pm_runtime_mark_last_busy(&card
->dev
);
1119 pm_runtime_put_autosuspend(&card
->dev
);
1121 EXPORT_SYMBOL(mmc_put_card
);
1124 * Internal function that does the actual ios call to the host driver,
1125 * optionally printing some debug output.
1127 static inline void mmc_set_ios(struct mmc_host
*host
)
1129 struct mmc_ios
*ios
= &host
->ios
;
1131 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1132 "width %u timing %u\n",
1133 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
1134 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
1135 1 << ios
->bus_width
, ios
->timing
);
1137 host
->ops
->set_ios(host
, ios
);
1141 * Control chip select pin on a host.
1143 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
1145 host
->ios
.chip_select
= mode
;
1150 * Sets the host clock to the highest possible frequency that
1153 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
1155 WARN_ON(hz
&& hz
< host
->f_min
);
1157 if (hz
> host
->f_max
)
1160 host
->ios
.clock
= hz
;
1164 int mmc_execute_tuning(struct mmc_card
*card
)
1166 struct mmc_host
*host
= card
->host
;
1170 if (!host
->ops
->execute_tuning
)
1174 host
->cqe_ops
->cqe_off(host
);
1176 if (mmc_card_mmc(card
))
1177 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
1179 opcode
= MMC_SEND_TUNING_BLOCK
;
1181 err
= host
->ops
->execute_tuning(host
, opcode
);
1184 pr_err("%s: tuning execution failed: %d\n",
1185 mmc_hostname(host
), err
);
1187 mmc_retune_enable(host
);
1193 * Change the bus mode (open drain/push-pull) of a host.
1195 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
1197 host
->ios
.bus_mode
= mode
;
1202 * Change data bus width of a host.
1204 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1206 host
->ios
.bus_width
= width
;
1211 * Set initial state after a power cycle or a hw_reset.
1213 void mmc_set_initial_state(struct mmc_host
*host
)
1216 host
->cqe_ops
->cqe_off(host
);
1218 mmc_retune_disable(host
);
1220 if (mmc_host_is_spi(host
))
1221 host
->ios
.chip_select
= MMC_CS_HIGH
;
1223 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1224 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1225 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1226 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1227 host
->ios
.drv_type
= 0;
1228 host
->ios
.enhanced_strobe
= false;
1231 * Make sure we are in non-enhanced strobe mode before we
1232 * actually enable it in ext_csd.
1234 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
1235 host
->ops
->hs400_enhanced_strobe
)
1236 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1242 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1243 * @vdd: voltage (mV)
1244 * @low_bits: prefer low bits in boundary cases
1246 * This function returns the OCR bit number according to the provided @vdd
1247 * value. If conversion is not possible a negative errno value returned.
1249 * Depending on the @low_bits flag the function prefers low or high OCR bits
1250 * on boundary voltages. For example,
1251 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1252 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1254 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1256 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1258 const int max_bit
= ilog2(MMC_VDD_35_36
);
1261 if (vdd
< 1650 || vdd
> 3600)
1264 if (vdd
>= 1650 && vdd
<= 1950)
1265 return ilog2(MMC_VDD_165_195
);
1270 /* Base 2000 mV, step 100 mV, bit's base 8. */
1271 bit
= (vdd
- 2000) / 100 + 8;
1278 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1279 * @vdd_min: minimum voltage value (mV)
1280 * @vdd_max: maximum voltage value (mV)
1282 * This function returns the OCR mask bits according to the provided @vdd_min
1283 * and @vdd_max values. If conversion is not possible the function returns 0.
1285 * Notes wrt boundary cases:
1286 * This function sets the OCR bits for all boundary voltages, for example
1287 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1288 * MMC_VDD_34_35 mask.
1290 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1294 if (vdd_max
< vdd_min
)
1297 /* Prefer high bits for the boundary vdd_max values. */
1298 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1302 /* Prefer low bits for the boundary vdd_min values. */
1303 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1307 /* Fill the mask, from max bit to min bit. */
1308 while (vdd_max
>= vdd_min
)
1309 mask
|= 1 << vdd_max
--;
1313 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1318 * mmc_of_parse_voltage - return mask of supported voltages
1319 * @np: The device node need to be parsed.
1320 * @mask: mask of voltages available for MMC/SD/SDIO
1322 * Parse the "voltage-ranges" DT property, returning zero if it is not
1323 * found, negative errno if the voltage-range specification is invalid,
1324 * or one if the voltage-range is specified and successfully parsed.
1326 int mmc_of_parse_voltage(struct device_node
*np
, u32
*mask
)
1328 const u32
*voltage_ranges
;
1331 voltage_ranges
= of_get_property(np
, "voltage-ranges", &num_ranges
);
1332 num_ranges
= num_ranges
/ sizeof(*voltage_ranges
) / 2;
1333 if (!voltage_ranges
) {
1334 pr_debug("%pOF: voltage-ranges unspecified\n", np
);
1338 pr_err("%pOF: voltage-ranges empty\n", np
);
1342 for (i
= 0; i
< num_ranges
; i
++) {
1343 const int j
= i
* 2;
1346 ocr_mask
= mmc_vddrange_to_ocrmask(
1347 be32_to_cpu(voltage_ranges
[j
]),
1348 be32_to_cpu(voltage_ranges
[j
+ 1]));
1350 pr_err("%pOF: voltage-range #%d is invalid\n",
1359 EXPORT_SYMBOL(mmc_of_parse_voltage
);
1361 #endif /* CONFIG_OF */
1363 static int mmc_of_get_func_num(struct device_node
*node
)
1368 ret
= of_property_read_u32(node
, "reg", ®
);
1375 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1378 struct device_node
*node
;
1380 if (!host
->parent
|| !host
->parent
->of_node
)
1383 for_each_child_of_node(host
->parent
->of_node
, node
) {
1384 if (mmc_of_get_func_num(node
) == func_num
)
1391 #ifdef CONFIG_REGULATOR
1394 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1395 * @vdd_bit: OCR bit number
1396 * @min_uV: minimum voltage value (mV)
1397 * @max_uV: maximum voltage value (mV)
1399 * This function returns the voltage range according to the provided OCR
1400 * bit number. If conversion is not possible a negative errno value returned.
