Merge tag 'riscv-for-linus-4.15-rc2_cleanups' of git://git.kernel.org/pub/scm/linux...
[linux/fpc-iii.git] / kernel / futex.c
blob76ed5921117a24cc347fa3aa79f59c2ba378897f
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
71 #include <asm/futex.h>
73 #include "locking/rtmutex_common.h"
76 * READ this before attempting to hack on futexes!
78 * Basic futex operation and ordering guarantees
79 * =============================================
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
131 * lock(hash_bucket(futex)); |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
152 * This yields the following case (where X:=waiters, Y:=futex):
154 * X = Y = 0
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
197 * Priority Inheritance state:
199 struct futex_pi_state {
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
204 struct list_head list;
207 * The PI object:
209 struct rt_mutex pi_mutex;
211 struct task_struct *owner;
212 atomic_t refcount;
214 union futex_key key;
215 } __randomize_layout;
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
239 struct futex_q {
240 struct plist_node list;
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
282 * Fault injections for futexes.
284 #ifdef CONFIG_FAIL_FUTEX
286 static struct {
287 struct fault_attr attr;
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
295 static int __init setup_fail_futex(char *str)
297 return setup_fault_attr(&fail_futex.attr, str);
299 __setup("fail_futex=", setup_fail_futex);
301 static bool should_fail_futex(bool fshared)
303 if (fail_futex.ignore_private && !fshared)
304 return false;
306 return should_fail(&fail_futex.attr, 1);
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
311 static int __init fail_futex_debugfs(void)
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
327 return 0;
330 late_initcall(fail_futex_debugfs);
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
334 #else
335 static inline bool should_fail_futex(bool fshared)
337 return false;
339 #endif /* CONFIG_FAIL_FUTEX */
341 static inline void futex_get_mm(union futex_key *key)
343 mmgrab(key->private.mm);
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
349 smp_mb__after_atomic();
353 * Reflects a new waiter being added to the waitqueue.
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
360 * Full barrier (A), see the ordering comment above.
362 smp_mb__after_atomic();
363 #endif
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
407 * Return 1 if two futex_keys are equal, 0 otherwise.
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
422 static void get_futex_key_refs(union futex_key *key)
424 if (!key->both.ptr)
425 return;
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
450 smp_mb(); /* explicit smp_mb(); (B) */
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
460 static void drop_futex_key_refs(union futex_key *key)
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
489 * Return: a negative error code or 0
491 * The key words are stored in @key on success.
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
497 * lock_page() might sleep, the caller should not hold a spinlock.
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
509 * The futex address must be "naturally" aligned.
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
541 err = get_user_pages_fast(address, 1, 1, &page);
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
550 if (err < 0)
551 return err;
552 else
553 err = 0;
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
605 if (shmem_swizzled)
606 goto again;
608 return -EFAULT;
612 * Private mappings are handled in a simple way.
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
621 if (PageAnon(page)) {
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
637 } else {
638 struct inode *inode;
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
651 rcu_read_lock();
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
657 goto again;
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
665 goto again;
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
684 goto again;
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
693 goto out;
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
702 out:
703 put_page(page);
704 return err;
707 static inline void put_futex_key(union futex_key *key)
709 drop_futex_key_refs(key);
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
724 static int fault_in_user_writeable(u32 __user *uaddr)
726 struct mm_struct *mm = current->mm;
727 int ret;
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
734 return ret < 0 ? ret : 0;
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
742 * Must be called with the hb lock held.
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
747 struct futex_q *this;
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
753 return NULL;
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
759 int ret;
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
765 return ret;
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
770 int ret;
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
776 return ret ? -EFAULT : 0;
781 * PI code:
783 static int refill_pi_state_cache(void)
785 struct futex_pi_state *pi_state;
787 if (likely(current->pi_state_cache))
788 return 0;
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
792 if (!pi_state)
793 return -ENOMEM;
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
801 current->pi_state_cache = pi_state;
803 return 0;
806 static struct futex_pi_state *alloc_pi_state(void)
808 struct futex_pi_state *pi_state = current->pi_state_cache;
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
813 return pi_state;
816 static void get_pi_state(struct futex_pi_state *pi_state)
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
825 static void put_pi_state(struct futex_pi_state *pi_state)
827 if (!pi_state)
828 return;
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
837 if (pi_state->owner) {
838 struct task_struct *owner;
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
869 static struct task_struct *futex_find_get_task(pid_t pid)
871 struct task_struct *p;
873 rcu_read_lock();
874 p = find_task_by_vpid(pid);
875 if (p)
876 get_task_struct(p);
878 rcu_read_unlock();
880 return p;
883 #ifdef CONFIG_FUTEX_PI
886 * This task is holding PI mutexes at exit time => bad.
887 * Kernel cleans up PI-state, but userspace is likely hosed.
888 * (Robust-futex cleanup is separate and might save the day for userspace.)
890 void exit_pi_state_list(struct task_struct *curr)
892 struct list_head *next, *head = &curr->pi_state_list;
893 struct futex_pi_state *pi_state;
894 struct futex_hash_bucket *hb;
895 union futex_key key = FUTEX_KEY_INIT;
897 if (!futex_cmpxchg_enabled)
898 return;
900 * We are a ZOMBIE and nobody can enqueue itself on
901 * pi_state_list anymore, but we have to be careful
902 * versus waiters unqueueing themselves:
904 raw_spin_lock_irq(&curr->pi_lock);
905 while (!list_empty(head)) {
906 next = head->next;
907 pi_state = list_entry(next, struct futex_pi_state, list);
908 key = pi_state->key;
909 hb = hash_futex(&key);
912 * We can race against put_pi_state() removing itself from the
913 * list (a waiter going away). put_pi_state() will first
914 * decrement the reference count and then modify the list, so
915 * its possible to see the list entry but fail this reference
916 * acquire.
918 * In that case; drop the locks to let put_pi_state() make
919 * progress and retry the loop.
921 if (!atomic_inc_not_zero(&pi_state->refcount)) {
922 raw_spin_unlock_irq(&curr->pi_lock);
923 cpu_relax();
924 raw_spin_lock_irq(&curr->pi_lock);
925 continue;
927 raw_spin_unlock_irq(&curr->pi_lock);
929 spin_lock(&hb->lock);
930 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
931 raw_spin_lock(&curr->pi_lock);
933 * We dropped the pi-lock, so re-check whether this
934 * task still owns the PI-state:
936 if (head->next != next) {
937 /* retain curr->pi_lock for the loop invariant */
938 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
939 spin_unlock(&hb->lock);
940 put_pi_state(pi_state);
941 continue;
944 WARN_ON(pi_state->owner != curr);
945 WARN_ON(list_empty(&pi_state->list));
946 list_del_init(&pi_state->list);
947 pi_state->owner = NULL;
949 raw_spin_unlock(&curr->pi_lock);
950 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
951 spin_unlock(&hb->lock);
953 rt_mutex_futex_unlock(&pi_state->pi_mutex);
954 put_pi_state(pi_state);
956 raw_spin_lock_irq(&curr->pi_lock);
958 raw_spin_unlock_irq(&curr->pi_lock);
961 #endif
964 * We need to check the following states:
966 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
968 * [1] NULL | --- | --- | 0 | 0/1 | Valid
969 * [2] NULL | --- | --- | >0 | 0/1 | Valid
971 * [3] Found | NULL | -- | Any | 0/1 | Invalid
973 * [4] Found | Found | NULL | 0 | 1 | Valid
974 * [5] Found | Found | NULL | >0 | 1 | Invalid
976 * [6] Found | Found | task | 0 | 1 | Valid
978 * [7] Found | Found | NULL | Any | 0 | Invalid
980 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
981 * [9] Found | Found | task | 0 | 0 | Invalid
982 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
984 * [1] Indicates that the kernel can acquire the futex atomically. We
985 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
987 * [2] Valid, if TID does not belong to a kernel thread. If no matching
988 * thread is found then it indicates that the owner TID has died.
990 * [3] Invalid. The waiter is queued on a non PI futex
992 * [4] Valid state after exit_robust_list(), which sets the user space
993 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
995 * [5] The user space value got manipulated between exit_robust_list()
996 * and exit_pi_state_list()
998 * [6] Valid state after exit_pi_state_list() which sets the new owner in
999 * the pi_state but cannot access the user space value.
1001 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1003 * [8] Owner and user space value match
1005 * [9] There is no transient state which sets the user space TID to 0
1006 * except exit_robust_list(), but this is indicated by the
1007 * FUTEX_OWNER_DIED bit. See [4]
1009 * [10] There is no transient state which leaves owner and user space
1010 * TID out of sync.
1013 * Serialization and lifetime rules:
1015 * hb->lock:
1017 * hb -> futex_q, relation
1018 * futex_q -> pi_state, relation
1020 * (cannot be raw because hb can contain arbitrary amount
1021 * of futex_q's)
1023 * pi_mutex->wait_lock:
1025 * {uval, pi_state}
1027 * (and pi_mutex 'obviously')
1029 * p->pi_lock:
1031 * p->pi_state_list -> pi_state->list, relation
1033 * pi_state->refcount:
1035 * pi_state lifetime
1038 * Lock order:
1040 * hb->lock
1041 * pi_mutex->wait_lock
1042 * p->pi_lock
1047 * Validate that the existing waiter has a pi_state and sanity check
1048 * the pi_state against the user space value. If correct, attach to
1049 * it.
1051 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1052 struct futex_pi_state *pi_state,
1053 struct futex_pi_state **ps)
1055 pid_t pid = uval & FUTEX_TID_MASK;
1056 u32 uval2;
1057 int ret;
1060 * Userspace might have messed up non-PI and PI futexes [3]
1062 if (unlikely(!pi_state))
1063 return -EINVAL;
1066 * We get here with hb->lock held, and having found a
1067 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1068 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1069 * which in turn means that futex_lock_pi() still has a reference on
1070 * our pi_state.
