2 * Implementation of the security services.
4 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
5 * James Morris <jmorris@redhat.com>
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 * Added conditional policy language extensions
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
21 * Updated: Chad Sellers <csellers@tresys.com>
23 * Added validation of kernel classes and permissions
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 * Added support for bounds domain and audit messaged on masked permissions
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 * Added support for runtime switching of the policy type
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
42 #include <linux/kernel.h>
43 #include <linux/slab.h>
44 #include <linux/string.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/errno.h>
49 #include <linux/sched.h>
50 #include <linux/audit.h>
51 #include <linux/mutex.h>
52 #include <linux/selinux.h>
53 #include <linux/flex_array.h>
54 #include <linux/vmalloc.h>
55 #include <net/netlabel.h>
65 #include "conditional.h"
73 /* Policy capability names */
74 char *selinux_policycap_names
[__POLICYDB_CAPABILITY_MAX
] = {
75 "network_peer_controls",
77 "extended_socket_class",
78 "always_check_network",
80 "nnp_nosuid_transition"
83 int selinux_policycap_netpeer
;
84 int selinux_policycap_openperm
;
85 int selinux_policycap_extsockclass
;
86 int selinux_policycap_alwaysnetwork
;
87 int selinux_policycap_cgroupseclabel
;
88 int selinux_policycap_nnp_nosuid_transition
;
90 static DEFINE_RWLOCK(policy_rwlock
);
92 static struct sidtab sidtab
;
93 struct policydb policydb
;
97 * The largest sequence number that has been used when
98 * providing an access decision to the access vector cache.
99 * The sequence number only changes when a policy change
102 static u32 latest_granting
;
104 /* Forward declaration. */
105 static int context_struct_to_string(struct context
*context
, char **scontext
,
108 static void context_struct_compute_av(struct context
*scontext
,
109 struct context
*tcontext
,
111 struct av_decision
*avd
,
112 struct extended_perms
*xperms
);
114 struct selinux_mapping
{
115 u16 value
; /* policy value */
117 u32 perms
[sizeof(u32
) * 8];
120 static struct selinux_mapping
*current_mapping
;
121 static u16 current_mapping_size
;
123 static int selinux_set_mapping(struct policydb
*pol
,
124 struct security_class_mapping
*map
,
125 struct selinux_mapping
**out_map_p
,
128 struct selinux_mapping
*out_map
= NULL
;
129 size_t size
= sizeof(struct selinux_mapping
);
132 bool print_unknown_handle
= false;
134 /* Find number of classes in the input mapping */
141 /* Allocate space for the class records, plus one for class zero */
142 out_map
= kcalloc(++i
, size
, GFP_ATOMIC
);
146 /* Store the raw class and permission values */
148 while (map
[j
].name
) {
149 struct security_class_mapping
*p_in
= map
+ (j
++);
150 struct selinux_mapping
*p_out
= out_map
+ j
;
152 /* An empty class string skips ahead */
153 if (!strcmp(p_in
->name
, "")) {
154 p_out
->num_perms
= 0;
158 p_out
->value
= string_to_security_class(pol
, p_in
->name
);
161 "SELinux: Class %s not defined in policy.\n",
163 if (pol
->reject_unknown
)
165 p_out
->num_perms
= 0;
166 print_unknown_handle
= true;
171 while (p_in
->perms
[k
]) {
172 /* An empty permission string skips ahead */
173 if (!*p_in
->perms
[k
]) {
177 p_out
->perms
[k
] = string_to_av_perm(pol
, p_out
->value
,
179 if (!p_out
->perms
[k
]) {
181 "SELinux: Permission %s in class %s not defined in policy.\n",
182 p_in
->perms
[k
], p_in
->name
);
183 if (pol
->reject_unknown
)
185 print_unknown_handle
= true;
190 p_out
->num_perms
= k
;
193 if (print_unknown_handle
)
194 printk(KERN_INFO
"SELinux: the above unknown classes and permissions will be %s\n",
195 pol
->allow_unknown
? "allowed" : "denied");
197 *out_map_p
= out_map
;
206 * Get real, policy values from mapped values
209 static u16
unmap_class(u16 tclass
)
211 if (tclass
< current_mapping_size
)
212 return current_mapping
[tclass
].value
;
218 * Get kernel value for class from its policy value
220 static u16
map_class(u16 pol_value
)
224 for (i
= 1; i
< current_mapping_size
; i
++) {
225 if (current_mapping
[i
].value
== pol_value
)
229 return SECCLASS_NULL
;
232 static void map_decision(u16 tclass
, struct av_decision
*avd
,
235 if (tclass
< current_mapping_size
) {
236 unsigned i
, n
= current_mapping
[tclass
].num_perms
;
239 for (i
= 0, result
= 0; i
< n
; i
++) {
240 if (avd
->allowed
& current_mapping
[tclass
].perms
[i
])
242 if (allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
245 avd
->allowed
= result
;
247 for (i
= 0, result
= 0; i
< n
; i
++)
248 if (avd
->auditallow
& current_mapping
[tclass
].perms
[i
])
250 avd
->auditallow
= result
;
252 for (i
= 0, result
= 0; i
< n
; i
++) {
253 if (avd
->auditdeny
& current_mapping
[tclass
].perms
[i
])
255 if (!allow_unknown
&& !current_mapping
[tclass
].perms
[i
])
259 * In case the kernel has a bug and requests a permission
260 * between num_perms and the maximum permission number, we
261 * should audit that denial
263 for (; i
< (sizeof(u32
)*8); i
++)
265 avd
->auditdeny
= result
;
269 int security_mls_enabled(void)
271 return policydb
.mls_enabled
;
275 * Return the boolean value of a constraint expression
276 * when it is applied to the specified source and target
279 * xcontext is a special beast... It is used by the validatetrans rules
280 * only. For these rules, scontext is the context before the transition,
281 * tcontext is the context after the transition, and xcontext is the context
282 * of the process performing the transition. All other callers of
283 * constraint_expr_eval should pass in NULL for xcontext.
285 static int constraint_expr_eval(struct context
*scontext
,
286 struct context
*tcontext
,
287 struct context
*xcontext
,
288 struct constraint_expr
*cexpr
)
292 struct role_datum
*r1
, *r2
;
293 struct mls_level
*l1
, *l2
;
294 struct constraint_expr
*e
;
295 int s
[CEXPR_MAXDEPTH
];
298 for (e
= cexpr
; e
; e
= e
->next
) {
299 switch (e
->expr_type
) {
315 if (sp
== (CEXPR_MAXDEPTH
- 1))
319 val1
= scontext
->user
;
320 val2
= tcontext
->user
;
323 val1
= scontext
->type
;
324 val2
= tcontext
->type
;
327 val1
= scontext
->role
;
328 val2
= tcontext
->role
;
329 r1
= policydb
.role_val_to_struct
[val1
- 1];
330 r2
= policydb
.role_val_to_struct
[val2
- 1];
333 s
[++sp
] = ebitmap_get_bit(&r1
->dominates
,
337 s
[++sp
] = ebitmap_get_bit(&r2
->dominates
,
341 s
[++sp
] = (!ebitmap_get_bit(&r1
->dominates
,
343 !ebitmap_get_bit(&r2
->dominates
,
351 l1
= &(scontext
->range
.level
[0]);
352 l2
= &(tcontext
->range
.level
[0]);
355 l1
= &(scontext
->range
.level
[0]);
356 l2
= &(tcontext
->range
.level
[1]);
359 l1
= &(scontext
->range
.level
[1]);
360 l2
= &(tcontext
->range
.level
[0]);
363 l1
= &(scontext
->range
.level
[1]);
364 l2
= &(tcontext
->range
.level
[1]);
367 l1
= &(scontext
->range
.level
[0]);
368 l2
= &(scontext
->range
.level
[1]);
371 l1
= &(tcontext
->range
.level
[0]);
372 l2
= &(tcontext
->range
.level
[1]);
377 s
[++sp
] = mls_level_eq(l1
, l2
);
380 s
[++sp
] = !mls_level_eq(l1
, l2
);
383 s
[++sp
] = mls_level_dom(l1
, l2
);
386 s
[++sp
] = mls_level_dom(l2
, l1
);
389 s
[++sp
] = mls_level_incomp(l2
, l1
);
403 s
[++sp
] = (val1
== val2
);
406 s
[++sp
] = (val1
!= val2
);
414 if (sp
== (CEXPR_MAXDEPTH
-1))
417 if (e
->attr
& CEXPR_TARGET
)
419 else if (e
->attr
& CEXPR_XTARGET
) {
426 if (e
->attr
& CEXPR_USER
)
428 else if (e
->attr
& CEXPR_ROLE
)
430 else if (e
->attr
& CEXPR_TYPE
)
439 s
[++sp
] = ebitmap_get_bit(&e
->names
, val1
- 1);
442 s
[++sp
] = !ebitmap_get_bit(&e
->names
, val1
- 1);
460 * security_dump_masked_av - dumps masked permissions during
461 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
463 static int dump_masked_av_helper(void *k
, void *d
, void *args
)
465 struct perm_datum
*pdatum
= d
;
466 char **permission_names
= args
;
468 BUG_ON(pdatum
->value
< 1 || pdatum
->value
> 32);
470 permission_names
[pdatum
->value
- 1] = (char *)k
;
475 static void security_dump_masked_av(struct context
*scontext
,
476 struct context
*tcontext
,
481 struct common_datum
*common_dat
;
482 struct class_datum
*tclass_dat
;
483 struct audit_buffer
*ab
;
485 char *scontext_name
= NULL
;
486 char *tcontext_name
= NULL
;
487 char *permission_names
[32];
490 bool need_comma
= false;
495 tclass_name
= sym_name(&policydb
, SYM_CLASSES
, tclass
- 1);
496 tclass_dat
= policydb
.class_val_to_struct
[tclass
- 1];
497 common_dat
= tclass_dat
->comdatum
;
499 /* init permission_names */
501 hashtab_map(common_dat
->permissions
.table
,
502 dump_masked_av_helper
, permission_names
) < 0)
505 if (hashtab_map(tclass_dat
->permissions
.table
,
506 dump_masked_av_helper
, permission_names
) < 0)
509 /* get scontext/tcontext in text form */
510 if (context_struct_to_string(scontext
,
511 &scontext_name
, &length
) < 0)
514 if (context_struct_to_string(tcontext
,
515 &tcontext_name
, &length
) < 0)
518 /* audit a message */
519 ab
= audit_log_start(current
->audit_context
,
520 GFP_ATOMIC
, AUDIT_SELINUX_ERR
);
524 audit_log_format(ab
, "op=security_compute_av reason=%s "
525 "scontext=%s tcontext=%s tclass=%s perms=",
526 reason
, scontext_name
, tcontext_name
, tclass_name
);
528 for (index
= 0; index
< 32; index
++) {
529 u32 mask
= (1 << index
);
531 if ((mask
& permissions
) == 0)
534 audit_log_format(ab
, "%s%s",
535 need_comma
? "," : "",
536 permission_names
[index
]
537 ? permission_names
[index
] : "????");
542 /* release scontext/tcontext */
543 kfree(tcontext_name
);
544 kfree(scontext_name
);
550 * security_boundary_permission - drops violated permissions
551 * on boundary constraint.
