4 * Processor and Memory placement constraints for sets of tasks.
6 * Copyright (C) 2003 BULL SA.
7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8 * Copyright (C) 2006 Google, Inc
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
13 * 2003-10-10 Written by Simon Derr.
14 * 2003-10-22 Updates by Stephen Hemminger.
15 * 2004 May-July Rework by Paul Jackson.
16 * 2006 Rework by Paul Menage to use generic cgroups
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cpu.h>
26 #include <linux/cpumask.h>
27 #include <linux/cpuset.h>
28 #include <linux/err.h>
29 #include <linux/errno.h>
30 #include <linux/file.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/kernel.h>
35 #include <linux/kmod.h>
36 #include <linux/list.h>
37 #include <linux/mempolicy.h>
39 #include <linux/memory.h>
40 #include <linux/export.h>
41 #include <linux/mount.h>
42 #include <linux/fs_context.h>
43 #include <linux/namei.h>
44 #include <linux/pagemap.h>
45 #include <linux/proc_fs.h>
46 #include <linux/rcupdate.h>
47 #include <linux/sched.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/mm.h>
50 #include <linux/sched/task.h>
51 #include <linux/seq_file.h>
52 #include <linux/security.h>
53 #include <linux/slab.h>
54 #include <linux/spinlock.h>
55 #include <linux/stat.h>
56 #include <linux/string.h>
57 #include <linux/time.h>
58 #include <linux/time64.h>
59 #include <linux/backing-dev.h>
60 #include <linux/sort.h>
61 #include <linux/oom.h>
62 #include <linux/sched/isolation.h>
63 #include <linux/uaccess.h>
64 #include <linux/atomic.h>
65 #include <linux/mutex.h>
66 #include <linux/cgroup.h>
67 #include <linux/wait.h>
69 DEFINE_STATIC_KEY_FALSE(cpusets_pre_enable_key
);
70 DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key
);
72 /* See "Frequency meter" comments, below. */
75 int cnt
; /* unprocessed events count */
76 int val
; /* most recent output value */
77 time64_t time
; /* clock (secs) when val computed */
78 spinlock_t lock
; /* guards read or write of above */
82 struct cgroup_subsys_state css
;
84 unsigned long flags
; /* "unsigned long" so bitops work */
87 * On default hierarchy:
89 * The user-configured masks can only be changed by writing to
90 * cpuset.cpus and cpuset.mems, and won't be limited by the
93 * The effective masks is the real masks that apply to the tasks
94 * in the cpuset. They may be changed if the configured masks are
95 * changed or hotplug happens.
97 * effective_mask == configured_mask & parent's effective_mask,
98 * and if it ends up empty, it will inherit the parent's mask.
101 * On legacy hierachy:
103 * The user-configured masks are always the same with effective masks.
106 /* user-configured CPUs and Memory Nodes allow to tasks */
107 cpumask_var_t cpus_allowed
;
108 nodemask_t mems_allowed
;
110 /* effective CPUs and Memory Nodes allow to tasks */
111 cpumask_var_t effective_cpus
;
112 nodemask_t effective_mems
;
115 * CPUs allocated to child sub-partitions (default hierarchy only)
116 * - CPUs granted by the parent = effective_cpus U subparts_cpus
117 * - effective_cpus and subparts_cpus are mutually exclusive.
119 * effective_cpus contains only onlined CPUs, but subparts_cpus
120 * may have offlined ones.
122 cpumask_var_t subparts_cpus
;
125 * This is old Memory Nodes tasks took on.
127 * - top_cpuset.old_mems_allowed is initialized to mems_allowed.
128 * - A new cpuset's old_mems_allowed is initialized when some
129 * task is moved into it.
130 * - old_mems_allowed is used in cpuset_migrate_mm() when we change
131 * cpuset.mems_allowed and have tasks' nodemask updated, and
132 * then old_mems_allowed is updated to mems_allowed.
134 nodemask_t old_mems_allowed
;
136 struct fmeter fmeter
; /* memory_pressure filter */
139 * Tasks are being attached to this cpuset. Used to prevent
140 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
142 int attach_in_progress
;
144 /* partition number for rebuild_sched_domains() */
147 /* for custom sched domain */
148 int relax_domain_level
;
150 /* number of CPUs in subparts_cpus */
151 int nr_subparts_cpus
;
153 /* partition root state */
154 int partition_root_state
;
157 * Default hierarchy only:
158 * use_parent_ecpus - set if using parent's effective_cpus
159 * child_ecpus_count - # of children with use_parent_ecpus set
161 int use_parent_ecpus
;
162 int child_ecpus_count
;
166 * Partition root states:
168 * 0 - not a partition root
172 * -1 - invalid partition root
173 * None of the cpus in cpus_allowed can be put into the parent's
174 * subparts_cpus. In this case, the cpuset is not a real partition
175 * root anymore. However, the CPU_EXCLUSIVE bit will still be set
176 * and the cpuset can be restored back to a partition root if the
177 * parent cpuset can give more CPUs back to this child cpuset.
179 #define PRS_DISABLED 0
180 #define PRS_ENABLED 1
184 * Temporary cpumasks for working with partitions that are passed among
185 * functions to avoid memory allocation in inner functions.
188 cpumask_var_t addmask
, delmask
; /* For partition root */
189 cpumask_var_t new_cpus
; /* For update_cpumasks_hier() */
192 static inline struct cpuset
*css_cs(struct cgroup_subsys_state
*css
)
194 return css
? container_of(css
, struct cpuset
, css
) : NULL
;
197 /* Retrieve the cpuset for a task */
198 static inline struct cpuset
*task_cs(struct task_struct
*task
)
200 return css_cs(task_css(task
, cpuset_cgrp_id
));
203 static inline struct cpuset
*parent_cs(struct cpuset
*cs
)
205 return css_cs(cs
->css
.parent
);
208 /* bits in struct cpuset flags field */
215 CS_SCHED_LOAD_BALANCE
,
220 /* convenient tests for these bits */
221 static inline bool is_cpuset_online(struct cpuset
*cs
)
223 return test_bit(CS_ONLINE
, &cs
->flags
) && !css_is_dying(&cs
->css
);
226 static inline int is_cpu_exclusive(const struct cpuset
*cs
)
228 return test_bit(CS_CPU_EXCLUSIVE
, &cs
->flags
);
231 static inline int is_mem_exclusive(const struct cpuset
*cs
)
233 return test_bit(CS_MEM_EXCLUSIVE
, &cs
->flags
);
236 static inline int is_mem_hardwall(const struct cpuset
*cs
)
238 return test_bit(CS_MEM_HARDWALL
, &cs
->flags
);
241 static inline int is_sched_load_balance(const struct cpuset
*cs
)
243 return test_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
246 static inline int is_memory_migrate(const struct cpuset
*cs
)
248 return test_bit(CS_MEMORY_MIGRATE
, &cs
->flags
);
251 static inline int is_spread_page(const struct cpuset
*cs
)
253 return test_bit(CS_SPREAD_PAGE
, &cs
->flags
);
256 static inline int is_spread_slab(const struct cpuset
*cs
)
258 return test_bit(CS_SPREAD_SLAB
, &cs
->flags
);
261 static inline int is_partition_root(const struct cpuset
*cs
)
263 return cs
->partition_root_state
> 0;
266 static struct cpuset top_cpuset
= {
267 .flags
= ((1 << CS_ONLINE
) | (1 << CS_CPU_EXCLUSIVE
) |
268 (1 << CS_MEM_EXCLUSIVE
)),
269 .partition_root_state
= PRS_ENABLED
,
273 * cpuset_for_each_child - traverse online children of a cpuset
274 * @child_cs: loop cursor pointing to the current child
275 * @pos_css: used for iteration
276 * @parent_cs: target cpuset to walk children of
278 * Walk @child_cs through the online children of @parent_cs. Must be used
279 * with RCU read locked.
281 #define cpuset_for_each_child(child_cs, pos_css, parent_cs) \
282 css_for_each_child((pos_css), &(parent_cs)->css) \
283 if (is_cpuset_online(((child_cs) = css_cs((pos_css)))))
286 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
287 * @des_cs: loop cursor pointing to the current descendant
288 * @pos_css: used for iteration
289 * @root_cs: target cpuset to walk ancestor of
291 * Walk @des_cs through the online descendants of @root_cs. Must be used
292 * with RCU read locked. The caller may modify @pos_css by calling
293 * css_rightmost_descendant() to skip subtree. @root_cs is included in the
294 * iteration and the first node to be visited.
296 #define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \
297 css_for_each_descendant_pre((pos_css), &(root_cs)->css) \
298 if (is_cpuset_online(((des_cs) = css_cs((pos_css)))))
301 * There are two global locks guarding cpuset structures - cpuset_mutex and
302 * callback_lock. We also require taking task_lock() when dereferencing a
303 * task's cpuset pointer. See "The task_lock() exception", at the end of this
306 * A task must hold both locks to modify cpusets. If a task holds
307 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
308 * is the only task able to also acquire callback_lock and be able to
309 * modify cpusets. It can perform various checks on the cpuset structure
310 * first, knowing nothing will change. It can also allocate memory while
311 * just holding cpuset_mutex. While it is performing these checks, various
312 * callback routines can briefly acquire callback_lock to query cpusets.
313 * Once it is ready to make the changes, it takes callback_lock, blocking
316 * Calls to the kernel memory allocator can not be made while holding
317 * callback_lock, as that would risk double tripping on callback_lock
318 * from one of the callbacks into the cpuset code from within
321 * If a task is only holding callback_lock, then it has read-only
324 * Now, the task_struct fields mems_allowed and mempolicy may be changed
325 * by other task, we use alloc_lock in the task_struct fields to protect
328 * The cpuset_common_file_read() handlers only hold callback_lock across
329 * small pieces of code, such as when reading out possibly multi-word
330 * cpumasks and nodemasks.
332 * Accessing a task's cpuset should be done in accordance with the
333 * guidelines for accessing subsystem state in kernel/cgroup.c
336 DEFINE_STATIC_PERCPU_RWSEM(cpuset_rwsem
);
338 void cpuset_read_lock(void)
340 percpu_down_read(&cpuset_rwsem
);
343 void cpuset_read_unlock(void)
345 percpu_up_read(&cpuset_rwsem
);
348 static DEFINE_SPINLOCK(callback_lock
);
350 static struct workqueue_struct
*cpuset_migrate_mm_wq
;
353 * CPU / memory hotplug is handled asynchronously.
355 static void cpuset_hotplug_workfn(struct work_struct
*work
);
356 static DECLARE_WORK(cpuset_hotplug_work
, cpuset_hotplug_workfn
);
358 static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq
);
361 * Cgroup v2 behavior is used on the "cpus" and "mems" control files when
362 * on default hierarchy or when the cpuset_v2_mode flag is set by mounting
363 * the v1 cpuset cgroup filesystem with the "cpuset_v2_mode" mount option.
364 * With v2 behavior, "cpus" and "mems" are always what the users have
365 * requested and won't be changed by hotplug events. Only the effective
366 * cpus or mems will be affected.
368 static inline bool is_in_v2_mode(void)
370 return cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) ||
371 (cpuset_cgrp_subsys
.root
->flags
& CGRP_ROOT_CPUSET_V2_MODE
);
375 * Return in pmask the portion of a cpusets's cpus_allowed that
376 * are online. If none are online, walk up the cpuset hierarchy
377 * until we find one that does have some online cpus.
379 * One way or another, we guarantee to return some non-empty subset
380 * of cpu_online_mask.
382 * Call with callback_lock or cpuset_mutex held.
384 static void guarantee_online_cpus(struct cpuset
*cs
, struct cpumask
*pmask
)
386 while (!cpumask_intersects(cs
->effective_cpus
, cpu_online_mask
)) {
390 * The top cpuset doesn't have any online cpu as a
391 * consequence of a race between cpuset_hotplug_work
392 * and cpu hotplug notifier. But we know the top
393 * cpuset's effective_cpus is on its way to to be
394 * identical to cpu_online_mask.
396 cpumask_copy(pmask
, cpu_online_mask
);
400 cpumask_and(pmask
, cs
->effective_cpus
, cpu_online_mask
);
404 * Return in *pmask the portion of a cpusets's mems_allowed that
405 * are online, with memory. If none are online with memory, walk
406 * up the cpuset hierarchy until we find one that does have some
407 * online mems. The top cpuset always has some mems online.
409 * One way or another, we guarantee to return some non-empty subset
410 * of node_states[N_MEMORY].
412 * Call with callback_lock or cpuset_mutex held.
414 static void guarantee_online_mems(struct cpuset
*cs
, nodemask_t
*pmask
)
416 while (!nodes_intersects(cs
->effective_mems
, node_states
[N_MEMORY
]))
418 nodes_and(*pmask
, cs
->effective_mems
, node_states
[N_MEMORY
]);
422 * update task's spread flag if cpuset's page/slab spread flag is set
424 * Call with callback_lock or cpuset_mutex held.
426 static void cpuset_update_task_spread_flag(struct cpuset
*cs
,
427 struct task_struct
*tsk
)
429 if (is_spread_page(cs
))
430 task_set_spread_page(tsk
);
432 task_clear_spread_page(tsk
);
434 if (is_spread_slab(cs
))
435 task_set_spread_slab(tsk
);
437 task_clear_spread_slab(tsk
);
441 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
443 * One cpuset is a subset of another if all its allowed CPUs and
444 * Memory Nodes are a subset of the other, and its exclusive flags
445 * are only set if the other's are set. Call holding cpuset_mutex.
448 static int is_cpuset_subset(const struct cpuset
*p
, const struct cpuset
*q
)
450 return cpumask_subset(p
->cpus_allowed
, q
->cpus_allowed
) &&
451 nodes_subset(p
->mems_allowed
, q
->mems_allowed
) &&
452 is_cpu_exclusive(p
) <= is_cpu_exclusive(q
) &&
453 is_mem_exclusive(p
) <= is_mem_exclusive(q
);
457 * alloc_cpumasks - allocate three cpumasks for cpuset
458 * @cs: the cpuset that have cpumasks to be allocated.
