Merge tag 'riscv-for-linus-4.15-rc2_cleanups' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / drivers / mmc / core / core.c
blob1f0f44f4dd5f3d6ba24c724f3c870064b0bc1560
1 /*
2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
31 #include <linux/of.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
42 #include "core.h"
43 #include "card.h"
44 #include "bus.h"
45 #include "host.h"
46 #include "sdio_bus.h"
47 #include "pwrseq.h"
49 #include "mmc_ops.h"
50 #include "sd_ops.h"
51 #include "sdio_ops.h"
53 /* If the device is not responding */
54 #define MMC_CORE_TIMEOUT_MS (10 * 60 * 1000) /* 10 minute timeout */
56 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
57 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
59 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
62 * Enabling software CRCs on the data blocks can be a significant (30%)
63 * performance cost, and for other reasons may not always be desired.
64 * So we allow it it to be disabled.
66 bool use_spi_crc = 1;
67 module_param(use_spi_crc, bool, 0);
69 static int mmc_schedule_delayed_work(struct delayed_work *work,
70 unsigned long delay)
73 * We use the system_freezable_wq, because of two reasons.
74 * First, it allows several works (not the same work item) to be
75 * executed simultaneously. Second, the queue becomes frozen when
76 * userspace becomes frozen during system PM.
78 return queue_delayed_work(system_freezable_wq, work, delay);
81 #ifdef CONFIG_FAIL_MMC_REQUEST
84 * Internal function. Inject random data errors.
85 * If mmc_data is NULL no errors are injected.
87 static void mmc_should_fail_request(struct mmc_host *host,
88 struct mmc_request *mrq)
90 struct mmc_command *cmd = mrq->cmd;
91 struct mmc_data *data = mrq->data;
92 static const int data_errors[] = {
93 -ETIMEDOUT,
94 -EILSEQ,
95 -EIO,
98 if (!data)
99 return;
101 if (cmd->error || data->error ||
102 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
103 return;
105 data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
106 data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
109 #else /* CONFIG_FAIL_MMC_REQUEST */
111 static inline void mmc_should_fail_request(struct mmc_host *host,
112 struct mmc_request *mrq)
116 #endif /* CONFIG_FAIL_MMC_REQUEST */
118 static inline void mmc_complete_cmd(struct mmc_request *mrq)
120 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
121 complete_all(&mrq->cmd_completion);
124 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
126 if (!mrq->cap_cmd_during_tfr)
127 return;
129 mmc_complete_cmd(mrq);
131 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
132 mmc_hostname(host), mrq->cmd->opcode);
134 EXPORT_SYMBOL(mmc_command_done);
137 * mmc_request_done - finish processing an MMC request
138 * @host: MMC host which completed request
139 * @mrq: MMC request which request
141 * MMC drivers should call this function when they have completed
142 * their processing of a request.
144 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
146 struct mmc_command *cmd = mrq->cmd;
147 int err = cmd->error;
149 /* Flag re-tuning needed on CRC errors */
150 if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
151 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
152 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
153 (mrq->data && mrq->data->error == -EILSEQ) ||
154 (mrq->stop && mrq->stop->error == -EILSEQ)))
155 mmc_retune_needed(host);
157 if (err && cmd->retries && mmc_host_is_spi(host)) {
158 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
159 cmd->retries = 0;
162 if (host->ongoing_mrq == mrq)
163 host->ongoing_mrq = NULL;
165 mmc_complete_cmd(mrq);
167 trace_mmc_request_done(host, mrq);
170 * We list various conditions for the command to be considered
171 * properly done:
173 * - There was no error, OK fine then
174 * - We are not doing some kind of retry
175 * - The card was removed (...so just complete everything no matter
176 * if there are errors or retries)
178 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
179 mmc_should_fail_request(host, mrq);
181 if (!host->ongoing_mrq)
182 led_trigger_event(host->led, LED_OFF);
184 if (mrq->sbc) {
185 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
186 mmc_hostname(host), mrq->sbc->opcode,
187 mrq->sbc->error,
188 mrq->sbc->resp[0], mrq->sbc->resp[1],
189 mrq->sbc->resp[2], mrq->sbc->resp[3]);
192 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
193 mmc_hostname(host), cmd->opcode, err,
194 cmd->resp[0], cmd->resp[1],
195 cmd->resp[2], cmd->resp[3]);
197 if (mrq->data) {
198 pr_debug("%s: %d bytes transferred: %d\n",
199 mmc_hostname(host),
200 mrq->data->bytes_xfered, mrq->data->error);
203 if (mrq->stop) {
204 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
205 mmc_hostname(host), mrq->stop->opcode,
206 mrq->stop->error,
207 mrq->stop->resp[0], mrq->stop->resp[1],
208 mrq->stop->resp[2], mrq->stop->resp[3]);
212 * Request starter must handle retries - see
213 * mmc_wait_for_req_done().
215 if (mrq->done)
216 mrq->done(mrq);
219 EXPORT_SYMBOL(mmc_request_done);
221 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
223 int err;
225 /* Assumes host controller has been runtime resumed by mmc_claim_host */
226 err = mmc_retune(host);
227 if (err) {
228 mrq->cmd->error = err;
229 mmc_request_done(host, mrq);
230 return;
234 * For sdio rw commands we must wait for card busy otherwise some
235 * sdio devices won't work properly.
236 * And bypass I/O abort, reset and bus suspend operations.
238 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
239 host->ops->card_busy) {
240 int tries = 500; /* Wait aprox 500ms at maximum */
242 while (host->ops->card_busy(host) && --tries)
243 mmc_delay(1);
245 if (tries == 0) {
246 mrq->cmd->error = -EBUSY;
247 mmc_request_done(host, mrq);
248 return;
252 if (mrq->cap_cmd_during_tfr) {
253 host->ongoing_mrq = mrq;
255 * Retry path could come through here without having waiting on
256 * cmd_completion, so ensure it is reinitialised.
258 reinit_completion(&mrq->cmd_completion);
261 trace_mmc_request_start(host, mrq);
263 if (host->cqe_on)
264 host->cqe_ops->cqe_off(host);
266 host->ops->request(host, mrq);
269 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
270 bool cqe)
272 if (mrq->sbc) {
273 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
274 mmc_hostname(host), mrq->sbc->opcode,
275 mrq->sbc->arg, mrq->sbc->flags);
278 if (mrq->cmd) {
279 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
280 mmc_hostname(host), cqe ? "CQE direct " : "",
281 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
282 } else if (cqe) {
283 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
284 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
287 if (mrq->data) {
288 pr_debug("%s: blksz %d blocks %d flags %08x "
289 "tsac %d ms nsac %d\n",
290 mmc_hostname(host), mrq->data->blksz,
291 mrq->data->blocks, mrq->data->flags,
292 mrq->data->timeout_ns / 1000000,
293 mrq->data->timeout_clks);
296 if (mrq->stop) {
297 pr_debug("%s: CMD%u arg %08x flags %08x\n",
298 mmc_hostname(host), mrq->stop->opcode,
299 mrq->stop->arg, mrq->stop->flags);
303 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
305 unsigned int i, sz = 0;
306 struct scatterlist *sg;
308 if (mrq->cmd) {
309 mrq->cmd->error = 0;
310 mrq->cmd->mrq = mrq;
311 mrq->cmd->data = mrq->data;
313 if (mrq->sbc) {
314 mrq->sbc->error = 0;
315 mrq->sbc->mrq = mrq;
317 if (mrq->data) {
318 if (mrq->data->blksz > host->max_blk_size ||
319 mrq->data->blocks > host->max_blk_count ||
320 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
321 return -EINVAL;
323 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
324 sz += sg->length;
325 if (sz != mrq->data->blocks * mrq->data->blksz)
326 return -EINVAL;
328 mrq->data->error = 0;
329 mrq->data->mrq = mrq;
330 if (mrq->stop) {
331 mrq->data->stop = mrq->stop;
332 mrq->stop->error = 0;
333 mrq->stop->mrq = mrq;
337 return 0;
340 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
342 int err;
344 mmc_retune_hold(host);
346 if (mmc_card_removed(host->card))
347 return -ENOMEDIUM;
349 mmc_mrq_pr_debug(host, mrq, false);
351 WARN_ON(!host->claimed);
353 err = mmc_mrq_prep(host, mrq);
354 if (err)
355 return err;
357 led_trigger_event(host->led, LED_FULL);
358 __mmc_start_request(host, mrq);
360 return 0;
362 EXPORT_SYMBOL(mmc_start_request);
365 * mmc_wait_data_done() - done callback for data request
366 * @mrq: done data request
368 * Wakes up mmc context, passed as a callback to host controller driver
370 static void mmc_wait_data_done(struct mmc_request *mrq)
372 struct mmc_context_info *context_info = &mrq->host->context_info;
374 context_info->is_done_rcv = true;
375 wake_up_interruptible(&context_info->wait);
378 static void mmc_wait_done(struct mmc_request *mrq)
380 complete(&mrq->completion);
383 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
385 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
388 * If there is an ongoing transfer, wait for the command line to become
389 * available.
391 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
392 wait_for_completion(&ongoing_mrq->cmd_completion);
396 *__mmc_start_data_req() - starts data request
397 * @host: MMC host to start the request
398 * @mrq: data request to start
400 * Sets the done callback to be called when request is completed by the card.
401 * Starts data mmc request execution
402 * If an ongoing transfer is already in progress, wait for the command line
403 * to become available before sending another command.
405 static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
407 int err;
409 mmc_wait_ongoing_tfr_cmd(host);
411 mrq->done = mmc_wait_data_done;
412 mrq->host = host;
414 init_completion(&mrq->cmd_completion);
416 err = mmc_start_request(host, mrq);
417 if (err) {
418 mrq->cmd->error = err;
419 mmc_complete_cmd(mrq);
420 mmc_wait_data_done(mrq);
423 return err;
426 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
428 int err;
430 mmc_wait_ongoing_tfr_cmd(host);
432 init_completion(&mrq->completion);
433 mrq->done = mmc_wait_done;
435 init_completion(&mrq->cmd_completion);
437 err = mmc_start_request(host, mrq);
438 if (err) {
439 mrq->cmd->error = err;
440 mmc_complete_cmd(mrq);
441 complete(&mrq->completion);
444 return err;
447 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
449 struct mmc_command *cmd;
451 while (1) {
452 wait_for_completion(&mrq->completion);
454 cmd = mrq->cmd;
457 * If host has timed out waiting for the sanitize
458 * to complete, card might be still in programming state
459 * so let's try to bring the card out of programming
460 * state.
