2 * Copyright (C) 2011 STRATO. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/rbtree.h>
21 #include <trace/events/btrfs.h>
26 #include "transaction.h"
27 #include "delayed-ref.h"
30 /* Just an arbitrary number so we can be sure this happened */
31 #define BACKREF_FOUND_SHARED 6
33 struct extent_inode_elem
{
36 struct extent_inode_elem
*next
;
39 static int check_extent_in_eb(const struct btrfs_key
*key
,
40 const struct extent_buffer
*eb
,
41 const struct btrfs_file_extent_item
*fi
,
43 struct extent_inode_elem
**eie
,
47 struct extent_inode_elem
*e
;
50 !btrfs_file_extent_compression(eb
, fi
) &&
51 !btrfs_file_extent_encryption(eb
, fi
) &&
52 !btrfs_file_extent_other_encoding(eb
, fi
)) {
56 data_offset
= btrfs_file_extent_offset(eb
, fi
);
57 data_len
= btrfs_file_extent_num_bytes(eb
, fi
);
59 if (extent_item_pos
< data_offset
||
60 extent_item_pos
>= data_offset
+ data_len
)
62 offset
= extent_item_pos
- data_offset
;
65 e
= kmalloc(sizeof(*e
), GFP_NOFS
);
70 e
->inum
= key
->objectid
;
71 e
->offset
= key
->offset
+ offset
;
77 static void free_inode_elem_list(struct extent_inode_elem
*eie
)
79 struct extent_inode_elem
*eie_next
;
81 for (; eie
; eie
= eie_next
) {
87 static int find_extent_in_eb(const struct extent_buffer
*eb
,
88 u64 wanted_disk_byte
, u64 extent_item_pos
,
89 struct extent_inode_elem
**eie
,
94 struct btrfs_file_extent_item
*fi
;
101 * from the shared data ref, we only have the leaf but we need
102 * the key. thus, we must look into all items and see that we
103 * find one (some) with a reference to our extent item.
105 nritems
= btrfs_header_nritems(eb
);
106 for (slot
= 0; slot
< nritems
; ++slot
) {
107 btrfs_item_key_to_cpu(eb
, &key
, slot
);
108 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
110 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
111 extent_type
= btrfs_file_extent_type(eb
, fi
);
112 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
)
114 /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
115 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
116 if (disk_byte
!= wanted_disk_byte
)
119 ret
= check_extent_in_eb(&key
, eb
, fi
, extent_item_pos
, eie
, ignore_offset
);
132 #define PREFTREE_INIT { .root = RB_ROOT, .count = 0 }
135 struct preftree direct
; /* BTRFS_SHARED_[DATA|BLOCK]_REF_KEY */
136 struct preftree indirect
; /* BTRFS_[TREE_BLOCK|EXTENT_DATA]_REF_KEY */
137 struct preftree indirect_missing_keys
;
141 * Checks for a shared extent during backref search.
143 * The share_count tracks prelim_refs (direct and indirect) having a
145 * - incremented when a ref->count transitions to >0
146 * - decremented when a ref->count transitions to <1
154 static inline int extent_is_shared(struct share_check
*sc
)
156 return (sc
&& sc
->share_count
> 1) ? BACKREF_FOUND_SHARED
: 0;
159 static struct kmem_cache
*btrfs_prelim_ref_cache
;
161 int __init
btrfs_prelim_ref_init(void)
163 btrfs_prelim_ref_cache
= kmem_cache_create("btrfs_prelim_ref",
164 sizeof(struct prelim_ref
),
168 if (!btrfs_prelim_ref_cache
)
173 void btrfs_prelim_ref_exit(void)
175 kmem_cache_destroy(btrfs_prelim_ref_cache
);
178 static void free_pref(struct prelim_ref
*ref
)
180 kmem_cache_free(btrfs_prelim_ref_cache
, ref
);
184 * Return 0 when both refs are for the same block (and can be merged).
185 * A -1 return indicates ref1 is a 'lower' block than ref2, while 1
186 * indicates a 'higher' block.
188 static int prelim_ref_compare(struct prelim_ref
*ref1
,
189 struct prelim_ref
*ref2
)
191 if (ref1
->level
< ref2
->level
)
193 if (ref1
->level
> ref2
->level
)
195 if (ref1
->root_id
< ref2
->root_id
)
197 if (ref1
->root_id
> ref2
->root_id
)
199 if (ref1
->key_for_search
.type
< ref2
->key_for_search
.type
)
201 if (ref1
->key_for_search
.type
> ref2
->key_for_search
.type
)
203 if (ref1
->key_for_search
.objectid
< ref2
->key_for_search
.objectid
)
205 if (ref1
->key_for_search
.objectid
> ref2
->key_for_search
.objectid
)
207 if (ref1
->key_for_search
.offset
< ref2
->key_for_search
.offset
)
209 if (ref1
->key_for_search
.offset
> ref2
->key_for_search
.offset
)
211 if (ref1
->parent
< ref2
->parent
)
213 if (ref1
->parent
> ref2
->parent
)
219 void update_share_count(struct share_check
*sc
, int oldcount
, int newcount
)
221 if ((!sc
) || (oldcount
== 0 && newcount
< 1))
224 if (oldcount
> 0 && newcount
< 1)
226 else if (oldcount
< 1 && newcount
> 0)
231 * Add @newref to the @root rbtree, merging identical refs.
233 * Callers should assume that newref has been freed after calling.
235 static void prelim_ref_insert(const struct btrfs_fs_info
*fs_info
,
236 struct preftree
*preftree
,
237 struct prelim_ref
*newref
,
238 struct share_check
*sc
)
240 struct rb_root
*root
;
242 struct rb_node
*parent
= NULL
;
243 struct prelim_ref
*ref
;
246 root
= &preftree
->root
;
251 ref
= rb_entry(parent
, struct prelim_ref
, rbnode
);
252 result
= prelim_ref_compare(ref
, newref
);
255 } else if (result
> 0) {
258 /* Identical refs, merge them and free @newref */
259 struct extent_inode_elem
*eie
= ref
->inode_list
;
261 while (eie
&& eie
->next
)
265 ref
->inode_list
= newref
->inode_list
;
267 eie
->next
= newref
->inode_list
;
268 trace_btrfs_prelim_ref_merge(fs_info
, ref
, newref
,
271 * A delayed ref can have newref->count < 0.
272 * The ref->count is updated to follow any
273 * BTRFS_[ADD|DROP]_DELAYED_REF actions.
275 update_share_count(sc
, ref
->count
,
276 ref
->count
+ newref
->count
);
277 ref
->count
+= newref
->count
;
283 update_share_count(sc
, 0, newref
->count
);
285 trace_btrfs_prelim_ref_insert(fs_info
, newref
, NULL
, preftree
->count
);
286 rb_link_node(&newref
->rbnode
, parent
, p
);
287 rb_insert_color(&newref
->rbnode
, root
);
291 * Release the entire tree. We don't care about internal consistency so
292 * just free everything and then reset the tree root.
294 static void prelim_release(struct preftree
*preftree
)
296 struct prelim_ref
*ref
, *next_ref
;
298 rbtree_postorder_for_each_entry_safe(ref
, next_ref
, &preftree
->root
,
302 preftree
->root
= RB_ROOT
;
307 * the rules for all callers of this function are:
308 * - obtaining the parent is the goal
309 * - if you add a key, you must know that it is a correct key
310 * - if you cannot add the parent or a correct key, then we will look into the
311 * block later to set a correct key
315 * backref type | shared | indirect | shared | indirect
316 * information | tree | tree | data | data
317 * --------------------+--------+----------+--------+----------
318 * parent logical | y | - | - | -
319 * key to resolve | - | y | y | y
320 * tree block logical | - | - | - | -
321 * root for resolving | y | y | y | y
323 * - column 1: we've the parent -> done
324 * - column 2, 3, 4: we use the key to find the parent
326 * on disk refs (inline or keyed)
327 * ==============================
328 * backref type | shared | indirect | shared | indirect
329 * information | tree | tree | data | data
330 * --------------------+--------+----------+--------+----------
331 * parent logical | y | - | y | -
332 * key to resolve | - | - | - | y
333 * tree block logical | y | y | y | y
334 * root for resolving | - | y | y | y
336 * - column 1, 3: we've the parent -> done
337 * - column 2: we take the first key from the block to find the parent
338 * (see add_missing_keys)
339 * - column 4: we use the key to find the parent
341 * additional information that's available but not required to find the parent
342 * block might help in merging entries to gain some speed.