1402 static int mmc_ocrbitnum_to_vdd(int vdd_bit
, int *min_uV
, int *max_uV
)
1410 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1411 * bits this regulator doesn't quite support ... don't
1412 * be too picky, most cards and regulators are OK with
1413 * a 0.1V range goof (it's a small error percentage).
1415 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1417 *min_uV
= 1650 * 1000;
1418 *max_uV
= 1950 * 1000;
1420 *min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1421 *max_uV
= *min_uV
+ 100 * 1000;
1428 * mmc_regulator_get_ocrmask - return mask of supported voltages
1429 * @supply: regulator to use
1431 * This returns either a negative errno, or a mask of voltages that
1432 * can be provided to MMC/SD/SDIO devices using the specified voltage
1433 * regulator. This would normally be called before registering the
1436 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1444 count
= regulator_count_voltages(supply
);
1448 for (i
= 0; i
< count
; i
++) {
1449 vdd_uV
= regulator_list_voltage(supply
, i
);
1453 vdd_mV
= vdd_uV
/ 1000;
1454 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1458 vdd_uV
= regulator_get_voltage(supply
);
1462 vdd_mV
= vdd_uV
/ 1000;
1463 result
= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1468 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask
);
1471 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1472 * @mmc: the host to regulate
1473 * @supply: regulator to use
1474 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1476 * Returns zero on success, else negative errno.
1478 * MMC host drivers may use this to enable or disable a regulator using
1479 * a particular supply voltage. This would normally be called from the
1482 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1483 struct regulator
*supply
,
1484 unsigned short vdd_bit
)
1490 mmc_ocrbitnum_to_vdd(vdd_bit
, &min_uV
, &max_uV
);
1492 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1493 if (result
== 0 && !mmc
->regulator_enabled
) {
1494 result
= regulator_enable(supply
);
1496 mmc
->regulator_enabled
= true;
1498 } else if (mmc
->regulator_enabled
) {
1499 result
= regulator_disable(supply
);
1501 mmc
->regulator_enabled
= false;
1505 dev_err(mmc_dev(mmc
),
1506 "could not set regulator OCR (%d)\n", result
);
1509 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr
);
1511 static int mmc_regulator_set_voltage_if_supported(struct regulator
*regulator
,
1512 int min_uV
, int target_uV
,
1516 * Check if supported first to avoid errors since we may try several
1517 * signal levels during power up and don't want to show errors.
1519 if (!regulator_is_supported_voltage(regulator
, min_uV
, max_uV
))
1522 return regulator_set_voltage_triplet(regulator
, min_uV
, target_uV
,
1527 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1529 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1530 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1531 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1532 * SD card spec also define VQMMC in terms of VMMC.
1533 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1535 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1536 * requested voltage. This is definitely a good idea for UHS where there's a
1537 * separate regulator on the card that's trying to make 1.8V and it's best if
1540 * This function is expected to be used by a controller's
1541 * start_signal_voltage_switch() function.
1543 int mmc_regulator_set_vqmmc(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1545 struct device
*dev
= mmc_dev(mmc
);
1546 int ret
, volt
, min_uV
, max_uV
;
1548 /* If no vqmmc supply then we can't change the voltage */
1549 if (IS_ERR(mmc
->supply
.vqmmc
))
1552 switch (ios
->signal_voltage
) {
1553 case MMC_SIGNAL_VOLTAGE_120
:
1554 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1555 1100000, 1200000, 1300000);
1556 case MMC_SIGNAL_VOLTAGE_180
:
1557 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1558 1700000, 1800000, 1950000);
1559 case MMC_SIGNAL_VOLTAGE_330
:
1560 ret
= mmc_ocrbitnum_to_vdd(mmc
->ios
.vdd
, &volt
, &max_uV
);
1564 dev_dbg(dev
, "%s: found vmmc voltage range of %d-%duV\n",
1565 __func__
, volt
, max_uV
);
1567 min_uV
= max(volt
- 300000, 2700000);
1568 max_uV
= min(max_uV
+ 200000, 3600000);
1571 * Due to a limitation in the current implementation of
1572 * regulator_set_voltage_triplet() which is taking the lowest
1573 * voltage possible if below the target, search for a suitable
1574 * voltage in two steps and try to stay close to vmmc
1575 * with a 0.3V tolerance at first.
1577 if (!mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1578 min_uV
, volt
, max_uV
))
1581 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1582 2700000, volt
, 3600000);
1587 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc
);
1589 #endif /* CONFIG_REGULATOR */
1592 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1593 * @mmc: the host to regulate
1595 * Returns 0 or errno. errno should be handled, it is either a critical error
1596 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1597 * regulators have been found because they all are optional. If you require
1598 * certain regulators, you need to check separately in your driver if they got
1599 * populated after calling this function.