462 if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
463 if (!mmc_interrupt_hpi(host->card)) {
464 pr_warn("%s: %s: Interrupted sanitize\n",
465 mmc_hostname(host), __func__);
466 cmd->error = 0;
467 break;
468 } else {
469 pr_err("%s: %s: Failed to interrupt sanitize\n",
470 mmc_hostname(host), __func__);
473 if (!cmd->error || !cmd->retries ||
474 mmc_card_removed(host->card))
475 break;
477 mmc_retune_recheck(host);
479 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
480 mmc_hostname(host), cmd->opcode, cmd->error);
481 cmd->retries--;
482 cmd->error = 0;
483 __mmc_start_request(host, mrq);
486 mmc_retune_release(host);
488 EXPORT_SYMBOL(mmc_wait_for_req_done);
491 * mmc_cqe_start_req - Start a CQE request.
492 * @host: MMC host to start the request
493 * @mrq: request to start
495 * Start the request, re-tuning if needed and it is possible. Returns an error
496 * code if the request fails to start or -EBUSY if CQE is busy.
498 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
500 int err;
503 * CQE cannot process re-tuning commands. Caller must hold retuning
504 * while CQE is in use. Re-tuning can happen here only when CQE has no
505 * active requests i.e. this is the first. Note, re-tuning will call
506 * ->cqe_off().
508 err = mmc_retune(host);
509 if (err)
510 goto out_err;
512 mrq->host = host;
514 mmc_mrq_pr_debug(host, mrq, true);
516 err = mmc_mrq_prep(host, mrq);
517 if (err)
518 goto out_err;
520 err = host->cqe_ops->cqe_request(host, mrq);
521 if (err)
522 goto out_err;
524 trace_mmc_request_start(host, mrq);
526 return 0;
528 out_err:
529 if (mrq->cmd) {
530 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
531 mmc_hostname(host), mrq->cmd->opcode, err);
532 } else {
533 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
534 mmc_hostname(host), mrq->tag, err);
536 return err;
538 EXPORT_SYMBOL(mmc_cqe_start_req);
541 * mmc_cqe_request_done - CQE has finished processing an MMC request
542 * @host: MMC host which completed request
543 * @mrq: MMC request which completed
545 * CQE drivers should call this function when they have completed
546 * their processing of a request.
548 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
550 mmc_should_fail_request(host, mrq);
552 /* Flag re-tuning needed on CRC errors */
553 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
554 (mrq->data && mrq->data->error == -EILSEQ))
555 mmc_retune_needed(host);
557 trace_mmc_request_done(host, mrq);
559 if (mrq->cmd) {
560 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
561 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
562 } else {
563 pr_debug("%s: CQE transfer done tag %d\n",
564 mmc_hostname(host), mrq->tag);
567 if (mrq->data) {
568 pr_debug("%s: %d bytes transferred: %d\n",
569 mmc_hostname(host),
570 mrq->data->bytes_xfered, mrq->data->error);
573 mrq->done(mrq);
575 EXPORT_SYMBOL(mmc_cqe_request_done);
578 * mmc_cqe_post_req - CQE post process of a completed MMC request
579 * @host: MMC host
580 * @mrq: MMC request to be processed
582 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
584 if (host->cqe_ops->cqe_post_req)
585 host->cqe_ops->cqe_post_req(host, mrq);
587 EXPORT_SYMBOL(mmc_cqe_post_req);
589 /* Arbitrary 1 second timeout */
590 #define MMC_CQE_RECOVERY_TIMEOUT 1000
593 * mmc_cqe_recovery - Recover from CQE errors.
594 * @host: MMC host to recover
596 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
597 * in eMMC, and discarding the queue in CQE. CQE must call
598 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
599 * fails to discard its queue.
601 int mmc_cqe_recovery(struct mmc_host *host)
603 struct mmc_command cmd;
604 int err;
606 mmc_retune_hold_now(host);
609 * Recovery is expected seldom, if at all, but it reduces performance,
610 * so make sure it is not completely silent.
612 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
614 host->cqe_ops->cqe_recovery_start(host);
616 memset(&cmd, 0, sizeof(cmd));
617 cmd.opcode = MMC_STOP_TRANSMISSION,
618 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC,
619 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
620 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
621 mmc_wait_for_cmd(host, &cmd, 0);
623 memset(&cmd, 0, sizeof(cmd));
624 cmd.opcode = MMC_CMDQ_TASK_MGMT;
625 cmd.arg = 1; /* Discard entire queue */
626 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
627 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
628 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT,
629 err = mmc_wait_for_cmd(host, &cmd, 0);
631 host->cqe_ops->cqe_recovery_finish(host);
633 mmc_retune_release(host);
635 return err;
637 EXPORT_SYMBOL(mmc_cqe_recovery);
640 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
641 * @host: MMC host
642 * @mrq: MMC request
644 * mmc_is_req_done() is used with requests that have
645 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
646 * starting a request and before waiting for it to complete. That is,
647 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
648 * and before mmc_wait_for_req_done(). If it is called at other times the
649 * result is not meaningful.
651 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
653 if (host->areq)
654 return host->context_info.is_done_rcv;
655 else
656 return completion_done(&mrq->completion);
658 EXPORT_SYMBOL(mmc_is_req_done);
661 * mmc_pre_req - Prepare for a new request
662 * @host: MMC host to prepare command
663 * @mrq: MMC request to prepare for
665 * mmc_pre_req() is called in prior to mmc_start_req() to let
666 * host prepare for the new request. Preparation of a request may be
667 * performed while another request is running on the host.
669 static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq)
671 if (host->ops->pre_req)
672 host->ops->pre_req(host, mrq);
676 * mmc_post_req - Post process a completed request
677 * @host: MMC host to post process command
678 * @mrq: MMC request to post process for
679 * @err: Error, if non zero, clean up any resources made in pre_req
681 * Let the host post process a completed request. Post processing of
682 * a request may be performed while another reuqest is running.
684 static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
685 int err)
687 if (host->ops->post_req)
688 host->ops->post_req(host, mrq, err);
692 * mmc_finalize_areq() - finalize an asynchronous request
693 * @host: MMC host to finalize any ongoing request on
695 * Returns the status of the ongoing asynchronous request, but
696 * MMC_BLK_SUCCESS if no request was going on.
698 static enum mmc_blk_status mmc_finalize_areq(struct mmc_host *host)
700 struct mmc_context_info *context_info = &host->context_info;
701 enum mmc_blk_status status;
703 if (!host->areq)
704 return MMC_BLK_SUCCESS;
706 while (1) {
707 wait_event_interruptible(context_info->wait,
708 (context_info->is_done_rcv ||
709 context_info->is_new_req));
711 if (context_info->is_done_rcv) {
712 struct mmc_command *cmd;
714 context_info->is_done_rcv = false;
715 cmd = host->areq->mrq->cmd;
717 if (!cmd->error || !cmd->retries ||
718 mmc_card_removed(host->card)) {
719 status = host->areq->err_check(host->card,
720 host->areq);
721 break; /* return status */
722 } else {
723 mmc_retune_recheck(host);
724 pr_info("%s: req failed (CMD%u): %d, retrying...\n",
725 mmc_hostname(host),
726 cmd->opcode, cmd->error);
727 cmd->retries--;
728 cmd->error = 0;
729 __mmc_start_request(host, host->areq->mrq);
730 continue; /* wait for done/new event again */
734 return MMC_BLK_NEW_REQUEST;
737 mmc_retune_release(host);
740 * Check BKOPS urgency for each R1 response
742 if (host->card && mmc_card_mmc(host->card) &&
743 ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
744 (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
745 (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
746 mmc_start_bkops(host->card, true);
749 return status;
753 * mmc_start_areq - start an asynchronous request
754 * @host: MMC host to start command
755 * @areq: asynchronous request to start
756 * @ret_stat: out parameter for status
758 * Start a new MMC custom command request for a host.
759 * If there is on ongoing async request wait for completion
760 * of that request and start the new one and return.
761 * Does not wait for the new request to complete.
763 * Returns the completed request, NULL in case of none completed.
764 * Wait for the an ongoing request (previoulsy started) to complete and
765 * return the completed request. If there is no ongoing request, NULL
766 * is returned without waiting. NULL is not an error condition.
768 struct mmc_async_req *mmc_start_areq(struct mmc_host *host,
769 struct mmc_async_req *areq,
770 enum mmc_blk_status *ret_stat)
772 enum mmc_blk_status status;
773 int start_err = 0;
774 struct mmc_async_req *previous = host->areq;
776 /* Prepare a new request */
777 if (areq)
778 mmc_pre_req(host, areq->mrq);
780 /* Finalize previous request */
781 status = mmc_finalize_areq(host);
782 if (ret_stat)
783 *ret_stat = status;
785 /* The previous request is still going on... */
786 if (status == MMC_BLK_NEW_REQUEST)
787 return NULL;
789 /* Fine so far, start the new request! */
790 if (status == MMC_BLK_SUCCESS && areq)
791 start_err = __mmc_start_data_req(host, areq->mrq);
793 /* Postprocess the old request at this point */
794 if (host->areq)
795 mmc_post_req(host, host->areq->mrq, 0);
797 /* Cancel a prepared request if it was not started. */
798 if ((status != MMC_BLK_SUCCESS || start_err) && areq)
799 mmc_post_req(host, areq->mrq, -EINVAL);
801 if (status != MMC_BLK_SUCCESS)
802 host->areq = NULL;
803 else
804 host->areq = areq;
806 return previous;
808 EXPORT_SYMBOL(mmc_start_areq);
811 * mmc_wait_for_req - start a request and wait for completion
812 * @host: MMC host to start command
813 * @mrq: MMC request to start
815 * Start a new MMC custom command request for a host, and wait
816 * for the command to complete. In the case of 'cap_cmd_during_tfr'
817 * requests, the transfer is ongoing and the caller can issue further
818 * commands that do not use the data lines, and then wait by calling
819 * mmc_wait_for_req_done().