344 static int add_prelim_ref(const struct btrfs_fs_info
*fs_info
,
345 struct preftree
*preftree
, u64 root_id
,
346 const struct btrfs_key
*key
, int level
, u64 parent
,
347 u64 wanted_disk_byte
, int count
,
348 struct share_check
*sc
, gfp_t gfp_mask
)
350 struct prelim_ref
*ref
;
352 if (root_id
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
355 ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
, gfp_mask
);
359 ref
->root_id
= root_id
;
361 ref
->key_for_search
= *key
;
363 * We can often find data backrefs with an offset that is too
364 * large (>= LLONG_MAX, maximum allowed file offset) due to
365 * underflows when subtracting a file's offset with the data
366 * offset of its corresponding extent data item. This can
367 * happen for example in the clone ioctl.
368 * So if we detect such case we set the search key's offset to
369 * zero to make sure we will find the matching file extent item
370 * at add_all_parents(), otherwise we will miss it because the
371 * offset taken form the backref is much larger then the offset
372 * of the file extent item. This can make us scan a very large
373 * number of file extent items, but at least it will not make
375 * This is an ugly workaround for a behaviour that should have
376 * never existed, but it does and a fix for the clone ioctl
377 * would touch a lot of places, cause backwards incompatibility
378 * and would not fix the problem for extents cloned with older
381 if (ref
->key_for_search
.type
== BTRFS_EXTENT_DATA_KEY
&&
382 ref
->key_for_search
.offset
>= LLONG_MAX
)
383 ref
->key_for_search
.offset
= 0;
385 memset(&ref
->key_for_search
, 0, sizeof(ref
->key_for_search
));
388 ref
->inode_list
= NULL
;
391 ref
->parent
= parent
;
392 ref
->wanted_disk_byte
= wanted_disk_byte
;
393 prelim_ref_insert(fs_info
, preftree
, ref
, sc
);
394 return extent_is_shared(sc
);
397 /* direct refs use root == 0, key == NULL */
398 static int add_direct_ref(const struct btrfs_fs_info
*fs_info
,
399 struct preftrees
*preftrees
, int level
, u64 parent
,
400 u64 wanted_disk_byte
, int count
,
401 struct share_check
*sc
, gfp_t gfp_mask
)
403 return add_prelim_ref(fs_info
, &preftrees
->direct
, 0, NULL
, level
,
404 parent
, wanted_disk_byte
, count
, sc
, gfp_mask
);
407 /* indirect refs use parent == 0 */
408 static int add_indirect_ref(const struct btrfs_fs_info
*fs_info
,
409 struct preftrees
*preftrees
, u64 root_id
,
410 const struct btrfs_key
*key
, int level
,
411 u64 wanted_disk_byte
, int count
,
412 struct share_check
*sc
, gfp_t gfp_mask
)
414 struct preftree
*tree
= &preftrees
->indirect
;
417 tree
= &preftrees
->indirect_missing_keys
;
418 return add_prelim_ref(fs_info
, tree
, root_id
, key
, level
, 0,
419 wanted_disk_byte
, count
, sc
, gfp_mask
);
422 static int add_all_parents(struct btrfs_root
*root
, struct btrfs_path
*path
,
423 struct ulist
*parents
, struct prelim_ref
*ref
,
424 int level
, u64 time_seq
, const u64
*extent_item_pos
,
425 u64 total_refs
, bool ignore_offset
)
429 struct extent_buffer
*eb
;
430 struct btrfs_key key
;
431 struct btrfs_key
*key_for_search
= &ref
->key_for_search
;
432 struct btrfs_file_extent_item
*fi
;
433 struct extent_inode_elem
*eie
= NULL
, *old
= NULL
;
435 u64 wanted_disk_byte
= ref
->wanted_disk_byte
;
439 eb
= path
->nodes
[level
];
440 ret
= ulist_add(parents
, eb
->start
, 0, GFP_NOFS
);
447 * We normally enter this function with the path already pointing to
448 * the first item to check. But sometimes, we may enter it with
449 * slot==nritems. In that case, go to the next leaf before we continue.
451 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
452 if (time_seq
== SEQ_LAST
)
453 ret
= btrfs_next_leaf(root
, path
);
455 ret
= btrfs_next_old_leaf(root
, path
, time_seq
);
458 while (!ret
&& count
< total_refs
) {
460 slot
= path
->slots
[0];
462 btrfs_item_key_to_cpu(eb
, &key
, slot
);
464 if (key
.objectid
!= key_for_search
->objectid
||
465 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
468 fi
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
469 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
471 if (disk_byte
== wanted_disk_byte
) {
475 if (extent_item_pos
) {
476 ret
= check_extent_in_eb(&key
, eb
, fi
,
478 &eie
, ignore_offset
);
484 ret
= ulist_add_merge_ptr(parents
, eb
->start
,
485 eie
, (void **)&old
, GFP_NOFS
);
488 if (!ret
&& extent_item_pos
) {
496 if (time_seq
== SEQ_LAST
)
497 ret
= btrfs_next_item(root
, path
);
499 ret
= btrfs_next_old_item(root
, path
, time_seq
);
505 free_inode_elem_list(eie
);
510 * resolve an indirect backref in the form (root_id, key, level)
511 * to a logical address
513 static int resolve_indirect_ref(struct btrfs_fs_info
*fs_info
,
514 struct btrfs_path
*path
, u64 time_seq
,
515 struct prelim_ref
*ref
, struct ulist
*parents
,
516 const u64
*extent_item_pos
, u64 total_refs
,
519 struct btrfs_root
*root
;
520 struct btrfs_key root_key
;
521 struct extent_buffer
*eb
;
524 int level
= ref
->level
;
527 root_key
.objectid
= ref
->root_id
;
528 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
529 root_key
.offset
= (u64
)-1;
531 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
533 root
= btrfs_get_fs_root(fs_info
, &root_key
, false);
535 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
540 if (btrfs_is_testing(fs_info
)) {
541 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
546 if (path
->search_commit_root
)
547 root_level
= btrfs_header_level(root
->commit_root
);
548 else if (time_seq
== SEQ_LAST
)
549 root_level
= btrfs_header_level(root
->node
);
551 root_level
= btrfs_old_root_level(root
, time_seq
);
553 if (root_level
+ 1 == level
) {
554 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
558 path
->lowest_level
= level
;
559 if (time_seq
== SEQ_LAST
)
560 ret
= btrfs_search_slot(NULL
, root
, &ref
->key_for_search
, path
,
563 ret
= btrfs_search_old_slot(root
, &ref
->key_for_search
, path
,
566 /* root node has been locked, we can release @subvol_srcu safely here */
567 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
570 "search slot in root %llu (level %d, ref count %d) returned %d for key (%llu %u %llu)",
571 ref
->root_id
, level
, ref
->count
, ret
,
572 ref
->key_for_search
.objectid
, ref
->key_for_search
.type
,
573 ref
->key_for_search
.offset
);
577 eb
= path
->nodes
[level
];
579 if (WARN_ON(!level
)) {
584 eb
= path
->nodes
[level
];
587 ret
= add_all_parents(root
, path
, parents
, ref
, level
, time_seq
,
588 extent_item_pos
, total_refs
, ignore_offset
);
590 path
->lowest_level
= 0;
591 btrfs_release_path(path
);
595 static struct extent_inode_elem
*
596 unode_aux_to_inode_list(struct ulist_node
*node
)
600 return (struct extent_inode_elem
*)(uintptr_t)node
->aux
;
604 * We maintain three seperate rbtrees: one for direct refs, one for
605 * indirect refs which have a key, and one for indirect refs which do not
606 * have a key. Each tree does merge on insertion.
