Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux/fpc-iii.git] / kernel / bpf / cgroup.c
blob83ff127ef7ae43f95b23db4e812b60ce114d0981
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Functions to manage eBPF programs attached to cgroups
5 * Copyright (c) 2016 Daniel Mack
6 */
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
20 #include "../cgroup/cgroup-internal.h"
22 DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
25 void cgroup_bpf_offline(struct cgroup *cgrp)
27 cgroup_get(cgrp);
28 percpu_ref_kill(&cgrp->bpf.refcnt);
31 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
33 enum bpf_cgroup_storage_type stype;
35 for_each_cgroup_storage_type(stype)
36 bpf_cgroup_storage_free(storages[stype]);
39 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
40 struct bpf_cgroup_storage *new_storages[],
41 enum bpf_attach_type type,
42 struct bpf_prog *prog,
43 struct cgroup *cgrp)
45 enum bpf_cgroup_storage_type stype;
46 struct bpf_cgroup_storage_key key;
47 struct bpf_map *map;
49 key.cgroup_inode_id = cgroup_id(cgrp);
50 key.attach_type = type;
52 for_each_cgroup_storage_type(stype) {
53 map = prog->aux->cgroup_storage[stype];
54 if (!map)
55 continue;
57 storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
58 if (storages[stype])
59 continue;
61 storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
62 if (IS_ERR(storages[stype])) {
63 bpf_cgroup_storages_free(new_storages);
64 return -ENOMEM;
67 new_storages[stype] = storages[stype];
70 return 0;
73 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
74 struct bpf_cgroup_storage *src[])
76 enum bpf_cgroup_storage_type stype;
78 for_each_cgroup_storage_type(stype)
79 dst[stype] = src[stype];
82 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
83 struct cgroup *cgrp,
84 enum bpf_attach_type attach_type)
86 enum bpf_cgroup_storage_type stype;
88 for_each_cgroup_storage_type(stype)
89 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
92 /* Called when bpf_cgroup_link is auto-detached from dying cgroup.
93 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
94 * doesn't free link memory, which will eventually be done by bpf_link's
95 * release() callback, when its last FD is closed.
97 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
99 cgroup_put(link->cgroup);
100 link->cgroup = NULL;
104 * cgroup_bpf_release() - put references of all bpf programs and
105 * release all cgroup bpf data
106 * @work: work structure embedded into the cgroup to modify
108 static void cgroup_bpf_release(struct work_struct *work)
110 struct cgroup *p, *cgrp = container_of(work, struct cgroup,
111 bpf.release_work);
112 struct bpf_prog_array *old_array;
113 struct list_head *storages = &cgrp->bpf.storages;
114 struct bpf_cgroup_storage *storage, *stmp;
116 unsigned int type;
118 mutex_lock(&cgroup_mutex);
120 for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
121 struct list_head *progs = &cgrp->bpf.progs[type];
122 struct bpf_prog_list *pl, *pltmp;
124 list_for_each_entry_safe(pl, pltmp, progs, node) {
125 list_del(&pl->node);
126 if (pl->prog)
127 bpf_prog_put(pl->prog);
128 if (pl->link)
129 bpf_cgroup_link_auto_detach(pl->link);
130 kfree(pl);
131 static_branch_dec(&cgroup_bpf_enabled_key);
133 old_array = rcu_dereference_protected(
134 cgrp->bpf.effective[type],
135 lockdep_is_held(&cgroup_mutex));
136 bpf_prog_array_free(old_array);
139 list_for_each_entry_safe(storage, stmp, storages, list_cg) {
140 bpf_cgroup_storage_unlink(storage);
141 bpf_cgroup_storage_free(storage);
144 mutex_unlock(&cgroup_mutex);
146 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
147 cgroup_bpf_put(p);
149 percpu_ref_exit(&cgrp->bpf.refcnt);
150 cgroup_put(cgrp);
154 * cgroup_bpf_release_fn() - callback used to schedule releasing
155 * of bpf cgroup data
156 * @ref: percpu ref counter structure
158 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
160 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
162 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
163 queue_work(system_wq, &cgrp->bpf.release_work);
166 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
167 * link or direct prog.
169 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
171 if (pl->prog)
172 return pl->prog;
173 if (pl->link)
174 return pl->link->link.prog;
175 return NULL;
178 /* count number of elements in the list.
179 * it's slow but the list cannot be long
181 static u32 prog_list_length(struct list_head *head)
183 struct bpf_prog_list *pl;
184 u32 cnt = 0;
186 list_for_each_entry(pl, head, node) {
187 if (!prog_list_prog(pl))
188 continue;
189 cnt++;
191 return cnt;
194 /* if parent has non-overridable prog attached,
195 * disallow attaching new programs to the descendent cgroup.
196 * if parent has overridable or multi-prog, allow attaching
198 static bool hierarchy_allows_attach(struct cgroup *cgrp,
199 enum bpf_attach_type type)
201 struct cgroup *p;
203 p = cgroup_parent(cgrp);
204 if (!p)
205 return true;
206 do {
207 u32 flags = p->bpf.flags[type];
208 u32 cnt;
210 if (flags & BPF_F_ALLOW_MULTI)
211 return true;
212 cnt = prog_list_length(&p->bpf.progs[type]);
213 WARN_ON_ONCE(cnt > 1);
214 if (cnt == 1)
215 return !!(flags & BPF_F_ALLOW_OVERRIDE);
216 p = cgroup_parent(p);
217 } while (p);
218 return true;
221 /* compute a chain of effective programs for a given cgroup:
222 * start from the list of programs in this cgroup and add
223 * all parent programs.