1072 * The waiter holding a reference on @pi_state also protects against
1073 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1074 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1075 * free pi_state before we can take a reference ourselves.
1077 WARN_ON(!atomic_read(&pi_state->refcount));
1080 * Now that we have a pi_state, we can acquire wait_lock
1081 * and do the state validation.
1083 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1086 * Since {uval, pi_state} is serialized by wait_lock, and our current
1087 * uval was read without holding it, it can have changed. Verify it
1088 * still is what we expect it to be, otherwise retry the entire
1089 * operation.
1091 if (get_futex_value_locked(&uval2, uaddr))
1092 goto out_efault;
1094 if (uval != uval2)
1095 goto out_eagain;
1098 * Handle the owner died case:
1100 if (uval & FUTEX_OWNER_DIED) {
1102 * exit_pi_state_list sets owner to NULL and wakes the
1103 * topmost waiter. The task which acquires the
1104 * pi_state->rt_mutex will fixup owner.
1106 if (!pi_state->owner) {
1108 * No pi state owner, but the user space TID
1109 * is not 0. Inconsistent state. [5]
1111 if (pid)
1112 goto out_einval;
1114 * Take a ref on the state and return success. [4]
1116 goto out_attach;
1120 * If TID is 0, then either the dying owner has not
1121 * yet executed exit_pi_state_list() or some waiter
1122 * acquired the rtmutex in the pi state, but did not
1123 * yet fixup the TID in user space.
1125 * Take a ref on the state and return success. [6]
1127 if (!pid)
1128 goto out_attach;
1129 } else {
1131 * If the owner died bit is not set, then the pi_state
1132 * must have an owner. [7]
1134 if (!pi_state->owner)
1135 goto out_einval;
1139 * Bail out if user space manipulated the futex value. If pi
1140 * state exists then the owner TID must be the same as the
1141 * user space TID. [9/10]
1143 if (pid != task_pid_vnr(pi_state->owner))
1144 goto out_einval;
1146 out_attach:
1147 get_pi_state(pi_state);
1148 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1149 *ps = pi_state;
1150 return 0;
1152 out_einval:
1153 ret = -EINVAL;
1154 goto out_error;
1156 out_eagain:
1157 ret = -EAGAIN;
1158 goto out_error;
1160 out_efault:
1161 ret = -EFAULT;
1162 goto out_error;
1164 out_error:
1165 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1166 return ret;
1170 * Lookup the task for the TID provided from user space and attach to
1171 * it after doing proper sanity checks.
1173 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1174 struct futex_pi_state **ps)
1176 pid_t pid = uval & FUTEX_TID_MASK;
1177 struct futex_pi_state *pi_state;
1178 struct task_struct *p;
1181 * We are the first waiter - try to look up the real owner and attach
1182 * the new pi_state to it, but bail out when TID = 0 [1]
1184 if (!pid)
1185 return -ESRCH;
1186 p = futex_find_get_task(pid);
1187 if (!p)
1188 return -ESRCH;
1190 if (unlikely(p->flags & PF_KTHREAD)) {
1191 put_task_struct(p);
1192 return -EPERM;
1196 * We need to look at the task state flags to figure out,
1197 * whether the task is exiting. To protect against the do_exit
1198 * change of the task flags, we do this protected by
1199 * p->pi_lock:
1201 raw_spin_lock_irq(&p->pi_lock);
1202 if (unlikely(p->flags & PF_EXITING)) {
1204 * The task is on the way out. When PF_EXITPIDONE is
1205 * set, we know that the task has finished the
1206 * cleanup:
1208 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1210 raw_spin_unlock_irq(&p->pi_lock);
1211 put_task_struct(p);
1212 return ret;
1216 * No existing pi state. First waiter. [2]
1218 * This creates pi_state, we have hb->lock held, this means nothing can
1219 * observe this state, wait_lock is irrelevant.
1221 pi_state = alloc_pi_state();
1224 * Initialize the pi_mutex in locked state and make @p
1225 * the owner of it:
1227 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1229 /* Store the key for possible exit cleanups: */
1230 pi_state->key = *key;
1232 WARN_ON(!list_empty(&pi_state->list));
1233 list_add(&pi_state->list, &p->pi_state_list);
1235 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1236 * because there is no concurrency as the object is not published yet.
1238 pi_state->owner = p;
1239 raw_spin_unlock_irq(&p->pi_lock);
1241 put_task_struct(p);
1243 *ps = pi_state;
1245 return 0;
1248 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1249 struct futex_hash_bucket *hb,
1250 union futex_key *key, struct futex_pi_state **ps)
1252 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1255 * If there is a waiter on that futex, validate it and
1256 * attach to the pi_state when the validation succeeds.
1258 if (top_waiter)
1259 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1262 * We are the first waiter - try to look up the owner based on
1263 * @uval and attach to it.
1265 return attach_to_pi_owner(uval, key, ps);
1268 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1270 u32 uninitialized_var(curval);
1272 if (unlikely(should_fail_futex(true)))
1273 return -EFAULT;
1275 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1276 return -EFAULT;
1278 /* If user space value changed, let the caller retry */
1279 return curval != uval ? -EAGAIN : 0;
1283 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1284 * @uaddr: the pi futex user address
1285 * @hb: the pi futex hash bucket
1286 * @key: the futex key associated with uaddr and hb
1287 * @ps: the pi_state pointer where we store the result of the
1288 * lookup
1289 * @task: the task to perform the atomic lock work for. This will
1290 * be "current" except in the case of requeue pi.
1291 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1293 * Return:
1294 * - 0 - ready to wait;
1295 * - 1 - acquired the lock;
1296 * - <0 - error
1298 * The hb->lock and futex_key refs shall be held by the caller.
1300 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1301 union futex_key *key,
1302 struct futex_pi_state **ps,
1303 struct task_struct *task, int set_waiters)
1305 u32 uval, newval, vpid = task_pid_vnr(task);
1306 struct futex_q *top_waiter;
1307 int ret;
1310 * Read the user space value first so we can validate a few
1311 * things before proceeding further.
1313 if (get_futex_value_locked(&uval, uaddr))
1314 return -EFAULT;
1316 if (unlikely(should_fail_futex(true)))
1317 return -EFAULT;
1320 * Detect deadlocks.
1322 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1323 return -EDEADLK;
1325 if ((unlikely(should_fail_futex(true))))
1326 return -EDEADLK;
1329 * Lookup existing state first. If it exists, try to attach to
1330 * its pi_state.
1332 top_waiter = futex_top_waiter(hb, key);
1333 if (top_waiter)
1334 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1337 * No waiter and user TID is 0. We are here because the
1338 * waiters or the owner died bit is set or called from
1339 * requeue_cmp_pi or for whatever reason something took the
1340 * syscall.
1342 if (!(uval & FUTEX_TID_MASK)) {
1344 * We take over the futex. No other waiters and the user space
1345 * TID is 0. We preserve the owner died bit.
1347 newval = uval & FUTEX_OWNER_DIED;
1348 newval |= vpid;
1350 /* The futex requeue_pi code can enforce the waiters bit */
1351 if (set_waiters)
1352 newval |= FUTEX_WAITERS;
1354 ret = lock_pi_update_atomic(uaddr, uval, newval);
1355 /* If the take over worked, return 1 */
1356 return ret < 0 ? ret : 1;
1360 * First waiter. Set the waiters bit before attaching ourself to
1361 * the owner. If owner tries to unlock, it will be forced into
1362 * the kernel and blocked on hb->lock.
1364 newval = uval | FUTEX_WAITERS;
1365 ret = lock_pi_update_atomic(uaddr, uval, newval);
1366 if (ret)
1367 return ret;
1369 * If the update of the user space value succeeded, we try to
1370 * attach to the owner. If that fails, no harm done, we only
1371 * set the FUTEX_WAITERS bit in the user space variable.
1373 return attach_to_pi_owner(uval, key, ps);
1377 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1378 * @q: The futex_q to unqueue
1380 * The q->lock_ptr must not be NULL and must be held by the caller.
1382 static void __unqueue_futex(struct futex_q *q)
1384 struct futex_hash_bucket *hb;
1386 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1387 || WARN_ON(plist_node_empty(&q->list)))
1388 return;
1390 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1391 plist_del(&q->list, &hb->chain);
1392 hb_waiters_dec(hb);
1396 * The hash bucket lock must be held when this is called.
1397 * Afterwards, the futex_q must not be accessed. Callers
1398 * must ensure to later call wake_up_q() for the actual
1399 * wakeups to occur.
1401 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1403 struct task_struct *p = q->task;
1405 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1406 return;
1409 * Queue the task for later wakeup for after we've released
1410 * the hb->lock. wake_q_add() grabs reference to p.
1412 wake_q_add(wake_q, p);
1413 __unqueue_futex(q);
1415 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1416 * is written, without taking any locks. This is possible in the event
1417 * of a spurious wakeup, for example. A memory barrier is required here
1418 * to prevent the following store to lock_ptr from getting ahead of the
1419 * plist_del in __unqueue_futex().
1421 smp_store_release(&q->lock_ptr, NULL);
1425 * Caller must hold a reference on @pi_state.
1427 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1429 u32 uninitialized_var(curval), newval;
1430 struct task_struct *new_owner;
1431 bool postunlock = false;
1432 DEFINE_WAKE_Q(wake_q);
1433 int ret = 0;
1435 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1436 if (WARN_ON_ONCE(!new_owner)) {
1438 * As per the comment in futex_unlock_pi() this should not happen.
1440 * When this happens, give up our locks and try again, giving
1441 * the futex_lock_pi() instance time to complete, either by
1442 * waiting on the rtmutex or removing itself from the futex
1443 * queue.