608 * Once all of the references are located, we iterate over the tree of
609 * indirect refs with missing keys. An appropriate key is located and
610 * the ref is moved onto the tree for indirect refs. After all missing
611 * keys are thus located, we iterate over the indirect ref tree, resolve
612 * each reference, and then insert the resolved reference onto the
613 * direct tree (merging there too).
615 * New backrefs (i.e., for parent nodes) are added to the appropriate
616 * rbtree as they are encountered. The new backrefs are subsequently
619 static int resolve_indirect_refs(struct btrfs_fs_info
*fs_info
,
620 struct btrfs_path
*path
, u64 time_seq
,
621 struct preftrees
*preftrees
,
622 const u64
*extent_item_pos
, u64 total_refs
,
623 struct share_check
*sc
, bool ignore_offset
)
627 struct ulist
*parents
;
628 struct ulist_node
*node
;
629 struct ulist_iterator uiter
;
630 struct rb_node
*rnode
;
632 parents
= ulist_alloc(GFP_NOFS
);
637 * We could trade memory usage for performance here by iterating
638 * the tree, allocating new refs for each insertion, and then
639 * freeing the entire indirect tree when we're done. In some test
640 * cases, the tree can grow quite large (~200k objects).
642 while ((rnode
= rb_first(&preftrees
->indirect
.root
))) {
643 struct prelim_ref
*ref
;
645 ref
= rb_entry(rnode
, struct prelim_ref
, rbnode
);
646 if (WARN(ref
->parent
,
647 "BUG: direct ref found in indirect tree")) {
652 rb_erase(&ref
->rbnode
, &preftrees
->indirect
.root
);
653 preftrees
->indirect
.count
--;
655 if (ref
->count
== 0) {
660 if (sc
&& sc
->root_objectid
&&
661 ref
->root_id
!= sc
->root_objectid
) {
663 ret
= BACKREF_FOUND_SHARED
;
666 err
= resolve_indirect_ref(fs_info
, path
, time_seq
, ref
,
667 parents
, extent_item_pos
,
668 total_refs
, ignore_offset
);
670 * we can only tolerate ENOENT,otherwise,we should catch error
671 * and return directly.
673 if (err
== -ENOENT
) {
674 prelim_ref_insert(fs_info
, &preftrees
->direct
, ref
,
683 /* we put the first parent into the ref at hand */
684 ULIST_ITER_INIT(&uiter
);
685 node
= ulist_next(parents
, &uiter
);
686 ref
->parent
= node
? node
->val
: 0;
687 ref
->inode_list
= unode_aux_to_inode_list(node
);
689 /* Add a prelim_ref(s) for any other parent(s). */
690 while ((node
= ulist_next(parents
, &uiter
))) {
691 struct prelim_ref
*new_ref
;
693 new_ref
= kmem_cache_alloc(btrfs_prelim_ref_cache
,
700 memcpy(new_ref
, ref
, sizeof(*ref
));
701 new_ref
->parent
= node
->val
;
702 new_ref
->inode_list
= unode_aux_to_inode_list(node
);
703 prelim_ref_insert(fs_info
, &preftrees
->direct
,
708 * Now it's a direct ref, put it in the the direct tree. We must
709 * do this last because the ref could be merged/freed here.
711 prelim_ref_insert(fs_info
, &preftrees
->direct
, ref
, NULL
);
713 ulist_reinit(parents
);
722 * read tree blocks and add keys where required.
724 static int add_missing_keys(struct btrfs_fs_info
*fs_info
,
725 struct preftrees
*preftrees
)
727 struct prelim_ref
*ref
;
728 struct extent_buffer
*eb
;
729 struct preftree
*tree
= &preftrees
->indirect_missing_keys
;
730 struct rb_node
*node
;
732 while ((node
= rb_first(&tree
->root
))) {
733 ref
= rb_entry(node
, struct prelim_ref
, rbnode
);
734 rb_erase(node
, &tree
->root
);
736 BUG_ON(ref
->parent
); /* should not be a direct ref */
737 BUG_ON(ref
->key_for_search
.type
);
738 BUG_ON(!ref
->wanted_disk_byte
);
740 eb
= read_tree_block(fs_info
, ref
->wanted_disk_byte
, 0);
744 } else if (!extent_buffer_uptodate(eb
)) {
746 free_extent_buffer(eb
);
749 btrfs_tree_read_lock(eb
);
750 if (btrfs_header_level(eb
) == 0)
751 btrfs_item_key_to_cpu(eb
, &ref
->key_for_search
, 0);
753 btrfs_node_key_to_cpu(eb
, &ref
->key_for_search
, 0);
754 btrfs_tree_read_unlock(eb
);
755 free_extent_buffer(eb
);
756 prelim_ref_insert(fs_info
, &preftrees
->indirect
, ref
, NULL
);
763 * add all currently queued delayed refs from this head whose seq nr is
764 * smaller or equal that seq to the list
766 static int add_delayed_refs(const struct btrfs_fs_info
*fs_info
,
767 struct btrfs_delayed_ref_head
*head
, u64 seq
,
768 struct preftrees
*preftrees
, u64
*total_refs
,
769 struct share_check
*sc
)
771 struct btrfs_delayed_ref_node
*node
;
772 struct btrfs_delayed_extent_op
*extent_op
= head
->extent_op
;
773 struct btrfs_key key
;
774 struct btrfs_key tmp_op_key
;
775 struct btrfs_key
*op_key
= NULL
;
780 if (extent_op
&& extent_op
->update_key
) {
781 btrfs_disk_key_to_cpu(&tmp_op_key
, &extent_op
->key
);
782 op_key
= &tmp_op_key
;
785 spin_lock(&head
->lock
);
786 for (n
= rb_first(&head
->ref_tree
); n
; n
= rb_next(n
)) {
787 node
= rb_entry(n
, struct btrfs_delayed_ref_node
,
792 switch (node
->action
) {
793 case BTRFS_ADD_DELAYED_EXTENT
:
794 case BTRFS_UPDATE_DELAYED_HEAD
:
797 case BTRFS_ADD_DELAYED_REF
:
798 count
= node
->ref_mod
;
800 case BTRFS_DROP_DELAYED_REF
:
801 count
= node
->ref_mod
* -1;
806 *total_refs
+= count
;
807 switch (node
->type
) {
808 case BTRFS_TREE_BLOCK_REF_KEY
: {
809 /* NORMAL INDIRECT METADATA backref */
810 struct btrfs_delayed_tree_ref
*ref
;
812 ref
= btrfs_delayed_node_to_tree_ref(node
);
813 ret
= add_indirect_ref(fs_info
, preftrees
, ref
->root
,
814 &tmp_op_key
, ref
->level
+ 1,
815 node
->bytenr
, count
, sc
,
819 case BTRFS_SHARED_BLOCK_REF_KEY
: {
820 /* SHARED DIRECT METADATA backref */
821 struct btrfs_delayed_tree_ref
*ref
;
823 ref
= btrfs_delayed_node_to_tree_ref(node
);
825 ret
= add_direct_ref(fs_info
, preftrees
, ref
->level
+ 1,
826 ref
->parent
, node
->bytenr
, count
,
830 case BTRFS_EXTENT_DATA_REF_KEY
: {
831 /* NORMAL INDIRECT DATA backref */
832 struct btrfs_delayed_data_ref
*ref
;
833 ref
= btrfs_delayed_node_to_data_ref(node
);
835 key
.objectid
= ref
->objectid
;
836 key
.type
= BTRFS_EXTENT_DATA_KEY
;
837 key
.offset
= ref
->offset
;
840 * Found a inum that doesn't match our known inum, we
843 if (sc
&& sc
->inum
&& ref
->objectid
!= sc
->inum
) {
844 ret
= BACKREF_FOUND_SHARED
;
848 ret
= add_indirect_ref(fs_info
, preftrees
, ref
->root
,
849 &key
, 0, node
->bytenr
, count
, sc
,
853 case BTRFS_SHARED_DATA_REF_KEY
: {
854 /* SHARED DIRECT FULL backref */
855 struct btrfs_delayed_data_ref
*ref
;
857 ref
= btrfs_delayed_node_to_data_ref(node
);
859 ret
= add_direct_ref(fs_info
, preftrees
, 0, ref
->parent
,
860 node
->bytenr
, count
, sc
,
868 * We must ignore BACKREF_FOUND_SHARED until all delayed
869 * refs have been checked.