820 * Does not attempt to parse the response.
822 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
824 __mmc_start_req(host, mrq);
826 if (!mrq->cap_cmd_during_tfr)
827 mmc_wait_for_req_done(host, mrq);
829 EXPORT_SYMBOL(mmc_wait_for_req);
832 * mmc_wait_for_cmd - start a command and wait for completion
833 * @host: MMC host to start command
834 * @cmd: MMC command to start
835 * @retries: maximum number of retries
837 * Start a new MMC command for a host, and wait for the command
838 * to complete. Return any error that occurred while the command
839 * was executing. Do not attempt to parse the response.
841 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
843 struct mmc_request mrq = {};
845 WARN_ON(!host->claimed);
847 memset(cmd->resp, 0, sizeof(cmd->resp));
848 cmd->retries = retries;
850 mrq.cmd = cmd;
851 cmd->data = NULL;
853 mmc_wait_for_req(host, &mrq);
855 return cmd->error;
858 EXPORT_SYMBOL(mmc_wait_for_cmd);
861 * mmc_set_data_timeout - set the timeout for a data command
862 * @data: data phase for command
863 * @card: the MMC card associated with the data transfer
865 * Computes the data timeout parameters according to the
866 * correct algorithm given the card type.
868 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
870 unsigned int mult;
873 * SDIO cards only define an upper 1 s limit on access.
875 if (mmc_card_sdio(card)) {
876 data->timeout_ns = 1000000000;
877 data->timeout_clks = 0;
878 return;
882 * SD cards use a 100 multiplier rather than 10
884 mult = mmc_card_sd(card) ? 100 : 10;
887 * Scale up the multiplier (and therefore the timeout) by
888 * the r2w factor for writes.
890 if (data->flags & MMC_DATA_WRITE)
891 mult <<= card->csd.r2w_factor;
893 data->timeout_ns = card->csd.taac_ns * mult;
894 data->timeout_clks = card->csd.taac_clks * mult;
897 * SD cards also have an upper limit on the timeout.
899 if (mmc_card_sd(card)) {
900 unsigned int timeout_us, limit_us;
902 timeout_us = data->timeout_ns / 1000;
903 if (card->host->ios.clock)
904 timeout_us += data->timeout_clks * 1000 /
905 (card->host->ios.clock / 1000);
907 if (data->flags & MMC_DATA_WRITE)
909 * The MMC spec "It is strongly recommended
910 * for hosts to implement more than 500ms
911 * timeout value even if the card indicates
912 * the 250ms maximum busy length." Even the
913 * previous value of 300ms is known to be
914 * insufficient for some cards.
916 limit_us = 3000000;
917 else
918 limit_us = 100000;
921 * SDHC cards always use these fixed values.
923 if (timeout_us > limit_us) {
924 data->timeout_ns = limit_us * 1000;
925 data->timeout_clks = 0;
928 /* assign limit value if invalid */
929 if (timeout_us == 0)
930 data->timeout_ns = limit_us * 1000;
934 * Some cards require longer data read timeout than indicated in CSD.
935 * Address this by setting the read timeout to a "reasonably high"
936 * value. For the cards tested, 600ms has proven enough. If necessary,
937 * this value can be increased if other problematic cards require this.
939 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
940 data->timeout_ns = 600000000;
941 data->timeout_clks = 0;
945 * Some cards need very high timeouts if driven in SPI mode.
946 * The worst observed timeout was 900ms after writing a
947 * continuous stream of data until the internal logic
948 * overflowed.
950 if (mmc_host_is_spi(card->host)) {
951 if (data->flags & MMC_DATA_WRITE) {
952 if (data->timeout_ns < 1000000000)
953 data->timeout_ns = 1000000000; /* 1s */
954 } else {
955 if (data->timeout_ns < 100000000)
956 data->timeout_ns = 100000000; /* 100ms */
960 EXPORT_SYMBOL(mmc_set_data_timeout);
963 * mmc_align_data_size - pads a transfer size to a more optimal value
964 * @card: the MMC card associated with the data transfer
965 * @sz: original transfer size
967 * Pads the original data size with a number of extra bytes in
968 * order to avoid controller bugs and/or performance hits
969 * (e.g. some controllers revert to PIO for certain sizes).
971 * Returns the improved size, which might be unmodified.
973 * Note that this function is only relevant when issuing a
974 * single scatter gather entry.
976 unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
979 * FIXME: We don't have a system for the controller to tell
980 * the core about its problems yet, so for now we just 32-bit
981 * align the size.
983 sz = ((sz + 3) / 4) * 4;
985 return sz;
987 EXPORT_SYMBOL(mmc_align_data_size);
990 * Allow claiming an already claimed host if the context is the same or there is
991 * no context but the task is the same.
993 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
994 struct task_struct *task)
996 return host->claimer == ctx ||
997 (!ctx && task && host->claimer->task == task);
1000 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
1001 struct mmc_ctx *ctx,
1002 struct task_struct *task)
1004 if (!host->claimer) {
1005 if (ctx)
1006 host->claimer = ctx;
1007 else
1008 host->claimer = &host->default_ctx;
1010 if (task)
1011 host->claimer->task = task;
1015 * __mmc_claim_host - exclusively claim a host
1016 * @host: mmc host to claim
1017 * @ctx: context that claims the host or NULL in which case the default
1018 * context will be used
1019 * @abort: whether or not the operation should be aborted
1021 * Claim a host for a set of operations. If @abort is non null and
1022 * dereference a non-zero value then this will return prematurely with
1023 * that non-zero value without acquiring the lock. Returns zero
1024 * with the lock held otherwise.
1026 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
1027 atomic_t *abort)
1029 struct task_struct *task = ctx ? NULL : current;
1030 DECLARE_WAITQUEUE(wait, current);
1031 unsigned long flags;
1032 int stop;
1033 bool pm = false;
1035 might_sleep();
1037 add_wait_queue(&host->wq, &wait);
1038 spin_lock_irqsave(&host->lock, flags);
1039 while (1) {
1040 set_current_state(TASK_UNINTERRUPTIBLE);
1041 stop = abort ? atomic_read(abort) : 0;
1042 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
1043 break;
1044 spin_unlock_irqrestore(&host->lock, flags);
1045 schedule();
1046 spin_lock_irqsave(&host->lock, flags);
1048 set_current_state(TASK_RUNNING);
1049 if (!stop) {
1050 host->claimed = 1;
1051 mmc_ctx_set_claimer(host, ctx, task);
1052 host->claim_cnt += 1;
1053 if (host->claim_cnt == 1)
1054 pm = true;
1055 } else
1056 wake_up(&host->wq);
1057 spin_unlock_irqrestore(&host->lock, flags);
1058 remove_wait_queue(&host->wq, &wait);
1060 if (pm)
1061 pm_runtime_get_sync(mmc_dev(host));
1063 return stop;
1065 EXPORT_SYMBOL(__mmc_claim_host);
1068 * mmc_release_host - release a host
1069 * @host: mmc host to release
1071 * Release a MMC host, allowing others to claim the host
1072 * for their operations.
1074 void mmc_release_host(struct mmc_host *host)
1076 unsigned long flags;
1078 WARN_ON(!host->claimed);
1080 spin_lock_irqsave(&host->lock, flags);
1081 if (--host->claim_cnt) {
1082 /* Release for nested claim */
1083 spin_unlock_irqrestore(&host->lock, flags);
1084 } else {
1085 host->claimed = 0;
1086 host->claimer->task = NULL;
1087 host->claimer = NULL;
1088 spin_unlock_irqrestore(&host->lock, flags);
1089 wake_up(&host->wq);
1090 pm_runtime_mark_last_busy(mmc_dev(host));
1091 pm_runtime_put_autosuspend(mmc_dev(host));
1094 EXPORT_SYMBOL(mmc_release_host);
1097 * This is a helper function, which fetches a runtime pm reference for the
1098 * card device and also claims the host.
1100 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
1102 pm_runtime_get_sync(&card->dev);
1103 __mmc_claim_host(card->host, ctx, NULL);
1105 EXPORT_SYMBOL(mmc_get_card);
1108 * This is a helper function, which releases the host and drops the runtime
1109 * pm reference for the card device.
1111 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
1113 struct mmc_host *host = card->host;
1115 WARN_ON(ctx && host->claimer != ctx);
1117 mmc_release_host(host);
1118 pm_runtime_mark_last_busy(&card->dev);
1119 pm_runtime_put_autosuspend(&card->dev);
1121 EXPORT_SYMBOL(mmc_put_card);
1124 * Internal function that does the actual ios call to the host driver,
1125 * optionally printing some debug output.
1127 static inline void mmc_set_ios(struct mmc_host *host)
1129 struct mmc_ios *ios = &host->ios;
1131 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1132 "width %u timing %u\n",
1133 mmc_hostname(host), ios->clock, ios->bus_mode,
1134 ios->power_mode, ios->chip_select, ios->vdd,
1135 1 << ios->bus_width, ios->timing);
1137 host->ops->set_ios(host, ios);
1141 * Control chip select pin on a host.
1143 void mmc_set_chip_select(struct mmc_host *host, int mode)
1145 host->ios.chip_select = mode;
1146 mmc_set_ios(host);
1150 * Sets the host clock to the highest possible frequency that
1151 * is below "hz".
1153 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1155 WARN_ON(hz && hz < host->f_min);
1157 if (hz > host->f_max)
1158 hz = host->f_max;
1160 host->ios.clock = hz;
1161 mmc_set_ios(host);
1164 int mmc_execute_tuning(struct mmc_card *card)
1166 struct mmc_host *host = card->host;
1167 u32 opcode;
1168 int err;
1170 if (!host->ops->execute_tuning)
1171 return 0;
1173 if (host->cqe_on)
1174 host->cqe_ops->cqe_off(host);
1176 if (mmc_card_mmc(card))
1177 opcode = MMC_SEND_TUNING_BLOCK_HS200;
1178 else
1179 opcode = MMC_SEND_TUNING_BLOCK;
1181 err = host->ops->execute_tuning(host, opcode);
1183 if (err)
1184 pr_err("%s: tuning execution failed: %d\n",
1185 mmc_hostname(host), err);
1186 else
1187 mmc_retune_enable(host);
1189 return err;
1193 * Change the bus mode (open drain/push-pull) of a host.