1601 int mmc_regulator_get_supply(struct mmc_host
*mmc
)
1603 struct device
*dev
= mmc_dev(mmc
);
1606 mmc
->supply
.vmmc
= devm_regulator_get_optional(dev
, "vmmc");
1607 mmc
->supply
.vqmmc
= devm_regulator_get_optional(dev
, "vqmmc");
1609 if (IS_ERR(mmc
->supply
.vmmc
)) {
1610 if (PTR_ERR(mmc
->supply
.vmmc
) == -EPROBE_DEFER
)
1611 return -EPROBE_DEFER
;
1612 dev_dbg(dev
, "No vmmc regulator found\n");
1614 ret
= mmc_regulator_get_ocrmask(mmc
->supply
.vmmc
);
1616 mmc
->ocr_avail
= ret
;
1618 dev_warn(dev
, "Failed getting OCR mask: %d\n", ret
);
1621 if (IS_ERR(mmc
->supply
.vqmmc
)) {
1622 if (PTR_ERR(mmc
->supply
.vqmmc
) == -EPROBE_DEFER
)
1623 return -EPROBE_DEFER
;
1624 dev_dbg(dev
, "No vqmmc regulator found\n");
1629 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply
);
1632 * Mask off any voltages we don't support and select
1633 * the lowest voltage
1635 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1640 * Sanity check the voltages that the card claims to
1644 dev_warn(mmc_dev(host
),
1645 "card claims to support voltages below defined range\n");
1649 ocr
&= host
->ocr_avail
;
1651 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1655 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1658 mmc_power_cycle(host
, ocr
);
1662 if (bit
!= host
->ios
.vdd
)
1663 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1669 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1672 int old_signal_voltage
= host
->ios
.signal_voltage
;
1674 host
->ios
.signal_voltage
= signal_voltage
;
1675 if (host
->ops
->start_signal_voltage_switch
)
1676 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1679 host
->ios
.signal_voltage
= old_signal_voltage
;
1685 int mmc_host_set_uhs_voltage(struct mmc_host
*host
)
1690 * During a signal voltage level switch, the clock must be gated
1691 * for 5 ms according to the SD spec
1693 clock
= host
->ios
.clock
;
1694 host
->ios
.clock
= 0;
1697 if (mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1700 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1702 host
->ios
.clock
= clock
;
1708 int mmc_set_uhs_voltage(struct mmc_host
*host
, u32 ocr
)
1710 struct mmc_command cmd
= {};
1714 * If we cannot switch voltages, return failure so the caller
1715 * can continue without UHS mode
1717 if (!host
->ops
->start_signal_voltage_switch
)
1719 if (!host
->ops
->card_busy
)
1720 pr_warn("%s: cannot verify signal voltage switch\n",
1721 mmc_hostname(host
));
1723 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1725 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1727 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1731 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1735 * The card should drive cmd and dat[0:3] low immediately
1736 * after the response of cmd11, but wait 1 ms to be sure
1739 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1744 if (mmc_host_set_uhs_voltage(host
)) {
1746 * Voltages may not have been switched, but we've already
1747 * sent CMD11, so a power cycle is required anyway
1753 /* Wait for at least 1 ms according to spec */
1757 * Failure to switch is indicated by the card holding
1760 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1765 pr_debug("%s: Signal voltage switch failed, "
1766 "power cycling card\n", mmc_hostname(host
));
1767 mmc_power_cycle(host
, ocr
);
1774 * Select timing parameters for host.
1776 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1778 host
->ios
.timing
= timing
;
1783 * Select appropriate driver type for host.
1785 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1787 host
->ios
.drv_type
= drv_type
;
1791 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1792 int card_drv_type
, int *drv_type
)
1794 struct mmc_host
*host
= card
->host
;
1795 int host_drv_type
= SD_DRIVER_TYPE_B
;
1799 if (!host
->ops
->select_drive_strength
)
1802 /* Use SD definition of driver strength for hosts */
1803 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1804 host_drv_type
|= SD_DRIVER_TYPE_A
;
1806 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1807 host_drv_type
|= SD_DRIVER_TYPE_C
;
1809 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1810 host_drv_type
|= SD_DRIVER_TYPE_D
;
1813 * The drive strength that the hardware can support
1814 * depends on the board design. Pass the appropriate
1815 * information and let the hardware specific code
1816 * return what is possible given the options
1818 return host
->ops
->select_drive_strength(card
, max_dtr
,
1825 * Apply power to the MMC stack. This is a two-stage process.
1826 * First, we enable power to the card without the clock running.
1827 * We then wait a bit for the power to stabilise. Finally,
1828 * enable the bus drivers and clock to the card.
1830 * We must _NOT_ enable the clock prior to power stablising.
1832 * If a host does all the power sequencing itself, ignore the
1833 * initial MMC_POWER_UP stage.
1835 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1837 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1840 mmc_pwrseq_pre_power_on(host
);
1842 host
->ios
.vdd
= fls(ocr
) - 1;
1843 host
->ios
.power_mode
= MMC_POWER_UP
;
1844 /* Set initial state and call mmc_set_ios */
1845 mmc_set_initial_state(host
);
1847 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1848 if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
))
1849 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1850 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1851 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1852 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
))
1853 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1856 * This delay should be sufficient to allow the power supply
1857 * to reach the minimum voltage.
1861 mmc_pwrseq_post_power_on(host
);
1863 host
->ios
.clock
= host
->f_init
;
1865 host
->ios
.power_mode
= MMC_POWER_ON
;
1869 * This delay must be at least 74 clock sizes, or 1 ms, or the
1870 * time required to reach a stable voltage.