1445 ret = -EAGAIN;
1446 goto out_unlock;
1450 * We pass it to the next owner. The WAITERS bit is always kept
1451 * enabled while there is PI state around. We cleanup the owner
1452 * died bit, because we are the owner.
1454 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1456 if (unlikely(should_fail_futex(true)))
1457 ret = -EFAULT;
1459 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1460 ret = -EFAULT;
1462 } else if (curval != uval) {
1464 * If a unconditional UNLOCK_PI operation (user space did not
1465 * try the TID->0 transition) raced with a waiter setting the
1466 * FUTEX_WAITERS flag between get_user() and locking the hash
1467 * bucket lock, retry the operation.
1469 if ((FUTEX_TID_MASK & curval) == uval)
1470 ret = -EAGAIN;
1471 else
1472 ret = -EINVAL;
1475 if (ret)
1476 goto out_unlock;
1479 * This is a point of no return; once we modify the uval there is no
1480 * going back and subsequent operations must not fail.
1483 raw_spin_lock(&pi_state->owner->pi_lock);
1484 WARN_ON(list_empty(&pi_state->list));
1485 list_del_init(&pi_state->list);
1486 raw_spin_unlock(&pi_state->owner->pi_lock);
1488 raw_spin_lock(&new_owner->pi_lock);
1489 WARN_ON(!list_empty(&pi_state->list));
1490 list_add(&pi_state->list, &new_owner->pi_state_list);
1491 pi_state->owner = new_owner;
1492 raw_spin_unlock(&new_owner->pi_lock);
1494 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1496 out_unlock:
1497 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1499 if (postunlock)
1500 rt_mutex_postunlock(&wake_q);
1502 return ret;
1506 * Express the locking dependencies for lockdep:
1508 static inline void
1509 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1511 if (hb1 <= hb2) {
1512 spin_lock(&hb1->lock);
1513 if (hb1 < hb2)
1514 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1515 } else { /* hb1 > hb2 */
1516 spin_lock(&hb2->lock);
1517 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1521 static inline void
1522 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1524 spin_unlock(&hb1->lock);
1525 if (hb1 != hb2)
1526 spin_unlock(&hb2->lock);
1530 * Wake up waiters matching bitset queued on this futex (uaddr).
1532 static int
1533 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1535 struct futex_hash_bucket *hb;
1536 struct futex_q *this, *next;
1537 union futex_key key = FUTEX_KEY_INIT;
1538 int ret;
1539 DEFINE_WAKE_Q(wake_q);
1541 if (!bitset)
1542 return -EINVAL;
1544 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1545 if (unlikely(ret != 0))
1546 goto out;
1548 hb = hash_futex(&key);
1550 /* Make sure we really have tasks to wakeup */
1551 if (!hb_waiters_pending(hb))
1552 goto out_put_key;
1554 spin_lock(&hb->lock);
1556 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1557 if (match_futex (&this->key, &key)) {
1558 if (this->pi_state || this->rt_waiter) {
1559 ret = -EINVAL;
1560 break;
1563 /* Check if one of the bits is set in both bitsets */
1564 if (!(this->bitset & bitset))
1565 continue;
1567 mark_wake_futex(&wake_q, this);
1568 if (++ret >= nr_wake)
1569 break;
1573 spin_unlock(&hb->lock);
1574 wake_up_q(&wake_q);
1575 out_put_key:
1576 put_futex_key(&key);
1577 out:
1578 return ret;
1581 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1583 unsigned int op = (encoded_op & 0x70000000) >> 28;
1584 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1585 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1586 int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1587 int oldval, ret;
1589 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1590 if (oparg < 0 || oparg > 31) {
1591 char comm[sizeof(current->comm)];
1593 * kill this print and return -EINVAL when userspace
1594 * is sane again
1596 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1597 get_task_comm(comm, current), oparg);
1598 oparg &= 31;
1600 oparg = 1 << oparg;
1603 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1604 return -EFAULT;
1606 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1607 if (ret)
1608 return ret;
1610 switch (cmp) {
1611 case FUTEX_OP_CMP_EQ:
1612 return oldval == cmparg;
1613 case FUTEX_OP_CMP_NE:
1614 return oldval != cmparg;
1615 case FUTEX_OP_CMP_LT:
1616 return oldval < cmparg;
1617 case FUTEX_OP_CMP_GE:
1618 return oldval >= cmparg;
1619 case FUTEX_OP_CMP_LE:
1620 return oldval <= cmparg;
1621 case FUTEX_OP_CMP_GT:
1622 return oldval > cmparg;
1623 default:
1624 return -ENOSYS;
1629 * Wake up all waiters hashed on the physical page that is mapped
1630 * to this virtual address:
1632 static int
1633 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1634 int nr_wake, int nr_wake2, int op)
1636 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1637 struct futex_hash_bucket *hb1, *hb2;
1638 struct futex_q *this, *next;
1639 int ret, op_ret;
1640 DEFINE_WAKE_Q(wake_q);
1642 retry:
1643 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1644 if (unlikely(ret != 0))
1645 goto out;
1646 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1647 if (unlikely(ret != 0))
1648 goto out_put_key1;
1650 hb1 = hash_futex(&key1);
1651 hb2 = hash_futex(&key2);
1653 retry_private:
1654 double_lock_hb(hb1, hb2);
1655 op_ret = futex_atomic_op_inuser(op, uaddr2);
1656 if (unlikely(op_ret < 0)) {
1658 double_unlock_hb(hb1, hb2);
1660 #ifndef CONFIG_MMU
1662 * we don't get EFAULT from MMU faults if we don't have an MMU,
1663 * but we might get them from range checking
1665 ret = op_ret;
1666 goto out_put_keys;
1667 #endif
1669 if (unlikely(op_ret != -EFAULT)) {
1670 ret = op_ret;
1671 goto out_put_keys;
1674 ret = fault_in_user_writeable(uaddr2);
1675 if (ret)
1676 goto out_put_keys;
1678 if (!(flags & FLAGS_SHARED))
1679 goto retry_private;
1681 put_futex_key(&key2);
1682 put_futex_key(&key1);
1683 goto retry;
1686 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1687 if (match_futex (&this->key, &key1)) {
1688 if (this->pi_state || this->rt_waiter) {
1689 ret = -EINVAL;
1690 goto out_unlock;
1692 mark_wake_futex(&wake_q, this);
1693 if (++ret >= nr_wake)
1694 break;
1698 if (op_ret > 0) {
1699 op_ret = 0;
1700 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1701 if (match_futex (&this->key, &key2)) {
1702 if (this->pi_state || this->rt_waiter) {
1703 ret = -EINVAL;
1704 goto out_unlock;
1706 mark_wake_futex(&wake_q, this);
1707 if (++op_ret >= nr_wake2)
1708 break;
1711 ret += op_ret;
1714 out_unlock:
1715 double_unlock_hb(hb1, hb2);
1716 wake_up_q(&wake_q);
1717 out_put_keys:
1718 put_futex_key(&key2);
1719 out_put_key1:
1720 put_futex_key(&key1);
1721 out:
1722 return ret;
1726 * requeue_futex() - Requeue a futex_q from one hb to another
1727 * @q: the futex_q to requeue
1728 * @hb1: the source hash_bucket
1729 * @hb2: the target hash_bucket
1730 * @key2: the new key for the requeued futex_q
1732 static inline
1733 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1734 struct futex_hash_bucket *hb2, union futex_key *key2)
1738 * If key1 and key2 hash to the same bucket, no need to
1739 * requeue.
1741 if (likely(&hb1->chain != &hb2->chain)) {
1742 plist_del(&q->list, &hb1->chain);
1743 hb_waiters_dec(hb1);
1744 hb_waiters_inc(hb2);
1745 plist_add(&q->list, &hb2->chain);
1746 q->lock_ptr = &hb2->lock;
1748 get_futex_key_refs(key2);
1749 q->key = *key2;
1753 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1754 * @q: the futex_q
1755 * @key: the key of the requeue target futex
1756 * @hb: the hash_bucket of the requeue target futex
1758 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1759 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1760 * to the requeue target futex so the waiter can detect the wakeup on the right
1761 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1762 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1763 * to protect access to the pi_state to fixup the owner later. Must be called
1764 * with both q->lock_ptr and hb->lock held.
1766 static inline
1767 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1768 struct futex_hash_bucket *hb)
1770 get_futex_key_refs(key);
1771 q->key = *key;
1773 __unqueue_futex(q);
1775 WARN_ON(!q->rt_waiter);
1776 q->rt_waiter = NULL;
1778 q->lock_ptr = &hb->lock;
1780 wake_up_state(q->task, TASK_NORMAL);
1784 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1785 * @pifutex: the user address of the to futex
1786 * @hb1: the from futex hash bucket, must be locked by the caller
1787 * @hb2: the to futex hash bucket, must be locked by the caller
1788 * @key1: the from futex key
1789 * @key2: the to futex key
1790 * @ps: address to store the pi_state pointer
1791 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1793 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1794 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1795 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1796 * hb1 and hb2 must be held by the caller.
1798 * Return:
1799 * - 0 - failed to acquire the lock atomically;
1800 * - >0 - acquired the lock, return value is vpid of the top_waiter
1801 * - <0 - error
1803 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1804 struct futex_hash_bucket *hb1,
1805 struct futex_hash_bucket *hb2,
1806 union futex_key *key1, union futex_key *key2,
1807 struct futex_pi_state **ps, int set_waiters)
1809 struct futex_q *top_waiter = NULL;
1810 u32 curval;
1811 int ret, vpid;
1813 if (get_futex_value_locked(&curval, pifutex))
1814 return -EFAULT;
1816 if (unlikely(should_fail_futex(true)))
1817 return -EFAULT;
1820 * Find the top_waiter and determine if there are additional waiters.