1195 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1197 host->ios.bus_mode = mode;
1198 mmc_set_ios(host);
1202 * Change data bus width of a host.
1204 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1206 host->ios.bus_width = width;
1207 mmc_set_ios(host);
1211 * Set initial state after a power cycle or a hw_reset.
1213 void mmc_set_initial_state(struct mmc_host *host)
1215 if (host->cqe_on)
1216 host->cqe_ops->cqe_off(host);
1218 mmc_retune_disable(host);
1220 if (mmc_host_is_spi(host))
1221 host->ios.chip_select = MMC_CS_HIGH;
1222 else
1223 host->ios.chip_select = MMC_CS_DONTCARE;
1224 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1225 host->ios.bus_width = MMC_BUS_WIDTH_1;
1226 host->ios.timing = MMC_TIMING_LEGACY;
1227 host->ios.drv_type = 0;
1228 host->ios.enhanced_strobe = false;
1231 * Make sure we are in non-enhanced strobe mode before we
1232 * actually enable it in ext_csd.
1234 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
1235 host->ops->hs400_enhanced_strobe)
1236 host->ops->hs400_enhanced_strobe(host, &host->ios);
1238 mmc_set_ios(host);
1242 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1243 * @vdd: voltage (mV)
1244 * @low_bits: prefer low bits in boundary cases
1246 * This function returns the OCR bit number according to the provided @vdd
1247 * value. If conversion is not possible a negative errno value returned.
1249 * Depending on the @low_bits flag the function prefers low or high OCR bits
1250 * on boundary voltages. For example,
1251 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1252 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1254 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1256 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1258 const int max_bit = ilog2(MMC_VDD_35_36);
1259 int bit;
1261 if (vdd < 1650 || vdd > 3600)
1262 return -EINVAL;
1264 if (vdd >= 1650 && vdd <= 1950)
1265 return ilog2(MMC_VDD_165_195);
1267 if (low_bits)
1268 vdd -= 1;
1270 /* Base 2000 mV, step 100 mV, bit's base 8. */
1271 bit = (vdd - 2000) / 100 + 8;
1272 if (bit > max_bit)
1273 return max_bit;
1274 return bit;
1278 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1279 * @vdd_min: minimum voltage value (mV)
1280 * @vdd_max: maximum voltage value (mV)
1282 * This function returns the OCR mask bits according to the provided @vdd_min
1283 * and @vdd_max values. If conversion is not possible the function returns 0.
1285 * Notes wrt boundary cases:
1286 * This function sets the OCR bits for all boundary voltages, for example
1287 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1288 * MMC_VDD_34_35 mask.
1290 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1292 u32 mask = 0;
1294 if (vdd_max < vdd_min)
1295 return 0;
1297 /* Prefer high bits for the boundary vdd_max values. */
1298 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1299 if (vdd_max < 0)
1300 return 0;
1302 /* Prefer low bits for the boundary vdd_min values. */
1303 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1304 if (vdd_min < 0)
1305 return 0;
1307 /* Fill the mask, from max bit to min bit. */
1308 while (vdd_max >= vdd_min)
1309 mask |= 1 << vdd_max--;
1311 return mask;
1313 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1315 #ifdef CONFIG_OF
1318 * mmc_of_parse_voltage - return mask of supported voltages
1319 * @np: The device node need to be parsed.
1320 * @mask: mask of voltages available for MMC/SD/SDIO
1322 * Parse the "voltage-ranges" DT property, returning zero if it is not
1323 * found, negative errno if the voltage-range specification is invalid,
1324 * or one if the voltage-range is specified and successfully parsed.
1326 int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1328 const u32 *voltage_ranges;
1329 int num_ranges, i;
1331 voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1332 num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1333 if (!voltage_ranges) {
1334 pr_debug("%pOF: voltage-ranges unspecified\n", np);
1335 return 0;
1337 if (!num_ranges) {
1338 pr_err("%pOF: voltage-ranges empty\n", np);
1339 return -EINVAL;
1342 for (i = 0; i < num_ranges; i++) {
1343 const int j = i * 2;
1344 u32 ocr_mask;
1346 ocr_mask = mmc_vddrange_to_ocrmask(
1347 be32_to_cpu(voltage_ranges[j]),
1348 be32_to_cpu(voltage_ranges[j + 1]));
1349 if (!ocr_mask) {
1350 pr_err("%pOF: voltage-range #%d is invalid\n",
1351 np, i);
1352 return -EINVAL;
1354 *mask |= ocr_mask;
1357 return 1;
1359 EXPORT_SYMBOL(mmc_of_parse_voltage);
1361 #endif /* CONFIG_OF */
1363 static int mmc_of_get_func_num(struct device_node *node)
1365 u32 reg;
1366 int ret;
1368 ret = of_property_read_u32(node, "reg", &reg);
1369 if (ret < 0)
1370 return ret;
1372 return reg;
1375 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1376 unsigned func_num)
1378 struct device_node *node;
1380 if (!host->parent || !host->parent->of_node)
1381 return NULL;
1383 for_each_child_of_node(host->parent->of_node, node) {
1384 if (mmc_of_get_func_num(node) == func_num)
1385 return node;
1388 return NULL;
1391 #ifdef CONFIG_REGULATOR
1394 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1395 * @vdd_bit: OCR bit number
1396 * @min_uV: minimum voltage value (mV)
1397 * @max_uV: maximum voltage value (mV)
1399 * This function returns the voltage range according to the provided OCR
1400 * bit number. If conversion is not possible a negative errno value returned.
1402 static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1404 int tmp;
1406 if (!vdd_bit)
1407 return -EINVAL;
1410 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1411 * bits this regulator doesn't quite support ... don't
1412 * be too picky, most cards and regulators are OK with
1413 * a 0.1V range goof (it's a small error percentage).
1415 tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1416 if (tmp == 0) {
1417 *min_uV = 1650 * 1000;
1418 *max_uV = 1950 * 1000;
1419 } else {
1420 *min_uV = 1900 * 1000 + tmp * 100 * 1000;
1421 *max_uV = *min_uV + 100 * 1000;
1424 return 0;
1428 * mmc_regulator_get_ocrmask - return mask of supported voltages
1429 * @supply: regulator to use
1431 * This returns either a negative errno, or a mask of voltages that
1432 * can be provided to MMC/SD/SDIO devices using the specified voltage
1433 * regulator. This would normally be called before registering the
1434 * MMC host adapter.
1436 int mmc_regulator_get_ocrmask(struct regulator *supply)
1438 int result = 0;
1439 int count;
1440 int i;
1441 int vdd_uV;
1442 int vdd_mV;
1444 count = regulator_count_voltages(supply);
1445 if (count < 0)
1446 return count;
1448 for (i = 0; i < count; i++) {
1449 vdd_uV = regulator_list_voltage(supply, i);
1450 if (vdd_uV <= 0)
1451 continue;
1453 vdd_mV = vdd_uV / 1000;
1454 result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1457 if (!result) {
1458 vdd_uV = regulator_get_voltage(supply);
1459 if (vdd_uV <= 0)
1460 return vdd_uV;
1462 vdd_mV = vdd_uV / 1000;
1463 result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1466 return result;
1468 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1471 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1472 * @mmc: the host to regulate
1473 * @supply: regulator to use
1474 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1476 * Returns zero on success, else negative errno.
1478 * MMC host drivers may use this to enable or disable a regulator using
1479 * a particular supply voltage. This would normally be called from the
1480 * set_ios() method.
1482 int mmc_regulator_set_ocr(struct mmc_host *mmc,
1483 struct regulator *supply,
1484 unsigned short vdd_bit)
1486 int result = 0;
1487 int min_uV, max_uV;
1489 if (vdd_bit) {
1490 mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
1492 result = regulator_set_voltage(supply, min_uV, max_uV);
1493 if (result == 0 && !mmc->regulator_enabled) {
1494 result = regulator_enable(supply);
1495 if (!result)
1496 mmc->regulator_enabled = true;
1498 } else if (mmc->regulator_enabled) {
1499 result = regulator_disable(supply);
1500 if (result == 0)
1501 mmc->regulator_enabled = false;
1504 if (result)
1505 dev_err(mmc_dev(mmc),
1506 "could not set regulator OCR (%d)\n", result);
1507 return result;
1509 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1511 static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1512 int min_uV, int target_uV,
1513 int max_uV)
1516 * Check if supported first to avoid errors since we may try several
1517 * signal levels during power up and don't want to show errors.
1519 if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1520 return -EINVAL;
1522 return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1523 max_uV);
1527 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1529 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1530 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1531 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1532 * SD card spec also define VQMMC in terms of VMMC.
1533 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1535 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1536 * requested voltage. This is definitely a good idea for UHS where there's a
1537 * separate regulator on the card that's trying to make 1.8V and it's best if
1538 * we match.
1540 * This function is expected to be used by a controller's
1541 * start_signal_voltage_switch() function.
1543 int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1545 struct device *dev = mmc_dev(mmc);
1546 int ret, volt, min_uV, max_uV;
1548 /* If no vqmmc supply then we can't change the voltage */
1549 if (IS_ERR(mmc->supply.vqmmc))
1550 return -EINVAL;
1552 switch (ios->signal_voltage) {
1553 case MMC_SIGNAL_VOLTAGE_120:
1554 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1555 1100000, 1200000, 1300000);
1556 case MMC_SIGNAL_VOLTAGE_180:
1557 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1558 1700000, 1800000, 1950000);
1559 case MMC_SIGNAL_VOLTAGE_330:
1560 ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1561 if (ret < 0)
1562 return ret;
1564 dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1565 __func__, volt, max_uV);
1567 min_uV = max(volt - 300000, 2700000);
1568 max_uV = min(max_uV + 200000, 3600000);
1571 * Due to a limitation in the current implementation of
1572 * regulator_set_voltage_triplet() which is taking the lowest
1573 * voltage possible if below the target, search for a suitable
1574 * voltage in two steps and try to stay close to vmmc
1575 * with a 0.3V tolerance at first.