1875 void mmc_power_off(struct mmc_host
*host
)
1877 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1880 mmc_pwrseq_power_off(host
);
1882 host
->ios
.clock
= 0;
1885 host
->ios
.power_mode
= MMC_POWER_OFF
;
1886 /* Set initial state and call mmc_set_ios */
1887 mmc_set_initial_state(host
);
1890 * Some configurations, such as the 802.11 SDIO card in the OLPC
1891 * XO-1.5, require a short delay after poweroff before the card
1892 * can be successfully turned on again.
1897 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1899 mmc_power_off(host
);
1900 /* Wait at least 1 ms according to SD spec */
1902 mmc_power_up(host
, ocr
);
1906 * Cleanup when the last reference to the bus operator is dropped.
1908 static void __mmc_release_bus(struct mmc_host
*host
)
1910 WARN_ON(!host
->bus_dead
);
1912 host
->bus_ops
= NULL
;
1916 * Increase reference count of bus operator
1918 static inline void mmc_bus_get(struct mmc_host
*host
)
1920 unsigned long flags
;
1922 spin_lock_irqsave(&host
->lock
, flags
);
1924 spin_unlock_irqrestore(&host
->lock
, flags
);
1928 * Decrease reference count of bus operator and free it if
1929 * it is the last reference.
1931 static inline void mmc_bus_put(struct mmc_host
*host
)
1933 unsigned long flags
;
1935 spin_lock_irqsave(&host
->lock
, flags
);
1937 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1938 __mmc_release_bus(host
);
1939 spin_unlock_irqrestore(&host
->lock
, flags
);
1943 * Assign a mmc bus handler to a host. Only one bus handler may control a
1944 * host at any given time.
1946 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1948 unsigned long flags
;
1950 WARN_ON(!host
->claimed
);
1952 spin_lock_irqsave(&host
->lock
, flags
);
1954 WARN_ON(host
->bus_ops
);
1955 WARN_ON(host
->bus_refs
);
1957 host
->bus_ops
= ops
;
1961 spin_unlock_irqrestore(&host
->lock
, flags
);
1965 * Remove the current bus handler from a host.
1967 void mmc_detach_bus(struct mmc_host
*host
)
1969 unsigned long flags
;
1971 WARN_ON(!host
->claimed
);
1972 WARN_ON(!host
->bus_ops
);
1974 spin_lock_irqsave(&host
->lock
, flags
);
1978 spin_unlock_irqrestore(&host
->lock
, flags
);
1983 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1987 * If the device is configured as wakeup, we prevent a new sleep for
1988 * 5 s to give provision for user space to consume the event.
1990 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1991 device_can_wakeup(mmc_dev(host
)))
1992 pm_wakeup_event(mmc_dev(host
), 5000);
1994 host
->detect_change
= 1;
1995 mmc_schedule_delayed_work(&host
->detect
, delay
);
1999 * mmc_detect_change - process change of state on a MMC socket
2000 * @host: host which changed state.
2001 * @delay: optional delay to wait before detection (jiffies)
2003 * MMC drivers should call this when they detect a card has been
2004 * inserted or removed. The MMC layer will confirm that any
2005 * present card is still functional, and initialize any newly
2008 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
2010 _mmc_detect_change(host
, delay
, true);
2012 EXPORT_SYMBOL(mmc_detect_change
);
2014 void mmc_init_erase(struct mmc_card
*card
)
2018 if (is_power_of_2(card
->erase_size
))
2019 card
->erase_shift
= ffs(card
->erase_size
) - 1;
2021 card
->erase_shift
= 0;
2024 * It is possible to erase an arbitrarily large area of an SD or MMC
2025 * card. That is not desirable because it can take a long time
2026 * (minutes) potentially delaying more important I/O, and also the
2027 * timeout calculations become increasingly hugely over-estimated.
2028 * Consequently, 'pref_erase' is defined as a guide to limit erases
2029 * to that size and alignment.
2031 * For SD cards that define Allocation Unit size, limit erases to one
2032 * Allocation Unit at a time.
2033 * For MMC, have a stab at ai good value and for modern cards it will
2034 * end up being 4MiB. Note that if the value is too small, it can end
2035 * up taking longer to erase. Also note, erase_size is already set to
2036 * High Capacity Erase Size if available when this function is called.
2038 if (mmc_card_sd(card
) && card
->ssr
.au
) {
2039 card
->pref_erase
= card
->ssr
.au
;
2040 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
2041 } else if (card
->erase_size
) {
2042 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
2044 card
->pref_erase
= 512 * 1024 / 512;
2046 card
->pref_erase
= 1024 * 1024 / 512;
2048 card
->pref_erase
= 2 * 1024 * 1024 / 512;
2050 card
->pref_erase
= 4 * 1024 * 1024 / 512;
2051 if (card
->pref_erase
< card
->erase_size
)
2052 card
->pref_erase
= card
->erase_size
;
2054 sz
= card
->pref_erase
% card
->erase_size
;
2056 card
->pref_erase
+= card
->erase_size
- sz
;
2059 card
->pref_erase
= 0;
2062 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
2063 unsigned int arg
, unsigned int qty
)
2065 unsigned int erase_timeout
;
2067 if (arg
== MMC_DISCARD_ARG
||
2068 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
2069 erase_timeout
= card
->ext_csd
.trim_timeout
;
2070 } else if (card
->ext_csd
.erase_group_def
& 1) {
2071 /* High Capacity Erase Group Size uses HC timeouts */
2072 if (arg
== MMC_TRIM_ARG
)
2073 erase_timeout
= card
->ext_csd
.trim_timeout
;
2075 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
2077 /* CSD Erase Group Size uses write timeout */
2078 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
2079 unsigned int timeout_clks
= card
->csd
.taac_clks
* mult
;
2080 unsigned int timeout_us
;
2082 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
2083 if (card
->csd
.taac_ns
< 1000000)
2084 timeout_us
= (card
->csd
.taac_ns
* mult
) / 1000;
2086 timeout_us
= (card
->csd
.taac_ns
/ 1000) * mult
;
2089 * ios.clock is only a target. The real clock rate might be
2090 * less but not that much less, so fudge it by multiplying by 2.