1821 * If the caller intends to requeue more than 1 waiter to pifutex,
1822 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1823 * as we have means to handle the possible fault. If not, don't set
1824 * the bit unecessarily as it will force the subsequent unlock to enter
1825 * the kernel.
1827 top_waiter = futex_top_waiter(hb1, key1);
1829 /* There are no waiters, nothing for us to do. */
1830 if (!top_waiter)
1831 return 0;
1833 /* Ensure we requeue to the expected futex. */
1834 if (!match_futex(top_waiter->requeue_pi_key, key2))
1835 return -EINVAL;
1838 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1839 * the contended case or if set_waiters is 1. The pi_state is returned
1840 * in ps in contended cases.
1842 vpid = task_pid_vnr(top_waiter->task);
1843 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1844 set_waiters);
1845 if (ret == 1) {
1846 requeue_pi_wake_futex(top_waiter, key2, hb2);
1847 return vpid;
1849 return ret;
1853 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1854 * @uaddr1: source futex user address
1855 * @flags: futex flags (FLAGS_SHARED, etc.)
1856 * @uaddr2: target futex user address
1857 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1858 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1859 * @cmpval: @uaddr1 expected value (or %NULL)
1860 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1861 * pi futex (pi to pi requeue is not supported)
1863 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1864 * uaddr2 atomically on behalf of the top waiter.
1866 * Return:
1867 * - >=0 - on success, the number of tasks requeued or woken;
1868 * - <0 - on error
1870 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1871 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1872 u32 *cmpval, int requeue_pi)
1874 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1875 int drop_count = 0, task_count = 0, ret;
1876 struct futex_pi_state *pi_state = NULL;
1877 struct futex_hash_bucket *hb1, *hb2;
1878 struct futex_q *this, *next;
1879 DEFINE_WAKE_Q(wake_q);
1882 * When PI not supported: return -ENOSYS if requeue_pi is true,
1883 * consequently the compiler knows requeue_pi is always false past
1884 * this point which will optimize away all the conditional code
1885 * further down.
1887 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1888 return -ENOSYS;
1890 if (requeue_pi) {
1892 * Requeue PI only works on two distinct uaddrs. This
1893 * check is only valid for private futexes. See below.
1895 if (uaddr1 == uaddr2)
1896 return -EINVAL;
1899 * requeue_pi requires a pi_state, try to allocate it now
1900 * without any locks in case it fails.
1902 if (refill_pi_state_cache())
1903 return -ENOMEM;
1905 * requeue_pi must wake as many tasks as it can, up to nr_wake
1906 * + nr_requeue, since it acquires the rt_mutex prior to
1907 * returning to userspace, so as to not leave the rt_mutex with
1908 * waiters and no owner. However, second and third wake-ups
1909 * cannot be predicted as they involve race conditions with the
1910 * first wake and a fault while looking up the pi_state. Both
1911 * pthread_cond_signal() and pthread_cond_broadcast() should
1912 * use nr_wake=1.
1914 if (nr_wake != 1)
1915 return -EINVAL;
1918 retry:
1919 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1920 if (unlikely(ret != 0))
1921 goto out;
1922 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1923 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1924 if (unlikely(ret != 0))
1925 goto out_put_key1;
1928 * The check above which compares uaddrs is not sufficient for
1929 * shared futexes. We need to compare the keys:
1931 if (requeue_pi && match_futex(&key1, &key2)) {
1932 ret = -EINVAL;
1933 goto out_put_keys;
1936 hb1 = hash_futex(&key1);
1937 hb2 = hash_futex(&key2);
1939 retry_private:
1940 hb_waiters_inc(hb2);
1941 double_lock_hb(hb1, hb2);
1943 if (likely(cmpval != NULL)) {
1944 u32 curval;
1946 ret = get_futex_value_locked(&curval, uaddr1);
1948 if (unlikely(ret)) {
1949 double_unlock_hb(hb1, hb2);
1950 hb_waiters_dec(hb2);
1952 ret = get_user(curval, uaddr1);
1953 if (ret)
1954 goto out_put_keys;
1956 if (!(flags & FLAGS_SHARED))
1957 goto retry_private;
1959 put_futex_key(&key2);
1960 put_futex_key(&key1);
1961 goto retry;
1963 if (curval != *cmpval) {
1964 ret = -EAGAIN;
1965 goto out_unlock;
1969 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1971 * Attempt to acquire uaddr2 and wake the top waiter. If we
1972 * intend to requeue waiters, force setting the FUTEX_WAITERS
1973 * bit. We force this here where we are able to easily handle
1974 * faults rather in the requeue loop below.
1976 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1977 &key2, &pi_state, nr_requeue);
1980 * At this point the top_waiter has either taken uaddr2 or is
1981 * waiting on it. If the former, then the pi_state will not
1982 * exist yet, look it up one more time to ensure we have a
1983 * reference to it. If the lock was taken, ret contains the
1984 * vpid of the top waiter task.
1985 * If the lock was not taken, we have pi_state and an initial
1986 * refcount on it. In case of an error we have nothing.
1988 if (ret > 0) {
1989 WARN_ON(pi_state);
1990 drop_count++;
1991 task_count++;
1993 * If we acquired the lock, then the user space value
1994 * of uaddr2 should be vpid. It cannot be changed by
1995 * the top waiter as it is blocked on hb2 lock if it
1996 * tries to do so. If something fiddled with it behind
1997 * our back the pi state lookup might unearth it. So
1998 * we rather use the known value than rereading and
1999 * handing potential crap to lookup_pi_state.
2001 * If that call succeeds then we have pi_state and an
2002 * initial refcount on it.
2004 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2007 switch (ret) {
2008 case 0:
2009 /* We hold a reference on the pi state. */
2010 break;
2012 /* If the above failed, then pi_state is NULL */
2013 case -EFAULT:
2014 double_unlock_hb(hb1, hb2);
2015 hb_waiters_dec(hb2);
2016 put_futex_key(&key2);
2017 put_futex_key(&key1);
2018 ret = fault_in_user_writeable(uaddr2);
2019 if (!ret)
2020 goto retry;
2021 goto out;
2022 case -EAGAIN:
2024 * Two reasons for this:
2025 * - Owner is exiting and we just wait for the
2026 * exit to complete.
2027 * - The user space value changed.
2029 double_unlock_hb(hb1, hb2);
2030 hb_waiters_dec(hb2);
2031 put_futex_key(&key2);
2032 put_futex_key(&key1);
2033 cond_resched();
2034 goto retry;
2035 default:
2036 goto out_unlock;
2040 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2041 if (task_count - nr_wake >= nr_requeue)
2042 break;
2044 if (!match_futex(&this->key, &key1))
2045 continue;
2048 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2049 * be paired with each other and no other futex ops.
2051 * We should never be requeueing a futex_q with a pi_state,
2052 * which is awaiting a futex_unlock_pi().
2054 if ((requeue_pi && !this->rt_waiter) ||
2055 (!requeue_pi && this->rt_waiter) ||
2056 this->pi_state) {
2057 ret = -EINVAL;
2058 break;
2062 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2063 * lock, we already woke the top_waiter. If not, it will be
2064 * woken by futex_unlock_pi().
2066 if (++task_count <= nr_wake && !requeue_pi) {
2067 mark_wake_futex(&wake_q, this);
2068 continue;
2071 /* Ensure we requeue to the expected futex for requeue_pi. */
2072 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2073 ret = -EINVAL;
2074 break;
2078 * Requeue nr_requeue waiters and possibly one more in the case
2079 * of requeue_pi if we couldn't acquire the lock atomically.
2081 if (requeue_pi) {
2083 * Prepare the waiter to take the rt_mutex. Take a
2084 * refcount on the pi_state and store the pointer in
2085 * the futex_q object of the waiter.
2087 get_pi_state(pi_state);
2088 this->pi_state = pi_state;
2089 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2090 this->rt_waiter,
2091 this->task);
2092 if (ret == 1) {
2094 * We got the lock. We do neither drop the
2095 * refcount on pi_state nor clear
2096 * this->pi_state because the waiter needs the
2097 * pi_state for cleaning up the user space
2098 * value. It will drop the refcount after
2099 * doing so.
2101 requeue_pi_wake_futex(this, &key2, hb2);
2102 drop_count++;
2103 continue;
2104 } else if (ret) {
2106 * rt_mutex_start_proxy_lock() detected a
2107 * potential deadlock when we tried to queue
2108 * that waiter. Drop the pi_state reference
2109 * which we took above and remove the pointer
2110 * to the state from the waiters futex_q
2111 * object.
2113 this->pi_state = NULL;
2114 put_pi_state(pi_state);
2116 * We stop queueing more waiters and let user
2117 * space deal with the mess.
2119 break;
2122 requeue_futex(this, hb1, hb2, &key2);
2123 drop_count++;
2127 * We took an extra initial reference to the pi_state either
2128 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2129 * need to drop it here again.
2131 put_pi_state(pi_state);
2133 out_unlock:
2134 double_unlock_hb(hb1, hb2);
2135 wake_up_q(&wake_q);
2136 hb_waiters_dec(hb2);
2139 * drop_futex_key_refs() must be called outside the spinlocks. During
2140 * the requeue we moved futex_q's from the hash bucket at key1 to the
2141 * one at key2 and updated their key pointer. We no longer need to
2142 * hold the references to key1.