1577 if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1578 min_uV, volt, max_uV))
1579 return 0;
1581 return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1582 2700000, volt, 3600000);
1583 default:
1584 return -EINVAL;
1587 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1589 #endif /* CONFIG_REGULATOR */
1592 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1593 * @mmc: the host to regulate
1595 * Returns 0 or errno. errno should be handled, it is either a critical error
1596 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1597 * regulators have been found because they all are optional. If you require
1598 * certain regulators, you need to check separately in your driver if they got
1599 * populated after calling this function.
1601 int mmc_regulator_get_supply(struct mmc_host *mmc)
1603 struct device *dev = mmc_dev(mmc);
1604 int ret;
1606 mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1607 mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1609 if (IS_ERR(mmc->supply.vmmc)) {
1610 if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1611 return -EPROBE_DEFER;
1612 dev_dbg(dev, "No vmmc regulator found\n");
1613 } else {
1614 ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1615 if (ret > 0)
1616 mmc->ocr_avail = ret;
1617 else
1618 dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1621 if (IS_ERR(mmc->supply.vqmmc)) {
1622 if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1623 return -EPROBE_DEFER;
1624 dev_dbg(dev, "No vqmmc regulator found\n");
1627 return 0;
1629 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1632 * Mask off any voltages we don't support and select
1633 * the lowest voltage
1635 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1637 int bit;
1640 * Sanity check the voltages that the card claims to
1641 * support.
1643 if (ocr & 0x7F) {
1644 dev_warn(mmc_dev(host),
1645 "card claims to support voltages below defined range\n");
1646 ocr &= ~0x7F;
1649 ocr &= host->ocr_avail;
1650 if (!ocr) {
1651 dev_warn(mmc_dev(host), "no support for card's volts\n");
1652 return 0;
1655 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1656 bit = ffs(ocr) - 1;
1657 ocr &= 3 << bit;
1658 mmc_power_cycle(host, ocr);
1659 } else {
1660 bit = fls(ocr) - 1;
1661 ocr &= 3 << bit;
1662 if (bit != host->ios.vdd)
1663 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1666 return ocr;
1669 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1671 int err = 0;
1672 int old_signal_voltage = host->ios.signal_voltage;
1674 host->ios.signal_voltage = signal_voltage;
1675 if (host->ops->start_signal_voltage_switch)
1676 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1678 if (err)
1679 host->ios.signal_voltage = old_signal_voltage;
1681 return err;
1685 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1687 u32 clock;
1690 * During a signal voltage level switch, the clock must be gated
1691 * for 5 ms according to the SD spec
1693 clock = host->ios.clock;
1694 host->ios.clock = 0;
1695 mmc_set_ios(host);
1697 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1698 return -EAGAIN;
1700 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1701 mmc_delay(10);
1702 host->ios.clock = clock;
1703 mmc_set_ios(host);
1705 return 0;
1708 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1710 struct mmc_command cmd = {};
1711 int err = 0;
1714 * If we cannot switch voltages, return failure so the caller
1715 * can continue without UHS mode
1717 if (!host->ops->start_signal_voltage_switch)
1718 return -EPERM;
1719 if (!host->ops->card_busy)
1720 pr_warn("%s: cannot verify signal voltage switch\n",
1721 mmc_hostname(host));
1723 cmd.opcode = SD_SWITCH_VOLTAGE;
1724 cmd.arg = 0;
1725 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1727 err = mmc_wait_for_cmd(host, &cmd, 0);
1728 if (err)
1729 return err;
1731 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1732 return -EIO;
1735 * The card should drive cmd and dat[0:3] low immediately
1736 * after the response of cmd11, but wait 1 ms to be sure
1738 mmc_delay(1);
1739 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1740 err = -EAGAIN;
1741 goto power_cycle;
1744 if (mmc_host_set_uhs_voltage(host)) {
1746 * Voltages may not have been switched, but we've already
1747 * sent CMD11, so a power cycle is required anyway
1749 err = -EAGAIN;
1750 goto power_cycle;
1753 /* Wait for at least 1 ms according to spec */
1754 mmc_delay(1);
1757 * Failure to switch is indicated by the card holding
1758 * dat[0:3] low
1760 if (host->ops->card_busy && host->ops->card_busy(host))
1761 err = -EAGAIN;
1763 power_cycle:
1764 if (err) {
1765 pr_debug("%s: Signal voltage switch failed, "
1766 "power cycling card\n", mmc_hostname(host));
1767 mmc_power_cycle(host, ocr);
1770 return err;
1774 * Select timing parameters for host.
1776 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1778 host->ios.timing = timing;
1779 mmc_set_ios(host);
1783 * Select appropriate driver type for host.
1785 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1787 host->ios.drv_type = drv_type;
1788 mmc_set_ios(host);
1791 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1792 int card_drv_type, int *drv_type)
1794 struct mmc_host *host = card->host;
1795 int host_drv_type = SD_DRIVER_TYPE_B;
1797 *drv_type = 0;
1799 if (!host->ops->select_drive_strength)
1800 return 0;
1802 /* Use SD definition of driver strength for hosts */
1803 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1804 host_drv_type |= SD_DRIVER_TYPE_A;
1806 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1807 host_drv_type |= SD_DRIVER_TYPE_C;
1809 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1810 host_drv_type |= SD_DRIVER_TYPE_D;
1813 * The drive strength that the hardware can support
1814 * depends on the board design. Pass the appropriate
1815 * information and let the hardware specific code
1816 * return what is possible given the options
1818 return host->ops->select_drive_strength(card, max_dtr,
1819 host_drv_type,
1820 card_drv_type,
1821 drv_type);
1825 * Apply power to the MMC stack. This is a two-stage process.
1826 * First, we enable power to the card without the clock running.
1827 * We then wait a bit for the power to stabilise. Finally,
1828 * enable the bus drivers and clock to the card.
1830 * We must _NOT_ enable the clock prior to power stablising.
1832 * If a host does all the power sequencing itself, ignore the
1833 * initial MMC_POWER_UP stage.
1835 void mmc_power_up(struct mmc_host *host, u32 ocr)
1837 if (host->ios.power_mode == MMC_POWER_ON)
1838 return;
1840 mmc_pwrseq_pre_power_on(host);
1842 host->ios.vdd = fls(ocr) - 1;
1843 host->ios.power_mode = MMC_POWER_UP;
1844 /* Set initial state and call mmc_set_ios */
1845 mmc_set_initial_state(host);
1847 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1848 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1849 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1850 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1851 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1852 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1853 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1856 * This delay should be sufficient to allow the power supply
1857 * to reach the minimum voltage.
1859 mmc_delay(10);
1861 mmc_pwrseq_post_power_on(host);
1863 host->ios.clock = host->f_init;
1865 host->ios.power_mode = MMC_POWER_ON;
1866 mmc_set_ios(host);
1869 * This delay must be at least 74 clock sizes, or 1 ms, or the
1870 * time required to reach a stable voltage.
1872 mmc_delay(10);
1875 void mmc_power_off(struct mmc_host *host)
1877 if (host->ios.power_mode == MMC_POWER_OFF)
1878 return;
1880 mmc_pwrseq_power_off(host);
1882 host->ios.clock = 0;
1883 host->ios.vdd = 0;
1885 host->ios.power_mode = MMC_POWER_OFF;
1886 /* Set initial state and call mmc_set_ios */
1887 mmc_set_initial_state(host);
1890 * Some configurations, such as the 802.11 SDIO card in the OLPC
1891 * XO-1.5, require a short delay after poweroff before the card
1892 * can be successfully turned on again.
1894 mmc_delay(1);
1897 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1899 mmc_power_off(host);
1900 /* Wait at least 1 ms according to SD spec */
1901 mmc_delay(1);
1902 mmc_power_up(host, ocr);
1906 * Cleanup when the last reference to the bus operator is dropped.
1908 static void __mmc_release_bus(struct mmc_host *host)
1910 WARN_ON(!host->bus_dead);
1912 host->bus_ops = NULL;
1916 * Increase reference count of bus operator
1918 static inline void mmc_bus_get(struct mmc_host *host)
1920 unsigned long flags;
1922 spin_lock_irqsave(&host->lock, flags);
1923 host->bus_refs++;
1924 spin_unlock_irqrestore(&host->lock, flags);
1928 * Decrease reference count of bus operator and free it if
1929 * it is the last reference.
1931 static inline void mmc_bus_put(struct mmc_host *host)
1933 unsigned long flags;
1935 spin_lock_irqsave(&host->lock, flags);
1936 host->bus_refs--;
1937 if ((host->bus_refs == 0) && host->bus_ops)
1938 __mmc_release_bus(host);
1939 spin_unlock_irqrestore(&host->lock, flags);
1943 * Assign a mmc bus handler to a host. Only one bus handler may control a
1944 * host at any given time.
1946 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1948 unsigned long flags;
1950 WARN_ON(!host->claimed);
1952 spin_lock_irqsave(&host->lock, flags);
1954 WARN_ON(host->bus_ops);
1955 WARN_ON(host->bus_refs);
1957 host->bus_ops = ops;
1958 host->bus_refs = 1;
1959 host->bus_dead = 0;
1961 spin_unlock_irqrestore(&host->lock, flags);
1965 * Remove the current bus handler from a host.
1967 void mmc_detach_bus(struct mmc_host *host)
1969 unsigned long flags;
1971 WARN_ON(!host->claimed);
1972 WARN_ON(!host->bus_ops);
1974 spin_lock_irqsave(&host->lock, flags);
1976 host->bus_dead = 1;
1978 spin_unlock_irqrestore(&host->lock, flags);
1980 mmc_bus_put(host);
1983 static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1984 bool cd_irq)
1987 * If the device is configured as wakeup, we prevent a new sleep for
1988 * 5 s to give provision for user space to consume the event.