2093 timeout_us
+= (timeout_clks
* 1000) /
2094 (card
->host
->ios
.clock
/ 1000);
2096 erase_timeout
= timeout_us
/ 1000;
2099 * Theoretically, the calculation could underflow so round up
2100 * to 1ms in that case.
2106 /* Multiplier for secure operations */
2107 if (arg
& MMC_SECURE_ARGS
) {
2108 if (arg
== MMC_SECURE_ERASE_ARG
)
2109 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
2111 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
2114 erase_timeout
*= qty
;
2117 * Ensure at least a 1 second timeout for SPI as per
2118 * 'mmc_set_data_timeout()'
2120 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
2121 erase_timeout
= 1000;
2123 return erase_timeout
;
2126 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
2130 unsigned int erase_timeout
;
2132 if (card
->ssr
.erase_timeout
) {
2133 /* Erase timeout specified in SD Status Register (SSR) */
2134 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
2135 card
->ssr
.erase_offset
;
2138 * Erase timeout not specified in SD Status Register (SSR) so
2139 * use 250ms per write block.
2141 erase_timeout
= 250 * qty
;
2144 /* Must not be less than 1 second */
2145 if (erase_timeout
< 1000)
2146 erase_timeout
= 1000;
2148 return erase_timeout
;
2151 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
2155 if (mmc_card_sd(card
))
2156 return mmc_sd_erase_timeout(card
, arg
, qty
);
2158 return mmc_mmc_erase_timeout(card
, arg
, qty
);
2161 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
2162 unsigned int to
, unsigned int arg
)
2164 struct mmc_command cmd
= {};
2165 unsigned int qty
= 0, busy_timeout
= 0;
2166 bool use_r1b_resp
= false;
2167 unsigned long timeout
;
2170 mmc_retune_hold(card
->host
);
2173 * qty is used to calculate the erase timeout which depends on how many
2174 * erase groups (or allocation units in SD terminology) are affected.
2175 * We count erasing part of an erase group as one erase group.
2176 * For SD, the allocation units are always a power of 2. For MMC, the
2177 * erase group size is almost certainly also power of 2, but it does not
2178 * seem to insist on that in the JEDEC standard, so we fall back to
2179 * division in that case. SD may not specify an allocation unit size,
2180 * in which case the timeout is based on the number of write blocks.
2182 * Note that the timeout for secure trim 2 will only be correct if the
2183 * number of erase groups specified is the same as the total of all
2184 * preceding secure trim 1 commands. Since the power may have been
2185 * lost since the secure trim 1 commands occurred, it is generally
2186 * impossible to calculate the secure trim 2 timeout correctly.
2188 if (card
->erase_shift
)
2189 qty
+= ((to
>> card
->erase_shift
) -
2190 (from
>> card
->erase_shift
)) + 1;
2191 else if (mmc_card_sd(card
))
2192 qty
+= to
- from
+ 1;
2194 qty
+= ((to
/ card
->erase_size
) -
2195 (from
/ card
->erase_size
)) + 1;
2197 if (!mmc_card_blockaddr(card
)) {
2202 if (mmc_card_sd(card
))
2203 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
2205 cmd
.opcode
= MMC_ERASE_GROUP_START
;
2207 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2208 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2210 pr_err("mmc_erase: group start error %d, "
2211 "status %#x\n", err
, cmd
.resp
[0]);
2216 memset(&cmd
, 0, sizeof(struct mmc_command
));
2217 if (mmc_card_sd(card
))
2218 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
2220 cmd
.opcode
= MMC_ERASE_GROUP_END
;
2222 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2223 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2225 pr_err("mmc_erase: group end error %d, status %#x\n",
2231 memset(&cmd
, 0, sizeof(struct mmc_command
));
2232 cmd
.opcode
= MMC_ERASE
;
2234 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
2236 * If the host controller supports busy signalling and the timeout for
2237 * the erase operation does not exceed the max_busy_timeout, we should
2238 * use R1B response. Or we need to prevent the host from doing hw busy
2239 * detection, which is done by converting to a R1 response instead.
2241 if (card
->host
->max_busy_timeout
&&
2242 busy_timeout
> card
->host
->max_busy_timeout
) {
2243 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2245 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
2246 cmd
.busy_timeout
= busy_timeout
;
2247 use_r1b_resp
= true;
2250 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2252 pr_err("mmc_erase: erase error %d, status %#x\n",
2258 if (mmc_host_is_spi(card
->host
))
2262 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2265 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
2268 timeout
= jiffies
+ msecs_to_jiffies(busy_timeout
);
2270 memset(&cmd
, 0, sizeof(struct mmc_command
));
2271 cmd
.opcode
= MMC_SEND_STATUS
;
2272 cmd
.arg
= card
->rca
<< 16;
2273 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
2274 /* Do not retry else we can't see errors */
2275 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2276 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
2277 pr_err("error %d requesting status %#x\n",
2283 /* Timeout if the device never becomes ready for data and
2284 * never leaves the program state.