2144 while (--drop_count >= 0)
2145 drop_futex_key_refs(&key1);
2147 out_put_keys:
2148 put_futex_key(&key2);
2149 out_put_key1:
2150 put_futex_key(&key1);
2151 out:
2152 return ret ? ret : task_count;
2155 /* The key must be already stored in q->key. */
2156 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2157 __acquires(&hb->lock)
2159 struct futex_hash_bucket *hb;
2161 hb = hash_futex(&q->key);
2164 * Increment the counter before taking the lock so that
2165 * a potential waker won't miss a to-be-slept task that is
2166 * waiting for the spinlock. This is safe as all queue_lock()
2167 * users end up calling queue_me(). Similarly, for housekeeping,
2168 * decrement the counter at queue_unlock() when some error has
2169 * occurred and we don't end up adding the task to the list.
2171 hb_waiters_inc(hb);
2173 q->lock_ptr = &hb->lock;
2175 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2176 return hb;
2179 static inline void
2180 queue_unlock(struct futex_hash_bucket *hb)
2181 __releases(&hb->lock)
2183 spin_unlock(&hb->lock);
2184 hb_waiters_dec(hb);
2187 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2189 int prio;
2192 * The priority used to register this element is
2193 * - either the real thread-priority for the real-time threads
2194 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2195 * - or MAX_RT_PRIO for non-RT threads.
2196 * Thus, all RT-threads are woken first in priority order, and
2197 * the others are woken last, in FIFO order.
2199 prio = min(current->normal_prio, MAX_RT_PRIO);
2201 plist_node_init(&q->list, prio);
2202 plist_add(&q->list, &hb->chain);
2203 q->task = current;
2207 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2208 * @q: The futex_q to enqueue
2209 * @hb: The destination hash bucket
2211 * The hb->lock must be held by the caller, and is released here. A call to
2212 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2213 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2214 * or nothing if the unqueue is done as part of the wake process and the unqueue
2215 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2216 * an example).
2218 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2219 __releases(&hb->lock)
2221 __queue_me(q, hb);
2222 spin_unlock(&hb->lock);
2226 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2227 * @q: The futex_q to unqueue
2229 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2230 * be paired with exactly one earlier call to queue_me().
2232 * Return:
2233 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2234 * - 0 - if the futex_q was already removed by the waking thread
2236 static int unqueue_me(struct futex_q *q)
2238 spinlock_t *lock_ptr;
2239 int ret = 0;
2241 /* In the common case we don't take the spinlock, which is nice. */
2242 retry:
2244 * q->lock_ptr can change between this read and the following spin_lock.
2245 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2246 * optimizing lock_ptr out of the logic below.
2248 lock_ptr = READ_ONCE(q->lock_ptr);
2249 if (lock_ptr != NULL) {
2250 spin_lock(lock_ptr);
2252 * q->lock_ptr can change between reading it and
2253 * spin_lock(), causing us to take the wrong lock. This
2254 * corrects the race condition.
2256 * Reasoning goes like this: if we have the wrong lock,
2257 * q->lock_ptr must have changed (maybe several times)
2258 * between reading it and the spin_lock(). It can
2259 * change again after the spin_lock() but only if it was
2260 * already changed before the spin_lock(). It cannot,
2261 * however, change back to the original value. Therefore
2262 * we can detect whether we acquired the correct lock.
2264 if (unlikely(lock_ptr != q->lock_ptr)) {
2265 spin_unlock(lock_ptr);
2266 goto retry;
2268 __unqueue_futex(q);
2270 BUG_ON(q->pi_state);
2272 spin_unlock(lock_ptr);
2273 ret = 1;
2276 drop_futex_key_refs(&q->key);
2277 return ret;
2281 * PI futexes can not be requeued and must remove themself from the
2282 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2283 * and dropped here.
2285 static void unqueue_me_pi(struct futex_q *q)
2286 __releases(q->lock_ptr)
2288 __unqueue_futex(q);
2290 BUG_ON(!q->pi_state);
2291 put_pi_state(q->pi_state);
2292 q->pi_state = NULL;
2294 spin_unlock(q->lock_ptr);
2298 * Fixup the pi_state owner with the new owner.
2300 * Must be called with hash bucket lock held and mm->sem held for non
2301 * private futexes.
2303 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2304 struct task_struct *newowner)
2306 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2307 struct futex_pi_state *pi_state = q->pi_state;
2308 u32 uval, uninitialized_var(curval), newval;
2309 struct task_struct *oldowner;
2310 int ret;
2312 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2314 oldowner = pi_state->owner;
2315 /* Owner died? */
2316 if (!pi_state->owner)
2317 newtid |= FUTEX_OWNER_DIED;
2320 * We are here either because we stole the rtmutex from the
2321 * previous highest priority waiter or we are the highest priority
2322 * waiter but have failed to get the rtmutex the first time.
2324 * We have to replace the newowner TID in the user space variable.
2325 * This must be atomic as we have to preserve the owner died bit here.
2327 * Note: We write the user space value _before_ changing the pi_state
2328 * because we can fault here. Imagine swapped out pages or a fork
2329 * that marked all the anonymous memory readonly for cow.
2331 * Modifying pi_state _before_ the user space value would leave the
2332 * pi_state in an inconsistent state when we fault here, because we
2333 * need to drop the locks to handle the fault. This might be observed
2334 * in the PID check in lookup_pi_state.
2336 retry:
2337 if (get_futex_value_locked(&uval, uaddr))
2338 goto handle_fault;
2340 for (;;) {
2341 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2343 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2344 goto handle_fault;
2345 if (curval == uval)
2346 break;
2347 uval = curval;
2351 * We fixed up user space. Now we need to fix the pi_state
2352 * itself.
2354 if (pi_state->owner != NULL) {
2355 raw_spin_lock(&pi_state->owner->pi_lock);
2356 WARN_ON(list_empty(&pi_state->list));
2357 list_del_init(&pi_state->list);
2358 raw_spin_unlock(&pi_state->owner->pi_lock);
2361 pi_state->owner = newowner;
2363 raw_spin_lock(&newowner->pi_lock);
2364 WARN_ON(!list_empty(&pi_state->list));
2365 list_add(&pi_state->list, &newowner->pi_state_list);
2366 raw_spin_unlock(&newowner->pi_lock);
2367 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2369 return 0;
2372 * To handle the page fault we need to drop the locks here. That gives
2373 * the other task (either the highest priority waiter itself or the
2374 * task which stole the rtmutex) the chance to try the fixup of the
2375 * pi_state. So once we are back from handling the fault we need to
2376 * check the pi_state after reacquiring the locks and before trying to
2377 * do another fixup. When the fixup has been done already we simply
2378 * return.
2380 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2381 * drop hb->lock since the caller owns the hb -> futex_q relation.
2382 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2384 handle_fault:
2385 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2386 spin_unlock(q->lock_ptr);
2388 ret = fault_in_user_writeable(uaddr);
2390 spin_lock(q->lock_ptr);
2391 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2394 * Check if someone else fixed it for us:
2396 if (pi_state->owner != oldowner) {
2397 ret = 0;
2398 goto out_unlock;
2401 if (ret)
2402 goto out_unlock;
2404 goto retry;
2406 out_unlock:
2407 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2408 return ret;
2411 static long futex_wait_restart(struct restart_block *restart);
2414 * fixup_owner() - Post lock pi_state and corner case management
2415 * @uaddr: user address of the futex
2416 * @q: futex_q (contains pi_state and access to the rt_mutex)
2417 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2419 * After attempting to lock an rt_mutex, this function is called to cleanup
2420 * the pi_state owner as well as handle race conditions that may allow us to
2421 * acquire the lock. Must be called with the hb lock held.
2423 * Return:
2424 * - 1 - success, lock taken;
2425 * - 0 - success, lock not taken;
2426 * - <0 - on error (-EFAULT)
2428 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2430 int ret = 0;
2432 if (locked) {
2434 * Got the lock. We might not be the anticipated owner if we
2435 * did a lock-steal - fix up the PI-state in that case:
2437 * We can safely read pi_state->owner without holding wait_lock
2438 * because we now own the rt_mutex, only the owner will attempt
2439 * to change it.
2441 if (q->pi_state->owner != current)
2442 ret = fixup_pi_state_owner(uaddr, q, current);
2443 goto out;
2447 * Paranoia check. If we did not take the lock, then we should not be
2448 * the owner of the rt_mutex.
2450 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2451 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2452 "pi-state %p\n", ret,
2453 q->pi_state->pi_mutex.owner,
2454 q->pi_state->owner);
2457 out:
2458 return ret ? ret : locked;
2462 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2463 * @hb: the futex hash bucket, must be locked by the caller
2464 * @q: the futex_q to queue up on
2465 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2467 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2468 struct hrtimer_sleeper *timeout)
2471 * The task state is guaranteed to be set before another task can
2472 * wake it. set_current_state() is implemented using smp_store_mb() and
2473 * queue_me() calls spin_unlock() upon completion, both serializing
2474 * access to the hash list and forcing another memory barrier.
2476 set_current_state(TASK_INTERRUPTIBLE);
2477 queue_me(q, hb);
2479 /* Arm the timer */
2480 if (timeout)
2481 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2484 * If we have been removed from the hash list, then another task
2485 * has tried to wake us, and we can skip the call to schedule().
2487 if (likely(!plist_node_empty(&q->list))) {
2489 * If the timer has already expired, current will already be
2490 * flagged for rescheduling. Only call schedule if there
2491 * is no timeout, or if it has yet to expire.
2493 if (!timeout || timeout->task)
2494 freezable_schedule();
2496 __set_current_state(TASK_RUNNING);
2500 * futex_wait_setup() - Prepare to wait on a futex
2501 * @uaddr: the futex userspace address
2502 * @val: the expected value
2503 * @flags: futex flags (FLAGS_SHARED, etc.)
2504 * @q: the associated futex_q
2505 * @hb: storage for hash_bucket pointer to be returned to caller
2507 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2508 * compare it with the expected value. Handle atomic faults internally.
