2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/compat.h>
34 #include <linux/bit_spinlock.h>
35 #include <linux/xattr.h>
36 #include <linux/posix_acl.h>
37 #include <linux/falloc.h>
38 #include <linux/slab.h>
39 #include <linux/ratelimit.h>
40 #include <linux/mount.h>
41 #include <linux/btrfs.h>
42 #include <linux/blkdev.h>
43 #include <linux/posix_acl_xattr.h>
44 #include <linux/uio.h>
45 #include <linux/magic.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
65 struct btrfs_iget_args
{
66 struct btrfs_key
*location
;
67 struct btrfs_root
*root
;
70 struct btrfs_dio_data
{
72 u64 unsubmitted_oe_range_start
;
73 u64 unsubmitted_oe_range_end
;
77 static const struct inode_operations btrfs_dir_inode_operations
;
78 static const struct inode_operations btrfs_symlink_inode_operations
;
79 static const struct inode_operations btrfs_dir_ro_inode_operations
;
80 static const struct inode_operations btrfs_special_inode_operations
;
81 static const struct inode_operations btrfs_file_inode_operations
;
82 static const struct address_space_operations btrfs_aops
;
83 static const struct address_space_operations btrfs_symlink_aops
;
84 static const struct file_operations btrfs_dir_file_operations
;
85 static const struct extent_io_ops btrfs_extent_io_ops
;
87 static struct kmem_cache
*btrfs_inode_cachep
;
88 struct kmem_cache
*btrfs_trans_handle_cachep
;
89 struct kmem_cache
*btrfs_path_cachep
;
90 struct kmem_cache
*btrfs_free_space_cachep
;
93 static const unsigned char btrfs_type_by_mode
[S_IFMT
>> S_SHIFT
] = {
94 [S_IFREG
>> S_SHIFT
] = BTRFS_FT_REG_FILE
,
95 [S_IFDIR
>> S_SHIFT
] = BTRFS_FT_DIR
,
96 [S_IFCHR
>> S_SHIFT
] = BTRFS_FT_CHRDEV
,
97 [S_IFBLK
>> S_SHIFT
] = BTRFS_FT_BLKDEV
,
98 [S_IFIFO
>> S_SHIFT
] = BTRFS_FT_FIFO
,
99 [S_IFSOCK
>> S_SHIFT
] = BTRFS_FT_SOCK
,
100 [S_IFLNK
>> S_SHIFT
] = BTRFS_FT_SYMLINK
,
103 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
);
104 static int btrfs_truncate(struct inode
*inode
);
105 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
);
106 static noinline
int cow_file_range(struct inode
*inode
,
107 struct page
*locked_page
,
108 u64 start
, u64 end
, u64 delalloc_end
,
109 int *page_started
, unsigned long *nr_written
,
110 int unlock
, struct btrfs_dedupe_hash
*hash
);
111 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
112 u64 orig_start
, u64 block_start
,
113 u64 block_len
, u64 orig_block_len
,
114 u64 ram_bytes
, int compress_type
,
117 static void __endio_write_update_ordered(struct inode
*inode
,
118 const u64 offset
, const u64 bytes
,
119 const bool uptodate
);
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
134 static inline void btrfs_cleanup_ordered_extents(struct inode
*inode
,
138 unsigned long index
= offset
>> PAGE_SHIFT
;
139 unsigned long end_index
= (offset
+ bytes
- 1) >> PAGE_SHIFT
;
142 while (index
<= end_index
) {
143 page
= find_get_page(inode
->i_mapping
, index
);
147 ClearPagePrivate2(page
);
150 return __endio_write_update_ordered(inode
, offset
+ PAGE_SIZE
,
151 bytes
- PAGE_SIZE
, false);
154 static int btrfs_dirty_inode(struct inode
*inode
);
156 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157 void btrfs_test_inode_set_ops(struct inode
*inode
)
159 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
163 static int btrfs_init_inode_security(struct btrfs_trans_handle
*trans
,
164 struct inode
*inode
, struct inode
*dir
,
165 const struct qstr
*qstr
)
169 err
= btrfs_init_acl(trans
, inode
, dir
);
171 err
= btrfs_xattr_security_init(trans
, inode
, dir
, qstr
);
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
180 static int insert_inline_extent(struct btrfs_trans_handle
*trans
,
181 struct btrfs_path
*path
, int extent_inserted
,
182 struct btrfs_root
*root
, struct inode
*inode
,
183 u64 start
, size_t size
, size_t compressed_size
,
185 struct page
**compressed_pages
)
187 struct extent_buffer
*leaf
;
188 struct page
*page
= NULL
;
191 struct btrfs_file_extent_item
*ei
;
193 size_t cur_size
= size
;
194 unsigned long offset
;
196 if (compressed_size
&& compressed_pages
)
197 cur_size
= compressed_size
;
199 inode_add_bytes(inode
, size
);
201 if (!extent_inserted
) {
202 struct btrfs_key key
;
205 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
207 key
.type
= BTRFS_EXTENT_DATA_KEY
;
209 datasize
= btrfs_file_extent_calc_inline_size(cur_size
);
210 path
->leave_spinning
= 1;
211 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
216 leaf
= path
->nodes
[0];
217 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
218 struct btrfs_file_extent_item
);
219 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
220 btrfs_set_file_extent_type(leaf
, ei
, BTRFS_FILE_EXTENT_INLINE
);
221 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
222 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
223 btrfs_set_file_extent_ram_bytes(leaf
, ei
, size
);
224 ptr
= btrfs_file_extent_inline_start(ei
);
226 if (compress_type
!= BTRFS_COMPRESS_NONE
) {
229 while (compressed_size
> 0) {
230 cpage
= compressed_pages
[i
];
231 cur_size
= min_t(unsigned long, compressed_size
,
234 kaddr
= kmap_atomic(cpage
);
235 write_extent_buffer(leaf
, kaddr
, ptr
, cur_size
);
236 kunmap_atomic(kaddr
);
240 compressed_size
-= cur_size
;
242 btrfs_set_file_extent_compression(leaf
, ei
,
245 page
= find_get_page(inode
->i_mapping
,
246 start
>> PAGE_SHIFT
);
247 btrfs_set_file_extent_compression(leaf
, ei
, 0);
248 kaddr
= kmap_atomic(page
);
249 offset
= start
& (PAGE_SIZE
- 1);
250 write_extent_buffer(leaf
, kaddr
+ offset
, ptr
, size
);
251 kunmap_atomic(kaddr
);
254 btrfs_mark_buffer_dirty(leaf
);
255 btrfs_release_path(path
);
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
266 BTRFS_I(inode
)->disk_i_size
= inode
->i_size
;
267 ret
= btrfs_update_inode(trans
, root
, inode
);
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
279 static noinline
int cow_file_range_inline(struct btrfs_root
*root
,
280 struct inode
*inode
, u64 start
,
281 u64 end
, size_t compressed_size
,
283 struct page
**compressed_pages
)
285 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
286 struct btrfs_trans_handle
*trans
;
287 u64 isize
= i_size_read(inode
);
288 u64 actual_end
= min(end
+ 1, isize
);
289 u64 inline_len
= actual_end
- start
;
290 u64 aligned_end
= ALIGN(end
, fs_info
->sectorsize
);
291 u64 data_len
= inline_len
;
293 struct btrfs_path
*path
;
294 int extent_inserted
= 0;
295 u32 extent_item_size
;
298 data_len
= compressed_size
;
301 actual_end
> fs_info
->sectorsize
||
302 data_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
) ||
304 (actual_end
& (fs_info
->sectorsize
- 1)) == 0) ||
306 data_len
> fs_info
->max_inline
) {
310 path
= btrfs_alloc_path();
314 trans
= btrfs_join_transaction(root
);
316 btrfs_free_path(path
);
317 return PTR_ERR(trans
);
319 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
321 if (compressed_size
&& compressed_pages
)
322 extent_item_size
= btrfs_file_extent_calc_inline_size(
325 extent_item_size
= btrfs_file_extent_calc_inline_size(
328 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
,
329 start
, aligned_end
, NULL
,
330 1, 1, extent_item_size
, &extent_inserted
);
332 btrfs_abort_transaction(trans
, ret
);
336 if (isize
> actual_end
)
337 inline_len
= min_t(u64
, isize
, actual_end
);
338 ret
= insert_inline_extent(trans
, path
, extent_inserted
,
340 inline_len
, compressed_size
,
341 compress_type
, compressed_pages
);
342 if (ret
&& ret
!= -ENOSPC
) {
343 btrfs_abort_transaction(trans
, ret
);
345 } else if (ret
== -ENOSPC
) {
350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
351 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, aligned_end
- 1, 0);
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
359 btrfs_qgroup_free_data(inode
, NULL
, 0, PAGE_SIZE
);
360 btrfs_free_path(path
);
361 btrfs_end_transaction(trans
);
365 struct async_extent
{
370 unsigned long nr_pages
;
372 struct list_head list
;
377 struct btrfs_root
*root
;
378 struct page
*locked_page
;
381 unsigned int write_flags
;
382 struct list_head extents
;
383 struct btrfs_work work
;
386 static noinline
int add_async_extent(struct async_cow
*cow
,
387 u64 start
, u64 ram_size
,
390 unsigned long nr_pages
,
393 struct async_extent
*async_extent
;
395 async_extent
= kmalloc(sizeof(*async_extent
), GFP_NOFS
);
396 BUG_ON(!async_extent
); /* -ENOMEM */
397 async_extent
->start
= start
;
398 async_extent
->ram_size
= ram_size
;
399 async_extent
->compressed_size
= compressed_size
;
400 async_extent
->pages
= pages
;
401 async_extent
->nr_pages
= nr_pages
;
402 async_extent
->compress_type
= compress_type
;
403 list_add_tail(&async_extent
->list
, &cow
->extents
);
407 static inline int inode_need_compress(struct inode
*inode
, u64 start
, u64 end
)
409 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
412 if (btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
415 if (BTRFS_I(inode
)->defrag_compress
)
417 /* bad compression ratios */
418 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
)
420 if (btrfs_test_opt(fs_info
, COMPRESS
) ||
421 BTRFS_I(inode
)->flags
& BTRFS_INODE_COMPRESS
||
422 BTRFS_I(inode
)->prop_compress
)
423 return btrfs_compress_heuristic(inode
, start
, end
);
427 static inline void inode_should_defrag(struct btrfs_inode
*inode
,
428 u64 start
, u64 end
, u64 num_bytes
, u64 small_write
)
430 /* If this is a small write inside eof, kick off a defrag */
431 if (num_bytes
< small_write
&&
432 (start
> 0 || end
+ 1 < inode
->disk_i_size
))
433 btrfs_add_inode_defrag(NULL
, inode
);
437 * we create compressed extents in two phases. The first
438 * phase compresses a range of pages that have already been
439 * locked (both pages and state bits are locked).
441 * This is done inside an ordered work queue, and the compression
442 * is spread across many cpus. The actual IO submission is step
443 * two, and the ordered work queue takes care of making sure that
444 * happens in the same order things were put onto the queue by
445 * writepages and friends.
447 * If this code finds it can't get good compression, it puts an
448 * entry onto the work queue to write the uncompressed bytes. This
449 * makes sure that both compressed inodes and uncompressed inodes
450 * are written in the same order that the flusher thread sent them
453 static noinline
void compress_file_range(struct inode
*inode
,
454 struct page
*locked_page
,
456 struct async_cow
*async_cow
,
459 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
460 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
461 u64 blocksize
= fs_info
->sectorsize
;
463 u64 isize
= i_size_read(inode
);
465 struct page
**pages
= NULL
;
466 unsigned long nr_pages
;
467 unsigned long total_compressed
= 0;
468 unsigned long total_in
= 0;
471 int compress_type
= fs_info
->compress_type
;
474 inode_should_defrag(BTRFS_I(inode
), start
, end
, end
- start
+ 1,
477 actual_end
= min_t(u64
, isize
, end
+ 1);
480 nr_pages
= (end
>> PAGE_SHIFT
) - (start
>> PAGE_SHIFT
) + 1;
481 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED
% PAGE_SIZE
) != 0);
482 nr_pages
= min_t(unsigned long, nr_pages
,
483 BTRFS_MAX_COMPRESSED
/ PAGE_SIZE
);
486 * we don't want to send crud past the end of i_size through
487 * compression, that's just a waste of CPU time. So, if the
488 * end of the file is before the start of our current
489 * requested range of bytes, we bail out to the uncompressed
490 * cleanup code that can deal with all of this.
492 * It isn't really the fastest way to fix things, but this is a
493 * very uncommon corner.
495 if (actual_end
<= start
)
496 goto cleanup_and_bail_uncompressed
;
498 total_compressed
= actual_end
- start
;
501 * skip compression for a small file range(<=blocksize) that
502 * isn't an inline extent, since it doesn't save disk space at all.
504 if (total_compressed
<= blocksize
&&
505 (start
> 0 || end
+ 1 < BTRFS_I(inode
)->disk_i_size
))
506 goto cleanup_and_bail_uncompressed
;
508 total_compressed
= min_t(unsigned long, total_compressed
,
509 BTRFS_MAX_UNCOMPRESSED
);
514 * we do compression for mount -o compress and when the
515 * inode has not been flagged as nocompress. This flag can
516 * change at any time if we discover bad compression ratios.
518 if (inode_need_compress(inode
, start
, end
)) {
520 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_NOFS
);
522 /* just bail out to the uncompressed code */
526 if (BTRFS_I(inode
)->defrag_compress
)
527 compress_type
= BTRFS_I(inode
)->defrag_compress
;
528 else if (BTRFS_I(inode
)->prop_compress
)
529 compress_type
= BTRFS_I(inode
)->prop_compress
;
532 * we need to call clear_page_dirty_for_io on each
533 * page in the range. Otherwise applications with the file
534 * mmap'd can wander in and change the page contents while
535 * we are compressing them.
537 * If the compression fails for any reason, we set the pages
538 * dirty again later on.
540 extent_range_clear_dirty_for_io(inode
, start
, end
);
543 /* Compression level is applied here and only here */
544 ret
= btrfs_compress_pages(
545 compress_type
| (fs_info
->compress_level
<< 4),
546 inode
->i_mapping
, start
,
553 unsigned long offset
= total_compressed
&
555 struct page
*page
= pages
[nr_pages
- 1];
558 /* zero the tail end of the last page, we might be
559 * sending it down to disk
562 kaddr
= kmap_atomic(page
);
563 memset(kaddr
+ offset
, 0,
565 kunmap_atomic(kaddr
);
572 /* lets try to make an inline extent */
573 if (ret
|| total_in
< actual_end
) {
574 /* we didn't compress the entire range, try
575 * to make an uncompressed inline extent.
577 ret
= cow_file_range_inline(root
, inode
, start
, end
,
578 0, BTRFS_COMPRESS_NONE
, NULL
);
580 /* try making a compressed inline extent */
581 ret
= cow_file_range_inline(root
, inode
, start
, end
,
583 compress_type
, pages
);
586 unsigned long clear_flags
= EXTENT_DELALLOC
|
587 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
588 EXTENT_DO_ACCOUNTING
;
589 unsigned long page_error_op
;
591 page_error_op
= ret
< 0 ? PAGE_SET_ERROR
: 0;
594 * inline extent creation worked or returned error,
595 * we don't need to create any more async work items.
596 * Unlock and free up our temp pages.
598 * We use DO_ACCOUNTING here because we need the
599 * delalloc_release_metadata to be done _after_ we drop
600 * our outstanding extent for clearing delalloc for this
603 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
616 * we aren't doing an inline extent round the compressed size
617 * up to a block size boundary so the allocator does sane
620 total_compressed
= ALIGN(total_compressed
, blocksize
);
623 * one last check to make sure the compression is really a
624 * win, compare the page count read with the blocks on disk,
625 * compression must free at least one sector size
627 total_in
= ALIGN(total_in
, PAGE_SIZE
);
628 if (total_compressed
+ blocksize
<= total_in
) {
632 * The async work queues will take care of doing actual
633 * allocation on disk for these compressed pages, and
634 * will submit them to the elevator.
636 add_async_extent(async_cow
, start
, total_in
,
637 total_compressed
, pages
, nr_pages
,
640 if (start
+ total_in
< end
) {
651 * the compression code ran but failed to make things smaller,
652 * free any pages it allocated and our page pointer array
654 for (i
= 0; i
< nr_pages
; i
++) {
655 WARN_ON(pages
[i
]->mapping
);
660 total_compressed
= 0;
663 /* flag the file so we don't compress in the future */
664 if (!btrfs_test_opt(fs_info
, FORCE_COMPRESS
) &&
665 !(BTRFS_I(inode
)->prop_compress
)) {
666 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
669 cleanup_and_bail_uncompressed
:
671 * No compression, but we still need to write the pages in the file
672 * we've been given so far. redirty the locked page if it corresponds
673 * to our extent and set things up for the async work queue to run
674 * cow_file_range to do the normal delalloc dance.
676 if (page_offset(locked_page
) >= start
&&
677 page_offset(locked_page
) <= end
)
678 __set_page_dirty_nobuffers(locked_page
);
679 /* unlocked later on in the async handlers */
682 extent_range_redirty_for_io(inode
, start
, end
);
683 add_async_extent(async_cow
, start
, end
- start
+ 1, 0, NULL
, 0,
684 BTRFS_COMPRESS_NONE
);
690 for (i
= 0; i
< nr_pages
; i
++) {
691 WARN_ON(pages
[i
]->mapping
);
697 static void free_async_extent_pages(struct async_extent
*async_extent
)
701 if (!async_extent
->pages
)
704 for (i
= 0; i
< async_extent
->nr_pages
; i
++) {
705 WARN_ON(async_extent
->pages
[i
]->mapping
);
706 put_page(async_extent
->pages
[i
]);
708 kfree(async_extent
->pages
);
709 async_extent
->nr_pages
= 0;
710 async_extent
->pages
= NULL
;
714 * phase two of compressed writeback. This is the ordered portion
715 * of the code, which only gets called in the order the work was
716 * queued. We walk all the async extents created by compress_file_range
717 * and send them down to the disk.
719 static noinline
void submit_compressed_extents(struct inode
*inode
,
720 struct async_cow
*async_cow
)
722 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
723 struct async_extent
*async_extent
;
725 struct btrfs_key ins
;
726 struct extent_map
*em
;
727 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
728 struct extent_io_tree
*io_tree
;
732 while (!list_empty(&async_cow
->extents
)) {
733 async_extent
= list_entry(async_cow
->extents
.next
,
734 struct async_extent
, list
);
735 list_del(&async_extent
->list
);
737 io_tree
= &BTRFS_I(inode
)->io_tree
;
740 /* did the compression code fall back to uncompressed IO? */
741 if (!async_extent
->pages
) {
742 int page_started
= 0;
743 unsigned long nr_written
= 0;
745 lock_extent(io_tree
, async_extent
->start
,
746 async_extent
->start
+
747 async_extent
->ram_size
- 1);
749 /* allocate blocks */
750 ret
= cow_file_range(inode
, async_cow
->locked_page
,
752 async_extent
->start
+
753 async_extent
->ram_size
- 1,
754 async_extent
->start
+
755 async_extent
->ram_size
- 1,
756 &page_started
, &nr_written
, 0,
762 * if page_started, cow_file_range inserted an
763 * inline extent and took care of all the unlocking
764 * and IO for us. Otherwise, we need to submit
765 * all those pages down to the drive.
767 if (!page_started
&& !ret
)
768 extent_write_locked_range(io_tree
,
769 inode
, async_extent
->start
,
770 async_extent
->start
+
771 async_extent
->ram_size
- 1,
775 unlock_page(async_cow
->locked_page
);
781 lock_extent(io_tree
, async_extent
->start
,
782 async_extent
->start
+ async_extent
->ram_size
- 1);
784 ret
= btrfs_reserve_extent(root
, async_extent
->ram_size
,
785 async_extent
->compressed_size
,
786 async_extent
->compressed_size
,
787 0, alloc_hint
, &ins
, 1, 1);
789 free_async_extent_pages(async_extent
);
791 if (ret
== -ENOSPC
) {
792 unlock_extent(io_tree
, async_extent
->start
,
793 async_extent
->start
+
794 async_extent
->ram_size
- 1);
797 * we need to redirty the pages if we decide to
798 * fallback to uncompressed IO, otherwise we
799 * will not submit these pages down to lower
802 extent_range_redirty_for_io(inode
,
804 async_extent
->start
+
805 async_extent
->ram_size
- 1);
812 * here we're doing allocation and writeback of the
815 em
= create_io_em(inode
, async_extent
->start
,
816 async_extent
->ram_size
, /* len */
817 async_extent
->start
, /* orig_start */
818 ins
.objectid
, /* block_start */
819 ins
.offset
, /* block_len */
820 ins
.offset
, /* orig_block_len */
821 async_extent
->ram_size
, /* ram_bytes */
822 async_extent
->compress_type
,
823 BTRFS_ORDERED_COMPRESSED
);
825 /* ret value is not necessary due to void function */
826 goto out_free_reserve
;
829 ret
= btrfs_add_ordered_extent_compress(inode
,
832 async_extent
->ram_size
,
834 BTRFS_ORDERED_COMPRESSED
,
835 async_extent
->compress_type
);
837 btrfs_drop_extent_cache(BTRFS_I(inode
),
839 async_extent
->start
+
840 async_extent
->ram_size
- 1, 0);
841 goto out_free_reserve
;
843 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
846 * clear dirty, set writeback and unlock the pages.
848 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
849 async_extent
->start
+
850 async_extent
->ram_size
- 1,
851 async_extent
->start
+
852 async_extent
->ram_size
- 1,
853 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
,
854 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
856 if (btrfs_submit_compressed_write(inode
,
858 async_extent
->ram_size
,
860 ins
.offset
, async_extent
->pages
,
861 async_extent
->nr_pages
,
862 async_cow
->write_flags
)) {
863 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
864 struct page
*p
= async_extent
->pages
[0];
865 const u64 start
= async_extent
->start
;
866 const u64 end
= start
+ async_extent
->ram_size
- 1;
868 p
->mapping
= inode
->i_mapping
;
869 tree
->ops
->writepage_end_io_hook(p
, start
, end
,
872 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
876 free_async_extent_pages(async_extent
);
878 alloc_hint
= ins
.objectid
+ ins
.offset
;
884 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
885 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
887 extent_clear_unlock_delalloc(inode
, async_extent
->start
,
888 async_extent
->start
+
889 async_extent
->ram_size
- 1,
890 async_extent
->start
+
891 async_extent
->ram_size
- 1,
892 NULL
, EXTENT_LOCKED
| EXTENT_DELALLOC
|
893 EXTENT_DELALLOC_NEW
|
894 EXTENT_DEFRAG
| EXTENT_DO_ACCOUNTING
,
895 PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
|
896 PAGE_SET_WRITEBACK
| PAGE_END_WRITEBACK
|
898 free_async_extent_pages(async_extent
);
903 static u64
get_extent_allocation_hint(struct inode
*inode
, u64 start
,
906 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
907 struct extent_map
*em
;
910 read_lock(&em_tree
->lock
);
911 em
= search_extent_mapping(em_tree
, start
, num_bytes
);
914 * if block start isn't an actual block number then find the
915 * first block in this inode and use that as a hint. If that
916 * block is also bogus then just don't worry about it.
918 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
920 em
= search_extent_mapping(em_tree
, 0, 0);
921 if (em
&& em
->block_start
< EXTENT_MAP_LAST_BYTE
)
922 alloc_hint
= em
->block_start
;
926 alloc_hint
= em
->block_start
;
930 read_unlock(&em_tree
->lock
);
936 * when extent_io.c finds a delayed allocation range in the file,
937 * the call backs end up in this code. The basic idea is to
938 * allocate extents on disk for the range, and create ordered data structs
939 * in ram to track those extents.
941 * locked_page is the page that writepage had locked already. We use
942 * it to make sure we don't do extra locks or unlocks.
944 * *page_started is set to one if we unlock locked_page and do everything
945 * required to start IO on it. It may be clean and already done with
948 static noinline
int cow_file_range(struct inode
*inode
,
949 struct page
*locked_page
,
950 u64 start
, u64 end
, u64 delalloc_end
,
951 int *page_started
, unsigned long *nr_written
,
952 int unlock
, struct btrfs_dedupe_hash
*hash
)
954 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
955 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
958 unsigned long ram_size
;
960 u64 cur_alloc_size
= 0;
961 u64 blocksize
= fs_info
->sectorsize
;
962 struct btrfs_key ins
;
963 struct extent_map
*em
;
965 unsigned long page_ops
;
966 bool extent_reserved
= false;
969 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
975 num_bytes
= ALIGN(end
- start
+ 1, blocksize
);
976 num_bytes
= max(blocksize
, num_bytes
);
977 disk_num_bytes
= num_bytes
;
979 inode_should_defrag(BTRFS_I(inode
), start
, end
, num_bytes
, SZ_64K
);
982 /* lets try to make an inline extent */
983 ret
= cow_file_range_inline(root
, inode
, start
, end
, 0,
984 BTRFS_COMPRESS_NONE
, NULL
);
987 * We use DO_ACCOUNTING here because we need the
988 * delalloc_release_metadata to be run _after_ we drop
989 * our outstanding extent for clearing delalloc for this
992 extent_clear_unlock_delalloc(inode
, start
, end
,
994 EXTENT_LOCKED
| EXTENT_DELALLOC
|
995 EXTENT_DELALLOC_NEW
| EXTENT_DEFRAG
|
996 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
997 PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
999 *nr_written
= *nr_written
+
1000 (end
- start
+ PAGE_SIZE
) / PAGE_SIZE
;
1003 } else if (ret
< 0) {
1008 BUG_ON(disk_num_bytes
>
1009 btrfs_super_total_bytes(fs_info
->super_copy
));
1011 alloc_hint
= get_extent_allocation_hint(inode
, start
, num_bytes
);
1012 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1013 start
+ num_bytes
- 1, 0);
1015 while (disk_num_bytes
> 0) {
1016 cur_alloc_size
= disk_num_bytes
;
1017 ret
= btrfs_reserve_extent(root
, cur_alloc_size
, cur_alloc_size
,
1018 fs_info
->sectorsize
, 0, alloc_hint
,
1022 cur_alloc_size
= ins
.offset
;
1023 extent_reserved
= true;
1025 ram_size
= ins
.offset
;
1026 em
= create_io_em(inode
, start
, ins
.offset
, /* len */
1027 start
, /* orig_start */
1028 ins
.objectid
, /* block_start */
1029 ins
.offset
, /* block_len */
1030 ins
.offset
, /* orig_block_len */
1031 ram_size
, /* ram_bytes */
1032 BTRFS_COMPRESS_NONE
, /* compress_type */
1033 BTRFS_ORDERED_REGULAR
/* type */);
1036 free_extent_map(em
);
1038 ret
= btrfs_add_ordered_extent(inode
, start
, ins
.objectid
,
1039 ram_size
, cur_alloc_size
, 0);
1041 goto out_drop_extent_cache
;
1043 if (root
->root_key
.objectid
==
1044 BTRFS_DATA_RELOC_TREE_OBJECTID
) {
1045 ret
= btrfs_reloc_clone_csums(inode
, start
,
1048 * Only drop cache here, and process as normal.
1050 * We must not allow extent_clear_unlock_delalloc()
1051 * at out_unlock label to free meta of this ordered
1052 * extent, as its meta should be freed by
1053 * btrfs_finish_ordered_io().
1055 * So we must continue until @start is increased to
1056 * skip current ordered extent.
1059 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
1060 start
+ ram_size
- 1, 0);
1063 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1065 /* we're not doing compressed IO, don't unlock the first
1066 * page (which the caller expects to stay locked), don't
1067 * clear any dirty bits and don't set any writeback bits
1069 * Do set the Private2 bit so we know this page was properly
1070 * setup for writepage
1072 page_ops
= unlock
? PAGE_UNLOCK
: 0;
1073 page_ops
|= PAGE_SET_PRIVATE2
;
1075 extent_clear_unlock_delalloc(inode
, start
,
1076 start
+ ram_size
- 1,
1077 delalloc_end
, locked_page
,
1078 EXTENT_LOCKED
| EXTENT_DELALLOC
,
1080 if (disk_num_bytes
< cur_alloc_size
)
1083 disk_num_bytes
-= cur_alloc_size
;
1084 num_bytes
-= cur_alloc_size
;
1085 alloc_hint
= ins
.objectid
+ ins
.offset
;
1086 start
+= cur_alloc_size
;
1087 extent_reserved
= false;
1090 * btrfs_reloc_clone_csums() error, since start is increased
1091 * extent_clear_unlock_delalloc() at out_unlock label won't
1092 * free metadata of current ordered extent, we're OK to exit.
1100 out_drop_extent_cache
:
1101 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, start
+ ram_size
- 1, 0);
1103 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
1104 btrfs_free_reserved_extent(fs_info
, ins
.objectid
, ins
.offset
, 1);
1106 clear_bits
= EXTENT_LOCKED
| EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
1107 EXTENT_DEFRAG
| EXTENT_CLEAR_META_RESV
;
1108 page_ops
= PAGE_UNLOCK
| PAGE_CLEAR_DIRTY
| PAGE_SET_WRITEBACK
|
1111 * If we reserved an extent for our delalloc range (or a subrange) and
1112 * failed to create the respective ordered extent, then it means that
1113 * when we reserved the extent we decremented the extent's size from
1114 * the data space_info's bytes_may_use counter and incremented the
1115 * space_info's bytes_reserved counter by the same amount. We must make
1116 * sure extent_clear_unlock_delalloc() does not try to decrement again
1117 * the data space_info's bytes_may_use counter, therefore we do not pass
1118 * it the flag EXTENT_CLEAR_DATA_RESV.
1120 if (extent_reserved
) {
1121 extent_clear_unlock_delalloc(inode
, start
,
1122 start
+ cur_alloc_size
,
1123 start
+ cur_alloc_size
,
1127 start
+= cur_alloc_size
;
1131 extent_clear_unlock_delalloc(inode
, start
, end
, delalloc_end
,
1133 clear_bits
| EXTENT_CLEAR_DATA_RESV
,
1139 * work queue call back to started compression on a file and pages
1141 static noinline
void async_cow_start(struct btrfs_work
*work
)
1143 struct async_cow
*async_cow
;
1145 async_cow
= container_of(work
, struct async_cow
, work
);
1147 compress_file_range(async_cow
->inode
, async_cow
->locked_page
,
1148 async_cow
->start
, async_cow
->end
, async_cow
,
1150 if (num_added
== 0) {
1151 btrfs_add_delayed_iput(async_cow
->inode
);
1152 async_cow
->inode
= NULL
;
1157 * work queue call back to submit previously compressed pages
1159 static noinline
void async_cow_submit(struct btrfs_work
*work
)
1161 struct btrfs_fs_info
*fs_info
;
1162 struct async_cow
*async_cow
;
1163 struct btrfs_root
*root
;
1164 unsigned long nr_pages
;
1166 async_cow
= container_of(work
, struct async_cow
, work
);
1168 root
= async_cow
->root
;
1169 fs_info
= root
->fs_info
;
1170 nr_pages
= (async_cow
->end
- async_cow
->start
+ PAGE_SIZE
) >>
1174 * atomic_sub_return implies a barrier for waitqueue_active
1176 if (atomic_sub_return(nr_pages
, &fs_info
->async_delalloc_pages
) <
1178 waitqueue_active(&fs_info
->async_submit_wait
))
1179 wake_up(&fs_info
->async_submit_wait
);
1181 if (async_cow
->inode
)
1182 submit_compressed_extents(async_cow
->inode
, async_cow
);
1185 static noinline
void async_cow_free(struct btrfs_work
*work
)
1187 struct async_cow
*async_cow
;
1188 async_cow
= container_of(work
, struct async_cow
, work
);
1189 if (async_cow
->inode
)
1190 btrfs_add_delayed_iput(async_cow
->inode
);
1194 static int cow_file_range_async(struct inode
*inode
, struct page
*locked_page
,
1195 u64 start
, u64 end
, int *page_started
,
1196 unsigned long *nr_written
,
1197 unsigned int write_flags
)
1199 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1200 struct async_cow
*async_cow
;
1201 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1202 unsigned long nr_pages
;
1205 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, start
, end
, EXTENT_LOCKED
,
1206 1, 0, NULL
, GFP_NOFS
);
1207 while (start
< end
) {
1208 async_cow
= kmalloc(sizeof(*async_cow
), GFP_NOFS
);
1209 BUG_ON(!async_cow
); /* -ENOMEM */
1210 async_cow
->inode
= igrab(inode
);
1211 async_cow
->root
= root
;
1212 async_cow
->locked_page
= locked_page
;
1213 async_cow
->start
= start
;
1214 async_cow
->write_flags
= write_flags
;
1216 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NOCOMPRESS
&&
1217 !btrfs_test_opt(fs_info
, FORCE_COMPRESS
))
1220 cur_end
= min(end
, start
+ SZ_512K
- 1);
1222 async_cow
->end
= cur_end
;
1223 INIT_LIST_HEAD(&async_cow
->extents
);
1225 btrfs_init_work(&async_cow
->work
,
1226 btrfs_delalloc_helper
,
1227 async_cow_start
, async_cow_submit
,
1230 nr_pages
= (cur_end
- start
+ PAGE_SIZE
) >>
1232 atomic_add(nr_pages
, &fs_info
->async_delalloc_pages
);
1234 btrfs_queue_work(fs_info
->delalloc_workers
, &async_cow
->work
);
1236 *nr_written
+= nr_pages
;
1237 start
= cur_end
+ 1;
1243 static noinline
int csum_exist_in_range(struct btrfs_fs_info
*fs_info
,
1244 u64 bytenr
, u64 num_bytes
)
1247 struct btrfs_ordered_sum
*sums
;
1250 ret
= btrfs_lookup_csums_range(fs_info
->csum_root
, bytenr
,
1251 bytenr
+ num_bytes
- 1, &list
, 0);
1252 if (ret
== 0 && list_empty(&list
))
1255 while (!list_empty(&list
)) {
1256 sums
= list_entry(list
.next
, struct btrfs_ordered_sum
, list
);
1257 list_del(&sums
->list
);
1264 * when nowcow writeback call back. This checks for snapshots or COW copies
1265 * of the extents that exist in the file, and COWs the file as required.
1267 * If no cow copies or snapshots exist, we write directly to the existing
1270 static noinline
int run_delalloc_nocow(struct inode
*inode
,
1271 struct page
*locked_page
,
1272 u64 start
, u64 end
, int *page_started
, int force
,
1273 unsigned long *nr_written
)
1275 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1276 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1277 struct extent_buffer
*leaf
;
1278 struct btrfs_path
*path
;
1279 struct btrfs_file_extent_item
*fi
;
1280 struct btrfs_key found_key
;
1281 struct extent_map
*em
;
1296 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1298 path
= btrfs_alloc_path();
1300 extent_clear_unlock_delalloc(inode
, start
, end
, end
,
1302 EXTENT_LOCKED
| EXTENT_DELALLOC
|
1303 EXTENT_DO_ACCOUNTING
|
1304 EXTENT_DEFRAG
, PAGE_UNLOCK
|
1306 PAGE_SET_WRITEBACK
|
1307 PAGE_END_WRITEBACK
);
1311 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
1313 cow_start
= (u64
)-1;
1316 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, ino
,
1320 if (ret
> 0 && path
->slots
[0] > 0 && check_prev
) {
1321 leaf
= path
->nodes
[0];
1322 btrfs_item_key_to_cpu(leaf
, &found_key
,
1323 path
->slots
[0] - 1);
1324 if (found_key
.objectid
== ino
&&
1325 found_key
.type
== BTRFS_EXTENT_DATA_KEY
)
1330 leaf
= path
->nodes
[0];
1331 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
1332 ret
= btrfs_next_leaf(root
, path
);
1337 leaf
= path
->nodes
[0];
1343 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1345 if (found_key
.objectid
> ino
)
1347 if (WARN_ON_ONCE(found_key
.objectid
< ino
) ||
1348 found_key
.type
< BTRFS_EXTENT_DATA_KEY
) {
1352 if (found_key
.type
> BTRFS_EXTENT_DATA_KEY
||
1353 found_key
.offset
> end
)
1356 if (found_key
.offset
> cur_offset
) {
1357 extent_end
= found_key
.offset
;
1362 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
1363 struct btrfs_file_extent_item
);
1364 extent_type
= btrfs_file_extent_type(leaf
, fi
);
1366 ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
1367 if (extent_type
== BTRFS_FILE_EXTENT_REG
||
1368 extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1369 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
1370 extent_offset
= btrfs_file_extent_offset(leaf
, fi
);
1371 extent_end
= found_key
.offset
+
1372 btrfs_file_extent_num_bytes(leaf
, fi
);
1374 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
1375 if (extent_end
<= start
) {
1379 if (disk_bytenr
== 0)
1381 if (btrfs_file_extent_compression(leaf
, fi
) ||
1382 btrfs_file_extent_encryption(leaf
, fi
) ||
1383 btrfs_file_extent_other_encoding(leaf
, fi
))
1385 if (extent_type
== BTRFS_FILE_EXTENT_REG
&& !force
)
1387 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
1389 if (btrfs_cross_ref_exist(root
, ino
,
1391 extent_offset
, disk_bytenr
))
1393 disk_bytenr
+= extent_offset
;
1394 disk_bytenr
+= cur_offset
- found_key
.offset
;
1395 num_bytes
= min(end
+ 1, extent_end
) - cur_offset
;
1397 * if there are pending snapshots for this root,
1398 * we fall into common COW way.
1401 err
= btrfs_start_write_no_snapshotting(root
);
1406 * force cow if csum exists in the range.
1407 * this ensure that csum for a given extent are
1408 * either valid or do not exist.