2286 if (time_after(jiffies
, timeout
)) {
2287 pr_err("%s: Card stuck in programming state! %s\n",
2288 mmc_hostname(card
->host
), __func__
);
2293 } while (!(cmd
.resp
[0] & R1_READY_FOR_DATA
) ||
2294 (R1_CURRENT_STATE(cmd
.resp
[0]) == R1_STATE_PRG
));
2296 mmc_retune_release(card
->host
);
2300 static unsigned int mmc_align_erase_size(struct mmc_card
*card
,
2305 unsigned int from_new
= *from
, nr_new
= nr
, rem
;
2308 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2309 * to align the erase size efficiently.
2311 if (is_power_of_2(card
->erase_size
)) {
2312 unsigned int temp
= from_new
;
2314 from_new
= round_up(temp
, card
->erase_size
);
2315 rem
= from_new
- temp
;
2322 nr_new
= round_down(nr_new
, card
->erase_size
);
2324 rem
= from_new
% card
->erase_size
;
2326 rem
= card
->erase_size
- rem
;
2334 rem
= nr_new
% card
->erase_size
;
2342 *to
= from_new
+ nr_new
;
2349 * mmc_erase - erase sectors.
2350 * @card: card to erase
2351 * @from: first sector to erase
2352 * @nr: number of sectors to erase
2353 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2355 * Caller must claim host before calling this function.
2357 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
2360 unsigned int rem
, to
= from
+ nr
;
2363 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
2364 !(card
->csd
.cmdclass
& CCC_ERASE
))
2367 if (!card
->erase_size
)
2370 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
2373 if ((arg
& MMC_SECURE_ARGS
) &&
2374 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
2377 if ((arg
& MMC_TRIM_ARGS
) &&
2378 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
2381 if (arg
== MMC_SECURE_ERASE_ARG
) {
2382 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2386 if (arg
== MMC_ERASE_ARG
)
2387 nr
= mmc_align_erase_size(card
, &from
, &to
, nr
);
2395 /* 'from' and 'to' are inclusive */
2399 * Special case where only one erase-group fits in the timeout budget:
2400 * If the region crosses an erase-group boundary on this particular
2401 * case, we will be trimming more than one erase-group which, does not
2402 * fit in the timeout budget of the controller, so we need to split it
2403 * and call mmc_do_erase() twice if necessary. This special case is
2404 * identified by the card->eg_boundary flag.
2406 rem
= card
->erase_size
- (from
% card
->erase_size
);
2407 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
2408 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
2410 if ((err
) || (to
<= from
))
2414 return mmc_do_erase(card
, from
, to
, arg
);
2416 EXPORT_SYMBOL(mmc_erase
);
2418 int mmc_can_erase(struct mmc_card
*card
)
2420 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
2421 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
2425 EXPORT_SYMBOL(mmc_can_erase
);
2427 int mmc_can_trim(struct mmc_card
*card
)
2429 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
2430 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
2434 EXPORT_SYMBOL(mmc_can_trim
);
2436 int mmc_can_discard(struct mmc_card
*card
)
2439 * As there's no way to detect the discard support bit at v4.5
2440 * use the s/w feature support filed.
2442 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2446 EXPORT_SYMBOL(mmc_can_discard
);
2448 int mmc_can_sanitize(struct mmc_card
*card
)
2450 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2452 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2456 EXPORT_SYMBOL(mmc_can_sanitize
);
2458 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2460 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
2461 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2465 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2467 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2470 if (!card
->erase_size
)
2472 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2476 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2478 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2481 struct mmc_host
*host
= card
->host
;
2482 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
2483 unsigned int last_timeout
= 0;
2484 unsigned int max_busy_timeout
= host
->max_busy_timeout
?
2485 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
;
2487 if (card
->erase_shift
) {
2488 max_qty
= UINT_MAX
>> card
->erase_shift
;
2489 min_qty
= card
->pref_erase
>> card
->erase_shift
;
2490 } else if (mmc_card_sd(card
)) {
2492 min_qty
= card
->pref_erase
;
2494 max_qty
= UINT_MAX
/ card
->erase_size
;
2495 min_qty
= card
->pref_erase
/ card
->erase_size
;
2499 * We should not only use 'host->max_busy_timeout' as the limitation
2500 * when deciding the max discard sectors. We should set a balance value
2501 * to improve the erase speed, and it can not get too long timeout at
2504 * Here we set 'card->pref_erase' as the minimal discard sectors no
2505 * matter what size of 'host->max_busy_timeout', but if the
2506 * 'host->max_busy_timeout' is large enough for more discard sectors,
2507 * then we can continue to increase the max discard sectors until we
2508 * get a balance value. In cases when the 'host->max_busy_timeout'
2509 * isn't specified, use the default max erase timeout.
2513 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2514 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2516 if (qty
+ x
> min_qty
&& timeout
> max_busy_timeout
)
2519 if (timeout
< last_timeout
)
2521 last_timeout
= timeout
;
2531 * When specifying a sector range to trim, chances are we might cross
2532 * an erase-group boundary even if the amount of sectors is less than
2534 * If we can only fit one erase-group in the controller timeout budget,
2535 * we have to care that erase-group boundaries are not crossed by a
2536 * single trim operation. We flag that special case with "eg_boundary".
2537 * In all other cases we can just decrement qty and pretend that we
2538 * always touch (qty + 1) erase-groups as a simple optimization.