2509 * Return with the hb lock held and a q.key reference on success, and unlocked
2510 * with no q.key reference on failure.
2512 * Return:
2513 * - 0 - uaddr contains val and hb has been locked;
2514 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2516 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2517 struct futex_q *q, struct futex_hash_bucket **hb)
2519 u32 uval;
2520 int ret;
2523 * Access the page AFTER the hash-bucket is locked.
2524 * Order is important:
2526 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2527 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2529 * The basic logical guarantee of a futex is that it blocks ONLY
2530 * if cond(var) is known to be true at the time of blocking, for
2531 * any cond. If we locked the hash-bucket after testing *uaddr, that
2532 * would open a race condition where we could block indefinitely with
2533 * cond(var) false, which would violate the guarantee.
2535 * On the other hand, we insert q and release the hash-bucket only
2536 * after testing *uaddr. This guarantees that futex_wait() will NOT
2537 * absorb a wakeup if *uaddr does not match the desired values
2538 * while the syscall executes.
2540 retry:
2541 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2542 if (unlikely(ret != 0))
2543 return ret;
2545 retry_private:
2546 *hb = queue_lock(q);
2548 ret = get_futex_value_locked(&uval, uaddr);
2550 if (ret) {
2551 queue_unlock(*hb);
2553 ret = get_user(uval, uaddr);
2554 if (ret)
2555 goto out;
2557 if (!(flags & FLAGS_SHARED))
2558 goto retry_private;
2560 put_futex_key(&q->key);
2561 goto retry;
2564 if (uval != val) {
2565 queue_unlock(*hb);
2566 ret = -EWOULDBLOCK;
2569 out:
2570 if (ret)
2571 put_futex_key(&q->key);
2572 return ret;
2575 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2576 ktime_t *abs_time, u32 bitset)
2578 struct hrtimer_sleeper timeout, *to = NULL;
2579 struct restart_block *restart;
2580 struct futex_hash_bucket *hb;
2581 struct futex_q q = futex_q_init;
2582 int ret;
2584 if (!bitset)
2585 return -EINVAL;
2586 q.bitset = bitset;
2588 if (abs_time) {
2589 to = &timeout;
2591 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2592 CLOCK_REALTIME : CLOCK_MONOTONIC,
2593 HRTIMER_MODE_ABS);
2594 hrtimer_init_sleeper(to, current);
2595 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2596 current->timer_slack_ns);
2599 retry:
2601 * Prepare to wait on uaddr. On success, holds hb lock and increments
2602 * q.key refs.
2604 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2605 if (ret)
2606 goto out;
2608 /* queue_me and wait for wakeup, timeout, or a signal. */
2609 futex_wait_queue_me(hb, &q, to);
2611 /* If we were woken (and unqueued), we succeeded, whatever. */
2612 ret = 0;
2613 /* unqueue_me() drops q.key ref */
2614 if (!unqueue_me(&q))
2615 goto out;
2616 ret = -ETIMEDOUT;
2617 if (to && !to->task)
2618 goto out;
2621 * We expect signal_pending(current), but we might be the
2622 * victim of a spurious wakeup as well.
2624 if (!signal_pending(current))
2625 goto retry;
2627 ret = -ERESTARTSYS;
2628 if (!abs_time)
2629 goto out;
2631 restart = &current->restart_block;
2632 restart->fn = futex_wait_restart;
2633 restart->futex.uaddr = uaddr;
2634 restart->futex.val = val;
2635 restart->futex.time = *abs_time;
2636 restart->futex.bitset = bitset;
2637 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2639 ret = -ERESTART_RESTARTBLOCK;
2641 out:
2642 if (to) {
2643 hrtimer_cancel(&to->timer);
2644 destroy_hrtimer_on_stack(&to->timer);
2646 return ret;
2650 static long futex_wait_restart(struct restart_block *restart)
2652 u32 __user *uaddr = restart->futex.uaddr;
2653 ktime_t t, *tp = NULL;
2655 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2656 t = restart->futex.time;
2657 tp = &t;
2659 restart->fn = do_no_restart_syscall;
2661 return (long)futex_wait(uaddr, restart->futex.flags,
2662 restart->futex.val, tp, restart->futex.bitset);
2667 * Userspace tried a 0 -> TID atomic transition of the futex value
2668 * and failed. The kernel side here does the whole locking operation:
2669 * if there are waiters then it will block as a consequence of relying
2670 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2671 * a 0 value of the futex too.).
2673 * Also serves as futex trylock_pi()'ing, and due semantics.
2675 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2676 ktime_t *time, int trylock)
2678 struct hrtimer_sleeper timeout, *to = NULL;
2679 struct futex_pi_state *pi_state = NULL;
2680 struct rt_mutex_waiter rt_waiter;
2681 struct futex_hash_bucket *hb;
2682 struct futex_q q = futex_q_init;
2683 int res, ret;
2685 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2686 return -ENOSYS;
2688 if (refill_pi_state_cache())
2689 return -ENOMEM;
2691 if (time) {
2692 to = &timeout;
2693 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2694 HRTIMER_MODE_ABS);
2695 hrtimer_init_sleeper(to, current);
2696 hrtimer_set_expires(&to->timer, *time);
2699 retry:
2700 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2701 if (unlikely(ret != 0))
2702 goto out;
2704 retry_private:
2705 hb = queue_lock(&q);
2707 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2708 if (unlikely(ret)) {
2710 * Atomic work succeeded and we got the lock,
2711 * or failed. Either way, we do _not_ block.
2713 switch (ret) {
2714 case 1:
2715 /* We got the lock. */
2716 ret = 0;
2717 goto out_unlock_put_key;
2718 case -EFAULT:
2719 goto uaddr_faulted;
2720 case -EAGAIN:
2722 * Two reasons for this:
2723 * - Task is exiting and we just wait for the
2724 * exit to complete.
2725 * - The user space value changed.
2727 queue_unlock(hb);
2728 put_futex_key(&q.key);
2729 cond_resched();
2730 goto retry;
2731 default:
2732 goto out_unlock_put_key;
2736 WARN_ON(!q.pi_state);
2739 * Only actually queue now that the atomic ops are done:
2741 __queue_me(&q, hb);
2743 if (trylock) {
2744 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2745 /* Fixup the trylock return value: */
2746 ret = ret ? 0 : -EWOULDBLOCK;
2747 goto no_block;
2750 rt_mutex_init_waiter(&rt_waiter);
2753 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2754 * hold it while doing rt_mutex_start_proxy(), because then it will
2755 * include hb->lock in the blocking chain, even through we'll not in
2756 * fact hold it while blocking. This will lead it to report -EDEADLK
2757 * and BUG when futex_unlock_pi() interleaves with this.
2759 * Therefore acquire wait_lock while holding hb->lock, but drop the
2760 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2761 * serializes against futex_unlock_pi() as that does the exact same
2762 * lock handoff sequence.
2764 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2765 spin_unlock(q.lock_ptr);
2766 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2767 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2769 if (ret) {
2770 if (ret == 1)
2771 ret = 0;
2773 spin_lock(q.lock_ptr);
2774 goto no_block;
2778 if (unlikely(to))
2779 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2781 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2783 spin_lock(q.lock_ptr);
2785 * If we failed to acquire the lock (signal/timeout), we must
2786 * first acquire the hb->lock before removing the lock from the
2787 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2788 * wait lists consistent.
2790 * In particular; it is important that futex_unlock_pi() can not
2791 * observe this inconsistency.
2793 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2794 ret = 0;
2796 no_block:
2798 * Fixup the pi_state owner and possibly acquire the lock if we
2799 * haven't already.
2801 res = fixup_owner(uaddr, &q, !ret);
2803 * If fixup_owner() returned an error, proprogate that. If it acquired
2804 * the lock, clear our -ETIMEDOUT or -EINTR.
2806 if (res)
2807 ret = (res < 0) ? res : 0;
2810 * If fixup_owner() faulted and was unable to handle the fault, unlock
2811 * it and return the fault to userspace.
2813 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2814 pi_state = q.pi_state;
2815 get_pi_state(pi_state);
2818 /* Unqueue and drop the lock */
2819 unqueue_me_pi(&q);
2821 if (pi_state) {
2822 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2823 put_pi_state(pi_state);
2826 goto out_put_key;
2828 out_unlock_put_key:
2829 queue_unlock(hb);
2831 out_put_key:
2832 put_futex_key(&q.key);
2833 out:
2834 if (to) {
2835 hrtimer_cancel(&to->timer);
2836 destroy_hrtimer_on_stack(&to->timer);
2838 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2840 uaddr_faulted:
2841 queue_unlock(hb);
2843 ret = fault_in_user_writeable(uaddr);
2844 if (ret)
2845 goto out_put_key;
2847 if (!(flags & FLAGS_SHARED))
2848 goto retry_private;
2850 put_futex_key(&q.key);
2851 goto retry;
2855 * Userspace attempted a TID -> 0 atomic transition, and failed.
2856 * This is the in-kernel slowpath: we look up the PI state (if any),
2857 * and do the rt-mutex unlock.
2859 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2861 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2862 union futex_key key = FUTEX_KEY_INIT;
2863 struct futex_hash_bucket *hb;
2864 struct futex_q *top_waiter;
2865 int ret;
2867 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2868 return -ENOSYS;
2870 retry:
2871 if (get_user(uval, uaddr))
2872 return -EFAULT;
2874 * We release only a lock we actually own:
2876 if ((uval & FUTEX_TID_MASK) != vpid)
2877 return -EPERM;
2879 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2880 if (ret)
2881 return ret;
2883 hb = hash_futex(&key);
2884 spin_lock(&hb->lock);
2887 * Check waiters first. We do not trust user space values at
2888 * all and we at least want to know if user space fiddled
2889 * with the futex value instead of blindly unlocking.