459 * @tmp: the tmpmasks structure pointer
460 * Return: 0 if successful, -ENOMEM otherwise.
462 * Only one of the two input arguments should be non-NULL.
464 static inline int alloc_cpumasks(struct cpuset
*cs
, struct tmpmasks
*tmp
)
466 cpumask_var_t
*pmask1
, *pmask2
, *pmask3
;
469 pmask1
= &cs
->cpus_allowed
;
470 pmask2
= &cs
->effective_cpus
;
471 pmask3
= &cs
->subparts_cpus
;
473 pmask1
= &tmp
->new_cpus
;
474 pmask2
= &tmp
->addmask
;
475 pmask3
= &tmp
->delmask
;
478 if (!zalloc_cpumask_var(pmask1
, GFP_KERNEL
))
481 if (!zalloc_cpumask_var(pmask2
, GFP_KERNEL
))
484 if (!zalloc_cpumask_var(pmask3
, GFP_KERNEL
))
490 free_cpumask_var(*pmask2
);
492 free_cpumask_var(*pmask1
);
497 * free_cpumasks - free cpumasks in a tmpmasks structure
498 * @cs: the cpuset that have cpumasks to be free.
499 * @tmp: the tmpmasks structure pointer
501 static inline void free_cpumasks(struct cpuset
*cs
, struct tmpmasks
*tmp
)
504 free_cpumask_var(cs
->cpus_allowed
);
505 free_cpumask_var(cs
->effective_cpus
);
506 free_cpumask_var(cs
->subparts_cpus
);
509 free_cpumask_var(tmp
->new_cpus
);
510 free_cpumask_var(tmp
->addmask
);
511 free_cpumask_var(tmp
->delmask
);
516 * alloc_trial_cpuset - allocate a trial cpuset
517 * @cs: the cpuset that the trial cpuset duplicates
519 static struct cpuset
*alloc_trial_cpuset(struct cpuset
*cs
)
521 struct cpuset
*trial
;
523 trial
= kmemdup(cs
, sizeof(*cs
), GFP_KERNEL
);
527 if (alloc_cpumasks(trial
, NULL
)) {
532 cpumask_copy(trial
->cpus_allowed
, cs
->cpus_allowed
);
533 cpumask_copy(trial
->effective_cpus
, cs
->effective_cpus
);
538 * free_cpuset - free the cpuset
539 * @cs: the cpuset to be freed
541 static inline void free_cpuset(struct cpuset
*cs
)
543 free_cpumasks(cs
, NULL
);
548 * validate_change() - Used to validate that any proposed cpuset change
549 * follows the structural rules for cpusets.
551 * If we replaced the flag and mask values of the current cpuset
552 * (cur) with those values in the trial cpuset (trial), would
553 * our various subset and exclusive rules still be valid? Presumes
556 * 'cur' is the address of an actual, in-use cpuset. Operations
557 * such as list traversal that depend on the actual address of the
558 * cpuset in the list must use cur below, not trial.
560 * 'trial' is the address of bulk structure copy of cur, with
561 * perhaps one or more of the fields cpus_allowed, mems_allowed,
562 * or flags changed to new, trial values.
564 * Return 0 if valid, -errno if not.
567 static int validate_change(struct cpuset
*cur
, struct cpuset
*trial
)
569 struct cgroup_subsys_state
*css
;
570 struct cpuset
*c
, *par
;
575 /* Each of our child cpusets must be a subset of us */
577 cpuset_for_each_child(c
, css
, cur
)
578 if (!is_cpuset_subset(c
, trial
))
581 /* Remaining checks don't apply to root cpuset */
583 if (cur
== &top_cpuset
)
586 par
= parent_cs(cur
);
588 /* On legacy hiearchy, we must be a subset of our parent cpuset. */
590 if (!is_in_v2_mode() && !is_cpuset_subset(trial
, par
))
594 * If either I or some sibling (!= me) is exclusive, we can't
598 cpuset_for_each_child(c
, css
, par
) {
599 if ((is_cpu_exclusive(trial
) || is_cpu_exclusive(c
)) &&
601 cpumask_intersects(trial
->cpus_allowed
, c
->cpus_allowed
))
603 if ((is_mem_exclusive(trial
) || is_mem_exclusive(c
)) &&
605 nodes_intersects(trial
->mems_allowed
, c
->mems_allowed
))
610 * Cpusets with tasks - existing or newly being attached - can't
611 * be changed to have empty cpus_allowed or mems_allowed.
614 if ((cgroup_is_populated(cur
->css
.cgroup
) || cur
->attach_in_progress
)) {
615 if (!cpumask_empty(cur
->cpus_allowed
) &&
616 cpumask_empty(trial
->cpus_allowed
))
618 if (!nodes_empty(cur
->mems_allowed
) &&
619 nodes_empty(trial
->mems_allowed
))
624 * We can't shrink if we won't have enough room for SCHED_DEADLINE
628 if (is_cpu_exclusive(cur
) &&
629 !cpuset_cpumask_can_shrink(cur
->cpus_allowed
,
630 trial
->cpus_allowed
))
641 * Helper routine for generate_sched_domains().
642 * Do cpusets a, b have overlapping effective cpus_allowed masks?
644 static int cpusets_overlap(struct cpuset
*a
, struct cpuset
*b
)
646 return cpumask_intersects(a
->effective_cpus
, b
->effective_cpus
);
650 update_domain_attr(struct sched_domain_attr
*dattr
, struct cpuset
*c
)
652 if (dattr
->relax_domain_level
< c
->relax_domain_level
)
653 dattr
->relax_domain_level
= c
->relax_domain_level
;
657 static void update_domain_attr_tree(struct sched_domain_attr
*dattr
,
658 struct cpuset
*root_cs
)
661 struct cgroup_subsys_state
*pos_css
;
664 cpuset_for_each_descendant_pre(cp
, pos_css
, root_cs
) {
665 /* skip the whole subtree if @cp doesn't have any CPU */
666 if (cpumask_empty(cp
->cpus_allowed
)) {
667 pos_css
= css_rightmost_descendant(pos_css
);
671 if (is_sched_load_balance(cp
))
672 update_domain_attr(dattr
, cp
);
677 /* Must be called with cpuset_mutex held. */
678 static inline int nr_cpusets(void)
680 /* jump label reference count + the top-level cpuset */
681 return static_key_count(&cpusets_enabled_key
.key
) + 1;
685 * generate_sched_domains()
687 * This function builds a partial partition of the systems CPUs
688 * A 'partial partition' is a set of non-overlapping subsets whose
689 * union is a subset of that set.
690 * The output of this function needs to be passed to kernel/sched/core.c
691 * partition_sched_domains() routine, which will rebuild the scheduler's
692 * load balancing domains (sched domains) as specified by that partial
695 * See "What is sched_load_balance" in Documentation/admin-guide/cgroup-v1/cpusets.rst
696 * for a background explanation of this.
698 * Does not return errors, on the theory that the callers of this
699 * routine would rather not worry about failures to rebuild sched
700 * domains when operating in the severe memory shortage situations
701 * that could cause allocation failures below.
703 * Must be called with cpuset_mutex held.
705 * The three key local variables below are:
706 * cp - cpuset pointer, used (together with pos_css) to perform a
707 * top-down scan of all cpusets. For our purposes, rebuilding
708 * the schedulers sched domains, we can ignore !is_sched_load_
710 * csa - (for CpuSet Array) Array of pointers to all the cpusets
711 * that need to be load balanced, for convenient iterative
712 * access by the subsequent code that finds the best partition,
713 * i.e the set of domains (subsets) of CPUs such that the
714 * cpus_allowed of every cpuset marked is_sched_load_balance
715 * is a subset of one of these domains, while there are as
716 * many such domains as possible, each as small as possible.
717 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
718 * the kernel/sched/core.c routine partition_sched_domains() in a
719 * convenient format, that can be easily compared to the prior
720 * value to determine what partition elements (sched domains)
721 * were changed (added or removed.)
723 * Finding the best partition (set of domains):
724 * The triple nested loops below over i, j, k scan over the
725 * load balanced cpusets (using the array of cpuset pointers in
726 * csa[]) looking for pairs of cpusets that have overlapping
727 * cpus_allowed, but which don't have the same 'pn' partition
728 * number and gives them in the same partition number. It keeps
729 * looping on the 'restart' label until it can no longer find
732 * The union of the cpus_allowed masks from the set of
733 * all cpusets having the same 'pn' value then form the one
734 * element of the partition (one sched domain) to be passed to
735 * partition_sched_domains().
737 static int generate_sched_domains(cpumask_var_t
**domains
,
738 struct sched_domain_attr
**attributes
)
740 struct cpuset
*cp
; /* top-down scan of cpusets */
741 struct cpuset
**csa
; /* array of all cpuset ptrs */
742 int csn
; /* how many cpuset ptrs in csa so far */
743 int i
, j
, k
; /* indices for partition finding loops */
744 cpumask_var_t
*doms
; /* resulting partition; i.e. sched domains */
745 struct sched_domain_attr
*dattr
; /* attributes for custom domains */
746 int ndoms
= 0; /* number of sched domains in result */
747 int nslot
; /* next empty doms[] struct cpumask slot */
748 struct cgroup_subsys_state
*pos_css
;
749 bool root_load_balance
= is_sched_load_balance(&top_cpuset
);
755 /* Special case for the 99% of systems with one, full, sched domain */
756 if (root_load_balance
&& !top_cpuset
.nr_subparts_cpus
) {
758 doms
= alloc_sched_domains(ndoms
);
762 dattr
= kmalloc(sizeof(struct sched_domain_attr
), GFP_KERNEL
);
764 *dattr
= SD_ATTR_INIT
;
765 update_domain_attr_tree(dattr
, &top_cpuset
);
767 cpumask_and(doms
[0], top_cpuset
.effective_cpus
,
768 housekeeping_cpumask(HK_FLAG_DOMAIN
));
773 csa
= kmalloc_array(nr_cpusets(), sizeof(cp
), GFP_KERNEL
);
779 if (root_load_balance
)
780 csa
[csn
++] = &top_cpuset
;
781 cpuset_for_each_descendant_pre(cp
, pos_css
, &top_cpuset
) {
782 if (cp
== &top_cpuset
)
785 * Continue traversing beyond @cp iff @cp has some CPUs and
786 * isn't load balancing. The former is obvious. The
787 * latter: All child cpusets contain a subset of the
788 * parent's cpus, so just skip them, and then we call
789 * update_domain_attr_tree() to calc relax_domain_level of
790 * the corresponding sched domain.
792 * If root is load-balancing, we can skip @cp if it
793 * is a subset of the root's effective_cpus.
795 if (!cpumask_empty(cp
->cpus_allowed
) &&
796 !(is_sched_load_balance(cp
) &&
797 cpumask_intersects(cp
->cpus_allowed
,
798 housekeeping_cpumask(HK_FLAG_DOMAIN
))))
801 if (root_load_balance
&&
802 cpumask_subset(cp
->cpus_allowed
, top_cpuset
.effective_cpus
))
805 if (is_sched_load_balance(cp
) &&
806 !cpumask_empty(cp
->effective_cpus
))
809 /* skip @cp's subtree if not a partition root */
810 if (!is_partition_root(cp
))
811 pos_css
= css_rightmost_descendant(pos_css
);
815 for (i
= 0; i
< csn
; i
++)
820 /* Find the best partition (set of sched domains) */
821 for (i
= 0; i
< csn
; i
++) {
822 struct cpuset
*a
= csa
[i
];
825 for (j
= 0; j
< csn
; j
++) {
826 struct cpuset
*b
= csa
[j
];
829 if (apn
!= bpn
&& cpusets_overlap(a
, b
)) {
830 for (k
= 0; k
< csn
; k
++) {
831 struct cpuset
*c
= csa
[k
];
836 ndoms
--; /* one less element */
843 * Now we know how many domains to create.
844 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
846 doms
= alloc_sched_domains(ndoms
);
851 * The rest of the code, including the scheduler, can deal with
852 * dattr==NULL case. No need to abort if alloc fails.
854 dattr
= kmalloc_array(ndoms
, sizeof(struct sched_domain_attr
),
857 for (nslot
= 0, i
= 0; i
< csn
; i
++) {
858 struct cpuset
*a
= csa
[i
];
863 /* Skip completed partitions */
869 if (nslot
== ndoms
) {
870 static int warnings
= 10;
872 pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n",
873 nslot
, ndoms
, csn
, i
, apn
);
881 *(dattr
+ nslot
) = SD_ATTR_INIT
;
882 for (j
= i
; j
< csn
; j
++) {
883 struct cpuset
*b
= csa
[j
];
886 cpumask_or(dp
, dp
, b
->effective_cpus
);
887 cpumask_and(dp
, dp
, housekeeping_cpumask(HK_FLAG_DOMAIN
));
889 update_domain_attr_tree(dattr
+ nslot
, b
);
891 /* Done with this partition */
897 BUG_ON(nslot
!= ndoms
);
903 * Fallback to the default domain if kmalloc() failed.
904 * See comments in partition_sched_domains().
914 static void update_tasks_root_domain(struct cpuset
*cs
)
916 struct css_task_iter it
;
917 struct task_struct
*task
;
919 css_task_iter_start(&cs
->css
, 0, &it
);
921 while ((task
= css_task_iter_next(&it
)))
922 dl_add_task_root_domain(task
);
924 css_task_iter_end(&it
);
927 static void rebuild_root_domains(void)
929 struct cpuset
*cs
= NULL
;
930 struct cgroup_subsys_state
*pos_css
;
932 percpu_rwsem_assert_held(&cpuset_rwsem
);
933 lockdep_assert_cpus_held();
934 lockdep_assert_held(&sched_domains_mutex
);
939 * Clear default root domain DL accounting, it will be computed again
940 * if a task belongs to it.