1410 if (csum_exist_in_range(fs_info
, disk_bytenr
,
1413 btrfs_end_write_no_snapshotting(root
);
1416 if (!btrfs_inc_nocow_writers(fs_info
, disk_bytenr
)) {
1418 btrfs_end_write_no_snapshotting(root
);
1422 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1423 extent_end
= found_key
.offset
+
1424 btrfs_file_extent_inline_len(leaf
,
1425 path
->slots
[0], fi
);
1426 extent_end
= ALIGN(extent_end
,
1427 fs_info
->sectorsize
);
1432 if (extent_end
<= start
) {
1434 if (!nolock
&& nocow
)
1435 btrfs_end_write_no_snapshotting(root
);
1437 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1441 if (cow_start
== (u64
)-1)
1442 cow_start
= cur_offset
;
1443 cur_offset
= extent_end
;
1444 if (cur_offset
> end
)
1450 btrfs_release_path(path
);
1451 if (cow_start
!= (u64
)-1) {
1452 ret
= cow_file_range(inode
, locked_page
,
1453 cow_start
, found_key
.offset
- 1,
1454 end
, page_started
, nr_written
, 1,
1457 if (!nolock
&& nocow
)
1458 btrfs_end_write_no_snapshotting(root
);
1460 btrfs_dec_nocow_writers(fs_info
,
1464 cow_start
= (u64
)-1;
1467 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1468 u64 orig_start
= found_key
.offset
- extent_offset
;
1470 em
= create_io_em(inode
, cur_offset
, num_bytes
,
1472 disk_bytenr
, /* block_start */
1473 num_bytes
, /* block_len */
1474 disk_num_bytes
, /* orig_block_len */
1475 ram_bytes
, BTRFS_COMPRESS_NONE
,
1476 BTRFS_ORDERED_PREALLOC
);
1478 if (!nolock
&& nocow
)
1479 btrfs_end_write_no_snapshotting(root
);
1481 btrfs_dec_nocow_writers(fs_info
,
1486 free_extent_map(em
);
1489 if (extent_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
1490 type
= BTRFS_ORDERED_PREALLOC
;
1492 type
= BTRFS_ORDERED_NOCOW
;
1495 ret
= btrfs_add_ordered_extent(inode
, cur_offset
, disk_bytenr
,
1496 num_bytes
, num_bytes
, type
);
1498 btrfs_dec_nocow_writers(fs_info
, disk_bytenr
);
1499 BUG_ON(ret
); /* -ENOMEM */
1501 if (root
->root_key
.objectid
==
1502 BTRFS_DATA_RELOC_TREE_OBJECTID
)
1504 * Error handled later, as we must prevent
1505 * extent_clear_unlock_delalloc() in error handler
1506 * from freeing metadata of created ordered extent.
1508 ret
= btrfs_reloc_clone_csums(inode
, cur_offset
,
1511 extent_clear_unlock_delalloc(inode
, cur_offset
,
1512 cur_offset
+ num_bytes
- 1, end
,
1513 locked_page
, EXTENT_LOCKED
|
1515 EXTENT_CLEAR_DATA_RESV
,
1516 PAGE_UNLOCK
| PAGE_SET_PRIVATE2
);
1518 if (!nolock
&& nocow
)
1519 btrfs_end_write_no_snapshotting(root
);
1520 cur_offset
= extent_end
;
1523 * btrfs_reloc_clone_csums() error, now we're OK to call error
1524 * handler, as metadata for created ordered extent will only
1525 * be freed by btrfs_finish_ordered_io().
1529 if (cur_offset
> end
)
1532 btrfs_release_path(path
);
1534 if (cur_offset
<= end
&& cow_start
== (u64
)-1) {
1535 cow_start
= cur_offset
;
1539 if (cow_start
!= (u64
)-1) {
1540 ret
= cow_file_range(inode
, locked_page
, cow_start
, end
, end
,
1541 page_started
, nr_written
, 1, NULL
);
1547 if (ret
&& cur_offset
< end
)
1548 extent_clear_unlock_delalloc(inode
, cur_offset
, end
, end
,
1549 locked_page
, EXTENT_LOCKED
|
1550 EXTENT_DELALLOC
| EXTENT_DEFRAG
|
1551 EXTENT_DO_ACCOUNTING
, PAGE_UNLOCK
|
1553 PAGE_SET_WRITEBACK
|
1554 PAGE_END_WRITEBACK
);
1555 btrfs_free_path(path
);
1559 static inline int need_force_cow(struct inode
*inode
, u64 start
, u64 end
)
1562 if (!(BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
1563 !(BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
))
1567 * @defrag_bytes is a hint value, no spinlock held here,
1568 * if is not zero, it means the file is defragging.
1569 * Force cow if given extent needs to be defragged.
1571 if (BTRFS_I(inode
)->defrag_bytes
&&
1572 test_range_bit(&BTRFS_I(inode
)->io_tree
, start
, end
,
1573 EXTENT_DEFRAG
, 0, NULL
))
1580 * extent_io.c call back to do delayed allocation processing
1582 static int run_delalloc_range(void *private_data
, struct page
*locked_page
,
1583 u64 start
, u64 end
, int *page_started
,
1584 unsigned long *nr_written
,
1585 struct writeback_control
*wbc
)
1587 struct inode
*inode
= private_data
;
1589 int force_cow
= need_force_cow(inode
, start
, end
);
1590 unsigned int write_flags
= wbc_to_write_flags(wbc
);
1592 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
&& !force_cow
) {
1593 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1594 page_started
, 1, nr_written
);
1595 } else if (BTRFS_I(inode
)->flags
& BTRFS_INODE_PREALLOC
&& !force_cow
) {
1596 ret
= run_delalloc_nocow(inode
, locked_page
, start
, end
,
1597 page_started
, 0, nr_written
);
1598 } else if (!inode_need_compress(inode
, start
, end
)) {
1599 ret
= cow_file_range(inode
, locked_page
, start
, end
, end
,
1600 page_started
, nr_written
, 1, NULL
);
1602 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1603 &BTRFS_I(inode
)->runtime_flags
);
1604 ret
= cow_file_range_async(inode
, locked_page
, start
, end
,
1605 page_started
, nr_written
,
1609 btrfs_cleanup_ordered_extents(inode
, start
, end
- start
+ 1);
1613 static void btrfs_split_extent_hook(void *private_data
,
1614 struct extent_state
*orig
, u64 split
)
1616 struct inode
*inode
= private_data
;
1619 /* not delalloc, ignore it */
1620 if (!(orig
->state
& EXTENT_DELALLOC
))
1623 size
= orig
->end
- orig
->start
+ 1;
1624 if (size
> BTRFS_MAX_EXTENT_SIZE
) {
1629 * See the explanation in btrfs_merge_extent_hook, the same
1630 * applies here, just in reverse.
1632 new_size
= orig
->end
- split
+ 1;
1633 num_extents
= count_max_extents(new_size
);
1634 new_size
= split
- orig
->start
;
1635 num_extents
+= count_max_extents(new_size
);
1636 if (count_max_extents(size
) >= num_extents
)
1640 spin_lock(&BTRFS_I(inode
)->lock
);
1641 btrfs_mod_outstanding_extents(BTRFS_I(inode
), 1);
1642 spin_unlock(&BTRFS_I(inode
)->lock
);
1646 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1647 * extents so we can keep track of new extents that are just merged onto old
1648 * extents, such as when we are doing sequential writes, so we can properly
1649 * account for the metadata space we'll need.
1651 static void btrfs_merge_extent_hook(void *private_data
,
1652 struct extent_state
*new,
1653 struct extent_state
*other
)
1655 struct inode
*inode
= private_data
;
1656 u64 new_size
, old_size
;
1659 /* not delalloc, ignore it */
1660 if (!(other
->state
& EXTENT_DELALLOC
))
1663 if (new->start
> other
->start
)
1664 new_size
= new->end
- other
->start
+ 1;
1666 new_size
= other
->end
- new->start
+ 1;
1668 /* we're not bigger than the max, unreserve the space and go */
1669 if (new_size
<= BTRFS_MAX_EXTENT_SIZE
) {
1670 spin_lock(&BTRFS_I(inode
)->lock
);
1671 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1672 spin_unlock(&BTRFS_I(inode
)->lock
);
1677 * We have to add up either side to figure out how many extents were
1678 * accounted for before we merged into one big extent. If the number of
1679 * extents we accounted for is <= the amount we need for the new range
1680 * then we can return, otherwise drop. Think of it like this
1684 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1685 * need 2 outstanding extents, on one side we have 1 and the other side
1686 * we have 1 so they are == and we can return. But in this case
1688 * [MAX_SIZE+4k][MAX_SIZE+4k]
1690 * Each range on their own accounts for 2 extents, but merged together
1691 * they are only 3 extents worth of accounting, so we need to drop in
1694 old_size
= other
->end
- other
->start
+ 1;
1695 num_extents
= count_max_extents(old_size
);
1696 old_size
= new->end
- new->start
+ 1;
1697 num_extents
+= count_max_extents(old_size
);
1698 if (count_max_extents(new_size
) >= num_extents
)
1701 spin_lock(&BTRFS_I(inode
)->lock
);
1702 btrfs_mod_outstanding_extents(BTRFS_I(inode
), -1);
1703 spin_unlock(&BTRFS_I(inode
)->lock
);
1706 static void btrfs_add_delalloc_inodes(struct btrfs_root
*root
,
1707 struct inode
*inode
)
1709 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1711 spin_lock(&root
->delalloc_lock
);
1712 if (list_empty(&BTRFS_I(inode
)->delalloc_inodes
)) {
1713 list_add_tail(&BTRFS_I(inode
)->delalloc_inodes
,
1714 &root
->delalloc_inodes
);
1715 set_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1716 &BTRFS_I(inode
)->runtime_flags
);
1717 root
->nr_delalloc_inodes
++;
1718 if (root
->nr_delalloc_inodes
== 1) {
1719 spin_lock(&fs_info
->delalloc_root_lock
);
1720 BUG_ON(!list_empty(&root
->delalloc_root
));
1721 list_add_tail(&root
->delalloc_root
,
1722 &fs_info
->delalloc_roots
);
1723 spin_unlock(&fs_info
->delalloc_root_lock
);
1726 spin_unlock(&root
->delalloc_lock
);
1729 static void btrfs_del_delalloc_inode(struct btrfs_root
*root
,
1730 struct btrfs_inode
*inode
)
1732 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1734 spin_lock(&root
->delalloc_lock
);
1735 if (!list_empty(&inode
->delalloc_inodes
)) {
1736 list_del_init(&inode
->delalloc_inodes
);
1737 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1738 &inode
->runtime_flags
);
1739 root
->nr_delalloc_inodes
--;
1740 if (!root
->nr_delalloc_inodes
) {
1741 spin_lock(&fs_info
->delalloc_root_lock
);
1742 BUG_ON(list_empty(&root
->delalloc_root
));
1743 list_del_init(&root
->delalloc_root
);
1744 spin_unlock(&fs_info
->delalloc_root_lock
);
1747 spin_unlock(&root
->delalloc_lock
);
1751 * extent_io.c set_bit_hook, used to track delayed allocation
1752 * bytes in this file, and to maintain the list of inodes that
1753 * have pending delalloc work to be done.
1755 static void btrfs_set_bit_hook(void *private_data
,
1756 struct extent_state
*state
, unsigned *bits
)
1758 struct inode
*inode
= private_data
;
1760 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1762 if ((*bits
& EXTENT_DEFRAG
) && !(*bits
& EXTENT_DELALLOC
))
1765 * set_bit and clear bit hooks normally require _irqsave/restore
1766 * but in this case, we are only testing for the DELALLOC
1767 * bit, which is only set or cleared with irqs on
1769 if (!(state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1770 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1771 u64 len
= state
->end
+ 1 - state
->start
;
1772 u32 num_extents
= count_max_extents(len
);
1773 bool do_list
= !btrfs_is_free_space_inode(BTRFS_I(inode
));
1775 spin_lock(&BTRFS_I(inode
)->lock
);
1776 btrfs_mod_outstanding_extents(BTRFS_I(inode
), num_extents
);
1777 spin_unlock(&BTRFS_I(inode
)->lock
);
1779 /* For sanity tests */
1780 if (btrfs_is_testing(fs_info
))
1783 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, len
,
1784 fs_info
->delalloc_batch
);
1785 spin_lock(&BTRFS_I(inode
)->lock
);
1786 BTRFS_I(inode
)->delalloc_bytes
+= len
;
1787 if (*bits
& EXTENT_DEFRAG
)
1788 BTRFS_I(inode
)->defrag_bytes
+= len
;
1789 if (do_list
&& !test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1790 &BTRFS_I(inode
)->runtime_flags
))
1791 btrfs_add_delalloc_inodes(root
, inode
);
1792 spin_unlock(&BTRFS_I(inode
)->lock
);
1795 if (!(state
->state
& EXTENT_DELALLOC_NEW
) &&
1796 (*bits
& EXTENT_DELALLOC_NEW
)) {
1797 spin_lock(&BTRFS_I(inode
)->lock
);
1798 BTRFS_I(inode
)->new_delalloc_bytes
+= state
->end
+ 1 -
1800 spin_unlock(&BTRFS_I(inode
)->lock
);
1805 * extent_io.c clear_bit_hook, see set_bit_hook for why
1807 static void btrfs_clear_bit_hook(void *private_data
,
1808 struct extent_state
*state
,
1811 struct btrfs_inode
*inode
= BTRFS_I((struct inode
*)private_data
);
1812 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
1813 u64 len
= state
->end
+ 1 - state
->start
;
1814 u32 num_extents
= count_max_extents(len
);
1816 if ((state
->state
& EXTENT_DEFRAG
) && (*bits
& EXTENT_DEFRAG
)) {
1817 spin_lock(&inode
->lock
);
1818 inode
->defrag_bytes
-= len
;
1819 spin_unlock(&inode
->lock
);
1823 * set_bit and clear bit hooks normally require _irqsave/restore
1824 * but in this case, we are only testing for the DELALLOC
1825 * bit, which is only set or cleared with irqs on
1827 if ((state
->state
& EXTENT_DELALLOC
) && (*bits
& EXTENT_DELALLOC
)) {
1828 struct btrfs_root
*root
= inode
->root
;
1829 bool do_list
= !btrfs_is_free_space_inode(inode
);
1831 spin_lock(&inode
->lock
);
1832 btrfs_mod_outstanding_extents(inode
, -num_extents
);
1833 spin_unlock(&inode
->lock
);
1836 * We don't reserve metadata space for space cache inodes so we
1837 * don't need to call dellalloc_release_metadata if there is an
1840 if (*bits
& EXTENT_CLEAR_META_RESV
&&
1841 root
!= fs_info
->tree_root
)
1842 btrfs_delalloc_release_metadata(inode
, len
);
1844 /* For sanity tests. */
1845 if (btrfs_is_testing(fs_info
))
1848 if (root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
&&
1849 do_list
&& !(state
->state
& EXTENT_NORESERVE
) &&
1850 (*bits
& EXTENT_CLEAR_DATA_RESV
))
1851 btrfs_free_reserved_data_space_noquota(
1855 percpu_counter_add_batch(&fs_info
->delalloc_bytes
, -len
,
1856 fs_info
->delalloc_batch
);
1857 spin_lock(&inode
->lock
);
1858 inode
->delalloc_bytes
-= len
;
1859 if (do_list
&& inode
->delalloc_bytes
== 0 &&
1860 test_bit(BTRFS_INODE_IN_DELALLOC_LIST
,
1861 &inode
->runtime_flags
))
1862 btrfs_del_delalloc_inode(root
, inode
);
1863 spin_unlock(&inode
->lock
);
1866 if ((state
->state
& EXTENT_DELALLOC_NEW
) &&
1867 (*bits
& EXTENT_DELALLOC_NEW
)) {
1868 spin_lock(&inode
->lock
);
1869 ASSERT(inode
->new_delalloc_bytes
>= len
);
1870 inode
->new_delalloc_bytes
-= len
;
1871 spin_unlock(&inode
->lock
);
1876 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1877 * we don't create bios that span stripes or chunks
1879 * return 1 if page cannot be merged to bio
1880 * return 0 if page can be merged to bio
1881 * return error otherwise
1883 int btrfs_merge_bio_hook(struct page
*page
, unsigned long offset
,
1884 size_t size
, struct bio
*bio
,
1885 unsigned long bio_flags
)
1887 struct inode
*inode
= page
->mapping
->host
;
1888 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1889 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
1894 if (bio_flags
& EXTENT_BIO_COMPRESSED
)
1897 length
= bio
->bi_iter
.bi_size
;
1898 map_length
= length
;
1899 ret
= btrfs_map_block(fs_info
, btrfs_op(bio
), logical
, &map_length
,
1903 if (map_length
< length
+ size
)
1909 * in order to insert checksums into the metadata in large chunks,
1910 * we wait until bio submission time. All the pages in the bio are
1911 * checksummed and sums are attached onto the ordered extent record.
1913 * At IO completion time the cums attached on the ordered extent record
1914 * are inserted into the btree
1916 static blk_status_t
__btrfs_submit_bio_start(void *private_data
, struct bio
*bio
,
1917 int mirror_num
, unsigned long bio_flags
,
1920 struct inode
*inode
= private_data
;
1921 blk_status_t ret
= 0;
1923 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
1924 BUG_ON(ret
); /* -ENOMEM */
1929 * in order to insert checksums into the metadata in large chunks,
1930 * we wait until bio submission time. All the pages in the bio are
1931 * checksummed and sums are attached onto the ordered extent record.
1933 * At IO completion time the cums attached on the ordered extent record
1934 * are inserted into the btree
1936 static blk_status_t
__btrfs_submit_bio_done(void *private_data
, struct bio
*bio
,
1937 int mirror_num
, unsigned long bio_flags
,
1940 struct inode
*inode
= private_data
;
1941 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1944 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 1);
1946 bio
->bi_status
= ret
;
1953 * extent_io.c submission hook. This does the right thing for csum calculation
1954 * on write, or reading the csums from the tree before a read
1956 static blk_status_t
btrfs_submit_bio_hook(void *private_data
, struct bio
*bio
,
1957 int mirror_num
, unsigned long bio_flags
,
1960 struct inode
*inode
= private_data
;
1961 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
1962 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1963 enum btrfs_wq_endio_type metadata
= BTRFS_WQ_ENDIO_DATA
;
1964 blk_status_t ret
= 0;
1966 int async
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
1968 skip_sum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
1970 if (btrfs_is_free_space_inode(BTRFS_I(inode
)))
1971 metadata
= BTRFS_WQ_ENDIO_FREE_SPACE
;
1973 if (bio_op(bio
) != REQ_OP_WRITE
) {
1974 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, metadata
);
1978 if (bio_flags
& EXTENT_BIO_COMPRESSED
) {
1979 ret
= btrfs_submit_compressed_read(inode
, bio
,
1983 } else if (!skip_sum
) {
1984 ret
= btrfs_lookup_bio_sums(inode
, bio
, NULL
);
1989 } else if (async
&& !skip_sum
) {
1990 /* csum items have already been cloned */
1991 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
1993 /* we're doing a write, do the async checksumming */
1994 ret
= btrfs_wq_submit_bio(fs_info
, bio
, mirror_num
, bio_flags
,
1996 __btrfs_submit_bio_start
,
1997 __btrfs_submit_bio_done
);
1999 } else if (!skip_sum
) {
2000 ret
= btrfs_csum_one_bio(inode
, bio
, 0, 0);
2006 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
2010 bio
->bi_status
= ret
;
2017 * given a list of ordered sums record them in the inode. This happens
2018 * at IO completion time based on sums calculated at bio submission time.
2020 static noinline
int add_pending_csums(struct btrfs_trans_handle
*trans
,
2021 struct inode
*inode
, struct list_head
*list
)
2023 struct btrfs_ordered_sum
*sum
;
2025 list_for_each_entry(sum
, list
, list
) {
2026 trans
->adding_csums
= 1;
2027 btrfs_csum_file_blocks(trans
,
2028 BTRFS_I(inode
)->root
->fs_info
->csum_root
, sum
);
2029 trans
->adding_csums
= 0;
2034 int btrfs_set_extent_delalloc(struct inode
*inode
, u64 start
, u64 end
,
2035 unsigned int extra_bits
,
2036 struct extent_state
**cached_state
, int dedupe
)
2038 WARN_ON((end
& (PAGE_SIZE
- 1)) == 0);
2039 return set_extent_delalloc(&BTRFS_I(inode
)->io_tree
, start
, end
,
2040 extra_bits
, cached_state
);
2043 /* see btrfs_writepage_start_hook for details on why this is required */
2044 struct btrfs_writepage_fixup
{
2046 struct btrfs_work work
;
2049 static void btrfs_writepage_fixup_worker(struct btrfs_work
*work
)
2051 struct btrfs_writepage_fixup
*fixup
;
2052 struct btrfs_ordered_extent
*ordered
;
2053 struct extent_state
*cached_state
= NULL
;
2054 struct extent_changeset
*data_reserved
= NULL
;
2056 struct inode
*inode
;
2061 fixup
= container_of(work
, struct btrfs_writepage_fixup
, work
);
2065 if (!page
->mapping
|| !PageDirty(page
) || !PageChecked(page
)) {
2066 ClearPageChecked(page
);
2070 inode
= page
->mapping
->host
;
2071 page_start
= page_offset(page
);
2072 page_end
= page_offset(page
) + PAGE_SIZE
- 1;
2074 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2077 /* already ordered? We're done */
2078 if (PagePrivate2(page
))
2081 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
2084 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
,
2085 page_end
, &cached_state
, GFP_NOFS
);
2087 btrfs_start_ordered_extent(inode
, ordered
, 1);
2088 btrfs_put_ordered_extent(ordered
);
2092 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
2095 mapping_set_error(page
->mapping
, ret
);
2096 end_extent_writepage(page
, ret
, page_start
, page_end
);
2097 ClearPageChecked(page
);
2101 btrfs_set_extent_delalloc(inode
, page_start
, page_end
, 0, &cached_state
,
2103 ClearPageChecked(page
);
2104 set_page_dirty(page
);
2105 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
2107 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
,
2108 &cached_state
, GFP_NOFS
);
2113 extent_changeset_free(data_reserved
);
2117 * There are a few paths in the higher layers of the kernel that directly
2118 * set the page dirty bit without asking the filesystem if it is a
2119 * good idea. This causes problems because we want to make sure COW
2120 * properly happens and the data=ordered rules are followed.
2122 * In our case any range that doesn't have the ORDERED bit set
2123 * hasn't been properly setup for IO. We kick off an async process
2124 * to fix it up. The async helper will wait for ordered extents, set
2125 * the delalloc bit and make it safe to write the page.
2127 static int btrfs_writepage_start_hook(struct page
*page
, u64 start
, u64 end
)
2129 struct inode
*inode
= page
->mapping
->host
;
2130 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2131 struct btrfs_writepage_fixup
*fixup
;
2133 /* this page is properly in the ordered list */
2134 if (TestClearPagePrivate2(page
))
2137 if (PageChecked(page
))
2140 fixup
= kzalloc(sizeof(*fixup
), GFP_NOFS
);
2144 SetPageChecked(page
);
2146 btrfs_init_work(&fixup
->work
, btrfs_fixup_helper
,
2147 btrfs_writepage_fixup_worker
, NULL
, NULL
);
2149 btrfs_queue_work(fs_info
->fixup_workers
, &fixup
->work
);
2153 static int insert_reserved_file_extent(struct btrfs_trans_handle
*trans
,
2154 struct inode
*inode
, u64 file_pos
,
2155 u64 disk_bytenr
, u64 disk_num_bytes
,
2156 u64 num_bytes
, u64 ram_bytes
,
2157 u8 compression
, u8 encryption
,
2158 u16 other_encoding
, int extent_type
)
2160 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2161 struct btrfs_file_extent_item
*fi
;
2162 struct btrfs_path
*path
;
2163 struct extent_buffer
*leaf
;
2164 struct btrfs_key ins
;
2166 int extent_inserted
= 0;
2169 path
= btrfs_alloc_path();
2174 * we may be replacing one extent in the tree with another.
2175 * The new extent is pinned in the extent map, and we don't want
2176 * to drop it from the cache until it is completely in the btree.
2178 * So, tell btrfs_drop_extents to leave this extent in the cache.
2179 * the caller is expected to unpin it and allow it to be merged
2182 ret
= __btrfs_drop_extents(trans
, root
, inode
, path
, file_pos
,
2183 file_pos
+ num_bytes
, NULL
, 0,
2184 1, sizeof(*fi
), &extent_inserted
);
2188 if (!extent_inserted
) {
2189 ins
.objectid
= btrfs_ino(BTRFS_I(inode
));
2190 ins
.offset
= file_pos
;
2191 ins
.type
= BTRFS_EXTENT_DATA_KEY
;
2193 path
->leave_spinning
= 1;
2194 ret
= btrfs_insert_empty_item(trans
, root
, path
, &ins
,
2199 leaf
= path
->nodes
[0];
2200 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2201 struct btrfs_file_extent_item
);
2202 btrfs_set_file_extent_generation(leaf
, fi
, trans
->transid
);
2203 btrfs_set_file_extent_type(leaf
, fi
, extent_type
);
2204 btrfs_set_file_extent_disk_bytenr(leaf
, fi
, disk_bytenr
);
2205 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
, disk_num_bytes
);
2206 btrfs_set_file_extent_offset(leaf
, fi
, 0);
2207 btrfs_set_file_extent_num_bytes(leaf
, fi
, num_bytes
);
2208 btrfs_set_file_extent_ram_bytes(leaf
, fi
, ram_bytes
);
2209 btrfs_set_file_extent_compression(leaf
, fi
, compression
);
2210 btrfs_set_file_extent_encryption(leaf
, fi
, encryption
);
2211 btrfs_set_file_extent_other_encoding(leaf
, fi
, other_encoding
);
2213 btrfs_mark_buffer_dirty(leaf
);
2214 btrfs_release_path(path
);
2216 inode_add_bytes(inode
, num_bytes
);
2218 ins
.objectid
= disk_bytenr
;
2219 ins
.offset
= disk_num_bytes
;
2220 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
2223 * Release the reserved range from inode dirty range map, as it is
2224 * already moved into delayed_ref_head
2226 ret
= btrfs_qgroup_release_data(inode
, file_pos
, ram_bytes
);
2230 ret
= btrfs_alloc_reserved_file_extent(trans
, root
,
2231 btrfs_ino(BTRFS_I(inode
)),
2232 file_pos
, qg_released
, &ins
);
2234 btrfs_free_path(path
);
2239 /* snapshot-aware defrag */
2240 struct sa_defrag_extent_backref
{
2241 struct rb_node node
;
2242 struct old_sa_defrag_extent
*old
;
2251 struct old_sa_defrag_extent
{
2252 struct list_head list
;
2253 struct new_sa_defrag_extent
*new;
2262 struct new_sa_defrag_extent
{
2263 struct rb_root root
;
2264 struct list_head head
;
2265 struct btrfs_path
*path
;
2266 struct inode
*inode
;
2274 static int backref_comp(struct sa_defrag_extent_backref
*b1
,
2275 struct sa_defrag_extent_backref
*b2
)
2277 if (b1
->root_id
< b2
->root_id
)
2279 else if (b1
->root_id
> b2
->root_id
)
2282 if (b1
->inum
< b2
->inum
)
2284 else if (b1
->inum
> b2
->inum
)
2287 if (b1
->file_pos
< b2
->file_pos
)
2289 else if (b1
->file_pos
> b2
->file_pos
)
2293 * [------------------------------] ===> (a range of space)
2294 * |<--->| |<---->| =============> (fs/file tree A)
2295 * |<---------------------------->| ===> (fs/file tree B)
2297 * A range of space can refer to two file extents in one tree while
2298 * refer to only one file extent in another tree.
2300 * So we may process a disk offset more than one time(two extents in A)
2301 * and locate at the same extent(one extent in B), then insert two same
2302 * backrefs(both refer to the extent in B).
2307 static void backref_insert(struct rb_root
*root
,
2308 struct sa_defrag_extent_backref
*backref
)
2310 struct rb_node
**p
= &root
->rb_node
;
2311 struct rb_node
*parent
= NULL
;
2312 struct sa_defrag_extent_backref
*entry
;
2317 entry
= rb_entry(parent
, struct sa_defrag_extent_backref
, node
);
2319 ret
= backref_comp(backref
, entry
);
2323 p
= &(*p
)->rb_right
;
2326 rb_link_node(&backref
->node
, parent
, p
);
2327 rb_insert_color(&backref
->node
, root
);
2331 * Note the backref might has changed, and in this case we just return 0.
2333 static noinline
int record_one_backref(u64 inum
, u64 offset
, u64 root_id
,
2336 struct btrfs_file_extent_item
*extent
;
2337 struct old_sa_defrag_extent
*old
= ctx
;
2338 struct new_sa_defrag_extent
*new = old
->new;
2339 struct btrfs_path
*path
= new->path
;
2340 struct btrfs_key key
;
2341 struct btrfs_root
*root
;
2342 struct sa_defrag_extent_backref
*backref
;
2343 struct extent_buffer
*leaf
;
2344 struct inode
*inode
= new->inode
;
2345 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2351 if (BTRFS_I(inode
)->root
->root_key
.objectid
== root_id
&&
2352 inum
== btrfs_ino(BTRFS_I(inode
)))
2355 key
.objectid
= root_id
;
2356 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2357 key
.offset
= (u64
)-1;
2359 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2361 if (PTR_ERR(root
) == -ENOENT
)
2364 btrfs_debug(fs_info
, "inum=%llu, offset=%llu, root_id=%llu",
2365 inum
, offset
, root_id
);
2366 return PTR_ERR(root
);
2369 key
.objectid
= inum
;
2370 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2371 if (offset
> (u64
)-1 << 32)
2374 key
.offset
= offset
;
2376 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2377 if (WARN_ON(ret
< 0))
2384 leaf
= path
->nodes
[0];
2385 slot
= path
->slots
[0];
2387 if (slot
>= btrfs_header_nritems(leaf
)) {
2388 ret
= btrfs_next_leaf(root
, path
);
2391 } else if (ret
> 0) {
2400 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
2402 if (key
.objectid
> inum
)
2405 if (key
.objectid
< inum
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2408 extent
= btrfs_item_ptr(leaf
, slot
,
2409 struct btrfs_file_extent_item
);
2411 if (btrfs_file_extent_disk_bytenr(leaf
, extent
) != old
->bytenr
)
2415 * 'offset' refers to the exact key.offset,
2416 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2417 * (key.offset - extent_offset).
2419 if (key
.offset
!= offset
)
2422 extent_offset
= btrfs_file_extent_offset(leaf
, extent
);
2423 num_bytes
= btrfs_file_extent_num_bytes(leaf
, extent
);
2425 if (extent_offset
>= old
->extent_offset
+ old
->offset
+
2426 old
->len
|| extent_offset
+ num_bytes
<=
2427 old
->extent_offset
+ old
->offset
)
2432 backref
= kmalloc(sizeof(*backref
), GFP_NOFS
);
2438 backref
->root_id
= root_id
;
2439 backref
->inum
= inum
;
2440 backref
->file_pos
= offset
;
2441 backref
->num_bytes
= num_bytes
;
2442 backref
->extent_offset
= extent_offset
;
2443 backref
->generation
= btrfs_file_extent_generation(leaf
, extent
);
2445 backref_insert(&new->root
, backref
);
2448 btrfs_release_path(path
);
2453 static noinline
bool record_extent_backrefs(struct btrfs_path
*path
,
2454 struct new_sa_defrag_extent
*new)
2456 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2457 struct old_sa_defrag_extent
*old
, *tmp
;
2462 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2463 ret
= iterate_inodes_from_logical(old
->bytenr
+
2464 old
->extent_offset
, fs_info
,
2465 path
, record_one_backref
,
2467 if (ret
< 0 && ret
!= -ENOENT
)
2470 /* no backref to be processed for this extent */
2472 list_del(&old
->list
);
2477 if (list_empty(&new->head
))
2483 static int relink_is_mergable(struct extent_buffer
*leaf
,
2484 struct btrfs_file_extent_item
*fi
,
2485 struct new_sa_defrag_extent
*new)
2487 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) != new->bytenr
)
2490 if (btrfs_file_extent_type(leaf
, fi
) != BTRFS_FILE_EXTENT_REG
)
2493 if (btrfs_file_extent_compression(leaf
, fi
) != new->compress_type
)
2496 if (btrfs_file_extent_encryption(leaf
, fi
) ||
2497 btrfs_file_extent_other_encoding(leaf
, fi
))
2504 * Note the backref might has changed, and in this case we just return 0.
2506 static noinline
int relink_extent_backref(struct btrfs_path
*path
,
2507 struct sa_defrag_extent_backref
*prev
,
2508 struct sa_defrag_extent_backref
*backref
)
2510 struct btrfs_file_extent_item
*extent
;
2511 struct btrfs_file_extent_item
*item
;
2512 struct btrfs_ordered_extent
*ordered
;
2513 struct btrfs_trans_handle
*trans
;
2514 struct btrfs_root
*root
;
2515 struct btrfs_key key
;
2516 struct extent_buffer
*leaf
;
2517 struct old_sa_defrag_extent
*old
= backref
->old
;
2518 struct new_sa_defrag_extent
*new = old
->new;
2519 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2520 struct inode
*inode
;
2521 struct extent_state
*cached
= NULL
;
2530 if (prev
&& prev
->root_id
== backref
->root_id
&&
2531 prev
->inum
== backref
->inum
&&
2532 prev
->file_pos
+ prev
->num_bytes
== backref
->file_pos
)
2535 /* step 1: get root */
2536 key
.objectid
= backref
->root_id
;
2537 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2538 key
.offset
= (u64
)-1;
2540 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
2542 root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
2544 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2545 if (PTR_ERR(root
) == -ENOENT
)
2547 return PTR_ERR(root
);
2550 if (btrfs_root_readonly(root
)) {
2551 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2555 /* step 2: get inode */
2556 key
.objectid
= backref
->inum
;
2557 key
.type
= BTRFS_INODE_ITEM_KEY
;
2560 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
2561 if (IS_ERR(inode
)) {
2562 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2566 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
2568 /* step 3: relink backref */
2569 lock_start
= backref
->file_pos
;
2570 lock_end
= backref
->file_pos
+ backref
->num_bytes
- 1;
2571 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2574 ordered
= btrfs_lookup_first_ordered_extent(inode
, lock_end
);
2576 btrfs_put_ordered_extent(ordered
);
2580 trans
= btrfs_join_transaction(root
);
2581 if (IS_ERR(trans
)) {
2582 ret
= PTR_ERR(trans
);
2586 key
.objectid
= backref
->inum
;
2587 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2588 key
.offset
= backref
->file_pos
;
2590 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2593 } else if (ret
> 0) {
2598 extent
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2599 struct btrfs_file_extent_item
);
2601 if (btrfs_file_extent_generation(path
->nodes
[0], extent
) !=
2602 backref
->generation
)
2605 btrfs_release_path(path
);
2607 start
= backref
->file_pos
;
2608 if (backref
->extent_offset
< old
->extent_offset
+ old
->offset
)
2609 start
+= old
->extent_offset
+ old
->offset
-
2610 backref
->extent_offset
;
2612 len
= min(backref
->extent_offset
+ backref
->num_bytes
,
2613 old
->extent_offset
+ old
->offset
+ old
->len
);
2614 len
-= max(backref
->extent_offset
, old
->extent_offset
+ old
->offset
);
2616 ret
= btrfs_drop_extents(trans
, root
, inode
, start
,
2621 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2622 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2625 path
->leave_spinning
= 1;
2627 struct btrfs_file_extent_item
*fi
;
2629 struct btrfs_key found_key
;
2631 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2636 leaf
= path
->nodes
[0];
2637 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
2639 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
2640 struct btrfs_file_extent_item
);
2641 extent_len
= btrfs_file_extent_num_bytes(leaf
, fi
);
2643 if (extent_len
+ found_key
.offset
== start
&&
2644 relink_is_mergable(leaf
, fi
, new)) {
2645 btrfs_set_file_extent_num_bytes(leaf
, fi
,
2647 btrfs_mark_buffer_dirty(leaf
);
2648 inode_add_bytes(inode
, len
);
2654 btrfs_release_path(path
);
2659 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
2662 btrfs_abort_transaction(trans
, ret
);
2666 leaf
= path
->nodes
[0];
2667 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2668 struct btrfs_file_extent_item
);
2669 btrfs_set_file_extent_disk_bytenr(leaf
, item
, new->bytenr
);
2670 btrfs_set_file_extent_disk_num_bytes(leaf
, item
, new->disk_len
);
2671 btrfs_set_file_extent_offset(leaf
, item
, start
- new->file_pos
);
2672 btrfs_set_file_extent_num_bytes(leaf
, item
, len
);
2673 btrfs_set_file_extent_ram_bytes(leaf
, item
, new->len
);
2674 btrfs_set_file_extent_generation(leaf
, item
, trans
->transid
);
2675 btrfs_set_file_extent_type(leaf
, item
, BTRFS_FILE_EXTENT_REG
);
2676 btrfs_set_file_extent_compression(leaf
, item
, new->compress_type
);
2677 btrfs_set_file_extent_encryption(leaf
, item
, 0);
2678 btrfs_set_file_extent_other_encoding(leaf
, item
, 0);
2680 btrfs_mark_buffer_dirty(leaf
);
2681 inode_add_bytes(inode
, len
);
2682 btrfs_release_path(path
);
2684 ret
= btrfs_inc_extent_ref(trans
, root
, new->bytenr
,
2686 backref
->root_id
, backref
->inum
,
2687 new->file_pos
); /* start - extent_offset */
2689 btrfs_abort_transaction(trans
, ret
);
2695 btrfs_release_path(path
);
2696 path
->leave_spinning
= 0;
2697 btrfs_end_transaction(trans
);
2699 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lock_start
, lock_end
,
2705 static void free_sa_defrag_extent(struct new_sa_defrag_extent
*new)
2707 struct old_sa_defrag_extent
*old
, *tmp
;
2712 list_for_each_entry_safe(old
, tmp
, &new->head
, list
) {
2718 static void relink_file_extents(struct new_sa_defrag_extent
*new)
2720 struct btrfs_fs_info
*fs_info
= btrfs_sb(new->inode
->i_sb
);
2721 struct btrfs_path
*path
;
2722 struct sa_defrag_extent_backref
*backref
;
2723 struct sa_defrag_extent_backref
*prev
= NULL
;
2724 struct inode
*inode
;
2725 struct btrfs_root
*root
;
2726 struct rb_node
*node
;
2730 root
= BTRFS_I(inode
)->root
;
2732 path
= btrfs_alloc_path();
2736 if (!record_extent_backrefs(path
, new)) {
2737 btrfs_free_path(path
);
2740 btrfs_release_path(path
);
2743 node
= rb_first(&new->root
);
2746 rb_erase(node
, &new->root
);
2748 backref
= rb_entry(node
, struct sa_defrag_extent_backref
, node
);
2750 ret
= relink_extent_backref(path
, prev
, backref
);
2763 btrfs_free_path(path
);
2765 free_sa_defrag_extent(new);
2767 atomic_dec(&fs_info
->defrag_running
);
2768 wake_up(&fs_info
->transaction_wait
);
2771 static struct new_sa_defrag_extent
*
2772 record_old_file_extents(struct inode
*inode
,
2773 struct btrfs_ordered_extent
*ordered
)
2775 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2776 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2777 struct btrfs_path
*path
;
2778 struct btrfs_key key
;
2779 struct old_sa_defrag_extent
*old
;
2780 struct new_sa_defrag_extent
*new;
2783 new = kmalloc(sizeof(*new), GFP_NOFS
);
2788 new->file_pos
= ordered
->file_offset
;
2789 new->len
= ordered
->len
;
2790 new->bytenr
= ordered
->start
;
2791 new->disk_len
= ordered
->disk_len
;
2792 new->compress_type
= ordered
->compress_type
;
2793 new->root
= RB_ROOT
;
2794 INIT_LIST_HEAD(&new->head
);
2796 path
= btrfs_alloc_path();
2800 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
2801 key
.type
= BTRFS_EXTENT_DATA_KEY
;
2802 key
.offset
= new->file_pos
;
2804 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2807 if (ret
> 0 && path
->slots
[0] > 0)
2810 /* find out all the old extents for the file range */
2812 struct btrfs_file_extent_item
*extent
;
2813 struct extent_buffer
*l
;
2822 slot
= path
->slots
[0];
2824 if (slot
>= btrfs_header_nritems(l
)) {
2825 ret
= btrfs_next_leaf(root
, path
);
2833 btrfs_item_key_to_cpu(l
, &key
, slot
);
2835 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
2837 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
)
2839 if (key
.offset
>= new->file_pos
+ new->len
)
2842 extent
= btrfs_item_ptr(l
, slot
, struct btrfs_file_extent_item
);
2844 num_bytes
= btrfs_file_extent_num_bytes(l
, extent
);
2845 if (key
.offset
+ num_bytes
< new->file_pos
)
2848 disk_bytenr
= btrfs_file_extent_disk_bytenr(l
, extent
);
2852 extent_offset
= btrfs_file_extent_offset(l
, extent
);
2854 old
= kmalloc(sizeof(*old
), GFP_NOFS
);
2858 offset
= max(new->file_pos
, key
.offset
);
2859 end
= min(new->file_pos
+ new->len
, key
.offset
+ num_bytes
);
2861 old
->bytenr
= disk_bytenr
;
2862 old
->extent_offset
= extent_offset
;
2863 old
->offset
= offset
- key
.offset
;
2864 old
->len
= end
- offset
;
2867 list_add_tail(&old
->list
, &new->head
);
2873 btrfs_free_path(path
);
2874 atomic_inc(&fs_info
->defrag_running
);
2879 btrfs_free_path(path
);
2881 free_sa_defrag_extent(new);
2885 static void btrfs_release_delalloc_bytes(struct btrfs_fs_info
*fs_info
,
2888 struct btrfs_block_group_cache
*cache
;
2890 cache
= btrfs_lookup_block_group(fs_info
, start
);
2893 spin_lock(&cache
->lock
);
2894 cache
->delalloc_bytes
-= len
;
2895 spin_unlock(&cache
->lock
);
2897 btrfs_put_block_group(cache
);
2900 /* as ordered data IO finishes, this gets called so we can finish
2901 * an ordered extent if the range of bytes in the file it covers are
2904 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent
*ordered_extent
)
2906 struct inode
*inode
= ordered_extent
->inode
;
2907 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
2908 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2909 struct btrfs_trans_handle
*trans
= NULL
;
2910 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
2911 struct extent_state
*cached_state
= NULL
;
2912 struct new_sa_defrag_extent
*new = NULL
;
2913 int compress_type
= 0;
2915 u64 logical_len
= ordered_extent
->len
;
2917 bool truncated
= false;
2918 bool range_locked
= false;
2919 bool clear_new_delalloc_bytes
= false;
2921 if (!test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
2922 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
) &&
2923 !test_bit(BTRFS_ORDERED_DIRECT
, &ordered_extent
->flags
))
2924 clear_new_delalloc_bytes
= true;
2926 nolock
= btrfs_is_free_space_inode(BTRFS_I(inode
));
2928 if (test_bit(BTRFS_ORDERED_IOERR
, &ordered_extent
->flags
)) {
2933 btrfs_free_io_failure_record(BTRFS_I(inode
),
2934 ordered_extent
->file_offset
,
2935 ordered_extent
->file_offset
+
2936 ordered_extent
->len
- 1);
2938 if (test_bit(BTRFS_ORDERED_TRUNCATED
, &ordered_extent
->flags
)) {
2940 logical_len
= ordered_extent
->truncated_len
;
2941 /* Truncated the entire extent, don't bother adding */
2946 if (test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
)) {
2947 BUG_ON(!list_empty(&ordered_extent
->list
)); /* Logic error */
2950 * For mwrite(mmap + memset to write) case, we still reserve
2951 * space for NOCOW range.