2891 top_waiter = futex_top_waiter(hb, &key);
2892 if (top_waiter) {
2893 struct futex_pi_state *pi_state = top_waiter->pi_state;
2895 ret = -EINVAL;
2896 if (!pi_state)
2897 goto out_unlock;
2900 * If current does not own the pi_state then the futex is
2901 * inconsistent and user space fiddled with the futex value.
2903 if (pi_state->owner != current)
2904 goto out_unlock;
2906 get_pi_state(pi_state);
2908 * By taking wait_lock while still holding hb->lock, we ensure
2909 * there is no point where we hold neither; and therefore
2910 * wake_futex_pi() must observe a state consistent with what we
2911 * observed.
2913 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2914 spin_unlock(&hb->lock);
2916 /* drops pi_state->pi_mutex.wait_lock */
2917 ret = wake_futex_pi(uaddr, uval, pi_state);
2919 put_pi_state(pi_state);
2922 * Success, we're done! No tricky corner cases.
2924 if (!ret)
2925 goto out_putkey;
2927 * The atomic access to the futex value generated a
2928 * pagefault, so retry the user-access and the wakeup:
2930 if (ret == -EFAULT)
2931 goto pi_faulted;
2933 * A unconditional UNLOCK_PI op raced against a waiter
2934 * setting the FUTEX_WAITERS bit. Try again.
2936 if (ret == -EAGAIN) {
2937 put_futex_key(&key);
2938 goto retry;
2941 * wake_futex_pi has detected invalid state. Tell user
2942 * space.
2944 goto out_putkey;
2948 * We have no kernel internal state, i.e. no waiters in the
2949 * kernel. Waiters which are about to queue themselves are stuck
2950 * on hb->lock. So we can safely ignore them. We do neither
2951 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2952 * owner.
2954 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2955 spin_unlock(&hb->lock);
2956 goto pi_faulted;
2960 * If uval has changed, let user space handle it.
2962 ret = (curval == uval) ? 0 : -EAGAIN;
2964 out_unlock:
2965 spin_unlock(&hb->lock);
2966 out_putkey:
2967 put_futex_key(&key);
2968 return ret;
2970 pi_faulted:
2971 put_futex_key(&key);
2973 ret = fault_in_user_writeable(uaddr);
2974 if (!ret)
2975 goto retry;
2977 return ret;
2981 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2982 * @hb: the hash_bucket futex_q was original enqueued on
2983 * @q: the futex_q woken while waiting to be requeued
2984 * @key2: the futex_key of the requeue target futex
2985 * @timeout: the timeout associated with the wait (NULL if none)
2987 * Detect if the task was woken on the initial futex as opposed to the requeue
2988 * target futex. If so, determine if it was a timeout or a signal that caused
2989 * the wakeup and return the appropriate error code to the caller. Must be
2990 * called with the hb lock held.
2992 * Return:
2993 * - 0 = no early wakeup detected;
2994 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2996 static inline
2997 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2998 struct futex_q *q, union futex_key *key2,
2999 struct hrtimer_sleeper *timeout)
3001 int ret = 0;
3004 * With the hb lock held, we avoid races while we process the wakeup.
3005 * We only need to hold hb (and not hb2) to ensure atomicity as the
3006 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3007 * It can't be requeued from uaddr2 to something else since we don't
3008 * support a PI aware source futex for requeue.
3010 if (!match_futex(&q->key, key2)) {
3011 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3013 * We were woken prior to requeue by a timeout or a signal.
3014 * Unqueue the futex_q and determine which it was.
3016 plist_del(&q->list, &hb->chain);
3017 hb_waiters_dec(hb);
3019 /* Handle spurious wakeups gracefully */
3020 ret = -EWOULDBLOCK;
3021 if (timeout && !timeout->task)
3022 ret = -ETIMEDOUT;
3023 else if (signal_pending(current))
3024 ret = -ERESTARTNOINTR;
3026 return ret;
3030 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3031 * @uaddr: the futex we initially wait on (non-pi)
3032 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3033 * the same type, no requeueing from private to shared, etc.
3034 * @val: the expected value of uaddr
3035 * @abs_time: absolute timeout
3036 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3037 * @uaddr2: the pi futex we will take prior to returning to user-space
3039 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3040 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3041 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3042 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3043 * without one, the pi logic would not know which task to boost/deboost, if
3044 * there was a need to.
3046 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3047 * via the following--
3048 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3049 * 2) wakeup on uaddr2 after a requeue
3050 * 3) signal
3051 * 4) timeout
3053 * If 3, cleanup and return -ERESTARTNOINTR.
3055 * If 2, we may then block on trying to take the rt_mutex and return via:
3056 * 5) successful lock
3057 * 6) signal
3058 * 7) timeout
3059 * 8) other lock acquisition failure
3061 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3063 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3065 * Return:
3066 * - 0 - On success;
3067 * - <0 - On error
3069 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3070 u32 val, ktime_t *abs_time, u32 bitset,
3071 u32 __user *uaddr2)
3073 struct hrtimer_sleeper timeout, *to = NULL;
3074 struct futex_pi_state *pi_state = NULL;
3075 struct rt_mutex_waiter rt_waiter;
3076 struct futex_hash_bucket *hb;
3077 union futex_key key2 = FUTEX_KEY_INIT;
3078 struct futex_q q = futex_q_init;
3079 int res, ret;
3081 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3082 return -ENOSYS;
3084 if (uaddr == uaddr2)
3085 return -EINVAL;
3087 if (!bitset)
3088 return -EINVAL;
3090 if (abs_time) {
3091 to = &timeout;
3092 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3093 CLOCK_REALTIME : CLOCK_MONOTONIC,
3094 HRTIMER_MODE_ABS);
3095 hrtimer_init_sleeper(to, current);
3096 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3097 current->timer_slack_ns);
3101 * The waiter is allocated on our stack, manipulated by the requeue
3102 * code while we sleep on uaddr.
3104 rt_mutex_init_waiter(&rt_waiter);
3106 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3107 if (unlikely(ret != 0))
3108 goto out;
3110 q.bitset = bitset;
3111 q.rt_waiter = &rt_waiter;
3112 q.requeue_pi_key = &key2;
3115 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3116 * count.
3118 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3119 if (ret)
3120 goto out_key2;
3123 * The check above which compares uaddrs is not sufficient for
3124 * shared futexes. We need to compare the keys:
3126 if (match_futex(&q.key, &key2)) {
3127 queue_unlock(hb);
3128 ret = -EINVAL;
3129 goto out_put_keys;
3132 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3133 futex_wait_queue_me(hb, &q, to);
3135 spin_lock(&hb->lock);
3136 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3137 spin_unlock(&hb->lock);
3138 if (ret)
3139 goto out_put_keys;
3142 * In order for us to be here, we know our q.key == key2, and since
3143 * we took the hb->lock above, we also know that futex_requeue() has
3144 * completed and we no longer have to concern ourselves with a wakeup
3145 * race with the atomic proxy lock acquisition by the requeue code. The
3146 * futex_requeue dropped our key1 reference and incremented our key2
3147 * reference count.
3150 /* Check if the requeue code acquired the second futex for us. */
3151 if (!q.rt_waiter) {
3153 * Got the lock. We might not be the anticipated owner if we
3154 * did a lock-steal - fix up the PI-state in that case.
3156 if (q.pi_state && (q.pi_state->owner != current)) {
3157 spin_lock(q.lock_ptr);
3158 ret = fixup_pi_state_owner(uaddr2, &q, current);
3159 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3160 pi_state = q.pi_state;
3161 get_pi_state(pi_state);
3164 * Drop the reference to the pi state which
3165 * the requeue_pi() code acquired for us.
3167 put_pi_state(q.pi_state);
3168 spin_unlock(q.lock_ptr);
3170 } else {
3171 struct rt_mutex *pi_mutex;
3174 * We have been woken up by futex_unlock_pi(), a timeout, or a
3175 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3176 * the pi_state.
3178 WARN_ON(!q.pi_state);
3179 pi_mutex = &q.pi_state->pi_mutex;
3180 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3182 spin_lock(q.lock_ptr);
3183 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3184 ret = 0;
3186 debug_rt_mutex_free_waiter(&rt_waiter);
3188 * Fixup the pi_state owner and possibly acquire the lock if we
3189 * haven't already.
3191 res = fixup_owner(uaddr2, &q, !ret);
3193 * If fixup_owner() returned an error, proprogate that. If it
3194 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3196 if (res)
3197 ret = (res < 0) ? res : 0;
3200 * If fixup_pi_state_owner() faulted and was unable to handle
3201 * the fault, unlock the rt_mutex and return the fault to
3202 * userspace.
3204 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3205 pi_state = q.pi_state;
3206 get_pi_state(pi_state);
3209 /* Unqueue and drop the lock. */
3210 unqueue_me_pi(&q);
3213 if (pi_state) {
3214 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3215 put_pi_state(pi_state);
3218 if (ret == -EINTR) {
3220 * We've already been requeued, but cannot restart by calling
3221 * futex_lock_pi() directly. We could restart this syscall, but
3222 * it would detect that the user space "val" changed and return
3223 * -EWOULDBLOCK. Save the overhead of the restart and return
3224 * -EWOULDBLOCK directly.
3226 ret = -EWOULDBLOCK;
3229 out_put_keys:
3230 put_futex_key(&q.key);
3231 out_key2:
3232 put_futex_key(&key2);
3234 out:
3235 if (to) {
3236 hrtimer_cancel(&to->timer);
3237 destroy_hrtimer_on_stack(&to->timer);
3239 return ret;
3243 * Support for robust futexes: the kernel cleans up held futexes at
3244 * thread exit time.