2541 card
->eg_boundary
= 1;
2545 /* Convert qty to sectors */
2546 if (card
->erase_shift
)
2547 max_discard
= qty
<< card
->erase_shift
;
2548 else if (mmc_card_sd(card
))
2549 max_discard
= qty
+ 1;
2551 max_discard
= qty
* card
->erase_size
;
2556 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2558 struct mmc_host
*host
= card
->host
;
2559 unsigned int max_discard
, max_trim
;
2562 * Without erase_group_def set, MMC erase timeout depends on clock
2563 * frequence which can change. In that case, the best choice is
2564 * just the preferred erase size.
2566 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2567 return card
->pref_erase
;
2569 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2570 if (mmc_can_trim(card
)) {
2571 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2572 if (max_trim
< max_discard
)
2573 max_discard
= max_trim
;
2574 } else if (max_discard
< card
->erase_size
) {
2577 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2578 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
?
2579 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
);
2582 EXPORT_SYMBOL(mmc_calc_max_discard
);
2584 bool mmc_card_is_blockaddr(struct mmc_card
*card
)
2586 return card
? mmc_card_blockaddr(card
) : false;
2588 EXPORT_SYMBOL(mmc_card_is_blockaddr
);
2590 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2592 struct mmc_command cmd
= {};
2594 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
) ||
2595 mmc_card_hs400(card
) || mmc_card_hs400es(card
))
2598 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2600 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2601 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2603 EXPORT_SYMBOL(mmc_set_blocklen
);
2605 int mmc_set_blockcount(struct mmc_card
*card
, unsigned int blockcount
,
2608 struct mmc_command cmd
= {};
2610 cmd
.opcode
= MMC_SET_BLOCK_COUNT
;
2611 cmd
.arg
= blockcount
& 0x0000FFFF;
2614 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2615 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2617 EXPORT_SYMBOL(mmc_set_blockcount
);
2619 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2621 mmc_pwrseq_reset(host
);
2623 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2625 host
->ops
->hw_reset(host
);
2628 int mmc_hw_reset(struct mmc_host
*host
)
2636 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->reset
) {
2641 ret
= host
->bus_ops
->reset(host
);
2645 pr_warn("%s: tried to reset card, got error %d\n",
2646 mmc_hostname(host
), ret
);
2650 EXPORT_SYMBOL(mmc_hw_reset
);
2652 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2654 host
->f_init
= freq
;
2656 pr_debug("%s: %s: trying to init card at %u Hz\n",
2657 mmc_hostname(host
), __func__
, host
->f_init
);
2659 mmc_power_up(host
, host
->ocr_avail
);
2662 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2663 * do a hardware reset if possible.
2665 mmc_hw_reset_for_init(host
);
2668 * sdio_reset sends CMD52 to reset card. Since we do not know
2669 * if the card is being re-initialized, just send it. CMD52
2670 * should be ignored by SD/eMMC cards.
2671 * Skip it if we already know that we do not support SDIO commands
2673 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2678 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2679 mmc_send_if_cond(host
, host
->ocr_avail
);
2681 /* Order's important: probe SDIO, then SD, then MMC */
2682 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2683 if (!mmc_attach_sdio(host
))
2686 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2687 if (!mmc_attach_sd(host
))
2690 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2691 if (!mmc_attach_mmc(host
))
2694 mmc_power_off(host
);
2698 int _mmc_detect_card_removed(struct mmc_host
*host
)
2702 if (!host
->card
|| mmc_card_removed(host
->card
))
2705 ret
= host
->bus_ops
->alive(host
);
2708 * Card detect status and alive check may be out of sync if card is
2709 * removed slowly, when card detect switch changes while card/slot
2710 * pads are still contacted in hardware (refer to "SD Card Mechanical
2711 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2712 * detect work 200ms later for this case.
2714 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2715 mmc_detect_change(host
, msecs_to_jiffies(200));
2716 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2720 mmc_card_set_removed(host
->card
);
2721 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2727 int mmc_detect_card_removed(struct mmc_host
*host
)
2729 struct mmc_card
*card
= host
->card
;
2732 WARN_ON(!host
->claimed
);
2737 if (!mmc_card_is_removable(host
))
2740 ret
= mmc_card_removed(card
);
2742 * The card will be considered unchanged unless we have been asked to
2743 * detect a change or host requires polling to provide card detection.
2745 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2748 host
->detect_change
= 0;
2750 ret
= _mmc_detect_card_removed(host
);
2751 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2753 * Schedule a detect work as soon as possible to let a
2754 * rescan handle the card removal.
2756 cancel_delayed_work(&host
->detect
);
2757 _mmc_detect_change(host
, 0, false);
2763 EXPORT_SYMBOL(mmc_detect_card_removed
);
2765 void mmc_rescan(struct work_struct
*work
)
2767 struct mmc_host
*host
=
2768 container_of(work
, struct mmc_host
, detect
.work
);
2771 if (host
->rescan_disable
)
2774 /* If there is a non-removable card registered, only scan once */
2775 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2777 host
->rescan_entered
= 1;
2779 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2780 mmc_claim_host(host
);
2781 host
->ops
->card_event(host
);
2782 mmc_release_host(host
);
2783 host
->trigger_card_event
= false;
2789 * if there is a _removable_ card registered, check whether it is
2792 if (host
->bus_ops
&& !host
->bus_dead
&& mmc_card_is_removable(host
))
2793 host
->bus_ops
->detect(host
);
2795 host
->detect_change
= 0;
2798 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2799 * the card is no longer present.
2804 /* if there still is a card present, stop here */
2805 if (host
->bus_ops
!= NULL
) {
2811 * Only we can add a new handler, so it's safe to
2812 * release the lock here.