871 if (ret
&& (ret
!= BACKREF_FOUND_SHARED
))
875 ret
= extent_is_shared(sc
);
877 spin_unlock(&head
->lock
);
882 * add all inline backrefs for bytenr to the list
884 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
886 static int add_inline_refs(const struct btrfs_fs_info
*fs_info
,
887 struct btrfs_path
*path
, u64 bytenr
,
888 int *info_level
, struct preftrees
*preftrees
,
889 u64
*total_refs
, struct share_check
*sc
)
893 struct extent_buffer
*leaf
;
894 struct btrfs_key key
;
895 struct btrfs_key found_key
;
898 struct btrfs_extent_item
*ei
;
903 * enumerate all inline refs
905 leaf
= path
->nodes
[0];
906 slot
= path
->slots
[0];
908 item_size
= btrfs_item_size_nr(leaf
, slot
);
909 BUG_ON(item_size
< sizeof(*ei
));
911 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_extent_item
);
912 flags
= btrfs_extent_flags(leaf
, ei
);
913 *total_refs
+= btrfs_extent_refs(leaf
, ei
);
914 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
916 ptr
= (unsigned long)(ei
+ 1);
917 end
= (unsigned long)ei
+ item_size
;
919 if (found_key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
920 flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
921 struct btrfs_tree_block_info
*info
;
923 info
= (struct btrfs_tree_block_info
*)ptr
;
924 *info_level
= btrfs_tree_block_level(leaf
, info
);
925 ptr
+= sizeof(struct btrfs_tree_block_info
);
927 } else if (found_key
.type
== BTRFS_METADATA_ITEM_KEY
) {
928 *info_level
= found_key
.offset
;
930 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
934 struct btrfs_extent_inline_ref
*iref
;
938 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
939 type
= btrfs_get_extent_inline_ref_type(leaf
, iref
,
941 if (type
== BTRFS_REF_TYPE_INVALID
)
944 offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
947 case BTRFS_SHARED_BLOCK_REF_KEY
:
948 ret
= add_direct_ref(fs_info
, preftrees
,
949 *info_level
+ 1, offset
,
950 bytenr
, 1, NULL
, GFP_NOFS
);
952 case BTRFS_SHARED_DATA_REF_KEY
: {
953 struct btrfs_shared_data_ref
*sdref
;
956 sdref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
957 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
959 ret
= add_direct_ref(fs_info
, preftrees
, 0, offset
,
960 bytenr
, count
, sc
, GFP_NOFS
);
963 case BTRFS_TREE_BLOCK_REF_KEY
:
964 ret
= add_indirect_ref(fs_info
, preftrees
, offset
,
965 NULL
, *info_level
+ 1,
966 bytenr
, 1, NULL
, GFP_NOFS
);
968 case BTRFS_EXTENT_DATA_REF_KEY
: {
969 struct btrfs_extent_data_ref
*dref
;
973 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
974 count
= btrfs_extent_data_ref_count(leaf
, dref
);
975 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
977 key
.type
= BTRFS_EXTENT_DATA_KEY
;
978 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
980 if (sc
&& sc
->inum
&& key
.objectid
!= sc
->inum
) {
981 ret
= BACKREF_FOUND_SHARED
;
985 root
= btrfs_extent_data_ref_root(leaf
, dref
);
987 ret
= add_indirect_ref(fs_info
, preftrees
, root
,
988 &key
, 0, bytenr
, count
,
997 ptr
+= btrfs_extent_inline_ref_size(type
);
1004 * add all non-inline backrefs for bytenr to the list
1006 * Returns 0 on success, <0 on error, or BACKREF_FOUND_SHARED.
1008 static int add_keyed_refs(struct btrfs_fs_info
*fs_info
,
1009 struct btrfs_path
*path
, u64 bytenr
,
1010 int info_level
, struct preftrees
*preftrees
,
1011 struct share_check
*sc
)
1013 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
1016 struct extent_buffer
*leaf
;
1017 struct btrfs_key key
;
1020 ret
= btrfs_next_item(extent_root
, path
);
1028 slot
= path
->slots
[0];
1029 leaf
= path
->nodes
[0];
1030 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1032 if (key
.objectid
!= bytenr
)
1034 if (key
.type
< BTRFS_TREE_BLOCK_REF_KEY
)
1036 if (key
.type
> BTRFS_SHARED_DATA_REF_KEY
)
1040 case BTRFS_SHARED_BLOCK_REF_KEY
:
1041 /* SHARED DIRECT METADATA backref */
1042 ret
= add_direct_ref(fs_info
, preftrees
,
1043 info_level
+ 1, key
.offset
,
1044 bytenr
, 1, NULL
, GFP_NOFS
);
1046 case BTRFS_SHARED_DATA_REF_KEY
: {
1047 /* SHARED DIRECT FULL backref */
1048 struct btrfs_shared_data_ref
*sdref
;
1051 sdref
= btrfs_item_ptr(leaf
, slot
,
1052 struct btrfs_shared_data_ref
);
1053 count
= btrfs_shared_data_ref_count(leaf
, sdref
);
1054 ret
= add_direct_ref(fs_info
, preftrees
, 0,
1055 key
.offset
, bytenr
, count
,
1059 case BTRFS_TREE_BLOCK_REF_KEY
:
1060 /* NORMAL INDIRECT METADATA backref */
1061 ret
= add_indirect_ref(fs_info
, preftrees
, key
.offset
,
1062 NULL
, info_level
+ 1, bytenr
,
1065 case BTRFS_EXTENT_DATA_REF_KEY
: {
1066 /* NORMAL INDIRECT DATA backref */
1067 struct btrfs_extent_data_ref
*dref
;
1071 dref
= btrfs_item_ptr(leaf
, slot
,
1072 struct btrfs_extent_data_ref
);
1073 count
= btrfs_extent_data_ref_count(leaf
, dref
);
1074 key
.objectid
= btrfs_extent_data_ref_objectid(leaf
,
1076 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1077 key
.offset
= btrfs_extent_data_ref_offset(leaf
, dref
);
1079 if (sc
&& sc
->inum
&& key
.objectid
!= sc
->inum
) {
1080 ret
= BACKREF_FOUND_SHARED
;
1084 root
= btrfs_extent_data_ref_root(leaf
, dref
);
1085 ret
= add_indirect_ref(fs_info
, preftrees
, root
,
1086 &key
, 0, bytenr
, count
,
1102 * this adds all existing backrefs (inline backrefs, backrefs and delayed
1103 * refs) for the given bytenr to the refs list, merges duplicates and resolves
1104 * indirect refs to their parent bytenr.
1105 * When roots are found, they're added to the roots list
1107 * If time_seq is set to SEQ_LAST, it will not search delayed_refs, and behave
1108 * much like trans == NULL case, the difference only lies in it will not
1110 * The special case is for qgroup to search roots in commit_transaction().
1112 * @sc - if !NULL, then immediately return BACKREF_FOUND_SHARED when a
1113 * shared extent is detected.
1115 * Otherwise this returns 0 for success and <0 for an error.
1117 * If ignore_offset is set to false, only extent refs whose offsets match
1118 * extent_item_pos are returned. If true, every extent ref is returned
1119 * and extent_item_pos is ignored.