2952 * As NOCOW won't cause a new delayed ref, just free the space
2954 btrfs_qgroup_free_data(inode
, NULL
, ordered_extent
->file_offset
,
2955 ordered_extent
->len
);
2956 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
2958 trans
= btrfs_join_transaction_nolock(root
);
2960 trans
= btrfs_join_transaction(root
);
2961 if (IS_ERR(trans
)) {
2962 ret
= PTR_ERR(trans
);
2966 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
2967 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
2968 if (ret
) /* -ENOMEM or corruption */
2969 btrfs_abort_transaction(trans
, ret
);
2973 range_locked
= true;
2974 lock_extent_bits(io_tree
, ordered_extent
->file_offset
,
2975 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2978 ret
= test_range_bit(io_tree
, ordered_extent
->file_offset
,
2979 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2980 EXTENT_DEFRAG
, 0, cached_state
);
2982 u64 last_snapshot
= btrfs_root_last_snapshot(&root
->root_item
);
2983 if (0 && last_snapshot
>= BTRFS_I(inode
)->generation
)
2984 /* the inode is shared */
2985 new = record_old_file_extents(inode
, ordered_extent
);
2987 clear_extent_bit(io_tree
, ordered_extent
->file_offset
,
2988 ordered_extent
->file_offset
+ ordered_extent
->len
- 1,
2989 EXTENT_DEFRAG
, 0, 0, &cached_state
, GFP_NOFS
);
2993 trans
= btrfs_join_transaction_nolock(root
);
2995 trans
= btrfs_join_transaction(root
);
2996 if (IS_ERR(trans
)) {
2997 ret
= PTR_ERR(trans
);
3002 trans
->block_rsv
= &BTRFS_I(inode
)->block_rsv
;
3004 if (test_bit(BTRFS_ORDERED_COMPRESSED
, &ordered_extent
->flags
))
3005 compress_type
= ordered_extent
->compress_type
;
3006 if (test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
)) {
3007 BUG_ON(compress_type
);
3008 ret
= btrfs_mark_extent_written(trans
, BTRFS_I(inode
),
3009 ordered_extent
->file_offset
,
3010 ordered_extent
->file_offset
+
3013 BUG_ON(root
== fs_info
->tree_root
);
3014 ret
= insert_reserved_file_extent(trans
, inode
,
3015 ordered_extent
->file_offset
,
3016 ordered_extent
->start
,
3017 ordered_extent
->disk_len
,
3018 logical_len
, logical_len
,
3019 compress_type
, 0, 0,
3020 BTRFS_FILE_EXTENT_REG
);
3022 btrfs_release_delalloc_bytes(fs_info
,
3023 ordered_extent
->start
,
3024 ordered_extent
->disk_len
);
3026 unpin_extent_cache(&BTRFS_I(inode
)->extent_tree
,
3027 ordered_extent
->file_offset
, ordered_extent
->len
,
3030 btrfs_abort_transaction(trans
, ret
);
3034 add_pending_csums(trans
, inode
, &ordered_extent
->list
);
3036 btrfs_ordered_update_i_size(inode
, 0, ordered_extent
);
3037 ret
= btrfs_update_inode_fallback(trans
, root
, inode
);
3038 if (ret
) { /* -ENOMEM or corruption */
3039 btrfs_abort_transaction(trans
, ret
);
3044 if (range_locked
|| clear_new_delalloc_bytes
) {
3045 unsigned int clear_bits
= 0;
3048 clear_bits
|= EXTENT_LOCKED
;
3049 if (clear_new_delalloc_bytes
)
3050 clear_bits
|= EXTENT_DELALLOC_NEW
;
3051 clear_extent_bit(&BTRFS_I(inode
)->io_tree
,
3052 ordered_extent
->file_offset
,
3053 ordered_extent
->file_offset
+
3054 ordered_extent
->len
- 1,
3056 (clear_bits
& EXTENT_LOCKED
) ? 1 : 0,
3057 0, &cached_state
, GFP_NOFS
);
3061 btrfs_end_transaction(trans
);
3063 if (ret
|| truncated
) {
3067 start
= ordered_extent
->file_offset
+ logical_len
;
3069 start
= ordered_extent
->file_offset
;
3070 end
= ordered_extent
->file_offset
+ ordered_extent
->len
- 1;
3071 clear_extent_uptodate(io_tree
, start
, end
, NULL
, GFP_NOFS
);
3073 /* Drop the cache for the part of the extent we didn't write. */
3074 btrfs_drop_extent_cache(BTRFS_I(inode
), start
, end
, 0);
3077 * If the ordered extent had an IOERR or something else went
3078 * wrong we need to return the space for this ordered extent
3079 * back to the allocator. We only free the extent in the
3080 * truncated case if we didn't write out the extent at all.
3082 if ((ret
|| !logical_len
) &&
3083 !test_bit(BTRFS_ORDERED_NOCOW
, &ordered_extent
->flags
) &&
3084 !test_bit(BTRFS_ORDERED_PREALLOC
, &ordered_extent
->flags
))
3085 btrfs_free_reserved_extent(fs_info
,
3086 ordered_extent
->start
,
3087 ordered_extent
->disk_len
, 1);
3092 * This needs to be done to make sure anybody waiting knows we are done
3093 * updating everything for this ordered extent.
3095 btrfs_remove_ordered_extent(inode
, ordered_extent
);
3097 /* for snapshot-aware defrag */
3100 free_sa_defrag_extent(new);
3101 atomic_dec(&fs_info
->defrag_running
);
3103 relink_file_extents(new);
3108 btrfs_put_ordered_extent(ordered_extent
);
3109 /* once for the tree */
3110 btrfs_put_ordered_extent(ordered_extent
);
3115 static void finish_ordered_fn(struct btrfs_work
*work
)
3117 struct btrfs_ordered_extent
*ordered_extent
;
3118 ordered_extent
= container_of(work
, struct btrfs_ordered_extent
, work
);
3119 btrfs_finish_ordered_io(ordered_extent
);
3122 static void btrfs_writepage_end_io_hook(struct page
*page
, u64 start
, u64 end
,
3123 struct extent_state
*state
, int uptodate
)
3125 struct inode
*inode
= page
->mapping
->host
;
3126 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3127 struct btrfs_ordered_extent
*ordered_extent
= NULL
;
3128 struct btrfs_workqueue
*wq
;
3129 btrfs_work_func_t func
;
3131 trace_btrfs_writepage_end_io_hook(page
, start
, end
, uptodate
);
3133 ClearPagePrivate2(page
);
3134 if (!btrfs_dec_test_ordered_pending(inode
, &ordered_extent
, start
,
3135 end
- start
+ 1, uptodate
))
3138 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
3139 wq
= fs_info
->endio_freespace_worker
;
3140 func
= btrfs_freespace_write_helper
;
3142 wq
= fs_info
->endio_write_workers
;
3143 func
= btrfs_endio_write_helper
;
3146 btrfs_init_work(&ordered_extent
->work
, func
, finish_ordered_fn
, NULL
,
3148 btrfs_queue_work(wq
, &ordered_extent
->work
);
3151 static int __readpage_endio_check(struct inode
*inode
,
3152 struct btrfs_io_bio
*io_bio
,
3153 int icsum
, struct page
*page
,
3154 int pgoff
, u64 start
, size_t len
)
3160 csum_expected
= *(((u32
*)io_bio
->csum
) + icsum
);
3162 kaddr
= kmap_atomic(page
);
3163 csum
= btrfs_csum_data(kaddr
+ pgoff
, csum
, len
);
3164 btrfs_csum_final(csum
, (u8
*)&csum
);
3165 if (csum
!= csum_expected
)
3168 kunmap_atomic(kaddr
);
3171 btrfs_print_data_csum_error(BTRFS_I(inode
), start
, csum
, csum_expected
,
3172 io_bio
->mirror_num
);
3173 memset(kaddr
+ pgoff
, 1, len
);
3174 flush_dcache_page(page
);
3175 kunmap_atomic(kaddr
);
3180 * when reads are done, we need to check csums to verify the data is correct
3181 * if there's a match, we allow the bio to finish. If not, the code in
3182 * extent_io.c will try to find good copies for us.
3184 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio
*io_bio
,
3185 u64 phy_offset
, struct page
*page
,
3186 u64 start
, u64 end
, int mirror
)
3188 size_t offset
= start
- page_offset(page
);
3189 struct inode
*inode
= page
->mapping
->host
;
3190 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
3191 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3193 if (PageChecked(page
)) {
3194 ClearPageChecked(page
);
3198 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
3201 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
&&
3202 test_range_bit(io_tree
, start
, end
, EXTENT_NODATASUM
, 1, NULL
)) {
3203 clear_extent_bits(io_tree
, start
, end
, EXTENT_NODATASUM
);
3207 phy_offset
>>= inode
->i_sb
->s_blocksize_bits
;
3208 return __readpage_endio_check(inode
, io_bio
, phy_offset
, page
, offset
,
3209 start
, (size_t)(end
- start
+ 1));
3212 void btrfs_add_delayed_iput(struct inode
*inode
)
3214 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3215 struct btrfs_inode
*binode
= BTRFS_I(inode
);
3217 if (atomic_add_unless(&inode
->i_count
, -1, 1))
3220 spin_lock(&fs_info
->delayed_iput_lock
);
3221 if (binode
->delayed_iput_count
== 0) {
3222 ASSERT(list_empty(&binode
->delayed_iput
));
3223 list_add_tail(&binode
->delayed_iput
, &fs_info
->delayed_iputs
);
3225 binode
->delayed_iput_count
++;
3227 spin_unlock(&fs_info
->delayed_iput_lock
);
3230 void btrfs_run_delayed_iputs(struct btrfs_fs_info
*fs_info
)
3233 spin_lock(&fs_info
->delayed_iput_lock
);
3234 while (!list_empty(&fs_info
->delayed_iputs
)) {
3235 struct btrfs_inode
*inode
;
3237 inode
= list_first_entry(&fs_info
->delayed_iputs
,
3238 struct btrfs_inode
, delayed_iput
);
3239 if (inode
->delayed_iput_count
) {
3240 inode
->delayed_iput_count
--;
3241 list_move_tail(&inode
->delayed_iput
,
3242 &fs_info
->delayed_iputs
);
3244 list_del_init(&inode
->delayed_iput
);
3246 spin_unlock(&fs_info
->delayed_iput_lock
);
3247 iput(&inode
->vfs_inode
);
3248 spin_lock(&fs_info
->delayed_iput_lock
);
3250 spin_unlock(&fs_info
->delayed_iput_lock
);
3254 * This is called in transaction commit time. If there are no orphan
3255 * files in the subvolume, it removes orphan item and frees block_rsv
3258 void btrfs_orphan_commit_root(struct btrfs_trans_handle
*trans
,
3259 struct btrfs_root
*root
)
3261 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3262 struct btrfs_block_rsv
*block_rsv
;
3265 if (atomic_read(&root
->orphan_inodes
) ||
3266 root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
)
3269 spin_lock(&root
->orphan_lock
);
3270 if (atomic_read(&root
->orphan_inodes
)) {
3271 spin_unlock(&root
->orphan_lock
);
3275 if (root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
) {
3276 spin_unlock(&root
->orphan_lock
);
3280 block_rsv
= root
->orphan_block_rsv
;
3281 root
->orphan_block_rsv
= NULL
;
3282 spin_unlock(&root
->orphan_lock
);
3284 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
) &&
3285 btrfs_root_refs(&root
->root_item
) > 0) {
3286 ret
= btrfs_del_orphan_item(trans
, fs_info
->tree_root
,
3287 root
->root_key
.objectid
);
3289 btrfs_abort_transaction(trans
, ret
);
3291 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
,
3296 WARN_ON(block_rsv
->size
> 0);
3297 btrfs_free_block_rsv(fs_info
, block_rsv
);
3302 * This creates an orphan entry for the given inode in case something goes
3303 * wrong in the middle of an unlink/truncate.
3305 * NOTE: caller of this function should reserve 5 units of metadata for
3308 int btrfs_orphan_add(struct btrfs_trans_handle
*trans
,
3309 struct btrfs_inode
*inode
)
3311 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
3312 struct btrfs_root
*root
= inode
->root
;
3313 struct btrfs_block_rsv
*block_rsv
= NULL
;
3318 if (!root
->orphan_block_rsv
) {
3319 block_rsv
= btrfs_alloc_block_rsv(fs_info
,
3320 BTRFS_BLOCK_RSV_TEMP
);
3325 spin_lock(&root
->orphan_lock
);
3326 if (!root
->orphan_block_rsv
) {
3327 root
->orphan_block_rsv
= block_rsv
;
3328 } else if (block_rsv
) {
3329 btrfs_free_block_rsv(fs_info
, block_rsv
);
3333 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3334 &inode
->runtime_flags
)) {
3337 * For proper ENOSPC handling, we should do orphan
3338 * cleanup when mounting. But this introduces backward
3339 * compatibility issue.
3341 if (!xchg(&root
->orphan_item_inserted
, 1))
3347 atomic_inc(&root
->orphan_inodes
);
3350 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3351 &inode
->runtime_flags
))
3353 spin_unlock(&root
->orphan_lock
);
3355 /* grab metadata reservation from transaction handle */
3357 ret
= btrfs_orphan_reserve_metadata(trans
, inode
);
3360 atomic_dec(&root
->orphan_inodes
);
3361 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3362 &inode
->runtime_flags
);
3364 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3365 &inode
->runtime_flags
);
3370 /* insert an orphan item to track this unlinked/truncated file */
3372 ret
= btrfs_insert_orphan_item(trans
, root
, btrfs_ino(inode
));
3374 atomic_dec(&root
->orphan_inodes
);
3376 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3377 &inode
->runtime_flags
);
3378 btrfs_orphan_release_metadata(inode
);
3380 if (ret
!= -EEXIST
) {
3381 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3382 &inode
->runtime_flags
);
3383 btrfs_abort_transaction(trans
, ret
);
3390 /* insert an orphan item to track subvolume contains orphan files */
3392 ret
= btrfs_insert_orphan_item(trans
, fs_info
->tree_root
,
3393 root
->root_key
.objectid
);
3394 if (ret
&& ret
!= -EEXIST
) {
3395 btrfs_abort_transaction(trans
, ret
);
3403 * We have done the truncate/delete so we can go ahead and remove the orphan
3404 * item for this particular inode.
3406 static int btrfs_orphan_del(struct btrfs_trans_handle
*trans
,
3407 struct btrfs_inode
*inode
)
3409 struct btrfs_root
*root
= inode
->root
;
3410 int delete_item
= 0;
3411 int release_rsv
= 0;
3414 spin_lock(&root
->orphan_lock
);
3415 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3416 &inode
->runtime_flags
))
3419 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED
,
3420 &inode
->runtime_flags
))
3422 spin_unlock(&root
->orphan_lock
);
3425 atomic_dec(&root
->orphan_inodes
);
3427 ret
= btrfs_del_orphan_item(trans
, root
,
3432 btrfs_orphan_release_metadata(inode
);
3438 * this cleans up any orphans that may be left on the list from the last use
3441 int btrfs_orphan_cleanup(struct btrfs_root
*root
)
3443 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3444 struct btrfs_path
*path
;
3445 struct extent_buffer
*leaf
;
3446 struct btrfs_key key
, found_key
;
3447 struct btrfs_trans_handle
*trans
;
3448 struct inode
*inode
;
3449 u64 last_objectid
= 0;
3450 int ret
= 0, nr_unlink
= 0, nr_truncate
= 0;
3452 if (cmpxchg(&root
->orphan_cleanup_state
, 0, ORPHAN_CLEANUP_STARTED
))
3455 path
= btrfs_alloc_path();
3460 path
->reada
= READA_BACK
;
3462 key
.objectid
= BTRFS_ORPHAN_OBJECTID
;
3463 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
3464 key
.offset
= (u64
)-1;
3467 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3472 * if ret == 0 means we found what we were searching for, which
3473 * is weird, but possible, so only screw with path if we didn't
3474 * find the key and see if we have stuff that matches
3478 if (path
->slots
[0] == 0)
3483 /* pull out the item */
3484 leaf
= path
->nodes
[0];
3485 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3487 /* make sure the item matches what we want */
3488 if (found_key
.objectid
!= BTRFS_ORPHAN_OBJECTID
)
3490 if (found_key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
3493 /* release the path since we're done with it */
3494 btrfs_release_path(path
);
3497 * this is where we are basically btrfs_lookup, without the
3498 * crossing root thing. we store the inode number in the
3499 * offset of the orphan item.
3502 if (found_key
.offset
== last_objectid
) {
3504 "Error removing orphan entry, stopping orphan cleanup");
3509 last_objectid
= found_key
.offset
;
3511 found_key
.objectid
= found_key
.offset
;
3512 found_key
.type
= BTRFS_INODE_ITEM_KEY
;
3513 found_key
.offset
= 0;
3514 inode
= btrfs_iget(fs_info
->sb
, &found_key
, root
, NULL
);
3515 ret
= PTR_ERR_OR_ZERO(inode
);
3516 if (ret
&& ret
!= -ENOENT
)
3519 if (ret
== -ENOENT
&& root
== fs_info
->tree_root
) {
3520 struct btrfs_root
*dead_root
;
3521 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3522 int is_dead_root
= 0;
3525 * this is an orphan in the tree root. Currently these
3526 * could come from 2 sources:
3527 * a) a snapshot deletion in progress
3528 * b) a free space cache inode
3529 * We need to distinguish those two, as the snapshot
3530 * orphan must not get deleted.
3531 * find_dead_roots already ran before us, so if this
3532 * is a snapshot deletion, we should find the root
3533 * in the dead_roots list
3535 spin_lock(&fs_info
->trans_lock
);
3536 list_for_each_entry(dead_root
, &fs_info
->dead_roots
,
3538 if (dead_root
->root_key
.objectid
==
3539 found_key
.objectid
) {
3544 spin_unlock(&fs_info
->trans_lock
);
3546 /* prevent this orphan from being found again */
3547 key
.offset
= found_key
.objectid
- 1;
3552 * Inode is already gone but the orphan item is still there,
3553 * kill the orphan item.
3555 if (ret
== -ENOENT
) {
3556 trans
= btrfs_start_transaction(root
, 1);
3557 if (IS_ERR(trans
)) {
3558 ret
= PTR_ERR(trans
);
3561 btrfs_debug(fs_info
, "auto deleting %Lu",
3562 found_key
.objectid
);
3563 ret
= btrfs_del_orphan_item(trans
, root
,
3564 found_key
.objectid
);
3565 btrfs_end_transaction(trans
);
3572 * add this inode to the orphan list so btrfs_orphan_del does
3573 * the proper thing when we hit it
3575 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
3576 &BTRFS_I(inode
)->runtime_flags
);
3577 atomic_inc(&root
->orphan_inodes
);
3579 /* if we have links, this was a truncate, lets do that */
3580 if (inode
->i_nlink
) {
3581 if (WARN_ON(!S_ISREG(inode
->i_mode
))) {
3587 /* 1 for the orphan item deletion. */
3588 trans
= btrfs_start_transaction(root
, 1);
3589 if (IS_ERR(trans
)) {
3591 ret
= PTR_ERR(trans
);
3594 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
3595 btrfs_end_transaction(trans
);
3601 ret
= btrfs_truncate(inode
);
3603 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
3608 /* this will do delete_inode and everything for us */
3613 /* release the path since we're done with it */
3614 btrfs_release_path(path
);
3616 root
->orphan_cleanup_state
= ORPHAN_CLEANUP_DONE
;
3618 if (root
->orphan_block_rsv
)
3619 btrfs_block_rsv_release(fs_info
, root
->orphan_block_rsv
,
3622 if (root
->orphan_block_rsv
||
3623 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &root
->state
)) {
3624 trans
= btrfs_join_transaction(root
);
3626 btrfs_end_transaction(trans
);
3630 btrfs_debug(fs_info
, "unlinked %d orphans", nr_unlink
);
3632 btrfs_debug(fs_info
, "truncated %d orphans", nr_truncate
);
3636 btrfs_err(fs_info
, "could not do orphan cleanup %d", ret
);
3637 btrfs_free_path(path
);
3642 * very simple check to peek ahead in the leaf looking for xattrs. If we
3643 * don't find any xattrs, we know there can't be any acls.
3645 * slot is the slot the inode is in, objectid is the objectid of the inode
3647 static noinline
int acls_after_inode_item(struct extent_buffer
*leaf
,
3648 int slot
, u64 objectid
,
3649 int *first_xattr_slot
)
3651 u32 nritems
= btrfs_header_nritems(leaf
);
3652 struct btrfs_key found_key
;
3653 static u64 xattr_access
= 0;
3654 static u64 xattr_default
= 0;
3657 if (!xattr_access
) {
3658 xattr_access
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS
,
3659 strlen(XATTR_NAME_POSIX_ACL_ACCESS
));
3660 xattr_default
= btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT
,
3661 strlen(XATTR_NAME_POSIX_ACL_DEFAULT
));
3665 *first_xattr_slot
= -1;
3666 while (slot
< nritems
) {
3667 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3669 /* we found a different objectid, there must not be acls */
3670 if (found_key
.objectid
!= objectid
)
3673 /* we found an xattr, assume we've got an acl */
3674 if (found_key
.type
== BTRFS_XATTR_ITEM_KEY
) {
3675 if (*first_xattr_slot
== -1)
3676 *first_xattr_slot
= slot
;
3677 if (found_key
.offset
== xattr_access
||
3678 found_key
.offset
== xattr_default
)
3683 * we found a key greater than an xattr key, there can't
3684 * be any acls later on
3686 if (found_key
.type
> BTRFS_XATTR_ITEM_KEY
)
3693 * it goes inode, inode backrefs, xattrs, extents,
3694 * so if there are a ton of hard links to an inode there can
3695 * be a lot of backrefs. Don't waste time searching too hard,
3696 * this is just an optimization
3701 /* we hit the end of the leaf before we found an xattr or
3702 * something larger than an xattr. We have to assume the inode
3705 if (*first_xattr_slot
== -1)
3706 *first_xattr_slot
= slot
;
3711 * read an inode from the btree into the in-memory inode
3713 static int btrfs_read_locked_inode(struct inode
*inode
)
3715 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
3716 struct btrfs_path
*path
;
3717 struct extent_buffer
*leaf
;
3718 struct btrfs_inode_item
*inode_item
;
3719 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3720 struct btrfs_key location
;
3725 bool filled
= false;
3726 int first_xattr_slot
;
3728 ret
= btrfs_fill_inode(inode
, &rdev
);
3732 path
= btrfs_alloc_path();
3738 memcpy(&location
, &BTRFS_I(inode
)->location
, sizeof(location
));
3740 ret
= btrfs_lookup_inode(NULL
, root
, path
, &location
, 0);
3747 leaf
= path
->nodes
[0];
3752 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3753 struct btrfs_inode_item
);
3754 inode
->i_mode
= btrfs_inode_mode(leaf
, inode_item
);
3755 set_nlink(inode
, btrfs_inode_nlink(leaf
, inode_item
));
3756 i_uid_write(inode
, btrfs_inode_uid(leaf
, inode_item
));
3757 i_gid_write(inode
, btrfs_inode_gid(leaf
, inode_item
));
3758 btrfs_i_size_write(BTRFS_I(inode
), btrfs_inode_size(leaf
, inode_item
));
3760 inode
->i_atime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->atime
);
3761 inode
->i_atime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->atime
);
3763 inode
->i_mtime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->mtime
);
3764 inode
->i_mtime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->mtime
);
3766 inode
->i_ctime
.tv_sec
= btrfs_timespec_sec(leaf
, &inode_item
->ctime
);
3767 inode
->i_ctime
.tv_nsec
= btrfs_timespec_nsec(leaf
, &inode_item
->ctime
);
3769 BTRFS_I(inode
)->i_otime
.tv_sec
=
3770 btrfs_timespec_sec(leaf
, &inode_item
->otime
);
3771 BTRFS_I(inode
)->i_otime
.tv_nsec
=
3772 btrfs_timespec_nsec(leaf
, &inode_item
->otime
);
3774 inode_set_bytes(inode
, btrfs_inode_nbytes(leaf
, inode_item
));
3775 BTRFS_I(inode
)->generation
= btrfs_inode_generation(leaf
, inode_item
);
3776 BTRFS_I(inode
)->last_trans
= btrfs_inode_transid(leaf
, inode_item
);
3778 inode
->i_version
= btrfs_inode_sequence(leaf
, inode_item
);
3779 inode
->i_generation
= BTRFS_I(inode
)->generation
;
3781 rdev
= btrfs_inode_rdev(leaf
, inode_item
);
3783 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
3784 BTRFS_I(inode
)->flags
= btrfs_inode_flags(leaf
, inode_item
);
3788 * If we were modified in the current generation and evicted from memory
3789 * and then re-read we need to do a full sync since we don't have any
3790 * idea about which extents were modified before we were evicted from
3793 * This is required for both inode re-read from disk and delayed inode
3794 * in delayed_nodes_tree.
3796 if (BTRFS_I(inode
)->last_trans
== fs_info
->generation
)
3797 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3798 &BTRFS_I(inode
)->runtime_flags
);
3801 * We don't persist the id of the transaction where an unlink operation
3802 * against the inode was last made. So here we assume the inode might
3803 * have been evicted, and therefore the exact value of last_unlink_trans
3804 * lost, and set it to last_trans to avoid metadata inconsistencies
3805 * between the inode and its parent if the inode is fsync'ed and the log
3806 * replayed. For example, in the scenario:
3809 * ln mydir/foo mydir/bar
3812 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3813 * xfs_io -c fsync mydir/foo
3815 * mount fs, triggers fsync log replay
3817 * We must make sure that when we fsync our inode foo we also log its
3818 * parent inode, otherwise after log replay the parent still has the
3819 * dentry with the "bar" name but our inode foo has a link count of 1
3820 * and doesn't have an inode ref with the name "bar" anymore.
3822 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3823 * but it guarantees correctness at the expense of occasional full
3824 * transaction commits on fsync if our inode is a directory, or if our
3825 * inode is not a directory, logging its parent unnecessarily.
3827 BTRFS_I(inode
)->last_unlink_trans
= BTRFS_I(inode
)->last_trans
;
3830 if (inode
->i_nlink
!= 1 ||
3831 path
->slots
[0] >= btrfs_header_nritems(leaf
))
3834 btrfs_item_key_to_cpu(leaf
, &location
, path
->slots
[0]);
3835 if (location
.objectid
!= btrfs_ino(BTRFS_I(inode
)))
3838 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
3839 if (location
.type
== BTRFS_INODE_REF_KEY
) {
3840 struct btrfs_inode_ref
*ref
;
3842 ref
= (struct btrfs_inode_ref
*)ptr
;
3843 BTRFS_I(inode
)->dir_index
= btrfs_inode_ref_index(leaf
, ref
);
3844 } else if (location
.type
== BTRFS_INODE_EXTREF_KEY
) {
3845 struct btrfs_inode_extref
*extref
;
3847 extref
= (struct btrfs_inode_extref
*)ptr
;
3848 BTRFS_I(inode
)->dir_index
= btrfs_inode_extref_index(leaf
,
3853 * try to precache a NULL acl entry for files that don't have
3854 * any xattrs or acls
3856 maybe_acls
= acls_after_inode_item(leaf
, path
->slots
[0],
3857 btrfs_ino(BTRFS_I(inode
)), &first_xattr_slot
);
3858 if (first_xattr_slot
!= -1) {
3859 path
->slots
[0] = first_xattr_slot
;
3860 ret
= btrfs_load_inode_props(inode
, path
);
3863 "error loading props for ino %llu (root %llu): %d",
3864 btrfs_ino(BTRFS_I(inode
)),
3865 root
->root_key
.objectid
, ret
);
3867 btrfs_free_path(path
);
3870 cache_no_acl(inode
);
3872 switch (inode
->i_mode
& S_IFMT
) {
3874 inode
->i_mapping
->a_ops
= &btrfs_aops
;
3875 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
3876 inode
->i_fop
= &btrfs_file_operations
;
3877 inode
->i_op
= &btrfs_file_inode_operations
;
3880 inode
->i_fop
= &btrfs_dir_file_operations
;
3881 inode
->i_op
= &btrfs_dir_inode_operations
;
3884 inode
->i_op
= &btrfs_symlink_inode_operations
;
3885 inode_nohighmem(inode
);
3886 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
3889 inode
->i_op
= &btrfs_special_inode_operations
;
3890 init_special_inode(inode
, inode
->i_mode
, rdev
);
3894 btrfs_update_iflags(inode
);
3898 btrfs_free_path(path
);
3899 make_bad_inode(inode
);
3904 * given a leaf and an inode, copy the inode fields into the leaf
3906 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3907 struct extent_buffer
*leaf
,
3908 struct btrfs_inode_item
*item
,
3909 struct inode
*inode
)
3911 struct btrfs_map_token token
;
3913 btrfs_init_map_token(&token
);
3915 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3916 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3917 btrfs_set_token_inode_size(leaf
, item
, BTRFS_I(inode
)->disk_i_size
,
3919 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3920 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3922 btrfs_set_token_timespec_sec(leaf
, &item
->atime
,
3923 inode
->i_atime
.tv_sec
, &token
);
3924 btrfs_set_token_timespec_nsec(leaf
, &item
->atime
,
3925 inode
->i_atime
.tv_nsec
, &token
);
3927 btrfs_set_token_timespec_sec(leaf
, &item
->mtime
,
3928 inode
->i_mtime
.tv_sec
, &token
);
3929 btrfs_set_token_timespec_nsec(leaf
, &item
->mtime
,
3930 inode
->i_mtime
.tv_nsec
, &token
);
3932 btrfs_set_token_timespec_sec(leaf
, &item
->ctime
,
3933 inode
->i_ctime
.tv_sec
, &token
);
3934 btrfs_set_token_timespec_nsec(leaf
, &item
->ctime
,
3935 inode
->i_ctime
.tv_nsec
, &token
);
3937 btrfs_set_token_timespec_sec(leaf
, &item
->otime
,
3938 BTRFS_I(inode
)->i_otime
.tv_sec
, &token
);
3939 btrfs_set_token_timespec_nsec(leaf
, &item
->otime
,
3940 BTRFS_I(inode
)->i_otime
.tv_nsec
, &token
);
3942 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3944 btrfs_set_token_inode_generation(leaf
, item
, BTRFS_I(inode
)->generation
,
3946 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3947 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3948 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3949 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3950 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3954 * copy everything in the in-memory inode into the btree.
3956 static noinline
int btrfs_update_inode_item(struct btrfs_trans_handle
*trans
,
3957 struct btrfs_root
*root
, struct inode
*inode
)
3959 struct btrfs_inode_item
*inode_item
;
3960 struct btrfs_path
*path
;
3961 struct extent_buffer
*leaf
;
3964 path
= btrfs_alloc_path();
3968 path
->leave_spinning
= 1;
3969 ret
= btrfs_lookup_inode(trans
, root
, path
, &BTRFS_I(inode
)->location
,
3977 leaf
= path
->nodes
[0];
3978 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
3979 struct btrfs_inode_item
);
3981 fill_inode_item(trans
, leaf
, inode_item
, inode
);
3982 btrfs_mark_buffer_dirty(leaf
);
3983 btrfs_set_inode_last_trans(trans
, inode
);
3986 btrfs_free_path(path
);
3991 * copy everything in the in-memory inode into the btree.
3993 noinline
int btrfs_update_inode(struct btrfs_trans_handle
*trans
,
3994 struct btrfs_root
*root
, struct inode
*inode
)
3996 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4000 * If the inode is a free space inode, we can deadlock during commit
4001 * if we put it into the delayed code.
4003 * The data relocation inode should also be directly updated
4006 if (!btrfs_is_free_space_inode(BTRFS_I(inode
))
4007 && root
->root_key
.objectid
!= BTRFS_DATA_RELOC_TREE_OBJECTID
4008 && !test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
4009 btrfs_update_root_times(trans
, root
);
4011 ret
= btrfs_delayed_update_inode(trans
, root
, inode
);
4013 btrfs_set_inode_last_trans(trans
, inode
);
4017 return btrfs_update_inode_item(trans
, root
, inode
);
4020 noinline
int btrfs_update_inode_fallback(struct btrfs_trans_handle
*trans
,
4021 struct btrfs_root
*root
,
4022 struct inode
*inode
)
4026 ret
= btrfs_update_inode(trans
, root
, inode
);
4028 return btrfs_update_inode_item(trans
, root
, inode
);
4033 * unlink helper that gets used here in inode.c and in the tree logging
4034 * recovery code. It remove a link in a directory with a given name, and
4035 * also drops the back refs in the inode to the directory
4037 static int __btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4038 struct btrfs_root
*root
,
4039 struct btrfs_inode
*dir
,
4040 struct btrfs_inode
*inode
,
4041 const char *name
, int name_len
)
4043 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4044 struct btrfs_path
*path
;
4046 struct extent_buffer
*leaf
;
4047 struct btrfs_dir_item
*di
;
4048 struct btrfs_key key
;
4050 u64 ino
= btrfs_ino(inode
);
4051 u64 dir_ino
= btrfs_ino(dir
);
4053 path
= btrfs_alloc_path();
4059 path
->leave_spinning
= 1;
4060 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4061 name
, name_len
, -1);
4070 leaf
= path
->nodes
[0];
4071 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4072 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4075 btrfs_release_path(path
);
4078 * If we don't have dir index, we have to get it by looking up
4079 * the inode ref, since we get the inode ref, remove it directly,
4080 * it is unnecessary to do delayed deletion.
4082 * But if we have dir index, needn't search inode ref to get it.
4083 * Since the inode ref is close to the inode item, it is better
4084 * that we delay to delete it, and just do this deletion when
4085 * we update the inode item.