224 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
225 * to programs in this cgroup
227 static int compute_effective_progs(struct cgroup *cgrp,
228 enum bpf_attach_type type,
229 struct bpf_prog_array **array)
231 struct bpf_prog_array_item *item;
232 struct bpf_prog_array *progs;
233 struct bpf_prog_list *pl;
234 struct cgroup *p = cgrp;
235 int cnt = 0;
237 /* count number of effective programs by walking parents */
238 do {
239 if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
240 cnt += prog_list_length(&p->bpf.progs[type]);
241 p = cgroup_parent(p);
242 } while (p);
244 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
245 if (!progs)
246 return -ENOMEM;
248 /* populate the array with effective progs */
249 cnt = 0;
250 p = cgrp;
251 do {
252 if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
253 continue;
255 list_for_each_entry(pl, &p->bpf.progs[type], node) {
256 if (!prog_list_prog(pl))
257 continue;
259 item = &progs->items[cnt];
260 item->prog = prog_list_prog(pl);
261 bpf_cgroup_storages_assign(item->cgroup_storage,
262 pl->storage);
263 cnt++;
265 } while ((p = cgroup_parent(p)));
267 *array = progs;
268 return 0;
271 static void activate_effective_progs(struct cgroup *cgrp,
272 enum bpf_attach_type type,
273 struct bpf_prog_array *old_array)
275 old_array = rcu_replace_pointer(cgrp->bpf.effective[type], old_array,
276 lockdep_is_held(&cgroup_mutex));
277 /* free prog array after grace period, since __cgroup_bpf_run_*()
278 * might be still walking the array
280 bpf_prog_array_free(old_array);
284 * cgroup_bpf_inherit() - inherit effective programs from parent
285 * @cgrp: the cgroup to modify
287 int cgroup_bpf_inherit(struct cgroup *cgrp)
289 /* has to use marco instead of const int, since compiler thinks
290 * that array below is variable length
292 #define NR ARRAY_SIZE(cgrp->bpf.effective)
293 struct bpf_prog_array *arrays[NR] = {};
294 struct cgroup *p;
295 int ret, i;
297 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
298 GFP_KERNEL);
299 if (ret)
300 return ret;
302 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
303 cgroup_bpf_get(p);
305 for (i = 0; i < NR; i++)
306 INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
308 INIT_LIST_HEAD(&cgrp->bpf.storages);
310 for (i = 0; i < NR; i++)
311 if (compute_effective_progs(cgrp, i, &arrays[i]))
312 goto cleanup;
314 for (i = 0; i < NR; i++)
315 activate_effective_progs(cgrp, i, arrays[i]);
317 return 0;
318 cleanup:
319 for (i = 0; i < NR; i++)
320 bpf_prog_array_free(arrays[i]);
322 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
323 cgroup_bpf_put(p);
325 percpu_ref_exit(&cgrp->bpf.refcnt);
327 return -ENOMEM;
330 static int update_effective_progs(struct cgroup *cgrp,
331 enum bpf_attach_type type)
333 struct cgroup_subsys_state *css;
334 int err;
336 /* allocate and recompute effective prog arrays */
337 css_for_each_descendant_pre(css, &cgrp->self) {
338 struct cgroup *desc = container_of(css, struct cgroup, self);
340 if (percpu_ref_is_zero(&desc->bpf.refcnt))
341 continue;
343 err = compute_effective_progs(desc, type, &desc->bpf.inactive);
344 if (err)
345 goto cleanup;
348 /* all allocations were successful. Activate all prog arrays */
349 css_for_each_descendant_pre(css, &cgrp->self) {
350 struct cgroup *desc = container_of(css, struct cgroup, self);
352 if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
353 if (unlikely(desc->bpf.inactive)) {
354 bpf_prog_array_free(desc->bpf.inactive);
355 desc->bpf.inactive = NULL;
357 continue;
360 activate_effective_progs(desc, type, desc->bpf.inactive);
361 desc->bpf.inactive = NULL;
364 return 0;
366 cleanup:
367 /* oom while computing effective. Free all computed effective arrays
368 * since they were not activated
370 css_for_each_descendant_pre(css, &cgrp->self) {
371 struct cgroup *desc = container_of(css, struct cgroup, self);
373 bpf_prog_array_free(desc->bpf.inactive);
374 desc->bpf.inactive = NULL;
377 return err;
380 #define BPF_CGROUP_MAX_PROGS 64
382 static struct bpf_prog_list *find_attach_entry(struct list_head *progs,
383 struct bpf_prog *prog,
384 struct bpf_cgroup_link *link,
385 struct bpf_prog *replace_prog,
386 bool allow_multi)
388 struct bpf_prog_list *pl;
390 /* single-attach case */
391 if (!allow_multi) {
392 if (list_empty(progs))
393 return NULL;
394 return list_first_entry(progs, typeof(*pl), node);
397 list_for_each_entry(pl, progs, node) {
398 if (prog && pl->prog == prog && prog != replace_prog)
399 /* disallow attaching the same prog twice */
400 return ERR_PTR(-EINVAL);
401 if (link && pl->link == link)
402 /* disallow attaching the same link twice */
403 return ERR_PTR(-EINVAL);
406 /* direct prog multi-attach w/ replacement case */
407 if (replace_prog) {
408 list_for_each_entry(pl, progs, node) {
409 if (pl->prog == replace_prog)
410 /* a match found */
411 return pl;
413 /* prog to replace not found for cgroup */
414 return ERR_PTR(-ENOENT);
417 return NULL;
421 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
422 * propagate the change to descendants
423 * @cgrp: The cgroup which descendants to traverse
424 * @prog: A program to attach
425 * @link: A link to attach
426 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
427 * @type: Type of attach operation
428 * @flags: Option flags
430 * Exactly one of @prog or @link can be non-null.
431 * Must be called with cgroup_mutex held.
433 int __cgroup_bpf_attach(struct cgroup *cgrp,
434 struct bpf_prog *prog, struct bpf_prog *replace_prog,
435 struct bpf_cgroup_link *link,
436 enum bpf_attach_type type, u32 flags)
438 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
439 struct list_head *progs = &cgrp->bpf.progs[type];
440 struct bpf_prog *old_prog = NULL;
441 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
442 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
443 struct bpf_prog_list *pl;
444 int err;
446 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
447 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
448 /* invalid combination */
449 return -EINVAL;
450 if (link && (prog || replace_prog))
451 /* only either link or prog/replace_prog can be specified */
452 return -EINVAL;
453 if (!!replace_prog != !!(flags & BPF_F_REPLACE))
454 /* replace_prog implies BPF_F_REPLACE, and vice versa */
455 return -EINVAL;
457 if (!hierarchy_allows_attach(cgrp, type))
458 return -EPERM;
460 if (!list_empty(progs) && cgrp->bpf.flags[type] != saved_flags)
461 /* Disallow attaching non-overridable on top
462 * of existing overridable in this cgroup.