3246 * Implementation: user-space maintains a per-thread list of locks it
3247 * is holding. Upon do_exit(), the kernel carefully walks this list,
3248 * and marks all locks that are owned by this thread with the
3249 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3250 * always manipulated with the lock held, so the list is private and
3251 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3252 * field, to allow the kernel to clean up if the thread dies after
3253 * acquiring the lock, but just before it could have added itself to
3254 * the list. There can only be one such pending lock.
3258 * sys_set_robust_list() - Set the robust-futex list head of a task
3259 * @head: pointer to the list-head
3260 * @len: length of the list-head, as userspace expects
3262 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3263 size_t, len)
3265 if (!futex_cmpxchg_enabled)
3266 return -ENOSYS;
3268 * The kernel knows only one size for now:
3270 if (unlikely(len != sizeof(*head)))
3271 return -EINVAL;
3273 current->robust_list = head;
3275 return 0;
3279 * sys_get_robust_list() - Get the robust-futex list head of a task
3280 * @pid: pid of the process [zero for current task]
3281 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3282 * @len_ptr: pointer to a length field, the kernel fills in the header size
3284 SYSCALL_DEFINE3(get_robust_list, int, pid,
3285 struct robust_list_head __user * __user *, head_ptr,
3286 size_t __user *, len_ptr)
3288 struct robust_list_head __user *head;
3289 unsigned long ret;
3290 struct task_struct *p;
3292 if (!futex_cmpxchg_enabled)
3293 return -ENOSYS;
3295 rcu_read_lock();
3297 ret = -ESRCH;
3298 if (!pid)
3299 p = current;
3300 else {
3301 p = find_task_by_vpid(pid);
3302 if (!p)
3303 goto err_unlock;
3306 ret = -EPERM;
3307 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3308 goto err_unlock;
3310 head = p->robust_list;
3311 rcu_read_unlock();
3313 if (put_user(sizeof(*head), len_ptr))
3314 return -EFAULT;
3315 return put_user(head, head_ptr);
3317 err_unlock:
3318 rcu_read_unlock();
3320 return ret;
3324 * Process a futex-list entry, check whether it's owned by the
3325 * dying task, and do notification if so:
3327 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3329 u32 uval, uninitialized_var(nval), mval;
3331 retry:
3332 if (get_user(uval, uaddr))
3333 return -1;
3335 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3337 * Ok, this dying thread is truly holding a futex
3338 * of interest. Set the OWNER_DIED bit atomically
3339 * via cmpxchg, and if the value had FUTEX_WAITERS
3340 * set, wake up a waiter (if any). (We have to do a
3341 * futex_wake() even if OWNER_DIED is already set -
3342 * to handle the rare but possible case of recursive
3343 * thread-death.) The rest of the cleanup is done in
3344 * userspace.
3346 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3348 * We are not holding a lock here, but we want to have
3349 * the pagefault_disable/enable() protection because
3350 * we want to handle the fault gracefully. If the
3351 * access fails we try to fault in the futex with R/W
3352 * verification via get_user_pages. get_user() above
3353 * does not guarantee R/W access. If that fails we
3354 * give up and leave the futex locked.
3356 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3357 if (fault_in_user_writeable(uaddr))
3358 return -1;
3359 goto retry;
3361 if (nval != uval)
3362 goto retry;
3365 * Wake robust non-PI futexes here. The wakeup of
3366 * PI futexes happens in exit_pi_state():
3368 if (!pi && (uval & FUTEX_WAITERS))
3369 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3371 return 0;
3375 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3377 static inline int fetch_robust_entry(struct robust_list __user **entry,
3378 struct robust_list __user * __user *head,
3379 unsigned int *pi)
3381 unsigned long uentry;
3383 if (get_user(uentry, (unsigned long __user *)head))
3384 return -EFAULT;
3386 *entry = (void __user *)(uentry & ~1UL);
3387 *pi = uentry & 1;
3389 return 0;
3393 * Walk curr->robust_list (very carefully, it's a userspace list!)
3394 * and mark any locks found there dead, and notify any waiters.
3396 * We silently return on any sign of list-walking problem.
3398 void exit_robust_list(struct task_struct *curr)
3400 struct robust_list_head __user *head = curr->robust_list;
3401 struct robust_list __user *entry, *next_entry, *pending;
3402 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3403 unsigned int uninitialized_var(next_pi);
3404 unsigned long futex_offset;
3405 int rc;
3407 if (!futex_cmpxchg_enabled)
3408 return;
3411 * Fetch the list head (which was registered earlier, via
3412 * sys_set_robust_list()):
3414 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3415 return;
3417 * Fetch the relative futex offset:
3419 if (get_user(futex_offset, &head->futex_offset))
3420 return;
3422 * Fetch any possibly pending lock-add first, and handle it
3423 * if it exists:
3425 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3426 return;
3428 next_entry = NULL; /* avoid warning with gcc */
3429 while (entry != &head->list) {
3431 * Fetch the next entry in the list before calling
3432 * handle_futex_death:
3434 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3436 * A pending lock might already be on the list, so
3437 * don't process it twice:
3439 if (entry != pending)
3440 if (handle_futex_death((void __user *)entry + futex_offset,
3441 curr, pi))
3442 return;
3443 if (rc)
3444 return;
3445 entry = next_entry;
3446 pi = next_pi;
3448 * Avoid excessively long or circular lists:
3450 if (!--limit)
3451 break;
3453 cond_resched();
3456 if (pending)
3457 handle_futex_death((void __user *)pending + futex_offset,
3458 curr, pip);
3461 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3462 u32 __user *uaddr2, u32 val2, u32 val3)
3464 int cmd = op & FUTEX_CMD_MASK;
3465 unsigned int flags = 0;
3467 if (!(op & FUTEX_PRIVATE_FLAG))
3468 flags |= FLAGS_SHARED;
3470 if (op & FUTEX_CLOCK_REALTIME) {
3471 flags |= FLAGS_CLOCKRT;
3472 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3473 cmd != FUTEX_WAIT_REQUEUE_PI)
3474 return -ENOSYS;
3477 switch (cmd) {
3478 case FUTEX_LOCK_PI:
3479 case FUTEX_UNLOCK_PI:
3480 case FUTEX_TRYLOCK_PI:
3481 case FUTEX_WAIT_REQUEUE_PI:
3482 case FUTEX_CMP_REQUEUE_PI:
3483 if (!futex_cmpxchg_enabled)
3484 return -ENOSYS;
3487 switch (cmd) {
3488 case FUTEX_WAIT:
3489 val3 = FUTEX_BITSET_MATCH_ANY;
3490 case FUTEX_WAIT_BITSET:
3491 return futex_wait(uaddr, flags, val, timeout, val3);
3492 case FUTEX_WAKE:
3493 val3 = FUTEX_BITSET_MATCH_ANY;
3494 case FUTEX_WAKE_BITSET:
3495 return futex_wake(uaddr, flags, val, val3);
3496 case FUTEX_REQUEUE:
3497 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3498 case FUTEX_CMP_REQUEUE:
3499 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3500 case FUTEX_WAKE_OP:
3501 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3502 case FUTEX_LOCK_PI:
3503 return futex_lock_pi(uaddr, flags, timeout, 0);
3504 case FUTEX_UNLOCK_PI:
3505 return futex_unlock_pi(uaddr, flags);
3506 case FUTEX_TRYLOCK_PI:
3507 return futex_lock_pi(uaddr, flags, NULL, 1);
3508 case FUTEX_WAIT_REQUEUE_PI:
3509 val3 = FUTEX_BITSET_MATCH_ANY;
3510 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3511 uaddr2);
3512 case FUTEX_CMP_REQUEUE_PI:
3513 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3515 return -ENOSYS;
3519 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3520 struct timespec __user *, utime, u32 __user *, uaddr2,
3521 u32, val3)
3523 struct timespec ts;
3524 ktime_t t, *tp = NULL;
3525 u32 val2 = 0;
3526 int cmd = op & FUTEX_CMD_MASK;
3528 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3529 cmd == FUTEX_WAIT_BITSET ||
3530 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3531 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3532 return -EFAULT;
3533 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3534 return -EFAULT;
3535 if (!timespec_valid(&ts))
3536 return -EINVAL;
3538 t = timespec_to_ktime(ts);
3539 if (cmd == FUTEX_WAIT)
3540 t = ktime_add_safe(ktime_get(), t);
3541 tp = &t;
3544 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3545 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3547 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3548 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3549 val2 = (u32) (unsigned long) utime;
3551 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3554 static void __init futex_detect_cmpxchg(void)
3556 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3557 u32 curval;
3560 * This will fail and we want it. Some arch implementations do
3561 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3562 * functionality. We want to know that before we call in any
3563 * of the complex code paths. Also we want to prevent
3564 * registration of robust lists in that case. NULL is
3565 * guaranteed to fault and we get -EFAULT on functional
3566 * implementation, the non-functional ones will return
3567 * -ENOSYS.
3569 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3570 futex_cmpxchg_enabled = 1;
3571 #endif
3574 static int __init futex_init(void)
3576 unsigned int futex_shift;
3577 unsigned long i;
3579 #if CONFIG_BASE_SMALL
3580 futex_hashsize = 16;
3581 #else
3582 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3583 #endif
3585 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3586 futex_hashsize, 0,
3587 futex_hashsize < 256 ? HASH_SMALL : 0,
3588 &futex_shift, NULL,
3589 futex_hashsize, futex_hashsize);
3590 futex_hashsize = 1UL << futex_shift;
3592 futex_detect_cmpxchg();
3594 for (i = 0; i < futex_hashsize; i++) {
3595 atomic_set(&futex_queues[i].waiters, 0);
3596 plist_head_init(&futex_queues[i].chain);
3597 spin_lock_init(&futex_queues[i].lock);
3600 return 0;
3602 core_initcall(futex_init);