4087 if (inode
->dir_index
) {
4088 ret
= btrfs_delayed_delete_inode_ref(inode
);
4090 index
= inode
->dir_index
;
4095 ret
= btrfs_del_inode_ref(trans
, root
, name
, name_len
, ino
,
4099 "failed to delete reference to %.*s, inode %llu parent %llu",
4100 name_len
, name
, ino
, dir_ino
);
4101 btrfs_abort_transaction(trans
, ret
);
4105 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, dir
, index
);
4107 btrfs_abort_transaction(trans
, ret
);
4111 ret
= btrfs_del_inode_ref_in_log(trans
, root
, name
, name_len
, inode
,
4113 if (ret
!= 0 && ret
!= -ENOENT
) {
4114 btrfs_abort_transaction(trans
, ret
);
4118 ret
= btrfs_del_dir_entries_in_log(trans
, root
, name
, name_len
, dir
,
4123 btrfs_abort_transaction(trans
, ret
);
4125 btrfs_free_path(path
);
4129 btrfs_i_size_write(dir
, dir
->vfs_inode
.i_size
- name_len
* 2);
4130 inode_inc_iversion(&inode
->vfs_inode
);
4131 inode_inc_iversion(&dir
->vfs_inode
);
4132 inode
->vfs_inode
.i_ctime
= dir
->vfs_inode
.i_mtime
=
4133 dir
->vfs_inode
.i_ctime
= current_time(&inode
->vfs_inode
);
4134 ret
= btrfs_update_inode(trans
, root
, &dir
->vfs_inode
);
4139 int btrfs_unlink_inode(struct btrfs_trans_handle
*trans
,
4140 struct btrfs_root
*root
,
4141 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
4142 const char *name
, int name_len
)
4145 ret
= __btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
4147 drop_nlink(&inode
->vfs_inode
);
4148 ret
= btrfs_update_inode(trans
, root
, &inode
->vfs_inode
);
4154 * helper to start transaction for unlink and rmdir.
4156 * unlink and rmdir are special in btrfs, they do not always free space, so
4157 * if we cannot make our reservations the normal way try and see if there is
4158 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4159 * allow the unlink to occur.
4161 static struct btrfs_trans_handle
*__unlink_start_trans(struct inode
*dir
)
4163 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4166 * 1 for the possible orphan item
4167 * 1 for the dir item
4168 * 1 for the dir index
4169 * 1 for the inode ref
4172 return btrfs_start_transaction_fallback_global_rsv(root
, 5, 5);
4175 static int btrfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
4177 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4178 struct btrfs_trans_handle
*trans
;
4179 struct inode
*inode
= d_inode(dentry
);
4182 trans
= __unlink_start_trans(dir
);
4184 return PTR_ERR(trans
);
4186 btrfs_record_unlink_dir(trans
, BTRFS_I(dir
), BTRFS_I(d_inode(dentry
)),
4189 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4190 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4191 dentry
->d_name
.len
);
4195 if (inode
->i_nlink
== 0) {
4196 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4202 btrfs_end_transaction(trans
);
4203 btrfs_btree_balance_dirty(root
->fs_info
);
4207 int btrfs_unlink_subvol(struct btrfs_trans_handle
*trans
,
4208 struct btrfs_root
*root
,
4209 struct inode
*dir
, u64 objectid
,
4210 const char *name
, int name_len
)
4212 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4213 struct btrfs_path
*path
;
4214 struct extent_buffer
*leaf
;
4215 struct btrfs_dir_item
*di
;
4216 struct btrfs_key key
;
4219 u64 dir_ino
= btrfs_ino(BTRFS_I(dir
));
4221 path
= btrfs_alloc_path();
4225 di
= btrfs_lookup_dir_item(trans
, root
, path
, dir_ino
,
4226 name
, name_len
, -1);
4227 if (IS_ERR_OR_NULL(di
)) {
4235 leaf
= path
->nodes
[0];
4236 btrfs_dir_item_key_to_cpu(leaf
, di
, &key
);
4237 WARN_ON(key
.type
!= BTRFS_ROOT_ITEM_KEY
|| key
.objectid
!= objectid
);
4238 ret
= btrfs_delete_one_dir_name(trans
, root
, path
, di
);
4240 btrfs_abort_transaction(trans
, ret
);
4243 btrfs_release_path(path
);
4245 ret
= btrfs_del_root_ref(trans
, fs_info
, objectid
,
4246 root
->root_key
.objectid
, dir_ino
,
4247 &index
, name
, name_len
);
4249 if (ret
!= -ENOENT
) {
4250 btrfs_abort_transaction(trans
, ret
);
4253 di
= btrfs_search_dir_index_item(root
, path
, dir_ino
,
4255 if (IS_ERR_OR_NULL(di
)) {
4260 btrfs_abort_transaction(trans
, ret
);
4264 leaf
= path
->nodes
[0];
4265 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4266 btrfs_release_path(path
);
4269 btrfs_release_path(path
);
4271 ret
= btrfs_delete_delayed_dir_index(trans
, fs_info
, BTRFS_I(dir
), index
);
4273 btrfs_abort_transaction(trans
, ret
);
4277 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
- name_len
* 2);
4278 inode_inc_iversion(dir
);
4279 dir
->i_mtime
= dir
->i_ctime
= current_time(dir
);
4280 ret
= btrfs_update_inode_fallback(trans
, root
, dir
);
4282 btrfs_abort_transaction(trans
, ret
);
4284 btrfs_free_path(path
);
4288 static int btrfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
4290 struct inode
*inode
= d_inode(dentry
);
4292 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
4293 struct btrfs_trans_handle
*trans
;
4294 u64 last_unlink_trans
;
4296 if (inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
4298 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_FIRST_FREE_OBJECTID
)
4301 trans
= __unlink_start_trans(dir
);
4303 return PTR_ERR(trans
);
4305 if (unlikely(btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
4306 err
= btrfs_unlink_subvol(trans
, root
, dir
,
4307 BTRFS_I(inode
)->location
.objectid
,
4308 dentry
->d_name
.name
,
4309 dentry
->d_name
.len
);
4313 err
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
4317 last_unlink_trans
= BTRFS_I(inode
)->last_unlink_trans
;
4319 /* now the directory is empty */
4320 err
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
4321 BTRFS_I(d_inode(dentry
)), dentry
->d_name
.name
,
4322 dentry
->d_name
.len
);
4324 btrfs_i_size_write(BTRFS_I(inode
), 0);
4326 * Propagate the last_unlink_trans value of the deleted dir to
4327 * its parent directory. This is to prevent an unrecoverable
4328 * log tree in the case we do something like this:
4330 * 2) create snapshot under dir foo
4331 * 3) delete the snapshot
4334 * 6) fsync foo or some file inside foo
4336 if (last_unlink_trans
>= trans
->transid
)
4337 BTRFS_I(dir
)->last_unlink_trans
= last_unlink_trans
;
4340 btrfs_end_transaction(trans
);
4341 btrfs_btree_balance_dirty(root
->fs_info
);
4346 static int truncate_space_check(struct btrfs_trans_handle
*trans
,
4347 struct btrfs_root
*root
,
4350 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4354 * This is only used to apply pressure to the enospc system, we don't
4355 * intend to use this reservation at all.
4357 bytes_deleted
= btrfs_csum_bytes_to_leaves(fs_info
, bytes_deleted
);
4358 bytes_deleted
*= fs_info
->nodesize
;
4359 ret
= btrfs_block_rsv_add(root
, &fs_info
->trans_block_rsv
,
4360 bytes_deleted
, BTRFS_RESERVE_NO_FLUSH
);
4362 trace_btrfs_space_reservation(fs_info
, "transaction",
4365 trans
->bytes_reserved
+= bytes_deleted
;
4372 * Return this if we need to call truncate_block for the last bit of the
4375 #define NEED_TRUNCATE_BLOCK 1
4378 * this can truncate away extent items, csum items and directory items.
4379 * It starts at a high offset and removes keys until it can't find
4380 * any higher than new_size
4382 * csum items that cross the new i_size are truncated to the new size
4385 * min_type is the minimum key type to truncate down to. If set to 0, this
4386 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4388 int btrfs_truncate_inode_items(struct btrfs_trans_handle
*trans
,
4389 struct btrfs_root
*root
,
4390 struct inode
*inode
,
4391 u64 new_size
, u32 min_type
)
4393 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4394 struct btrfs_path
*path
;
4395 struct extent_buffer
*leaf
;
4396 struct btrfs_file_extent_item
*fi
;
4397 struct btrfs_key key
;
4398 struct btrfs_key found_key
;
4399 u64 extent_start
= 0;
4400 u64 extent_num_bytes
= 0;
4401 u64 extent_offset
= 0;
4403 u64 last_size
= new_size
;
4404 u32 found_type
= (u8
)-1;
4407 int pending_del_nr
= 0;
4408 int pending_del_slot
= 0;
4409 int extent_type
= -1;
4412 u64 ino
= btrfs_ino(BTRFS_I(inode
));
4413 u64 bytes_deleted
= 0;
4414 bool be_nice
= false;
4415 bool should_throttle
= false;
4416 bool should_end
= false;
4418 BUG_ON(new_size
> 0 && min_type
!= BTRFS_EXTENT_DATA_KEY
);
4421 * for non-free space inodes and ref cows, we want to back off from
4424 if (!btrfs_is_free_space_inode(BTRFS_I(inode
)) &&
4425 test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4428 path
= btrfs_alloc_path();
4431 path
->reada
= READA_BACK
;
4434 * We want to drop from the next block forward in case this new size is
4435 * not block aligned since we will be keeping the last block of the
4436 * extent just the way it is.
4438 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4439 root
== fs_info
->tree_root
)
4440 btrfs_drop_extent_cache(BTRFS_I(inode
), ALIGN(new_size
,
4441 fs_info
->sectorsize
),
4445 * This function is also used to drop the items in the log tree before
4446 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4447 * it is used to drop the loged items. So we shouldn't kill the delayed
4450 if (min_type
== 0 && root
== BTRFS_I(inode
)->root
)
4451 btrfs_kill_delayed_inode_items(BTRFS_I(inode
));
4454 key
.offset
= (u64
)-1;
4459 * with a 16K leaf size and 128MB extents, you can actually queue
4460 * up a huge file in a single leaf. Most of the time that
4461 * bytes_deleted is > 0, it will be huge by the time we get here
4463 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4464 if (btrfs_should_end_transaction(trans
)) {
4471 path
->leave_spinning
= 1;
4472 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
4479 /* there are no items in the tree for us to truncate, we're
4482 if (path
->slots
[0] == 0)
4489 leaf
= path
->nodes
[0];
4490 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
4491 found_type
= found_key
.type
;
4493 if (found_key
.objectid
!= ino
)
4496 if (found_type
< min_type
)
4499 item_end
= found_key
.offset
;
4500 if (found_type
== BTRFS_EXTENT_DATA_KEY
) {
4501 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4502 struct btrfs_file_extent_item
);
4503 extent_type
= btrfs_file_extent_type(leaf
, fi
);
4504 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4506 btrfs_file_extent_num_bytes(leaf
, fi
);
4508 trace_btrfs_truncate_show_fi_regular(
4509 BTRFS_I(inode
), leaf
, fi
,
4511 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4512 item_end
+= btrfs_file_extent_inline_len(leaf
,
4513 path
->slots
[0], fi
);
4515 trace_btrfs_truncate_show_fi_inline(
4516 BTRFS_I(inode
), leaf
, fi
, path
->slots
[0],
4521 if (found_type
> min_type
) {
4524 if (item_end
< new_size
)
4526 if (found_key
.offset
>= new_size
)
4532 /* FIXME, shrink the extent if the ref count is only 1 */
4533 if (found_type
!= BTRFS_EXTENT_DATA_KEY
)
4536 if (extent_type
!= BTRFS_FILE_EXTENT_INLINE
) {
4538 extent_start
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
4540 u64 orig_num_bytes
=
4541 btrfs_file_extent_num_bytes(leaf
, fi
);
4542 extent_num_bytes
= ALIGN(new_size
-
4544 fs_info
->sectorsize
);
4545 btrfs_set_file_extent_num_bytes(leaf
, fi
,
4547 num_dec
= (orig_num_bytes
-
4549 if (test_bit(BTRFS_ROOT_REF_COWS
,
4552 inode_sub_bytes(inode
, num_dec
);
4553 btrfs_mark_buffer_dirty(leaf
);
4556 btrfs_file_extent_disk_num_bytes(leaf
,
4558 extent_offset
= found_key
.offset
-
4559 btrfs_file_extent_offset(leaf
, fi
);
4561 /* FIXME blocksize != 4096 */
4562 num_dec
= btrfs_file_extent_num_bytes(leaf
, fi
);
4563 if (extent_start
!= 0) {
4565 if (test_bit(BTRFS_ROOT_REF_COWS
,
4567 inode_sub_bytes(inode
, num_dec
);
4570 } else if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
4572 * we can't truncate inline items that have had
4576 btrfs_file_extent_encryption(leaf
, fi
) == 0 &&
4577 btrfs_file_extent_other_encoding(leaf
, fi
) == 0 &&
4578 btrfs_file_extent_compression(leaf
, fi
) == 0) {
4579 u32 size
= (u32
)(new_size
- found_key
.offset
);
4581 btrfs_set_file_extent_ram_bytes(leaf
, fi
, size
);
4582 size
= btrfs_file_extent_calc_inline_size(size
);
4583 btrfs_truncate_item(root
->fs_info
, path
, size
, 1);
4584 } else if (!del_item
) {
4586 * We have to bail so the last_size is set to
4587 * just before this extent.
4589 err
= NEED_TRUNCATE_BLOCK
;
4593 if (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
4594 inode_sub_bytes(inode
, item_end
+ 1 - new_size
);
4598 last_size
= found_key
.offset
;
4600 last_size
= new_size
;
4602 if (!pending_del_nr
) {
4603 /* no pending yet, add ourselves */
4604 pending_del_slot
= path
->slots
[0];
4606 } else if (pending_del_nr
&&
4607 path
->slots
[0] + 1 == pending_del_slot
) {
4608 /* hop on the pending chunk */
4610 pending_del_slot
= path
->slots
[0];
4617 should_throttle
= false;
4620 (test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
) ||
4621 root
== fs_info
->tree_root
)) {
4622 btrfs_set_path_blocking(path
);
4623 bytes_deleted
+= extent_num_bytes
;
4624 ret
= btrfs_free_extent(trans
, root
, extent_start
,
4625 extent_num_bytes
, 0,
4626 btrfs_header_owner(leaf
),
4627 ino
, extent_offset
);
4629 if (btrfs_should_throttle_delayed_refs(trans
, fs_info
))
4630 btrfs_async_run_delayed_refs(fs_info
,
4631 trans
->delayed_ref_updates
* 2,
4634 if (truncate_space_check(trans
, root
,
4635 extent_num_bytes
)) {
4638 if (btrfs_should_throttle_delayed_refs(trans
,
4640 should_throttle
= true;
4644 if (found_type
== BTRFS_INODE_ITEM_KEY
)
4647 if (path
->slots
[0] == 0 ||
4648 path
->slots
[0] != pending_del_slot
||
4649 should_throttle
|| should_end
) {
4650 if (pending_del_nr
) {
4651 ret
= btrfs_del_items(trans
, root
, path
,
4655 btrfs_abort_transaction(trans
, ret
);
4660 btrfs_release_path(path
);
4661 if (should_throttle
) {
4662 unsigned long updates
= trans
->delayed_ref_updates
;
4664 trans
->delayed_ref_updates
= 0;
4665 ret
= btrfs_run_delayed_refs(trans
,
4673 * if we failed to refill our space rsv, bail out
4674 * and let the transaction restart
4686 if (pending_del_nr
) {
4687 ret
= btrfs_del_items(trans
, root
, path
, pending_del_slot
,
4690 btrfs_abort_transaction(trans
, ret
);
4693 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4694 ASSERT(last_size
>= new_size
);
4695 if (!err
&& last_size
> new_size
)
4696 last_size
= new_size
;
4697 btrfs_ordered_update_i_size(inode
, last_size
, NULL
);
4700 btrfs_free_path(path
);
4702 if (be_nice
&& bytes_deleted
> SZ_32M
) {
4703 unsigned long updates
= trans
->delayed_ref_updates
;
4705 trans
->delayed_ref_updates
= 0;
4706 ret
= btrfs_run_delayed_refs(trans
, fs_info
,
4716 * btrfs_truncate_block - read, zero a chunk and write a block
4717 * @inode - inode that we're zeroing
4718 * @from - the offset to start zeroing
4719 * @len - the length to zero, 0 to zero the entire range respective to the
4721 * @front - zero up to the offset instead of from the offset on
4723 * This will find the block for the "from" offset and cow the block and zero the
4724 * part we want to zero. This is used with truncate and hole punching.
4726 int btrfs_truncate_block(struct inode
*inode
, loff_t from
, loff_t len
,
4729 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4730 struct address_space
*mapping
= inode
->i_mapping
;
4731 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4732 struct btrfs_ordered_extent
*ordered
;
4733 struct extent_state
*cached_state
= NULL
;
4734 struct extent_changeset
*data_reserved
= NULL
;
4736 u32 blocksize
= fs_info
->sectorsize
;
4737 pgoff_t index
= from
>> PAGE_SHIFT
;
4738 unsigned offset
= from
& (blocksize
- 1);
4740 gfp_t mask
= btrfs_alloc_write_mask(mapping
);
4745 if ((offset
& (blocksize
- 1)) == 0 &&
4746 (!len
|| ((len
& (blocksize
- 1)) == 0)))
4749 block_start
= round_down(from
, blocksize
);
4750 block_end
= block_start
+ blocksize
- 1;
4752 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
4753 block_start
, blocksize
);
4758 page
= find_or_create_page(mapping
, index
, mask
);
4760 btrfs_delalloc_release_space(inode
, data_reserved
,
4761 block_start
, blocksize
);
4762 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4767 if (!PageUptodate(page
)) {
4768 ret
= btrfs_readpage(NULL
, page
);
4770 if (page
->mapping
!= mapping
) {
4775 if (!PageUptodate(page
)) {
4780 wait_on_page_writeback(page
);
4782 lock_extent_bits(io_tree
, block_start
, block_end
, &cached_state
);
4783 set_page_extent_mapped(page
);
4785 ordered
= btrfs_lookup_ordered_extent(inode
, block_start
);
4787 unlock_extent_cached(io_tree
, block_start
, block_end
,
4788 &cached_state
, GFP_NOFS
);
4791 btrfs_start_ordered_extent(inode
, ordered
, 1);
4792 btrfs_put_ordered_extent(ordered
);
4796 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, block_start
, block_end
,
4797 EXTENT_DIRTY
| EXTENT_DELALLOC
|
4798 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
4799 0, 0, &cached_state
, GFP_NOFS
);
4801 ret
= btrfs_set_extent_delalloc(inode
, block_start
, block_end
, 0,
4804 unlock_extent_cached(io_tree
, block_start
, block_end
,
4805 &cached_state
, GFP_NOFS
);
4809 if (offset
!= blocksize
) {
4811 len
= blocksize
- offset
;
4814 memset(kaddr
+ (block_start
- page_offset(page
)),
4817 memset(kaddr
+ (block_start
- page_offset(page
)) + offset
,
4819 flush_dcache_page(page
);
4822 ClearPageChecked(page
);
4823 set_page_dirty(page
);
4824 unlock_extent_cached(io_tree
, block_start
, block_end
, &cached_state
,
4829 btrfs_delalloc_release_space(inode
, data_reserved
, block_start
,
4831 btrfs_delalloc_release_extents(BTRFS_I(inode
), blocksize
);
4835 extent_changeset_free(data_reserved
);
4839 static int maybe_insert_hole(struct btrfs_root
*root
, struct inode
*inode
,
4840 u64 offset
, u64 len
)
4842 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4843 struct btrfs_trans_handle
*trans
;
4847 * Still need to make sure the inode looks like it's been updated so
4848 * that any holes get logged if we fsync.
4850 if (btrfs_fs_incompat(fs_info
, NO_HOLES
)) {
4851 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
4852 BTRFS_I(inode
)->last_sub_trans
= root
->log_transid
;
4853 BTRFS_I(inode
)->last_log_commit
= root
->last_log_commit
;
4858 * 1 - for the one we're dropping
4859 * 1 - for the one we're adding
4860 * 1 - for updating the inode.
4862 trans
= btrfs_start_transaction(root
, 3);
4864 return PTR_ERR(trans
);
4866 ret
= btrfs_drop_extents(trans
, root
, inode
, offset
, offset
+ len
, 1);
4868 btrfs_abort_transaction(trans
, ret
);
4869 btrfs_end_transaction(trans
);
4873 ret
= btrfs_insert_file_extent(trans
, root
, btrfs_ino(BTRFS_I(inode
)),
4874 offset
, 0, 0, len
, 0, len
, 0, 0, 0);
4876 btrfs_abort_transaction(trans
, ret
);
4878 btrfs_update_inode(trans
, root
, inode
);
4879 btrfs_end_transaction(trans
);
4884 * This function puts in dummy file extents for the area we're creating a hole
4885 * for. So if we are truncating this file to a larger size we need to insert
4886 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4887 * the range between oldsize and size
4889 int btrfs_cont_expand(struct inode
*inode
, loff_t oldsize
, loff_t size
)
4891 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
4892 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4893 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
4894 struct extent_map
*em
= NULL
;
4895 struct extent_state
*cached_state
= NULL
;
4896 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
4897 u64 hole_start
= ALIGN(oldsize
, fs_info
->sectorsize
);
4898 u64 block_end
= ALIGN(size
, fs_info
->sectorsize
);
4905 * If our size started in the middle of a block we need to zero out the
4906 * rest of the block before we expand the i_size, otherwise we could
4907 * expose stale data.
4909 err
= btrfs_truncate_block(inode
, oldsize
, 0, 0);
4913 if (size
<= hole_start
)
4917 struct btrfs_ordered_extent
*ordered
;
4919 lock_extent_bits(io_tree
, hole_start
, block_end
- 1,
4921 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), hole_start
,
4922 block_end
- hole_start
);
4925 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1,
4926 &cached_state
, GFP_NOFS
);
4927 btrfs_start_ordered_extent(inode
, ordered
, 1);
4928 btrfs_put_ordered_extent(ordered
);
4931 cur_offset
= hole_start
;
4933 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, cur_offset
,
4934 block_end
- cur_offset
, 0);
4940 last_byte
= min(extent_map_end(em
), block_end
);
4941 last_byte
= ALIGN(last_byte
, fs_info
->sectorsize
);
4942 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
4943 struct extent_map
*hole_em
;
4944 hole_size
= last_byte
- cur_offset
;
4946 err
= maybe_insert_hole(root
, inode
, cur_offset
,
4950 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
4951 cur_offset
+ hole_size
- 1, 0);
4952 hole_em
= alloc_extent_map();
4954 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
4955 &BTRFS_I(inode
)->runtime_flags
);
4958 hole_em
->start
= cur_offset
;
4959 hole_em
->len
= hole_size
;
4960 hole_em
->orig_start
= cur_offset
;
4962 hole_em
->block_start
= EXTENT_MAP_HOLE
;
4963 hole_em
->block_len
= 0;
4964 hole_em
->orig_block_len
= 0;
4965 hole_em
->ram_bytes
= hole_size
;
4966 hole_em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
4967 hole_em
->compress_type
= BTRFS_COMPRESS_NONE
;
4968 hole_em
->generation
= fs_info
->generation
;
4971 write_lock(&em_tree
->lock
);
4972 err
= add_extent_mapping(em_tree
, hole_em
, 1);
4973 write_unlock(&em_tree
->lock
);
4976 btrfs_drop_extent_cache(BTRFS_I(inode
),
4981 free_extent_map(hole_em
);
4984 free_extent_map(em
);
4986 cur_offset
= last_byte
;
4987 if (cur_offset
>= block_end
)
4990 free_extent_map(em
);
4991 unlock_extent_cached(io_tree
, hole_start
, block_end
- 1, &cached_state
,
4996 static int btrfs_setsize(struct inode
*inode
, struct iattr
*attr
)
4998 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4999 struct btrfs_trans_handle
*trans
;
5000 loff_t oldsize
= i_size_read(inode
);
5001 loff_t newsize
= attr
->ia_size
;
5002 int mask
= attr
->ia_valid
;
5006 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
5007 * special case where we need to update the times despite not having
5008 * these flags set. For all other operations the VFS set these flags
5009 * explicitly if it wants a timestamp update.
5011 if (newsize
!= oldsize
) {
5012 inode_inc_iversion(inode
);
5013 if (!(mask
& (ATTR_CTIME
| ATTR_MTIME
)))
5014 inode
->i_ctime
= inode
->i_mtime
=
5015 current_time(inode
);
5018 if (newsize
> oldsize
) {
5020 * Don't do an expanding truncate while snapshotting is ongoing.
5021 * This is to ensure the snapshot captures a fully consistent
5022 * state of this file - if the snapshot captures this expanding
5023 * truncation, it must capture all writes that happened before
5026 btrfs_wait_for_snapshot_creation(root
);
5027 ret
= btrfs_cont_expand(inode
, oldsize
, newsize
);
5029 btrfs_end_write_no_snapshotting(root
);
5033 trans
= btrfs_start_transaction(root
, 1);
5034 if (IS_ERR(trans
)) {
5035 btrfs_end_write_no_snapshotting(root
);
5036 return PTR_ERR(trans
);
5039 i_size_write(inode
, newsize
);
5040 btrfs_ordered_update_i_size(inode
, i_size_read(inode
), NULL
);
5041 pagecache_isize_extended(inode
, oldsize
, newsize
);
5042 ret
= btrfs_update_inode(trans
, root
, inode
);
5043 btrfs_end_write_no_snapshotting(root
);
5044 btrfs_end_transaction(trans
);
5048 * We're truncating a file that used to have good data down to
5049 * zero. Make sure it gets into the ordered flush list so that
5050 * any new writes get down to disk quickly.
5053 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE
,
5054 &BTRFS_I(inode
)->runtime_flags
);
5057 * 1 for the orphan item we're going to add
5058 * 1 for the orphan item deletion.
5060 trans
= btrfs_start_transaction(root
, 2);
5062 return PTR_ERR(trans
);
5065 * We need to do this in case we fail at _any_ point during the
5066 * actual truncate. Once we do the truncate_setsize we could
5067 * invalidate pages which forces any outstanding ordered io to
5068 * be instantly completed which will give us extents that need
5069 * to be truncated. If we fail to get an orphan inode down we
5070 * could have left over extents that were never meant to live,
5071 * so we need to guarantee from this point on that everything
5072 * will be consistent.
5074 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
5075 btrfs_end_transaction(trans
);
5079 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5080 truncate_setsize(inode
, newsize
);
5082 /* Disable nonlocked read DIO to avoid the end less truncate */
5083 btrfs_inode_block_unlocked_dio(BTRFS_I(inode
));
5084 inode_dio_wait(inode
);
5085 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode
));
5087 ret
= btrfs_truncate(inode
);
5088 if (ret
&& inode
->i_nlink
) {
5091 /* To get a stable disk_i_size */
5092 err
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5094 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5099 * failed to truncate, disk_i_size is only adjusted down
5100 * as we remove extents, so it should represent the true
5101 * size of the inode, so reset the in memory size and
5102 * delete our orphan entry.
5104 trans
= btrfs_join_transaction(root
);
5105 if (IS_ERR(trans
)) {
5106 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5109 i_size_write(inode
, BTRFS_I(inode
)->disk_i_size
);
5110 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
5112 btrfs_abort_transaction(trans
, err
);
5113 btrfs_end_transaction(trans
);
5120 static int btrfs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5122 struct inode
*inode
= d_inode(dentry
);
5123 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5126 if (btrfs_root_readonly(root
))
5129 err
= setattr_prepare(dentry
, attr
);
5133 if (S_ISREG(inode
->i_mode
) && (attr
->ia_valid
& ATTR_SIZE
)) {
5134 err
= btrfs_setsize(inode
, attr
);
5139 if (attr
->ia_valid
) {
5140 setattr_copy(inode
, attr
);
5141 inode_inc_iversion(inode
);
5142 err
= btrfs_dirty_inode(inode
);
5144 if (!err
&& attr
->ia_valid
& ATTR_MODE
)
5145 err
= posix_acl_chmod(inode
, inode
->i_mode
);
5152 * While truncating the inode pages during eviction, we get the VFS calling
5153 * btrfs_invalidatepage() against each page of the inode. This is slow because
5154 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5155 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5156 * extent_state structures over and over, wasting lots of time.
5158 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5159 * those expensive operations on a per page basis and do only the ordered io
5160 * finishing, while we release here the extent_map and extent_state structures,
5161 * without the excessive merging and splitting.
5163 static void evict_inode_truncate_pages(struct inode
*inode
)
5165 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
5166 struct extent_map_tree
*map_tree
= &BTRFS_I(inode
)->extent_tree
;
5167 struct rb_node
*node
;
5169 ASSERT(inode
->i_state
& I_FREEING
);
5170 truncate_inode_pages_final(&inode
->i_data
);
5172 write_lock(&map_tree
->lock
);
5173 while (!RB_EMPTY_ROOT(&map_tree
->map
)) {
5174 struct extent_map
*em
;
5176 node
= rb_first(&map_tree
->map
);
5177 em
= rb_entry(node
, struct extent_map
, rb_node
);
5178 clear_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
5179 clear_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
5180 remove_extent_mapping(map_tree
, em
);
5181 free_extent_map(em
);
5182 if (need_resched()) {
5183 write_unlock(&map_tree
->lock
);
5185 write_lock(&map_tree
->lock
);
5188 write_unlock(&map_tree
->lock
);
5191 * Keep looping until we have no more ranges in the io tree.
5192 * We can have ongoing bios started by readpages (called from readahead)
5193 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5194 * still in progress (unlocked the pages in the bio but did not yet
5195 * unlocked the ranges in the io tree). Therefore this means some
5196 * ranges can still be locked and eviction started because before
5197 * submitting those bios, which are executed by a separate task (work
5198 * queue kthread), inode references (inode->i_count) were not taken
5199 * (which would be dropped in the end io callback of each bio).
5200 * Therefore here we effectively end up waiting for those bios and
5201 * anyone else holding locked ranges without having bumped the inode's
5202 * reference count - if we don't do it, when they access the inode's
5203 * io_tree to unlock a range it may be too late, leading to an
5204 * use-after-free issue.
5206 spin_lock(&io_tree
->lock
);
5207 while (!RB_EMPTY_ROOT(&io_tree
->state
)) {
5208 struct extent_state
*state
;
5209 struct extent_state
*cached_state
= NULL
;
5213 node
= rb_first(&io_tree
->state
);
5214 state
= rb_entry(node
, struct extent_state
, rb_node
);
5215 start
= state
->start
;
5217 spin_unlock(&io_tree
->lock
);
5219 lock_extent_bits(io_tree
, start
, end
, &cached_state
);
5222 * If still has DELALLOC flag, the extent didn't reach disk,
5223 * and its reserved space won't be freed by delayed_ref.
5224 * So we need to free its reserved space here.
5225 * (Refer to comment in btrfs_invalidatepage, case 2)
5227 * Note, end is the bytenr of last byte, so we need + 1 here.
5229 if (state
->state
& EXTENT_DELALLOC
)
5230 btrfs_qgroup_free_data(inode
, NULL
, start
, end
- start
+ 1);
5232 clear_extent_bit(io_tree
, start
, end
,
5233 EXTENT_LOCKED
| EXTENT_DIRTY
|
5234 EXTENT_DELALLOC
| EXTENT_DO_ACCOUNTING
|
5235 EXTENT_DEFRAG
, 1, 1,
5236 &cached_state
, GFP_NOFS
);
5239 spin_lock(&io_tree
->lock
);
5241 spin_unlock(&io_tree
->lock
);
5244 void btrfs_evict_inode(struct inode
*inode
)
5246 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5247 struct btrfs_trans_handle
*trans
;
5248 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5249 struct btrfs_block_rsv
*rsv
, *global_rsv
;
5250 int steal_from_global
= 0;
5254 trace_btrfs_inode_evict(inode
);
5257 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
5261 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
5263 evict_inode_truncate_pages(inode
);
5265 if (inode
->i_nlink
&&
5266 ((btrfs_root_refs(&root
->root_item
) != 0 &&
5267 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
) ||
5268 btrfs_is_free_space_inode(BTRFS_I(inode
))))
5271 if (is_bad_inode(inode
)) {
5272 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5275 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5276 if (!special_file(inode
->i_mode
))
5277 btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
5279 btrfs_free_io_failure_record(BTRFS_I(inode
), 0, (u64
)-1);
5281 if (test_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
)) {
5282 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
5283 &BTRFS_I(inode
)->runtime_flags
));
5287 if (inode
->i_nlink
> 0) {
5288 BUG_ON(btrfs_root_refs(&root
->root_item
) != 0 &&
5289 root
->root_key
.objectid
!= BTRFS_ROOT_TREE_OBJECTID
);
5293 ret
= btrfs_commit_inode_delayed_inode(BTRFS_I(inode
));
5295 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5299 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
5301 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5304 rsv
->size
= min_size
;
5306 global_rsv
= &fs_info
->global_block_rsv
;
5308 btrfs_i_size_write(BTRFS_I(inode
), 0);
5311 * This is a bit simpler than btrfs_truncate since we've already
5312 * reserved our space for our orphan item in the unlink, so we just
5313 * need to reserve some slack space in case we add bytes and update
5314 * inode item when doing the truncate.
5317 ret
= btrfs_block_rsv_refill(root
, rsv
, min_size
,
5318 BTRFS_RESERVE_FLUSH_LIMIT
);
5321 * Try and steal from the global reserve since we will
5322 * likely not use this space anyway, we want to try as
5323 * hard as possible to get this to work.
5326 steal_from_global
++;
5328 steal_from_global
= 0;
5332 * steal_from_global == 0: we reserved stuff, hooray!
5333 * steal_from_global == 1: we didn't reserve stuff, boo!
5334 * steal_from_global == 2: we've committed, still not a lot of
5335 * room but maybe we'll have room in the global reserve this
5337 * steal_from_global == 3: abandon all hope!
5339 if (steal_from_global
> 2) {
5341 "Could not get space for a delete, will truncate on mount %d",
5343 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5344 btrfs_free_block_rsv(fs_info
, rsv
);
5348 trans
= btrfs_join_transaction(root
);
5349 if (IS_ERR(trans
)) {
5350 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5351 btrfs_free_block_rsv(fs_info
, rsv
);
5356 * We can't just steal from the global reserve, we need to make
5357 * sure there is room to do it, if not we need to commit and try
5360 if (steal_from_global
) {
5361 if (!btrfs_check_space_for_delayed_refs(trans
, fs_info
))
5362 ret
= btrfs_block_rsv_migrate(global_rsv
, rsv
,
5369 * Couldn't steal from the global reserve, we have too much
5370 * pending stuff built up, commit the transaction and try it
5374 ret
= btrfs_commit_transaction(trans
);
5376 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5377 btrfs_free_block_rsv(fs_info
, rsv
);
5382 steal_from_global
= 0;
5385 trans
->block_rsv
= rsv
;
5387 ret
= btrfs_truncate_inode_items(trans
, root
, inode
, 0, 0);
5388 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
)
5391 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5392 btrfs_end_transaction(trans
);
5394 btrfs_btree_balance_dirty(fs_info
);
5397 btrfs_free_block_rsv(fs_info
, rsv
);
5400 * Errors here aren't a big deal, it just means we leave orphan items
5401 * in the tree. They will be cleaned up on the next mount.
5404 trans
->block_rsv
= root
->orphan_block_rsv
;
5405 btrfs_orphan_del(trans
, BTRFS_I(inode
));
5407 btrfs_orphan_del(NULL
, BTRFS_I(inode
));
5410 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
5411 if (!(root
== fs_info
->tree_root
||
5412 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
))
5413 btrfs_return_ino(root
, btrfs_ino(BTRFS_I(inode
)));
5415 btrfs_end_transaction(trans
);
5416 btrfs_btree_balance_dirty(fs_info
);
5418 btrfs_remove_delayed_node(BTRFS_I(inode
));
5423 * this returns the key found in the dir entry in the location pointer.
5424 * If no dir entries were found, location->objectid is 0.
5426 static int btrfs_inode_by_name(struct inode
*dir
, struct dentry
*dentry
,
5427 struct btrfs_key
*location
)
5429 const char *name
= dentry
->d_name
.name
;
5430 int namelen
= dentry
->d_name
.len
;
5431 struct btrfs_dir_item
*di
;
5432 struct btrfs_path
*path
;
5433 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5436 path
= btrfs_alloc_path();
5440 di
= btrfs_lookup_dir_item(NULL
, root
, path
, btrfs_ino(BTRFS_I(dir
)),
5445 if (IS_ERR_OR_NULL(di
))
5448 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, location
);
5449 if (location
->type
!= BTRFS_INODE_ITEM_KEY
&&
5450 location
->type
!= BTRFS_ROOT_ITEM_KEY
) {
5451 btrfs_warn(root
->fs_info
,
5452 "%s gets something invalid in DIR_ITEM (name %s, directory ino %llu, location(%llu %u %llu))",
5453 __func__
, name
, btrfs_ino(BTRFS_I(dir
)),
5454 location
->objectid
, location
->type
, location
->offset
);
5458 btrfs_free_path(path
);
5461 location
->objectid
= 0;
5466 * when we hit a tree root in a directory, the btrfs part of the inode
5467 * needs to be changed to reflect the root directory of the tree root. This
5468 * is kind of like crossing a mount point.