553 static void type_attribute_bounds_av(struct context
*scontext
,
554 struct context
*tcontext
,
556 struct av_decision
*avd
)
558 struct context lo_scontext
;
559 struct context lo_tcontext
, *tcontextp
= tcontext
;
560 struct av_decision lo_avd
;
561 struct type_datum
*source
;
562 struct type_datum
*target
;
565 source
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
572 target
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
576 memset(&lo_avd
, 0, sizeof(lo_avd
));
578 memcpy(&lo_scontext
, scontext
, sizeof(lo_scontext
));
579 lo_scontext
.type
= source
->bounds
;
581 if (target
->bounds
) {
582 memcpy(&lo_tcontext
, tcontext
, sizeof(lo_tcontext
));
583 lo_tcontext
.type
= target
->bounds
;
584 tcontextp
= &lo_tcontext
;
587 context_struct_compute_av(&lo_scontext
,
593 masked
= ~lo_avd
.allowed
& avd
->allowed
;
596 return; /* no masked permission */
598 /* mask violated permissions */
599 avd
->allowed
&= ~masked
;
601 /* audit masked permissions */
602 security_dump_masked_av(scontext
, tcontext
,
603 tclass
, masked
, "bounds");
607 * flag which drivers have permissions
608 * only looking for ioctl based extended permssions
610 void services_compute_xperms_drivers(
611 struct extended_perms
*xperms
,
612 struct avtab_node
*node
)
616 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
617 /* if one or more driver has all permissions allowed */
618 for (i
= 0; i
< ARRAY_SIZE(xperms
->drivers
.p
); i
++)
619 xperms
->drivers
.p
[i
] |= node
->datum
.u
.xperms
->perms
.p
[i
];
620 } else if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
621 /* if allowing permissions within a driver */
622 security_xperm_set(xperms
->drivers
.p
,
623 node
->datum
.u
.xperms
->driver
);
626 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
627 if (node
->key
.specified
& AVTAB_XPERMS_ALLOWED
)
632 * Compute access vectors and extended permissions based on a context
633 * structure pair for the permissions in a particular class.
635 static void context_struct_compute_av(struct context
*scontext
,
636 struct context
*tcontext
,
638 struct av_decision
*avd
,
639 struct extended_perms
*xperms
)
641 struct constraint_node
*constraint
;
642 struct role_allow
*ra
;
643 struct avtab_key avkey
;
644 struct avtab_node
*node
;
645 struct class_datum
*tclass_datum
;
646 struct ebitmap
*sattr
, *tattr
;
647 struct ebitmap_node
*snode
, *tnode
;
652 avd
->auditdeny
= 0xffffffff;
654 memset(&xperms
->drivers
, 0, sizeof(xperms
->drivers
));
658 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
659 if (printk_ratelimit())
660 printk(KERN_WARNING
"SELinux: Invalid class %hu\n", tclass
);
664 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
667 * If a specific type enforcement rule was defined for
668 * this permission check, then use it.
670 avkey
.target_class
= tclass
;
671 avkey
.specified
= AVTAB_AV
| AVTAB_XPERMS
;
672 sattr
= flex_array_get(policydb
.type_attr_map_array
, scontext
->type
- 1);
674 tattr
= flex_array_get(policydb
.type_attr_map_array
, tcontext
->type
- 1);
676 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
677 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
678 avkey
.source_type
= i
+ 1;
679 avkey
.target_type
= j
+ 1;
680 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
682 node
= avtab_search_node_next(node
, avkey
.specified
)) {
683 if (node
->key
.specified
== AVTAB_ALLOWED
)
684 avd
->allowed
|= node
->datum
.u
.data
;
685 else if (node
->key
.specified
== AVTAB_AUDITALLOW
)
686 avd
->auditallow
|= node
->datum
.u
.data
;
687 else if (node
->key
.specified
== AVTAB_AUDITDENY
)
688 avd
->auditdeny
&= node
->datum
.u
.data
;
689 else if (xperms
&& (node
->key
.specified
& AVTAB_XPERMS
))
690 services_compute_xperms_drivers(xperms
, node
);
693 /* Check conditional av table for additional permissions */
694 cond_compute_av(&policydb
.te_cond_avtab
, &avkey
,
701 * Remove any permissions prohibited by a constraint (this includes
704 constraint
= tclass_datum
->constraints
;
706 if ((constraint
->permissions
& (avd
->allowed
)) &&
707 !constraint_expr_eval(scontext
, tcontext
, NULL
,
709 avd
->allowed
&= ~(constraint
->permissions
);
711 constraint
= constraint
->next
;
715 * If checking process transition permission and the
716 * role is changing, then check the (current_role, new_role)
719 if (tclass
== policydb
.process_class
&&
720 (avd
->allowed
& policydb
.process_trans_perms
) &&
721 scontext
->role
!= tcontext
->role
) {
722 for (ra
= policydb
.role_allow
; ra
; ra
= ra
->next
) {
723 if (scontext
->role
== ra
->role
&&
724 tcontext
->role
== ra
->new_role
)
728 avd
->allowed
&= ~policydb
.process_trans_perms
;
732 * If the given source and target types have boundary
733 * constraint, lazy checks have to mask any violated
734 * permission and notice it to userspace via audit.
736 type_attribute_bounds_av(scontext
, tcontext
,
740 static int security_validtrans_handle_fail(struct context
*ocontext
,
741 struct context
*ncontext
,
742 struct context
*tcontext
,
745 char *o
= NULL
, *n
= NULL
, *t
= NULL
;
746 u32 olen
, nlen
, tlen
;
748 if (context_struct_to_string(ocontext
, &o
, &olen
))
750 if (context_struct_to_string(ncontext
, &n
, &nlen
))
752 if (context_struct_to_string(tcontext
, &t
, &tlen
))
754 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
755 "op=security_validate_transition seresult=denied"
756 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
757 o
, n
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
763 if (!selinux_enforcing
)
768 static int security_compute_validatetrans(u32 oldsid
, u32 newsid
, u32 tasksid
,
769 u16 orig_tclass
, bool user
)
771 struct context
*ocontext
;
772 struct context
*ncontext
;
773 struct context
*tcontext
;
774 struct class_datum
*tclass_datum
;
775 struct constraint_node
*constraint
;
782 read_lock(&policy_rwlock
);
785 tclass
= unmap_class(orig_tclass
);
787 tclass
= orig_tclass
;
789 if (!tclass
|| tclass
> policydb
.p_classes
.nprim
) {
793 tclass_datum
= policydb
.class_val_to_struct
[tclass
- 1];
795 ocontext
= sidtab_search(&sidtab
, oldsid
);
797 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
803 ncontext
= sidtab_search(&sidtab
, newsid
);
805 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
811 tcontext
= sidtab_search(&sidtab
, tasksid
);
813 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
819 constraint
= tclass_datum
->validatetrans
;
821 if (!constraint_expr_eval(ocontext
, ncontext
, tcontext
,
826 rc
= security_validtrans_handle_fail(ocontext
,
832 constraint
= constraint
->next
;
836 read_unlock(&policy_rwlock
);
840 int security_validate_transition_user(u32 oldsid
, u32 newsid
, u32 tasksid
,
843 return security_compute_validatetrans(oldsid
, newsid
, tasksid
,
847 int security_validate_transition(u32 oldsid
, u32 newsid
, u32 tasksid
,
850 return security_compute_validatetrans(oldsid
, newsid
, tasksid
,
855 * security_bounded_transition - check whether the given
856 * transition is directed to bounded, or not.
857 * It returns 0, if @newsid is bounded by @oldsid.
858 * Otherwise, it returns error code.