1121 * FIXME some caching might speed things up
1123 static int find_parent_nodes(struct btrfs_trans_handle
*trans
,
1124 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1125 u64 time_seq
, struct ulist
*refs
,
1126 struct ulist
*roots
, const u64
*extent_item_pos
,
1127 struct share_check
*sc
, bool ignore_offset
)
1129 struct btrfs_key key
;
1130 struct btrfs_path
*path
;
1131 struct btrfs_delayed_ref_root
*delayed_refs
= NULL
;
1132 struct btrfs_delayed_ref_head
*head
;
1135 struct prelim_ref
*ref
;
1136 struct rb_node
*node
;
1137 struct extent_inode_elem
*eie
= NULL
;
1138 /* total of both direct AND indirect refs! */
1140 struct preftrees preftrees
= {
1141 .direct
= PREFTREE_INIT
,
1142 .indirect
= PREFTREE_INIT
,
1143 .indirect_missing_keys
= PREFTREE_INIT
1146 key
.objectid
= bytenr
;
1147 key
.offset
= (u64
)-1;
1148 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1149 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1151 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1153 path
= btrfs_alloc_path();
1157 path
->search_commit_root
= 1;
1158 path
->skip_locking
= 1;
1161 if (time_seq
== SEQ_LAST
)
1162 path
->skip_locking
= 1;
1165 * grab both a lock on the path and a lock on the delayed ref head.
1166 * We need both to get a consistent picture of how the refs look
1167 * at a specified point in time
1172 ret
= btrfs_search_slot(trans
, fs_info
->extent_root
, &key
, path
, 0, 0);
1177 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1178 if (trans
&& likely(trans
->type
!= __TRANS_DUMMY
) &&
1179 time_seq
!= SEQ_LAST
) {
1181 if (trans
&& time_seq
!= SEQ_LAST
) {
1184 * look if there are updates for this ref queued and lock the
1187 delayed_refs
= &trans
->transaction
->delayed_refs
;
1188 spin_lock(&delayed_refs
->lock
);
1189 head
= btrfs_find_delayed_ref_head(delayed_refs
, bytenr
);
1191 if (!mutex_trylock(&head
->mutex
)) {
1192 refcount_inc(&head
->refs
);
1193 spin_unlock(&delayed_refs
->lock
);
1195 btrfs_release_path(path
);
1198 * Mutex was contended, block until it's
1199 * released and try again
1201 mutex_lock(&head
->mutex
);
1202 mutex_unlock(&head
->mutex
);
1203 btrfs_put_delayed_ref_head(head
);
1206 spin_unlock(&delayed_refs
->lock
);
1207 ret
= add_delayed_refs(fs_info
, head
, time_seq
,
1208 &preftrees
, &total_refs
, sc
);
1209 mutex_unlock(&head
->mutex
);
1213 spin_unlock(&delayed_refs
->lock
);
1217 if (path
->slots
[0]) {
1218 struct extent_buffer
*leaf
;
1222 leaf
= path
->nodes
[0];
1223 slot
= path
->slots
[0];
1224 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
1225 if (key
.objectid
== bytenr
&&
1226 (key
.type
== BTRFS_EXTENT_ITEM_KEY
||
1227 key
.type
== BTRFS_METADATA_ITEM_KEY
)) {
1228 ret
= add_inline_refs(fs_info
, path
, bytenr
,
1229 &info_level
, &preftrees
,
1233 ret
= add_keyed_refs(fs_info
, path
, bytenr
, info_level
,
1240 btrfs_release_path(path
);
1242 ret
= add_missing_keys(fs_info
, &preftrees
);
1246 WARN_ON(!RB_EMPTY_ROOT(&preftrees
.indirect_missing_keys
.root
));
1248 ret
= resolve_indirect_refs(fs_info
, path
, time_seq
, &preftrees
,
1249 extent_item_pos
, total_refs
, sc
, ignore_offset
);
1253 WARN_ON(!RB_EMPTY_ROOT(&preftrees
.indirect
.root
));
1256 * This walks the tree of merged and resolved refs. Tree blocks are
1257 * read in as needed. Unique entries are added to the ulist, and
1258 * the list of found roots is updated.
1260 * We release the entire tree in one go before returning.
1262 node
= rb_first(&preftrees
.direct
.root
);
1264 ref
= rb_entry(node
, struct prelim_ref
, rbnode
);
1265 node
= rb_next(&ref
->rbnode
);
1266 WARN_ON(ref
->count
< 0);
1267 if (roots
&& ref
->count
&& ref
->root_id
&& ref
->parent
== 0) {
1268 if (sc
&& sc
->root_objectid
&&
1269 ref
->root_id
!= sc
->root_objectid
) {
1270 ret
= BACKREF_FOUND_SHARED
;
1274 /* no parent == root of tree */
1275 ret
= ulist_add(roots
, ref
->root_id
, 0, GFP_NOFS
);
1279 if (ref
->count
&& ref
->parent
) {
1280 if (extent_item_pos
&& !ref
->inode_list
&&
1282 struct extent_buffer
*eb
;
1284 eb
= read_tree_block(fs_info
, ref
->parent
, 0);
1288 } else if (!extent_buffer_uptodate(eb
)) {
1289 free_extent_buffer(eb
);
1293 btrfs_tree_read_lock(eb
);
1294 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1295 ret
= find_extent_in_eb(eb
, bytenr
,
1296 *extent_item_pos
, &eie
, ignore_offset
);
1297 btrfs_tree_read_unlock_blocking(eb
);
1298 free_extent_buffer(eb
);
1301 ref
->inode_list
= eie
;
1303 ret
= ulist_add_merge_ptr(refs
, ref
->parent
,
1305 (void **)&eie
, GFP_NOFS
);
1308 if (!ret
&& extent_item_pos
) {
1310 * we've recorded that parent, so we must extend
1311 * its inode list here
1316 eie
->next
= ref
->inode_list
;
1324 btrfs_free_path(path
);
1326 prelim_release(&preftrees
.direct
);
1327 prelim_release(&preftrees
.indirect
);
1328 prelim_release(&preftrees
.indirect_missing_keys
);
1331 free_inode_elem_list(eie
);
1335 static void free_leaf_list(struct ulist
*blocks
)
1337 struct ulist_node
*node
= NULL
;
1338 struct extent_inode_elem
*eie
;
1339 struct ulist_iterator uiter
;
1341 ULIST_ITER_INIT(&uiter
);
1342 while ((node
= ulist_next(blocks
, &uiter
))) {
1345 eie
= unode_aux_to_inode_list(node
);
1346 free_inode_elem_list(eie
);
1354 * Finds all leafs with a reference to the specified combination of bytenr and
1355 * offset. key_list_head will point to a list of corresponding keys (caller must
1356 * free each list element). The leafs will be stored in the leafs ulist, which
1357 * must be freed with ulist_free.
1359 * returns 0 on success, <0 on error
1361 static int btrfs_find_all_leafs(struct btrfs_trans_handle
*trans
,
1362 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1363 u64 time_seq
, struct ulist
**leafs
,
1364 const u64
*extent_item_pos
, bool ignore_offset
)
1368 *leafs
= ulist_alloc(GFP_NOFS
);
1372 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, time_seq
,
1373 *leafs
, NULL
, extent_item_pos
, NULL
, ignore_offset
);
1374 if (ret
< 0 && ret
!= -ENOENT
) {
1375 free_leaf_list(*leafs
);
1383 * walk all backrefs for a given extent to find all roots that reference this
1384 * extent. Walking a backref means finding all extents that reference this
1385 * extent and in turn walk the backrefs of those, too. Naturally this is a
1386 * recursive process, but here it is implemented in an iterative fashion: We
1387 * find all referencing extents for the extent in question and put them on a
1388 * list. In turn, we find all referencing extents for those, further appending
1389 * to the list. The way we iterate the list allows adding more elements after
1390 * the current while iterating. The process stops when we reach the end of the
1391 * list. Found roots are added to the roots list.
1393 * returns 0 on success, < 0 on error.