5470 static int fixup_tree_root_location(struct btrfs_fs_info
*fs_info
,
5472 struct dentry
*dentry
,
5473 struct btrfs_key
*location
,
5474 struct btrfs_root
**sub_root
)
5476 struct btrfs_path
*path
;
5477 struct btrfs_root
*new_root
;
5478 struct btrfs_root_ref
*ref
;
5479 struct extent_buffer
*leaf
;
5480 struct btrfs_key key
;
5484 path
= btrfs_alloc_path();
5491 key
.objectid
= BTRFS_I(dir
)->root
->root_key
.objectid
;
5492 key
.type
= BTRFS_ROOT_REF_KEY
;
5493 key
.offset
= location
->objectid
;
5495 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
5502 leaf
= path
->nodes
[0];
5503 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
5504 if (btrfs_root_ref_dirid(leaf
, ref
) != btrfs_ino(BTRFS_I(dir
)) ||
5505 btrfs_root_ref_name_len(leaf
, ref
) != dentry
->d_name
.len
)
5508 ret
= memcmp_extent_buffer(leaf
, dentry
->d_name
.name
,
5509 (unsigned long)(ref
+ 1),
5510 dentry
->d_name
.len
);
5514 btrfs_release_path(path
);
5516 new_root
= btrfs_read_fs_root_no_name(fs_info
, location
);
5517 if (IS_ERR(new_root
)) {
5518 err
= PTR_ERR(new_root
);
5522 *sub_root
= new_root
;
5523 location
->objectid
= btrfs_root_dirid(&new_root
->root_item
);
5524 location
->type
= BTRFS_INODE_ITEM_KEY
;
5525 location
->offset
= 0;
5528 btrfs_free_path(path
);
5532 static void inode_tree_add(struct inode
*inode
)
5534 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5535 struct btrfs_inode
*entry
;
5537 struct rb_node
*parent
;
5538 struct rb_node
*new = &BTRFS_I(inode
)->rb_node
;
5539 u64 ino
= btrfs_ino(BTRFS_I(inode
));
5541 if (inode_unhashed(inode
))
5544 spin_lock(&root
->inode_lock
);
5545 p
= &root
->inode_tree
.rb_node
;
5548 entry
= rb_entry(parent
, struct btrfs_inode
, rb_node
);
5550 if (ino
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5551 p
= &parent
->rb_left
;
5552 else if (ino
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5553 p
= &parent
->rb_right
;
5555 WARN_ON(!(entry
->vfs_inode
.i_state
&
5556 (I_WILL_FREE
| I_FREEING
)));
5557 rb_replace_node(parent
, new, &root
->inode_tree
);
5558 RB_CLEAR_NODE(parent
);
5559 spin_unlock(&root
->inode_lock
);
5563 rb_link_node(new, parent
, p
);
5564 rb_insert_color(new, &root
->inode_tree
);
5565 spin_unlock(&root
->inode_lock
);
5568 static void inode_tree_del(struct inode
*inode
)
5570 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5571 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5574 spin_lock(&root
->inode_lock
);
5575 if (!RB_EMPTY_NODE(&BTRFS_I(inode
)->rb_node
)) {
5576 rb_erase(&BTRFS_I(inode
)->rb_node
, &root
->inode_tree
);
5577 RB_CLEAR_NODE(&BTRFS_I(inode
)->rb_node
);
5578 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5580 spin_unlock(&root
->inode_lock
);
5582 if (empty
&& btrfs_root_refs(&root
->root_item
) == 0) {
5583 synchronize_srcu(&fs_info
->subvol_srcu
);
5584 spin_lock(&root
->inode_lock
);
5585 empty
= RB_EMPTY_ROOT(&root
->inode_tree
);
5586 spin_unlock(&root
->inode_lock
);
5588 btrfs_add_dead_root(root
);
5592 void btrfs_invalidate_inodes(struct btrfs_root
*root
)
5594 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5595 struct rb_node
*node
;
5596 struct rb_node
*prev
;
5597 struct btrfs_inode
*entry
;
5598 struct inode
*inode
;
5601 if (!test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
5602 WARN_ON(btrfs_root_refs(&root
->root_item
) != 0);
5604 spin_lock(&root
->inode_lock
);
5606 node
= root
->inode_tree
.rb_node
;
5610 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5612 if (objectid
< btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5613 node
= node
->rb_left
;
5614 else if (objectid
> btrfs_ino(BTRFS_I(&entry
->vfs_inode
)))
5615 node
= node
->rb_right
;
5621 entry
= rb_entry(prev
, struct btrfs_inode
, rb_node
);
5622 if (objectid
<= btrfs_ino(BTRFS_I(&entry
->vfs_inode
))) {
5626 prev
= rb_next(prev
);
5630 entry
= rb_entry(node
, struct btrfs_inode
, rb_node
);
5631 objectid
= btrfs_ino(BTRFS_I(&entry
->vfs_inode
)) + 1;
5632 inode
= igrab(&entry
->vfs_inode
);
5634 spin_unlock(&root
->inode_lock
);
5635 if (atomic_read(&inode
->i_count
) > 1)
5636 d_prune_aliases(inode
);
5638 * btrfs_drop_inode will have it removed from
5639 * the inode cache when its usage count
5644 spin_lock(&root
->inode_lock
);
5648 if (cond_resched_lock(&root
->inode_lock
))
5651 node
= rb_next(node
);
5653 spin_unlock(&root
->inode_lock
);
5656 static int btrfs_init_locked_inode(struct inode
*inode
, void *p
)
5658 struct btrfs_iget_args
*args
= p
;
5659 inode
->i_ino
= args
->location
->objectid
;
5660 memcpy(&BTRFS_I(inode
)->location
, args
->location
,
5661 sizeof(*args
->location
));
5662 BTRFS_I(inode
)->root
= args
->root
;
5666 static int btrfs_find_actor(struct inode
*inode
, void *opaque
)
5668 struct btrfs_iget_args
*args
= opaque
;
5669 return args
->location
->objectid
== BTRFS_I(inode
)->location
.objectid
&&
5670 args
->root
== BTRFS_I(inode
)->root
;
5673 static struct inode
*btrfs_iget_locked(struct super_block
*s
,
5674 struct btrfs_key
*location
,
5675 struct btrfs_root
*root
)
5677 struct inode
*inode
;
5678 struct btrfs_iget_args args
;
5679 unsigned long hashval
= btrfs_inode_hash(location
->objectid
, root
);
5681 args
.location
= location
;
5684 inode
= iget5_locked(s
, hashval
, btrfs_find_actor
,
5685 btrfs_init_locked_inode
,
5690 /* Get an inode object given its location and corresponding root.
5691 * Returns in *is_new if the inode was read from disk
5693 struct inode
*btrfs_iget(struct super_block
*s
, struct btrfs_key
*location
,
5694 struct btrfs_root
*root
, int *new)
5696 struct inode
*inode
;
5698 inode
= btrfs_iget_locked(s
, location
, root
);
5700 return ERR_PTR(-ENOMEM
);
5702 if (inode
->i_state
& I_NEW
) {
5705 ret
= btrfs_read_locked_inode(inode
);
5706 if (!is_bad_inode(inode
)) {
5707 inode_tree_add(inode
);
5708 unlock_new_inode(inode
);
5712 unlock_new_inode(inode
);
5715 inode
= ERR_PTR(ret
< 0 ? ret
: -ESTALE
);
5722 static struct inode
*new_simple_dir(struct super_block
*s
,
5723 struct btrfs_key
*key
,
5724 struct btrfs_root
*root
)
5726 struct inode
*inode
= new_inode(s
);
5729 return ERR_PTR(-ENOMEM
);
5731 BTRFS_I(inode
)->root
= root
;
5732 memcpy(&BTRFS_I(inode
)->location
, key
, sizeof(*key
));
5733 set_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
);
5735 inode
->i_ino
= BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
;
5736 inode
->i_op
= &btrfs_dir_ro_inode_operations
;
5737 inode
->i_opflags
&= ~IOP_XATTR
;
5738 inode
->i_fop
= &simple_dir_operations
;
5739 inode
->i_mode
= S_IFDIR
| S_IRUGO
| S_IWUSR
| S_IXUGO
;
5740 inode
->i_mtime
= current_time(inode
);
5741 inode
->i_atime
= inode
->i_mtime
;
5742 inode
->i_ctime
= inode
->i_mtime
;
5743 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
5748 struct inode
*btrfs_lookup_dentry(struct inode
*dir
, struct dentry
*dentry
)
5750 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
5751 struct inode
*inode
;
5752 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
5753 struct btrfs_root
*sub_root
= root
;
5754 struct btrfs_key location
;
5758 if (dentry
->d_name
.len
> BTRFS_NAME_LEN
)
5759 return ERR_PTR(-ENAMETOOLONG
);
5761 ret
= btrfs_inode_by_name(dir
, dentry
, &location
);
5763 return ERR_PTR(ret
);
5765 if (location
.objectid
== 0)
5766 return ERR_PTR(-ENOENT
);
5768 if (location
.type
== BTRFS_INODE_ITEM_KEY
) {
5769 inode
= btrfs_iget(dir
->i_sb
, &location
, root
, NULL
);
5773 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
5774 ret
= fixup_tree_root_location(fs_info
, dir
, dentry
,
5775 &location
, &sub_root
);
5778 inode
= ERR_PTR(ret
);
5780 inode
= new_simple_dir(dir
->i_sb
, &location
, sub_root
);
5782 inode
= btrfs_iget(dir
->i_sb
, &location
, sub_root
, NULL
);
5784 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
5786 if (!IS_ERR(inode
) && root
!= sub_root
) {
5787 down_read(&fs_info
->cleanup_work_sem
);
5788 if (!sb_rdonly(inode
->i_sb
))
5789 ret
= btrfs_orphan_cleanup(sub_root
);
5790 up_read(&fs_info
->cleanup_work_sem
);
5793 inode
= ERR_PTR(ret
);
5800 static int btrfs_dentry_delete(const struct dentry
*dentry
)
5802 struct btrfs_root
*root
;
5803 struct inode
*inode
= d_inode(dentry
);
5805 if (!inode
&& !IS_ROOT(dentry
))
5806 inode
= d_inode(dentry
->d_parent
);
5809 root
= BTRFS_I(inode
)->root
;
5810 if (btrfs_root_refs(&root
->root_item
) == 0)
5813 if (btrfs_ino(BTRFS_I(inode
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
5819 static void btrfs_dentry_release(struct dentry
*dentry
)
5821 kfree(dentry
->d_fsdata
);
5824 static struct dentry
*btrfs_lookup(struct inode
*dir
, struct dentry
*dentry
,
5827 struct inode
*inode
;
5829 inode
= btrfs_lookup_dentry(dir
, dentry
);
5830 if (IS_ERR(inode
)) {
5831 if (PTR_ERR(inode
) == -ENOENT
)
5834 return ERR_CAST(inode
);
5837 return d_splice_alias(inode
, dentry
);
5840 unsigned char btrfs_filetype_table
[] = {
5841 DT_UNKNOWN
, DT_REG
, DT_DIR
, DT_CHR
, DT_BLK
, DT_FIFO
, DT_SOCK
, DT_LNK
5845 * All this infrastructure exists because dir_emit can fault, and we are holding
5846 * the tree lock when doing readdir. For now just allocate a buffer and copy
5847 * our information into that, and then dir_emit from the buffer. This is
5848 * similar to what NFS does, only we don't keep the buffer around in pagecache
5849 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5850 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5853 static int btrfs_opendir(struct inode
*inode
, struct file
*file
)
5855 struct btrfs_file_private
*private;
5857 private = kzalloc(sizeof(struct btrfs_file_private
), GFP_KERNEL
);
5860 private->filldir_buf
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
5861 if (!private->filldir_buf
) {
5865 file
->private_data
= private;
5876 static int btrfs_filldir(void *addr
, int entries
, struct dir_context
*ctx
)
5879 struct dir_entry
*entry
= addr
;
5880 char *name
= (char *)(entry
+ 1);
5882 ctx
->pos
= entry
->offset
;
5883 if (!dir_emit(ctx
, name
, entry
->name_len
, entry
->ino
,
5886 addr
+= sizeof(struct dir_entry
) + entry
->name_len
;
5892 static int btrfs_real_readdir(struct file
*file
, struct dir_context
*ctx
)
5894 struct inode
*inode
= file_inode(file
);
5895 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
5896 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
5897 struct btrfs_file_private
*private = file
->private_data
;
5898 struct btrfs_dir_item
*di
;
5899 struct btrfs_key key
;
5900 struct btrfs_key found_key
;
5901 struct btrfs_path
*path
;
5903 struct list_head ins_list
;
5904 struct list_head del_list
;
5906 struct extent_buffer
*leaf
;
5913 struct btrfs_key location
;
5915 if (!dir_emit_dots(file
, ctx
))
5918 path
= btrfs_alloc_path();
5922 addr
= private->filldir_buf
;
5923 path
->reada
= READA_FORWARD
;
5925 INIT_LIST_HEAD(&ins_list
);
5926 INIT_LIST_HEAD(&del_list
);
5927 put
= btrfs_readdir_get_delayed_items(inode
, &ins_list
, &del_list
);
5930 key
.type
= BTRFS_DIR_INDEX_KEY
;
5931 key
.offset
= ctx
->pos
;
5932 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
5934 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5939 struct dir_entry
*entry
;
5941 leaf
= path
->nodes
[0];
5942 slot
= path
->slots
[0];
5943 if (slot
>= btrfs_header_nritems(leaf
)) {
5944 ret
= btrfs_next_leaf(root
, path
);
5952 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5954 if (found_key
.objectid
!= key
.objectid
)
5956 if (found_key
.type
!= BTRFS_DIR_INDEX_KEY
)
5958 if (found_key
.offset
< ctx
->pos
)
5960 if (btrfs_should_delete_dir_index(&del_list
, found_key
.offset
))
5962 di
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dir_item
);
5963 if (verify_dir_item(fs_info
, leaf
, slot
, di
))
5966 name_len
= btrfs_dir_name_len(leaf
, di
);
5967 if ((total_len
+ sizeof(struct dir_entry
) + name_len
) >=
5969 btrfs_release_path(path
);
5970 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
5973 addr
= private->filldir_buf
;
5980 entry
->name_len
= name_len
;
5981 name_ptr
= (char *)(entry
+ 1);
5982 read_extent_buffer(leaf
, name_ptr
, (unsigned long)(di
+ 1),
5984 entry
->type
= btrfs_filetype_table
[btrfs_dir_type(leaf
, di
)];
5985 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
5986 entry
->ino
= location
.objectid
;
5987 entry
->offset
= found_key
.offset
;
5989 addr
+= sizeof(struct dir_entry
) + name_len
;
5990 total_len
+= sizeof(struct dir_entry
) + name_len
;
5994 btrfs_release_path(path
);
5996 ret
= btrfs_filldir(private->filldir_buf
, entries
, ctx
);
6000 ret
= btrfs_readdir_delayed_dir_index(ctx
, &ins_list
);
6005 * Stop new entries from being returned after we return the last
6008 * New directory entries are assigned a strictly increasing
6009 * offset. This means that new entries created during readdir
6010 * are *guaranteed* to be seen in the future by that readdir.
6011 * This has broken buggy programs which operate on names as
6012 * they're returned by readdir. Until we re-use freed offsets
6013 * we have this hack to stop new entries from being returned
6014 * under the assumption that they'll never reach this huge
6017 * This is being careful not to overflow 32bit loff_t unless the
6018 * last entry requires it because doing so has broken 32bit apps
6021 if (ctx
->pos
>= INT_MAX
)
6022 ctx
->pos
= LLONG_MAX
;
6029 btrfs_readdir_put_delayed_items(inode
, &ins_list
, &del_list
);
6030 btrfs_free_path(path
);
6034 int btrfs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
6036 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6037 struct btrfs_trans_handle
*trans
;
6039 bool nolock
= false;
6041 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6044 if (btrfs_fs_closing(root
->fs_info
) &&
6045 btrfs_is_free_space_inode(BTRFS_I(inode
)))
6048 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
6050 trans
= btrfs_join_transaction_nolock(root
);
6052 trans
= btrfs_join_transaction(root
);
6054 return PTR_ERR(trans
);
6055 ret
= btrfs_commit_transaction(trans
);
6061 * This is somewhat expensive, updating the tree every time the
6062 * inode changes. But, it is most likely to find the inode in cache.
6063 * FIXME, needs more benchmarking...there are no reasons other than performance
6064 * to keep or drop this code.
6066 static int btrfs_dirty_inode(struct inode
*inode
)
6068 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6069 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6070 struct btrfs_trans_handle
*trans
;
6073 if (test_bit(BTRFS_INODE_DUMMY
, &BTRFS_I(inode
)->runtime_flags
))
6076 trans
= btrfs_join_transaction(root
);
6078 return PTR_ERR(trans
);
6080 ret
= btrfs_update_inode(trans
, root
, inode
);
6081 if (ret
&& ret
== -ENOSPC
) {
6082 /* whoops, lets try again with the full transaction */
6083 btrfs_end_transaction(trans
);
6084 trans
= btrfs_start_transaction(root
, 1);
6086 return PTR_ERR(trans
);
6088 ret
= btrfs_update_inode(trans
, root
, inode
);
6090 btrfs_end_transaction(trans
);
6091 if (BTRFS_I(inode
)->delayed_node
)
6092 btrfs_balance_delayed_items(fs_info
);
6098 * This is a copy of file_update_time. We need this so we can return error on
6099 * ENOSPC for updating the inode in the case of file write and mmap writes.
6101 static int btrfs_update_time(struct inode
*inode
, struct timespec
*now
,
6104 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
6106 if (btrfs_root_readonly(root
))
6109 if (flags
& S_VERSION
)
6110 inode_inc_iversion(inode
);
6111 if (flags
& S_CTIME
)
6112 inode
->i_ctime
= *now
;
6113 if (flags
& S_MTIME
)
6114 inode
->i_mtime
= *now
;
6115 if (flags
& S_ATIME
)
6116 inode
->i_atime
= *now
;
6117 return btrfs_dirty_inode(inode
);
6121 * find the highest existing sequence number in a directory
6122 * and then set the in-memory index_cnt variable to reflect
6123 * free sequence numbers
6125 static int btrfs_set_inode_index_count(struct btrfs_inode
*inode
)
6127 struct btrfs_root
*root
= inode
->root
;
6128 struct btrfs_key key
, found_key
;
6129 struct btrfs_path
*path
;
6130 struct extent_buffer
*leaf
;
6133 key
.objectid
= btrfs_ino(inode
);
6134 key
.type
= BTRFS_DIR_INDEX_KEY
;
6135 key
.offset
= (u64
)-1;
6137 path
= btrfs_alloc_path();
6141 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6144 /* FIXME: we should be able to handle this */
6150 * MAGIC NUMBER EXPLANATION:
6151 * since we search a directory based on f_pos we have to start at 2
6152 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6153 * else has to start at 2
6155 if (path
->slots
[0] == 0) {
6156 inode
->index_cnt
= 2;
6162 leaf
= path
->nodes
[0];
6163 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6165 if (found_key
.objectid
!= btrfs_ino(inode
) ||
6166 found_key
.type
!= BTRFS_DIR_INDEX_KEY
) {
6167 inode
->index_cnt
= 2;
6171 inode
->index_cnt
= found_key
.offset
+ 1;
6173 btrfs_free_path(path
);
6178 * helper to find a free sequence number in a given directory. This current
6179 * code is very simple, later versions will do smarter things in the btree
6181 int btrfs_set_inode_index(struct btrfs_inode
*dir
, u64
*index
)
6185 if (dir
->index_cnt
== (u64
)-1) {
6186 ret
= btrfs_inode_delayed_dir_index_count(dir
);
6188 ret
= btrfs_set_inode_index_count(dir
);
6194 *index
= dir
->index_cnt
;
6200 static int btrfs_insert_inode_locked(struct inode
*inode
)
6202 struct btrfs_iget_args args
;
6203 args
.location
= &BTRFS_I(inode
)->location
;
6204 args
.root
= BTRFS_I(inode
)->root
;
6206 return insert_inode_locked4(inode
,
6207 btrfs_inode_hash(inode
->i_ino
, BTRFS_I(inode
)->root
),
6208 btrfs_find_actor
, &args
);
6212 * Inherit flags from the parent inode.
6214 * Currently only the compression flags and the cow flags are inherited.
6216 static void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
6223 flags
= BTRFS_I(dir
)->flags
;
6225 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
6226 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
6227 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
6228 } else if (flags
& BTRFS_INODE_COMPRESS
) {
6229 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
6230 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
6233 if (flags
& BTRFS_INODE_NODATACOW
) {
6234 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
6235 if (S_ISREG(inode
->i_mode
))
6236 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6239 btrfs_update_iflags(inode
);
6242 static struct inode
*btrfs_new_inode(struct btrfs_trans_handle
*trans
,
6243 struct btrfs_root
*root
,
6245 const char *name
, int name_len
,
6246 u64 ref_objectid
, u64 objectid
,
6247 umode_t mode
, u64
*index
)
6249 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
6250 struct inode
*inode
;
6251 struct btrfs_inode_item
*inode_item
;
6252 struct btrfs_key
*location
;
6253 struct btrfs_path
*path
;
6254 struct btrfs_inode_ref
*ref
;
6255 struct btrfs_key key
[2];
6257 int nitems
= name
? 2 : 1;
6261 path
= btrfs_alloc_path();
6263 return ERR_PTR(-ENOMEM
);
6265 inode
= new_inode(fs_info
->sb
);
6267 btrfs_free_path(path
);
6268 return ERR_PTR(-ENOMEM
);
6272 * O_TMPFILE, set link count to 0, so that after this point,
6273 * we fill in an inode item with the correct link count.
6276 set_nlink(inode
, 0);
6279 * we have to initialize this early, so we can reclaim the inode
6280 * number if we fail afterwards in this function.
6282 inode
->i_ino
= objectid
;
6285 trace_btrfs_inode_request(dir
);
6287 ret
= btrfs_set_inode_index(BTRFS_I(dir
), index
);
6289 btrfs_free_path(path
);
6291 return ERR_PTR(ret
);
6297 * index_cnt is ignored for everything but a dir,
6298 * btrfs_get_inode_index_count has an explanation for the magic
6301 BTRFS_I(inode
)->index_cnt
= 2;
6302 BTRFS_I(inode
)->dir_index
= *index
;
6303 BTRFS_I(inode
)->root
= root
;
6304 BTRFS_I(inode
)->generation
= trans
->transid
;
6305 inode
->i_generation
= BTRFS_I(inode
)->generation
;
6308 * We could have gotten an inode number from somebody who was fsynced
6309 * and then removed in this same transaction, so let's just set full
6310 * sync since it will be a full sync anyway and this will blow away the
6311 * old info in the log.
6313 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
6315 key
[0].objectid
= objectid
;
6316 key
[0].type
= BTRFS_INODE_ITEM_KEY
;
6319 sizes
[0] = sizeof(struct btrfs_inode_item
);
6323 * Start new inodes with an inode_ref. This is slightly more
6324 * efficient for small numbers of hard links since they will
6325 * be packed into one item. Extended refs will kick in if we
6326 * add more hard links than can fit in the ref item.
6328 key
[1].objectid
= objectid
;
6329 key
[1].type
= BTRFS_INODE_REF_KEY
;
6330 key
[1].offset
= ref_objectid
;
6332 sizes
[1] = name_len
+ sizeof(*ref
);
6335 location
= &BTRFS_I(inode
)->location
;
6336 location
->objectid
= objectid
;
6337 location
->offset
= 0;
6338 location
->type
= BTRFS_INODE_ITEM_KEY
;
6340 ret
= btrfs_insert_inode_locked(inode
);
6344 path
->leave_spinning
= 1;
6345 ret
= btrfs_insert_empty_items(trans
, root
, path
, key
, sizes
, nitems
);
6349 inode_init_owner(inode
, dir
, mode
);
6350 inode_set_bytes(inode
, 0);
6352 inode
->i_mtime
= current_time(inode
);
6353 inode
->i_atime
= inode
->i_mtime
;
6354 inode
->i_ctime
= inode
->i_mtime
;
6355 BTRFS_I(inode
)->i_otime
= inode
->i_mtime
;
6357 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
6358 struct btrfs_inode_item
);
6359 memzero_extent_buffer(path
->nodes
[0], (unsigned long)inode_item
,
6360 sizeof(*inode_item
));
6361 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
);
6364 ref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0] + 1,
6365 struct btrfs_inode_ref
);
6366 btrfs_set_inode_ref_name_len(path
->nodes
[0], ref
, name_len
);
6367 btrfs_set_inode_ref_index(path
->nodes
[0], ref
, *index
);
6368 ptr
= (unsigned long)(ref
+ 1);
6369 write_extent_buffer(path
->nodes
[0], name
, ptr
, name_len
);
6372 btrfs_mark_buffer_dirty(path
->nodes
[0]);
6373 btrfs_free_path(path
);
6375 btrfs_inherit_iflags(inode
, dir
);
6377 if (S_ISREG(mode
)) {
6378 if (btrfs_test_opt(fs_info
, NODATASUM
))
6379 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
6380 if (btrfs_test_opt(fs_info
, NODATACOW
))
6381 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
|
6382 BTRFS_INODE_NODATASUM
;
6385 inode_tree_add(inode
);
6387 trace_btrfs_inode_new(inode
);
6388 btrfs_set_inode_last_trans(trans
, inode
);
6390 btrfs_update_root_times(trans
, root
);
6392 ret
= btrfs_inode_inherit_props(trans
, inode
, dir
);
6395 "error inheriting props for ino %llu (root %llu): %d",
6396 btrfs_ino(BTRFS_I(inode
)), root
->root_key
.objectid
, ret
);
6401 unlock_new_inode(inode
);
6404 BTRFS_I(dir
)->index_cnt
--;
6405 btrfs_free_path(path
);
6407 return ERR_PTR(ret
);
6410 static inline u8
btrfs_inode_type(struct inode
*inode
)
6412 return btrfs_type_by_mode
[(inode
->i_mode
& S_IFMT
) >> S_SHIFT
];
6416 * utility function to add 'inode' into 'parent_inode' with
6417 * a give name and a given sequence number.
6418 * if 'add_backref' is true, also insert a backref from the
6419 * inode to the parent directory.
6421 int btrfs_add_link(struct btrfs_trans_handle
*trans
,
6422 struct btrfs_inode
*parent_inode
, struct btrfs_inode
*inode
,
6423 const char *name
, int name_len
, int add_backref
, u64 index
)
6425 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6427 struct btrfs_key key
;
6428 struct btrfs_root
*root
= parent_inode
->root
;
6429 u64 ino
= btrfs_ino(inode
);
6430 u64 parent_ino
= btrfs_ino(parent_inode
);
6432 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6433 memcpy(&key
, &inode
->root
->root_key
, sizeof(key
));
6436 key
.type
= BTRFS_INODE_ITEM_KEY
;
6440 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6441 ret
= btrfs_add_root_ref(trans
, fs_info
, key
.objectid
,
6442 root
->root_key
.objectid
, parent_ino
,
6443 index
, name
, name_len
);
6444 } else if (add_backref
) {
6445 ret
= btrfs_insert_inode_ref(trans
, root
, name
, name_len
, ino
,
6449 /* Nothing to clean up yet */
6453 ret
= btrfs_insert_dir_item(trans
, root
, name
, name_len
,
6455 btrfs_inode_type(&inode
->vfs_inode
), index
);
6456 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
)
6459 btrfs_abort_transaction(trans
, ret
);
6463 btrfs_i_size_write(parent_inode
, parent_inode
->vfs_inode
.i_size
+
6465 inode_inc_iversion(&parent_inode
->vfs_inode
);
6466 parent_inode
->vfs_inode
.i_mtime
= parent_inode
->vfs_inode
.i_ctime
=
6467 current_time(&parent_inode
->vfs_inode
);
6468 ret
= btrfs_update_inode(trans
, root
, &parent_inode
->vfs_inode
);
6470 btrfs_abort_transaction(trans
, ret
);
6474 if (unlikely(ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
6477 err
= btrfs_del_root_ref(trans
, fs_info
, key
.objectid
,
6478 root
->root_key
.objectid
, parent_ino
,
6479 &local_index
, name
, name_len
);
6481 } else if (add_backref
) {
6485 err
= btrfs_del_inode_ref(trans
, root
, name
, name_len
,
6486 ino
, parent_ino
, &local_index
);
6491 static int btrfs_add_nondir(struct btrfs_trans_handle
*trans
,
6492 struct btrfs_inode
*dir
, struct dentry
*dentry
,
6493 struct btrfs_inode
*inode
, int backref
, u64 index
)
6495 int err
= btrfs_add_link(trans
, dir
, inode
,
6496 dentry
->d_name
.name
, dentry
->d_name
.len
,
6503 static int btrfs_mknod(struct inode
*dir
, struct dentry
*dentry
,
6504 umode_t mode
, dev_t rdev
)
6506 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6507 struct btrfs_trans_handle
*trans
;
6508 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6509 struct inode
*inode
= NULL
;
6516 * 2 for inode item and ref
6518 * 1 for xattr if selinux is on
6520 trans
= btrfs_start_transaction(root
, 5);
6522 return PTR_ERR(trans
);
6524 err
= btrfs_find_free_ino(root
, &objectid
);
6528 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6529 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6531 if (IS_ERR(inode
)) {
6532 err
= PTR_ERR(inode
);
6537 * If the active LSM wants to access the inode during
6538 * d_instantiate it needs these. Smack checks to see
6539 * if the filesystem supports xattrs by looking at the
6542 inode
->i_op
= &btrfs_special_inode_operations
;
6543 init_special_inode(inode
, inode
->i_mode
, rdev
);
6545 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6547 goto out_unlock_inode
;
6549 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6552 goto out_unlock_inode
;
6554 btrfs_update_inode(trans
, root
, inode
);
6555 unlock_new_inode(inode
);
6556 d_instantiate(dentry
, inode
);
6560 btrfs_end_transaction(trans
);
6561 btrfs_balance_delayed_items(fs_info
);
6562 btrfs_btree_balance_dirty(fs_info
);
6564 inode_dec_link_count(inode
);
6571 unlock_new_inode(inode
);
6576 static int btrfs_create(struct inode
*dir
, struct dentry
*dentry
,
6577 umode_t mode
, bool excl
)
6579 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6580 struct btrfs_trans_handle
*trans
;
6581 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6582 struct inode
*inode
= NULL
;
6583 int drop_inode_on_err
= 0;
6589 * 2 for inode item and ref
6591 * 1 for xattr if selinux is on
6593 trans
= btrfs_start_transaction(root
, 5);
6595 return PTR_ERR(trans
);
6597 err
= btrfs_find_free_ino(root
, &objectid
);
6601 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6602 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6604 if (IS_ERR(inode
)) {
6605 err
= PTR_ERR(inode
);
6608 drop_inode_on_err
= 1;
6610 * If the active LSM wants to access the inode during
6611 * d_instantiate it needs these. Smack checks to see
6612 * if the filesystem supports xattrs by looking at the
6615 inode
->i_fop
= &btrfs_file_operations
;
6616 inode
->i_op
= &btrfs_file_inode_operations
;
6617 inode
->i_mapping
->a_ops
= &btrfs_aops
;
6619 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6621 goto out_unlock_inode
;
6623 err
= btrfs_update_inode(trans
, root
, inode
);
6625 goto out_unlock_inode
;
6627 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6630 goto out_unlock_inode
;
6632 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
6633 unlock_new_inode(inode
);
6634 d_instantiate(dentry
, inode
);
6637 btrfs_end_transaction(trans
);
6638 if (err
&& drop_inode_on_err
) {
6639 inode_dec_link_count(inode
);
6642 btrfs_balance_delayed_items(fs_info
);
6643 btrfs_btree_balance_dirty(fs_info
);
6647 unlock_new_inode(inode
);
6652 static int btrfs_link(struct dentry
*old_dentry
, struct inode
*dir
,
6653 struct dentry
*dentry
)
6655 struct btrfs_trans_handle
*trans
= NULL
;
6656 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6657 struct inode
*inode
= d_inode(old_dentry
);
6658 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
6663 /* do not allow sys_link's with other subvols of the same device */
6664 if (root
->objectid
!= BTRFS_I(inode
)->root
->objectid
)
6667 if (inode
->i_nlink
>= BTRFS_LINK_MAX
)
6670 err
= btrfs_set_inode_index(BTRFS_I(dir
), &index
);
6675 * 2 items for inode and inode ref
6676 * 2 items for dir items
6677 * 1 item for parent inode
6679 trans
= btrfs_start_transaction(root
, 5);
6680 if (IS_ERR(trans
)) {
6681 err
= PTR_ERR(trans
);
6686 /* There are several dir indexes for this inode, clear the cache. */
6687 BTRFS_I(inode
)->dir_index
= 0ULL;
6689 inode_inc_iversion(inode
);
6690 inode
->i_ctime
= current_time(inode
);
6692 set_bit(BTRFS_INODE_COPY_EVERYTHING
, &BTRFS_I(inode
)->runtime_flags
);
6694 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
, BTRFS_I(inode
),
6700 struct dentry
*parent
= dentry
->d_parent
;
6701 err
= btrfs_update_inode(trans
, root
, inode
);
6704 if (inode
->i_nlink
== 1) {
6706 * If new hard link count is 1, it's a file created
6707 * with open(2) O_TMPFILE flag.
6709 err
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
6713 d_instantiate(dentry
, inode
);
6714 btrfs_log_new_name(trans
, BTRFS_I(inode
), NULL
, parent
);
6717 btrfs_balance_delayed_items(fs_info
);
6720 btrfs_end_transaction(trans
);
6722 inode_dec_link_count(inode
);
6725 btrfs_btree_balance_dirty(fs_info
);
6729 static int btrfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
6731 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
6732 struct inode
*inode
= NULL
;
6733 struct btrfs_trans_handle
*trans
;
6734 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
6736 int drop_on_err
= 0;
6741 * 2 items for inode and ref
6742 * 2 items for dir items
6743 * 1 for xattr if selinux is on
6745 trans
= btrfs_start_transaction(root
, 5);
6747 return PTR_ERR(trans
);
6749 err
= btrfs_find_free_ino(root
, &objectid
);
6753 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
6754 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)), objectid
,
6755 S_IFDIR
| mode
, &index
);
6756 if (IS_ERR(inode
)) {
6757 err
= PTR_ERR(inode
);
6762 /* these must be set before we unlock the inode */
6763 inode
->i_op
= &btrfs_dir_inode_operations
;
6764 inode
->i_fop
= &btrfs_dir_file_operations
;
6766 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
6768 goto out_fail_inode
;
6770 btrfs_i_size_write(BTRFS_I(inode
), 0);
6771 err
= btrfs_update_inode(trans
, root
, inode
);
6773 goto out_fail_inode
;
6775 err
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
6776 dentry
->d_name
.name
,
6777 dentry
->d_name
.len
, 0, index
);
6779 goto out_fail_inode
;
6781 d_instantiate(dentry
, inode
);
6783 * mkdir is special. We're unlocking after we call d_instantiate
6784 * to avoid a race with nfsd calling d_instantiate.
6786 unlock_new_inode(inode
);
6790 btrfs_end_transaction(trans
);
6792 inode_dec_link_count(inode
);
6795 btrfs_balance_delayed_items(fs_info
);
6796 btrfs_btree_balance_dirty(fs_info
);
6800 unlock_new_inode(inode
);
6804 /* Find next extent map of a given extent map, caller needs to ensure locks */
6805 static struct extent_map
*next_extent_map(struct extent_map
*em
)
6807 struct rb_node
*next
;
6809 next
= rb_next(&em
->rb_node
);
6812 return container_of(next
, struct extent_map
, rb_node
);
6815 static struct extent_map
*prev_extent_map(struct extent_map
*em
)
6817 struct rb_node
*prev
;
6819 prev
= rb_prev(&em
->rb_node
);
6822 return container_of(prev
, struct extent_map
, rb_node
);
6825 /* helper for btfs_get_extent. Given an existing extent in the tree,
6826 * the existing extent is the nearest extent to map_start,
6827 * and an extent that you want to insert, deal with overlap and insert
6828 * the best fitted new extent into the tree.
6830 static int merge_extent_mapping(struct extent_map_tree
*em_tree
,
6831 struct extent_map
*existing
,
6832 struct extent_map
*em
,
6835 struct extent_map
*prev
;
6836 struct extent_map
*next
;
6841 BUG_ON(map_start
< em
->start
|| map_start
>= extent_map_end(em
));
6843 if (existing
->start
> map_start
) {
6845 prev
= prev_extent_map(next
);
6848 next
= next_extent_map(prev
);
6851 start
= prev
? extent_map_end(prev
) : em
->start
;
6852 start
= max_t(u64
, start
, em
->start
);
6853 end
= next
? next
->start
: extent_map_end(em
);
6854 end
= min_t(u64
, end
, extent_map_end(em
));
6855 start_diff
= start
- em
->start
;
6857 em
->len
= end
- start
;
6858 if (em
->block_start
< EXTENT_MAP_LAST_BYTE
&&
6859 !test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
)) {
6860 em
->block_start
+= start_diff
;
6861 em
->block_len
-= start_diff
;
6863 return add_extent_mapping(em_tree
, em
, 0);
6866 static noinline
int uncompress_inline(struct btrfs_path
*path
,
6868 size_t pg_offset
, u64 extent_offset
,
6869 struct btrfs_file_extent_item
*item
)
6872 struct extent_buffer
*leaf
= path
->nodes
[0];
6875 unsigned long inline_size
;
6879 WARN_ON(pg_offset
!= 0);
6880 compress_type
= btrfs_file_extent_compression(leaf
, item
);
6881 max_size
= btrfs_file_extent_ram_bytes(leaf
, item
);
6882 inline_size
= btrfs_file_extent_inline_item_len(leaf
,
6883 btrfs_item_nr(path
->slots
[0]));
6884 tmp
= kmalloc(inline_size
, GFP_NOFS
);
6887 ptr
= btrfs_file_extent_inline_start(item
);
6889 read_extent_buffer(leaf
, tmp
, ptr
, inline_size
);
6891 max_size
= min_t(unsigned long, PAGE_SIZE
, max_size
);
6892 ret
= btrfs_decompress(compress_type
, tmp
, page
,
6893 extent_offset
, inline_size
, max_size
);
6896 * decompression code contains a memset to fill in any space between the end
6897 * of the uncompressed data and the end of max_size in case the decompressed
6898 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6899 * the end of an inline extent and the beginning of the next block, so we
6900 * cover that region here.
6903 if (max_size
+ pg_offset
< PAGE_SIZE
) {
6904 char *map
= kmap(page
);
6905 memset(map
+ pg_offset
+ max_size
, 0, PAGE_SIZE
- max_size
- pg_offset
);
6913 * a bit scary, this does extent mapping from logical file offset to the disk.
6914 * the ugly parts come from merging extents from the disk with the in-ram
6915 * representation. This gets more complex because of the data=ordered code,
6916 * where the in-ram extents might be locked pending data=ordered completion.
6918 * This also copies inline extents directly into the page.