860 * @oldsid : current security identifier
861 * @newsid : destinated security identifier
863 int security_bounded_transition(u32 old_sid
, u32 new_sid
)
865 struct context
*old_context
, *new_context
;
866 struct type_datum
*type
;
870 read_lock(&policy_rwlock
);
873 old_context
= sidtab_search(&sidtab
, old_sid
);
875 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
881 new_context
= sidtab_search(&sidtab
, new_sid
);
883 printk(KERN_ERR
"SELinux: %s: unrecognized SID %u\n",
889 /* type/domain unchanged */
890 if (old_context
->type
== new_context
->type
)
893 index
= new_context
->type
;
895 type
= flex_array_get_ptr(policydb
.type_val_to_struct_array
,
899 /* not bounded anymore */
904 /* @newsid is bounded by @oldsid */
906 if (type
->bounds
== old_context
->type
)
909 index
= type
->bounds
;
913 char *old_name
= NULL
;
914 char *new_name
= NULL
;
917 if (!context_struct_to_string(old_context
,
918 &old_name
, &length
) &&
919 !context_struct_to_string(new_context
,
920 &new_name
, &length
)) {
921 audit_log(current
->audit_context
,
922 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
923 "op=security_bounded_transition "
925 "oldcontext=%s newcontext=%s",
932 read_unlock(&policy_rwlock
);
937 static void avd_init(struct av_decision
*avd
)
941 avd
->auditdeny
= 0xffffffff;
942 avd
->seqno
= latest_granting
;
946 void services_compute_xperms_decision(struct extended_perms_decision
*xpermd
,
947 struct avtab_node
*node
)
951 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
952 if (xpermd
->driver
!= node
->datum
.u
.xperms
->driver
)
954 } else if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
955 if (!security_xperm_test(node
->datum
.u
.xperms
->perms
.p
,
962 if (node
->key
.specified
== AVTAB_XPERMS_ALLOWED
) {
963 xpermd
->used
|= XPERMS_ALLOWED
;
964 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
965 memset(xpermd
->allowed
->p
, 0xff,
966 sizeof(xpermd
->allowed
->p
));
968 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
969 for (i
= 0; i
< ARRAY_SIZE(xpermd
->allowed
->p
); i
++)
970 xpermd
->allowed
->p
[i
] |=
971 node
->datum
.u
.xperms
->perms
.p
[i
];
973 } else if (node
->key
.specified
== AVTAB_XPERMS_AUDITALLOW
) {
974 xpermd
->used
|= XPERMS_AUDITALLOW
;
975 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
976 memset(xpermd
->auditallow
->p
, 0xff,
977 sizeof(xpermd
->auditallow
->p
));
979 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
980 for (i
= 0; i
< ARRAY_SIZE(xpermd
->auditallow
->p
); i
++)
981 xpermd
->auditallow
->p
[i
] |=
982 node
->datum
.u
.xperms
->perms
.p
[i
];
984 } else if (node
->key
.specified
== AVTAB_XPERMS_DONTAUDIT
) {
985 xpermd
->used
|= XPERMS_DONTAUDIT
;
986 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLDRIVER
) {
987 memset(xpermd
->dontaudit
->p
, 0xff,
988 sizeof(xpermd
->dontaudit
->p
));
990 if (node
->datum
.u
.xperms
->specified
== AVTAB_XPERMS_IOCTLFUNCTION
) {
991 for (i
= 0; i
< ARRAY_SIZE(xpermd
->dontaudit
->p
); i
++)
992 xpermd
->dontaudit
->p
[i
] |=
993 node
->datum
.u
.xperms
->perms
.p
[i
];
1000 void security_compute_xperms_decision(u32 ssid
,
1004 struct extended_perms_decision
*xpermd
)
1007 struct context
*scontext
, *tcontext
;
1008 struct avtab_key avkey
;
1009 struct avtab_node
*node
;
1010 struct ebitmap
*sattr
, *tattr
;
1011 struct ebitmap_node
*snode
, *tnode
;
1014 xpermd
->driver
= driver
;
1016 memset(xpermd
->allowed
->p
, 0, sizeof(xpermd
->allowed
->p
));
1017 memset(xpermd
->auditallow
->p
, 0, sizeof(xpermd
->auditallow
->p
));
1018 memset(xpermd
->dontaudit
->p
, 0, sizeof(xpermd
->dontaudit
->p
));
1020 read_lock(&policy_rwlock
);
1021 if (!ss_initialized
)
1024 scontext
= sidtab_search(&sidtab
, ssid
);
1026 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1031 tcontext
= sidtab_search(&sidtab
, tsid
);
1033 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1038 tclass
= unmap_class(orig_tclass
);
1039 if (unlikely(orig_tclass
&& !tclass
)) {
1040 if (policydb
.allow_unknown
)
1046 if (unlikely(!tclass
|| tclass
> policydb
.p_classes
.nprim
)) {
1047 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass
);
1051 avkey
.target_class
= tclass
;
1052 avkey
.specified
= AVTAB_XPERMS
;
1053 sattr
= flex_array_get(policydb
.type_attr_map_array
,
1054 scontext
->type
- 1);
1056 tattr
= flex_array_get(policydb
.type_attr_map_array
,
1057 tcontext
->type
- 1);
1059 ebitmap_for_each_positive_bit(sattr
, snode
, i
) {
1060 ebitmap_for_each_positive_bit(tattr
, tnode
, j
) {
1061 avkey
.source_type
= i
+ 1;
1062 avkey
.target_type
= j
+ 1;
1063 for (node
= avtab_search_node(&policydb
.te_avtab
, &avkey
);
1065 node
= avtab_search_node_next(node
, avkey
.specified
))
1066 services_compute_xperms_decision(xpermd
, node
);
1068 cond_compute_xperms(&policydb
.te_cond_avtab
,
1073 read_unlock(&policy_rwlock
);
1076 memset(xpermd
->allowed
->p
, 0xff, sizeof(xpermd
->allowed
->p
));
1081 * security_compute_av - Compute access vector decisions.
1082 * @ssid: source security identifier
1083 * @tsid: target security identifier
1084 * @tclass: target security class
1085 * @avd: access vector decisions
1086 * @xperms: extended permissions
1088 * Compute a set of access vector decisions based on the
1089 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 void security_compute_av(u32 ssid
,
1094 struct av_decision
*avd
,
1095 struct extended_perms
*xperms
)
1098 struct context
*scontext
= NULL
, *tcontext
= NULL
;
1100 read_lock(&policy_rwlock
);
1103 if (!ss_initialized
)
1106 scontext
= sidtab_search(&sidtab
, ssid
);
1108 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1113 /* permissive domain? */
1114 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
1115 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
1117 tcontext
= sidtab_search(&sidtab
, tsid
);
1119 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1124 tclass
= unmap_class(orig_tclass
);
1125 if (unlikely(orig_tclass
&& !tclass
)) {
1126 if (policydb
.allow_unknown
)
1130 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
, xperms
);
1131 map_decision(orig_tclass
, avd
, policydb
.allow_unknown
);
1133 read_unlock(&policy_rwlock
);
1136 avd
->allowed
= 0xffffffff;
1140 void security_compute_av_user(u32 ssid
,
1143 struct av_decision
*avd
)
1145 struct context
*scontext
= NULL
, *tcontext
= NULL
;
1147 read_lock(&policy_rwlock
);
1149 if (!ss_initialized
)
1152 scontext
= sidtab_search(&sidtab
, ssid
);
1154 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1159 /* permissive domain? */
1160 if (ebitmap_get_bit(&policydb
.permissive_map
, scontext
->type
))
1161 avd
->flags
|= AVD_FLAGS_PERMISSIVE
;
1163 tcontext
= sidtab_search(&sidtab
, tsid
);
1165 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1170 if (unlikely(!tclass
)) {
1171 if (policydb
.allow_unknown
)
1176 context_struct_compute_av(scontext
, tcontext
, tclass
, avd
, NULL
);
1178 read_unlock(&policy_rwlock
);
1181 avd
->allowed
= 0xffffffff;
1186 * Write the security context string representation of
1187 * the context structure `context' into a dynamically
1188 * allocated string of the correct size. Set `*scontext'
1189 * to point to this string and set `*scontext_len' to
1190 * the length of the string.
1192 static int context_struct_to_string(struct context
*context
, char **scontext
, u32
*scontext_len
)
1201 *scontext_len
= context
->len
;
1203 *scontext
= kstrdup(context
->str
, GFP_ATOMIC
);
1210 /* Compute the size of the context. */
1211 *scontext_len
+= strlen(sym_name(&policydb
, SYM_USERS
, context
->user
- 1)) + 1;
1212 *scontext_len
+= strlen(sym_name(&policydb
, SYM_ROLES
, context
->role
- 1)) + 1;
1213 *scontext_len
+= strlen(sym_name(&policydb
, SYM_TYPES
, context
->type
- 1)) + 1;
1214 *scontext_len
+= mls_compute_context_len(context
);
1219 /* Allocate space for the context; caller must free this space. */
1220 scontextp
= kmalloc(*scontext_len
, GFP_ATOMIC
);
1223 *scontext
= scontextp
;
1226 * Copy the user name, role name and type name into the context.
1228 scontextp
+= sprintf(scontextp
, "%s:%s:%s",
1229 sym_name(&policydb
, SYM_USERS
, context
->user
- 1),
1230 sym_name(&policydb
, SYM_ROLES
, context
->role
- 1),
1231 sym_name(&policydb
, SYM_TYPES
, context
->type
- 1));
1233 mls_sid_to_context(context
, &scontextp
);
1240 #include "initial_sid_to_string.h"
1242 const char *security_get_initial_sid_context(u32 sid
)
1244 if (unlikely(sid
> SECINITSID_NUM
))
1246 return initial_sid_to_string
[sid
];
1249 static int security_sid_to_context_core(u32 sid
, char **scontext
,
1250 u32
*scontext_len
, int force
)
1252 struct context
*context
;
1259 if (!ss_initialized
) {
1260 if (sid
<= SECINITSID_NUM
) {
1263 *scontext_len
= strlen(initial_sid_to_string
[sid
]) + 1;
1266 scontextp
= kmemdup(initial_sid_to_string
[sid
],
1267 *scontext_len
, GFP_ATOMIC
);
1272 *scontext
= scontextp
;
1275 printk(KERN_ERR
"SELinux: %s: called before initial "
1276 "load_policy on unknown SID %d\n", __func__
, sid
);
1280 read_lock(&policy_rwlock
);
1282 context
= sidtab_search_force(&sidtab
, sid
);
1284 context
= sidtab_search(&sidtab
, sid
);
1286 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1291 rc
= context_struct_to_string(context
, scontext
, scontext_len
);
1293 read_unlock(&policy_rwlock
);
1300 * security_sid_to_context - Obtain a context for a given SID.
1301 * @sid: security identifier, SID
1302 * @scontext: security context
1303 * @scontext_len: length in bytes
1305 * Write the string representation of the context associated with @sid
1306 * into a dynamically allocated string of the correct size. Set @scontext
1307 * to point to this string and set @scontext_len to the length of the string.
1309 int security_sid_to_context(u32 sid
, char **scontext
, u32
*scontext_len
)
1311 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 0);
1314 int security_sid_to_context_force(u32 sid
, char **scontext
, u32
*scontext_len
)
1316 return security_sid_to_context_core(sid
, scontext
, scontext_len
, 1);
1320 * Caveat: Mutates scontext.
1322 static int string_to_context_struct(struct policydb
*pol
,
1323 struct sidtab
*sidtabp
,
1326 struct context
*ctx
,
1329 struct role_datum
*role
;
1330 struct type_datum
*typdatum
;
1331 struct user_datum
*usrdatum
;
1332 char *scontextp
, *p
, oldc
;
1337 /* Parse the security context. */
1340 scontextp
= (char *) scontext
;
1342 /* Extract the user. */
1344 while (*p
&& *p
!= ':')
1352 usrdatum
= hashtab_search(pol
->p_users
.table
, scontextp
);
1356 ctx
->user
= usrdatum
->value
;
1360 while (*p
&& *p
!= ':')
1368 role
= hashtab_search(pol
->p_roles
.table
, scontextp
);
1371 ctx
->role
= role
->value
;
1375 while (*p
&& *p
!= ':')
1380 typdatum
= hashtab_search(pol
->p_types
.table
, scontextp
);
1381 if (!typdatum
|| typdatum
->attribute
)
1384 ctx
->type
= typdatum
->value
;
1386 rc
= mls_context_to_sid(pol
, oldc
, &p
, ctx
, sidtabp
, def_sid
);
1391 if ((p
- scontext
) < scontext_len
)
1394 /* Check the validity of the new context. */
1395 if (!policydb_context_isvalid(pol
, ctx
))
1400 context_destroy(ctx
);
1404 static int security_context_to_sid_core(const char *scontext
, u32 scontext_len
,
1405 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
,
1408 char *scontext2
, *str
= NULL
;
1409 struct context context
;
1412 /* An empty security context is never valid. */
1416 if (!ss_initialized
) {
1419 for (i
= 1; i
< SECINITSID_NUM
; i
++) {
1420 if (!strcmp(initial_sid_to_string
[i
], scontext
)) {
1425 *sid
= SECINITSID_KERNEL
;
1430 /* Copy the string so that we can modify the copy as we parse it. */
1431 scontext2
= kmalloc(scontext_len
+ 1, gfp_flags
);
1434 memcpy(scontext2
, scontext
, scontext_len
);
1435 scontext2
[scontext_len
] = 0;
1438 /* Save another copy for storing in uninterpreted form */
1440 str
= kstrdup(scontext2
, gfp_flags
);
1445 read_lock(&policy_rwlock
);
1446 rc
= string_to_context_struct(&policydb
, &sidtab
, scontext2
,
1447 scontext_len
, &context
, def_sid
);
1448 if (rc
== -EINVAL
&& force
) {
1450 context
.len
= scontext_len
;
1454 rc
= sidtab_context_to_sid(&sidtab
, &context
, sid
);
1455 context_destroy(&context
);
1457 read_unlock(&policy_rwlock
);
1465 * security_context_to_sid - Obtain a SID for a given security context.