463 * Disallow attaching multi-prog if overridable or none
465 return -EPERM;
467 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
468 return -E2BIG;
470 pl = find_attach_entry(progs, prog, link, replace_prog,
471 flags & BPF_F_ALLOW_MULTI);
472 if (IS_ERR(pl))
473 return PTR_ERR(pl);
475 if (bpf_cgroup_storages_alloc(storage, new_storage, type,
476 prog ? : link->link.prog, cgrp))
477 return -ENOMEM;
479 if (pl) {
480 old_prog = pl->prog;
481 } else {
482 pl = kmalloc(sizeof(*pl), GFP_KERNEL);
483 if (!pl) {
484 bpf_cgroup_storages_free(new_storage);
485 return -ENOMEM;
487 list_add_tail(&pl->node, progs);
490 pl->prog = prog;
491 pl->link = link;
492 bpf_cgroup_storages_assign(pl->storage, storage);
493 cgrp->bpf.flags[type] = saved_flags;
495 err = update_effective_progs(cgrp, type);
496 if (err)
497 goto cleanup;
499 if (old_prog)
500 bpf_prog_put(old_prog);
501 else
502 static_branch_inc(&cgroup_bpf_enabled_key);
503 bpf_cgroup_storages_link(new_storage, cgrp, type);
504 return 0;
506 cleanup:
507 if (old_prog) {
508 pl->prog = old_prog;
509 pl->link = NULL;
511 bpf_cgroup_storages_free(new_storage);
512 if (!old_prog) {
513 list_del(&pl->node);
514 kfree(pl);
516 return err;
519 /* Swap updated BPF program for given link in effective program arrays across
520 * all descendant cgroups. This function is guaranteed to succeed.
522 static void replace_effective_prog(struct cgroup *cgrp,
523 enum bpf_attach_type type,
524 struct bpf_cgroup_link *link)
526 struct bpf_prog_array_item *item;
527 struct cgroup_subsys_state *css;
528 struct bpf_prog_array *progs;
529 struct bpf_prog_list *pl;
530 struct list_head *head;
531 struct cgroup *cg;
532 int pos;
534 css_for_each_descendant_pre(css, &cgrp->self) {
535 struct cgroup *desc = container_of(css, struct cgroup, self);
537 if (percpu_ref_is_zero(&desc->bpf.refcnt))
538 continue;
540 /* find position of link in effective progs array */
541 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
542 if (pos && !(cg->bpf.flags[type] & BPF_F_ALLOW_MULTI))
543 continue;
545 head = &cg->bpf.progs[type];
546 list_for_each_entry(pl, head, node) {
547 if (!prog_list_prog(pl))
548 continue;
549 if (pl->link == link)
550 goto found;
551 pos++;
554 found:
555 BUG_ON(!cg);
556 progs = rcu_dereference_protected(
557 desc->bpf.effective[type],
558 lockdep_is_held(&cgroup_mutex));
559 item = &progs->items[pos];
560 WRITE_ONCE(item->prog, link->link.prog);
565 * __cgroup_bpf_replace() - Replace link's program and propagate the change
566 * to descendants
567 * @cgrp: The cgroup which descendants to traverse
568 * @link: A link for which to replace BPF program
569 * @type: Type of attach operation
571 * Must be called with cgroup_mutex held.
573 static int __cgroup_bpf_replace(struct cgroup *cgrp,
574 struct bpf_cgroup_link *link,
575 struct bpf_prog *new_prog)
577 struct list_head *progs = &cgrp->bpf.progs[link->type];
578 struct bpf_prog *old_prog;
579 struct bpf_prog_list *pl;
580 bool found = false;
582 if (link->link.prog->type != new_prog->type)
583 return -EINVAL;
585 list_for_each_entry(pl, progs, node) {
586 if (pl->link == link) {
587 found = true;
588 break;
591 if (!found)
592 return -ENOENT;
594 old_prog = xchg(&link->link.prog, new_prog);
595 replace_effective_prog(cgrp, link->type, link);
596 bpf_prog_put(old_prog);
597 return 0;
600 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
601 struct bpf_prog *old_prog)
603 struct bpf_cgroup_link *cg_link;
604 int ret;
606 cg_link = container_of(link, struct bpf_cgroup_link, link);
608 mutex_lock(&cgroup_mutex);
609 /* link might have been auto-released by dying cgroup, so fail */
610 if (!cg_link->cgroup) {
611 ret = -ENOLINK;
612 goto out_unlock;
614 if (old_prog && link->prog != old_prog) {
615 ret = -EPERM;
616 goto out_unlock;
618 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
619 out_unlock:
620 mutex_unlock(&cgroup_mutex);
621 return ret;
624 static struct bpf_prog_list *find_detach_entry(struct list_head *progs,
625 struct bpf_prog *prog,
626 struct bpf_cgroup_link *link,
627 bool allow_multi)
629 struct bpf_prog_list *pl;
631 if (!allow_multi) {
632 if (list_empty(progs))
633 /* report error when trying to detach and nothing is attached */
634 return ERR_PTR(-ENOENT);
636 /* to maintain backward compatibility NONE and OVERRIDE cgroups
637 * allow detaching with invalid FD (prog==NULL) in legacy mode
639 return list_first_entry(progs, typeof(*pl), node);
642 if (!prog && !link)
643 /* to detach MULTI prog the user has to specify valid FD
644 * of the program or link to be detached
646 return ERR_PTR(-EINVAL);
648 /* find the prog or link and detach it */
649 list_for_each_entry(pl, progs, node) {
650 if (pl->prog == prog && pl->link == link)
651 return pl;
653 return ERR_PTR(-ENOENT);
657 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
658 * propagate the change to descendants
659 * @cgrp: The cgroup which descendants to traverse
660 * @prog: A program to detach or NULL
661 * @prog: A link to detach or NULL
662 * @type: Type of detach operation
664 * At most one of @prog or @link can be non-NULL.
665 * Must be called with cgroup_mutex held.