6920 struct extent_map
*btrfs_get_extent(struct btrfs_inode
*inode
,
6922 size_t pg_offset
, u64 start
, u64 len
,
6925 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->vfs_inode
.i_sb
);
6928 u64 extent_start
= 0;
6930 u64 objectid
= btrfs_ino(inode
);
6932 struct btrfs_path
*path
= NULL
;
6933 struct btrfs_root
*root
= inode
->root
;
6934 struct btrfs_file_extent_item
*item
;
6935 struct extent_buffer
*leaf
;
6936 struct btrfs_key found_key
;
6937 struct extent_map
*em
= NULL
;
6938 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
6939 struct extent_io_tree
*io_tree
= &inode
->io_tree
;
6940 struct btrfs_trans_handle
*trans
= NULL
;
6941 const bool new_inline
= !page
|| create
;
6944 read_lock(&em_tree
->lock
);
6945 em
= lookup_extent_mapping(em_tree
, start
, len
);
6947 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6948 read_unlock(&em_tree
->lock
);
6951 if (em
->start
> start
|| em
->start
+ em
->len
<= start
)
6952 free_extent_map(em
);
6953 else if (em
->block_start
== EXTENT_MAP_INLINE
&& page
)
6954 free_extent_map(em
);
6958 em
= alloc_extent_map();
6963 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
6964 em
->start
= EXTENT_MAP_HOLE
;
6965 em
->orig_start
= EXTENT_MAP_HOLE
;
6967 em
->block_len
= (u64
)-1;
6970 path
= btrfs_alloc_path();
6976 * Chances are we'll be called again, so go ahead and do
6979 path
->reada
= READA_FORWARD
;
6982 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
6983 objectid
, start
, trans
!= NULL
);
6990 if (path
->slots
[0] == 0)
6995 leaf
= path
->nodes
[0];
6996 item
= btrfs_item_ptr(leaf
, path
->slots
[0],
6997 struct btrfs_file_extent_item
);
6998 /* are we inside the extent that was found? */
6999 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7000 found_type
= found_key
.type
;
7001 if (found_key
.objectid
!= objectid
||
7002 found_type
!= BTRFS_EXTENT_DATA_KEY
) {
7004 * If we backup past the first extent we want to move forward
7005 * and see if there is an extent in front of us, otherwise we'll
7006 * say there is a hole for our whole search range which can
7013 found_type
= btrfs_file_extent_type(leaf
, item
);
7014 extent_start
= found_key
.offset
;
7015 if (found_type
== BTRFS_FILE_EXTENT_REG
||
7016 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7017 extent_end
= extent_start
+
7018 btrfs_file_extent_num_bytes(leaf
, item
);
7020 trace_btrfs_get_extent_show_fi_regular(inode
, leaf
, item
,
7022 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
7024 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
7025 extent_end
= ALIGN(extent_start
+ size
,
7026 fs_info
->sectorsize
);
7028 trace_btrfs_get_extent_show_fi_inline(inode
, leaf
, item
,
7033 if (start
>= extent_end
) {
7035 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
7036 ret
= btrfs_next_leaf(root
, path
);
7043 leaf
= path
->nodes
[0];
7045 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
7046 if (found_key
.objectid
!= objectid
||
7047 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7049 if (start
+ len
<= found_key
.offset
)
7051 if (start
> found_key
.offset
)
7054 em
->orig_start
= start
;
7055 em
->len
= found_key
.offset
- start
;
7059 btrfs_extent_item_to_extent_map(inode
, path
, item
,
7062 if (found_type
== BTRFS_FILE_EXTENT_REG
||
7063 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7065 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
7069 size_t extent_offset
;
7075 size
= btrfs_file_extent_inline_len(leaf
, path
->slots
[0], item
);
7076 extent_offset
= page_offset(page
) + pg_offset
- extent_start
;
7077 copy_size
= min_t(u64
, PAGE_SIZE
- pg_offset
,
7078 size
- extent_offset
);
7079 em
->start
= extent_start
+ extent_offset
;
7080 em
->len
= ALIGN(copy_size
, fs_info
->sectorsize
);
7081 em
->orig_block_len
= em
->len
;
7082 em
->orig_start
= em
->start
;
7083 ptr
= btrfs_file_extent_inline_start(item
) + extent_offset
;
7084 if (create
== 0 && !PageUptodate(page
)) {
7085 if (btrfs_file_extent_compression(leaf
, item
) !=
7086 BTRFS_COMPRESS_NONE
) {
7087 ret
= uncompress_inline(path
, page
, pg_offset
,
7088 extent_offset
, item
);
7095 read_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
7097 if (pg_offset
+ copy_size
< PAGE_SIZE
) {
7098 memset(map
+ pg_offset
+ copy_size
, 0,
7099 PAGE_SIZE
- pg_offset
-
7104 flush_dcache_page(page
);
7105 } else if (create
&& PageUptodate(page
)) {
7109 free_extent_map(em
);
7112 btrfs_release_path(path
);
7113 trans
= btrfs_join_transaction(root
);
7116 return ERR_CAST(trans
);
7120 write_extent_buffer(leaf
, map
+ pg_offset
, ptr
,
7123 btrfs_mark_buffer_dirty(leaf
);
7125 set_extent_uptodate(io_tree
, em
->start
,
7126 extent_map_end(em
) - 1, NULL
, GFP_NOFS
);
7131 em
->orig_start
= start
;
7134 em
->block_start
= EXTENT_MAP_HOLE
;
7135 set_bit(EXTENT_FLAG_VACANCY
, &em
->flags
);
7137 btrfs_release_path(path
);
7138 if (em
->start
> start
|| extent_map_end(em
) <= start
) {
7140 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7141 em
->start
, em
->len
, start
, len
);
7147 write_lock(&em_tree
->lock
);
7148 ret
= add_extent_mapping(em_tree
, em
, 0);
7149 /* it is possible that someone inserted the extent into the tree
7150 * while we had the lock dropped. It is also possible that
7151 * an overlapping map exists in the tree
7153 if (ret
== -EEXIST
) {
7154 struct extent_map
*existing
;
7158 existing
= search_extent_mapping(em_tree
, start
, len
);
7160 * existing will always be non-NULL, since there must be
7161 * extent causing the -EEXIST.
7163 if (existing
->start
== em
->start
&&
7164 extent_map_end(existing
) >= extent_map_end(em
) &&
7165 em
->block_start
== existing
->block_start
) {
7167 * The existing extent map already encompasses the
7168 * entire extent map we tried to add.
7170 free_extent_map(em
);
7174 } else if (start
>= extent_map_end(existing
) ||
7175 start
<= existing
->start
) {
7177 * The existing extent map is the one nearest to
7178 * the [start, start + len) range which overlaps
7180 err
= merge_extent_mapping(em_tree
, existing
,
7182 free_extent_map(existing
);
7184 free_extent_map(em
);
7188 free_extent_map(em
);
7193 write_unlock(&em_tree
->lock
);
7196 trace_btrfs_get_extent(root
, inode
, em
);
7198 btrfs_free_path(path
);
7200 ret
= btrfs_end_transaction(trans
);
7205 free_extent_map(em
);
7206 return ERR_PTR(err
);
7208 BUG_ON(!em
); /* Error is always set */
7212 struct extent_map
*btrfs_get_extent_fiemap(struct btrfs_inode
*inode
,
7214 size_t pg_offset
, u64 start
, u64 len
,
7217 struct extent_map
*em
;
7218 struct extent_map
*hole_em
= NULL
;
7219 u64 range_start
= start
;
7225 em
= btrfs_get_extent(inode
, page
, pg_offset
, start
, len
, create
);
7229 * If our em maps to:
7231 * - a pre-alloc extent,
7232 * there might actually be delalloc bytes behind it.
7234 if (em
->block_start
!= EXTENT_MAP_HOLE
&&
7235 !test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7240 /* check to see if we've wrapped (len == -1 or similar) */
7249 /* ok, we didn't find anything, lets look for delalloc */
7250 found
= count_range_bits(&inode
->io_tree
, &range_start
,
7251 end
, len
, EXTENT_DELALLOC
, 1);
7252 found_end
= range_start
+ found
;
7253 if (found_end
< range_start
)
7254 found_end
= (u64
)-1;
7257 * we didn't find anything useful, return
7258 * the original results from get_extent()
7260 if (range_start
> end
|| found_end
<= start
) {
7266 /* adjust the range_start to make sure it doesn't
7267 * go backwards from the start they passed in
7269 range_start
= max(start
, range_start
);
7270 found
= found_end
- range_start
;
7273 u64 hole_start
= start
;
7276 em
= alloc_extent_map();
7282 * when btrfs_get_extent can't find anything it
7283 * returns one huge hole
7285 * make sure what it found really fits our range, and
7286 * adjust to make sure it is based on the start from
7290 u64 calc_end
= extent_map_end(hole_em
);
7292 if (calc_end
<= start
|| (hole_em
->start
> end
)) {
7293 free_extent_map(hole_em
);
7296 hole_start
= max(hole_em
->start
, start
);
7297 hole_len
= calc_end
- hole_start
;
7301 if (hole_em
&& range_start
> hole_start
) {
7302 /* our hole starts before our delalloc, so we
7303 * have to return just the parts of the hole
7304 * that go until the delalloc starts
7306 em
->len
= min(hole_len
,
7307 range_start
- hole_start
);
7308 em
->start
= hole_start
;
7309 em
->orig_start
= hole_start
;
7311 * don't adjust block start at all,
7312 * it is fixed at EXTENT_MAP_HOLE
7314 em
->block_start
= hole_em
->block_start
;
7315 em
->block_len
= hole_len
;
7316 if (test_bit(EXTENT_FLAG_PREALLOC
, &hole_em
->flags
))
7317 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
7319 em
->start
= range_start
;
7321 em
->orig_start
= range_start
;
7322 em
->block_start
= EXTENT_MAP_DELALLOC
;
7323 em
->block_len
= found
;
7325 } else if (hole_em
) {
7330 free_extent_map(hole_em
);
7332 free_extent_map(em
);
7333 return ERR_PTR(err
);
7338 static struct extent_map
*btrfs_create_dio_extent(struct inode
*inode
,
7341 const u64 orig_start
,
7342 const u64 block_start
,
7343 const u64 block_len
,
7344 const u64 orig_block_len
,
7345 const u64 ram_bytes
,
7348 struct extent_map
*em
= NULL
;
7351 if (type
!= BTRFS_ORDERED_NOCOW
) {
7352 em
= create_io_em(inode
, start
, len
, orig_start
,
7353 block_start
, block_len
, orig_block_len
,
7355 BTRFS_COMPRESS_NONE
, /* compress_type */
7360 ret
= btrfs_add_ordered_extent_dio(inode
, start
, block_start
,
7361 len
, block_len
, type
);
7364 free_extent_map(em
);
7365 btrfs_drop_extent_cache(BTRFS_I(inode
), start
,
7366 start
+ len
- 1, 0);
7375 static struct extent_map
*btrfs_new_extent_direct(struct inode
*inode
,
7378 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7379 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7380 struct extent_map
*em
;
7381 struct btrfs_key ins
;
7385 alloc_hint
= get_extent_allocation_hint(inode
, start
, len
);
7386 ret
= btrfs_reserve_extent(root
, len
, len
, fs_info
->sectorsize
,
7387 0, alloc_hint
, &ins
, 1, 1);
7389 return ERR_PTR(ret
);
7391 em
= btrfs_create_dio_extent(inode
, start
, ins
.offset
, start
,
7392 ins
.objectid
, ins
.offset
, ins
.offset
,
7393 ins
.offset
, BTRFS_ORDERED_REGULAR
);
7394 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
7396 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
7403 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7404 * block must be cow'd
7406 noinline
int can_nocow_extent(struct inode
*inode
, u64 offset
, u64
*len
,
7407 u64
*orig_start
, u64
*orig_block_len
,
7410 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7411 struct btrfs_path
*path
;
7413 struct extent_buffer
*leaf
;
7414 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7415 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
7416 struct btrfs_file_extent_item
*fi
;
7417 struct btrfs_key key
;
7424 bool nocow
= (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
);
7426 path
= btrfs_alloc_path();
7430 ret
= btrfs_lookup_file_extent(NULL
, root
, path
,
7431 btrfs_ino(BTRFS_I(inode
)), offset
, 0);
7435 slot
= path
->slots
[0];
7438 /* can't find the item, must cow */
7445 leaf
= path
->nodes
[0];
7446 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7447 if (key
.objectid
!= btrfs_ino(BTRFS_I(inode
)) ||
7448 key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7449 /* not our file or wrong item type, must cow */
7453 if (key
.offset
> offset
) {
7454 /* Wrong offset, must cow */
7458 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
7459 found_type
= btrfs_file_extent_type(leaf
, fi
);
7460 if (found_type
!= BTRFS_FILE_EXTENT_REG
&&
7461 found_type
!= BTRFS_FILE_EXTENT_PREALLOC
) {
7462 /* not a regular extent, must cow */
7466 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_REG
)
7469 extent_end
= key
.offset
+ btrfs_file_extent_num_bytes(leaf
, fi
);
7470 if (extent_end
<= offset
)
7473 disk_bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7474 if (disk_bytenr
== 0)
7477 if (btrfs_file_extent_compression(leaf
, fi
) ||
7478 btrfs_file_extent_encryption(leaf
, fi
) ||
7479 btrfs_file_extent_other_encoding(leaf
, fi
))
7482 backref_offset
= btrfs_file_extent_offset(leaf
, fi
);
7485 *orig_start
= key
.offset
- backref_offset
;
7486 *orig_block_len
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7487 *ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
7490 if (btrfs_extent_readonly(fs_info
, disk_bytenr
))
7493 num_bytes
= min(offset
+ *len
, extent_end
) - offset
;
7494 if (!nocow
&& found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
7497 range_end
= round_up(offset
+ num_bytes
,
7498 root
->fs_info
->sectorsize
) - 1;
7499 ret
= test_range_bit(io_tree
, offset
, range_end
,
7500 EXTENT_DELALLOC
, 0, NULL
);
7507 btrfs_release_path(path
);
7510 * look for other files referencing this extent, if we
7511 * find any we must cow
7514 ret
= btrfs_cross_ref_exist(root
, btrfs_ino(BTRFS_I(inode
)),
7515 key
.offset
- backref_offset
, disk_bytenr
);
7522 * adjust disk_bytenr and num_bytes to cover just the bytes
7523 * in this extent we are about to write. If there
7524 * are any csums in that range we have to cow in order
7525 * to keep the csums correct
7527 disk_bytenr
+= backref_offset
;
7528 disk_bytenr
+= offset
- key
.offset
;
7529 if (csum_exist_in_range(fs_info
, disk_bytenr
, num_bytes
))
7532 * all of the above have passed, it is safe to overwrite this extent
7538 btrfs_free_path(path
);
7542 bool btrfs_page_exists_in_range(struct inode
*inode
, loff_t start
, loff_t end
)
7544 struct radix_tree_root
*root
= &inode
->i_mapping
->page_tree
;
7546 void **pagep
= NULL
;
7547 struct page
*page
= NULL
;
7548 unsigned long start_idx
;
7549 unsigned long end_idx
;
7551 start_idx
= start
>> PAGE_SHIFT
;
7554 * end is the last byte in the last page. end == start is legal
7556 end_idx
= end
>> PAGE_SHIFT
;
7560 /* Most of the code in this while loop is lifted from
7561 * find_get_page. It's been modified to begin searching from a
7562 * page and return just the first page found in that range. If the
7563 * found idx is less than or equal to the end idx then we know that
7564 * a page exists. If no pages are found or if those pages are
7565 * outside of the range then we're fine (yay!) */
7566 while (page
== NULL
&&
7567 radix_tree_gang_lookup_slot(root
, &pagep
, NULL
, start_idx
, 1)) {
7568 page
= radix_tree_deref_slot(pagep
);
7569 if (unlikely(!page
))
7572 if (radix_tree_exception(page
)) {
7573 if (radix_tree_deref_retry(page
)) {
7578 * Otherwise, shmem/tmpfs must be storing a swap entry
7579 * here as an exceptional entry: so return it without
7580 * attempting to raise page count.
7583 break; /* TODO: Is this relevant for this use case? */
7586 if (!page_cache_get_speculative(page
)) {
7592 * Has the page moved?
7593 * This is part of the lockless pagecache protocol. See
7594 * include/linux/pagemap.h for details.
7596 if (unlikely(page
!= *pagep
)) {
7603 if (page
->index
<= end_idx
)
7612 static int lock_extent_direct(struct inode
*inode
, u64 lockstart
, u64 lockend
,
7613 struct extent_state
**cached_state
, int writing
)
7615 struct btrfs_ordered_extent
*ordered
;
7619 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7622 * We're concerned with the entire range that we're going to be
7623 * doing DIO to, so we need to make sure there's no ordered
7624 * extents in this range.
7626 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), lockstart
,
7627 lockend
- lockstart
+ 1);
7630 * We need to make sure there are no buffered pages in this
7631 * range either, we could have raced between the invalidate in
7632 * generic_file_direct_write and locking the extent. The
7633 * invalidate needs to happen so that reads after a write do not
7638 !btrfs_page_exists_in_range(inode
, lockstart
, lockend
)))
7641 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7642 cached_state
, GFP_NOFS
);
7646 * If we are doing a DIO read and the ordered extent we
7647 * found is for a buffered write, we can not wait for it
7648 * to complete and retry, because if we do so we can
7649 * deadlock with concurrent buffered writes on page
7650 * locks. This happens only if our DIO read covers more
7651 * than one extent map, if at this point has already
7652 * created an ordered extent for a previous extent map
7653 * and locked its range in the inode's io tree, and a
7654 * concurrent write against that previous extent map's
7655 * range and this range started (we unlock the ranges
7656 * in the io tree only when the bios complete and
7657 * buffered writes always lock pages before attempting
7658 * to lock range in the io tree).
7661 test_bit(BTRFS_ORDERED_DIRECT
, &ordered
->flags
))
7662 btrfs_start_ordered_extent(inode
, ordered
, 1);
7665 btrfs_put_ordered_extent(ordered
);
7668 * We could trigger writeback for this range (and wait
7669 * for it to complete) and then invalidate the pages for
7670 * this range (through invalidate_inode_pages2_range()),
7671 * but that can lead us to a deadlock with a concurrent
7672 * call to readpages() (a buffered read or a defrag call
7673 * triggered a readahead) on a page lock due to an
7674 * ordered dio extent we created before but did not have
7675 * yet a corresponding bio submitted (whence it can not
7676 * complete), which makes readpages() wait for that
7677 * ordered extent to complete while holding a lock on
7692 /* The callers of this must take lock_extent() */
7693 static struct extent_map
*create_io_em(struct inode
*inode
, u64 start
, u64 len
,
7694 u64 orig_start
, u64 block_start
,
7695 u64 block_len
, u64 orig_block_len
,
7696 u64 ram_bytes
, int compress_type
,
7699 struct extent_map_tree
*em_tree
;
7700 struct extent_map
*em
;
7701 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
7704 ASSERT(type
== BTRFS_ORDERED_PREALLOC
||
7705 type
== BTRFS_ORDERED_COMPRESSED
||
7706 type
== BTRFS_ORDERED_NOCOW
||
7707 type
== BTRFS_ORDERED_REGULAR
);
7709 em_tree
= &BTRFS_I(inode
)->extent_tree
;
7710 em
= alloc_extent_map();
7712 return ERR_PTR(-ENOMEM
);
7715 em
->orig_start
= orig_start
;
7717 em
->block_len
= block_len
;
7718 em
->block_start
= block_start
;
7719 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
7720 em
->orig_block_len
= orig_block_len
;
7721 em
->ram_bytes
= ram_bytes
;
7722 em
->generation
= -1;
7723 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
7724 if (type
== BTRFS_ORDERED_PREALLOC
) {
7725 set_bit(EXTENT_FLAG_FILLING
, &em
->flags
);
7726 } else if (type
== BTRFS_ORDERED_COMPRESSED
) {
7727 set_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
);
7728 em
->compress_type
= compress_type
;
7732 btrfs_drop_extent_cache(BTRFS_I(inode
), em
->start
,
7733 em
->start
+ em
->len
- 1, 0);
7734 write_lock(&em_tree
->lock
);
7735 ret
= add_extent_mapping(em_tree
, em
, 1);
7736 write_unlock(&em_tree
->lock
);
7738 * The caller has taken lock_extent(), who could race with us
7741 } while (ret
== -EEXIST
);
7744 free_extent_map(em
);
7745 return ERR_PTR(ret
);
7748 /* em got 2 refs now, callers needs to do free_extent_map once. */
7752 static int btrfs_get_blocks_direct(struct inode
*inode
, sector_t iblock
,
7753 struct buffer_head
*bh_result
, int create
)
7755 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7756 struct extent_map
*em
;
7757 struct extent_state
*cached_state
= NULL
;
7758 struct btrfs_dio_data
*dio_data
= NULL
;
7759 u64 start
= iblock
<< inode
->i_blkbits
;
7760 u64 lockstart
, lockend
;
7761 u64 len
= bh_result
->b_size
;
7762 int unlock_bits
= EXTENT_LOCKED
;
7766 unlock_bits
|= EXTENT_DIRTY
;
7768 len
= min_t(u64
, len
, fs_info
->sectorsize
);
7771 lockend
= start
+ len
- 1;
7773 if (current
->journal_info
) {
7775 * Need to pull our outstanding extents and set journal_info to NULL so
7776 * that anything that needs to check if there's a transaction doesn't get
7779 dio_data
= current
->journal_info
;
7780 current
->journal_info
= NULL
;
7784 * If this errors out it's because we couldn't invalidate pagecache for
7785 * this range and we need to fallback to buffered.
7787 if (lock_extent_direct(inode
, lockstart
, lockend
, &cached_state
,
7793 em
= btrfs_get_extent(BTRFS_I(inode
), NULL
, 0, start
, len
, 0);
7800 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7801 * io. INLINE is special, and we could probably kludge it in here, but
7802 * it's still buffered so for safety lets just fall back to the generic
7805 * For COMPRESSED we _have_ to read the entire extent in so we can
7806 * decompress it, so there will be buffering required no matter what we
7807 * do, so go ahead and fallback to buffered.
7809 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7810 * to buffered IO. Don't blame me, this is the price we pay for using
7813 if (test_bit(EXTENT_FLAG_COMPRESSED
, &em
->flags
) ||
7814 em
->block_start
== EXTENT_MAP_INLINE
) {
7815 free_extent_map(em
);
7820 /* Just a good old fashioned hole, return */
7821 if (!create
&& (em
->block_start
== EXTENT_MAP_HOLE
||
7822 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))) {
7823 free_extent_map(em
);
7828 * We don't allocate a new extent in the following cases
7830 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7832 * 2) The extent is marked as PREALLOC. We're good to go here and can
7833 * just use the extent.
7837 len
= min(len
, em
->len
- (start
- em
->start
));
7838 lockstart
= start
+ len
;
7842 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
7843 ((BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATACOW
) &&
7844 em
->block_start
!= EXTENT_MAP_HOLE
)) {
7846 u64 block_start
, orig_start
, orig_block_len
, ram_bytes
;
7848 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7849 type
= BTRFS_ORDERED_PREALLOC
;
7851 type
= BTRFS_ORDERED_NOCOW
;
7852 len
= min(len
, em
->len
- (start
- em
->start
));
7853 block_start
= em
->block_start
+ (start
- em
->start
);
7855 if (can_nocow_extent(inode
, start
, &len
, &orig_start
,
7856 &orig_block_len
, &ram_bytes
) == 1 &&
7857 btrfs_inc_nocow_writers(fs_info
, block_start
)) {
7858 struct extent_map
*em2
;
7860 em2
= btrfs_create_dio_extent(inode
, start
, len
,
7861 orig_start
, block_start
,
7862 len
, orig_block_len
,
7864 btrfs_dec_nocow_writers(fs_info
, block_start
);
7865 if (type
== BTRFS_ORDERED_PREALLOC
) {
7866 free_extent_map(em
);
7869 if (em2
&& IS_ERR(em2
)) {
7874 * For inode marked NODATACOW or extent marked PREALLOC,
7875 * use the existing or preallocated extent, so does not
7876 * need to adjust btrfs_space_info's bytes_may_use.
7878 btrfs_free_reserved_data_space_noquota(inode
,
7885 * this will cow the extent, reset the len in case we changed
7888 len
= bh_result
->b_size
;
7889 free_extent_map(em
);
7890 em
= btrfs_new_extent_direct(inode
, start
, len
);
7895 len
= min(len
, em
->len
- (start
- em
->start
));
7897 bh_result
->b_blocknr
= (em
->block_start
+ (start
- em
->start
)) >>
7899 bh_result
->b_size
= len
;
7900 bh_result
->b_bdev
= em
->bdev
;
7901 set_buffer_mapped(bh_result
);
7903 if (!test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
7904 set_buffer_new(bh_result
);
7907 * Need to update the i_size under the extent lock so buffered
7908 * readers will get the updated i_size when we unlock.
7910 if (!dio_data
->overwrite
&& start
+ len
> i_size_read(inode
))
7911 i_size_write(inode
, start
+ len
);
7913 WARN_ON(dio_data
->reserve
< len
);
7914 dio_data
->reserve
-= len
;
7915 dio_data
->unsubmitted_oe_range_end
= start
+ len
;
7916 current
->journal_info
= dio_data
;
7920 * In the case of write we need to clear and unlock the entire range,
7921 * in the case of read we need to unlock only the end area that we
7922 * aren't using if there is any left over space.
7924 if (lockstart
< lockend
) {
7925 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
,
7926 lockend
, unlock_bits
, 1, 0,
7927 &cached_state
, GFP_NOFS
);
7929 free_extent_state(cached_state
);
7932 free_extent_map(em
);
7937 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, lockstart
, lockend
,
7938 unlock_bits
, 1, 0, &cached_state
, GFP_NOFS
);
7941 current
->journal_info
= dio_data
;
7945 static inline blk_status_t
submit_dio_repair_bio(struct inode
*inode
,
7949 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7952 BUG_ON(bio_op(bio
) == REQ_OP_WRITE
);
7956 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DIO_REPAIR
);
7960 ret
= btrfs_map_bio(fs_info
, bio
, mirror_num
, 0);
7966 static int btrfs_check_dio_repairable(struct inode
*inode
,
7967 struct bio
*failed_bio
,
7968 struct io_failure_record
*failrec
,
7971 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
7974 num_copies
= btrfs_num_copies(fs_info
, failrec
->logical
, failrec
->len
);
7975 if (num_copies
== 1) {
7977 * we only have a single copy of the data, so don't bother with
7978 * all the retry and error correction code that follows. no
7979 * matter what the error is, it is very likely to persist.
7981 btrfs_debug(fs_info
,
7982 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7983 num_copies
, failrec
->this_mirror
, failed_mirror
);
7987 failrec
->failed_mirror
= failed_mirror
;
7988 failrec
->this_mirror
++;
7989 if (failrec
->this_mirror
== failed_mirror
)
7990 failrec
->this_mirror
++;
7992 if (failrec
->this_mirror
> num_copies
) {
7993 btrfs_debug(fs_info
,
7994 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7995 num_copies
, failrec
->this_mirror
, failed_mirror
);
8002 static blk_status_t
dio_read_error(struct inode
*inode
, struct bio
*failed_bio
,
8003 struct page
*page
, unsigned int pgoff
,
8004 u64 start
, u64 end
, int failed_mirror
,
8005 bio_end_io_t
*repair_endio
, void *repair_arg
)
8007 struct io_failure_record
*failrec
;
8008 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
8009 struct extent_io_tree
*failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8012 unsigned int read_mode
= 0;
8015 blk_status_t status
;
8017 BUG_ON(bio_op(failed_bio
) == REQ_OP_WRITE
);
8019 ret
= btrfs_get_io_failure_record(inode
, start
, end
, &failrec
);
8021 return errno_to_blk_status(ret
);
8023 ret
= btrfs_check_dio_repairable(inode
, failed_bio
, failrec
,
8026 free_io_failure(failure_tree
, io_tree
, failrec
);
8027 return BLK_STS_IOERR
;
8030 segs
= bio_segments(failed_bio
);
8032 (failed_bio
->bi_io_vec
->bv_len
> btrfs_inode_sectorsize(inode
)))
8033 read_mode
|= REQ_FAILFAST_DEV
;
8035 isector
= start
- btrfs_io_bio(failed_bio
)->logical
;
8036 isector
>>= inode
->i_sb
->s_blocksize_bits
;
8037 bio
= btrfs_create_repair_bio(inode
, failed_bio
, failrec
, page
,
8038 pgoff
, isector
, repair_endio
, repair_arg
);
8039 bio_set_op_attrs(bio
, REQ_OP_READ
, read_mode
);
8041 btrfs_debug(BTRFS_I(inode
)->root
->fs_info
,
8042 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8043 read_mode
, failrec
->this_mirror
, failrec
->in_validation
);
8045 status
= submit_dio_repair_bio(inode
, bio
, failrec
->this_mirror
);
8047 free_io_failure(failure_tree
, io_tree
, failrec
);
8054 struct btrfs_retry_complete
{
8055 struct completion done
;
8056 struct inode
*inode
;
8061 static void btrfs_retry_endio_nocsum(struct bio
*bio
)
8063 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8064 struct inode
*inode
= done
->inode
;
8065 struct bio_vec
*bvec
;
8066 struct extent_io_tree
*io_tree
, *failure_tree
;
8072 ASSERT(bio
->bi_vcnt
== 1);
8073 io_tree
= &BTRFS_I(inode
)->io_tree
;
8074 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8075 ASSERT(bio
->bi_io_vec
->bv_len
== btrfs_inode_sectorsize(inode
));
8078 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
8079 bio_for_each_segment_all(bvec
, bio
, i
)
8080 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
, failure_tree
,
8081 io_tree
, done
->start
, bvec
->bv_page
,
8082 btrfs_ino(BTRFS_I(inode
)), 0);
8084 complete(&done
->done
);
8088 static blk_status_t
__btrfs_correct_data_nocsum(struct inode
*inode
,
8089 struct btrfs_io_bio
*io_bio
)
8091 struct btrfs_fs_info
*fs_info
;
8092 struct bio_vec bvec
;
8093 struct bvec_iter iter
;
8094 struct btrfs_retry_complete done
;
8100 blk_status_t err
= BLK_STS_OK
;
8102 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8103 sectorsize
= fs_info
->sectorsize
;
8105 start
= io_bio
->logical
;
8107 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8109 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8110 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8111 pgoff
= bvec
.bv_offset
;
8113 next_block_or_try_again
:
8116 init_completion(&done
.done
);
8118 ret
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8119 pgoff
, start
, start
+ sectorsize
- 1,
8121 btrfs_retry_endio_nocsum
, &done
);
8127 wait_for_completion_io(&done
.done
);
8129 if (!done
.uptodate
) {
8130 /* We might have another mirror, so try again */
8131 goto next_block_or_try_again
;
8135 start
+= sectorsize
;
8139 pgoff
+= sectorsize
;
8140 ASSERT(pgoff
< PAGE_SIZE
);
8141 goto next_block_or_try_again
;
8148 static void btrfs_retry_endio(struct bio
*bio
)
8150 struct btrfs_retry_complete
*done
= bio
->bi_private
;
8151 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8152 struct extent_io_tree
*io_tree
, *failure_tree
;
8153 struct inode
*inode
= done
->inode
;
8154 struct bio_vec
*bvec
;
8164 ASSERT(bio
->bi_vcnt
== 1);
8165 ASSERT(bio
->bi_io_vec
->bv_len
== btrfs_inode_sectorsize(done
->inode
));
8167 io_tree
= &BTRFS_I(inode
)->io_tree
;
8168 failure_tree
= &BTRFS_I(inode
)->io_failure_tree
;
8170 ASSERT(!bio_flagged(bio
, BIO_CLONED
));
8171 bio_for_each_segment_all(bvec
, bio
, i
) {
8172 ret
= __readpage_endio_check(inode
, io_bio
, i
, bvec
->bv_page
,
8173 bvec
->bv_offset
, done
->start
,
8176 clean_io_failure(BTRFS_I(inode
)->root
->fs_info
,
8177 failure_tree
, io_tree
, done
->start
,
8179 btrfs_ino(BTRFS_I(inode
)),
8185 done
->uptodate
= uptodate
;
8187 complete(&done
->done
);
8191 static blk_status_t
__btrfs_subio_endio_read(struct inode
*inode
,
8192 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8194 struct btrfs_fs_info
*fs_info
;
8195 struct bio_vec bvec
;
8196 struct bvec_iter iter
;
8197 struct btrfs_retry_complete done
;
8204 bool uptodate
= (err
== 0);
8206 blk_status_t status
;
8208 fs_info
= BTRFS_I(inode
)->root
->fs_info
;
8209 sectorsize
= fs_info
->sectorsize
;
8212 start
= io_bio
->logical
;
8214 io_bio
->bio
.bi_iter
= io_bio
->iter
;
8216 bio_for_each_segment(bvec
, &io_bio
->bio
, iter
) {
8217 nr_sectors
= BTRFS_BYTES_TO_BLKS(fs_info
, bvec
.bv_len
);
8219 pgoff
= bvec
.bv_offset
;
8222 csum_pos
= BTRFS_BYTES_TO_BLKS(fs_info
, offset
);
8223 ret
= __readpage_endio_check(inode
, io_bio
, csum_pos
,
8224 bvec
.bv_page
, pgoff
, start
, sectorsize
);
8231 init_completion(&done
.done
);
8233 status
= dio_read_error(inode
, &io_bio
->bio
, bvec
.bv_page
,
8234 pgoff
, start
, start
+ sectorsize
- 1,
8235 io_bio
->mirror_num
, btrfs_retry_endio
,
8242 wait_for_completion_io(&done
.done
);
8244 if (!done
.uptodate
) {
8245 /* We might have another mirror, so try again */
8249 offset
+= sectorsize
;
8250 start
+= sectorsize
;
8256 pgoff
+= sectorsize
;
8257 ASSERT(pgoff
< PAGE_SIZE
);
8265 static blk_status_t
btrfs_subio_endio_read(struct inode
*inode
,
8266 struct btrfs_io_bio
*io_bio
, blk_status_t err
)
8268 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
8272 return __btrfs_correct_data_nocsum(inode
, io_bio
);
8276 return __btrfs_subio_endio_read(inode
, io_bio
, err
);
8280 static void btrfs_endio_direct_read(struct bio
*bio
)
8282 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8283 struct inode
*inode
= dip
->inode
;
8284 struct bio
*dio_bio
;
8285 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8286 blk_status_t err
= bio
->bi_status
;
8288 if (dip
->flags
& BTRFS_DIO_ORIG_BIO_SUBMITTED
)
8289 err
= btrfs_subio_endio_read(inode
, io_bio
, err
);
8291 unlock_extent(&BTRFS_I(inode
)->io_tree
, dip
->logical_offset
,
8292 dip
->logical_offset
+ dip
->bytes
- 1);
8293 dio_bio
= dip
->dio_bio
;
8297 dio_bio
->bi_status
= err
;
8298 dio_end_io(dio_bio
);
8301 io_bio
->end_io(io_bio
, blk_status_to_errno(err
));
8305 static void __endio_write_update_ordered(struct inode
*inode
,
8306 const u64 offset
, const u64 bytes
,
8307 const bool uptodate
)
8309 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8310 struct btrfs_ordered_extent
*ordered
= NULL
;
8311 struct btrfs_workqueue
*wq
;
8312 btrfs_work_func_t func
;
8313 u64 ordered_offset
= offset
;
8314 u64 ordered_bytes
= bytes
;
8318 if (btrfs_is_free_space_inode(BTRFS_I(inode
))) {
8319 wq
= fs_info
->endio_freespace_worker
;
8320 func
= btrfs_freespace_write_helper
;
8322 wq
= fs_info
->endio_write_workers
;
8323 func
= btrfs_endio_write_helper
;
8327 last_offset
= ordered_offset
;
8328 ret
= btrfs_dec_test_first_ordered_pending(inode
, &ordered
,
8335 btrfs_init_work(&ordered
->work
, func
, finish_ordered_fn
, NULL
, NULL
);
8336 btrfs_queue_work(wq
, &ordered
->work
);
8339 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8340 * in the range, we can exit.
8342 if (ordered_offset
== last_offset
)
8345 * our bio might span multiple ordered extents. If we haven't
8346 * completed the accounting for the whole dio, go back and try again
8348 if (ordered_offset
< offset
+ bytes
) {
8349 ordered_bytes
= offset
+ bytes
- ordered_offset
;
8355 static void btrfs_endio_direct_write(struct bio
*bio
)
8357 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8358 struct bio
*dio_bio
= dip
->dio_bio
;
8360 __endio_write_update_ordered(dip
->inode
, dip
->logical_offset
,
8361 dip
->bytes
, !bio
->bi_status
);
8365 dio_bio
->bi_status
= bio
->bi_status
;
8366 dio_end_io(dio_bio
);
8370 static blk_status_t
__btrfs_submit_bio_start_direct_io(void *private_data
,
8371 struct bio
*bio
, int mirror_num
,
8372 unsigned long bio_flags
, u64 offset
)
8374 struct inode
*inode
= private_data
;
8376 ret
= btrfs_csum_one_bio(inode
, bio
, offset
, 1);
8377 BUG_ON(ret
); /* -ENOMEM */
8381 static void btrfs_end_dio_bio(struct bio
*bio
)
8383 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8384 blk_status_t err
= bio
->bi_status
;
8387 btrfs_warn(BTRFS_I(dip
->inode
)->root
->fs_info
,
8388 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8389 btrfs_ino(BTRFS_I(dip
->inode
)), bio_op(bio
),
8391 (unsigned long long)bio
->bi_iter
.bi_sector
,
8392 bio
->bi_iter
.bi_size
, err
);
8394 if (dip
->subio_endio
)
8395 err
= dip
->subio_endio(dip
->inode
, btrfs_io_bio(bio
), err
);
8401 * before atomic variable goto zero, we must make sure
8402 * dip->errors is perceived to be set.