942 dl_clear_root_domain(&def_root_domain
);
944 cpuset_for_each_descendant_pre(cs
, pos_css
, &top_cpuset
) {
946 if (cpumask_empty(cs
->effective_cpus
)) {
947 pos_css
= css_rightmost_descendant(pos_css
);
955 update_tasks_root_domain(cs
);
964 partition_and_rebuild_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
965 struct sched_domain_attr
*dattr_new
)
967 mutex_lock(&sched_domains_mutex
);
968 partition_sched_domains_locked(ndoms_new
, doms_new
, dattr_new
);
969 rebuild_root_domains();
970 mutex_unlock(&sched_domains_mutex
);
974 * Rebuild scheduler domains.
976 * If the flag 'sched_load_balance' of any cpuset with non-empty
977 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
978 * which has that flag enabled, or if any cpuset with a non-empty
979 * 'cpus' is removed, then call this routine to rebuild the
980 * scheduler's dynamic sched domains.
982 * Call with cpuset_mutex held. Takes get_online_cpus().
984 static void rebuild_sched_domains_locked(void)
986 struct sched_domain_attr
*attr
;
990 lockdep_assert_cpus_held();
991 percpu_rwsem_assert_held(&cpuset_rwsem
);
994 * We have raced with CPU hotplug. Don't do anything to avoid
995 * passing doms with offlined cpu to partition_sched_domains().
996 * Anyways, hotplug work item will rebuild sched domains.
998 if (!top_cpuset
.nr_subparts_cpus
&&
999 !cpumask_equal(top_cpuset
.effective_cpus
, cpu_active_mask
))
1002 if (top_cpuset
.nr_subparts_cpus
&&
1003 !cpumask_subset(top_cpuset
.effective_cpus
, cpu_active_mask
))
1006 /* Generate domain masks and attrs */
1007 ndoms
= generate_sched_domains(&doms
, &attr
);
1009 /* Have scheduler rebuild the domains */
1010 partition_and_rebuild_sched_domains(ndoms
, doms
, attr
);
1012 #else /* !CONFIG_SMP */
1013 static void rebuild_sched_domains_locked(void)
1016 #endif /* CONFIG_SMP */
1018 void rebuild_sched_domains(void)
1021 percpu_down_write(&cpuset_rwsem
);
1022 rebuild_sched_domains_locked();
1023 percpu_up_write(&cpuset_rwsem
);
1028 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
1029 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
1031 * Iterate through each task of @cs updating its cpus_allowed to the
1032 * effective cpuset's. As this function is called with cpuset_mutex held,
1033 * cpuset membership stays stable.
1035 static void update_tasks_cpumask(struct cpuset
*cs
)
1037 struct css_task_iter it
;
1038 struct task_struct
*task
;
1040 css_task_iter_start(&cs
->css
, 0, &it
);
1041 while ((task
= css_task_iter_next(&it
)))
1042 set_cpus_allowed_ptr(task
, cs
->effective_cpus
);
1043 css_task_iter_end(&it
);
1047 * compute_effective_cpumask - Compute the effective cpumask of the cpuset
1048 * @new_cpus: the temp variable for the new effective_cpus mask
1049 * @cs: the cpuset the need to recompute the new effective_cpus mask
1050 * @parent: the parent cpuset
1052 * If the parent has subpartition CPUs, include them in the list of
1053 * allowable CPUs in computing the new effective_cpus mask. Since offlined
1054 * CPUs are not removed from subparts_cpus, we have to use cpu_active_mask
1055 * to mask those out.
1057 static void compute_effective_cpumask(struct cpumask
*new_cpus
,
1058 struct cpuset
*cs
, struct cpuset
*parent
)
1060 if (parent
->nr_subparts_cpus
) {
1061 cpumask_or(new_cpus
, parent
->effective_cpus
,
1062 parent
->subparts_cpus
);
1063 cpumask_and(new_cpus
, new_cpus
, cs
->cpus_allowed
);
1064 cpumask_and(new_cpus
, new_cpus
, cpu_active_mask
);
1066 cpumask_and(new_cpus
, cs
->cpus_allowed
, parent
->effective_cpus
);
1071 * Commands for update_parent_subparts_cpumask
1074 partcmd_enable
, /* Enable partition root */
1075 partcmd_disable
, /* Disable partition root */
1076 partcmd_update
, /* Update parent's subparts_cpus */
1080 * update_parent_subparts_cpumask - update subparts_cpus mask of parent cpuset
1081 * @cpuset: The cpuset that requests change in partition root state
1082 * @cmd: Partition root state change command
1083 * @newmask: Optional new cpumask for partcmd_update
1084 * @tmp: Temporary addmask and delmask
1085 * Return: 0, 1 or an error code
1087 * For partcmd_enable, the cpuset is being transformed from a non-partition
1088 * root to a partition root. The cpus_allowed mask of the given cpuset will
1089 * be put into parent's subparts_cpus and taken away from parent's
1090 * effective_cpus. The function will return 0 if all the CPUs listed in
1091 * cpus_allowed can be granted or an error code will be returned.
1093 * For partcmd_disable, the cpuset is being transofrmed from a partition
1094 * root back to a non-partition root. any CPUs in cpus_allowed that are in
1095 * parent's subparts_cpus will be taken away from that cpumask and put back
1096 * into parent's effective_cpus. 0 should always be returned.
1098 * For partcmd_update, if the optional newmask is specified, the cpu
1099 * list is to be changed from cpus_allowed to newmask. Otherwise,
1100 * cpus_allowed is assumed to remain the same. The cpuset should either
1101 * be a partition root or an invalid partition root. The partition root
1102 * state may change if newmask is NULL and none of the requested CPUs can
1103 * be granted by the parent. The function will return 1 if changes to
1104 * parent's subparts_cpus and effective_cpus happen or 0 otherwise.
1105 * Error code should only be returned when newmask is non-NULL.
1107 * The partcmd_enable and partcmd_disable commands are used by
1108 * update_prstate(). The partcmd_update command is used by
1109 * update_cpumasks_hier() with newmask NULL and update_cpumask() with
1112 * The checking is more strict when enabling partition root than the
1113 * other two commands.
1115 * Because of the implicit cpu exclusive nature of a partition root,
1116 * cpumask changes that violates the cpu exclusivity rule will not be
1117 * permitted when checked by validate_change(). The validate_change()
1118 * function will also prevent any changes to the cpu list if it is not
1119 * a superset of children's cpu lists.
1121 static int update_parent_subparts_cpumask(struct cpuset
*cpuset
, int cmd
,
1122 struct cpumask
*newmask
,
1123 struct tmpmasks
*tmp
)
1125 struct cpuset
*parent
= parent_cs(cpuset
);
1126 int adding
; /* Moving cpus from effective_cpus to subparts_cpus */
1127 int deleting
; /* Moving cpus from subparts_cpus to effective_cpus */
1128 bool part_error
= false; /* Partition error? */
1130 percpu_rwsem_assert_held(&cpuset_rwsem
);
1133 * The parent must be a partition root.
1134 * The new cpumask, if present, or the current cpus_allowed must
1137 if (!is_partition_root(parent
) ||
1138 (newmask
&& cpumask_empty(newmask
)) ||
1139 (!newmask
&& cpumask_empty(cpuset
->cpus_allowed
)))
1143 * Enabling/disabling partition root is not allowed if there are
1146 if ((cmd
!= partcmd_update
) && css_has_online_children(&cpuset
->css
))
1150 * Enabling partition root is not allowed if not all the CPUs
1151 * can be granted from parent's effective_cpus or at least one
1152 * CPU will be left after that.
1154 if ((cmd
== partcmd_enable
) &&
1155 (!cpumask_subset(cpuset
->cpus_allowed
, parent
->effective_cpus
) ||
1156 cpumask_equal(cpuset
->cpus_allowed
, parent
->effective_cpus
)))
1160 * A cpumask update cannot make parent's effective_cpus become empty.
1162 adding
= deleting
= false;
1163 if (cmd
== partcmd_enable
) {
1164 cpumask_copy(tmp
->addmask
, cpuset
->cpus_allowed
);
1166 } else if (cmd
== partcmd_disable
) {
1167 deleting
= cpumask_and(tmp
->delmask
, cpuset
->cpus_allowed
,
1168 parent
->subparts_cpus
);
1169 } else if (newmask
) {
1171 * partcmd_update with newmask:
1173 * delmask = cpus_allowed & ~newmask & parent->subparts_cpus
1174 * addmask = newmask & parent->effective_cpus
1175 * & ~parent->subparts_cpus
1177 cpumask_andnot(tmp
->delmask
, cpuset
->cpus_allowed
, newmask
);
1178 deleting
= cpumask_and(tmp
->delmask
, tmp
->delmask
,
1179 parent
->subparts_cpus
);
1181 cpumask_and(tmp
->addmask
, newmask
, parent
->effective_cpus
);
1182 adding
= cpumask_andnot(tmp
->addmask
, tmp
->addmask
,
1183 parent
->subparts_cpus
);
1185 * Return error if the new effective_cpus could become empty.
1188 cpumask_equal(parent
->effective_cpus
, tmp
->addmask
)) {
1192 * As some of the CPUs in subparts_cpus might have
1193 * been offlined, we need to compute the real delmask
1196 if (!cpumask_and(tmp
->addmask
, tmp
->delmask
,
1199 cpumask_copy(tmp
->addmask
, parent
->effective_cpus
);
1203 * partcmd_update w/o newmask:
1205 * addmask = cpus_allowed & parent->effectiveb_cpus
1207 * Note that parent's subparts_cpus may have been
1208 * pre-shrunk in case there is a change in the cpu list.
1209 * So no deletion is needed.
1211 adding
= cpumask_and(tmp
->addmask
, cpuset
->cpus_allowed
,
1212 parent
->effective_cpus
);
1213 part_error
= cpumask_equal(tmp
->addmask
,
1214 parent
->effective_cpus
);
1217 if (cmd
== partcmd_update
) {
1218 int prev_prs
= cpuset
->partition_root_state
;
1221 * Check for possible transition between PRS_ENABLED
1224 switch (cpuset
->partition_root_state
) {
1227 cpuset
->partition_root_state
= PRS_ERROR
;
1231 cpuset
->partition_root_state
= PRS_ENABLED
;
1235 * Set part_error if previously in invalid state.
1237 part_error
= (prev_prs
== PRS_ERROR
);
1240 if (!part_error
&& (cpuset
->partition_root_state
== PRS_ERROR
))
1241 return 0; /* Nothing need to be done */
1243 if (cpuset
->partition_root_state
== PRS_ERROR
) {
1245 * Remove all its cpus from parent's subparts_cpus.
1248 deleting
= cpumask_and(tmp
->delmask
, cpuset
->cpus_allowed
,
1249 parent
->subparts_cpus
);
1252 if (!adding
&& !deleting
)
1256 * Change the parent's subparts_cpus.
1257 * Newly added CPUs will be removed from effective_cpus and
1258 * newly deleted ones will be added back to effective_cpus.
1260 spin_lock_irq(&callback_lock
);
1262 cpumask_or(parent
->subparts_cpus
,
1263 parent
->subparts_cpus
, tmp
->addmask
);
1264 cpumask_andnot(parent
->effective_cpus
,
1265 parent
->effective_cpus
, tmp
->addmask
);
1268 cpumask_andnot(parent
->subparts_cpus
,
1269 parent
->subparts_cpus
, tmp
->delmask
);
1271 * Some of the CPUs in subparts_cpus might have been offlined.
1273 cpumask_and(tmp
->delmask
, tmp
->delmask
, cpu_active_mask
);
1274 cpumask_or(parent
->effective_cpus
,
1275 parent
->effective_cpus
, tmp
->delmask
);
1278 parent
->nr_subparts_cpus
= cpumask_weight(parent
->subparts_cpus
);
1279 spin_unlock_irq(&callback_lock
);
1281 return cmd
== partcmd_update
;
1285 * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree
1286 * @cs: the cpuset to consider
1287 * @tmp: temp variables for calculating effective_cpus & partition setup
1289 * When congifured cpumask is changed, the effective cpumasks of this cpuset
1290 * and all its descendants need to be updated.
1292 * On legacy hierachy, effective_cpus will be the same with cpu_allowed.
1294 * Called with cpuset_mutex held
1296 static void update_cpumasks_hier(struct cpuset
*cs
, struct tmpmasks
*tmp
)
1299 struct cgroup_subsys_state
*pos_css
;
1300 bool need_rebuild_sched_domains
= false;
1303 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
1304 struct cpuset
*parent
= parent_cs(cp
);
1306 compute_effective_cpumask(tmp
->new_cpus
, cp
, parent
);
1309 * If it becomes empty, inherit the effective mask of the
1310 * parent, which is guaranteed to have some CPUs.
1312 if (is_in_v2_mode() && cpumask_empty(tmp
->new_cpus
)) {
1313 cpumask_copy(tmp
->new_cpus
, parent
->effective_cpus
);
1314 if (!cp
->use_parent_ecpus
) {
1315 cp
->use_parent_ecpus
= true;
1316 parent
->child_ecpus_count
++;
1318 } else if (cp
->use_parent_ecpus
) {
1319 cp
->use_parent_ecpus
= false;
1320 WARN_ON_ONCE(!parent
->child_ecpus_count
);
1321 parent
->child_ecpus_count
--;
1325 * Skip the whole subtree if the cpumask remains the same
1326 * and has no partition root state.
1328 if (!cp
->partition_root_state
&&
1329 cpumask_equal(tmp
->new_cpus
, cp
->effective_cpus
)) {
1330 pos_css
= css_rightmost_descendant(pos_css
);
1335 * update_parent_subparts_cpumask() should have been called
1336 * for cs already in update_cpumask(). We should also call
1337 * update_tasks_cpumask() again for tasks in the parent
1338 * cpuset if the parent's subparts_cpus changes.
1340 if ((cp
!= cs
) && cp
->partition_root_state
) {
1341 switch (parent
->partition_root_state
) {
1344 * If parent is not a partition root or an
1345 * invalid partition root, clear the state
1346 * state and the CS_CPU_EXCLUSIVE flag.