1466 * @scontext: security context
1467 * @scontext_len: length in bytes
1468 * @sid: security identifier, SID
1469 * @gfp: context for the allocation
1471 * Obtains a SID associated with the security context that
1472 * has the string representation specified by @scontext.
1473 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1474 * memory is available, or 0 on success.
1476 int security_context_to_sid(const char *scontext
, u32 scontext_len
, u32
*sid
,
1479 return security_context_to_sid_core(scontext
, scontext_len
,
1480 sid
, SECSID_NULL
, gfp
, 0);
1483 int security_context_str_to_sid(const char *scontext
, u32
*sid
, gfp_t gfp
)
1485 return security_context_to_sid(scontext
, strlen(scontext
), sid
, gfp
);
1489 * security_context_to_sid_default - Obtain a SID for a given security context,
1490 * falling back to specified default if needed.
1492 * @scontext: security context
1493 * @scontext_len: length in bytes
1494 * @sid: security identifier, SID
1495 * @def_sid: default SID to assign on error
1497 * Obtains a SID associated with the security context that
1498 * has the string representation specified by @scontext.
1499 * The default SID is passed to the MLS layer to be used to allow
1500 * kernel labeling of the MLS field if the MLS field is not present
1501 * (for upgrading to MLS without full relabel).
1502 * Implicitly forces adding of the context even if it cannot be mapped yet.
1503 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1504 * memory is available, or 0 on success.
1506 int security_context_to_sid_default(const char *scontext
, u32 scontext_len
,
1507 u32
*sid
, u32 def_sid
, gfp_t gfp_flags
)
1509 return security_context_to_sid_core(scontext
, scontext_len
,
1510 sid
, def_sid
, gfp_flags
, 1);
1513 int security_context_to_sid_force(const char *scontext
, u32 scontext_len
,
1516 return security_context_to_sid_core(scontext
, scontext_len
,
1517 sid
, SECSID_NULL
, GFP_KERNEL
, 1);
1520 static int compute_sid_handle_invalid_context(
1521 struct context
*scontext
,
1522 struct context
*tcontext
,
1524 struct context
*newcontext
)
1526 char *s
= NULL
, *t
= NULL
, *n
= NULL
;
1527 u32 slen
, tlen
, nlen
;
1529 if (context_struct_to_string(scontext
, &s
, &slen
))
1531 if (context_struct_to_string(tcontext
, &t
, &tlen
))
1533 if (context_struct_to_string(newcontext
, &n
, &nlen
))
1535 audit_log(current
->audit_context
, GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
1536 "op=security_compute_sid invalid_context=%s"
1540 n
, s
, t
, sym_name(&policydb
, SYM_CLASSES
, tclass
-1));
1545 if (!selinux_enforcing
)
1550 static void filename_compute_type(struct policydb
*p
, struct context
*newcontext
,
1551 u32 stype
, u32 ttype
, u16 tclass
,
1552 const char *objname
)
1554 struct filename_trans ft
;
1555 struct filename_trans_datum
*otype
;
1558 * Most filename trans rules are going to live in specific directories
1559 * like /dev or /var/run. This bitmap will quickly skip rule searches
1560 * if the ttype does not contain any rules.
1562 if (!ebitmap_get_bit(&p
->filename_trans_ttypes
, ttype
))
1570 otype
= hashtab_search(p
->filename_trans
, &ft
);
1572 newcontext
->type
= otype
->otype
;
1575 static int security_compute_sid(u32 ssid
,
1579 const char *objname
,
1583 struct class_datum
*cladatum
= NULL
;
1584 struct context
*scontext
= NULL
, *tcontext
= NULL
, newcontext
;
1585 struct role_trans
*roletr
= NULL
;
1586 struct avtab_key avkey
;
1587 struct avtab_datum
*avdatum
;
1588 struct avtab_node
*node
;
1593 if (!ss_initialized
) {
1594 switch (orig_tclass
) {
1595 case SECCLASS_PROCESS
: /* kernel value */
1605 context_init(&newcontext
);
1607 read_lock(&policy_rwlock
);
1610 tclass
= unmap_class(orig_tclass
);
1611 sock
= security_is_socket_class(orig_tclass
);
1613 tclass
= orig_tclass
;
1614 sock
= security_is_socket_class(map_class(tclass
));
1617 scontext
= sidtab_search(&sidtab
, ssid
);
1619 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1624 tcontext
= sidtab_search(&sidtab
, tsid
);
1626 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
1632 if (tclass
&& tclass
<= policydb
.p_classes
.nprim
)
1633 cladatum
= policydb
.class_val_to_struct
[tclass
- 1];
1635 /* Set the user identity. */
1636 switch (specified
) {
1637 case AVTAB_TRANSITION
:
1639 if (cladatum
&& cladatum
->default_user
== DEFAULT_TARGET
) {
1640 newcontext
.user
= tcontext
->user
;
1642 /* notice this gets both DEFAULT_SOURCE and unset */
1643 /* Use the process user identity. */
1644 newcontext
.user
= scontext
->user
;
1648 /* Use the related object owner. */
1649 newcontext
.user
= tcontext
->user
;
1653 /* Set the role to default values. */
1654 if (cladatum
&& cladatum
->default_role
== DEFAULT_SOURCE
) {
1655 newcontext
.role
= scontext
->role
;
1656 } else if (cladatum
&& cladatum
->default_role
== DEFAULT_TARGET
) {
1657 newcontext
.role
= tcontext
->role
;
1659 if ((tclass
== policydb
.process_class
) || (sock
== true))
1660 newcontext
.role
= scontext
->role
;
1662 newcontext
.role
= OBJECT_R_VAL
;
1665 /* Set the type to default values. */
1666 if (cladatum
&& cladatum
->default_type
== DEFAULT_SOURCE
) {
1667 newcontext
.type
= scontext
->type
;
1668 } else if (cladatum
&& cladatum
->default_type
== DEFAULT_TARGET
) {
1669 newcontext
.type
= tcontext
->type
;
1671 if ((tclass
== policydb
.process_class
) || (sock
== true)) {
1672 /* Use the type of process. */
1673 newcontext
.type
= scontext
->type
;
1675 /* Use the type of the related object. */
1676 newcontext
.type
= tcontext
->type
;
1680 /* Look for a type transition/member/change rule. */
1681 avkey
.source_type
= scontext
->type
;
1682 avkey
.target_type
= tcontext
->type
;
1683 avkey
.target_class
= tclass
;
1684 avkey
.specified
= specified
;
1685 avdatum
= avtab_search(&policydb
.te_avtab
, &avkey
);
1687 /* If no permanent rule, also check for enabled conditional rules */
1689 node
= avtab_search_node(&policydb
.te_cond_avtab
, &avkey
);
1690 for (; node
; node
= avtab_search_node_next(node
, specified
)) {
1691 if (node
->key
.specified
& AVTAB_ENABLED
) {
1692 avdatum
= &node
->datum
;
1699 /* Use the type from the type transition/member/change rule. */
1700 newcontext
.type
= avdatum
->u
.data
;
1703 /* if we have a objname this is a file trans check so check those rules */
1705 filename_compute_type(&policydb
, &newcontext
, scontext
->type
,
1706 tcontext
->type
, tclass
, objname
);
1708 /* Check for class-specific changes. */
1709 if (specified
& AVTAB_TRANSITION
) {
1710 /* Look for a role transition rule. */
1711 for (roletr
= policydb
.role_tr
; roletr
; roletr
= roletr
->next
) {
1712 if ((roletr
->role
== scontext
->role
) &&
1713 (roletr
->type
== tcontext
->type
) &&
1714 (roletr
->tclass
== tclass
)) {
1715 /* Use the role transition rule. */
1716 newcontext
.role
= roletr
->new_role
;
1722 /* Set the MLS attributes.
1723 This is done last because it may allocate memory. */
1724 rc
= mls_compute_sid(scontext
, tcontext
, tclass
, specified
,
1729 /* Check the validity of the context. */
1730 if (!policydb_context_isvalid(&policydb
, &newcontext
)) {
1731 rc
= compute_sid_handle_invalid_context(scontext
,
1738 /* Obtain the sid for the context. */
1739 rc
= sidtab_context_to_sid(&sidtab
, &newcontext
, out_sid
);
1741 read_unlock(&policy_rwlock
);
1742 context_destroy(&newcontext
);
1748 * security_transition_sid - Compute the SID for a new subject/object.
1749 * @ssid: source security identifier
1750 * @tsid: target security identifier
1751 * @tclass: target security class
1752 * @out_sid: security identifier for new subject/object
1754 * Compute a SID to use for labeling a new subject or object in the
1755 * class @tclass based on a SID pair (@ssid, @tsid).
1756 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1757 * if insufficient memory is available, or %0 if the new SID was
1758 * computed successfully.
1760 int security_transition_sid(u32 ssid
, u32 tsid
, u16 tclass
,
1761 const struct qstr
*qstr
, u32
*out_sid
)
1763 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1764 qstr
? qstr
->name
: NULL
, out_sid
, true);
1767 int security_transition_sid_user(u32 ssid
, u32 tsid
, u16 tclass
,
1768 const char *objname
, u32
*out_sid
)
1770 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_TRANSITION
,
1771 objname
, out_sid
, false);
1775 * security_member_sid - Compute the SID for member selection.
1776 * @ssid: source security identifier
1777 * @tsid: target security identifier
1778 * @tclass: target security class
1779 * @out_sid: security identifier for selected member
1781 * Compute a SID to use when selecting a member of a polyinstantiated
1782 * object of class @tclass based on a SID pair (@ssid, @tsid).
1783 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1784 * if insufficient memory is available, or %0 if the SID was
1785 * computed successfully.