667 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
668 struct bpf_cgroup_link *link, enum bpf_attach_type type)
670 struct list_head *progs = &cgrp->bpf.progs[type];
671 u32 flags = cgrp->bpf.flags[type];
672 struct bpf_prog_list *pl;
673 struct bpf_prog *old_prog;
674 int err;
676 if (prog && link)
677 /* only one of prog or link can be specified */
678 return -EINVAL;
680 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
681 if (IS_ERR(pl))
682 return PTR_ERR(pl);
684 /* mark it deleted, so it's ignored while recomputing effective */
685 old_prog = pl->prog;
686 pl->prog = NULL;
687 pl->link = NULL;
689 err = update_effective_progs(cgrp, type);
690 if (err)
691 goto cleanup;
693 /* now can actually delete it from this cgroup list */
694 list_del(&pl->node);
695 kfree(pl);
696 if (list_empty(progs))
697 /* last program was detached, reset flags to zero */
698 cgrp->bpf.flags[type] = 0;
699 if (old_prog)
700 bpf_prog_put(old_prog);
701 static_branch_dec(&cgroup_bpf_enabled_key);
702 return 0;
704 cleanup:
705 /* restore back prog or link */
706 pl->prog = old_prog;
707 pl->link = link;
708 return err;
711 /* Must be called with cgroup_mutex held to avoid races. */
712 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
713 union bpf_attr __user *uattr)
715 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
716 enum bpf_attach_type type = attr->query.attach_type;
717 struct list_head *progs = &cgrp->bpf.progs[type];
718 u32 flags = cgrp->bpf.flags[type];
719 struct bpf_prog_array *effective;
720 struct bpf_prog *prog;
721 int cnt, ret = 0, i;
723 effective = rcu_dereference_protected(cgrp->bpf.effective[type],
724 lockdep_is_held(&cgroup_mutex));
726 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
727 cnt = bpf_prog_array_length(effective);
728 else
729 cnt = prog_list_length(progs);
731 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
732 return -EFAULT;
733 if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
734 return -EFAULT;
735 if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
736 /* return early if user requested only program count + flags */
737 return 0;
738 if (attr->query.prog_cnt < cnt) {
739 cnt = attr->query.prog_cnt;
740 ret = -ENOSPC;
743 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
744 return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
745 } else {
746 struct bpf_prog_list *pl;
747 u32 id;
749 i = 0;
750 list_for_each_entry(pl, progs, node) {
751 prog = prog_list_prog(pl);
752 id = prog->aux->id;
753 if (copy_to_user(prog_ids + i, &id, sizeof(id)))
754 return -EFAULT;
755 if (++i == cnt)
756 break;
759 return ret;
762 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
763 enum bpf_prog_type ptype, struct bpf_prog *prog)
765 struct bpf_prog *replace_prog = NULL;
766 struct cgroup *cgrp;
767 int ret;
769 cgrp = cgroup_get_from_fd(attr->target_fd);
770 if (IS_ERR(cgrp))
771 return PTR_ERR(cgrp);
773 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
774 (attr->attach_flags & BPF_F_REPLACE)) {
775 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
776 if (IS_ERR(replace_prog)) {
777 cgroup_put(cgrp);
778 return PTR_ERR(replace_prog);
782 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
783 attr->attach_type, attr->attach_flags);
785 if (replace_prog)
786 bpf_prog_put(replace_prog);
787 cgroup_put(cgrp);
788 return ret;
791 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
793 struct bpf_prog *prog;
794 struct cgroup *cgrp;
795 int ret;
797 cgrp = cgroup_get_from_fd(attr->target_fd);
798 if (IS_ERR(cgrp))
799 return PTR_ERR(cgrp);
801 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
802 if (IS_ERR(prog))
803 prog = NULL;
805 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
806 if (prog)
807 bpf_prog_put(prog);
809 cgroup_put(cgrp);
810 return ret;
813 static void bpf_cgroup_link_release(struct bpf_link *link)
815 struct bpf_cgroup_link *cg_link =
816 container_of(link, struct bpf_cgroup_link, link);
817 struct cgroup *cg;
819 /* link might have been auto-detached by dying cgroup already,
820 * in that case our work is done here
822 if (!cg_link->cgroup)
823 return;
825 mutex_lock(&cgroup_mutex);
827 /* re-check cgroup under lock again */
828 if (!cg_link->cgroup) {
829 mutex_unlock(&cgroup_mutex);
830 return;
833 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
834 cg_link->type));
836 cg = cg_link->cgroup;
837 cg_link->cgroup = NULL;
839 mutex_unlock(&cgroup_mutex);
841 cgroup_put(cg);
844 static void bpf_cgroup_link_dealloc(struct bpf_link *link)
846 struct bpf_cgroup_link *cg_link =
847 container_of(link, struct bpf_cgroup_link, link);
849 kfree(cg_link);
852 static int bpf_cgroup_link_detach(struct bpf_link *link)
854 bpf_cgroup_link_release(link);
856 return 0;
859 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
860 struct seq_file *seq)
862 struct bpf_cgroup_link *cg_link =
863 container_of(link, struct bpf_cgroup_link, link);
864 u64 cg_id = 0;
866 mutex_lock(&cgroup_mutex);
867 if (cg_link->cgroup)
868 cg_id = cgroup_id(cg_link->cgroup);
869 mutex_unlock(&cgroup_mutex);
871 seq_printf(seq,
872 "cgroup_id:\t%llu\n"
873 "attach_type:\t%d\n",
874 cg_id,
875 cg_link->type);
878 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
879 struct bpf_link_info *info)
881 struct bpf_cgroup_link *cg_link =
882 container_of(link, struct bpf_cgroup_link, link);
883 u64 cg_id = 0;
885 mutex_lock(&cgroup_mutex);
886 if (cg_link->cgroup)
887 cg_id = cgroup_id(cg_link->cgroup);
888 mutex_unlock(&cgroup_mutex);
890 info->cgroup.cgroup_id = cg_id;
891 info->cgroup.attach_type = cg_link->type;
892 return 0;
895 static const struct bpf_link_ops bpf_cgroup_link_lops = {
896 .release = bpf_cgroup_link_release,
897 .dealloc = bpf_cgroup_link_dealloc,
898 .detach = bpf_cgroup_link_detach,
899 .update_prog = cgroup_bpf_replace,
900 .show_fdinfo = bpf_cgroup_link_show_fdinfo,
901 .fill_link_info = bpf_cgroup_link_fill_link_info,
904 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
906 struct bpf_link_primer link_primer;
907 struct bpf_cgroup_link *link;
908 struct cgroup *cgrp;
909 int err;
911 if (attr->link_create.flags)
912 return -EINVAL;
914 cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
915 if (IS_ERR(cgrp))
916 return PTR_ERR(cgrp);
918 link = kzalloc(sizeof(*link), GFP_USER);
919 if (!link) {
920 err = -ENOMEM;
921 goto out_put_cgroup;
923 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
924 prog);
925 link->cgroup = cgrp;
926 link->type = attr->link_create.attach_type;
928 err = bpf_link_prime(&link->link, &link_primer);
929 if (err) {
930 kfree(link);
931 goto out_put_cgroup;
934 err = cgroup_bpf_attach(cgrp, NULL, NULL, link, link->type,
935 BPF_F_ALLOW_MULTI);
936 if (err) {
937 bpf_link_cleanup(&link_primer);
938 goto out_put_cgroup;
941 return bpf_link_settle(&link_primer);
943 out_put_cgroup:
944 cgroup_put(cgrp);
945 return err;
948 int cgroup_bpf_prog_query(const union bpf_attr *attr,
949 union bpf_attr __user *uattr)
951 struct cgroup *cgrp;
952 int ret;
954 cgrp = cgroup_get_from_fd(attr->query.target_fd);
955 if (IS_ERR(cgrp))
956 return PTR_ERR(cgrp);
958 ret = cgroup_bpf_query(cgrp, attr, uattr);
960 cgroup_put(cgrp);
961 return ret;
965 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
966 * @sk: The socket sending or receiving traffic
967 * @skb: The skb that is being sent or received
968 * @type: The type of program to be exectuted
970 * If no socket is passed, or the socket is not of type INET or INET6,
971 * this function does nothing and returns 0.