2816 mmc_claim_host(host
);
2817 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2818 host
->ops
->get_cd(host
) == 0) {
2819 mmc_power_off(host
);
2820 mmc_release_host(host
);
2824 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2825 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2827 if (freqs
[i
] <= host
->f_min
)
2830 mmc_release_host(host
);
2833 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2834 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2837 void mmc_start_host(struct mmc_host
*host
)
2839 host
->f_init
= max(freqs
[0], host
->f_min
);
2840 host
->rescan_disable
= 0;
2841 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2843 if (!(host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)) {
2844 mmc_claim_host(host
);
2845 mmc_power_up(host
, host
->ocr_avail
);
2846 mmc_release_host(host
);
2849 mmc_gpiod_request_cd_irq(host
);
2850 _mmc_detect_change(host
, 0, false);
2853 void mmc_stop_host(struct mmc_host
*host
)
2855 if (host
->slot
.cd_irq
>= 0) {
2856 if (host
->slot
.cd_wake_enabled
)
2857 disable_irq_wake(host
->slot
.cd_irq
);
2858 disable_irq(host
->slot
.cd_irq
);
2861 host
->rescan_disable
= 1;
2862 cancel_delayed_work_sync(&host
->detect
);
2864 /* clear pm flags now and let card drivers set them as needed */
2868 if (host
->bus_ops
&& !host
->bus_dead
) {
2869 /* Calling bus_ops->remove() with a claimed host can deadlock */
2870 host
->bus_ops
->remove(host
);
2871 mmc_claim_host(host
);
2872 mmc_detach_bus(host
);
2873 mmc_power_off(host
);
2874 mmc_release_host(host
);
2880 mmc_claim_host(host
);
2881 mmc_power_off(host
);
2882 mmc_release_host(host
);
2885 int mmc_power_save_host(struct mmc_host
*host
)
2889 pr_debug("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
2893 if (!host
->bus_ops
|| host
->bus_dead
) {
2898 if (host
->bus_ops
->power_save
)
2899 ret
= host
->bus_ops
->power_save(host
);
2903 mmc_power_off(host
);
2907 EXPORT_SYMBOL(mmc_power_save_host
);
2909 int mmc_power_restore_host(struct mmc_host
*host
)
2913 pr_debug("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
2917 if (!host
->bus_ops
|| host
->bus_dead
) {
2922 mmc_power_up(host
, host
->card
->ocr
);
2923 ret
= host
->bus_ops
->power_restore(host
);
2929 EXPORT_SYMBOL(mmc_power_restore_host
);
2931 #ifdef CONFIG_PM_SLEEP
2932 /* Do the card removal on suspend if card is assumed removeable
2933 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2936 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2937 unsigned long mode
, void *unused
)
2939 struct mmc_host
*host
= container_of(
2940 notify_block
, struct mmc_host
, pm_notify
);
2941 unsigned long flags
;
2945 case PM_HIBERNATION_PREPARE
:
2946 case PM_SUSPEND_PREPARE
:
2947 case PM_RESTORE_PREPARE
:
2948 spin_lock_irqsave(&host
->lock
, flags
);
2949 host
->rescan_disable
= 1;
2950 spin_unlock_irqrestore(&host
->lock
, flags
);
2951 cancel_delayed_work_sync(&host
->detect
);
2956 /* Validate prerequisites for suspend */
2957 if (host
->bus_ops
->pre_suspend
)
2958 err
= host
->bus_ops
->pre_suspend(host
);
2962 /* Calling bus_ops->remove() with a claimed host can deadlock */
2963 host
->bus_ops
->remove(host
);
2964 mmc_claim_host(host
);
2965 mmc_detach_bus(host
);
2966 mmc_power_off(host
);
2967 mmc_release_host(host
);
2971 case PM_POST_SUSPEND
:
2972 case PM_POST_HIBERNATION
:
2973 case PM_POST_RESTORE
:
2975 spin_lock_irqsave(&host
->lock
, flags
);
2976 host
->rescan_disable
= 0;
2977 spin_unlock_irqrestore(&host
->lock
, flags
);
2978 _mmc_detect_change(host
, 0, false);
2985 void mmc_register_pm_notifier(struct mmc_host
*host
)
2987 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2988 register_pm_notifier(&host
->pm_notify
);
2991 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2993 unregister_pm_notifier(&host
->pm_notify
);
2998 * mmc_init_context_info() - init synchronization context
3001 * Init struct context_info needed to implement asynchronous
3002 * request mechanism, used by mmc core, host driver and mmc requests
3005 void mmc_init_context_info(struct mmc_host
*host
)
3007 host
->context_info
.is_new_req
= false;
3008 host
->context_info
.is_done_rcv
= false;
3009 host
->context_info
.is_waiting_last_req
= false;
3010 init_waitqueue_head(&host
->context_info
.wait
);
3013 static int __init
mmc_init(void)
3017 ret
= mmc_register_bus();
3021 ret
= mmc_register_host_class();
3023 goto unregister_bus
;
3025 ret
= sdio_register_bus();
3027 goto unregister_host_class
;
3031 unregister_host_class
:
3032 mmc_unregister_host_class();
3034 mmc_unregister_bus();
3038 static void __exit
mmc_exit(void)
3040 sdio_unregister_bus();
3041 mmc_unregister_host_class();
3042 mmc_unregister_bus();
3045 subsys_initcall(mmc_init
);
3046 module_exit(mmc_exit
);
3048 MODULE_LICENSE("GPL");