1787 int security_member_sid(u32 ssid
,
1792 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_MEMBER
, NULL
,
1797 * security_change_sid - Compute the SID for object relabeling.
1798 * @ssid: source security identifier
1799 * @tsid: target security identifier
1800 * @tclass: target security class
1801 * @out_sid: security identifier for selected member
1803 * Compute a SID to use for relabeling an object of class @tclass
1804 * based on a SID pair (@ssid, @tsid).
1805 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1806 * if insufficient memory is available, or %0 if the SID was
1807 * computed successfully.
1809 int security_change_sid(u32 ssid
,
1814 return security_compute_sid(ssid
, tsid
, tclass
, AVTAB_CHANGE
, NULL
,
1818 /* Clone the SID into the new SID table. */
1819 static int clone_sid(u32 sid
,
1820 struct context
*context
,
1823 struct sidtab
*s
= arg
;
1825 if (sid
> SECINITSID_NUM
)
1826 return sidtab_insert(s
, sid
, context
);
1831 static inline int convert_context_handle_invalid_context(struct context
*context
)
1836 if (selinux_enforcing
)
1839 if (!context_struct_to_string(context
, &s
, &len
)) {
1840 printk(KERN_WARNING
"SELinux: Context %s would be invalid if enforcing\n", s
);
1846 struct convert_context_args
{
1847 struct policydb
*oldp
;
1848 struct policydb
*newp
;
1852 * Convert the values in the security context
1853 * structure `c' from the values specified
1854 * in the policy `p->oldp' to the values specified
1855 * in the policy `p->newp'. Verify that the
1856 * context is valid under the new policy.
1858 static int convert_context(u32 key
,
1862 struct convert_context_args
*args
;
1863 struct context oldc
;
1864 struct ocontext
*oc
;
1865 struct mls_range
*range
;
1866 struct role_datum
*role
;
1867 struct type_datum
*typdatum
;
1868 struct user_datum
*usrdatum
;
1873 if (key
<= SECINITSID_NUM
)
1882 s
= kstrdup(c
->str
, GFP_KERNEL
);
1886 rc
= string_to_context_struct(args
->newp
, NULL
, s
,
1887 c
->len
, &ctx
, SECSID_NULL
);
1890 printk(KERN_INFO
"SELinux: Context %s became valid (mapped).\n",
1892 /* Replace string with mapped representation. */
1894 memcpy(c
, &ctx
, sizeof(*c
));
1896 } else if (rc
== -EINVAL
) {
1897 /* Retain string representation for later mapping. */
1901 /* Other error condition, e.g. ENOMEM. */
1902 printk(KERN_ERR
"SELinux: Unable to map context %s, rc = %d.\n",
1908 rc
= context_cpy(&oldc
, c
);
1912 /* Convert the user. */
1914 usrdatum
= hashtab_search(args
->newp
->p_users
.table
,
1915 sym_name(args
->oldp
, SYM_USERS
, c
->user
- 1));
1918 c
->user
= usrdatum
->value
;
1920 /* Convert the role. */
1922 role
= hashtab_search(args
->newp
->p_roles
.table
,
1923 sym_name(args
->oldp
, SYM_ROLES
, c
->role
- 1));
1926 c
->role
= role
->value
;
1928 /* Convert the type. */
1930 typdatum
= hashtab_search(args
->newp
->p_types
.table
,
1931 sym_name(args
->oldp
, SYM_TYPES
, c
->type
- 1));
1934 c
->type
= typdatum
->value
;
1936 /* Convert the MLS fields if dealing with MLS policies */
1937 if (args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1938 rc
= mls_convert_context(args
->oldp
, args
->newp
, c
);
1941 } else if (args
->oldp
->mls_enabled
&& !args
->newp
->mls_enabled
) {
1943 * Switching between MLS and non-MLS policy:
1944 * free any storage used by the MLS fields in the
1945 * context for all existing entries in the sidtab.
1947 mls_context_destroy(c
);
1948 } else if (!args
->oldp
->mls_enabled
&& args
->newp
->mls_enabled
) {
1950 * Switching between non-MLS and MLS policy:
1951 * ensure that the MLS fields of the context for all
1952 * existing entries in the sidtab are filled in with a
1953 * suitable default value, likely taken from one of the
1956 oc
= args
->newp
->ocontexts
[OCON_ISID
];
1957 while (oc
&& oc
->sid
[0] != SECINITSID_UNLABELED
)
1961 printk(KERN_ERR
"SELinux: unable to look up"
1962 " the initial SIDs list\n");
1965 range
= &oc
->context
[0].range
;
1966 rc
= mls_range_set(c
, range
);
1971 /* Check the validity of the new context. */
1972 if (!policydb_context_isvalid(args
->newp
, c
)) {
1973 rc
= convert_context_handle_invalid_context(&oldc
);
1978 context_destroy(&oldc
);
1984 /* Map old representation to string and save it. */
1985 rc
= context_struct_to_string(&oldc
, &s
, &len
);
1988 context_destroy(&oldc
);
1992 printk(KERN_INFO
"SELinux: Context %s became invalid (unmapped).\n",
1998 static void security_load_policycaps(void)
2001 struct ebitmap_node
*node
;
2003 selinux_policycap_netpeer
= ebitmap_get_bit(&policydb
.policycaps
,
2004 POLICYDB_CAPABILITY_NETPEER
);
2005 selinux_policycap_openperm
= ebitmap_get_bit(&policydb
.policycaps
,
2006 POLICYDB_CAPABILITY_OPENPERM
);
2007 selinux_policycap_extsockclass
= ebitmap_get_bit(&policydb
.policycaps
,
2008 POLICYDB_CAPABILITY_EXTSOCKCLASS
);
2009 selinux_policycap_alwaysnetwork
= ebitmap_get_bit(&policydb
.policycaps
,
2010 POLICYDB_CAPABILITY_ALWAYSNETWORK
);
2011 selinux_policycap_cgroupseclabel
=
2012 ebitmap_get_bit(&policydb
.policycaps
,
2013 POLICYDB_CAPABILITY_CGROUPSECLABEL
);
2014 selinux_policycap_nnp_nosuid_transition
=
2015 ebitmap_get_bit(&policydb
.policycaps
,
2016 POLICYDB_CAPABILITY_NNP_NOSUID_TRANSITION
);
2018 for (i
= 0; i
< ARRAY_SIZE(selinux_policycap_names
); i
++)
2019 pr_info("SELinux: policy capability %s=%d\n",
2020 selinux_policycap_names
[i
],
2021 ebitmap_get_bit(&policydb
.policycaps
, i
));
2023 ebitmap_for_each_positive_bit(&policydb
.policycaps
, node
, i
) {
2024 if (i
>= ARRAY_SIZE(selinux_policycap_names
))
2025 pr_info("SELinux: unknown policy capability %u\n",
2030 static int security_preserve_bools(struct policydb
*p
);
2033 * security_load_policy - Load a security policy configuration.
2034 * @data: binary policy data
2035 * @len: length of data in bytes
2037 * Load a new set of security policy configuration data,
2038 * validate it and convert the SID table as necessary.
2039 * This function will flush the access vector cache after
2040 * loading the new policy.
2042 int security_load_policy(void *data
, size_t len
)
2044 struct policydb
*oldpolicydb
, *newpolicydb
;
2045 struct sidtab oldsidtab
, newsidtab
;
2046 struct selinux_mapping
*oldmap
, *map
= NULL
;
2047 struct convert_context_args args
;
2051 struct policy_file file
= { data
, len
}, *fp
= &file
;
2053 oldpolicydb
= kzalloc(2 * sizeof(*oldpolicydb
), GFP_KERNEL
);
2058 newpolicydb
= oldpolicydb
+ 1;
2060 if (!ss_initialized
) {
2062 ebitmap_cache_init();
2063 hashtab_cache_init();
2064 rc
= policydb_read(&policydb
, fp
);
2066 avtab_cache_destroy();
2067 ebitmap_cache_destroy();
2068 hashtab_cache_destroy();
2073 rc
= selinux_set_mapping(&policydb
, secclass_map
,
2075 ¤t_mapping_size
);
2077 policydb_destroy(&policydb
);
2078 avtab_cache_destroy();
2079 ebitmap_cache_destroy();
2080 hashtab_cache_destroy();
2084 rc
= policydb_load_isids(&policydb
, &sidtab
);
2086 policydb_destroy(&policydb
);
2087 avtab_cache_destroy();
2088 ebitmap_cache_destroy();
2089 hashtab_cache_destroy();
2093 security_load_policycaps();
2095 seqno
= ++latest_granting
;
2096 selinux_complete_init();
2097 avc_ss_reset(seqno
);
2098 selnl_notify_policyload(seqno
);
2099 selinux_status_update_policyload(seqno
);
2100 selinux_netlbl_cache_invalidate();
2101 selinux_xfrm_notify_policyload();
2106 sidtab_hash_eval(&sidtab
, "sids");
2109 rc
= policydb_read(newpolicydb
, fp
);
2113 newpolicydb
->len
= len
;
2114 /* If switching between different policy types, log MLS status */
2115 if (policydb
.mls_enabled
&& !newpolicydb
->mls_enabled
)
2116 printk(KERN_INFO
"SELinux: Disabling MLS support...\n");
2117 else if (!policydb
.mls_enabled
&& newpolicydb
->mls_enabled
)
2118 printk(KERN_INFO
"SELinux: Enabling MLS support...\n");
2120 rc
= policydb_load_isids(newpolicydb
, &newsidtab
);
2122 printk(KERN_ERR
"SELinux: unable to load the initial SIDs\n");
2123 policydb_destroy(newpolicydb
);
2127 rc
= selinux_set_mapping(newpolicydb
, secclass_map
, &map
, &map_size
);
2131 rc
= security_preserve_bools(newpolicydb
);
2133 printk(KERN_ERR
"SELinux: unable to preserve booleans\n");
2137 /* Clone the SID table. */
2138 sidtab_shutdown(&sidtab
);
2140 rc
= sidtab_map(&sidtab
, clone_sid
, &newsidtab
);
2145 * Convert the internal representations of contexts
2146 * in the new SID table.