1348 WARN_ON_ONCE(cp
->partition_root_state
1350 cp
->partition_root_state
= 0;
1353 * clear_bit() is an atomic operation and
1354 * readers aren't interested in the state
1355 * of CS_CPU_EXCLUSIVE anyway. So we can
1356 * just update the flag without holding
1357 * the callback_lock.
1359 clear_bit(CS_CPU_EXCLUSIVE
, &cp
->flags
);
1363 if (update_parent_subparts_cpumask(cp
, partcmd_update
, NULL
, tmp
))
1364 update_tasks_cpumask(parent
);
1369 * When parent is invalid, it has to be too.
1371 cp
->partition_root_state
= PRS_ERROR
;
1372 if (cp
->nr_subparts_cpus
) {
1373 cp
->nr_subparts_cpus
= 0;
1374 cpumask_clear(cp
->subparts_cpus
);
1380 if (!css_tryget_online(&cp
->css
))
1384 spin_lock_irq(&callback_lock
);
1386 cpumask_copy(cp
->effective_cpus
, tmp
->new_cpus
);
1387 if (cp
->nr_subparts_cpus
&&
1388 (cp
->partition_root_state
!= PRS_ENABLED
)) {
1389 cp
->nr_subparts_cpus
= 0;
1390 cpumask_clear(cp
->subparts_cpus
);
1391 } else if (cp
->nr_subparts_cpus
) {
1393 * Make sure that effective_cpus & subparts_cpus
1394 * are mutually exclusive.
1396 * In the unlikely event that effective_cpus
1397 * becomes empty. we clear cp->nr_subparts_cpus and
1398 * let its child partition roots to compete for
1401 cpumask_andnot(cp
->effective_cpus
, cp
->effective_cpus
,
1403 if (cpumask_empty(cp
->effective_cpus
)) {
1404 cpumask_copy(cp
->effective_cpus
, tmp
->new_cpus
);
1405 cpumask_clear(cp
->subparts_cpus
);
1406 cp
->nr_subparts_cpus
= 0;
1407 } else if (!cpumask_subset(cp
->subparts_cpus
,
1409 cpumask_andnot(cp
->subparts_cpus
,
1410 cp
->subparts_cpus
, tmp
->new_cpus
);
1411 cp
->nr_subparts_cpus
1412 = cpumask_weight(cp
->subparts_cpus
);
1415 spin_unlock_irq(&callback_lock
);
1417 WARN_ON(!is_in_v2_mode() &&
1418 !cpumask_equal(cp
->cpus_allowed
, cp
->effective_cpus
));
1420 update_tasks_cpumask(cp
);
1423 * On legacy hierarchy, if the effective cpumask of any non-
1424 * empty cpuset is changed, we need to rebuild sched domains.
1425 * On default hierarchy, the cpuset needs to be a partition
1428 if (!cpumask_empty(cp
->cpus_allowed
) &&
1429 is_sched_load_balance(cp
) &&
1430 (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) ||
1431 is_partition_root(cp
)))
1432 need_rebuild_sched_domains
= true;
1439 if (need_rebuild_sched_domains
)
1440 rebuild_sched_domains_locked();
1444 * update_sibling_cpumasks - Update siblings cpumasks
1445 * @parent: Parent cpuset
1446 * @cs: Current cpuset
1447 * @tmp: Temp variables
1449 static void update_sibling_cpumasks(struct cpuset
*parent
, struct cpuset
*cs
,
1450 struct tmpmasks
*tmp
)
1452 struct cpuset
*sibling
;
1453 struct cgroup_subsys_state
*pos_css
;
1456 * Check all its siblings and call update_cpumasks_hier()
1457 * if their use_parent_ecpus flag is set in order for them
1458 * to use the right effective_cpus value.
1461 cpuset_for_each_child(sibling
, pos_css
, parent
) {
1464 if (!sibling
->use_parent_ecpus
)
1467 update_cpumasks_hier(sibling
, tmp
);
1473 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
1474 * @cs: the cpuset to consider
1475 * @trialcs: trial cpuset
1476 * @buf: buffer of cpu numbers written to this cpuset
1478 static int update_cpumask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1482 struct tmpmasks tmp
;
1484 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
1485 if (cs
== &top_cpuset
)
1489 * An empty cpus_allowed is ok only if the cpuset has no tasks.
1490 * Since cpulist_parse() fails on an empty mask, we special case
1491 * that parsing. The validate_change() call ensures that cpusets
1492 * with tasks have cpus.
1495 cpumask_clear(trialcs
->cpus_allowed
);
1497 retval
= cpulist_parse(buf
, trialcs
->cpus_allowed
);
1501 if (!cpumask_subset(trialcs
->cpus_allowed
,
1502 top_cpuset
.cpus_allowed
))
1506 /* Nothing to do if the cpus didn't change */
1507 if (cpumask_equal(cs
->cpus_allowed
, trialcs
->cpus_allowed
))
1510 retval
= validate_change(cs
, trialcs
);
1514 #ifdef CONFIG_CPUMASK_OFFSTACK
1516 * Use the cpumasks in trialcs for tmpmasks when they are pointers
1517 * to allocated cpumasks.
1519 tmp
.addmask
= trialcs
->subparts_cpus
;
1520 tmp
.delmask
= trialcs
->effective_cpus
;
1521 tmp
.new_cpus
= trialcs
->cpus_allowed
;
1524 if (cs
->partition_root_state
) {
1525 /* Cpumask of a partition root cannot be empty */
1526 if (cpumask_empty(trialcs
->cpus_allowed
))
1528 if (update_parent_subparts_cpumask(cs
, partcmd_update
,
1529 trialcs
->cpus_allowed
, &tmp
) < 0)
1533 spin_lock_irq(&callback_lock
);
1534 cpumask_copy(cs
->cpus_allowed
, trialcs
->cpus_allowed
);
1537 * Make sure that subparts_cpus is a subset of cpus_allowed.
1539 if (cs
->nr_subparts_cpus
) {
1540 cpumask_andnot(cs
->subparts_cpus
, cs
->subparts_cpus
,
1542 cs
->nr_subparts_cpus
= cpumask_weight(cs
->subparts_cpus
);
1544 spin_unlock_irq(&callback_lock
);
1546 update_cpumasks_hier(cs
, &tmp
);
1548 if (cs
->partition_root_state
) {
1549 struct cpuset
*parent
= parent_cs(cs
);
1552 * For partition root, update the cpumasks of sibling
1553 * cpusets if they use parent's effective_cpus.
1555 if (parent
->child_ecpus_count
)
1556 update_sibling_cpumasks(parent
, cs
, &tmp
);
1562 * Migrate memory region from one set of nodes to another. This is
1563 * performed asynchronously as it can be called from process migration path
1564 * holding locks involved in process management. All mm migrations are
1565 * performed in the queued order and can be waited for by flushing
1566 * cpuset_migrate_mm_wq.
1569 struct cpuset_migrate_mm_work
{
1570 struct work_struct work
;
1571 struct mm_struct
*mm
;
1576 static void cpuset_migrate_mm_workfn(struct work_struct
*work
)
1578 struct cpuset_migrate_mm_work
*mwork
=
1579 container_of(work
, struct cpuset_migrate_mm_work
, work
);
1581 /* on a wq worker, no need to worry about %current's mems_allowed */
1582 do_migrate_pages(mwork
->mm
, &mwork
->from
, &mwork
->to
, MPOL_MF_MOVE_ALL
);
1587 static void cpuset_migrate_mm(struct mm_struct
*mm
, const nodemask_t
*from
,
1588 const nodemask_t
*to
)
1590 struct cpuset_migrate_mm_work
*mwork
;
1592 mwork
= kzalloc(sizeof(*mwork
), GFP_KERNEL
);
1595 mwork
->from
= *from
;
1597 INIT_WORK(&mwork
->work
, cpuset_migrate_mm_workfn
);
1598 queue_work(cpuset_migrate_mm_wq
, &mwork
->work
);
1604 static void cpuset_post_attach(void)
1606 flush_workqueue(cpuset_migrate_mm_wq
);
1610 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
1611 * @tsk: the task to change
1612 * @newmems: new nodes that the task will be set
1614 * We use the mems_allowed_seq seqlock to safely update both tsk->mems_allowed
1615 * and rebind an eventual tasks' mempolicy. If the task is allocating in
1616 * parallel, it might temporarily see an empty intersection, which results in
1617 * a seqlock check and retry before OOM or allocation failure.
1619 static void cpuset_change_task_nodemask(struct task_struct
*tsk
,
1620 nodemask_t
*newmems
)
1624 local_irq_disable();
1625 write_seqcount_begin(&tsk
->mems_allowed_seq
);
1627 nodes_or(tsk
->mems_allowed
, tsk
->mems_allowed
, *newmems
);
1628 mpol_rebind_task(tsk
, newmems
);
1629 tsk
->mems_allowed
= *newmems
;
1631 write_seqcount_end(&tsk
->mems_allowed_seq
);
1637 static void *cpuset_being_rebound
;
1640 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1641 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1643 * Iterate through each task of @cs updating its mems_allowed to the
1644 * effective cpuset's. As this function is called with cpuset_mutex held,
1645 * cpuset membership stays stable.
1647 static void update_tasks_nodemask(struct cpuset
*cs
)
1649 static nodemask_t newmems
; /* protected by cpuset_mutex */
1650 struct css_task_iter it
;
1651 struct task_struct
*task
;
1653 cpuset_being_rebound
= cs
; /* causes mpol_dup() rebind */
1655 guarantee_online_mems(cs
, &newmems
);
1658 * The mpol_rebind_mm() call takes mmap_lock, which we couldn't
1659 * take while holding tasklist_lock. Forks can happen - the
1660 * mpol_dup() cpuset_being_rebound check will catch such forks,
1661 * and rebind their vma mempolicies too. Because we still hold
1662 * the global cpuset_mutex, we know that no other rebind effort
1663 * will be contending for the global variable cpuset_being_rebound.
1664 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
1665 * is idempotent. Also migrate pages in each mm to new nodes.
1667 css_task_iter_start(&cs
->css
, 0, &it
);
1668 while ((task
= css_task_iter_next(&it
))) {
1669 struct mm_struct
*mm
;
1672 cpuset_change_task_nodemask(task
, &newmems
);
1674 mm
= get_task_mm(task
);
1678 migrate
= is_memory_migrate(cs
);
1680 mpol_rebind_mm(mm
, &cs
->mems_allowed
);
1682 cpuset_migrate_mm(mm
, &cs
->old_mems_allowed
, &newmems
);
1686 css_task_iter_end(&it
);
1689 * All the tasks' nodemasks have been updated, update
1690 * cs->old_mems_allowed.
1692 cs
->old_mems_allowed
= newmems
;
1694 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
1695 cpuset_being_rebound
= NULL
;
1699 * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree
1700 * @cs: the cpuset to consider
1701 * @new_mems: a temp variable for calculating new effective_mems
1703 * When configured nodemask is changed, the effective nodemasks of this cpuset
1704 * and all its descendants need to be updated.
1706 * On legacy hiearchy, effective_mems will be the same with mems_allowed.
1708 * Called with cpuset_mutex held
1710 static void update_nodemasks_hier(struct cpuset
*cs
, nodemask_t
*new_mems
)
1713 struct cgroup_subsys_state
*pos_css
;
1716 cpuset_for_each_descendant_pre(cp
, pos_css
, cs
) {
1717 struct cpuset
*parent
= parent_cs(cp
);
1719 nodes_and(*new_mems
, cp
->mems_allowed
, parent
->effective_mems
);
1722 * If it becomes empty, inherit the effective mask of the
1723 * parent, which is guaranteed to have some MEMs.
1725 if (is_in_v2_mode() && nodes_empty(*new_mems
))
1726 *new_mems
= parent
->effective_mems
;
1728 /* Skip the whole subtree if the nodemask remains the same. */
1729 if (nodes_equal(*new_mems
, cp
->effective_mems
)) {
1730 pos_css
= css_rightmost_descendant(pos_css
);
1734 if (!css_tryget_online(&cp
->css
))
1738 spin_lock_irq(&callback_lock
);
1739 cp
->effective_mems
= *new_mems
;
1740 spin_unlock_irq(&callback_lock
);
1742 WARN_ON(!is_in_v2_mode() &&
1743 !nodes_equal(cp
->mems_allowed
, cp
->effective_mems
));
1745 update_tasks_nodemask(cp
);
1754 * Handle user request to change the 'mems' memory placement
1755 * of a cpuset. Needs to validate the request, update the
1756 * cpusets mems_allowed, and for each task in the cpuset,
1757 * update mems_allowed and rebind task's mempolicy and any vma
1758 * mempolicies and if the cpuset is marked 'memory_migrate',
1759 * migrate the tasks pages to the new memory.
1761 * Call with cpuset_mutex held. May take callback_lock during call.
1762 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1763 * lock each such tasks mm->mmap_lock, scan its vma's and rebind
1764 * their mempolicies to the cpusets new mems_allowed.
1766 static int update_nodemask(struct cpuset
*cs
, struct cpuset
*trialcs
,
1772 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
1775 if (cs
== &top_cpuset
) {
1781 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1782 * Since nodelist_parse() fails on an empty mask, we special case
1783 * that parsing. The validate_change() call ensures that cpusets
1784 * with tasks have memory.