973 * The program type passed in via @type must be suitable for network
974 * filtering. No further check is performed to assert that.
976 * For egress packets, this function can return:
977 * NET_XMIT_SUCCESS (0) - continue with packet output
978 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr
979 * NET_XMIT_CN (2) - continue with packet output and notify TCP
980 * to call cwr
981 * -EPERM - drop packet
983 * For ingress packets, this function will return -EPERM if any
984 * attached program was found and if it returned != 1 during execution.
985 * Otherwise 0 is returned.
987 int __cgroup_bpf_run_filter_skb(struct sock *sk,
988 struct sk_buff *skb,
989 enum bpf_attach_type type)
991 unsigned int offset = skb->data - skb_network_header(skb);
992 struct sock *save_sk;
993 void *saved_data_end;
994 struct cgroup *cgrp;
995 int ret;
997 if (!sk || !sk_fullsock(sk))
998 return 0;
1000 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1001 return 0;
1003 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1004 save_sk = skb->sk;
1005 skb->sk = sk;
1006 __skb_push(skb, offset);
1008 /* compute pointers for the bpf prog */
1009 bpf_compute_and_save_data_end(skb, &saved_data_end);
1011 if (type == BPF_CGROUP_INET_EGRESS) {
1012 ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
1013 cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb);
1014 } else {
1015 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
1016 __bpf_prog_run_save_cb);
1017 ret = (ret == 1 ? 0 : -EPERM);
1019 bpf_restore_data_end(skb, saved_data_end);
1020 __skb_pull(skb, offset);
1021 skb->sk = save_sk;
1023 return ret;
1025 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1028 * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1029 * @sk: sock structure to manipulate
1030 * @type: The type of program to be exectuted
1032 * socket is passed is expected to be of type INET or INET6.
1034 * The program type passed in via @type must be suitable for sock
1035 * filtering. No further check is performed to assert that.
1037 * This function will return %-EPERM if any if an attached program was found
1038 * and if it returned != 1 during execution. In all other cases, 0 is returned.
1040 int __cgroup_bpf_run_filter_sk(struct sock *sk,
1041 enum bpf_attach_type type)
1043 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1044 int ret;
1046 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
1047 return ret == 1 ? 0 : -EPERM;
1049 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1052 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1053 * provided by user sockaddr
1054 * @sk: sock struct that will use sockaddr
1055 * @uaddr: sockaddr struct provided by user
1056 * @type: The type of program to be exectuted
1057 * @t_ctx: Pointer to attach type specific context
1059 * socket is expected to be of type INET or INET6.
1061 * This function will return %-EPERM if an attached program is found and
1062 * returned value != 1 during execution. In all other cases, 0 is returned.
1064 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1065 struct sockaddr *uaddr,
1066 enum bpf_attach_type type,
1067 void *t_ctx)
1069 struct bpf_sock_addr_kern ctx = {
1070 .sk = sk,
1071 .uaddr = uaddr,
1072 .t_ctx = t_ctx,
1074 struct sockaddr_storage unspec;
1075 struct cgroup *cgrp;
1076 int ret;
1078 /* Check socket family since not all sockets represent network
1079 * endpoint (e.g. AF_UNIX).
1081 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1082 return 0;
1084 if (!ctx.uaddr) {
1085 memset(&unspec, 0, sizeof(unspec));
1086 ctx.uaddr = (struct sockaddr *)&unspec;
1089 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1090 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
1092 return ret == 1 ? 0 : -EPERM;
1094 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1097 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1098 * @sk: socket to get cgroup from
1099 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1100 * sk with connection information (IP addresses, etc.) May not contain
1101 * cgroup info if it is a req sock.
1102 * @type: The type of program to be exectuted
1104 * socket passed is expected to be of type INET or INET6.
1106 * The program type passed in via @type must be suitable for sock_ops
1107 * filtering. No further check is performed to assert that.
1109 * This function will return %-EPERM if any if an attached program was found
1110 * and if it returned != 1 during execution. In all other cases, 0 is returned.
1112 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1113 struct bpf_sock_ops_kern *sock_ops,
1114 enum bpf_attach_type type)
1116 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1117 int ret;
1119 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
1120 BPF_PROG_RUN);
1121 return ret == 1 ? 0 : -EPERM;
1123 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1125 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1126 short access, enum bpf_attach_type type)
1128 struct cgroup *cgrp;
1129 struct bpf_cgroup_dev_ctx ctx = {
1130 .access_type = (access << 16) | dev_type,
1131 .major = major,
1132 .minor = minor,
1134 int allow = 1;
1136 rcu_read_lock();
1137 cgrp = task_dfl_cgroup(current);
1138 allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx,
1139 BPF_PROG_RUN);
1140 rcu_read_unlock();
1142 return !allow;
1145 static const struct bpf_func_proto *
1146 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1148 switch (func_id) {
1149 case BPF_FUNC_get_current_uid_gid:
1150 return &bpf_get_current_uid_gid_proto;
1151 case BPF_FUNC_get_local_storage:
1152 return &bpf_get_local_storage_proto;
1153 case BPF_FUNC_get_current_cgroup_id:
1154 return &bpf_get_current_cgroup_id_proto;
1155 case BPF_FUNC_perf_event_output:
1156 return &bpf_event_output_data_proto;
1157 default:
1158 return bpf_base_func_proto(func_id);
1162 static const struct bpf_func_proto *
1163 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1165 return cgroup_base_func_proto(func_id, prog);
1168 static bool cgroup_dev_is_valid_access(int off, int size,
1169 enum bpf_access_type type,
1170 const struct bpf_prog *prog,
1171 struct bpf_insn_access_aux *info)
1173 const int size_default = sizeof(__u32);
1175 if (type == BPF_WRITE)
1176 return false;
1178 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1179 return false;
1180 /* The verifier guarantees that size > 0. */
1181 if (off % size != 0)
1182 return false;
1184 switch (off) {
1185 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1186 bpf_ctx_record_field_size(info, size_default);
1187 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1188 return false;
1189 break;
1190 default:
1191 if (size != size_default)
1192 return false;
1195 return true;
1198 const struct bpf_prog_ops cg_dev_prog_ops = {
1201 const struct bpf_verifier_ops cg_dev_verifier_ops = {
1202 .get_func_proto = cgroup_dev_func_proto,
1203 .is_valid_access = cgroup_dev_is_valid_access,
1207 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1209 * @head: sysctl table header
1210 * @table: sysctl table
1211 * @write: sysctl is being read (= 0) or written (= 1)
1212 * @buf: pointer to buffer (in and out)
1213 * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1214 * result is size of @new_buf if program set new value, initial value
1215 * otherwise
1216 * @ppos: value-result argument: value is position at which read from or write
1217 * to sysctl is happening, result is new position if program overrode it,
1218 * initial value otherwise
1219 * @type: type of program to be executed
1221 * Program is run when sysctl is being accessed, either read or written, and
1222 * can allow or deny such access.