2148 args
.oldp
= &policydb
;
2149 args
.newp
= newpolicydb
;
2150 rc
= sidtab_map(&newsidtab
, convert_context
, &args
);
2152 printk(KERN_ERR
"SELinux: unable to convert the internal"
2153 " representation of contexts in the new SID"
2158 /* Save the old policydb and SID table to free later. */
2159 memcpy(oldpolicydb
, &policydb
, sizeof(policydb
));
2160 sidtab_set(&oldsidtab
, &sidtab
);
2162 /* Install the new policydb and SID table. */
2163 write_lock_irq(&policy_rwlock
);
2164 memcpy(&policydb
, newpolicydb
, sizeof(policydb
));
2165 sidtab_set(&sidtab
, &newsidtab
);
2166 security_load_policycaps();
2167 oldmap
= current_mapping
;
2168 current_mapping
= map
;
2169 current_mapping_size
= map_size
;
2170 seqno
= ++latest_granting
;
2171 write_unlock_irq(&policy_rwlock
);
2173 /* Free the old policydb and SID table. */
2174 policydb_destroy(oldpolicydb
);
2175 sidtab_destroy(&oldsidtab
);
2178 avc_ss_reset(seqno
);
2179 selnl_notify_policyload(seqno
);
2180 selinux_status_update_policyload(seqno
);
2181 selinux_netlbl_cache_invalidate();
2182 selinux_xfrm_notify_policyload();
2189 sidtab_destroy(&newsidtab
);
2190 policydb_destroy(newpolicydb
);
2197 size_t security_policydb_len(void)
2201 read_lock(&policy_rwlock
);
2203 read_unlock(&policy_rwlock
);
2209 * security_port_sid - Obtain the SID for a port.
2210 * @protocol: protocol number
2211 * @port: port number
2212 * @out_sid: security identifier
2214 int security_port_sid(u8 protocol
, u16 port
, u32
*out_sid
)
2219 read_lock(&policy_rwlock
);
2221 c
= policydb
.ocontexts
[OCON_PORT
];
2223 if (c
->u
.port
.protocol
== protocol
&&
2224 c
->u
.port
.low_port
<= port
&&
2225 c
->u
.port
.high_port
>= port
)
2232 rc
= sidtab_context_to_sid(&sidtab
,
2238 *out_sid
= c
->sid
[0];
2240 *out_sid
= SECINITSID_PORT
;
2244 read_unlock(&policy_rwlock
);
2249 * security_pkey_sid - Obtain the SID for a pkey.
2250 * @subnet_prefix: Subnet Prefix
2251 * @pkey_num: pkey number
2252 * @out_sid: security identifier
2254 int security_ib_pkey_sid(u64 subnet_prefix
, u16 pkey_num
, u32
*out_sid
)
2259 read_lock(&policy_rwlock
);
2261 c
= policydb
.ocontexts
[OCON_IBPKEY
];
2263 if (c
->u
.ibpkey
.low_pkey
<= pkey_num
&&
2264 c
->u
.ibpkey
.high_pkey
>= pkey_num
&&
2265 c
->u
.ibpkey
.subnet_prefix
== subnet_prefix
)
2273 rc
= sidtab_context_to_sid(&sidtab
,
2279 *out_sid
= c
->sid
[0];
2281 *out_sid
= SECINITSID_UNLABELED
;
2284 read_unlock(&policy_rwlock
);
2289 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2290 * @dev_name: device name
2291 * @port: port number
2292 * @out_sid: security identifier
2294 int security_ib_endport_sid(const char *dev_name
, u8 port_num
, u32
*out_sid
)
2299 read_lock(&policy_rwlock
);
2301 c
= policydb
.ocontexts
[OCON_IBENDPORT
];
2303 if (c
->u
.ibendport
.port
== port_num
&&
2304 !strncmp(c
->u
.ibendport
.dev_name
,
2306 IB_DEVICE_NAME_MAX
))
2314 rc
= sidtab_context_to_sid(&sidtab
,
2320 *out_sid
= c
->sid
[0];
2322 *out_sid
= SECINITSID_UNLABELED
;
2325 read_unlock(&policy_rwlock
);
2330 * security_netif_sid - Obtain the SID for a network interface.
2331 * @name: interface name
2332 * @if_sid: interface SID
2334 int security_netif_sid(char *name
, u32
*if_sid
)
2339 read_lock(&policy_rwlock
);
2341 c
= policydb
.ocontexts
[OCON_NETIF
];
2343 if (strcmp(name
, c
->u
.name
) == 0)
2349 if (!c
->sid
[0] || !c
->sid
[1]) {
2350 rc
= sidtab_context_to_sid(&sidtab
,
2355 rc
= sidtab_context_to_sid(&sidtab
,
2361 *if_sid
= c
->sid
[0];
2363 *if_sid
= SECINITSID_NETIF
;
2366 read_unlock(&policy_rwlock
);
2370 static int match_ipv6_addrmask(u32
*input
, u32
*addr
, u32
*mask
)
2374 for (i
= 0; i
< 4; i
++)
2375 if (addr
[i
] != (input
[i
] & mask
[i
])) {
2384 * security_node_sid - Obtain the SID for a node (host).
2385 * @domain: communication domain aka address family
2387 * @addrlen: address length in bytes
2388 * @out_sid: security identifier
2390 int security_node_sid(u16 domain
,
2398 read_lock(&policy_rwlock
);
2405 if (addrlen
!= sizeof(u32
))
2408 addr
= *((u32
*)addrp
);
2410 c
= policydb
.ocontexts
[OCON_NODE
];
2412 if (c
->u
.node
.addr
== (addr
& c
->u
.node
.mask
))
2421 if (addrlen
!= sizeof(u64
) * 2)
2423 c
= policydb
.ocontexts
[OCON_NODE6
];
2425 if (match_ipv6_addrmask(addrp
, c
->u
.node6
.addr
,
2434 *out_sid
= SECINITSID_NODE
;
2440 rc
= sidtab_context_to_sid(&sidtab
,
2446 *out_sid
= c
->sid
[0];
2448 *out_sid
= SECINITSID_NODE
;
2453 read_unlock(&policy_rwlock
);
2460 * security_get_user_sids - Obtain reachable SIDs for a user.
2461 * @fromsid: starting SID
2462 * @username: username
2463 * @sids: array of reachable SIDs for user
2464 * @nel: number of elements in @sids
2466 * Generate the set of SIDs for legal security contexts
2467 * for a given user that can be reached by @fromsid.
2468 * Set *@sids to point to a dynamically allocated
2469 * array containing the set of SIDs. Set *@nel to the
2470 * number of elements in the array.
2473 int security_get_user_sids(u32 fromsid
,
2478 struct context
*fromcon
, usercon
;
2479 u32
*mysids
= NULL
, *mysids2
, sid
;
2480 u32 mynel
= 0, maxnel
= SIDS_NEL
;
2481 struct user_datum
*user
;
2482 struct role_datum
*role
;
2483 struct ebitmap_node
*rnode
, *tnode
;
2489 if (!ss_initialized
)
2492 read_lock(&policy_rwlock
);
2494 context_init(&usercon
);
2497 fromcon
= sidtab_search(&sidtab
, fromsid
);
2502 user
= hashtab_search(policydb
.p_users
.table
, username
);
2506 usercon
.user
= user
->value
;
2509 mysids
= kcalloc(maxnel
, sizeof(*mysids
), GFP_ATOMIC
);
2513 ebitmap_for_each_positive_bit(&user
->roles
, rnode
, i
) {
2514 role
= policydb
.role_val_to_struct
[i
];
2515 usercon
.role
= i
+ 1;
2516 ebitmap_for_each_positive_bit(&role
->types
, tnode
, j
) {
2517 usercon
.type
= j
+ 1;
2519 if (mls_setup_user_range(fromcon
, user
, &usercon
))
2522 rc
= sidtab_context_to_sid(&sidtab
, &usercon
, &sid
);
2525 if (mynel
< maxnel
) {
2526 mysids
[mynel
++] = sid
;
2530 mysids2
= kcalloc(maxnel
, sizeof(*mysids2
), GFP_ATOMIC
);
2533 memcpy(mysids2
, mysids
, mynel
* sizeof(*mysids2
));
2536 mysids
[mynel
++] = sid
;
2542 read_unlock(&policy_rwlock
);
2549 mysids2
= kcalloc(mynel
, sizeof(*mysids2
), GFP_KERNEL
);
2554 for (i
= 0, j
= 0; i
< mynel
; i
++) {
2555 struct av_decision dummy_avd
;
2556 rc
= avc_has_perm_noaudit(fromsid
, mysids
[i
],
2557 SECCLASS_PROCESS
, /* kernel value */
2558 PROCESS__TRANSITION
, AVC_STRICT
,
2561 mysids2
[j
++] = mysids
[i
];
2573 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2574 * @fstype: filesystem type
2575 * @path: path from root of mount
2576 * @sclass: file security class
2577 * @sid: SID for path
2579 * Obtain a SID to use for a file in a filesystem that
2580 * cannot support xattr or use a fixed labeling behavior like
2581 * transition SIDs or task SIDs.
2583 * The caller must acquire the policy_rwlock before calling this function.
2585 static inline int __security_genfs_sid(const char *fstype
,
2592 struct genfs
*genfs
;
2596 while (path
[0] == '/' && path
[1] == '/')
2599 sclass
= unmap_class(orig_sclass
);
2600 *sid
= SECINITSID_UNLABELED
;
2602 for (genfs
= policydb
.genfs
; genfs
; genfs
= genfs
->next
) {
2603 cmp
= strcmp(fstype
, genfs
->fstype
);
2612 for (c
= genfs
->head
; c
; c
= c
->next
) {
2613 len
= strlen(c
->u
.name
);
2614 if ((!c
->v
.sclass
|| sclass
== c
->v
.sclass
) &&
2615 (strncmp(c
->u
.name
, path
, len
) == 0))
2624 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0], &c
->sid
[0]);
2636 * security_genfs_sid - Obtain a SID for a file in a filesystem
2637 * @fstype: filesystem type
2638 * @path: path from root of mount
2639 * @sclass: file security class
2640 * @sid: SID for path
2642 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2645 int security_genfs_sid(const char *fstype
,
2652 read_lock(&policy_rwlock
);
2653 retval
= __security_genfs_sid(fstype
, path
, orig_sclass
, sid
);
2654 read_unlock(&policy_rwlock
);
2659 * security_fs_use - Determine how to handle labeling for a filesystem.