1787 nodes_clear(trialcs
->mems_allowed
);
1789 retval
= nodelist_parse(buf
, trialcs
->mems_allowed
);
1793 if (!nodes_subset(trialcs
->mems_allowed
,
1794 top_cpuset
.mems_allowed
)) {
1800 if (nodes_equal(cs
->mems_allowed
, trialcs
->mems_allowed
)) {
1801 retval
= 0; /* Too easy - nothing to do */
1804 retval
= validate_change(cs
, trialcs
);
1808 spin_lock_irq(&callback_lock
);
1809 cs
->mems_allowed
= trialcs
->mems_allowed
;
1810 spin_unlock_irq(&callback_lock
);
1812 /* use trialcs->mems_allowed as a temp variable */
1813 update_nodemasks_hier(cs
, &trialcs
->mems_allowed
);
1818 bool current_cpuset_is_being_rebound(void)
1823 ret
= task_cs(current
) == cpuset_being_rebound
;
1829 static int update_relax_domain_level(struct cpuset
*cs
, s64 val
)
1832 if (val
< -1 || val
>= sched_domain_level_max
)
1836 if (val
!= cs
->relax_domain_level
) {
1837 cs
->relax_domain_level
= val
;
1838 if (!cpumask_empty(cs
->cpus_allowed
) &&
1839 is_sched_load_balance(cs
))
1840 rebuild_sched_domains_locked();
1847 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1848 * @cs: the cpuset in which each task's spread flags needs to be changed
1850 * Iterate through each task of @cs updating its spread flags. As this
1851 * function is called with cpuset_mutex held, cpuset membership stays
1854 static void update_tasks_flags(struct cpuset
*cs
)
1856 struct css_task_iter it
;
1857 struct task_struct
*task
;
1859 css_task_iter_start(&cs
->css
, 0, &it
);
1860 while ((task
= css_task_iter_next(&it
)))
1861 cpuset_update_task_spread_flag(cs
, task
);
1862 css_task_iter_end(&it
);
1866 * update_flag - read a 0 or a 1 in a file and update associated flag
1867 * bit: the bit to update (see cpuset_flagbits_t)
1868 * cs: the cpuset to update
1869 * turning_on: whether the flag is being set or cleared
1871 * Call with cpuset_mutex held.
1874 static int update_flag(cpuset_flagbits_t bit
, struct cpuset
*cs
,
1877 struct cpuset
*trialcs
;
1878 int balance_flag_changed
;
1879 int spread_flag_changed
;
1882 trialcs
= alloc_trial_cpuset(cs
);
1887 set_bit(bit
, &trialcs
->flags
);
1889 clear_bit(bit
, &trialcs
->flags
);
1891 err
= validate_change(cs
, trialcs
);
1895 balance_flag_changed
= (is_sched_load_balance(cs
) !=
1896 is_sched_load_balance(trialcs
));
1898 spread_flag_changed
= ((is_spread_slab(cs
) != is_spread_slab(trialcs
))
1899 || (is_spread_page(cs
) != is_spread_page(trialcs
)));
1901 spin_lock_irq(&callback_lock
);
1902 cs
->flags
= trialcs
->flags
;
1903 spin_unlock_irq(&callback_lock
);
1905 if (!cpumask_empty(trialcs
->cpus_allowed
) && balance_flag_changed
)
1906 rebuild_sched_domains_locked();
1908 if (spread_flag_changed
)
1909 update_tasks_flags(cs
);
1911 free_cpuset(trialcs
);
1916 * update_prstate - update partititon_root_state
1917 * cs: the cpuset to update
1918 * val: 0 - disabled, 1 - enabled
1920 * Call with cpuset_mutex held.
1922 static int update_prstate(struct cpuset
*cs
, int val
)
1925 struct cpuset
*parent
= parent_cs(cs
);
1926 struct tmpmasks tmp
;
1928 if ((val
!= 0) && (val
!= 1))
1930 if (val
== cs
->partition_root_state
)
1934 * Cannot force a partial or invalid partition root to a full
1937 if (val
&& cs
->partition_root_state
)
1940 if (alloc_cpumasks(NULL
, &tmp
))
1944 if (!cs
->partition_root_state
) {
1946 * Turning on partition root requires setting the
1947 * CS_CPU_EXCLUSIVE bit implicitly as well and cpus_allowed
1950 if (cpumask_empty(cs
->cpus_allowed
))
1953 err
= update_flag(CS_CPU_EXCLUSIVE
, cs
, 1);
1957 err
= update_parent_subparts_cpumask(cs
, partcmd_enable
,
1960 update_flag(CS_CPU_EXCLUSIVE
, cs
, 0);
1963 cs
->partition_root_state
= PRS_ENABLED
;
1966 * Turning off partition root will clear the
1967 * CS_CPU_EXCLUSIVE bit.
1969 if (cs
->partition_root_state
== PRS_ERROR
) {
1970 cs
->partition_root_state
= 0;
1971 update_flag(CS_CPU_EXCLUSIVE
, cs
, 0);
1976 err
= update_parent_subparts_cpumask(cs
, partcmd_disable
,
1981 cs
->partition_root_state
= 0;
1983 /* Turning off CS_CPU_EXCLUSIVE will not return error */
1984 update_flag(CS_CPU_EXCLUSIVE
, cs
, 0);
1988 * Update cpumask of parent's tasks except when it is the top
1989 * cpuset as some system daemons cannot be mapped to other CPUs.
1991 if (parent
!= &top_cpuset
)
1992 update_tasks_cpumask(parent
);
1994 if (parent
->child_ecpus_count
)
1995 update_sibling_cpumasks(parent
, cs
, &tmp
);
1997 rebuild_sched_domains_locked();
1999 free_cpumasks(NULL
, &tmp
);
2004 * Frequency meter - How fast is some event occurring?
2006 * These routines manage a digitally filtered, constant time based,
2007 * event frequency meter. There are four routines:
2008 * fmeter_init() - initialize a frequency meter.
2009 * fmeter_markevent() - called each time the event happens.
2010 * fmeter_getrate() - returns the recent rate of such events.
2011 * fmeter_update() - internal routine used to update fmeter.
2013 * A common data structure is passed to each of these routines,
2014 * which is used to keep track of the state required to manage the
2015 * frequency meter and its digital filter.
2017 * The filter works on the number of events marked per unit time.
2018 * The filter is single-pole low-pass recursive (IIR). The time unit
2019 * is 1 second. Arithmetic is done using 32-bit integers scaled to
2020 * simulate 3 decimal digits of precision (multiplied by 1000).
2022 * With an FM_COEF of 933, and a time base of 1 second, the filter
2023 * has a half-life of 10 seconds, meaning that if the events quit
2024 * happening, then the rate returned from the fmeter_getrate()
2025 * will be cut in half each 10 seconds, until it converges to zero.
2027 * It is not worth doing a real infinitely recursive filter. If more
2028 * than FM_MAXTICKS ticks have elapsed since the last filter event,
2029 * just compute FM_MAXTICKS ticks worth, by which point the level
2032 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
2033 * arithmetic overflow in the fmeter_update() routine.
2035 * Given the simple 32 bit integer arithmetic used, this meter works
2036 * best for reporting rates between one per millisecond (msec) and
2037 * one per 32 (approx) seconds. At constant rates faster than one
2038 * per msec it maxes out at values just under 1,000,000. At constant
2039 * rates between one per msec, and one per second it will stabilize
2040 * to a value N*1000, where N is the rate of events per second.
2041 * At constant rates between one per second and one per 32 seconds,
2042 * it will be choppy, moving up on the seconds that have an event,
2043 * and then decaying until the next event. At rates slower than
2044 * about one in 32 seconds, it decays all the way back to zero between
2048 #define FM_COEF 933 /* coefficient for half-life of 10 secs */
2049 #define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */
2050 #define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
2051 #define FM_SCALE 1000 /* faux fixed point scale */
2053 /* Initialize a frequency meter */
2054 static void fmeter_init(struct fmeter
*fmp
)
2059 spin_lock_init(&fmp
->lock
);
2062 /* Internal meter update - process cnt events and update value */
2063 static void fmeter_update(struct fmeter
*fmp
)
2068 now
= ktime_get_seconds();
2069 ticks
= now
- fmp
->time
;
2074 ticks
= min(FM_MAXTICKS
, ticks
);
2076 fmp
->val
= (FM_COEF
* fmp
->val
) / FM_SCALE
;
2079 fmp
->val
+= ((FM_SCALE
- FM_COEF
) * fmp
->cnt
) / FM_SCALE
;
2083 /* Process any previous ticks, then bump cnt by one (times scale). */
2084 static void fmeter_markevent(struct fmeter
*fmp
)
2086 spin_lock(&fmp
->lock
);
2088 fmp
->cnt
= min(FM_MAXCNT
, fmp
->cnt
+ FM_SCALE
);
2089 spin_unlock(&fmp
->lock
);
2092 /* Process any previous ticks, then return current value. */
2093 static int fmeter_getrate(struct fmeter
*fmp
)
2097 spin_lock(&fmp
->lock
);
2100 spin_unlock(&fmp
->lock
);
2104 static struct cpuset
*cpuset_attach_old_cs
;
2106 /* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
2107 static int cpuset_can_attach(struct cgroup_taskset
*tset
)
2109 struct cgroup_subsys_state
*css
;
2111 struct task_struct
*task
;
2114 /* used later by cpuset_attach() */
2115 cpuset_attach_old_cs
= task_cs(cgroup_taskset_first(tset
, &css
));
2118 percpu_down_write(&cpuset_rwsem
);
2120 /* allow moving tasks into an empty cpuset if on default hierarchy */
2122 if (!is_in_v2_mode() &&
2123 (cpumask_empty(cs
->cpus_allowed
) || nodes_empty(cs
->mems_allowed
)))
2126 cgroup_taskset_for_each(task
, css
, tset
) {
2127 ret
= task_can_attach(task
, cs
->cpus_allowed
);
2130 ret
= security_task_setscheduler(task
);
2136 * Mark attach is in progress. This makes validate_change() fail
2137 * changes which zero cpus/mems_allowed.
2139 cs
->attach_in_progress
++;
2142 percpu_up_write(&cpuset_rwsem
);
2146 static void cpuset_cancel_attach(struct cgroup_taskset
*tset
)
2148 struct cgroup_subsys_state
*css
;
2150 cgroup_taskset_first(tset
, &css
);
2152 percpu_down_write(&cpuset_rwsem
);
2153 css_cs(css
)->attach_in_progress
--;
2154 percpu_up_write(&cpuset_rwsem
);
2158 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
2159 * but we can't allocate it dynamically there. Define it global and
2160 * allocate from cpuset_init().
2162 static cpumask_var_t cpus_attach
;
2164 static void cpuset_attach(struct cgroup_taskset
*tset
)
2166 /* static buf protected by cpuset_mutex */
2167 static nodemask_t cpuset_attach_nodemask_to
;
2168 struct task_struct
*task
;
2169 struct task_struct
*leader
;
2170 struct cgroup_subsys_state
*css
;
2172 struct cpuset
*oldcs
= cpuset_attach_old_cs
;
2174 cgroup_taskset_first(tset
, &css
);
2177 percpu_down_write(&cpuset_rwsem
);
2179 /* prepare for attach */
2180 if (cs
== &top_cpuset
)
2181 cpumask_copy(cpus_attach
, cpu_possible_mask
);
2183 guarantee_online_cpus(cs
, cpus_attach
);
2185 guarantee_online_mems(cs
, &cpuset_attach_nodemask_to
);
2187 cgroup_taskset_for_each(task
, css
, tset
) {
2189 * can_attach beforehand should guarantee that this doesn't
2190 * fail. TODO: have a better way to handle failure here
2192 WARN_ON_ONCE(set_cpus_allowed_ptr(task
, cpus_attach
));
2194 cpuset_change_task_nodemask(task
, &cpuset_attach_nodemask_to
);
2195 cpuset_update_task_spread_flag(cs
, task
);
2199 * Change mm for all threadgroup leaders. This is expensive and may
2200 * sleep and should be moved outside migration path proper.
2202 cpuset_attach_nodemask_to
= cs
->effective_mems
;
2203 cgroup_taskset_for_each_leader(leader
, css
, tset
) {
2204 struct mm_struct
*mm
= get_task_mm(leader
);
2207 mpol_rebind_mm(mm
, &cpuset_attach_nodemask_to
);
2210 * old_mems_allowed is the same with mems_allowed
2211 * here, except if this task is being moved
2212 * automatically due to hotplug. In that case
2213 * @mems_allowed has been updated and is empty, so
2214 * @old_mems_allowed is the right nodesets that we
2217 if (is_memory_migrate(cs
))
2218 cpuset_migrate_mm(mm
, &oldcs
->old_mems_allowed
,
2219 &cpuset_attach_nodemask_to
);
2225 cs
->old_mems_allowed
= cpuset_attach_nodemask_to
;
2227 cs
->attach_in_progress
--;
2228 if (!cs
->attach_in_progress
)
2229 wake_up(&cpuset_attach_wq
);
2231 percpu_up_write(&cpuset_rwsem
);
2234 /* The various types of files and directories in a cpuset file system */
2237 FILE_MEMORY_MIGRATE
,
2240 FILE_EFFECTIVE_CPULIST
,
2241 FILE_EFFECTIVE_MEMLIST
,
2242 FILE_SUBPARTS_CPULIST
,
2246 FILE_SCHED_LOAD_BALANCE
,
2247 FILE_PARTITION_ROOT
,
2248 FILE_SCHED_RELAX_DOMAIN_LEVEL
,
2249 FILE_MEMORY_PRESSURE_ENABLED
,
2250 FILE_MEMORY_PRESSURE
,
2253 } cpuset_filetype_t
;
2255 static int cpuset_write_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
2258 struct cpuset
*cs
= css_cs(css
);
2259 cpuset_filetype_t type
= cft
->private;
2263 percpu_down_write(&cpuset_rwsem
);
2264 if (!is_cpuset_online(cs
)) {
2270 case FILE_CPU_EXCLUSIVE
:
2271 retval
= update_flag(CS_CPU_EXCLUSIVE
, cs
, val
);
2273 case FILE_MEM_EXCLUSIVE
:
2274 retval
= update_flag(CS_MEM_EXCLUSIVE
, cs
, val
);
2276 case FILE_MEM_HARDWALL
:
2277 retval
= update_flag(CS_MEM_HARDWALL
, cs
, val
);
2279 case FILE_SCHED_LOAD_BALANCE
:
2280 retval
= update_flag(CS_SCHED_LOAD_BALANCE
, cs
, val
);
2282 case FILE_MEMORY_MIGRATE
:
2283 retval
= update_flag(CS_MEMORY_MIGRATE
, cs
, val
);
2285 case FILE_MEMORY_PRESSURE_ENABLED
:
2286 cpuset_memory_pressure_enabled
= !!val
;
2288 case FILE_SPREAD_PAGE
:
2289 retval
= update_flag(CS_SPREAD_PAGE
, cs
, val
);
2291 case FILE_SPREAD_SLAB
:
2292 retval
= update_flag(CS_SPREAD_SLAB
, cs
, val
);
2299 percpu_up_write(&cpuset_rwsem
);
2304 static int cpuset_write_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
2307 struct cpuset
*cs
= css_cs(css
);
2308 cpuset_filetype_t type
= cft
->private;
2309 int retval
= -ENODEV
;
2312 percpu_down_write(&cpuset_rwsem
);
2313 if (!is_cpuset_online(cs
))
2317 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
2318 retval
= update_relax_domain_level(cs
, val
);
2325 percpu_up_write(&cpuset_rwsem
);
2331 * Common handling for a write to a "cpus" or "mems" file.