1990 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1991 device_can_wakeup(mmc_dev(host)))
1992 pm_wakeup_event(mmc_dev(host), 5000);
1994 host->detect_change = 1;
1995 mmc_schedule_delayed_work(&host->detect, delay);
1999 * mmc_detect_change - process change of state on a MMC socket
2000 * @host: host which changed state.
2001 * @delay: optional delay to wait before detection (jiffies)
2003 * MMC drivers should call this when they detect a card has been
2004 * inserted or removed. The MMC layer will confirm that any
2005 * present card is still functional, and initialize any newly
2006 * inserted.
2008 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
2010 _mmc_detect_change(host, delay, true);
2012 EXPORT_SYMBOL(mmc_detect_change);
2014 void mmc_init_erase(struct mmc_card *card)
2016 unsigned int sz;
2018 if (is_power_of_2(card->erase_size))
2019 card->erase_shift = ffs(card->erase_size) - 1;
2020 else
2021 card->erase_shift = 0;
2024 * It is possible to erase an arbitrarily large area of an SD or MMC
2025 * card. That is not desirable because it can take a long time
2026 * (minutes) potentially delaying more important I/O, and also the
2027 * timeout calculations become increasingly hugely over-estimated.
2028 * Consequently, 'pref_erase' is defined as a guide to limit erases
2029 * to that size and alignment.
2031 * For SD cards that define Allocation Unit size, limit erases to one
2032 * Allocation Unit at a time.
2033 * For MMC, have a stab at ai good value and for modern cards it will
2034 * end up being 4MiB. Note that if the value is too small, it can end
2035 * up taking longer to erase. Also note, erase_size is already set to
2036 * High Capacity Erase Size if available when this function is called.
2038 if (mmc_card_sd(card) && card->ssr.au) {
2039 card->pref_erase = card->ssr.au;
2040 card->erase_shift = ffs(card->ssr.au) - 1;
2041 } else if (card->erase_size) {
2042 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
2043 if (sz < 128)
2044 card->pref_erase = 512 * 1024 / 512;
2045 else if (sz < 512)
2046 card->pref_erase = 1024 * 1024 / 512;
2047 else if (sz < 1024)
2048 card->pref_erase = 2 * 1024 * 1024 / 512;
2049 else
2050 card->pref_erase = 4 * 1024 * 1024 / 512;
2051 if (card->pref_erase < card->erase_size)
2052 card->pref_erase = card->erase_size;
2053 else {
2054 sz = card->pref_erase % card->erase_size;
2055 if (sz)
2056 card->pref_erase += card->erase_size - sz;
2058 } else
2059 card->pref_erase = 0;
2062 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
2063 unsigned int arg, unsigned int qty)
2065 unsigned int erase_timeout;
2067 if (arg == MMC_DISCARD_ARG ||
2068 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
2069 erase_timeout = card->ext_csd.trim_timeout;
2070 } else if (card->ext_csd.erase_group_def & 1) {
2071 /* High Capacity Erase Group Size uses HC timeouts */
2072 if (arg == MMC_TRIM_ARG)
2073 erase_timeout = card->ext_csd.trim_timeout;
2074 else
2075 erase_timeout = card->ext_csd.hc_erase_timeout;
2076 } else {
2077 /* CSD Erase Group Size uses write timeout */
2078 unsigned int mult = (10 << card->csd.r2w_factor);
2079 unsigned int timeout_clks = card->csd.taac_clks * mult;
2080 unsigned int timeout_us;
2082 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
2083 if (card->csd.taac_ns < 1000000)
2084 timeout_us = (card->csd.taac_ns * mult) / 1000;
2085 else
2086 timeout_us = (card->csd.taac_ns / 1000) * mult;
2089 * ios.clock is only a target. The real clock rate might be
2090 * less but not that much less, so fudge it by multiplying by 2.
2092 timeout_clks <<= 1;
2093 timeout_us += (timeout_clks * 1000) /
2094 (card->host->ios.clock / 1000);
2096 erase_timeout = timeout_us / 1000;
2099 * Theoretically, the calculation could underflow so round up
2100 * to 1ms in that case.
2102 if (!erase_timeout)
2103 erase_timeout = 1;
2106 /* Multiplier for secure operations */
2107 if (arg & MMC_SECURE_ARGS) {
2108 if (arg == MMC_SECURE_ERASE_ARG)
2109 erase_timeout *= card->ext_csd.sec_erase_mult;
2110 else
2111 erase_timeout *= card->ext_csd.sec_trim_mult;
2114 erase_timeout *= qty;
2117 * Ensure at least a 1 second timeout for SPI as per
2118 * 'mmc_set_data_timeout()'
2120 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2121 erase_timeout = 1000;
2123 return erase_timeout;
2126 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2127 unsigned int arg,
2128 unsigned int qty)
2130 unsigned int erase_timeout;
2132 if (card->ssr.erase_timeout) {
2133 /* Erase timeout specified in SD Status Register (SSR) */
2134 erase_timeout = card->ssr.erase_timeout * qty +
2135 card->ssr.erase_offset;
2136 } else {
2138 * Erase timeout not specified in SD Status Register (SSR) so
2139 * use 250ms per write block.
2141 erase_timeout = 250 * qty;
2144 /* Must not be less than 1 second */
2145 if (erase_timeout < 1000)
2146 erase_timeout = 1000;
2148 return erase_timeout;
2151 static unsigned int mmc_erase_timeout(struct mmc_card *card,
2152 unsigned int arg,
2153 unsigned int qty)
2155 if (mmc_card_sd(card))
2156 return mmc_sd_erase_timeout(card, arg, qty);
2157 else
2158 return mmc_mmc_erase_timeout(card, arg, qty);
2161 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2162 unsigned int to, unsigned int arg)
2164 struct mmc_command cmd = {};
2165 unsigned int qty = 0, busy_timeout = 0;
2166 bool use_r1b_resp = false;
2167 unsigned long timeout;
2168 int err;
2170 mmc_retune_hold(card->host);
2173 * qty is used to calculate the erase timeout which depends on how many
2174 * erase groups (or allocation units in SD terminology) are affected.
2175 * We count erasing part of an erase group as one erase group.
2176 * For SD, the allocation units are always a power of 2. For MMC, the
2177 * erase group size is almost certainly also power of 2, but it does not
2178 * seem to insist on that in the JEDEC standard, so we fall back to
2179 * division in that case. SD may not specify an allocation unit size,
2180 * in which case the timeout is based on the number of write blocks.
2182 * Note that the timeout for secure trim 2 will only be correct if the
2183 * number of erase groups specified is the same as the total of all
2184 * preceding secure trim 1 commands. Since the power may have been
2185 * lost since the secure trim 1 commands occurred, it is generally
2186 * impossible to calculate the secure trim 2 timeout correctly.
2188 if (card->erase_shift)
2189 qty += ((to >> card->erase_shift) -
2190 (from >> card->erase_shift)) + 1;
2191 else if (mmc_card_sd(card))
2192 qty += to - from + 1;
2193 else
2194 qty += ((to / card->erase_size) -
2195 (from / card->erase_size)) + 1;
2197 if (!mmc_card_blockaddr(card)) {
2198 from <<= 9;
2199 to <<= 9;
2202 if (mmc_card_sd(card))
2203 cmd.opcode = SD_ERASE_WR_BLK_START;
2204 else
2205 cmd.opcode = MMC_ERASE_GROUP_START;
2206 cmd.arg = from;
2207 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2208 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2209 if (err) {
2210 pr_err("mmc_erase: group start error %d, "
2211 "status %#x\n", err, cmd.resp[0]);
2212 err = -EIO;
2213 goto out;
2216 memset(&cmd, 0, sizeof(struct mmc_command));
2217 if (mmc_card_sd(card))
2218 cmd.opcode = SD_ERASE_WR_BLK_END;
2219 else
2220 cmd.opcode = MMC_ERASE_GROUP_END;
2221 cmd.arg = to;
2222 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2223 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2224 if (err) {
2225 pr_err("mmc_erase: group end error %d, status %#x\n",
2226 err, cmd.resp[0]);
2227 err = -EIO;
2228 goto out;
2231 memset(&cmd, 0, sizeof(struct mmc_command));
2232 cmd.opcode = MMC_ERASE;
2233 cmd.arg = arg;
2234 busy_timeout = mmc_erase_timeout(card, arg, qty);
2236 * If the host controller supports busy signalling and the timeout for
2237 * the erase operation does not exceed the max_busy_timeout, we should
2238 * use R1B response. Or we need to prevent the host from doing hw busy
2239 * detection, which is done by converting to a R1 response instead.
2241 if (card->host->max_busy_timeout &&
2242 busy_timeout > card->host->max_busy_timeout) {
2243 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2244 } else {
2245 cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2246 cmd.busy_timeout = busy_timeout;
2247 use_r1b_resp = true;
2250 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2251 if (err) {
2252 pr_err("mmc_erase: erase error %d, status %#x\n",
2253 err, cmd.resp[0]);
2254 err = -EIO;
2255 goto out;
2258 if (mmc_host_is_spi(card->host))
2259 goto out;
2262 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2263 * shall be avoided.
2265 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
2266 goto out;
2268 timeout = jiffies + msecs_to_jiffies(busy_timeout);
2269 do {
2270 memset(&cmd, 0, sizeof(struct mmc_command));
2271 cmd.opcode = MMC_SEND_STATUS;
2272 cmd.arg = card->rca << 16;
2273 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2274 /* Do not retry else we can't see errors */
2275 err = mmc_wait_for_cmd(card->host, &cmd, 0);
2276 if (err || (cmd.resp[0] & 0xFDF92000)) {
2277 pr_err("error %d requesting status %#x\n",
2278 err, cmd.resp[0]);
2279 err = -EIO;
2280 goto out;
2283 /* Timeout if the device never becomes ready for data and
2284 * never leaves the program state.