2660 * @sb: superblock in question
2662 int security_fs_use(struct super_block
*sb
)
2666 struct superblock_security_struct
*sbsec
= sb
->s_security
;
2667 const char *fstype
= sb
->s_type
->name
;
2669 read_lock(&policy_rwlock
);
2671 c
= policydb
.ocontexts
[OCON_FSUSE
];
2673 if (strcmp(fstype
, c
->u
.name
) == 0)
2679 sbsec
->behavior
= c
->v
.behavior
;
2681 rc
= sidtab_context_to_sid(&sidtab
, &c
->context
[0],
2686 sbsec
->sid
= c
->sid
[0];
2688 rc
= __security_genfs_sid(fstype
, "/", SECCLASS_DIR
,
2691 sbsec
->behavior
= SECURITY_FS_USE_NONE
;
2694 sbsec
->behavior
= SECURITY_FS_USE_GENFS
;
2699 read_unlock(&policy_rwlock
);
2703 int security_get_bools(int *len
, char ***names
, int **values
)
2707 read_lock(&policy_rwlock
);
2712 *len
= policydb
.p_bools
.nprim
;
2717 *names
= kcalloc(*len
, sizeof(char *), GFP_ATOMIC
);
2722 *values
= kcalloc(*len
, sizeof(int), GFP_ATOMIC
);
2726 for (i
= 0; i
< *len
; i
++) {
2727 (*values
)[i
] = policydb
.bool_val_to_struct
[i
]->state
;
2730 (*names
)[i
] = kstrdup(sym_name(&policydb
, SYM_BOOLS
, i
), GFP_ATOMIC
);
2736 read_unlock(&policy_rwlock
);
2740 for (i
= 0; i
< *len
; i
++)
2748 int security_set_bools(int len
, int *values
)
2751 int lenp
, seqno
= 0;
2752 struct cond_node
*cur
;
2754 write_lock_irq(&policy_rwlock
);
2757 lenp
= policydb
.p_bools
.nprim
;
2761 for (i
= 0; i
< len
; i
++) {
2762 if (!!values
[i
] != policydb
.bool_val_to_struct
[i
]->state
) {
2763 audit_log(current
->audit_context
, GFP_ATOMIC
,
2764 AUDIT_MAC_CONFIG_CHANGE
,
2765 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2766 sym_name(&policydb
, SYM_BOOLS
, i
),
2768 policydb
.bool_val_to_struct
[i
]->state
,
2769 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
2770 audit_get_sessionid(current
));
2773 policydb
.bool_val_to_struct
[i
]->state
= 1;
2775 policydb
.bool_val_to_struct
[i
]->state
= 0;
2778 for (cur
= policydb
.cond_list
; cur
; cur
= cur
->next
) {
2779 rc
= evaluate_cond_node(&policydb
, cur
);
2784 seqno
= ++latest_granting
;
2787 write_unlock_irq(&policy_rwlock
);
2789 avc_ss_reset(seqno
);
2790 selnl_notify_policyload(seqno
);
2791 selinux_status_update_policyload(seqno
);
2792 selinux_xfrm_notify_policyload();
2797 int security_get_bool_value(int index
)
2802 read_lock(&policy_rwlock
);
2805 len
= policydb
.p_bools
.nprim
;
2809 rc
= policydb
.bool_val_to_struct
[index
]->state
;
2811 read_unlock(&policy_rwlock
);
2815 static int security_preserve_bools(struct policydb
*p
)
2817 int rc
, nbools
= 0, *bvalues
= NULL
, i
;
2818 char **bnames
= NULL
;
2819 struct cond_bool_datum
*booldatum
;
2820 struct cond_node
*cur
;
2822 rc
= security_get_bools(&nbools
, &bnames
, &bvalues
);
2825 for (i
= 0; i
< nbools
; i
++) {
2826 booldatum
= hashtab_search(p
->p_bools
.table
, bnames
[i
]);
2828 booldatum
->state
= bvalues
[i
];
2830 for (cur
= p
->cond_list
; cur
; cur
= cur
->next
) {
2831 rc
= evaluate_cond_node(p
, cur
);
2838 for (i
= 0; i
< nbools
; i
++)
2847 * security_sid_mls_copy() - computes a new sid based on the given
2848 * sid and the mls portion of mls_sid.
2850 int security_sid_mls_copy(u32 sid
, u32 mls_sid
, u32
*new_sid
)
2852 struct context
*context1
;
2853 struct context
*context2
;
2854 struct context newcon
;
2860 if (!ss_initialized
|| !policydb
.mls_enabled
) {
2865 context_init(&newcon
);
2867 read_lock(&policy_rwlock
);
2870 context1
= sidtab_search(&sidtab
, sid
);
2872 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2878 context2
= sidtab_search(&sidtab
, mls_sid
);
2880 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2885 newcon
.user
= context1
->user
;
2886 newcon
.role
= context1
->role
;
2887 newcon
.type
= context1
->type
;
2888 rc
= mls_context_cpy(&newcon
, context2
);
2892 /* Check the validity of the new context. */
2893 if (!policydb_context_isvalid(&policydb
, &newcon
)) {
2894 rc
= convert_context_handle_invalid_context(&newcon
);
2896 if (!context_struct_to_string(&newcon
, &s
, &len
)) {
2897 audit_log(current
->audit_context
,
2898 GFP_ATOMIC
, AUDIT_SELINUX_ERR
,
2899 "op=security_sid_mls_copy "
2900 "invalid_context=%s", s
);
2907 rc
= sidtab_context_to_sid(&sidtab
, &newcon
, new_sid
);
2909 read_unlock(&policy_rwlock
);
2910 context_destroy(&newcon
);
2916 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2917 * @nlbl_sid: NetLabel SID
2918 * @nlbl_type: NetLabel labeling protocol type
2919 * @xfrm_sid: XFRM SID
2922 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2923 * resolved into a single SID it is returned via @peer_sid and the function
2924 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2925 * returns a negative value. A table summarizing the behavior is below:
2927 * | function return | @sid
2928 * ------------------------------+-----------------+-----------------
2929 * no peer labels | 0 | SECSID_NULL
2930 * single peer label | 0 | <peer_label>
2931 * multiple, consistent labels | 0 | <peer_label>
2932 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2935 int security_net_peersid_resolve(u32 nlbl_sid
, u32 nlbl_type
,
2940 struct context
*nlbl_ctx
;
2941 struct context
*xfrm_ctx
;
2943 *peer_sid
= SECSID_NULL
;
2945 /* handle the common (which also happens to be the set of easy) cases
2946 * right away, these two if statements catch everything involving a
2947 * single or absent peer SID/label */
2948 if (xfrm_sid
== SECSID_NULL
) {
2949 *peer_sid
= nlbl_sid
;
2952 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2953 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2955 if (nlbl_sid
== SECSID_NULL
|| nlbl_type
== NETLBL_NLTYPE_UNLABELED
) {
2956 *peer_sid
= xfrm_sid
;
2960 /* we don't need to check ss_initialized here since the only way both
2961 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2962 * security server was initialized and ss_initialized was true */
2963 if (!policydb
.mls_enabled
)
2966 read_lock(&policy_rwlock
);
2969 nlbl_ctx
= sidtab_search(&sidtab
, nlbl_sid
);
2971 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2972 __func__
, nlbl_sid
);
2976 xfrm_ctx
= sidtab_search(&sidtab
, xfrm_sid
);
2978 printk(KERN_ERR
"SELinux: %s: unrecognized SID %d\n",
2979 __func__
, xfrm_sid
);
2982 rc
= (mls_context_cmp(nlbl_ctx
, xfrm_ctx
) ? 0 : -EACCES
);
2986 /* at present NetLabel SIDs/labels really only carry MLS
2987 * information so if the MLS portion of the NetLabel SID
2988 * matches the MLS portion of the labeled XFRM SID/label
2989 * then pass along the XFRM SID as it is the most
2991 *peer_sid
= xfrm_sid
;
2993 read_unlock(&policy_rwlock
);
2997 static int get_classes_callback(void *k
, void *d
, void *args
)
2999 struct class_datum
*datum
= d
;
3000 char *name
= k
, **classes
= args
;
3001 int value
= datum
->value
- 1;
3003 classes
[value
] = kstrdup(name
, GFP_ATOMIC
);
3004 if (!classes
[value
])
3010 int security_get_classes(char ***classes
, int *nclasses
)
3014 read_lock(&policy_rwlock
);
3017 *nclasses
= policydb
.p_classes
.nprim
;
3018 *classes
= kcalloc(*nclasses
, sizeof(**classes
), GFP_ATOMIC
);
3022 rc
= hashtab_map(policydb
.p_classes
.table
, get_classes_callback
,
3026 for (i
= 0; i
< *nclasses
; i
++)
3027 kfree((*classes
)[i
]);
3032 read_unlock(&policy_rwlock
);
3036 static int get_permissions_callback(void *k
, void *d
, void *args
)
3038 struct perm_datum
*datum
= d
;
3039 char *name
= k
, **perms
= args
;
3040 int value
= datum
->value
- 1;
3042 perms
[value
] = kstrdup(name
, GFP_ATOMIC
);
3049 int security_get_permissions(char *class, char ***perms
, int *nperms
)
3052 struct class_datum
*match
;
3054 read_lock(&policy_rwlock
);
3057 match
= hashtab_search(policydb
.p_classes
.table
, class);
3059 printk(KERN_ERR
"SELinux: %s: unrecognized class %s\n",
3065 *nperms
= match
->permissions
.nprim
;
3066 *perms
= kcalloc(*nperms
, sizeof(**perms
), GFP_ATOMIC
);
3070 if (match
->comdatum
) {
3071 rc
= hashtab_map(match
->comdatum
->permissions
.table
,
3072 get_permissions_callback
, *perms
);
3077 rc
= hashtab_map(match
->permissions
.table
, get_permissions_callback
,
3083 read_unlock(&policy_rwlock
);
3087 read_unlock(&policy_rwlock
);
3088 for (i
= 0; i
< *nperms
; i
++)
3094 int security_get_reject_unknown(void)
3096 return policydb
.reject_unknown
;
3099 int security_get_allow_unknown(void)
3101 return policydb
.allow_unknown
;
3105 * security_policycap_supported - Check for a specific policy capability
3106 * @req_cap: capability
3109 * This function queries the currently loaded policy to see if it supports the
3110 * capability specified by @req_cap. Returns true (1) if the capability is
3111 * supported, false (0) if it isn't supported.