2333 static ssize_t
cpuset_write_resmask(struct kernfs_open_file
*of
,
2334 char *buf
, size_t nbytes
, loff_t off
)
2336 struct cpuset
*cs
= css_cs(of_css(of
));
2337 struct cpuset
*trialcs
;
2338 int retval
= -ENODEV
;
2340 buf
= strstrip(buf
);
2343 * CPU or memory hotunplug may leave @cs w/o any execution
2344 * resources, in which case the hotplug code asynchronously updates
2345 * configuration and transfers all tasks to the nearest ancestor
2346 * which can execute.
2348 * As writes to "cpus" or "mems" may restore @cs's execution
2349 * resources, wait for the previously scheduled operations before
2350 * proceeding, so that we don't end up keep removing tasks added
2351 * after execution capability is restored.
2353 * cpuset_hotplug_work calls back into cgroup core via
2354 * cgroup_transfer_tasks() and waiting for it from a cgroupfs
2355 * operation like this one can lead to a deadlock through kernfs
2356 * active_ref protection. Let's break the protection. Losing the
2357 * protection is okay as we check whether @cs is online after
2358 * grabbing cpuset_mutex anyway. This only happens on the legacy
2362 kernfs_break_active_protection(of
->kn
);
2363 flush_work(&cpuset_hotplug_work
);
2366 percpu_down_write(&cpuset_rwsem
);
2367 if (!is_cpuset_online(cs
))
2370 trialcs
= alloc_trial_cpuset(cs
);
2376 switch (of_cft(of
)->private) {
2378 retval
= update_cpumask(cs
, trialcs
, buf
);
2381 retval
= update_nodemask(cs
, trialcs
, buf
);
2388 free_cpuset(trialcs
);
2390 percpu_up_write(&cpuset_rwsem
);
2392 kernfs_unbreak_active_protection(of
->kn
);
2394 flush_workqueue(cpuset_migrate_mm_wq
);
2395 return retval
?: nbytes
;
2399 * These ascii lists should be read in a single call, by using a user
2400 * buffer large enough to hold the entire map. If read in smaller
2401 * chunks, there is no guarantee of atomicity. Since the display format
2402 * used, list of ranges of sequential numbers, is variable length,
2403 * and since these maps can change value dynamically, one could read
2404 * gibberish by doing partial reads while a list was changing.
2406 static int cpuset_common_seq_show(struct seq_file
*sf
, void *v
)
2408 struct cpuset
*cs
= css_cs(seq_css(sf
));
2409 cpuset_filetype_t type
= seq_cft(sf
)->private;
2412 spin_lock_irq(&callback_lock
);
2416 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->cpus_allowed
));
2419 seq_printf(sf
, "%*pbl\n", nodemask_pr_args(&cs
->mems_allowed
));
2421 case FILE_EFFECTIVE_CPULIST
:
2422 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->effective_cpus
));
2424 case FILE_EFFECTIVE_MEMLIST
:
2425 seq_printf(sf
, "%*pbl\n", nodemask_pr_args(&cs
->effective_mems
));
2427 case FILE_SUBPARTS_CPULIST
:
2428 seq_printf(sf
, "%*pbl\n", cpumask_pr_args(cs
->subparts_cpus
));
2434 spin_unlock_irq(&callback_lock
);
2438 static u64
cpuset_read_u64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
2440 struct cpuset
*cs
= css_cs(css
);
2441 cpuset_filetype_t type
= cft
->private;
2443 case FILE_CPU_EXCLUSIVE
:
2444 return is_cpu_exclusive(cs
);
2445 case FILE_MEM_EXCLUSIVE
:
2446 return is_mem_exclusive(cs
);
2447 case FILE_MEM_HARDWALL
:
2448 return is_mem_hardwall(cs
);
2449 case FILE_SCHED_LOAD_BALANCE
:
2450 return is_sched_load_balance(cs
);
2451 case FILE_MEMORY_MIGRATE
:
2452 return is_memory_migrate(cs
);
2453 case FILE_MEMORY_PRESSURE_ENABLED
:
2454 return cpuset_memory_pressure_enabled
;
2455 case FILE_MEMORY_PRESSURE
:
2456 return fmeter_getrate(&cs
->fmeter
);
2457 case FILE_SPREAD_PAGE
:
2458 return is_spread_page(cs
);
2459 case FILE_SPREAD_SLAB
:
2460 return is_spread_slab(cs
);
2465 /* Unreachable but makes gcc happy */
2469 static s64
cpuset_read_s64(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
2471 struct cpuset
*cs
= css_cs(css
);
2472 cpuset_filetype_t type
= cft
->private;
2474 case FILE_SCHED_RELAX_DOMAIN_LEVEL
:
2475 return cs
->relax_domain_level
;
2480 /* Unrechable but makes gcc happy */
2484 static int sched_partition_show(struct seq_file
*seq
, void *v
)
2486 struct cpuset
*cs
= css_cs(seq_css(seq
));
2488 switch (cs
->partition_root_state
) {
2490 seq_puts(seq
, "root\n");
2493 seq_puts(seq
, "member\n");
2496 seq_puts(seq
, "root invalid\n");
2502 static ssize_t
sched_partition_write(struct kernfs_open_file
*of
, char *buf
,
2503 size_t nbytes
, loff_t off
)
2505 struct cpuset
*cs
= css_cs(of_css(of
));
2507 int retval
= -ENODEV
;
2509 buf
= strstrip(buf
);
2512 * Convert "root" to ENABLED, and convert "member" to DISABLED.
2514 if (!strcmp(buf
, "root"))
2516 else if (!strcmp(buf
, "member"))
2523 percpu_down_write(&cpuset_rwsem
);
2524 if (!is_cpuset_online(cs
))
2527 retval
= update_prstate(cs
, val
);
2529 percpu_up_write(&cpuset_rwsem
);
2532 return retval
?: nbytes
;
2536 * for the common functions, 'private' gives the type of file
2539 static struct cftype legacy_files
[] = {
2542 .seq_show
= cpuset_common_seq_show
,
2543 .write
= cpuset_write_resmask
,
2544 .max_write_len
= (100U + 6 * NR_CPUS
),
2545 .private = FILE_CPULIST
,
2550 .seq_show
= cpuset_common_seq_show
,
2551 .write
= cpuset_write_resmask
,
2552 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
2553 .private = FILE_MEMLIST
,
2557 .name
= "effective_cpus",
2558 .seq_show
= cpuset_common_seq_show
,
2559 .private = FILE_EFFECTIVE_CPULIST
,
2563 .name
= "effective_mems",
2564 .seq_show
= cpuset_common_seq_show
,
2565 .private = FILE_EFFECTIVE_MEMLIST
,
2569 .name
= "cpu_exclusive",
2570 .read_u64
= cpuset_read_u64
,
2571 .write_u64
= cpuset_write_u64
,
2572 .private = FILE_CPU_EXCLUSIVE
,
2576 .name
= "mem_exclusive",
2577 .read_u64
= cpuset_read_u64
,
2578 .write_u64
= cpuset_write_u64
,
2579 .private = FILE_MEM_EXCLUSIVE
,
2583 .name
= "mem_hardwall",
2584 .read_u64
= cpuset_read_u64
,
2585 .write_u64
= cpuset_write_u64
,
2586 .private = FILE_MEM_HARDWALL
,
2590 .name
= "sched_load_balance",
2591 .read_u64
= cpuset_read_u64
,
2592 .write_u64
= cpuset_write_u64
,
2593 .private = FILE_SCHED_LOAD_BALANCE
,
2597 .name
= "sched_relax_domain_level",
2598 .read_s64
= cpuset_read_s64
,
2599 .write_s64
= cpuset_write_s64
,
2600 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL
,
2604 .name
= "memory_migrate",
2605 .read_u64
= cpuset_read_u64
,
2606 .write_u64
= cpuset_write_u64
,
2607 .private = FILE_MEMORY_MIGRATE
,
2611 .name
= "memory_pressure",
2612 .read_u64
= cpuset_read_u64
,
2613 .private = FILE_MEMORY_PRESSURE
,
2617 .name
= "memory_spread_page",
2618 .read_u64
= cpuset_read_u64
,
2619 .write_u64
= cpuset_write_u64
,
2620 .private = FILE_SPREAD_PAGE
,
2624 .name
= "memory_spread_slab",
2625 .read_u64
= cpuset_read_u64
,
2626 .write_u64
= cpuset_write_u64
,
2627 .private = FILE_SPREAD_SLAB
,
2631 .name
= "memory_pressure_enabled",
2632 .flags
= CFTYPE_ONLY_ON_ROOT
,
2633 .read_u64
= cpuset_read_u64
,
2634 .write_u64
= cpuset_write_u64
,
2635 .private = FILE_MEMORY_PRESSURE_ENABLED
,
2642 * This is currently a minimal set for the default hierarchy. It can be
2643 * expanded later on by migrating more features and control files from v1.
2645 static struct cftype dfl_files
[] = {
2648 .seq_show
= cpuset_common_seq_show
,
2649 .write
= cpuset_write_resmask
,
2650 .max_write_len
= (100U + 6 * NR_CPUS
),
2651 .private = FILE_CPULIST
,
2652 .flags
= CFTYPE_NOT_ON_ROOT
,
2657 .seq_show
= cpuset_common_seq_show
,
2658 .write
= cpuset_write_resmask
,
2659 .max_write_len
= (100U + 6 * MAX_NUMNODES
),
2660 .private = FILE_MEMLIST
,
2661 .flags
= CFTYPE_NOT_ON_ROOT
,
2665 .name
= "cpus.effective",
2666 .seq_show
= cpuset_common_seq_show
,
2667 .private = FILE_EFFECTIVE_CPULIST
,
2671 .name
= "mems.effective",
2672 .seq_show
= cpuset_common_seq_show
,
2673 .private = FILE_EFFECTIVE_MEMLIST
,
2677 .name
= "cpus.partition",
2678 .seq_show
= sched_partition_show
,
2679 .write
= sched_partition_write
,
2680 .private = FILE_PARTITION_ROOT
,
2681 .flags
= CFTYPE_NOT_ON_ROOT
,
2685 .name
= "cpus.subpartitions",
2686 .seq_show
= cpuset_common_seq_show
,
2687 .private = FILE_SUBPARTS_CPULIST
,
2688 .flags
= CFTYPE_DEBUG
,
2696 * cpuset_css_alloc - allocate a cpuset css
2697 * cgrp: control group that the new cpuset will be part of
2700 static struct cgroup_subsys_state
*
2701 cpuset_css_alloc(struct cgroup_subsys_state
*parent_css
)
2706 return &top_cpuset
.css
;
2708 cs
= kzalloc(sizeof(*cs
), GFP_KERNEL
);
2710 return ERR_PTR(-ENOMEM
);
2712 if (alloc_cpumasks(cs
, NULL
)) {
2714 return ERR_PTR(-ENOMEM
);
2717 set_bit(CS_SCHED_LOAD_BALANCE
, &cs
->flags
);
2718 nodes_clear(cs
->mems_allowed
);
2719 nodes_clear(cs
->effective_mems
);
2720 fmeter_init(&cs
->fmeter
);
2721 cs
->relax_domain_level
= -1;
2726 static int cpuset_css_online(struct cgroup_subsys_state
*css
)
2728 struct cpuset
*cs
= css_cs(css
);
2729 struct cpuset
*parent
= parent_cs(cs
);
2730 struct cpuset
*tmp_cs
;
2731 struct cgroup_subsys_state
*pos_css
;
2737 percpu_down_write(&cpuset_rwsem
);
2739 set_bit(CS_ONLINE
, &cs
->flags
);
2740 if (is_spread_page(parent
))
2741 set_bit(CS_SPREAD_PAGE
, &cs
->flags
);
2742 if (is_spread_slab(parent
))
2743 set_bit(CS_SPREAD_SLAB
, &cs
->flags
);
2747 spin_lock_irq(&callback_lock
);
2748 if (is_in_v2_mode()) {
2749 cpumask_copy(cs
->effective_cpus
, parent
->effective_cpus
);
2750 cs
->effective_mems
= parent
->effective_mems
;
2751 cs
->use_parent_ecpus
= true;
2752 parent
->child_ecpus_count
++;
2754 spin_unlock_irq(&callback_lock
);
2756 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
))
2760 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
2761 * set. This flag handling is implemented in cgroup core for
2762 * histrical reasons - the flag may be specified during mount.
2764 * Currently, if any sibling cpusets have exclusive cpus or mem, we
2765 * refuse to clone the configuration - thereby refusing the task to
2766 * be entered, and as a result refusing the sys_unshare() or
2767 * clone() which initiated it. If this becomes a problem for some
2768 * users who wish to allow that scenario, then this could be
2769 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2770 * (and likewise for mems) to the new cgroup.
2773 cpuset_for_each_child(tmp_cs
, pos_css
, parent
) {
2774 if (is_mem_exclusive(tmp_cs
) || is_cpu_exclusive(tmp_cs
)) {
2781 spin_lock_irq(&callback_lock
);
2782 cs
->mems_allowed
= parent
->mems_allowed
;
2783 cs
->effective_mems
= parent
->mems_allowed
;
2784 cpumask_copy(cs
->cpus_allowed
, parent
->cpus_allowed
);
2785 cpumask_copy(cs
->effective_cpus
, parent
->cpus_allowed
);
2786 spin_unlock_irq(&callback_lock
);
2788 percpu_up_write(&cpuset_rwsem
);
2794 * If the cpuset being removed has its flag 'sched_load_balance'
2795 * enabled, then simulate turning sched_load_balance off, which
2796 * will call rebuild_sched_domains_locked(). That is not needed
2797 * in the default hierarchy where only changes in partition
2798 * will cause repartitioning.