1395 static int btrfs_find_all_roots_safe(struct btrfs_trans_handle
*trans
,
1396 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1397 u64 time_seq
, struct ulist
**roots
,
1401 struct ulist_node
*node
= NULL
;
1402 struct ulist_iterator uiter
;
1405 tmp
= ulist_alloc(GFP_NOFS
);
1408 *roots
= ulist_alloc(GFP_NOFS
);
1414 ULIST_ITER_INIT(&uiter
);
1416 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, time_seq
,
1417 tmp
, *roots
, NULL
, NULL
, ignore_offset
);
1418 if (ret
< 0 && ret
!= -ENOENT
) {
1423 node
= ulist_next(tmp
, &uiter
);
1434 int btrfs_find_all_roots(struct btrfs_trans_handle
*trans
,
1435 struct btrfs_fs_info
*fs_info
, u64 bytenr
,
1436 u64 time_seq
, struct ulist
**roots
,
1442 down_read(&fs_info
->commit_root_sem
);
1443 ret
= btrfs_find_all_roots_safe(trans
, fs_info
, bytenr
,
1444 time_seq
, roots
, ignore_offset
);
1446 up_read(&fs_info
->commit_root_sem
);
1451 * btrfs_check_shared - tell us whether an extent is shared
1453 * btrfs_check_shared uses the backref walking code but will short
1454 * circuit as soon as it finds a root or inode that doesn't match the
1455 * one passed in. This provides a significant performance benefit for
1456 * callers (such as fiemap) which want to know whether the extent is
1457 * shared but do not need a ref count.
1459 * This attempts to allocate a transaction in order to account for
1460 * delayed refs, but continues on even when the alloc fails.
1462 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1464 int btrfs_check_shared(struct btrfs_root
*root
, u64 inum
, u64 bytenr
)
1466 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1467 struct btrfs_trans_handle
*trans
;
1468 struct ulist
*tmp
= NULL
;
1469 struct ulist
*roots
= NULL
;
1470 struct ulist_iterator uiter
;
1471 struct ulist_node
*node
;
1472 struct seq_list elem
= SEQ_LIST_INIT(elem
);
1474 struct share_check shared
= {
1475 .root_objectid
= root
->objectid
,
1480 tmp
= ulist_alloc(GFP_NOFS
);
1481 roots
= ulist_alloc(GFP_NOFS
);
1482 if (!tmp
|| !roots
) {
1488 trans
= btrfs_join_transaction(root
);
1489 if (IS_ERR(trans
)) {
1491 down_read(&fs_info
->commit_root_sem
);
1493 btrfs_get_tree_mod_seq(fs_info
, &elem
);
1496 ULIST_ITER_INIT(&uiter
);
1498 ret
= find_parent_nodes(trans
, fs_info
, bytenr
, elem
.seq
, tmp
,
1499 roots
, NULL
, &shared
, false);
1500 if (ret
== BACKREF_FOUND_SHARED
) {
1501 /* this is the only condition under which we return 1 */
1505 if (ret
< 0 && ret
!= -ENOENT
)
1508 node
= ulist_next(tmp
, &uiter
);
1516 btrfs_put_tree_mod_seq(fs_info
, &elem
);
1517 btrfs_end_transaction(trans
);
1519 up_read(&fs_info
->commit_root_sem
);
1526 int btrfs_find_one_extref(struct btrfs_root
*root
, u64 inode_objectid
,
1527 u64 start_off
, struct btrfs_path
*path
,
1528 struct btrfs_inode_extref
**ret_extref
,
1532 struct btrfs_key key
;
1533 struct btrfs_key found_key
;
1534 struct btrfs_inode_extref
*extref
;
1535 const struct extent_buffer
*leaf
;
1538 key
.objectid
= inode_objectid
;
1539 key
.type
= BTRFS_INODE_EXTREF_KEY
;
1540 key
.offset
= start_off
;
1542 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1547 leaf
= path
->nodes
[0];
1548 slot
= path
->slots
[0];
1549 if (slot
>= btrfs_header_nritems(leaf
)) {
1551 * If the item at offset is not found,
1552 * btrfs_search_slot will point us to the slot
1553 * where it should be inserted. In our case
1554 * that will be the slot directly before the
1555 * next INODE_REF_KEY_V2 item. In the case
1556 * that we're pointing to the last slot in a
1557 * leaf, we must move one leaf over.
1559 ret
= btrfs_next_leaf(root
, path
);
1568 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
1571 * Check that we're still looking at an extended ref key for
1572 * this particular objectid. If we have different
1573 * objectid or type then there are no more to be found
1574 * in the tree and we can exit.
1577 if (found_key
.objectid
!= inode_objectid
)
1579 if (found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)
1583 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1584 extref
= (struct btrfs_inode_extref
*)ptr
;
1585 *ret_extref
= extref
;
1587 *found_off
= found_key
.offset
;
1595 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1596 * Elements of the path are separated by '/' and the path is guaranteed to be
1597 * 0-terminated. the path is only given within the current file system.
1598 * Therefore, it never starts with a '/'. the caller is responsible to provide
1599 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1600 * the start point of the resulting string is returned. this pointer is within
1602 * in case the path buffer would overflow, the pointer is decremented further
1603 * as if output was written to the buffer, though no more output is actually
1604 * generated. that way, the caller can determine how much space would be
1605 * required for the path to fit into the buffer. in that case, the returned
1606 * value will be smaller than dest. callers must check this!
1608 char *btrfs_ref_to_path(struct btrfs_root
*fs_root
, struct btrfs_path
*path
,
1609 u32 name_len
, unsigned long name_off
,
1610 struct extent_buffer
*eb_in
, u64 parent
,
1611 char *dest
, u32 size
)
1616 s64 bytes_left
= ((s64
)size
) - 1;
1617 struct extent_buffer
*eb
= eb_in
;
1618 struct btrfs_key found_key
;
1619 int leave_spinning
= path
->leave_spinning
;
1620 struct btrfs_inode_ref
*iref
;
1622 if (bytes_left
>= 0)
1623 dest
[bytes_left
] = '\0';
1625 path
->leave_spinning
= 1;
1627 bytes_left
-= name_len
;
1628 if (bytes_left
>= 0)
1629 read_extent_buffer(eb
, dest
+ bytes_left
,
1630 name_off
, name_len
);
1632 if (!path
->skip_locking
)
1633 btrfs_tree_read_unlock_blocking(eb
);
1634 free_extent_buffer(eb
);
1636 ret
= btrfs_find_item(fs_root
, path
, parent
, 0,
1637 BTRFS_INODE_REF_KEY
, &found_key
);
1643 next_inum
= found_key
.offset
;
1645 /* regular exit ahead */
1646 if (parent
== next_inum
)
1649 slot
= path
->slots
[0];
1650 eb
= path
->nodes
[0];
1651 /* make sure we can use eb after releasing the path */
1653 if (!path
->skip_locking
)
1654 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
1655 path
->nodes
[0] = NULL
;
1658 btrfs_release_path(path
);
1659 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
1661 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
1662 name_off
= (unsigned long)(iref
+ 1);
1666 if (bytes_left
>= 0)
1667 dest
[bytes_left
] = '/';
1670 btrfs_release_path(path
);
1671 path
->leave_spinning
= leave_spinning
;
1674 return ERR_PTR(ret
);
1676 return dest
+ bytes_left
;
1680 * this makes the path point to (logical EXTENT_ITEM *)
1681 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1682 * tree blocks and <0 on error.
1684 int extent_from_logical(struct btrfs_fs_info
*fs_info
, u64 logical
,
1685 struct btrfs_path
*path
, struct btrfs_key
*found_key
,
1692 const struct extent_buffer
*eb
;
1693 struct btrfs_extent_item
*ei
;
1694 struct btrfs_key key
;
1696 if (btrfs_fs_incompat(fs_info
, SKINNY_METADATA
))
1697 key
.type
= BTRFS_METADATA_ITEM_KEY
;
1699 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1700 key
.objectid
= logical
;
1701 key
.offset
= (u64
)-1;
1703 ret
= btrfs_search_slot(NULL
, fs_info
->extent_root
, &key
, path
, 0, 0);
1707 ret
= btrfs_previous_extent_item(fs_info
->extent_root
, path
, 0);
1713 btrfs_item_key_to_cpu(path
->nodes
[0], found_key
, path
->slots
[0]);
1714 if (found_key
->type
== BTRFS_METADATA_ITEM_KEY
)
1715 size
= fs_info
->nodesize
;
1716 else if (found_key
->type
== BTRFS_EXTENT_ITEM_KEY
)
1717 size
= found_key
->offset
;
1719 if (found_key
->objectid
> logical
||
1720 found_key
->objectid
+ size
<= logical
) {
1721 btrfs_debug(fs_info
,
1722 "logical %llu is not within any extent", logical
);
1726 eb
= path
->nodes
[0];
1727 item_size
= btrfs_item_size_nr(eb
, path
->slots
[0]);
1728 BUG_ON(item_size
< sizeof(*ei
));
1730 ei
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_extent_item
);
1731 flags
= btrfs_extent_flags(eb
, ei
);
1733 btrfs_debug(fs_info
,
1734 "logical %llu is at position %llu within the extent (%llu EXTENT_ITEM %llu) flags %#llx size %u",
1735 logical
, logical
- found_key
->objectid
, found_key
->objectid
,
1736 found_key
->offset
, flags
, item_size
);
1738 WARN_ON(!flags_ret
);
1740 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1741 *flags_ret
= BTRFS_EXTENT_FLAG_TREE_BLOCK
;
1742 else if (flags
& BTRFS_EXTENT_FLAG_DATA
)
1743 *flags_ret
= BTRFS_EXTENT_FLAG_DATA
;
1753 * helper function to iterate extent inline refs. ptr must point to a 0 value
1754 * for the first call and may be modified. it is used to track state.