2286 if (time_after(jiffies, timeout)) {
2287 pr_err("%s: Card stuck in programming state! %s\n",
2288 mmc_hostname(card->host), __func__);
2289 err = -EIO;
2290 goto out;
2293 } while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2294 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2295 out:
2296 mmc_retune_release(card->host);
2297 return err;
2300 static unsigned int mmc_align_erase_size(struct mmc_card *card,
2301 unsigned int *from,
2302 unsigned int *to,
2303 unsigned int nr)
2305 unsigned int from_new = *from, nr_new = nr, rem;
2308 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2309 * to align the erase size efficiently.
2311 if (is_power_of_2(card->erase_size)) {
2312 unsigned int temp = from_new;
2314 from_new = round_up(temp, card->erase_size);
2315 rem = from_new - temp;
2317 if (nr_new > rem)
2318 nr_new -= rem;
2319 else
2320 return 0;
2322 nr_new = round_down(nr_new, card->erase_size);
2323 } else {
2324 rem = from_new % card->erase_size;
2325 if (rem) {
2326 rem = card->erase_size - rem;
2327 from_new += rem;
2328 if (nr_new > rem)
2329 nr_new -= rem;
2330 else
2331 return 0;
2334 rem = nr_new % card->erase_size;
2335 if (rem)
2336 nr_new -= rem;
2339 if (nr_new == 0)
2340 return 0;
2342 *to = from_new + nr_new;
2343 *from = from_new;
2345 return nr_new;
2349 * mmc_erase - erase sectors.
2350 * @card: card to erase
2351 * @from: first sector to erase
2352 * @nr: number of sectors to erase
2353 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2355 * Caller must claim host before calling this function.
2357 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2358 unsigned int arg)
2360 unsigned int rem, to = from + nr;
2361 int err;
2363 if (!(card->host->caps & MMC_CAP_ERASE) ||
2364 !(card->csd.cmdclass & CCC_ERASE))
2365 return -EOPNOTSUPP;
2367 if (!card->erase_size)
2368 return -EOPNOTSUPP;
2370 if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2371 return -EOPNOTSUPP;
2373 if ((arg & MMC_SECURE_ARGS) &&
2374 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2375 return -EOPNOTSUPP;
2377 if ((arg & MMC_TRIM_ARGS) &&
2378 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2379 return -EOPNOTSUPP;
2381 if (arg == MMC_SECURE_ERASE_ARG) {
2382 if (from % card->erase_size || nr % card->erase_size)
2383 return -EINVAL;
2386 if (arg == MMC_ERASE_ARG)
2387 nr = mmc_align_erase_size(card, &from, &to, nr);
2389 if (nr == 0)
2390 return 0;
2392 if (to <= from)
2393 return -EINVAL;
2395 /* 'from' and 'to' are inclusive */
2396 to -= 1;
2399 * Special case where only one erase-group fits in the timeout budget:
2400 * If the region crosses an erase-group boundary on this particular
2401 * case, we will be trimming more than one erase-group which, does not
2402 * fit in the timeout budget of the controller, so we need to split it
2403 * and call mmc_do_erase() twice if necessary. This special case is
2404 * identified by the card->eg_boundary flag.
2406 rem = card->erase_size - (from % card->erase_size);
2407 if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2408 err = mmc_do_erase(card, from, from + rem - 1, arg);
2409 from += rem;
2410 if ((err) || (to <= from))
2411 return err;
2414 return mmc_do_erase(card, from, to, arg);
2416 EXPORT_SYMBOL(mmc_erase);
2418 int mmc_can_erase(struct mmc_card *card)
2420 if ((card->host->caps & MMC_CAP_ERASE) &&
2421 (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2422 return 1;
2423 return 0;
2425 EXPORT_SYMBOL(mmc_can_erase);
2427 int mmc_can_trim(struct mmc_card *card)
2429 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2430 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2431 return 1;
2432 return 0;
2434 EXPORT_SYMBOL(mmc_can_trim);
2436 int mmc_can_discard(struct mmc_card *card)
2439 * As there's no way to detect the discard support bit at v4.5
2440 * use the s/w feature support filed.
2442 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2443 return 1;
2444 return 0;
2446 EXPORT_SYMBOL(mmc_can_discard);
2448 int mmc_can_sanitize(struct mmc_card *card)
2450 if (!mmc_can_trim(card) && !mmc_can_erase(card))
2451 return 0;
2452 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2453 return 1;
2454 return 0;
2456 EXPORT_SYMBOL(mmc_can_sanitize);
2458 int mmc_can_secure_erase_trim(struct mmc_card *card)
2460 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2461 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2462 return 1;
2463 return 0;
2465 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2467 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2468 unsigned int nr)
2470 if (!card->erase_size)
2471 return 0;
2472 if (from % card->erase_size || nr % card->erase_size)
2473 return 0;
2474 return 1;
2476 EXPORT_SYMBOL(mmc_erase_group_aligned);
2478 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2479 unsigned int arg)
2481 struct mmc_host *host = card->host;
2482 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
2483 unsigned int last_timeout = 0;
2484 unsigned int max_busy_timeout = host->max_busy_timeout ?
2485 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
2487 if (card->erase_shift) {
2488 max_qty = UINT_MAX >> card->erase_shift;
2489 min_qty = card->pref_erase >> card->erase_shift;
2490 } else if (mmc_card_sd(card)) {
2491 max_qty = UINT_MAX;
2492 min_qty = card->pref_erase;
2493 } else {
2494 max_qty = UINT_MAX / card->erase_size;
2495 min_qty = card->pref_erase / card->erase_size;
2499 * We should not only use 'host->max_busy_timeout' as the limitation
2500 * when deciding the max discard sectors. We should set a balance value
2501 * to improve the erase speed, and it can not get too long timeout at
2502 * the same time.
2504 * Here we set 'card->pref_erase' as the minimal discard sectors no
2505 * matter what size of 'host->max_busy_timeout', but if the
2506 * 'host->max_busy_timeout' is large enough for more discard sectors,
2507 * then we can continue to increase the max discard sectors until we
2508 * get a balance value. In cases when the 'host->max_busy_timeout'
2509 * isn't specified, use the default max erase timeout.
2511 do {
2512 y = 0;
2513 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2514 timeout = mmc_erase_timeout(card, arg, qty + x);
2516 if (qty + x > min_qty && timeout > max_busy_timeout)
2517 break;
2519 if (timeout < last_timeout)
2520 break;
2521 last_timeout = timeout;
2522 y = x;
2524 qty += y;
2525 } while (y);
2527 if (!qty)
2528 return 0;
2531 * When specifying a sector range to trim, chances are we might cross
2532 * an erase-group boundary even if the amount of sectors is less than
2533 * one erase-group.
2534 * If we can only fit one erase-group in the controller timeout budget,
2535 * we have to care that erase-group boundaries are not crossed by a
2536 * single trim operation. We flag that special case with "eg_boundary".
2537 * In all other cases we can just decrement qty and pretend that we
2538 * always touch (qty + 1) erase-groups as a simple optimization.
2540 if (qty == 1)
2541 card->eg_boundary = 1;
2542 else
2543 qty--;
2545 /* Convert qty to sectors */
2546 if (card->erase_shift)
2547 max_discard = qty << card->erase_shift;
2548 else if (mmc_card_sd(card))
2549 max_discard = qty + 1;
2550 else
2551 max_discard = qty * card->erase_size;
2553 return max_discard;
2556 unsigned int mmc_calc_max_discard(struct mmc_card *card)
2558 struct mmc_host *host = card->host;
2559 unsigned int max_discard, max_trim;
2562 * Without erase_group_def set, MMC erase timeout depends on clock
2563 * frequence which can change. In that case, the best choice is
2564 * just the preferred erase size.
2566 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2567 return card->pref_erase;
2569 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2570 if (mmc_can_trim(card)) {
2571 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2572 if (max_trim < max_discard)
2573 max_discard = max_trim;
2574 } else if (max_discard < card->erase_size) {
2575 max_discard = 0;
2577 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2578 mmc_hostname(host), max_discard, host->max_busy_timeout ?
2579 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
2580 return max_discard;
2582 EXPORT_SYMBOL(mmc_calc_max_discard);
2584 bool mmc_card_is_blockaddr(struct mmc_card *card)
2586 return card ? mmc_card_blockaddr(card) : false;
2588 EXPORT_SYMBOL(mmc_card_is_blockaddr);
2590 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2592 struct mmc_command cmd = {};
2594 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
2595 mmc_card_hs400(card) || mmc_card_hs400es(card))
2596 return 0;
2598 cmd.opcode = MMC_SET_BLOCKLEN;
2599 cmd.arg = blocklen;
2600 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2601 return mmc_wait_for_cmd(card->host, &cmd, 5);
2603 EXPORT_SYMBOL(mmc_set_blocklen);
2605 int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2606 bool is_rel_write)
2608 struct mmc_command cmd = {};
2610 cmd.opcode = MMC_SET_BLOCK_COUNT;
2611 cmd.arg = blockcount & 0x0000FFFF;
2612 if (is_rel_write)
2613 cmd.arg |= 1 << 31;
2614 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2615 return mmc_wait_for_cmd(card->host, &cmd, 5);
2617 EXPORT_SYMBOL(mmc_set_blockcount);
2619 static void mmc_hw_reset_for_init(struct mmc_host *host)
2621 mmc_pwrseq_reset(host);
2623 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2624 return;
2625 host->ops->hw_reset(host);
2628 int mmc_hw_reset(struct mmc_host *host)
2630 int ret;
2632 if (!host->card)
2633 return -EINVAL;
2635 mmc_bus_get(host);
2636 if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2637 mmc_bus_put(host);
2638 return -EOPNOTSUPP;
2641 ret = host->bus_ops->reset(host);
2642 mmc_bus_put(host);
2644 if (ret)
2645 pr_warn("%s: tried to reset card, got error %d\n",
2646 mmc_hostname(host), ret);
2648 return ret;
2650 EXPORT_SYMBOL(mmc_hw_reset);
2652 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2654 host->f_init = freq;
2656 pr_debug("%s: %s: trying to init card at %u Hz\n",
2657 mmc_hostname(host), __func__, host->f_init);
2659 mmc_power_up(host, host->ocr_avail);
2662 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2663 * do a hardware reset if possible.