2800 * If the cpuset has the 'sched.partition' flag enabled, simulate
2801 * turning 'sched.partition" off.
2804 static void cpuset_css_offline(struct cgroup_subsys_state
*css
)
2806 struct cpuset
*cs
= css_cs(css
);
2809 percpu_down_write(&cpuset_rwsem
);
2811 if (is_partition_root(cs
))
2812 update_prstate(cs
, 0);
2814 if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys
) &&
2815 is_sched_load_balance(cs
))
2816 update_flag(CS_SCHED_LOAD_BALANCE
, cs
, 0);
2818 if (cs
->use_parent_ecpus
) {
2819 struct cpuset
*parent
= parent_cs(cs
);
2821 cs
->use_parent_ecpus
= false;
2822 parent
->child_ecpus_count
--;
2826 clear_bit(CS_ONLINE
, &cs
->flags
);
2828 percpu_up_write(&cpuset_rwsem
);
2832 static void cpuset_css_free(struct cgroup_subsys_state
*css
)
2834 struct cpuset
*cs
= css_cs(css
);
2839 static void cpuset_bind(struct cgroup_subsys_state
*root_css
)
2841 percpu_down_write(&cpuset_rwsem
);
2842 spin_lock_irq(&callback_lock
);
2844 if (is_in_v2_mode()) {
2845 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_possible_mask
);
2846 top_cpuset
.mems_allowed
= node_possible_map
;
2848 cpumask_copy(top_cpuset
.cpus_allowed
,
2849 top_cpuset
.effective_cpus
);
2850 top_cpuset
.mems_allowed
= top_cpuset
.effective_mems
;
2853 spin_unlock_irq(&callback_lock
);
2854 percpu_up_write(&cpuset_rwsem
);
2858 * Make sure the new task conform to the current state of its parent,
2859 * which could have been changed by cpuset just after it inherits the
2860 * state from the parent and before it sits on the cgroup's task list.
2862 static void cpuset_fork(struct task_struct
*task
)
2864 if (task_css_is_root(task
, cpuset_cgrp_id
))
2867 set_cpus_allowed_ptr(task
, current
->cpus_ptr
);
2868 task
->mems_allowed
= current
->mems_allowed
;
2871 struct cgroup_subsys cpuset_cgrp_subsys
= {
2872 .css_alloc
= cpuset_css_alloc
,
2873 .css_online
= cpuset_css_online
,
2874 .css_offline
= cpuset_css_offline
,
2875 .css_free
= cpuset_css_free
,
2876 .can_attach
= cpuset_can_attach
,
2877 .cancel_attach
= cpuset_cancel_attach
,
2878 .attach
= cpuset_attach
,
2879 .post_attach
= cpuset_post_attach
,
2880 .bind
= cpuset_bind
,
2881 .fork
= cpuset_fork
,
2882 .legacy_cftypes
= legacy_files
,
2883 .dfl_cftypes
= dfl_files
,
2889 * cpuset_init - initialize cpusets at system boot
2891 * Description: Initialize top_cpuset
2894 int __init
cpuset_init(void)
2896 BUG_ON(percpu_init_rwsem(&cpuset_rwsem
));
2898 BUG_ON(!alloc_cpumask_var(&top_cpuset
.cpus_allowed
, GFP_KERNEL
));
2899 BUG_ON(!alloc_cpumask_var(&top_cpuset
.effective_cpus
, GFP_KERNEL
));
2900 BUG_ON(!zalloc_cpumask_var(&top_cpuset
.subparts_cpus
, GFP_KERNEL
));
2902 cpumask_setall(top_cpuset
.cpus_allowed
);
2903 nodes_setall(top_cpuset
.mems_allowed
);
2904 cpumask_setall(top_cpuset
.effective_cpus
);
2905 nodes_setall(top_cpuset
.effective_mems
);
2907 fmeter_init(&top_cpuset
.fmeter
);
2908 set_bit(CS_SCHED_LOAD_BALANCE
, &top_cpuset
.flags
);
2909 top_cpuset
.relax_domain_level
= -1;
2911 BUG_ON(!alloc_cpumask_var(&cpus_attach
, GFP_KERNEL
));
2917 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
2918 * or memory nodes, we need to walk over the cpuset hierarchy,
2919 * removing that CPU or node from all cpusets. If this removes the
2920 * last CPU or node from a cpuset, then move the tasks in the empty
2921 * cpuset to its next-highest non-empty parent.
2923 static void remove_tasks_in_empty_cpuset(struct cpuset
*cs
)
2925 struct cpuset
*parent
;
2928 * Find its next-highest non-empty parent, (top cpuset
2929 * has online cpus, so can't be empty).
2931 parent
= parent_cs(cs
);
2932 while (cpumask_empty(parent
->cpus_allowed
) ||
2933 nodes_empty(parent
->mems_allowed
))
2934 parent
= parent_cs(parent
);
2936 if (cgroup_transfer_tasks(parent
->css
.cgroup
, cs
->css
.cgroup
)) {
2937 pr_err("cpuset: failed to transfer tasks out of empty cpuset ");
2938 pr_cont_cgroup_name(cs
->css
.cgroup
);
2944 hotplug_update_tasks_legacy(struct cpuset
*cs
,
2945 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2946 bool cpus_updated
, bool mems_updated
)
2950 spin_lock_irq(&callback_lock
);
2951 cpumask_copy(cs
->cpus_allowed
, new_cpus
);
2952 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2953 cs
->mems_allowed
= *new_mems
;
2954 cs
->effective_mems
= *new_mems
;
2955 spin_unlock_irq(&callback_lock
);
2958 * Don't call update_tasks_cpumask() if the cpuset becomes empty,
2959 * as the tasks will be migratecd to an ancestor.
2961 if (cpus_updated
&& !cpumask_empty(cs
->cpus_allowed
))
2962 update_tasks_cpumask(cs
);
2963 if (mems_updated
&& !nodes_empty(cs
->mems_allowed
))
2964 update_tasks_nodemask(cs
);
2966 is_empty
= cpumask_empty(cs
->cpus_allowed
) ||
2967 nodes_empty(cs
->mems_allowed
);
2969 percpu_up_write(&cpuset_rwsem
);
2972 * Move tasks to the nearest ancestor with execution resources,
2973 * This is full cgroup operation which will also call back into
2974 * cpuset. Should be done outside any lock.
2977 remove_tasks_in_empty_cpuset(cs
);
2979 percpu_down_write(&cpuset_rwsem
);
2983 hotplug_update_tasks(struct cpuset
*cs
,
2984 struct cpumask
*new_cpus
, nodemask_t
*new_mems
,
2985 bool cpus_updated
, bool mems_updated
)
2987 if (cpumask_empty(new_cpus
))
2988 cpumask_copy(new_cpus
, parent_cs(cs
)->effective_cpus
);
2989 if (nodes_empty(*new_mems
))
2990 *new_mems
= parent_cs(cs
)->effective_mems
;
2992 spin_lock_irq(&callback_lock
);
2993 cpumask_copy(cs
->effective_cpus
, new_cpus
);
2994 cs
->effective_mems
= *new_mems
;
2995 spin_unlock_irq(&callback_lock
);
2998 update_tasks_cpumask(cs
);
3000 update_tasks_nodemask(cs
);
3003 static bool force_rebuild
;
3005 void cpuset_force_rebuild(void)
3007 force_rebuild
= true;
3011 * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug
3012 * @cs: cpuset in interest
3013 * @tmp: the tmpmasks structure pointer
3015 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
3016 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
3017 * all its tasks are moved to the nearest ancestor with both resources.
3019 static void cpuset_hotplug_update_tasks(struct cpuset
*cs
, struct tmpmasks
*tmp
)
3021 static cpumask_t new_cpus
;
3022 static nodemask_t new_mems
;
3025 struct cpuset
*parent
;
3027 wait_event(cpuset_attach_wq
, cs
->attach_in_progress
== 0);
3029 percpu_down_write(&cpuset_rwsem
);
3032 * We have raced with task attaching. We wait until attaching
3033 * is finished, so we won't attach a task to an empty cpuset.
3035 if (cs
->attach_in_progress
) {
3036 percpu_up_write(&cpuset_rwsem
);
3040 parent
= parent_cs(cs
);
3041 compute_effective_cpumask(&new_cpus
, cs
, parent
);
3042 nodes_and(new_mems
, cs
->mems_allowed
, parent
->effective_mems
);
3044 if (cs
->nr_subparts_cpus
)
3046 * Make sure that CPUs allocated to child partitions
3047 * do not show up in effective_cpus.
3049 cpumask_andnot(&new_cpus
, &new_cpus
, cs
->subparts_cpus
);
3051 if (!tmp
|| !cs
->partition_root_state
)
3055 * In the unlikely event that a partition root has empty
3056 * effective_cpus or its parent becomes erroneous, we have to
3057 * transition it to the erroneous state.
3059 if (is_partition_root(cs
) && (cpumask_empty(&new_cpus
) ||
3060 (parent
->partition_root_state
== PRS_ERROR
))) {
3061 if (cs
->nr_subparts_cpus
) {
3062 cs
->nr_subparts_cpus
= 0;
3063 cpumask_clear(cs
->subparts_cpus
);
3064 compute_effective_cpumask(&new_cpus
, cs
, parent
);
3068 * If the effective_cpus is empty because the child
3069 * partitions take away all the CPUs, we can keep
3070 * the current partition and let the child partitions
3071 * fight for available CPUs.
3073 if ((parent
->partition_root_state
== PRS_ERROR
) ||
3074 cpumask_empty(&new_cpus
)) {
3075 update_parent_subparts_cpumask(cs
, partcmd_disable
,
3077 cs
->partition_root_state
= PRS_ERROR
;
3079 cpuset_force_rebuild();
3083 * On the other hand, an erroneous partition root may be transitioned
3084 * back to a regular one or a partition root with no CPU allocated
3085 * from the parent may change to erroneous.
3087 if (is_partition_root(parent
) &&
3088 ((cs
->partition_root_state
== PRS_ERROR
) ||
3089 !cpumask_intersects(&new_cpus
, parent
->subparts_cpus
)) &&
3090 update_parent_subparts_cpumask(cs
, partcmd_update
, NULL
, tmp
))
3091 cpuset_force_rebuild();
3094 cpus_updated
= !cpumask_equal(&new_cpus
, cs
->effective_cpus
);
3095 mems_updated
= !nodes_equal(new_mems
, cs
->effective_mems
);
3097 if (is_in_v2_mode())
3098 hotplug_update_tasks(cs
, &new_cpus
, &new_mems
,
3099 cpus_updated
, mems_updated
);
3101 hotplug_update_tasks_legacy(cs
, &new_cpus
, &new_mems
,
3102 cpus_updated
, mems_updated
);
3104 percpu_up_write(&cpuset_rwsem
);
3108 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
3110 * This function is called after either CPU or memory configuration has
3111 * changed and updates cpuset accordingly. The top_cpuset is always
3112 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
3113 * order to make cpusets transparent (of no affect) on systems that are
3114 * actively using CPU hotplug but making no active use of cpusets.
3116 * Non-root cpusets are only affected by offlining. If any CPUs or memory
3117 * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on
3120 * Note that CPU offlining during suspend is ignored. We don't modify
3121 * cpusets across suspend/resume cycles at all.
3123 static void cpuset_hotplug_workfn(struct work_struct
*work
)
3125 static cpumask_t new_cpus
;
3126 static nodemask_t new_mems
;
3127 bool cpus_updated
, mems_updated
;
3128 bool on_dfl
= is_in_v2_mode();
3129 struct tmpmasks tmp
, *ptmp
= NULL
;
3131 if (on_dfl
&& !alloc_cpumasks(NULL
, &tmp
))
3134 percpu_down_write(&cpuset_rwsem
);
3136 /* fetch the available cpus/mems and find out which changed how */
3137 cpumask_copy(&new_cpus
, cpu_active_mask
);
3138 new_mems
= node_states
[N_MEMORY
];
3141 * If subparts_cpus is populated, it is likely that the check below
3142 * will produce a false positive on cpus_updated when the cpu list
3143 * isn't changed. It is extra work, but it is better to be safe.
3145 cpus_updated
= !cpumask_equal(top_cpuset
.effective_cpus
, &new_cpus
);
3146 mems_updated
= !nodes_equal(top_cpuset
.effective_mems
, new_mems
);
3148 /* synchronize cpus_allowed to cpu_active_mask */
3150 spin_lock_irq(&callback_lock
);
3152 cpumask_copy(top_cpuset
.cpus_allowed
, &new_cpus
);
3154 * Make sure that CPUs allocated to child partitions
3155 * do not show up in effective_cpus. If no CPU is left,
3156 * we clear the subparts_cpus & let the child partitions
3157 * fight for the CPUs again.