1755 * if more refs exist, 0 is returned and the next call to
1756 * get_extent_inline_ref must pass the modified ptr parameter to get the
1757 * next ref. after the last ref was processed, 1 is returned.
1758 * returns <0 on error
1760 static int get_extent_inline_ref(unsigned long *ptr
,
1761 const struct extent_buffer
*eb
,
1762 const struct btrfs_key
*key
,
1763 const struct btrfs_extent_item
*ei
,
1765 struct btrfs_extent_inline_ref
**out_eiref
,
1770 struct btrfs_tree_block_info
*info
;
1774 flags
= btrfs_extent_flags(eb
, ei
);
1775 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1776 if (key
->type
== BTRFS_METADATA_ITEM_KEY
) {
1777 /* a skinny metadata extent */
1779 (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1781 WARN_ON(key
->type
!= BTRFS_EXTENT_ITEM_KEY
);
1782 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1784 (struct btrfs_extent_inline_ref
*)(info
+ 1);
1787 *out_eiref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
1789 *ptr
= (unsigned long)*out_eiref
;
1790 if ((unsigned long)(*ptr
) >= (unsigned long)ei
+ item_size
)
1794 end
= (unsigned long)ei
+ item_size
;
1795 *out_eiref
= (struct btrfs_extent_inline_ref
*)(*ptr
);
1796 *out_type
= btrfs_get_extent_inline_ref_type(eb
, *out_eiref
,
1797 BTRFS_REF_TYPE_ANY
);
1798 if (*out_type
== BTRFS_REF_TYPE_INVALID
)
1801 *ptr
+= btrfs_extent_inline_ref_size(*out_type
);
1802 WARN_ON(*ptr
> end
);
1804 return 1; /* last */
1810 * reads the tree block backref for an extent. tree level and root are returned
1811 * through out_level and out_root. ptr must point to a 0 value for the first
1812 * call and may be modified (see get_extent_inline_ref comment).
1813 * returns 0 if data was provided, 1 if there was no more data to provide or
1816 int tree_backref_for_extent(unsigned long *ptr
, struct extent_buffer
*eb
,
1817 struct btrfs_key
*key
, struct btrfs_extent_item
*ei
,
1818 u32 item_size
, u64
*out_root
, u8
*out_level
)
1822 struct btrfs_extent_inline_ref
*eiref
;
1824 if (*ptr
== (unsigned long)-1)
1828 ret
= get_extent_inline_ref(ptr
, eb
, key
, ei
, item_size
,
1833 if (type
== BTRFS_TREE_BLOCK_REF_KEY
||
1834 type
== BTRFS_SHARED_BLOCK_REF_KEY
)
1841 /* we can treat both ref types equally here */
1842 *out_root
= btrfs_extent_inline_ref_offset(eb
, eiref
);
1844 if (key
->type
== BTRFS_EXTENT_ITEM_KEY
) {
1845 struct btrfs_tree_block_info
*info
;
1847 info
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1848 *out_level
= btrfs_tree_block_level(eb
, info
);
1850 ASSERT(key
->type
== BTRFS_METADATA_ITEM_KEY
);
1851 *out_level
= (u8
)key
->offset
;
1855 *ptr
= (unsigned long)-1;
1860 static int iterate_leaf_refs(struct btrfs_fs_info
*fs_info
,
1861 struct extent_inode_elem
*inode_list
,
1862 u64 root
, u64 extent_item_objectid
,
1863 iterate_extent_inodes_t
*iterate
, void *ctx
)
1865 struct extent_inode_elem
*eie
;
1868 for (eie
= inode_list
; eie
; eie
= eie
->next
) {
1869 btrfs_debug(fs_info
,
1870 "ref for %llu resolved, key (%llu EXTEND_DATA %llu), root %llu",
1871 extent_item_objectid
, eie
->inum
,
1873 ret
= iterate(eie
->inum
, eie
->offset
, root
, ctx
);
1875 btrfs_debug(fs_info
,
1876 "stopping iteration for %llu due to ret=%d",
1877 extent_item_objectid
, ret
);
1886 * calls iterate() for every inode that references the extent identified by
1887 * the given parameters.
1888 * when the iterator function returns a non-zero value, iteration stops.
1890 int iterate_extent_inodes(struct btrfs_fs_info
*fs_info
,
1891 u64 extent_item_objectid
, u64 extent_item_pos
,
1892 int search_commit_root
,
1893 iterate_extent_inodes_t
*iterate
, void *ctx
,
1897 struct btrfs_trans_handle
*trans
= NULL
;
1898 struct ulist
*refs
= NULL
;
1899 struct ulist
*roots
= NULL
;
1900 struct ulist_node
*ref_node
= NULL
;
1901 struct ulist_node
*root_node
= NULL
;
1902 struct seq_list tree_mod_seq_elem
= SEQ_LIST_INIT(tree_mod_seq_elem
);
1903 struct ulist_iterator ref_uiter
;
1904 struct ulist_iterator root_uiter
;
1906 btrfs_debug(fs_info
, "resolving all inodes for extent %llu",
1907 extent_item_objectid
);
1909 if (!search_commit_root
) {
1910 trans
= btrfs_join_transaction(fs_info
->extent_root
);
1912 return PTR_ERR(trans
);
1913 btrfs_get_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1915 down_read(&fs_info
->commit_root_sem
);
1918 ret
= btrfs_find_all_leafs(trans
, fs_info
, extent_item_objectid
,
1919 tree_mod_seq_elem
.seq
, &refs
,
1920 &extent_item_pos
, ignore_offset
);
1924 ULIST_ITER_INIT(&ref_uiter
);
1925 while (!ret
&& (ref_node
= ulist_next(refs
, &ref_uiter
))) {
1926 ret
= btrfs_find_all_roots_safe(trans
, fs_info
, ref_node
->val
,
1927 tree_mod_seq_elem
.seq
, &roots
,
1931 ULIST_ITER_INIT(&root_uiter
);
1932 while (!ret
&& (root_node
= ulist_next(roots
, &root_uiter
))) {
1933 btrfs_debug(fs_info
,
1934 "root %llu references leaf %llu, data list %#llx",
1935 root_node
->val
, ref_node
->val
,
1937 ret
= iterate_leaf_refs(fs_info
,
1938 (struct extent_inode_elem
*)
1939 (uintptr_t)ref_node
->aux
,
1941 extent_item_objectid
,
1947 free_leaf_list(refs
);
1949 if (!search_commit_root
) {
1950 btrfs_put_tree_mod_seq(fs_info
, &tree_mod_seq_elem
);
1951 btrfs_end_transaction(trans
);
1953 up_read(&fs_info
->commit_root_sem
);
1959 int iterate_inodes_from_logical(u64 logical
, struct btrfs_fs_info
*fs_info
,
1960 struct btrfs_path
*path
,
1961 iterate_extent_inodes_t
*iterate
, void *ctx
,
1965 u64 extent_item_pos
;
1967 struct btrfs_key found_key
;
1968 int search_commit_root
= path
->search_commit_root
;
1970 ret
= extent_from_logical(fs_info
, logical
, path
, &found_key
, &flags
);
1971 btrfs_release_path(path
);
1974 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
)
1977 extent_item_pos
= logical
- found_key
.objectid
;
1978 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1979 extent_item_pos
, search_commit_root
,
1980 iterate
, ctx
, ignore_offset
);
1985 typedef int (iterate_irefs_t
)(u64 parent
, u32 name_len
, unsigned long name_off
,
1986 struct extent_buffer
*eb
, void *ctx