1224 * This function will return %-EPERM if an attached program is found and
1225 * returned value != 1 during execution. In all other cases 0 is returned.
1227 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1228 struct ctl_table *table, int write,
1229 void **buf, size_t *pcount, loff_t *ppos,
1230 enum bpf_attach_type type)
1232 struct bpf_sysctl_kern ctx = {
1233 .head = head,
1234 .table = table,
1235 .write = write,
1236 .ppos = ppos,
1237 .cur_val = NULL,
1238 .cur_len = PAGE_SIZE,
1239 .new_val = NULL,
1240 .new_len = 0,
1241 .new_updated = 0,
1243 struct cgroup *cgrp;
1244 loff_t pos = 0;
1245 int ret;
1247 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1248 if (!ctx.cur_val ||
1249 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1250 /* Let BPF program decide how to proceed. */
1251 ctx.cur_len = 0;
1254 if (write && *buf && *pcount) {
1255 /* BPF program should be able to override new value with a
1256 * buffer bigger than provided by user.
1258 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1259 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1260 if (ctx.new_val) {
1261 memcpy(ctx.new_val, *buf, ctx.new_len);
1262 } else {
1263 /* Let BPF program decide how to proceed. */
1264 ctx.new_len = 0;
1268 rcu_read_lock();
1269 cgrp = task_dfl_cgroup(current);
1270 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
1271 rcu_read_unlock();
1273 kfree(ctx.cur_val);
1275 if (ret == 1 && ctx.new_updated) {
1276 kfree(*buf);
1277 *buf = ctx.new_val;
1278 *pcount = ctx.new_len;
1279 } else {
1280 kfree(ctx.new_val);
1283 return ret == 1 ? 0 : -EPERM;
1286 #ifdef CONFIG_NET
1287 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
1288 enum bpf_attach_type attach_type)
1290 struct bpf_prog_array *prog_array;
1291 bool empty;
1293 rcu_read_lock();
1294 prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
1295 empty = bpf_prog_array_is_empty(prog_array);
1296 rcu_read_unlock();
1298 return empty;
1301 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen)
1303 if (unlikely(max_optlen < 0))
1304 return -EINVAL;
1306 if (unlikely(max_optlen > PAGE_SIZE)) {
1307 /* We don't expose optvals that are greater than PAGE_SIZE
1308 * to the BPF program.
1310 max_optlen = PAGE_SIZE;
1313 ctx->optval = kzalloc(max_optlen, GFP_USER);
1314 if (!ctx->optval)
1315 return -ENOMEM;
1317 ctx->optval_end = ctx->optval + max_optlen;
1319 return max_optlen;
1322 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx)
1324 kfree(ctx->optval);
1327 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1328 int *optname, char __user *optval,
1329 int *optlen, char **kernel_optval)
1331 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1332 struct bpf_sockopt_kern ctx = {
1333 .sk = sk,
1334 .level = *level,
1335 .optname = *optname,
1337 int ret, max_optlen;
1339 /* Opportunistic check to see whether we have any BPF program
1340 * attached to the hook so we don't waste time allocating
1341 * memory and locking the socket.
1343 if (!cgroup_bpf_enabled ||
1344 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT))
1345 return 0;
1347 /* Allocate a bit more than the initial user buffer for
1348 * BPF program. The canonical use case is overriding
1349 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1351 max_optlen = max_t(int, 16, *optlen);
1353 max_optlen = sockopt_alloc_buf(&ctx, max_optlen);
1354 if (max_optlen < 0)
1355 return max_optlen;
1357 ctx.optlen = *optlen;
1359 if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1360 ret = -EFAULT;
1361 goto out;
1364 lock_sock(sk);
1365 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT],
1366 &ctx, BPF_PROG_RUN);
1367 release_sock(sk);
1369 if (!ret) {
1370 ret = -EPERM;
1371 goto out;
1374 if (ctx.optlen == -1) {
1375 /* optlen set to -1, bypass kernel */
1376 ret = 1;
1377 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1378 /* optlen is out of bounds */
1379 ret = -EFAULT;
1380 } else {
1381 /* optlen within bounds, run kernel handler */
1382 ret = 0;
1384 /* export any potential modifications */
1385 *level = ctx.level;
1386 *optname = ctx.optname;
1388 /* optlen == 0 from BPF indicates that we should
1389 * use original userspace data.
1391 if (ctx.optlen != 0) {
1392 *optlen = ctx.optlen;
1393 *kernel_optval = ctx.optval;
1397 out:
1398 if (ret)
1399 sockopt_free_buf(&ctx);
1400 return ret;
1403 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1404 int optname, char __user *optval,
1405 int __user *optlen, int max_optlen,
1406 int retval)
1408 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1409 struct bpf_sockopt_kern ctx = {
1410 .sk = sk,
1411 .level = level,
1412 .optname = optname,
1413 .retval = retval,
1415 int ret;
1417 /* Opportunistic check to see whether we have any BPF program
1418 * attached to the hook so we don't waste time allocating
1419 * memory and locking the socket.
1421 if (!cgroup_bpf_enabled ||
1422 __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT))
1423 return retval;
1425 ctx.optlen = max_optlen;
1427 max_optlen = sockopt_alloc_buf(&ctx, max_optlen);
1428 if (max_optlen < 0)
1429 return max_optlen;
1431 if (!retval) {
1432 /* If kernel getsockopt finished successfully,
1433 * copy whatever was returned to the user back
1434 * into our temporary buffer. Set optlen to the
1435 * one that kernel returned as well to let
1436 * BPF programs inspect the value.