3159 if (top_cpuset
.nr_subparts_cpus
) {
3160 if (cpumask_subset(&new_cpus
,
3161 top_cpuset
.subparts_cpus
)) {
3162 top_cpuset
.nr_subparts_cpus
= 0;
3163 cpumask_clear(top_cpuset
.subparts_cpus
);
3165 cpumask_andnot(&new_cpus
, &new_cpus
,
3166 top_cpuset
.subparts_cpus
);
3169 cpumask_copy(top_cpuset
.effective_cpus
, &new_cpus
);
3170 spin_unlock_irq(&callback_lock
);
3171 /* we don't mess with cpumasks of tasks in top_cpuset */
3174 /* synchronize mems_allowed to N_MEMORY */
3176 spin_lock_irq(&callback_lock
);
3178 top_cpuset
.mems_allowed
= new_mems
;
3179 top_cpuset
.effective_mems
= new_mems
;
3180 spin_unlock_irq(&callback_lock
);
3181 update_tasks_nodemask(&top_cpuset
);
3184 percpu_up_write(&cpuset_rwsem
);
3186 /* if cpus or mems changed, we need to propagate to descendants */
3187 if (cpus_updated
|| mems_updated
) {
3189 struct cgroup_subsys_state
*pos_css
;
3192 cpuset_for_each_descendant_pre(cs
, pos_css
, &top_cpuset
) {
3193 if (cs
== &top_cpuset
|| !css_tryget_online(&cs
->css
))
3197 cpuset_hotplug_update_tasks(cs
, ptmp
);
3205 /* rebuild sched domains if cpus_allowed has changed */
3206 if (cpus_updated
|| force_rebuild
) {
3207 force_rebuild
= false;
3208 rebuild_sched_domains();
3211 free_cpumasks(NULL
, ptmp
);
3214 void cpuset_update_active_cpus(void)
3217 * We're inside cpu hotplug critical region which usually nests
3218 * inside cgroup synchronization. Bounce actual hotplug processing
3219 * to a work item to avoid reverse locking order.
3221 schedule_work(&cpuset_hotplug_work
);
3224 void cpuset_wait_for_hotplug(void)
3226 flush_work(&cpuset_hotplug_work
);
3230 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
3231 * Call this routine anytime after node_states[N_MEMORY] changes.
3232 * See cpuset_update_active_cpus() for CPU hotplug handling.
3234 static int cpuset_track_online_nodes(struct notifier_block
*self
,
3235 unsigned long action
, void *arg
)
3237 schedule_work(&cpuset_hotplug_work
);
3241 static struct notifier_block cpuset_track_online_nodes_nb
= {
3242 .notifier_call
= cpuset_track_online_nodes
,
3243 .priority
= 10, /* ??! */
3247 * cpuset_init_smp - initialize cpus_allowed
3249 * Description: Finish top cpuset after cpu, node maps are initialized
3251 void __init
cpuset_init_smp(void)
3253 cpumask_copy(top_cpuset
.cpus_allowed
, cpu_active_mask
);
3254 top_cpuset
.mems_allowed
= node_states
[N_MEMORY
];
3255 top_cpuset
.old_mems_allowed
= top_cpuset
.mems_allowed
;
3257 cpumask_copy(top_cpuset
.effective_cpus
, cpu_active_mask
);
3258 top_cpuset
.effective_mems
= node_states
[N_MEMORY
];
3260 register_hotmemory_notifier(&cpuset_track_online_nodes_nb
);
3262 cpuset_migrate_mm_wq
= alloc_ordered_workqueue("cpuset_migrate_mm", 0);
3263 BUG_ON(!cpuset_migrate_mm_wq
);
3267 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
3268 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
3269 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
3271 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
3272 * attached to the specified @tsk. Guaranteed to return some non-empty
3273 * subset of cpu_online_mask, even if this means going outside the
3277 void cpuset_cpus_allowed(struct task_struct
*tsk
, struct cpumask
*pmask
)
3279 unsigned long flags
;
3281 spin_lock_irqsave(&callback_lock
, flags
);
3283 guarantee_online_cpus(task_cs(tsk
), pmask
);
3285 spin_unlock_irqrestore(&callback_lock
, flags
);
3289 * cpuset_cpus_allowed_fallback - final fallback before complete catastrophe.
3290 * @tsk: pointer to task_struct with which the scheduler is struggling
3292 * Description: In the case that the scheduler cannot find an allowed cpu in
3293 * tsk->cpus_allowed, we fall back to task_cs(tsk)->cpus_allowed. In legacy
3294 * mode however, this value is the same as task_cs(tsk)->effective_cpus,
3295 * which will not contain a sane cpumask during cases such as cpu hotplugging.
3296 * This is the absolute last resort for the scheduler and it is only used if
3297 * _every_ other avenue has been traveled.
3300 void cpuset_cpus_allowed_fallback(struct task_struct
*tsk
)
3303 do_set_cpus_allowed(tsk
, is_in_v2_mode() ?
3304 task_cs(tsk
)->cpus_allowed
: cpu_possible_mask
);
3308 * We own tsk->cpus_allowed, nobody can change it under us.
3310 * But we used cs && cs->cpus_allowed lockless and thus can
3311 * race with cgroup_attach_task() or update_cpumask() and get
3312 * the wrong tsk->cpus_allowed. However, both cases imply the
3313 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
3314 * which takes task_rq_lock().
3316 * If we are called after it dropped the lock we must see all
3317 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
3318 * set any mask even if it is not right from task_cs() pov,
3319 * the pending set_cpus_allowed_ptr() will fix things.
3321 * select_fallback_rq() will fix things ups and set cpu_possible_mask
3326 void __init
cpuset_init_current_mems_allowed(void)
3328 nodes_setall(current
->mems_allowed
);
3332 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
3333 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
3335 * Description: Returns the nodemask_t mems_allowed of the cpuset
3336 * attached to the specified @tsk. Guaranteed to return some non-empty
3337 * subset of node_states[N_MEMORY], even if this means going outside the
3341 nodemask_t
cpuset_mems_allowed(struct task_struct
*tsk
)
3344 unsigned long flags
;
3346 spin_lock_irqsave(&callback_lock
, flags
);
3348 guarantee_online_mems(task_cs(tsk
), &mask
);
3350 spin_unlock_irqrestore(&callback_lock
, flags
);
3356 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
3357 * @nodemask: the nodemask to be checked
3359 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
3361 int cpuset_nodemask_valid_mems_allowed(nodemask_t
*nodemask
)
3363 return nodes_intersects(*nodemask
, current
->mems_allowed
);
3367 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
3368 * mem_hardwall ancestor to the specified cpuset. Call holding
3369 * callback_lock. If no ancestor is mem_exclusive or mem_hardwall
3370 * (an unusual configuration), then returns the root cpuset.
3372 static struct cpuset
*nearest_hardwall_ancestor(struct cpuset
*cs
)
3374 while (!(is_mem_exclusive(cs
) || is_mem_hardwall(cs
)) && parent_cs(cs
))
3380 * cpuset_node_allowed - Can we allocate on a memory node?
3381 * @node: is this an allowed node?
3382 * @gfp_mask: memory allocation flags
3384 * If we're in interrupt, yes, we can always allocate. If @node is set in
3385 * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this
3386 * node is set in the nearest hardwalled cpuset ancestor to current's cpuset,
3387 * yes. If current has access to memory reserves as an oom victim, yes.
3390 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
3391 * and do not allow allocations outside the current tasks cpuset
3392 * unless the task has been OOM killed.
3393 * GFP_KERNEL allocations are not so marked, so can escape to the
3394 * nearest enclosing hardwalled ancestor cpuset.
3396 * Scanning up parent cpusets requires callback_lock. The
3397 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
3398 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
3399 * current tasks mems_allowed came up empty on the first pass over
3400 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
3401 * cpuset are short of memory, might require taking the callback_lock.
3403 * The first call here from mm/page_alloc:get_page_from_freelist()
3404 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
3405 * so no allocation on a node outside the cpuset is allowed (unless
3406 * in interrupt, of course).
3408 * The second pass through get_page_from_freelist() doesn't even call
3409 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
3410 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
3411 * in alloc_flags. That logic and the checks below have the combined
3413 * in_interrupt - any node ok (current task context irrelevant)
3414 * GFP_ATOMIC - any node ok
3415 * tsk_is_oom_victim - any node ok
3416 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
3417 * GFP_USER - only nodes in current tasks mems allowed ok.
3419 bool __cpuset_node_allowed(int node
, gfp_t gfp_mask
)
3421 struct cpuset
*cs
; /* current cpuset ancestors */
3422 int allowed
; /* is allocation in zone z allowed? */
3423 unsigned long flags
;
3427 if (node_isset(node
, current
->mems_allowed
))
3430 * Allow tasks that have access to memory reserves because they have
3431 * been OOM killed to get memory anywhere.
3433 if (unlikely(tsk_is_oom_victim(current
)))
3435 if (gfp_mask
& __GFP_HARDWALL
) /* If hardwall request, stop here */
3438 if (current
->flags
& PF_EXITING
) /* Let dying task have memory */
3441 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3442 spin_lock_irqsave(&callback_lock
, flags
);
3445 cs
= nearest_hardwall_ancestor(task_cs(current
));
3446 allowed
= node_isset(node
, cs
->mems_allowed
);
3449 spin_unlock_irqrestore(&callback_lock
, flags
);
3454 * cpuset_mem_spread_node() - On which node to begin search for a file page
3455 * cpuset_slab_spread_node() - On which node to begin search for a slab page
3457 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
3458 * tasks in a cpuset with is_spread_page or is_spread_slab set),
3459 * and if the memory allocation used cpuset_mem_spread_node()
3460 * to determine on which node to start looking, as it will for
3461 * certain page cache or slab cache pages such as used for file
3462 * system buffers and inode caches, then instead of starting on the
3463 * local node to look for a free page, rather spread the starting
3464 * node around the tasks mems_allowed nodes.
3466 * We don't have to worry about the returned node being offline
3467 * because "it can't happen", and even if it did, it would be ok.
3469 * The routines calling guarantee_online_mems() are careful to
3470 * only set nodes in task->mems_allowed that are online. So it
3471 * should not be possible for the following code to return an
3472 * offline node. But if it did, that would be ok, as this routine
3473 * is not returning the node where the allocation must be, only
3474 * the node where the search should start. The zonelist passed to
3475 * __alloc_pages() will include all nodes. If the slab allocator
3476 * is passed an offline node, it will fall back to the local node.
3477 * See kmem_cache_alloc_node().
3480 static int cpuset_spread_node(int *rotor
)
3482 return *rotor
= next_node_in(*rotor
, current
->mems_allowed
);
3485 int cpuset_mem_spread_node(void)
3487 if (current
->cpuset_mem_spread_rotor
== NUMA_NO_NODE
)
3488 current
->cpuset_mem_spread_rotor
=
3489 node_random(¤t
->mems_allowed
);
3491 return cpuset_spread_node(¤t
->cpuset_mem_spread_rotor
);
3494 int cpuset_slab_spread_node(void)
3496 if (current
->cpuset_slab_spread_rotor
== NUMA_NO_NODE
)
3497 current
->cpuset_slab_spread_rotor
=
3498 node_random(¤t
->mems_allowed
);
3500 return cpuset_spread_node(¤t
->cpuset_slab_spread_rotor
);
3503 EXPORT_SYMBOL_GPL(cpuset_mem_spread_node
);
3506 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
3507 * @tsk1: pointer to task_struct of some task.
3508 * @tsk2: pointer to task_struct of some other task.
3510 * Description: Return true if @tsk1's mems_allowed intersects the
3511 * mems_allowed of @tsk2. Used by the OOM killer to determine if
3512 * one of the task's memory usage might impact the memory available
3516 int cpuset_mems_allowed_intersects(const struct task_struct
*tsk1
,
3517 const struct task_struct
*tsk2
)
3519 return nodes_intersects(tsk1
->mems_allowed
, tsk2
->mems_allowed
);
3523 * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed
3525 * Description: Prints current's name, cpuset name, and cached copy of its
3526 * mems_allowed to the kernel log.
3528 void cpuset_print_current_mems_allowed(void)
3530 struct cgroup
*cgrp
;
3534 cgrp
= task_cs(current
)->css
.cgroup
;
3535 pr_cont(",cpuset=");
3536 pr_cont_cgroup_name(cgrp
);
3537 pr_cont(",mems_allowed=%*pbl",
3538 nodemask_pr_args(¤t
->mems_allowed
));
3544 * Collection of memory_pressure is suppressed unless
3545 * this flag is enabled by writing "1" to the special
3546 * cpuset file 'memory_pressure_enabled' in the root cpuset.
3549 int cpuset_memory_pressure_enabled __read_mostly
;
3552 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
3554 * Keep a running average of the rate of synchronous (direct)
3555 * page reclaim efforts initiated by tasks in each cpuset.
3557 * This represents the rate at which some task in the cpuset
3558 * ran low on memory on all nodes it was allowed to use, and
3559 * had to enter the kernels page reclaim code in an effort to
3560 * create more free memory by tossing clean pages or swapping
3561 * or writing dirty pages.
3563 * Display to user space in the per-cpuset read-only file
3564 * "memory_pressure". Value displayed is an integer
3565 * representing the recent rate of entry into the synchronous
3566 * (direct) page reclaim by any task attached to the cpuset.
3569 void __cpuset_memory_pressure_bump(void)
3572 fmeter_markevent(&task_cs(current
)->fmeter
);
3576 #ifdef CONFIG_PROC_PID_CPUSET
3578 * proc_cpuset_show()
3579 * - Print tasks cpuset path into seq_file.
3580 * - Used for /proc/<pid>/cpuset.
3581 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
3582 * doesn't really matter if tsk->cpuset changes after we read it,
3583 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
3586 int proc_cpuset_show(struct seq_file
*m
, struct pid_namespace
*ns
,
3587 struct pid
*pid
, struct task_struct
*tsk
)
3590 struct cgroup_subsys_state
*css
;
3594 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
3598 css
= task_get_css(tsk
, cpuset_cgrp_id
);
3599 retval
= cgroup_path_ns(css
->cgroup
, buf
, PATH_MAX
,
3600 current
->nsproxy
->cgroup_ns
);
3602 if (retval
>= PATH_MAX
)
3603 retval
= -ENAMETOOLONG
;
3614 #endif /* CONFIG_PROC_PID_CPUSET */
3616 /* Display task mems_allowed in /proc/<pid>/status file. */
3617 void cpuset_task_status_allowed(struct seq_file
*m
, struct task_struct
*task
)
3619 seq_printf(m
, "Mems_allowed:\t%*pb\n",
3620 nodemask_pr_args(&task
->mems_allowed
));
3621 seq_printf(m
, "Mems_allowed_list:\t%*pbl\n",
3622 nodemask_pr_args(&task
->mems_allowed
));