2665 mmc_hw_reset_for_init(host);
2668 * sdio_reset sends CMD52 to reset card. Since we do not know
2669 * if the card is being re-initialized, just send it. CMD52
2670 * should be ignored by SD/eMMC cards.
2671 * Skip it if we already know that we do not support SDIO commands
2673 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2674 sdio_reset(host);
2676 mmc_go_idle(host);
2678 if (!(host->caps2 & MMC_CAP2_NO_SD))
2679 mmc_send_if_cond(host, host->ocr_avail);
2681 /* Order's important: probe SDIO, then SD, then MMC */
2682 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2683 if (!mmc_attach_sdio(host))
2684 return 0;
2686 if (!(host->caps2 & MMC_CAP2_NO_SD))
2687 if (!mmc_attach_sd(host))
2688 return 0;
2690 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2691 if (!mmc_attach_mmc(host))
2692 return 0;
2694 mmc_power_off(host);
2695 return -EIO;
2698 int _mmc_detect_card_removed(struct mmc_host *host)
2700 int ret;
2702 if (!host->card || mmc_card_removed(host->card))
2703 return 1;
2705 ret = host->bus_ops->alive(host);
2708 * Card detect status and alive check may be out of sync if card is
2709 * removed slowly, when card detect switch changes while card/slot
2710 * pads are still contacted in hardware (refer to "SD Card Mechanical
2711 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2712 * detect work 200ms later for this case.
2714 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2715 mmc_detect_change(host, msecs_to_jiffies(200));
2716 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2719 if (ret) {
2720 mmc_card_set_removed(host->card);
2721 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2724 return ret;
2727 int mmc_detect_card_removed(struct mmc_host *host)
2729 struct mmc_card *card = host->card;
2730 int ret;
2732 WARN_ON(!host->claimed);
2734 if (!card)
2735 return 1;
2737 if (!mmc_card_is_removable(host))
2738 return 0;
2740 ret = mmc_card_removed(card);
2742 * The card will be considered unchanged unless we have been asked to
2743 * detect a change or host requires polling to provide card detection.
2745 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2746 return ret;
2748 host->detect_change = 0;
2749 if (!ret) {
2750 ret = _mmc_detect_card_removed(host);
2751 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2753 * Schedule a detect work as soon as possible to let a
2754 * rescan handle the card removal.
2756 cancel_delayed_work(&host->detect);
2757 _mmc_detect_change(host, 0, false);
2761 return ret;
2763 EXPORT_SYMBOL(mmc_detect_card_removed);
2765 void mmc_rescan(struct work_struct *work)
2767 struct mmc_host *host =
2768 container_of(work, struct mmc_host, detect.work);
2769 int i;
2771 if (host->rescan_disable)
2772 return;
2774 /* If there is a non-removable card registered, only scan once */
2775 if (!mmc_card_is_removable(host) && host->rescan_entered)
2776 return;
2777 host->rescan_entered = 1;
2779 if (host->trigger_card_event && host->ops->card_event) {
2780 mmc_claim_host(host);
2781 host->ops->card_event(host);
2782 mmc_release_host(host);
2783 host->trigger_card_event = false;
2786 mmc_bus_get(host);
2789 * if there is a _removable_ card registered, check whether it is
2790 * still present
2792 if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
2793 host->bus_ops->detect(host);
2795 host->detect_change = 0;
2798 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2799 * the card is no longer present.
2801 mmc_bus_put(host);
2802 mmc_bus_get(host);
2804 /* if there still is a card present, stop here */
2805 if (host->bus_ops != NULL) {
2806 mmc_bus_put(host);
2807 goto out;
2811 * Only we can add a new handler, so it's safe to
2812 * release the lock here.
2814 mmc_bus_put(host);
2816 mmc_claim_host(host);
2817 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2818 host->ops->get_cd(host) == 0) {
2819 mmc_power_off(host);
2820 mmc_release_host(host);
2821 goto out;
2824 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2825 if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2826 break;
2827 if (freqs[i] <= host->f_min)
2828 break;
2830 mmc_release_host(host);
2832 out:
2833 if (host->caps & MMC_CAP_NEEDS_POLL)
2834 mmc_schedule_delayed_work(&host->detect, HZ);
2837 void mmc_start_host(struct mmc_host *host)
2839 host->f_init = max(freqs[0], host->f_min);
2840 host->rescan_disable = 0;
2841 host->ios.power_mode = MMC_POWER_UNDEFINED;
2843 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2844 mmc_claim_host(host);
2845 mmc_power_up(host, host->ocr_avail);
2846 mmc_release_host(host);
2849 mmc_gpiod_request_cd_irq(host);
2850 _mmc_detect_change(host, 0, false);
2853 void mmc_stop_host(struct mmc_host *host)
2855 if (host->slot.cd_irq >= 0) {
2856 if (host->slot.cd_wake_enabled)
2857 disable_irq_wake(host->slot.cd_irq);
2858 disable_irq(host->slot.cd_irq);
2861 host->rescan_disable = 1;
2862 cancel_delayed_work_sync(&host->detect);
2864 /* clear pm flags now and let card drivers set them as needed */
2865 host->pm_flags = 0;
2867 mmc_bus_get(host);
2868 if (host->bus_ops && !host->bus_dead) {
2869 /* Calling bus_ops->remove() with a claimed host can deadlock */
2870 host->bus_ops->remove(host);
2871 mmc_claim_host(host);
2872 mmc_detach_bus(host);
2873 mmc_power_off(host);
2874 mmc_release_host(host);
2875 mmc_bus_put(host);
2876 return;
2878 mmc_bus_put(host);
2880 mmc_claim_host(host);
2881 mmc_power_off(host);
2882 mmc_release_host(host);
2885 int mmc_power_save_host(struct mmc_host *host)
2887 int ret = 0;
2889 pr_debug("%s: %s: powering down\n", mmc_hostname(host), __func__);
2891 mmc_bus_get(host);
2893 if (!host->bus_ops || host->bus_dead) {
2894 mmc_bus_put(host);
2895 return -EINVAL;
2898 if (host->bus_ops->power_save)
2899 ret = host->bus_ops->power_save(host);
2901 mmc_bus_put(host);
2903 mmc_power_off(host);
2905 return ret;
2907 EXPORT_SYMBOL(mmc_power_save_host);
2909 int mmc_power_restore_host(struct mmc_host *host)
2911 int ret;
2913 pr_debug("%s: %s: powering up\n", mmc_hostname(host), __func__);
2915 mmc_bus_get(host);
2917 if (!host->bus_ops || host->bus_dead) {
2918 mmc_bus_put(host);
2919 return -EINVAL;
2922 mmc_power_up(host, host->card->ocr);
2923 ret = host->bus_ops->power_restore(host);
2925 mmc_bus_put(host);
2927 return ret;
2929 EXPORT_SYMBOL(mmc_power_restore_host);
2931 #ifdef CONFIG_PM_SLEEP
2932 /* Do the card removal on suspend if card is assumed removeable
2933 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2934 to sync the card.
2936 static int mmc_pm_notify(struct notifier_block *notify_block,
2937 unsigned long mode, void *unused)
2939 struct mmc_host *host = container_of(
2940 notify_block, struct mmc_host, pm_notify);
2941 unsigned long flags;
2942 int err = 0;
2944 switch (mode) {
2945 case PM_HIBERNATION_PREPARE:
2946 case PM_SUSPEND_PREPARE:
2947 case PM_RESTORE_PREPARE:
2948 spin_lock_irqsave(&host->lock, flags);
2949 host->rescan_disable = 1;
2950 spin_unlock_irqrestore(&host->lock, flags);
2951 cancel_delayed_work_sync(&host->detect);
2953 if (!host->bus_ops)
2954 break;
2956 /* Validate prerequisites for suspend */
2957 if (host->bus_ops->pre_suspend)
2958 err = host->bus_ops->pre_suspend(host);
2959 if (!err)
2960 break;
2962 /* Calling bus_ops->remove() with a claimed host can deadlock */
2963 host->bus_ops->remove(host);
2964 mmc_claim_host(host);
2965 mmc_detach_bus(host);
2966 mmc_power_off(host);
2967 mmc_release_host(host);
2968 host->pm_flags = 0;
2969 break;
2971 case PM_POST_SUSPEND:
2972 case PM_POST_HIBERNATION:
2973 case PM_POST_RESTORE:
2975 spin_lock_irqsave(&host->lock, flags);
2976 host->rescan_disable = 0;
2977 spin_unlock_irqrestore(&host->lock, flags);
2978 _mmc_detect_change(host, 0, false);
2982 return 0;
2985 void mmc_register_pm_notifier(struct mmc_host *host)
2987 host->pm_notify.notifier_call = mmc_pm_notify;
2988 register_pm_notifier(&host->pm_notify);
2991 void mmc_unregister_pm_notifier(struct mmc_host *host)
2993 unregister_pm_notifier(&host->pm_notify);
2995 #endif
2998 * mmc_init_context_info() - init synchronization context
2999 * @host: mmc host
3001 * Init struct context_info needed to implement asynchronous
3002 * request mechanism, used by mmc core, host driver and mmc requests
3003 * supplier.
3005 void mmc_init_context_info(struct mmc_host *host)
3007 host->context_info.is_new_req = false;
3008 host->context_info.is_done_rcv = false;
3009 host->context_info.is_waiting_last_req = false;
3010 init_waitqueue_head(&host->context_info.wait);
3013 static int __init mmc_init(void)
3015 int ret;
3017 ret = mmc_register_bus();
3018 if (ret)
3019 return ret;
3021 ret = mmc_register_host_class();
3022 if (ret)
3023 goto unregister_bus;
3025 ret = sdio_register_bus();
3026 if (ret)
3027 goto unregister_host_class;
3029 return 0;
3031 unregister_host_class:
3032 mmc_unregister_host_class();
3033 unregister_bus:
3034 mmc_unregister_bus();
3035 return ret;
3038 static void __exit mmc_exit(void)
3040 sdio_unregister_bus();
3041 mmc_unregister_host_class();
3042 mmc_unregister_bus();
3045 subsys_initcall(mmc_init);
3046 module_exit(mmc_exit);
3048 MODULE_LICENSE("GPL");