1439 if (get_user(ctx.optlen, optlen)) {
1440 ret = -EFAULT;
1441 goto out;
1444 if (copy_from_user(ctx.optval, optval,
1445 min(ctx.optlen, max_optlen)) != 0) {
1446 ret = -EFAULT;
1447 goto out;
1451 lock_sock(sk);
1452 ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1453 &ctx, BPF_PROG_RUN);
1454 release_sock(sk);
1456 if (!ret) {
1457 ret = -EPERM;
1458 goto out;
1461 if (ctx.optlen > max_optlen) {
1462 ret = -EFAULT;
1463 goto out;
1466 /* BPF programs only allowed to set retval to 0, not some
1467 * arbitrary value.
1469 if (ctx.retval != 0 && ctx.retval != retval) {
1470 ret = -EFAULT;
1471 goto out;
1474 if (ctx.optlen != 0) {
1475 if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1476 put_user(ctx.optlen, optlen)) {
1477 ret = -EFAULT;
1478 goto out;
1482 ret = ctx.retval;
1484 out:
1485 sockopt_free_buf(&ctx);
1486 return ret;
1488 #endif
1490 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1491 size_t *lenp)
1493 ssize_t tmp_ret = 0, ret;
1495 if (dir->header.parent) {
1496 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1497 if (tmp_ret < 0)
1498 return tmp_ret;
1501 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1502 if (ret < 0)
1503 return ret;
1504 *bufp += ret;
1505 *lenp -= ret;
1506 ret += tmp_ret;
1508 /* Avoid leading slash. */
1509 if (!ret)
1510 return ret;
1512 tmp_ret = strscpy(*bufp, "/", *lenp);
1513 if (tmp_ret < 0)
1514 return tmp_ret;
1515 *bufp += tmp_ret;
1516 *lenp -= tmp_ret;
1518 return ret + tmp_ret;
1521 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1522 size_t, buf_len, u64, flags)
1524 ssize_t tmp_ret = 0, ret;
1526 if (!buf)
1527 return -EINVAL;
1529 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1530 if (!ctx->head)
1531 return -EINVAL;
1532 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1533 if (tmp_ret < 0)
1534 return tmp_ret;
1537 ret = strscpy(buf, ctx->table->procname, buf_len);
1539 return ret < 0 ? ret : tmp_ret + ret;
1542 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1543 .func = bpf_sysctl_get_name,
1544 .gpl_only = false,
1545 .ret_type = RET_INTEGER,
1546 .arg1_type = ARG_PTR_TO_CTX,
1547 .arg2_type = ARG_PTR_TO_MEM,
1548 .arg3_type = ARG_CONST_SIZE,
1549 .arg4_type = ARG_ANYTHING,
1552 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1553 size_t src_len)
1555 if (!dst)
1556 return -EINVAL;
1558 if (!dst_len)
1559 return -E2BIG;
1561 if (!src || !src_len) {
1562 memset(dst, 0, dst_len);
1563 return -EINVAL;
1566 memcpy(dst, src, min(dst_len, src_len));
1568 if (dst_len > src_len) {
1569 memset(dst + src_len, '\0', dst_len - src_len);
1570 return src_len;
1573 dst[dst_len - 1] = '\0';
1575 return -E2BIG;
1578 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1579 char *, buf, size_t, buf_len)
1581 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1584 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1585 .func = bpf_sysctl_get_current_value,
1586 .gpl_only = false,
1587 .ret_type = RET_INTEGER,
1588 .arg1_type = ARG_PTR_TO_CTX,
1589 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1590 .arg3_type = ARG_CONST_SIZE,
1593 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1594 size_t, buf_len)
1596 if (!ctx->write) {
1597 if (buf && buf_len)
1598 memset(buf, '\0', buf_len);
1599 return -EINVAL;
1601 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1604 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1605 .func = bpf_sysctl_get_new_value,
1606 .gpl_only = false,
1607 .ret_type = RET_INTEGER,
1608 .arg1_type = ARG_PTR_TO_CTX,
1609 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1610 .arg3_type = ARG_CONST_SIZE,
1613 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1614 const char *, buf, size_t, buf_len)
1616 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1617 return -EINVAL;
1619 if (buf_len > PAGE_SIZE - 1)
1620 return -E2BIG;
1622 memcpy(ctx->new_val, buf, buf_len);
1623 ctx->new_len = buf_len;
1624 ctx->new_updated = 1;
1626 return 0;
1629 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1630 .func = bpf_sysctl_set_new_value,
1631 .gpl_only = false,
1632 .ret_type = RET_INTEGER,
1633 .arg1_type = ARG_PTR_TO_CTX,
1634 .arg2_type = ARG_PTR_TO_MEM,
1635 .arg3_type = ARG_CONST_SIZE,
1638 static const struct bpf_func_proto *
1639 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1641 switch (func_id) {
1642 case BPF_FUNC_strtol:
1643 return &bpf_strtol_proto;
1644 case BPF_FUNC_strtoul:
1645 return &bpf_strtoul_proto;
1646 case BPF_FUNC_sysctl_get_name:
1647 return &bpf_sysctl_get_name_proto;
1648 case BPF_FUNC_sysctl_get_current_value:
1649 return &bpf_sysctl_get_current_value_proto;
1650 case BPF_FUNC_sysctl_get_new_value:
1651 return &bpf_sysctl_get_new_value_proto;
1652 case BPF_FUNC_sysctl_set_new_value:
1653 return &bpf_sysctl_set_new_value_proto;
1654 default:
1655 return cgroup_base_func_proto(func_id, prog);
1659 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1660 const struct bpf_prog *prog,
1661 struct bpf_insn_access_aux *info)
1663 const int size_default = sizeof(__u32);
1665 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1666 return false;
1668 switch (off) {
1669 case bpf_ctx_range(struct bpf_sysctl, write):
1670 if (type != BPF_READ)
1671 return false;
1672 bpf_ctx_record_field_size(info, size_default);
1673 return bpf_ctx_narrow_access_ok(off, size, size_default);
1674 case bpf_ctx_range(struct bpf_sysctl, file_pos):
1675 if (type == BPF_READ) {
1676 bpf_ctx_record_field_size(info, size_default);
1677 return bpf_ctx_narrow_access_ok(off, size, size_default);
1678 } else {
1679 return size == size_default;
1681 default:
1682 return false;
1686 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1687 const struct bpf_insn *si,
1688 struct bpf_insn *insn_buf,
1689 struct bpf_prog *prog, u32 *target_size)
1691 struct bpf_insn *insn = insn_buf;
1692 u32 read_size;
1694 switch (si->off) {
1695 case offsetof(struct bpf_sysctl, write):
1696 *insn++ = BPF_LDX_MEM(
1697 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1698 bpf_target_off(struct bpf_sysctl_kern, write,
1699 sizeof_field(struct bpf_sysctl_kern,
1700 write),
1701 target_size));
1702 break;
1703 case offsetof(struct bpf_sysctl, file_pos):
1704 /* ppos is a pointer so it should be accessed via indirect
1705 * loads and stores. Also for stores additional temporary
1706 * register is used since neither src_reg nor dst_reg can be
1707 * overridden.