);
1988 static int iterate_inode_refs(u64 inum
, struct btrfs_root
*fs_root
,
1989 struct btrfs_path
*path
,
1990 iterate_irefs_t
*iterate
, void *ctx
)
1999 struct extent_buffer
*eb
;
2000 struct btrfs_item
*item
;
2001 struct btrfs_inode_ref
*iref
;
2002 struct btrfs_key found_key
;
2005 ret
= btrfs_find_item(fs_root
, path
, inum
,
2006 parent
? parent
+ 1 : 0, BTRFS_INODE_REF_KEY
,
2012 ret
= found
? 0 : -ENOENT
;
2017 parent
= found_key
.offset
;
2018 slot
= path
->slots
[0];
2019 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
2024 extent_buffer_get(eb
);
2025 btrfs_tree_read_lock(eb
);
2026 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
2027 btrfs_release_path(path
);
2029 item
= btrfs_item_nr(slot
);
2030 iref
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_ref
);
2032 for (cur
= 0; cur
< btrfs_item_size(eb
, item
); cur
+= len
) {
2033 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
2034 /* path must be released before calling iterate()! */
2035 btrfs_debug(fs_root
->fs_info
,
2036 "following ref at offset %u for inode %llu in tree %llu",
2037 cur
, found_key
.objectid
, fs_root
->objectid
);
2038 ret
= iterate(parent
, name_len
,
2039 (unsigned long)(iref
+ 1), eb
, ctx
);
2042 len
= sizeof(*iref
) + name_len
;
2043 iref
= (struct btrfs_inode_ref
*)((char *)iref
+ len
);
2045 btrfs_tree_read_unlock_blocking(eb
);
2046 free_extent_buffer(eb
);
2049 btrfs_release_path(path
);
2054 static int iterate_inode_extrefs(u64 inum
, struct btrfs_root
*fs_root
,
2055 struct btrfs_path
*path
,
2056 iterate_irefs_t
*iterate
, void *ctx
)
2063 struct extent_buffer
*eb
;
2064 struct btrfs_inode_extref
*extref
;
2070 ret
= btrfs_find_one_extref(fs_root
, inum
, offset
, path
, &extref
,
2075 ret
= found
? 0 : -ENOENT
;
2080 slot
= path
->slots
[0];
2081 eb
= btrfs_clone_extent_buffer(path
->nodes
[0]);
2086 extent_buffer_get(eb
);
2088 btrfs_tree_read_lock(eb
);
2089 btrfs_set_lock_blocking_rw(eb
, BTRFS_READ_LOCK
);
2090 btrfs_release_path(path
);
2092 item_size
= btrfs_item_size_nr(eb
, slot
);
2093 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2096 while (cur_offset
< item_size
) {
2099 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur_offset
);
2100 parent
= btrfs_inode_extref_parent(eb
, extref
);
2101 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
2102 ret
= iterate(parent
, name_len
,
2103 (unsigned long)&extref
->name
, eb
, ctx
);
2107 cur_offset
+= btrfs_inode_extref_name_len(eb
, extref
);
2108 cur_offset
+= sizeof(*extref
);
2110 btrfs_tree_read_unlock_blocking(eb
);
2111 free_extent_buffer(eb
);
2116 btrfs_release_path(path
);
2121 static int iterate_irefs(u64 inum
, struct btrfs_root
*fs_root
,
2122 struct btrfs_path
*path
, iterate_irefs_t
*iterate
,
2128 ret
= iterate_inode_refs(inum
, fs_root
, path
, iterate
, ctx
);
2131 else if (ret
!= -ENOENT
)
2134 ret
= iterate_inode_extrefs(inum
, fs_root
, path
, iterate
, ctx
);
2135 if (ret
== -ENOENT
&& found_refs
)
2142 * returns 0 if the path could be dumped (probably truncated)
2143 * returns <0 in case of an error
2145 static int inode_to_path(u64 inum
, u32 name_len
, unsigned long name_off
,
2146 struct extent_buffer
*eb
, void *ctx
)
2148 struct inode_fs_paths
*ipath
= ctx
;
2151 int i
= ipath
->fspath
->elem_cnt
;
2152 const int s_ptr
= sizeof(char *);
2155 bytes_left
= ipath
->fspath
->bytes_left
> s_ptr
?
2156 ipath
->fspath
->bytes_left
- s_ptr
: 0;
2158 fspath_min
= (char *)ipath
->fspath
->val
+ (i
+ 1) * s_ptr
;
2159 fspath
= btrfs_ref_to_path(ipath
->fs_root
, ipath
->btrfs_path
, name_len
,
2160 name_off
, eb
, inum
, fspath_min
, bytes_left
);
2162 return PTR_ERR(fspath
);
2164 if (fspath
> fspath_min
) {
2165 ipath
->fspath
->val
[i
] = (u64
)(unsigned long)fspath
;
2166 ++ipath
->fspath
->elem_cnt
;
2167 ipath
->fspath
->bytes_left
= fspath
- fspath_min
;
2169 ++ipath
->fspath
->elem_missed
;
2170 ipath
->fspath
->bytes_missing
+= fspath_min
- fspath
;
2171 ipath
->fspath
->bytes_left
= 0;
2178 * this dumps all file system paths to the inode into the ipath struct, provided
2179 * is has been created large enough. each path is zero-terminated and accessed
2180 * from ipath->fspath->val[i].
2181 * when it returns, there are ipath->fspath->elem_cnt number of paths available
2182 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
2183 * number of missed paths is recorded in ipath->fspath->elem_missed, otherwise,
2184 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
2185 * have been needed to return all paths.
2187 int paths_from_inode(u64 inum
, struct inode_fs_paths
*ipath
)
2189 return iterate_irefs(inum
, ipath
->fs_root
, ipath
->btrfs_path
,
2190 inode_to_path
, ipath
);
2193 struct btrfs_data_container
*init_data_container(u32 total_bytes
)
2195 struct btrfs_data_container
*data
;
2198 alloc_bytes
= max_t(size_t, total_bytes
, sizeof(*data
));
2199 data
= kvmalloc(alloc_bytes
, GFP_KERNEL
);
2201 return ERR_PTR(-ENOMEM
);
2203 if (total_bytes
>= sizeof(*data
)) {
2204 data
->bytes_left
= total_bytes
- sizeof(*data
);
2205 data
->bytes_missing
= 0;
2207 data
->bytes_missing
= sizeof(*data
) - total_bytes
;
2208 data
->bytes_left
= 0;
2212 data
->elem_missed
= 0;
2218 * allocates space to return multiple file system paths for an inode.
2219 * total_bytes to allocate are passed, note that space usable for actual path
2220 * information will be total_bytes - sizeof(struct inode_fs_paths).
2221 * the returned pointer must be freed with free_ipath() in the end.
2223 struct inode_fs_paths
*init_ipath(s32 total_bytes
, struct btrfs_root
*fs_root
,
2224 struct btrfs_path
*path
)
2226 struct inode_fs_paths
*ifp
;
2227 struct btrfs_data_container
*fspath
;
2229 fspath
= init_data_container(total_bytes
);
2231 return (void *)fspath
;
2233 ifp
= kmalloc(sizeof(*ifp
), GFP_KERNEL
);
2236 return ERR_PTR(-ENOMEM
);
2239 ifp
->btrfs_path
= path
;
2240 ifp
->fspath
= fspath
;
2241 ifp
->fs_root
= fs_root
;
2246 void free_ipath(struct inode_fs_paths
*ipath
)
2250 kvfree(ipath
->fspath
);