3114 int security_policycap_supported(unsigned int req_cap
)
3118 read_lock(&policy_rwlock
);
3119 rc
= ebitmap_get_bit(&policydb
.policycaps
, req_cap
);
3120 read_unlock(&policy_rwlock
);
3125 struct selinux_audit_rule
{
3127 struct context au_ctxt
;
3130 void selinux_audit_rule_free(void *vrule
)
3132 struct selinux_audit_rule
*rule
= vrule
;
3135 context_destroy(&rule
->au_ctxt
);
3140 int selinux_audit_rule_init(u32 field
, u32 op
, char *rulestr
, void **vrule
)
3142 struct selinux_audit_rule
*tmprule
;
3143 struct role_datum
*roledatum
;
3144 struct type_datum
*typedatum
;
3145 struct user_datum
*userdatum
;
3146 struct selinux_audit_rule
**rule
= (struct selinux_audit_rule
**)vrule
;
3151 if (!ss_initialized
)
3155 case AUDIT_SUBJ_USER
:
3156 case AUDIT_SUBJ_ROLE
:
3157 case AUDIT_SUBJ_TYPE
:
3158 case AUDIT_OBJ_USER
:
3159 case AUDIT_OBJ_ROLE
:
3160 case AUDIT_OBJ_TYPE
:
3161 /* only 'equals' and 'not equals' fit user, role, and type */
3162 if (op
!= Audit_equal
&& op
!= Audit_not_equal
)
3165 case AUDIT_SUBJ_SEN
:
3166 case AUDIT_SUBJ_CLR
:
3167 case AUDIT_OBJ_LEV_LOW
:
3168 case AUDIT_OBJ_LEV_HIGH
:
3169 /* we do not allow a range, indicated by the presence of '-' */
3170 if (strchr(rulestr
, '-'))
3174 /* only the above fields are valid */
3178 tmprule
= kzalloc(sizeof(struct selinux_audit_rule
), GFP_KERNEL
);
3182 context_init(&tmprule
->au_ctxt
);
3184 read_lock(&policy_rwlock
);
3186 tmprule
->au_seqno
= latest_granting
;
3189 case AUDIT_SUBJ_USER
:
3190 case AUDIT_OBJ_USER
:
3192 userdatum
= hashtab_search(policydb
.p_users
.table
, rulestr
);
3195 tmprule
->au_ctxt
.user
= userdatum
->value
;
3197 case AUDIT_SUBJ_ROLE
:
3198 case AUDIT_OBJ_ROLE
:
3200 roledatum
= hashtab_search(policydb
.p_roles
.table
, rulestr
);
3203 tmprule
->au_ctxt
.role
= roledatum
->value
;
3205 case AUDIT_SUBJ_TYPE
:
3206 case AUDIT_OBJ_TYPE
:
3208 typedatum
= hashtab_search(policydb
.p_types
.table
, rulestr
);
3211 tmprule
->au_ctxt
.type
= typedatum
->value
;
3213 case AUDIT_SUBJ_SEN
:
3214 case AUDIT_SUBJ_CLR
:
3215 case AUDIT_OBJ_LEV_LOW
:
3216 case AUDIT_OBJ_LEV_HIGH
:
3217 rc
= mls_from_string(rulestr
, &tmprule
->au_ctxt
, GFP_ATOMIC
);
3224 read_unlock(&policy_rwlock
);
3227 selinux_audit_rule_free(tmprule
);
3236 /* Check to see if the rule contains any selinux fields */
3237 int selinux_audit_rule_known(struct audit_krule
*rule
)
3241 for (i
= 0; i
< rule
->field_count
; i
++) {
3242 struct audit_field
*f
= &rule
->fields
[i
];
3244 case AUDIT_SUBJ_USER
:
3245 case AUDIT_SUBJ_ROLE
:
3246 case AUDIT_SUBJ_TYPE
:
3247 case AUDIT_SUBJ_SEN
:
3248 case AUDIT_SUBJ_CLR
:
3249 case AUDIT_OBJ_USER
:
3250 case AUDIT_OBJ_ROLE
:
3251 case AUDIT_OBJ_TYPE
:
3252 case AUDIT_OBJ_LEV_LOW
:
3253 case AUDIT_OBJ_LEV_HIGH
:
3261 int selinux_audit_rule_match(u32 sid
, u32 field
, u32 op
, void *vrule
,
3262 struct audit_context
*actx
)
3264 struct context
*ctxt
;
3265 struct mls_level
*level
;
3266 struct selinux_audit_rule
*rule
= vrule
;
3269 if (unlikely(!rule
)) {
3270 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3274 read_lock(&policy_rwlock
);
3276 if (rule
->au_seqno
< latest_granting
) {
3281 ctxt
= sidtab_search(&sidtab
, sid
);
3282 if (unlikely(!ctxt
)) {
3283 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3289 /* a field/op pair that is not caught here will simply fall through
3292 case AUDIT_SUBJ_USER
:
3293 case AUDIT_OBJ_USER
:
3296 match
= (ctxt
->user
== rule
->au_ctxt
.user
);
3298 case Audit_not_equal
:
3299 match
= (ctxt
->user
!= rule
->au_ctxt
.user
);
3303 case AUDIT_SUBJ_ROLE
:
3304 case AUDIT_OBJ_ROLE
:
3307 match
= (ctxt
->role
== rule
->au_ctxt
.role
);
3309 case Audit_not_equal
:
3310 match
= (ctxt
->role
!= rule
->au_ctxt
.role
);
3314 case AUDIT_SUBJ_TYPE
:
3315 case AUDIT_OBJ_TYPE
:
3318 match
= (ctxt
->type
== rule
->au_ctxt
.type
);
3320 case Audit_not_equal
:
3321 match
= (ctxt
->type
!= rule
->au_ctxt
.type
);
3325 case AUDIT_SUBJ_SEN
:
3326 case AUDIT_SUBJ_CLR
:
3327 case AUDIT_OBJ_LEV_LOW
:
3328 case AUDIT_OBJ_LEV_HIGH
:
3329 level
= ((field
== AUDIT_SUBJ_SEN
||
3330 field
== AUDIT_OBJ_LEV_LOW
) ?
3331 &ctxt
->range
.level
[0] : &ctxt
->range
.level
[1]);
3334 match
= mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3337 case Audit_not_equal
:
3338 match
= !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3342 match
= (mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3344 !mls_level_eq(&rule
->au_ctxt
.range
.level
[0],
3348 match
= mls_level_dom(&rule
->au_ctxt
.range
.level
[0],
3352 match
= (mls_level_dom(level
,
3353 &rule
->au_ctxt
.range
.level
[0]) &&
3354 !mls_level_eq(level
,
3355 &rule
->au_ctxt
.range
.level
[0]));
3358 match
= mls_level_dom(level
,
3359 &rule
->au_ctxt
.range
.level
[0]);
3365 read_unlock(&policy_rwlock
);
3369 static int (*aurule_callback
)(void) = audit_update_lsm_rules
;
3371 static int aurule_avc_callback(u32 event
)
3375 if (event
== AVC_CALLBACK_RESET
&& aurule_callback
)
3376 err
= aurule_callback();
3380 static int __init
aurule_init(void)
3384 err
= avc_add_callback(aurule_avc_callback
, AVC_CALLBACK_RESET
);
3386 panic("avc_add_callback() failed, error %d\n", err
);
3390 __initcall(aurule_init
);
3392 #ifdef CONFIG_NETLABEL
3394 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3395 * @secattr: the NetLabel packet security attributes
3396 * @sid: the SELinux SID
3399 * Attempt to cache the context in @ctx, which was derived from the packet in
3400 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3401 * already been initialized.
3404 static void security_netlbl_cache_add(struct netlbl_lsm_secattr
*secattr
,
3409 sid_cache
= kmalloc(sizeof(*sid_cache
), GFP_ATOMIC
);
3410 if (sid_cache
== NULL
)
3412 secattr
->cache
= netlbl_secattr_cache_alloc(GFP_ATOMIC
);
3413 if (secattr
->cache
== NULL
) {
3419 secattr
->cache
->free
= kfree
;
3420 secattr
->cache
->data
= sid_cache
;
3421 secattr
->flags
|= NETLBL_SECATTR_CACHE
;
3425 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3426 * @secattr: the NetLabel packet security attributes
3427 * @sid: the SELinux SID
3430 * Convert the given NetLabel security attributes in @secattr into a
3431 * SELinux SID. If the @secattr field does not contain a full SELinux
3432 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3433 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3434 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3435 * conversion for future lookups. Returns zero on success, negative values on
3439 int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr
*secattr
,
3443 struct context
*ctx
;
3444 struct context ctx_new
;
3446 if (!ss_initialized
) {
3451 read_lock(&policy_rwlock
);
3453 if (secattr
->flags
& NETLBL_SECATTR_CACHE
)
3454 *sid
= *(u32
*)secattr
->cache
->data
;
3455 else if (secattr
->flags
& NETLBL_SECATTR_SECID
)
3456 *sid
= secattr
->attr
.secid
;
3457 else if (secattr
->flags
& NETLBL_SECATTR_MLS_LVL
) {
3459 ctx
= sidtab_search(&sidtab
, SECINITSID_NETMSG
);
3463 context_init(&ctx_new
);
3464 ctx_new
.user
= ctx
->user
;
3465 ctx_new
.role
= ctx
->role
;
3466 ctx_new
.type
= ctx
->type
;
3467 mls_import_netlbl_lvl(&ctx_new
, secattr
);
3468 if (secattr
->flags
& NETLBL_SECATTR_MLS_CAT
) {
3469 rc
= mls_import_netlbl_cat(&ctx_new
, secattr
);
3474 if (!mls_context_isvalid(&policydb
, &ctx_new
))
3477 rc
= sidtab_context_to_sid(&sidtab
, &ctx_new
, sid
);
3481 security_netlbl_cache_add(secattr
, *sid
);
3483 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3487 read_unlock(&policy_rwlock
);
3490 ebitmap_destroy(&ctx_new
.range
.level
[0].cat
);
3492 read_unlock(&policy_rwlock
);
3497 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3498 * @sid: the SELinux SID
3499 * @secattr: the NetLabel packet security attributes
3502 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3503 * Returns zero on success, negative values on failure.
3506 int security_netlbl_sid_to_secattr(u32 sid
, struct netlbl_lsm_secattr
*secattr
)
3509 struct context
*ctx
;
3511 if (!ss_initialized
)
3514 read_lock(&policy_rwlock
);
3517 ctx
= sidtab_search(&sidtab
, sid
);
3522 secattr
->domain
= kstrdup(sym_name(&policydb
, SYM_TYPES
, ctx
->type
- 1),
3524 if (secattr
->domain
== NULL
)
3527 secattr
->attr
.secid
= sid
;
3528 secattr
->flags
|= NETLBL_SECATTR_DOMAIN_CPY
| NETLBL_SECATTR_SECID
;
3529 mls_export_netlbl_lvl(ctx
, secattr
);
3530 rc
= mls_export_netlbl_cat(ctx
, secattr
);
3532 read_unlock(&policy_rwlock
);
3535 #endif /* CONFIG_NETLABEL */
3538 * security_read_policy - read the policy.
3539 * @data: binary policy data
3540 * @len: length of data in bytes
3543 int security_read_policy(void **data
, size_t *len
)
3546 struct policy_file fp
;
3548 if (!ss_initialized
)
3551 *len
= security_policydb_len();
3553 *data
= vmalloc_user(*len
);
3560 read_lock(&policy_rwlock
);
3561 rc
= policydb_write(&policydb
, &fp
);
3562 read_unlock(&policy_rwlock
);
3567 *len
= (unsigned long)fp
.data
- (unsigned long)*data
;