1709 if (type == BPF_WRITE) {
1710 int treg = BPF_REG_9;
1712 if (si->src_reg == treg || si->dst_reg == treg)
1713 --treg;
1714 if (si->src_reg == treg || si->dst_reg == treg)
1715 --treg;
1716 *insn++ = BPF_STX_MEM(
1717 BPF_DW, si->dst_reg, treg,
1718 offsetof(struct bpf_sysctl_kern, tmp_reg));
1719 *insn++ = BPF_LDX_MEM(
1720 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1721 treg, si->dst_reg,
1722 offsetof(struct bpf_sysctl_kern, ppos));
1723 *insn++ = BPF_STX_MEM(
1724 BPF_SIZEOF(u32), treg, si->src_reg,
1725 bpf_ctx_narrow_access_offset(
1726 0, sizeof(u32), sizeof(loff_t)));
1727 *insn++ = BPF_LDX_MEM(
1728 BPF_DW, treg, si->dst_reg,
1729 offsetof(struct bpf_sysctl_kern, tmp_reg));
1730 } else {
1731 *insn++ = BPF_LDX_MEM(
1732 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1733 si->dst_reg, si->src_reg,
1734 offsetof(struct bpf_sysctl_kern, ppos));
1735 read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1736 *insn++ = BPF_LDX_MEM(
1737 BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1738 bpf_ctx_narrow_access_offset(
1739 0, read_size, sizeof(loff_t)));
1741 *target_size = sizeof(u32);
1742 break;
1745 return insn - insn_buf;
1748 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1749 .get_func_proto = sysctl_func_proto,
1750 .is_valid_access = sysctl_is_valid_access,
1751 .convert_ctx_access = sysctl_convert_ctx_access,
1754 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1757 static const struct bpf_func_proto *
1758 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1760 switch (func_id) {
1761 #ifdef CONFIG_NET
1762 case BPF_FUNC_sk_storage_get:
1763 return &bpf_sk_storage_get_proto;
1764 case BPF_FUNC_sk_storage_delete:
1765 return &bpf_sk_storage_delete_proto;
1766 #endif
1767 #ifdef CONFIG_INET
1768 case BPF_FUNC_tcp_sock:
1769 return &bpf_tcp_sock_proto;
1770 #endif
1771 default:
1772 return cgroup_base_func_proto(func_id, prog);
1776 static bool cg_sockopt_is_valid_access(int off, int size,
1777 enum bpf_access_type type,
1778 const struct bpf_prog *prog,
1779 struct bpf_insn_access_aux *info)
1781 const int size_default = sizeof(__u32);
1783 if (off < 0 || off >= sizeof(struct bpf_sockopt))
1784 return false;
1786 if (off % size != 0)
1787 return false;
1789 if (type == BPF_WRITE) {
1790 switch (off) {
1791 case offsetof(struct bpf_sockopt, retval):
1792 if (size != size_default)
1793 return false;
1794 return prog->expected_attach_type ==
1795 BPF_CGROUP_GETSOCKOPT;
1796 case offsetof(struct bpf_sockopt, optname):
1797 /* fallthrough */
1798 case offsetof(struct bpf_sockopt, level):
1799 if (size != size_default)
1800 return false;
1801 return prog->expected_attach_type ==
1802 BPF_CGROUP_SETSOCKOPT;
1803 case offsetof(struct bpf_sockopt, optlen):
1804 return size == size_default;
1805 default:
1806 return false;
1810 switch (off) {
1811 case offsetof(struct bpf_sockopt, sk):
1812 if (size != sizeof(__u64))
1813 return false;
1814 info->reg_type = PTR_TO_SOCKET;
1815 break;
1816 case offsetof(struct bpf_sockopt, optval):
1817 if (size != sizeof(__u64))
1818 return false;
1819 info->reg_type = PTR_TO_PACKET;
1820 break;
1821 case offsetof(struct bpf_sockopt, optval_end):
1822 if (size != sizeof(__u64))
1823 return false;
1824 info->reg_type = PTR_TO_PACKET_END;
1825 break;
1826 case offsetof(struct bpf_sockopt, retval):
1827 if (size != size_default)
1828 return false;
1829 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1830 default:
1831 if (size != size_default)
1832 return false;
1833 break;
1835 return true;
1838 #define CG_SOCKOPT_ACCESS_FIELD(T, F) \
1839 T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \
1840 si->dst_reg, si->src_reg, \
1841 offsetof(struct bpf_sockopt_kern, F))
1843 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1844 const struct bpf_insn *si,
1845 struct bpf_insn *insn_buf,
1846 struct bpf_prog *prog,
1847 u32 *target_size)
1849 struct bpf_insn *insn = insn_buf;
1851 switch (si->off) {
1852 case offsetof(struct bpf_sockopt, sk):
1853 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
1854 break;
1855 case offsetof(struct bpf_sockopt, level):
1856 if (type == BPF_WRITE)
1857 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
1858 else
1859 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
1860 break;
1861 case offsetof(struct bpf_sockopt, optname):
1862 if (type == BPF_WRITE)
1863 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
1864 else
1865 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
1866 break;
1867 case offsetof(struct bpf_sockopt, optlen):
1868 if (type == BPF_WRITE)
1869 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
1870 else
1871 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
1872 break;
1873 case offsetof(struct bpf_sockopt, retval):
1874 if (type == BPF_WRITE)
1875 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
1876 else
1877 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
1878 break;
1879 case offsetof(struct bpf_sockopt, optval):
1880 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
1881 break;
1882 case offsetof(struct bpf_sockopt, optval_end):
1883 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
1884 break;
1887 return insn - insn_buf;
1890 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
1891 bool direct_write,
1892 const struct bpf_prog *prog)
1894 /* Nothing to do for sockopt argument. The data is kzalloc'ated.
1896 return 0;
1899 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
1900 .get_func_proto = cg_sockopt_func_proto,
1901 .is_valid_access = cg_sockopt_is_valid_access,
1902 .convert_ctx_access = cg_sockopt_convert_ctx_access,
1903 .gen_prologue = cg_sockopt_get_prologue,
1906 const struct bpf_prog_ops cg_sockopt_prog_ops = {