8404 smp_mb__before_atomic();
8407 /* if there are more bios still pending for this dio, just exit */
8408 if (!atomic_dec_and_test(&dip
->pending_bios
))
8412 bio_io_error(dip
->orig_bio
);
8414 dip
->dio_bio
->bi_status
= BLK_STS_OK
;
8415 bio_endio(dip
->orig_bio
);
8421 static inline blk_status_t
btrfs_lookup_and_bind_dio_csum(struct inode
*inode
,
8422 struct btrfs_dio_private
*dip
,
8426 struct btrfs_io_bio
*io_bio
= btrfs_io_bio(bio
);
8427 struct btrfs_io_bio
*orig_io_bio
= btrfs_io_bio(dip
->orig_bio
);
8431 * We load all the csum data we need when we submit
8432 * the first bio to reduce the csum tree search and
8435 if (dip
->logical_offset
== file_offset
) {
8436 ret
= btrfs_lookup_bio_sums_dio(inode
, dip
->orig_bio
,
8442 if (bio
== dip
->orig_bio
)
8445 file_offset
-= dip
->logical_offset
;
8446 file_offset
>>= inode
->i_sb
->s_blocksize_bits
;
8447 io_bio
->csum
= (u8
*)(((u32
*)orig_io_bio
->csum
) + file_offset
);
8452 static inline blk_status_t
8453 __btrfs_submit_dio_bio(struct bio
*bio
, struct inode
*inode
, u64 file_offset
,
8456 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8457 struct btrfs_dio_private
*dip
= bio
->bi_private
;
8458 bool write
= bio_op(bio
) == REQ_OP_WRITE
;
8462 async_submit
= !atomic_read(&BTRFS_I(inode
)->sync_writers
);
8467 ret
= btrfs_bio_wq_end_io(fs_info
, bio
, BTRFS_WQ_ENDIO_DATA
);
8472 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
)
8475 if (write
&& async_submit
) {
8476 ret
= btrfs_wq_submit_bio(fs_info
, bio
, 0, 0,
8478 __btrfs_submit_bio_start_direct_io
,
8479 __btrfs_submit_bio_done
);
8483 * If we aren't doing async submit, calculate the csum of the
8486 ret
= btrfs_csum_one_bio(inode
, bio
, file_offset
, 1);
8490 ret
= btrfs_lookup_and_bind_dio_csum(inode
, dip
, bio
,
8496 ret
= btrfs_map_bio(fs_info
, bio
, 0, 0);
8502 static int btrfs_submit_direct_hook(struct btrfs_dio_private
*dip
)
8504 struct inode
*inode
= dip
->inode
;
8505 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8507 struct bio
*orig_bio
= dip
->orig_bio
;
8508 u64 start_sector
= orig_bio
->bi_iter
.bi_sector
;
8509 u64 file_offset
= dip
->logical_offset
;
8511 int async_submit
= 0;
8513 int clone_offset
= 0;
8516 blk_status_t status
;
8518 map_length
= orig_bio
->bi_iter
.bi_size
;
8519 submit_len
= map_length
;
8520 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
), start_sector
<< 9,
8521 &map_length
, NULL
, 0);
8525 if (map_length
>= submit_len
) {
8527 dip
->flags
|= BTRFS_DIO_ORIG_BIO_SUBMITTED
;
8531 /* async crcs make it difficult to collect full stripe writes. */
8532 if (btrfs_data_alloc_profile(fs_info
) & BTRFS_BLOCK_GROUP_RAID56_MASK
)
8538 ASSERT(map_length
<= INT_MAX
);
8539 atomic_inc(&dip
->pending_bios
);
8541 clone_len
= min_t(int, submit_len
, map_length
);
8544 * This will never fail as it's passing GPF_NOFS and
8545 * the allocation is backed by btrfs_bioset.
8547 bio
= btrfs_bio_clone_partial(orig_bio
, clone_offset
,
8549 bio
->bi_private
= dip
;
8550 bio
->bi_end_io
= btrfs_end_dio_bio
;
8551 btrfs_io_bio(bio
)->logical
= file_offset
;
8553 ASSERT(submit_len
>= clone_len
);
8554 submit_len
-= clone_len
;
8555 if (submit_len
== 0)
8559 * Increase the count before we submit the bio so we know
8560 * the end IO handler won't happen before we increase the
8561 * count. Otherwise, the dip might get freed before we're
8562 * done setting it up.
8564 atomic_inc(&dip
->pending_bios
);
8566 status
= __btrfs_submit_dio_bio(bio
, inode
, file_offset
,
8570 atomic_dec(&dip
->pending_bios
);
8574 clone_offset
+= clone_len
;
8575 start_sector
+= clone_len
>> 9;
8576 file_offset
+= clone_len
;
8578 map_length
= submit_len
;
8579 ret
= btrfs_map_block(fs_info
, btrfs_op(orig_bio
),
8580 start_sector
<< 9, &map_length
, NULL
, 0);
8583 } while (submit_len
> 0);
8586 status
= __btrfs_submit_dio_bio(bio
, inode
, file_offset
, async_submit
);
8594 * before atomic variable goto zero, we must
8595 * make sure dip->errors is perceived to be set.
8597 smp_mb__before_atomic();
8598 if (atomic_dec_and_test(&dip
->pending_bios
))
8599 bio_io_error(dip
->orig_bio
);
8601 /* bio_end_io() will handle error, so we needn't return it */
8605 static void btrfs_submit_direct(struct bio
*dio_bio
, struct inode
*inode
,
8608 struct btrfs_dio_private
*dip
= NULL
;
8609 struct bio
*bio
= NULL
;
8610 struct btrfs_io_bio
*io_bio
;
8611 bool write
= (bio_op(dio_bio
) == REQ_OP_WRITE
);
8614 bio
= btrfs_bio_clone(dio_bio
);
8616 dip
= kzalloc(sizeof(*dip
), GFP_NOFS
);
8622 dip
->private = dio_bio
->bi_private
;
8624 dip
->logical_offset
= file_offset
;
8625 dip
->bytes
= dio_bio
->bi_iter
.bi_size
;
8626 dip
->disk_bytenr
= (u64
)dio_bio
->bi_iter
.bi_sector
<< 9;
8627 bio
->bi_private
= dip
;
8628 dip
->orig_bio
= bio
;
8629 dip
->dio_bio
= dio_bio
;
8630 atomic_set(&dip
->pending_bios
, 0);
8631 io_bio
= btrfs_io_bio(bio
);
8632 io_bio
->logical
= file_offset
;
8635 bio
->bi_end_io
= btrfs_endio_direct_write
;
8637 bio
->bi_end_io
= btrfs_endio_direct_read
;
8638 dip
->subio_endio
= btrfs_subio_endio_read
;
8642 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8643 * even if we fail to submit a bio, because in such case we do the
8644 * corresponding error handling below and it must not be done a second
8645 * time by btrfs_direct_IO().
8648 struct btrfs_dio_data
*dio_data
= current
->journal_info
;
8650 dio_data
->unsubmitted_oe_range_end
= dip
->logical_offset
+
8652 dio_data
->unsubmitted_oe_range_start
=
8653 dio_data
->unsubmitted_oe_range_end
;
8656 ret
= btrfs_submit_direct_hook(dip
);
8661 io_bio
->end_io(io_bio
, ret
);
8665 * If we arrived here it means either we failed to submit the dip
8666 * or we either failed to clone the dio_bio or failed to allocate the
8667 * dip. If we cloned the dio_bio and allocated the dip, we can just
8668 * call bio_endio against our io_bio so that we get proper resource
8669 * cleanup if we fail to submit the dip, otherwise, we must do the
8670 * same as btrfs_endio_direct_[write|read] because we can't call these
8671 * callbacks - they require an allocated dip and a clone of dio_bio.
8676 * The end io callbacks free our dip, do the final put on bio
8677 * and all the cleanup and final put for dio_bio (through
8684 __endio_write_update_ordered(inode
,
8686 dio_bio
->bi_iter
.bi_size
,
8689 unlock_extent(&BTRFS_I(inode
)->io_tree
, file_offset
,
8690 file_offset
+ dio_bio
->bi_iter
.bi_size
- 1);
8692 dio_bio
->bi_status
= BLK_STS_IOERR
;
8694 * Releases and cleans up our dio_bio, no need to bio_put()
8695 * nor bio_endio()/bio_io_error() against dio_bio.
8697 dio_end_io(dio_bio
);
8704 static ssize_t
check_direct_IO(struct btrfs_fs_info
*fs_info
,
8705 const struct iov_iter
*iter
, loff_t offset
)
8709 unsigned int blocksize_mask
= fs_info
->sectorsize
- 1;
8710 ssize_t retval
= -EINVAL
;
8712 if (offset
& blocksize_mask
)
8715 if (iov_iter_alignment(iter
) & blocksize_mask
)
8718 /* If this is a write we don't need to check anymore */
8719 if (iov_iter_rw(iter
) != READ
|| !iter_is_iovec(iter
))
8722 * Check to make sure we don't have duplicate iov_base's in this
8723 * iovec, if so return EINVAL, otherwise we'll get csum errors
8724 * when reading back.
8726 for (seg
= 0; seg
< iter
->nr_segs
; seg
++) {
8727 for (i
= seg
+ 1; i
< iter
->nr_segs
; i
++) {
8728 if (iter
->iov
[seg
].iov_base
== iter
->iov
[i
].iov_base
)
8737 static ssize_t
btrfs_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
)
8739 struct file
*file
= iocb
->ki_filp
;
8740 struct inode
*inode
= file
->f_mapping
->host
;
8741 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
8742 struct btrfs_dio_data dio_data
= { 0 };
8743 struct extent_changeset
*data_reserved
= NULL
;
8744 loff_t offset
= iocb
->ki_pos
;
8748 bool relock
= false;
8751 if (check_direct_IO(fs_info
, iter
, offset
))
8754 inode_dio_begin(inode
);
8757 * The generic stuff only does filemap_write_and_wait_range, which
8758 * isn't enough if we've written compressed pages to this area, so
8759 * we need to flush the dirty pages again to make absolutely sure
8760 * that any outstanding dirty pages are on disk.
8762 count
= iov_iter_count(iter
);
8763 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
8764 &BTRFS_I(inode
)->runtime_flags
))
8765 filemap_fdatawrite_range(inode
->i_mapping
, offset
,
8766 offset
+ count
- 1);
8768 if (iov_iter_rw(iter
) == WRITE
) {
8770 * If the write DIO is beyond the EOF, we need update
8771 * the isize, but it is protected by i_mutex. So we can
8772 * not unlock the i_mutex at this case.
8774 if (offset
+ count
<= inode
->i_size
) {
8775 dio_data
.overwrite
= 1;
8776 inode_unlock(inode
);
8778 } else if (iocb
->ki_flags
& IOCB_NOWAIT
) {
8782 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
,
8788 * We need to know how many extents we reserved so that we can
8789 * do the accounting properly if we go over the number we
8790 * originally calculated. Abuse current->journal_info for this.
8792 dio_data
.reserve
= round_up(count
,
8793 fs_info
->sectorsize
);
8794 dio_data
.unsubmitted_oe_range_start
= (u64
)offset
;
8795 dio_data
.unsubmitted_oe_range_end
= (u64
)offset
;
8796 current
->journal_info
= &dio_data
;
8797 down_read(&BTRFS_I(inode
)->dio_sem
);
8798 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK
,
8799 &BTRFS_I(inode
)->runtime_flags
)) {
8800 inode_dio_end(inode
);
8801 flags
= DIO_LOCKING
| DIO_SKIP_HOLES
;
8805 ret
= __blockdev_direct_IO(iocb
, inode
,
8806 fs_info
->fs_devices
->latest_bdev
,
8807 iter
, btrfs_get_blocks_direct
, NULL
,
8808 btrfs_submit_direct
, flags
);
8809 if (iov_iter_rw(iter
) == WRITE
) {
8810 up_read(&BTRFS_I(inode
)->dio_sem
);
8811 current
->journal_info
= NULL
;
8812 if (ret
< 0 && ret
!= -EIOCBQUEUED
) {
8813 if (dio_data
.reserve
)
8814 btrfs_delalloc_release_space(inode
, data_reserved
,
8815 offset
, dio_data
.reserve
);
8817 * On error we might have left some ordered extents
8818 * without submitting corresponding bios for them, so
8819 * cleanup them up to avoid other tasks getting them
8820 * and waiting for them to complete forever.
8822 if (dio_data
.unsubmitted_oe_range_start
<
8823 dio_data
.unsubmitted_oe_range_end
)
8824 __endio_write_update_ordered(inode
,
8825 dio_data
.unsubmitted_oe_range_start
,
8826 dio_data
.unsubmitted_oe_range_end
-
8827 dio_data
.unsubmitted_oe_range_start
,
8829 } else if (ret
>= 0 && (size_t)ret
< count
)
8830 btrfs_delalloc_release_space(inode
, data_reserved
,
8831 offset
, count
- (size_t)ret
);
8832 btrfs_delalloc_release_extents(BTRFS_I(inode
), count
);
8836 inode_dio_end(inode
);
8840 extent_changeset_free(data_reserved
);
8844 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8846 static int btrfs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
8847 __u64 start
, __u64 len
)
8851 ret
= fiemap_check_flags(fieinfo
, BTRFS_FIEMAP_FLAGS
);
8855 return extent_fiemap(inode
, fieinfo
, start
, len
, btrfs_get_extent_fiemap
);
8858 int btrfs_readpage(struct file
*file
, struct page
*page
)
8860 struct extent_io_tree
*tree
;
8861 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8862 return extent_read_full_page(tree
, page
, btrfs_get_extent
, 0);
8865 static int btrfs_writepage(struct page
*page
, struct writeback_control
*wbc
)
8867 struct extent_io_tree
*tree
;
8868 struct inode
*inode
= page
->mapping
->host
;
8871 if (current
->flags
& PF_MEMALLOC
) {
8872 redirty_page_for_writepage(wbc
, page
);
8878 * If we are under memory pressure we will call this directly from the
8879 * VM, we need to make sure we have the inode referenced for the ordered
8880 * extent. If not just return like we didn't do anything.
8882 if (!igrab(inode
)) {
8883 redirty_page_for_writepage(wbc
, page
);
8884 return AOP_WRITEPAGE_ACTIVATE
;
8886 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8887 ret
= extent_write_full_page(tree
, page
, btrfs_get_extent
, wbc
);
8888 btrfs_add_delayed_iput(inode
);
8892 static int btrfs_writepages(struct address_space
*mapping
,
8893 struct writeback_control
*wbc
)
8895 struct extent_io_tree
*tree
;
8897 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8898 return extent_writepages(tree
, mapping
, btrfs_get_extent
, wbc
);
8902 btrfs_readpages(struct file
*file
, struct address_space
*mapping
,
8903 struct list_head
*pages
, unsigned nr_pages
)
8905 struct extent_io_tree
*tree
;
8906 tree
= &BTRFS_I(mapping
->host
)->io_tree
;
8907 return extent_readpages(tree
, mapping
, pages
, nr_pages
,
8910 static int __btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8912 struct extent_io_tree
*tree
;
8913 struct extent_map_tree
*map
;
8916 tree
= &BTRFS_I(page
->mapping
->host
)->io_tree
;
8917 map
= &BTRFS_I(page
->mapping
->host
)->extent_tree
;
8918 ret
= try_release_extent_mapping(map
, tree
, page
, gfp_flags
);
8920 ClearPagePrivate(page
);
8921 set_page_private(page
, 0);
8927 static int btrfs_releasepage(struct page
*page
, gfp_t gfp_flags
)
8929 if (PageWriteback(page
) || PageDirty(page
))
8931 return __btrfs_releasepage(page
, gfp_flags
);
8934 static void btrfs_invalidatepage(struct page
*page
, unsigned int offset
,
8935 unsigned int length
)
8937 struct inode
*inode
= page
->mapping
->host
;
8938 struct extent_io_tree
*tree
;
8939 struct btrfs_ordered_extent
*ordered
;
8940 struct extent_state
*cached_state
= NULL
;
8941 u64 page_start
= page_offset(page
);
8942 u64 page_end
= page_start
+ PAGE_SIZE
- 1;
8945 int inode_evicting
= inode
->i_state
& I_FREEING
;
8948 * we have the page locked, so new writeback can't start,
8949 * and the dirty bit won't be cleared while we are here.
8951 * Wait for IO on this page so that we can safely clear
8952 * the PagePrivate2 bit and do ordered accounting
8954 wait_on_page_writeback(page
);
8956 tree
= &BTRFS_I(inode
)->io_tree
;
8958 btrfs_releasepage(page
, GFP_NOFS
);
8962 if (!inode_evicting
)
8963 lock_extent_bits(tree
, page_start
, page_end
, &cached_state
);
8966 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), start
,
8967 page_end
- start
+ 1);
8969 end
= min(page_end
, ordered
->file_offset
+ ordered
->len
- 1);
8971 * IO on this page will never be started, so we need
8972 * to account for any ordered extents now
8974 if (!inode_evicting
)
8975 clear_extent_bit(tree
, start
, end
,
8976 EXTENT_DIRTY
| EXTENT_DELALLOC
|
8977 EXTENT_DELALLOC_NEW
|
8978 EXTENT_LOCKED
| EXTENT_DO_ACCOUNTING
|
8979 EXTENT_DEFRAG
, 1, 0, &cached_state
,
8982 * whoever cleared the private bit is responsible
8983 * for the finish_ordered_io
8985 if (TestClearPagePrivate2(page
)) {
8986 struct btrfs_ordered_inode_tree
*tree
;
8989 tree
= &BTRFS_I(inode
)->ordered_tree
;
8991 spin_lock_irq(&tree
->lock
);
8992 set_bit(BTRFS_ORDERED_TRUNCATED
, &ordered
->flags
);
8993 new_len
= start
- ordered
->file_offset
;
8994 if (new_len
< ordered
->truncated_len
)
8995 ordered
->truncated_len
= new_len
;
8996 spin_unlock_irq(&tree
->lock
);
8998 if (btrfs_dec_test_ordered_pending(inode
, &ordered
,
9000 end
- start
+ 1, 1))
9001 btrfs_finish_ordered_io(ordered
);
9003 btrfs_put_ordered_extent(ordered
);
9004 if (!inode_evicting
) {
9005 cached_state
= NULL
;
9006 lock_extent_bits(tree
, start
, end
,
9011 if (start
< page_end
)
9016 * Qgroup reserved space handler
9017 * Page here will be either
9018 * 1) Already written to disk
9019 * In this case, its reserved space is released from data rsv map
9020 * and will be freed by delayed_ref handler finally.
9021 * So even we call qgroup_free_data(), it won't decrease reserved
9023 * 2) Not written to disk
9024 * This means the reserved space should be freed here. However,
9025 * if a truncate invalidates the page (by clearing PageDirty)
9026 * and the page is accounted for while allocating extent
9027 * in btrfs_check_data_free_space() we let delayed_ref to
9028 * free the entire extent.
9030 if (PageDirty(page
))
9031 btrfs_qgroup_free_data(inode
, NULL
, page_start
, PAGE_SIZE
);
9032 if (!inode_evicting
) {
9033 clear_extent_bit(tree
, page_start
, page_end
,
9034 EXTENT_LOCKED
| EXTENT_DIRTY
|
9035 EXTENT_DELALLOC
| EXTENT_DELALLOC_NEW
|
9036 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 1, 1,
9037 &cached_state
, GFP_NOFS
);
9039 __btrfs_releasepage(page
, GFP_NOFS
);
9042 ClearPageChecked(page
);
9043 if (PagePrivate(page
)) {
9044 ClearPagePrivate(page
);
9045 set_page_private(page
, 0);
9051 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9052 * called from a page fault handler when a page is first dirtied. Hence we must
9053 * be careful to check for EOF conditions here. We set the page up correctly
9054 * for a written page which means we get ENOSPC checking when writing into
9055 * holes and correct delalloc and unwritten extent mapping on filesystems that
9056 * support these features.
9058 * We are not allowed to take the i_mutex here so we have to play games to
9059 * protect against truncate races as the page could now be beyond EOF. Because
9060 * vmtruncate() writes the inode size before removing pages, once we have the
9061 * page lock we can determine safely if the page is beyond EOF. If it is not
9062 * beyond EOF, then the page is guaranteed safe against truncation until we
9065 int btrfs_page_mkwrite(struct vm_fault
*vmf
)
9067 struct page
*page
= vmf
->page
;
9068 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
9069 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9070 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
9071 struct btrfs_ordered_extent
*ordered
;
9072 struct extent_state
*cached_state
= NULL
;
9073 struct extent_changeset
*data_reserved
= NULL
;
9075 unsigned long zero_start
;
9084 reserved_space
= PAGE_SIZE
;
9086 sb_start_pagefault(inode
->i_sb
);
9087 page_start
= page_offset(page
);
9088 page_end
= page_start
+ PAGE_SIZE
- 1;
9092 * Reserving delalloc space after obtaining the page lock can lead to
9093 * deadlock. For example, if a dirty page is locked by this function
9094 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9095 * dirty page write out, then the btrfs_writepage() function could
9096 * end up waiting indefinitely to get a lock on the page currently
9097 * being processed by btrfs_page_mkwrite() function.
9099 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, page_start
,
9102 ret
= file_update_time(vmf
->vma
->vm_file
);
9108 else /* -ENOSPC, -EIO, etc */
9109 ret
= VM_FAULT_SIGBUS
;
9115 ret
= VM_FAULT_NOPAGE
; /* make the VM retry the fault */
9118 size
= i_size_read(inode
);
9120 if ((page
->mapping
!= inode
->i_mapping
) ||
9121 (page_start
>= size
)) {
9122 /* page got truncated out from underneath us */
9125 wait_on_page_writeback(page
);
9127 lock_extent_bits(io_tree
, page_start
, page_end
, &cached_state
);
9128 set_page_extent_mapped(page
);
9131 * we can't set the delalloc bits if there are pending ordered
9132 * extents. Drop our locks and wait for them to finish
9134 ordered
= btrfs_lookup_ordered_range(BTRFS_I(inode
), page_start
,
9137 unlock_extent_cached(io_tree
, page_start
, page_end
,
9138 &cached_state
, GFP_NOFS
);
9140 btrfs_start_ordered_extent(inode
, ordered
, 1);
9141 btrfs_put_ordered_extent(ordered
);
9145 if (page
->index
== ((size
- 1) >> PAGE_SHIFT
)) {
9146 reserved_space
= round_up(size
- page_start
,
9147 fs_info
->sectorsize
);
9148 if (reserved_space
< PAGE_SIZE
) {
9149 end
= page_start
+ reserved_space
- 1;
9150 btrfs_delalloc_release_space(inode
, data_reserved
,
9151 page_start
, PAGE_SIZE
- reserved_space
);
9156 * page_mkwrite gets called when the page is firstly dirtied after it's
9157 * faulted in, but write(2) could also dirty a page and set delalloc
9158 * bits, thus in this case for space account reason, we still need to
9159 * clear any delalloc bits within this page range since we have to
9160 * reserve data&meta space before lock_page() (see above comments).
9162 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
, end
,
9163 EXTENT_DIRTY
| EXTENT_DELALLOC
|
9164 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
,
9165 0, 0, &cached_state
, GFP_NOFS
);
9167 ret
= btrfs_set_extent_delalloc(inode
, page_start
, end
, 0,
9170 unlock_extent_cached(io_tree
, page_start
, page_end
,
9171 &cached_state
, GFP_NOFS
);
9172 ret
= VM_FAULT_SIGBUS
;
9177 /* page is wholly or partially inside EOF */
9178 if (page_start
+ PAGE_SIZE
> size
)
9179 zero_start
= size
& ~PAGE_MASK
;
9181 zero_start
= PAGE_SIZE
;
9183 if (zero_start
!= PAGE_SIZE
) {
9185 memset(kaddr
+ zero_start
, 0, PAGE_SIZE
- zero_start
);
9186 flush_dcache_page(page
);
9189 ClearPageChecked(page
);
9190 set_page_dirty(page
);
9191 SetPageUptodate(page
);
9193 BTRFS_I(inode
)->last_trans
= fs_info
->generation
;
9194 BTRFS_I(inode
)->last_sub_trans
= BTRFS_I(inode
)->root
->log_transid
;
9195 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->root
->last_log_commit
;
9197 unlock_extent_cached(io_tree
, page_start
, page_end
, &cached_state
, GFP_NOFS
);
9201 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
9202 sb_end_pagefault(inode
->i_sb
);
9203 extent_changeset_free(data_reserved
);
9204 return VM_FAULT_LOCKED
;
9208 btrfs_delalloc_release_extents(BTRFS_I(inode
), PAGE_SIZE
);
9209 btrfs_delalloc_release_space(inode
, data_reserved
, page_start
,
9212 sb_end_pagefault(inode
->i_sb
);
9213 extent_changeset_free(data_reserved
);
9217 static int btrfs_truncate(struct inode
*inode
)
9219 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9220 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9221 struct btrfs_block_rsv
*rsv
;
9224 struct btrfs_trans_handle
*trans
;
9225 u64 mask
= fs_info
->sectorsize
- 1;
9226 u64 min_size
= btrfs_calc_trunc_metadata_size(fs_info
, 1);
9228 ret
= btrfs_wait_ordered_range(inode
, inode
->i_size
& (~mask
),
9234 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9235 * 3 things going on here
9237 * 1) We need to reserve space for our orphan item and the space to
9238 * delete our orphan item. Lord knows we don't want to have a dangling
9239 * orphan item because we didn't reserve space to remove it.
9241 * 2) We need to reserve space to update our inode.
9243 * 3) We need to have something to cache all the space that is going to
9244 * be free'd up by the truncate operation, but also have some slack
9245 * space reserved in case it uses space during the truncate (thank you
9246 * very much snapshotting).
9248 * And we need these to all be separate. The fact is we can use a lot of
9249 * space doing the truncate, and we have no earthly idea how much space
9250 * we will use, so we need the truncate reservation to be separate so it
9251 * doesn't end up using space reserved for updating the inode or
9252 * removing the orphan item. We also need to be able to stop the
9253 * transaction and start a new one, which means we need to be able to
9254 * update the inode several times, and we have no idea of knowing how
9255 * many times that will be, so we can't just reserve 1 item for the
9256 * entirety of the operation, so that has to be done separately as well.
9257 * Then there is the orphan item, which does indeed need to be held on
9258 * to for the whole operation, and we need nobody to touch this reserved
9259 * space except the orphan code.
9261 * So that leaves us with
9263 * 1) root->orphan_block_rsv - for the orphan deletion.
9264 * 2) rsv - for the truncate reservation, which we will steal from the
9265 * transaction reservation.
9266 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9267 * updating the inode.
9269 rsv
= btrfs_alloc_block_rsv(fs_info
, BTRFS_BLOCK_RSV_TEMP
);
9272 rsv
->size
= min_size
;
9276 * 1 for the truncate slack space
9277 * 1 for updating the inode.
9279 trans
= btrfs_start_transaction(root
, 2);
9280 if (IS_ERR(trans
)) {
9281 err
= PTR_ERR(trans
);
9285 /* Migrate the slack space for the truncate to our reserve */
9286 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
, rsv
,
9291 * So if we truncate and then write and fsync we normally would just
9292 * write the extents that changed, which is a problem if we need to
9293 * first truncate that entire inode. So set this flag so we write out
9294 * all of the extents in the inode to the sync log so we're completely
9297 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &BTRFS_I(inode
)->runtime_flags
);
9298 trans
->block_rsv
= rsv
;
9301 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
9303 BTRFS_EXTENT_DATA_KEY
);
9304 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9305 if (ret
!= -ENOSPC
&& ret
!= -EAGAIN
) {
9310 ret
= btrfs_update_inode(trans
, root
, inode
);
9316 btrfs_end_transaction(trans
);
9317 btrfs_btree_balance_dirty(fs_info
);
9319 trans
= btrfs_start_transaction(root
, 2);
9320 if (IS_ERR(trans
)) {
9321 ret
= err
= PTR_ERR(trans
);
9326 btrfs_block_rsv_release(fs_info
, rsv
, -1);
9327 ret
= btrfs_block_rsv_migrate(&fs_info
->trans_block_rsv
,
9329 BUG_ON(ret
); /* shouldn't happen */
9330 trans
->block_rsv
= rsv
;
9334 * We can't call btrfs_truncate_block inside a trans handle as we could
9335 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9336 * we've truncated everything except the last little bit, and can do
9337 * btrfs_truncate_block and then update the disk_i_size.
9339 if (ret
== NEED_TRUNCATE_BLOCK
) {
9340 btrfs_end_transaction(trans
);
9341 btrfs_btree_balance_dirty(fs_info
);
9343 ret
= btrfs_truncate_block(inode
, inode
->i_size
, 0, 0);
9346 trans
= btrfs_start_transaction(root
, 1);
9347 if (IS_ERR(trans
)) {
9348 ret
= PTR_ERR(trans
);
9351 btrfs_ordered_update_i_size(inode
, inode
->i_size
, NULL
);
9354 if (ret
== 0 && inode
->i_nlink
> 0) {
9355 trans
->block_rsv
= root
->orphan_block_rsv
;
9356 ret
= btrfs_orphan_del(trans
, BTRFS_I(inode
));
9362 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
9363 ret
= btrfs_update_inode(trans
, root
, inode
);
9367 ret
= btrfs_end_transaction(trans
);
9368 btrfs_btree_balance_dirty(fs_info
);
9371 btrfs_free_block_rsv(fs_info
, rsv
);
9380 * create a new subvolume directory/inode (helper for the ioctl).
9382 int btrfs_create_subvol_root(struct btrfs_trans_handle
*trans
,
9383 struct btrfs_root
*new_root
,
9384 struct btrfs_root
*parent_root
,
9387 struct inode
*inode
;
9391 inode
= btrfs_new_inode(trans
, new_root
, NULL
, "..", 2,
9392 new_dirid
, new_dirid
,
9393 S_IFDIR
| (~current_umask() & S_IRWXUGO
),
9396 return PTR_ERR(inode
);
9397 inode
->i_op
= &btrfs_dir_inode_operations
;
9398 inode
->i_fop
= &btrfs_dir_file_operations
;
9400 set_nlink(inode
, 1);
9401 btrfs_i_size_write(BTRFS_I(inode
), 0);
9402 unlock_new_inode(inode
);
9404 err
= btrfs_subvol_inherit_props(trans
, new_root
, parent_root
);
9406 btrfs_err(new_root
->fs_info
,
9407 "error inheriting subvolume %llu properties: %d",
9408 new_root
->root_key
.objectid
, err
);
9410 err
= btrfs_update_inode(trans
, new_root
, inode
);
9416 struct inode
*btrfs_alloc_inode(struct super_block
*sb
)
9418 struct btrfs_fs_info
*fs_info
= btrfs_sb(sb
);
9419 struct btrfs_inode
*ei
;
9420 struct inode
*inode
;
9422 ei
= kmem_cache_alloc(btrfs_inode_cachep
, GFP_NOFS
);
9429 ei
->last_sub_trans
= 0;
9430 ei
->logged_trans
= 0;
9431 ei
->delalloc_bytes
= 0;
9432 ei
->new_delalloc_bytes
= 0;
9433 ei
->defrag_bytes
= 0;
9434 ei
->disk_i_size
= 0;
9437 ei
->index_cnt
= (u64
)-1;
9439 ei
->last_unlink_trans
= 0;
9440 ei
->last_log_commit
= 0;
9441 ei
->delayed_iput_count
= 0;
9443 spin_lock_init(&ei
->lock
);
9444 ei
->outstanding_extents
= 0;
9445 if (sb
->s_magic
!= BTRFS_TEST_MAGIC
)
9446 btrfs_init_metadata_block_rsv(fs_info
, &ei
->block_rsv
,
9447 BTRFS_BLOCK_RSV_DELALLOC
);
9448 ei
->runtime_flags
= 0;
9449 ei
->prop_compress
= BTRFS_COMPRESS_NONE
;
9450 ei
->defrag_compress
= BTRFS_COMPRESS_NONE
;
9452 ei
->delayed_node
= NULL
;
9454 ei
->i_otime
.tv_sec
= 0;
9455 ei
->i_otime
.tv_nsec
= 0;
9457 inode
= &ei
->vfs_inode
;
9458 extent_map_tree_init(&ei
->extent_tree
);
9459 extent_io_tree_init(&ei
->io_tree
, inode
);
9460 extent_io_tree_init(&ei
->io_failure_tree
, inode
);
9461 ei
->io_tree
.track_uptodate
= 1;
9462 ei
->io_failure_tree
.track_uptodate
= 1;
9463 atomic_set(&ei
->sync_writers
, 0);
9464 mutex_init(&ei
->log_mutex
);
9465 mutex_init(&ei
->delalloc_mutex
);
9466 btrfs_ordered_inode_tree_init(&ei
->ordered_tree
);
9467 INIT_LIST_HEAD(&ei
->delalloc_inodes
);
9468 INIT_LIST_HEAD(&ei
->delayed_iput
);
9469 RB_CLEAR_NODE(&ei
->rb_node
);
9470 init_rwsem(&ei
->dio_sem
);
9475 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9476 void btrfs_test_destroy_inode(struct inode
*inode
)
9478 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9479 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9483 static void btrfs_i_callback(struct rcu_head
*head
)
9485 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
9486 kmem_cache_free(btrfs_inode_cachep
, BTRFS_I(inode
));
9489 void btrfs_destroy_inode(struct inode
*inode
)
9491 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
9492 struct btrfs_ordered_extent
*ordered
;
9493 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9495 WARN_ON(!hlist_empty(&inode
->i_dentry
));
9496 WARN_ON(inode
->i_data
.nrpages
);
9497 WARN_ON(BTRFS_I(inode
)->block_rsv
.reserved
);
9498 WARN_ON(BTRFS_I(inode
)->block_rsv
.size
);
9499 WARN_ON(BTRFS_I(inode
)->outstanding_extents
);
9500 WARN_ON(BTRFS_I(inode
)->delalloc_bytes
);
9501 WARN_ON(BTRFS_I(inode
)->new_delalloc_bytes
);
9502 WARN_ON(BTRFS_I(inode
)->csum_bytes
);
9503 WARN_ON(BTRFS_I(inode
)->defrag_bytes
);
9506 * This can happen where we create an inode, but somebody else also
9507 * created the same inode and we need to destroy the one we already
9513 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM
,
9514 &BTRFS_I(inode
)->runtime_flags
)) {
9515 btrfs_info(fs_info
, "inode %llu still on the orphan list",
9516 btrfs_ino(BTRFS_I(inode
)));
9517 atomic_dec(&root
->orphan_inodes
);
9521 ordered
= btrfs_lookup_first_ordered_extent(inode
, (u64
)-1);
9526 "found ordered extent %llu %llu on inode cleanup",
9527 ordered
->file_offset
, ordered
->len
);
9528 btrfs_remove_ordered_extent(inode
, ordered
);
9529 btrfs_put_ordered_extent(ordered
);
9530 btrfs_put_ordered_extent(ordered
);
9533 btrfs_qgroup_check_reserved_leak(inode
);
9534 inode_tree_del(inode
);
9535 btrfs_drop_extent_cache(BTRFS_I(inode
), 0, (u64
)-1, 0);
9537 call_rcu(&inode
->i_rcu
, btrfs_i_callback
);
9540 int btrfs_drop_inode(struct inode
*inode
)
9542 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
9547 /* the snap/subvol tree is on deleting */
9548 if (btrfs_root_refs(&root
->root_item
) == 0)
9551 return generic_drop_inode(inode
);
9554 static void init_once(void *foo
)
9556 struct btrfs_inode
*ei
= (struct btrfs_inode
*) foo
;
9558 inode_init_once(&ei
->vfs_inode
);
9561 void btrfs_destroy_cachep(void)
9564 * Make sure all delayed rcu free inodes are flushed before we
9568 kmem_cache_destroy(btrfs_inode_cachep
);
9569 kmem_cache_destroy(btrfs_trans_handle_cachep
);
9570 kmem_cache_destroy(btrfs_path_cachep
);
9571 kmem_cache_destroy(btrfs_free_space_cachep
);
9574 int btrfs_init_cachep(void)
9576 btrfs_inode_cachep
= kmem_cache_create("btrfs_inode",
9577 sizeof(struct btrfs_inode
), 0,
9578 SLAB_RECLAIM_ACCOUNT
| SLAB_MEM_SPREAD
| SLAB_ACCOUNT
,
9580 if (!btrfs_inode_cachep
)
9583 btrfs_trans_handle_cachep
= kmem_cache_create("btrfs_trans_handle",
9584 sizeof(struct btrfs_trans_handle
), 0,
9585 SLAB_TEMPORARY
| SLAB_MEM_SPREAD
, NULL
);
9586 if (!btrfs_trans_handle_cachep
)
9589 btrfs_path_cachep
= kmem_cache_create("btrfs_path",
9590 sizeof(struct btrfs_path
), 0,
9591 SLAB_MEM_SPREAD
, NULL
);
9592 if (!btrfs_path_cachep
)
9595 btrfs_free_space_cachep
= kmem_cache_create("btrfs_free_space",
9596 sizeof(struct btrfs_free_space
), 0,
9597 SLAB_MEM_SPREAD
, NULL
);
9598 if (!btrfs_free_space_cachep
)
9603 btrfs_destroy_cachep();
9607 static int btrfs_getattr(const struct path
*path
, struct kstat
*stat
,
9608 u32 request_mask
, unsigned int flags
)
9611 struct inode
*inode
= d_inode(path
->dentry
);
9612 u32 blocksize
= inode
->i_sb
->s_blocksize
;
9613 u32 bi_flags
= BTRFS_I(inode
)->flags
;
9615 stat
->result_mask
|= STATX_BTIME
;
9616 stat
->btime
.tv_sec
= BTRFS_I(inode
)->i_otime
.tv_sec
;
9617 stat
->btime
.tv_nsec
= BTRFS_I(inode
)->i_otime
.tv_nsec
;
9618 if (bi_flags
& BTRFS_INODE_APPEND
)
9619 stat
->attributes
|= STATX_ATTR_APPEND
;
9620 if (bi_flags
& BTRFS_INODE_COMPRESS
)
9621 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
9622 if (bi_flags
& BTRFS_INODE_IMMUTABLE
)
9623 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
9624 if (bi_flags
& BTRFS_INODE_NODUMP
)
9625 stat
->attributes
|= STATX_ATTR_NODUMP
;
9627 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
9628 STATX_ATTR_COMPRESSED
|
9629 STATX_ATTR_IMMUTABLE
|
9632 generic_fillattr(inode
, stat
);
9633 stat
->dev
= BTRFS_I(inode
)->root
->anon_dev
;
9635 spin_lock(&BTRFS_I(inode
)->lock
);
9636 delalloc_bytes
= BTRFS_I(inode
)->new_delalloc_bytes
;
9637 spin_unlock(&BTRFS_I(inode
)->lock
);
9638 stat
->blocks
= (ALIGN(inode_get_bytes(inode
), blocksize
) +
9639 ALIGN(delalloc_bytes
, blocksize
)) >> 9;
9643 static int btrfs_rename_exchange(struct inode
*old_dir
,
9644 struct dentry
*old_dentry
,
9645 struct inode
*new_dir
,
9646 struct dentry
*new_dentry
)
9648 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9649 struct btrfs_trans_handle
*trans
;
9650 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9651 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9652 struct inode
*new_inode
= new_dentry
->d_inode
;
9653 struct inode
*old_inode
= old_dentry
->d_inode
;
9654 struct timespec ctime
= current_time(old_inode
);
9655 struct dentry
*parent
;
9656 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9657 u64 new_ino
= btrfs_ino(BTRFS_I(new_inode
));
9662 bool root_log_pinned
= false;
9663 bool dest_log_pinned
= false;
9665 /* we only allow rename subvolume link between subvolumes */
9666 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9669 /* close the race window with snapshot create/destroy ioctl */
9670 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9671 down_read(&fs_info
->subvol_sem
);
9672 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9673 down_read(&fs_info
->subvol_sem
);
9676 * We want to reserve the absolute worst case amount of items. So if
9677 * both inodes are subvols and we need to unlink them then that would
9678 * require 4 item modifications, but if they are both normal inodes it
9679 * would require 5 item modifications, so we'll assume their normal
9680 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9681 * should cover the worst case number of items we'll modify.
9683 trans
= btrfs_start_transaction(root
, 12);
9684 if (IS_ERR(trans
)) {
9685 ret
= PTR_ERR(trans
);
9690 * We need to find a free sequence number both in the source and
9691 * in the destination directory for the exchange.
9693 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &old_idx
);
9696 ret
= btrfs_set_inode_index(BTRFS_I(old_dir
), &new_idx
);
9700 BTRFS_I(old_inode
)->dir_index
= 0ULL;
9701 BTRFS_I(new_inode
)->dir_index
= 0ULL;
9703 /* Reference for the source. */
9704 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9705 /* force full log commit if subvolume involved. */
9706 btrfs_set_log_full_commit(fs_info
, trans
);
9708 btrfs_pin_log_trans(root
);
9709 root_log_pinned
= true;
9710 ret
= btrfs_insert_inode_ref(trans
, dest
,
9711 new_dentry
->d_name
.name
,
9712 new_dentry
->d_name
.len
,
9714 btrfs_ino(BTRFS_I(new_dir
)),
9720 /* And now for the dest. */
9721 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9722 /* force full log commit if subvolume involved. */
9723 btrfs_set_log_full_commit(fs_info
, trans
);
9725 btrfs_pin_log_trans(dest
);
9726 dest_log_pinned
= true;
9727 ret
= btrfs_insert_inode_ref(trans
, root
,
9728 old_dentry
->d_name
.name
,
9729 old_dentry
->d_name
.len
,
9731 btrfs_ino(BTRFS_I(old_dir
)),
9737 /* Update inode version and ctime/mtime. */
9738 inode_inc_iversion(old_dir
);
9739 inode_inc_iversion(new_dir
);
9740 inode_inc_iversion(old_inode
);
9741 inode_inc_iversion(new_inode
);
9742 old_dir
->i_ctime
= old_dir
->i_mtime
= ctime
;
9743 new_dir
->i_ctime
= new_dir
->i_mtime
= ctime
;
9744 old_inode
->i_ctime
= ctime
;
9745 new_inode
->i_ctime
= ctime
;
9747 if (old_dentry
->d_parent
!= new_dentry
->d_parent
) {
9748 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
9749 BTRFS_I(old_inode
), 1);
9750 btrfs_record_unlink_dir(trans
, BTRFS_I(new_dir
),
9751 BTRFS_I(new_inode
), 1);
9754 /* src is a subvolume */
9755 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9756 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
9757 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
,
9759 old_dentry
->d_name
.name
,
9760 old_dentry
->d_name
.len
);
9761 } else { /* src is an inode */
9762 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
9763 BTRFS_I(old_dentry
->d_inode
),
9764 old_dentry
->d_name
.name
,
9765 old_dentry
->d_name
.len
);
9767 ret
= btrfs_update_inode(trans
, root
, old_inode
);
9770 btrfs_abort_transaction(trans
, ret
);
9774 /* dest is a subvolume */
9775 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
) {
9776 root_objectid
= BTRFS_I(new_inode
)->root
->root_key
.objectid
;
9777 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
9779 new_dentry
->d_name
.name
,
9780 new_dentry
->d_name
.len
);
9781 } else { /* dest is an inode */
9782 ret
= __btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
9783 BTRFS_I(new_dentry
->d_inode
),
9784 new_dentry
->d_name
.name
,
9785 new_dentry
->d_name
.len
);
9787 ret
= btrfs_update_inode(trans
, dest
, new_inode
);
9790 btrfs_abort_transaction(trans
, ret
);
9794 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
9795 new_dentry
->d_name
.name
,
9796 new_dentry
->d_name
.len
, 0, old_idx
);
9798 btrfs_abort_transaction(trans
, ret
);
9802 ret
= btrfs_add_link(trans
, BTRFS_I(old_dir
), BTRFS_I(new_inode
),
9803 old_dentry
->d_name
.name
,
9804 old_dentry
->d_name
.len
, 0, new_idx
);
9806 btrfs_abort_transaction(trans
, ret
);
9810 if (old_inode
->i_nlink
== 1)
9811 BTRFS_I(old_inode
)->dir_index
= old_idx
;
9812 if (new_inode
->i_nlink
== 1)
9813 BTRFS_I(new_inode
)->dir_index
= new_idx
;
9815 if (root_log_pinned
) {
9816 parent
= new_dentry
->d_parent
;
9817 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
9819 btrfs_end_log_trans(root
);
9820 root_log_pinned
= false;
9822 if (dest_log_pinned
) {
9823 parent
= old_dentry
->d_parent
;
9824 btrfs_log_new_name(trans
, BTRFS_I(new_inode
), BTRFS_I(new_dir
),
9826 btrfs_end_log_trans(dest
);
9827 dest_log_pinned
= false;
9831 * If we have pinned a log and an error happened, we unpin tasks
9832 * trying to sync the log and force them to fallback to a transaction
9833 * commit if the log currently contains any of the inodes involved in
9834 * this rename operation (to ensure we do not persist a log with an
9835 * inconsistent state for any of these inodes or leading to any
9836 * inconsistencies when replayed). If the transaction was aborted, the
9837 * abortion reason is propagated to userspace when attempting to commit
9838 * the transaction. If the log does not contain any of these inodes, we
9839 * allow the tasks to sync it.
9841 if (ret
&& (root_log_pinned
|| dest_log_pinned
)) {
9842 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
9843 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
9844 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
9846 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
9847 btrfs_set_log_full_commit(fs_info
, trans
);
9849 if (root_log_pinned
) {
9850 btrfs_end_log_trans(root
);
9851 root_log_pinned
= false;
9853 if (dest_log_pinned
) {
9854 btrfs_end_log_trans(dest
);
9855 dest_log_pinned
= false;
9858 ret
= btrfs_end_transaction(trans
);
9860 if (new_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9861 up_read(&fs_info
->subvol_sem
);
9862 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9863 up_read(&fs_info
->subvol_sem
);
9868 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle
*trans
,
9869 struct btrfs_root
*root
,
9871 struct dentry
*dentry
)
9874 struct inode
*inode
;
9878 ret
= btrfs_find_free_ino(root
, &objectid
);
9882 inode
= btrfs_new_inode(trans
, root
, dir
,
9883 dentry
->d_name
.name
,
9885 btrfs_ino(BTRFS_I(dir
)),
9887 S_IFCHR
| WHITEOUT_MODE
,
9890 if (IS_ERR(inode
)) {
9891 ret
= PTR_ERR(inode
);
9895 inode
->i_op
= &btrfs_special_inode_operations
;
9896 init_special_inode(inode
, inode
->i_mode
,
9899 ret
= btrfs_init_inode_security(trans
, inode
, dir
,
9904 ret
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
9905 BTRFS_I(inode
), 0, index
);
9909 ret
= btrfs_update_inode(trans
, root
, inode
);
9911 unlock_new_inode(inode
);
9913 inode_dec_link_count(inode
);
9919 static int btrfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
9920 struct inode
*new_dir
, struct dentry
*new_dentry
,
9923 struct btrfs_fs_info
*fs_info
= btrfs_sb(old_dir
->i_sb
);
9924 struct btrfs_trans_handle
*trans
;
9925 unsigned int trans_num_items
;
9926 struct btrfs_root
*root
= BTRFS_I(old_dir
)->root
;
9927 struct btrfs_root
*dest
= BTRFS_I(new_dir
)->root
;
9928 struct inode
*new_inode
= d_inode(new_dentry
);
9929 struct inode
*old_inode
= d_inode(old_dentry
);
9933 u64 old_ino
= btrfs_ino(BTRFS_I(old_inode
));
9934 bool log_pinned
= false;
9936 if (btrfs_ino(BTRFS_I(new_dir
)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)
9939 /* we only allow rename subvolume link between subvolumes */
9940 if (old_ino
!= BTRFS_FIRST_FREE_OBJECTID
&& root
!= dest
)
9943 if (old_ino
== BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
||
9944 (new_inode
&& btrfs_ino(BTRFS_I(new_inode
)) == BTRFS_FIRST_FREE_OBJECTID
))
9947 if (S_ISDIR(old_inode
->i_mode
) && new_inode
&&
9948 new_inode
->i_size
> BTRFS_EMPTY_DIR_SIZE
)
9952 /* check for collisions, even if the name isn't there */
9953 ret
= btrfs_check_dir_item_collision(dest
, new_dir
->i_ino
,
9954 new_dentry
->d_name
.name
,
9955 new_dentry
->d_name
.len
);
9958 if (ret
== -EEXIST
) {
9960 * eexist without a new_inode */
9961 if (WARN_ON(!new_inode
)) {
9965 /* maybe -EOVERFLOW */
9972 * we're using rename to replace one file with another. Start IO on it
9973 * now so we don't add too much work to the end of the transaction
9975 if (new_inode
&& S_ISREG(old_inode
->i_mode
) && new_inode
->i_size
)
9976 filemap_flush(old_inode
->i_mapping
);
9978 /* close the racy window with snapshot create/destroy ioctl */
9979 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
9980 down_read(&fs_info
->subvol_sem
);
9982 * We want to reserve the absolute worst case amount of items. So if
9983 * both inodes are subvols and we need to unlink them then that would
9984 * require 4 item modifications, but if they are both normal inodes it
9985 * would require 5 item modifications, so we'll assume they are normal
9986 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9987 * should cover the worst case number of items we'll modify.
9988 * If our rename has the whiteout flag, we need more 5 units for the
9989 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9990 * when selinux is enabled).
9992 trans_num_items
= 11;
9993 if (flags
& RENAME_WHITEOUT
)
9994 trans_num_items
+= 5;
9995 trans
= btrfs_start_transaction(root
, trans_num_items
);
9996 if (IS_ERR(trans
)) {
9997 ret
= PTR_ERR(trans
);
10002 btrfs_record_root_in_trans(trans
, dest
);
10004 ret
= btrfs_set_inode_index(BTRFS_I(new_dir
), &index
);
10008 BTRFS_I(old_inode
)->dir_index
= 0ULL;
10009 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
10010 /* force full log commit if subvolume involved. */
10011 btrfs_set_log_full_commit(fs_info
, trans
);
10013 btrfs_pin_log_trans(root
);
10015 ret
= btrfs_insert_inode_ref(trans
, dest
,
10016 new_dentry
->d_name
.name
,
10017 new_dentry
->d_name
.len
,
10019 btrfs_ino(BTRFS_I(new_dir
)), index
);
10024 inode_inc_iversion(old_dir
);
10025 inode_inc_iversion(new_dir
);
10026 inode_inc_iversion(old_inode
);
10027 old_dir
->i_ctime
= old_dir
->i_mtime
=
10028 new_dir
->i_ctime
= new_dir
->i_mtime
=
10029 old_inode
->i_ctime
= current_time(old_dir
);
10031 if (old_dentry
->d_parent
!= new_dentry
->d_parent
)
10032 btrfs_record_unlink_dir(trans
, BTRFS_I(old_dir
),
10033 BTRFS_I(old_inode
), 1);
10035 if (unlikely(old_ino
== BTRFS_FIRST_FREE_OBJECTID
)) {
10036 root_objectid
= BTRFS_I(old_inode
)->root
->root_key
.objectid
;
10037 ret
= btrfs_unlink_subvol(trans
, root
, old_dir
, root_objectid
,
10038 old_dentry
->d_name
.name
,
10039 old_dentry
->d_name
.len
);
10041 ret
= __btrfs_unlink_inode(trans
, root
, BTRFS_I(old_dir
),
10042 BTRFS_I(d_inode(old_dentry
)),
10043 old_dentry
->d_name
.name
,
10044 old_dentry
->d_name
.len
);
10046 ret
= btrfs_update_inode(trans
, root
, old_inode
);
10049 btrfs_abort_transaction(trans
, ret
);
10054 inode_inc_iversion(new_inode
);
10055 new_inode
->i_ctime
= current_time(new_inode
);
10056 if (unlikely(btrfs_ino(BTRFS_I(new_inode
)) ==
10057 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID
)) {
10058 root_objectid
= BTRFS_I(new_inode
)->location
.objectid
;
10059 ret
= btrfs_unlink_subvol(trans
, dest
, new_dir
,
10061 new_dentry
->d_name
.name
,
10062 new_dentry
->d_name
.len
);
10063 BUG_ON(new_inode
->i_nlink
== 0);
10065 ret
= btrfs_unlink_inode(trans
, dest
, BTRFS_I(new_dir
),
10066 BTRFS_I(d_inode(new_dentry
)),
10067 new_dentry
->d_name
.name
,
10068 new_dentry
->d_name
.len
);
10070 if (!ret
&& new_inode
->i_nlink
== 0)
10071 ret
= btrfs_orphan_add(trans
,
10072 BTRFS_I(d_inode(new_dentry
)));
10074 btrfs_abort_transaction(trans
, ret
);
10079 ret
= btrfs_add_link(trans
, BTRFS_I(new_dir
), BTRFS_I(old_inode
),
10080 new_dentry
->d_name
.name
,
10081 new_dentry
->d_name
.len
, 0, index
);
10083 btrfs_abort_transaction(trans
, ret
);
10087 if (old_inode
->i_nlink
== 1)
10088 BTRFS_I(old_inode
)->dir_index
= index
;
10091 struct dentry
*parent
= new_dentry
->d_parent
;
10093 btrfs_log_new_name(trans
, BTRFS_I(old_inode
), BTRFS_I(old_dir
),
10095 btrfs_end_log_trans(root
);
10096 log_pinned
= false;
10099 if (flags
& RENAME_WHITEOUT
) {
10100 ret
= btrfs_whiteout_for_rename(trans
, root
, old_dir
,
10104 btrfs_abort_transaction(trans
, ret
);
10110 * If we have pinned the log and an error happened, we unpin tasks
10111 * trying to sync the log and force them to fallback to a transaction
10112 * commit if the log currently contains any of the inodes involved in
10113 * this rename operation (to ensure we do not persist a log with an
10114 * inconsistent state for any of these inodes or leading to any
10115 * inconsistencies when replayed). If the transaction was aborted, the
10116 * abortion reason is propagated to userspace when attempting to commit
10117 * the transaction. If the log does not contain any of these inodes, we
10118 * allow the tasks to sync it.
10120 if (ret
&& log_pinned
) {
10121 if (btrfs_inode_in_log(BTRFS_I(old_dir
), fs_info
->generation
) ||
10122 btrfs_inode_in_log(BTRFS_I(new_dir
), fs_info
->generation
) ||
10123 btrfs_inode_in_log(BTRFS_I(old_inode
), fs_info
->generation
) ||
10125 btrfs_inode_in_log(BTRFS_I(new_inode
), fs_info
->generation
)))
10126 btrfs_set_log_full_commit(fs_info
, trans
);
10128 btrfs_end_log_trans(root
);
10129 log_pinned
= false;
10131 btrfs_end_transaction(trans
);
10133 if (old_ino
== BTRFS_FIRST_FREE_OBJECTID
)
10134 up_read(&fs_info
->subvol_sem
);
10139 static int btrfs_rename2(struct inode
*old_dir
, struct dentry
*old_dentry
,
10140 struct inode
*new_dir
, struct dentry
*new_dentry
,
10141 unsigned int flags
)
10143 if (flags
& ~(RENAME_NOREPLACE
| RENAME_EXCHANGE
| RENAME_WHITEOUT
))
10146 if (flags
& RENAME_EXCHANGE
)
10147 return btrfs_rename_exchange(old_dir
, old_dentry
, new_dir
,
10150 return btrfs_rename(old_dir
, old_dentry
, new_dir
, new_dentry
, flags
);
10153 static void btrfs_run_delalloc_work(struct btrfs_work
*work
)
10155 struct btrfs_delalloc_work
*delalloc_work
;
10156 struct inode
*inode
;
10158 delalloc_work
= container_of(work
, struct btrfs_delalloc_work
,
10160 inode
= delalloc_work
->inode
;
10161 filemap_flush(inode
->i_mapping
);
10162 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
10163 &BTRFS_I(inode
)->runtime_flags
))
10164 filemap_flush(inode
->i_mapping
);
10166 if (delalloc_work
->delay_iput
)
10167 btrfs_add_delayed_iput(inode
);
10170 complete(&delalloc_work
->completion
);
10173 struct btrfs_delalloc_work
*btrfs_alloc_delalloc_work(struct inode
*inode
,
10176 struct btrfs_delalloc_work
*work
;
10178 work
= kmalloc(sizeof(*work
), GFP_NOFS
);
10182 init_completion(&work
->completion
);
10183 INIT_LIST_HEAD(&work
->list
);
10184 work
->inode
= inode
;
10185 work
->delay_iput
= delay_iput
;
10186 WARN_ON_ONCE(!inode
);
10187 btrfs_init_work(&work
->work
, btrfs_flush_delalloc_helper
,
10188 btrfs_run_delalloc_work
, NULL
, NULL
);
10193 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work
*work
)
10195 wait_for_completion(&work
->completion
);
10200 * some fairly slow code that needs optimization. This walks the list
10201 * of all the inodes with pending delalloc and forces them to disk.
10203 static int __start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
,
10206 struct btrfs_inode
*binode
;
10207 struct inode
*inode
;
10208 struct btrfs_delalloc_work
*work
, *next
;
10209 struct list_head works
;
10210 struct list_head splice
;
10213 INIT_LIST_HEAD(&works
);
10214 INIT_LIST_HEAD(&splice
);
10216 mutex_lock(&root
->delalloc_mutex
);
10217 spin_lock(&root
->delalloc_lock
);
10218 list_splice_init(&root
->delalloc_inodes
, &splice
);
10219 while (!list_empty(&splice
)) {
10220 binode
= list_entry(splice
.next
, struct btrfs_inode
,
10223 list_move_tail(&binode
->delalloc_inodes
,
10224 &root
->delalloc_inodes
);
10225 inode
= igrab(&binode
->vfs_inode
);
10227 cond_resched_lock(&root
->delalloc_lock
);
10230 spin_unlock(&root
->delalloc_lock
);
10232 work
= btrfs_alloc_delalloc_work(inode
, delay_iput
);
10235 btrfs_add_delayed_iput(inode
);
10241 list_add_tail(&work
->list
, &works
);
10242 btrfs_queue_work(root
->fs_info
->flush_workers
,
10245 if (nr
!= -1 && ret
>= nr
)
10248 spin_lock(&root
->delalloc_lock
);
10250 spin_unlock(&root
->delalloc_lock
);
10253 list_for_each_entry_safe(work
, next
, &works
, list
) {
10254 list_del_init(&work
->list
);
10255 btrfs_wait_and_free_delalloc_work(work
);
10258 if (!list_empty_careful(&splice
)) {
10259 spin_lock(&root
->delalloc_lock
);
10260 list_splice_tail(&splice
, &root
->delalloc_inodes
);
10261 spin_unlock(&root
->delalloc_lock
);
10263 mutex_unlock(&root
->delalloc_mutex
);
10267 int btrfs_start_delalloc_inodes(struct btrfs_root
*root
, int delay_iput
)
10269 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
10272 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10275 ret
= __start_delalloc_inodes(root
, delay_iput
, -1);
10281 int btrfs_start_delalloc_roots(struct btrfs_fs_info
*fs_info
, int delay_iput
,
10284 struct btrfs_root
*root
;
10285 struct list_head splice
;
10288 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
))
10291 INIT_LIST_HEAD(&splice
);
10293 mutex_lock(&fs_info
->delalloc_root_mutex
);
10294 spin_lock(&fs_info
->delalloc_root_lock
);
10295 list_splice_init(&fs_info
->delalloc_roots
, &splice
);
10296 while (!list_empty(&splice
) && nr
) {
10297 root
= list_first_entry(&splice
, struct btrfs_root
,
10299 root
= btrfs_grab_fs_root(root
);
10301 list_move_tail(&root
->delalloc_root
,
10302 &fs_info
->delalloc_roots
);
10303 spin_unlock(&fs_info
->delalloc_root_lock
);
10305 ret
= __start_delalloc_inodes(root
, delay_iput
, nr
);
10306 btrfs_put_fs_root(root
);
10314 spin_lock(&fs_info
->delalloc_root_lock
);
10316 spin_unlock(&fs_info
->delalloc_root_lock
);
10320 if (!list_empty_careful(&splice
)) {
10321 spin_lock(&fs_info
->delalloc_root_lock
);
10322 list_splice_tail(&splice
, &fs_info
->delalloc_roots
);
10323 spin_unlock(&fs_info
->delalloc_root_lock
);
10325 mutex_unlock(&fs_info
->delalloc_root_mutex
);
10329 static int btrfs_symlink(struct inode
*dir
, struct dentry
*dentry
,
10330 const char *symname
)
10332 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10333 struct btrfs_trans_handle
*trans
;
10334 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10335 struct btrfs_path
*path
;
10336 struct btrfs_key key
;
10337 struct inode
*inode
= NULL
;
10339 int drop_inode
= 0;
10345 struct btrfs_file_extent_item
*ei
;
10346 struct extent_buffer
*leaf
;
10348 name_len
= strlen(symname
);
10349 if (name_len
> BTRFS_MAX_INLINE_DATA_SIZE(fs_info
))
10350 return -ENAMETOOLONG
;
10353 * 2 items for inode item and ref
10354 * 2 items for dir items
10355 * 1 item for updating parent inode item
10356 * 1 item for the inline extent item
10357 * 1 item for xattr if selinux is on
10359 trans
= btrfs_start_transaction(root
, 7);
10361 return PTR_ERR(trans
);
10363 err
= btrfs_find_free_ino(root
, &objectid
);
10367 inode
= btrfs_new_inode(trans
, root
, dir
, dentry
->d_name
.name
,
10368 dentry
->d_name
.len
, btrfs_ino(BTRFS_I(dir
)),
10369 objectid
, S_IFLNK
|S_IRWXUGO
, &index
);
10370 if (IS_ERR(inode
)) {
10371 err
= PTR_ERR(inode
);
10376 * If the active LSM wants to access the inode during
10377 * d_instantiate it needs these. Smack checks to see
10378 * if the filesystem supports xattrs by looking at the
10381 inode
->i_fop
= &btrfs_file_operations
;
10382 inode
->i_op
= &btrfs_file_inode_operations
;
10383 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10384 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10386 err
= btrfs_init_inode_security(trans
, inode
, dir
, &dentry
->d_name
);
10388 goto out_unlock_inode
;
10390 path
= btrfs_alloc_path();
10393 goto out_unlock_inode
;
10395 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
10397 key
.type
= BTRFS_EXTENT_DATA_KEY
;
10398 datasize
= btrfs_file_extent_calc_inline_size(name_len
);
10399 err
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
10402 btrfs_free_path(path
);
10403 goto out_unlock_inode
;
10405 leaf
= path
->nodes
[0];
10406 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
10407 struct btrfs_file_extent_item
);
10408 btrfs_set_file_extent_generation(leaf
, ei
, trans
->transid
);
10409 btrfs_set_file_extent_type(leaf
, ei
,
10410 BTRFS_FILE_EXTENT_INLINE
);
10411 btrfs_set_file_extent_encryption(leaf
, ei
, 0);
10412 btrfs_set_file_extent_compression(leaf
, ei
, 0);
10413 btrfs_set_file_extent_other_encoding(leaf
, ei
, 0);
10414 btrfs_set_file_extent_ram_bytes(leaf
, ei
, name_len
);
10416 ptr
= btrfs_file_extent_inline_start(ei
);
10417 write_extent_buffer(leaf
, symname
, ptr
, name_len
);
10418 btrfs_mark_buffer_dirty(leaf
);
10419 btrfs_free_path(path
);
10421 inode
->i_op
= &btrfs_symlink_inode_operations
;
10422 inode_nohighmem(inode
);
10423 inode
->i_mapping
->a_ops
= &btrfs_symlink_aops
;
10424 inode_set_bytes(inode
, name_len
);
10425 btrfs_i_size_write(BTRFS_I(inode
), name_len
);
10426 err
= btrfs_update_inode(trans
, root
, inode
);
10428 * Last step, add directory indexes for our symlink inode. This is the
10429 * last step to avoid extra cleanup of these indexes if an error happens
10433 err
= btrfs_add_nondir(trans
, BTRFS_I(dir
), dentry
,
10434 BTRFS_I(inode
), 0, index
);
10437 goto out_unlock_inode
;
10440 unlock_new_inode(inode
);
10441 d_instantiate(dentry
, inode
);
10444 btrfs_end_transaction(trans
);
10446 inode_dec_link_count(inode
);
10449 btrfs_btree_balance_dirty(fs_info
);
10454 unlock_new_inode(inode
);
10458 static int __btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10459 u64 start
, u64 num_bytes
, u64 min_size
,
10460 loff_t actual_len
, u64
*alloc_hint
,
10461 struct btrfs_trans_handle
*trans
)
10463 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
10464 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
10465 struct extent_map
*em
;
10466 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10467 struct btrfs_key ins
;
10468 u64 cur_offset
= start
;
10471 u64 last_alloc
= (u64
)-1;
10473 bool own_trans
= true;
10474 u64 end
= start
+ num_bytes
- 1;
10478 while (num_bytes
> 0) {
10480 trans
= btrfs_start_transaction(root
, 3);
10481 if (IS_ERR(trans
)) {
10482 ret
= PTR_ERR(trans
);
10487 cur_bytes
= min_t(u64
, num_bytes
, SZ_256M
);
10488 cur_bytes
= max(cur_bytes
, min_size
);
10490 * If we are severely fragmented we could end up with really
10491 * small allocations, so if the allocator is returning small
10492 * chunks lets make its job easier by only searching for those
10495 cur_bytes
= min(cur_bytes
, last_alloc
);
10496 ret
= btrfs_reserve_extent(root
, cur_bytes
, cur_bytes
,
10497 min_size
, 0, *alloc_hint
, &ins
, 1, 0);
10500 btrfs_end_transaction(trans
);
10503 btrfs_dec_block_group_reservations(fs_info
, ins
.objectid
);
10505 last_alloc
= ins
.offset
;
10506 ret
= insert_reserved_file_extent(trans
, inode
,
10507 cur_offset
, ins
.objectid
,
10508 ins
.offset
, ins
.offset
,
10509 ins
.offset
, 0, 0, 0,
10510 BTRFS_FILE_EXTENT_PREALLOC
);
10512 btrfs_free_reserved_extent(fs_info
, ins
.objectid
,
10514 btrfs_abort_transaction(trans
, ret
);
10516 btrfs_end_transaction(trans
);
10520 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10521 cur_offset
+ ins
.offset
-1, 0);
10523 em
= alloc_extent_map();
10525 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
10526 &BTRFS_I(inode
)->runtime_flags
);
10530 em
->start
= cur_offset
;
10531 em
->orig_start
= cur_offset
;
10532 em
->len
= ins
.offset
;
10533 em
->block_start
= ins
.objectid
;
10534 em
->block_len
= ins
.offset
;
10535 em
->orig_block_len
= ins
.offset
;
10536 em
->ram_bytes
= ins
.offset
;
10537 em
->bdev
= fs_info
->fs_devices
->latest_bdev
;
10538 set_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
);
10539 em
->generation
= trans
->transid
;
10542 write_lock(&em_tree
->lock
);
10543 ret
= add_extent_mapping(em_tree
, em
, 1);
10544 write_unlock(&em_tree
->lock
);
10545 if (ret
!= -EEXIST
)
10547 btrfs_drop_extent_cache(BTRFS_I(inode
), cur_offset
,
10548 cur_offset
+ ins
.offset
- 1,
10551 free_extent_map(em
);
10553 num_bytes
-= ins
.offset
;
10554 cur_offset
+= ins
.offset
;
10555 *alloc_hint
= ins
.objectid
+ ins
.offset
;
10557 inode_inc_iversion(inode
);
10558 inode
->i_ctime
= current_time(inode
);
10559 BTRFS_I(inode
)->flags
|= BTRFS_INODE_PREALLOC
;
10560 if (!(mode
& FALLOC_FL_KEEP_SIZE
) &&
10561 (actual_len
> inode
->i_size
) &&
10562 (cur_offset
> inode
->i_size
)) {
10563 if (cur_offset
> actual_len
)
10564 i_size
= actual_len
;
10566 i_size
= cur_offset
;
10567 i_size_write(inode
, i_size
);
10568 btrfs_ordered_update_i_size(inode
, i_size
, NULL
);
10571 ret
= btrfs_update_inode(trans
, root
, inode
);
10574 btrfs_abort_transaction(trans
, ret
);
10576 btrfs_end_transaction(trans
);
10581 btrfs_end_transaction(trans
);
10583 if (cur_offset
< end
)
10584 btrfs_free_reserved_data_space(inode
, NULL
, cur_offset
,
10585 end
- cur_offset
+ 1);
10589 int btrfs_prealloc_file_range(struct inode
*inode
, int mode
,
10590 u64 start
, u64 num_bytes
, u64 min_size
,
10591 loff_t actual_len
, u64
*alloc_hint
)
10593 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10594 min_size
, actual_len
, alloc_hint
,
10598 int btrfs_prealloc_file_range_trans(struct inode
*inode
,
10599 struct btrfs_trans_handle
*trans
, int mode
,
10600 u64 start
, u64 num_bytes
, u64 min_size
,
10601 loff_t actual_len
, u64
*alloc_hint
)
10603 return __btrfs_prealloc_file_range(inode
, mode
, start
, num_bytes
,
10604 min_size
, actual_len
, alloc_hint
, trans
);
10607 static int btrfs_set_page_dirty(struct page
*page
)
10609 return __set_page_dirty_nobuffers(page
);
10612 static int btrfs_permission(struct inode
*inode
, int mask
)
10614 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
10615 umode_t mode
= inode
->i_mode
;
10617 if (mask
& MAY_WRITE
&&
10618 (S_ISREG(mode
) || S_ISDIR(mode
) || S_ISLNK(mode
))) {
10619 if (btrfs_root_readonly(root
))
10621 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_READONLY
)
10624 return generic_permission(inode
, mask
);
10627 static int btrfs_tmpfile(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
10629 struct btrfs_fs_info
*fs_info
= btrfs_sb(dir
->i_sb
);
10630 struct btrfs_trans_handle
*trans
;
10631 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
10632 struct inode
*inode
= NULL
;
10638 * 5 units required for adding orphan entry
10640 trans
= btrfs_start_transaction(root
, 5);
10642 return PTR_ERR(trans
);
10644 ret
= btrfs_find_free_ino(root
, &objectid
);
10648 inode
= btrfs_new_inode(trans
, root
, dir
, NULL
, 0,
10649 btrfs_ino(BTRFS_I(dir
)), objectid
, mode
, &index
);
10650 if (IS_ERR(inode
)) {
10651 ret
= PTR_ERR(inode
);
10656 inode
->i_fop
= &btrfs_file_operations
;
10657 inode
->i_op
= &btrfs_file_inode_operations
;
10659 inode
->i_mapping
->a_ops
= &btrfs_aops
;
10660 BTRFS_I(inode
)->io_tree
.ops
= &btrfs_extent_io_ops
;
10662 ret
= btrfs_init_inode_security(trans
, inode
, dir
, NULL
);
10666 ret
= btrfs_update_inode(trans
, root
, inode
);
10669 ret
= btrfs_orphan_add(trans
, BTRFS_I(inode
));
10674 * We set number of links to 0 in btrfs_new_inode(), and here we set
10675 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10678 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10680 set_nlink(inode
, 1);
10681 unlock_new_inode(inode
);
10682 d_tmpfile(dentry
, inode
);
10683 mark_inode_dirty(inode
);
10686 btrfs_end_transaction(trans
);
10689 btrfs_balance_delayed_items(fs_info
);
10690 btrfs_btree_balance_dirty(fs_info
);
10694 unlock_new_inode(inode
);
10699 __attribute__((const))
10700 static int btrfs_readpage_io_failed_hook(struct page
*page
, int failed_mirror
)
10705 static struct btrfs_fs_info
*iotree_fs_info(void *private_data
)
10707 struct inode
*inode
= private_data
;
10708 return btrfs_sb(inode
->i_sb
);
10711 static void btrfs_check_extent_io_range(void *private_data
, const char *caller
,
10712 u64 start
, u64 end
)
10714 struct inode
*inode
= private_data
;
10717 isize
= i_size_read(inode
);
10718 if (end
>= PAGE_SIZE
&& (end
% 2) == 0 && end
!= isize
- 1) {
10719 btrfs_debug_rl(BTRFS_I(inode
)->root
->fs_info
,
10720 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10721 caller
, btrfs_ino(BTRFS_I(inode
)), isize
, start
, end
);
10725 void btrfs_set_range_writeback(void *private_data
, u64 start
, u64 end
)
10727 struct inode
*inode
= private_data
;
10728 unsigned long index
= start
>> PAGE_SHIFT
;
10729 unsigned long end_index
= end
>> PAGE_SHIFT
;
10732 while (index
<= end_index
) {
10733 page
= find_get_page(inode
->i_mapping
, index
);
10734 ASSERT(page
); /* Pages should be in the extent_io_tree */
10735 set_page_writeback(page
);
10741 static const struct inode_operations btrfs_dir_inode_operations
= {
10742 .getattr
= btrfs_getattr
,
10743 .lookup
= btrfs_lookup
,
10744 .create
= btrfs_create
,
10745 .unlink
= btrfs_unlink
,
10746 .link
= btrfs_link
,
10747 .mkdir
= btrfs_mkdir
,
10748 .rmdir
= btrfs_rmdir
,
10749 .rename
= btrfs_rename2
,
10750 .symlink
= btrfs_symlink
,
10751 .setattr
= btrfs_setattr
,
10752 .mknod
= btrfs_mknod
,
10753 .listxattr
= btrfs_listxattr
,
10754 .permission
= btrfs_permission
,
10755 .get_acl
= btrfs_get_acl
,
10756 .set_acl
= btrfs_set_acl
,
10757 .update_time
= btrfs_update_time
,
10758 .tmpfile
= btrfs_tmpfile
,
10760 static const struct inode_operations btrfs_dir_ro_inode_operations
= {
10761 .lookup
= btrfs_lookup
,
10762 .permission
= btrfs_permission
,
10763 .update_time
= btrfs_update_time
,
10766 static const struct file_operations btrfs_dir_file_operations
= {
10767 .llseek
= generic_file_llseek
,
10768 .read
= generic_read_dir
,
10769 .iterate_shared
= btrfs_real_readdir
,
10770 .open
= btrfs_opendir
,
10771 .unlocked_ioctl
= btrfs_ioctl
,
10772 #ifdef CONFIG_COMPAT
10773 .compat_ioctl
= btrfs_compat_ioctl
,
10775 .release
= btrfs_release_file
,
10776 .fsync
= btrfs_sync_file
,
10779 static const struct extent_io_ops btrfs_extent_io_ops
= {
10780 /* mandatory callbacks */
10781 .submit_bio_hook
= btrfs_submit_bio_hook
,
10782 .readpage_end_io_hook
= btrfs_readpage_end_io_hook
,
10783 .merge_bio_hook
= btrfs_merge_bio_hook
,
10784 .readpage_io_failed_hook
= btrfs_readpage_io_failed_hook
,
10785 .tree_fs_info
= iotree_fs_info
,
10786 .set_range_writeback
= btrfs_set_range_writeback
,
10788 /* optional callbacks */
10789 .fill_delalloc
= run_delalloc_range
,
10790 .writepage_end_io_hook
= btrfs_writepage_end_io_hook
,
10791 .writepage_start_hook
= btrfs_writepage_start_hook
,
10792 .set_bit_hook
= btrfs_set_bit_hook
,
10793 .clear_bit_hook
= btrfs_clear_bit_hook
,
10794 .merge_extent_hook
= btrfs_merge_extent_hook
,
10795 .split_extent_hook
= btrfs_split_extent_hook
,
10796 .check_extent_io_range
= btrfs_check_extent_io_range
,
10800 * btrfs doesn't support the bmap operation because swapfiles
10801 * use bmap to make a mapping of extents in the file. They assume
10802 * these extents won't change over the life of the file and they
10803 * use the bmap result to do IO directly to the drive.
10805 * the btrfs bmap call would return logical addresses that aren't
10806 * suitable for IO and they also will change frequently as COW
10807 * operations happen. So, swapfile + btrfs == corruption.
10809 * For now we're avoiding this by dropping bmap.
10811 static const struct address_space_operations btrfs_aops
= {
10812 .readpage
= btrfs_readpage
,
10813 .writepage
= btrfs_writepage
,
10814 .writepages
= btrfs_writepages
,
10815 .readpages
= btrfs_readpages
,
10816 .direct_IO
= btrfs_direct_IO
,
10817 .invalidatepage
= btrfs_invalidatepage
,
10818 .releasepage
= btrfs_releasepage
,
10819 .set_page_dirty
= btrfs_set_page_dirty
,
10820 .error_remove_page
= generic_error_remove_page
,
10823 static const struct address_space_operations btrfs_symlink_aops
= {
10824 .readpage
= btrfs_readpage
,
10825 .writepage
= btrfs_writepage
,
10826 .invalidatepage
= btrfs_invalidatepage
,
10827 .releasepage
= btrfs_releasepage
,
10830 static const struct inode_operations btrfs_file_inode_operations
= {
10831 .getattr
= btrfs_getattr
,
10832 .setattr
= btrfs_setattr
,
10833 .listxattr
= btrfs_listxattr
,
10834 .permission
= btrfs_permission
,
10835 .fiemap
= btrfs_fiemap
,
10836 .get_acl
= btrfs_get_acl
,
10837 .set_acl
= btrfs_set_acl
,
10838 .update_time
= btrfs_update_time
,
10840 static const struct inode_operations btrfs_special_inode_operations
= {
10841 .getattr
= btrfs_getattr
,
10842 .setattr
= btrfs_setattr
,
10843 .permission
= btrfs_permission
,
10844 .listxattr
= btrfs_listxattr
,
10845 .get_acl
= btrfs_get_acl
,
10846 .set_acl
= btrfs_set_acl
,
10847 .update_time
= btrfs_update_time
,
10849 static const struct inode_operations btrfs_symlink_inode_operations
= {
10850 .get_link
= page_get_link
,
10851 .getattr
= btrfs_getattr
,
10852 .setattr
= btrfs_setattr
,
10853 .permission
= btrfs_permission
,
10854 .listxattr
= btrfs_listxattr
,
10855 .update_time
= btrfs_update_time
,
10858 const struct dentry_operations btrfs_dentry_operations
= {
10859 .d_delete
= btrfs_dentry_delete
,
10860 .d_release
= btrfs_dentry_release
,