Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux/fpc-iii.git] / kernel / pid.c
blobb2562a7ce5258577c985f68e94ca9068ee518b00
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic pidhash and scalable, time-bounded PID allocator
5 * (C) 2002-2003 Nadia Yvette Chambers, IBM
6 * (C) 2004 Nadia Yvette Chambers, Oracle
7 * (C) 2002-2004 Ingo Molnar, Red Hat
9 * pid-structures are backing objects for tasks sharing a given ID to chain
10 * against. There is very little to them aside from hashing them and
11 * parking tasks using given ID's on a list.
13 * The hash is always changed with the tasklist_lock write-acquired,
14 * and the hash is only accessed with the tasklist_lock at least
15 * read-acquired, so there's no additional SMP locking needed here.
17 * We have a list of bitmap pages, which bitmaps represent the PID space.
18 * Allocating and freeing PIDs is completely lockless. The worst-case
19 * allocation scenario when all but one out of 1 million PIDs possible are
20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
23 * Pid namespaces:
24 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26 * Many thanks to Oleg Nesterov for comments and help
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <net/sock.h>
47 struct pid init_struct_pid = {
48 .count = REFCOUNT_INIT(1),
49 .tasks = {
50 { .first = NULL },
51 { .first = NULL },
52 { .first = NULL },
54 .level = 0,
55 .numbers = { {
56 .nr = 0,
57 .ns = &init_pid_ns,
58 }, }
61 int pid_max = PID_MAX_DEFAULT;
63 #define RESERVED_PIDS 300
65 int pid_max_min = RESERVED_PIDS + 1;
66 int pid_max_max = PID_MAX_LIMIT;
69 * PID-map pages start out as NULL, they get allocated upon
70 * first use and are never deallocated. This way a low pid_max
71 * value does not cause lots of bitmaps to be allocated, but
72 * the scheme scales to up to 4 million PIDs, runtime.
74 struct pid_namespace init_pid_ns = {
75 .kref = KREF_INIT(2),
76 .idr = IDR_INIT(init_pid_ns.idr),
77 .pid_allocated = PIDNS_ADDING,
78 .level = 0,
79 .child_reaper = &init_task,
80 .user_ns = &init_user_ns,
81 .ns.inum = PROC_PID_INIT_INO,
82 #ifdef CONFIG_PID_NS
83 .ns.ops = &pidns_operations,
84 #endif
86 EXPORT_SYMBOL_GPL(init_pid_ns);
89 * Note: disable interrupts while the pidmap_lock is held as an
90 * interrupt might come in and do read_lock(&tasklist_lock).
92 * If we don't disable interrupts there is a nasty deadlock between
93 * detach_pid()->free_pid() and another cpu that does
94 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
95 * read_lock(&tasklist_lock);
97 * After we clean up the tasklist_lock and know there are no
98 * irq handlers that take it we can leave the interrupts enabled.
99 * For now it is easier to be safe than to prove it can't happen.
102 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
104 void put_pid(struct pid *pid)
106 struct pid_namespace *ns;
108 if (!pid)
109 return;
111 ns = pid->numbers[pid->level].ns;
112 if (refcount_dec_and_test(&pid->count)) {
113 kmem_cache_free(ns->pid_cachep, pid);
114 put_pid_ns(ns);
117 EXPORT_SYMBOL_GPL(put_pid);
119 static void delayed_put_pid(struct rcu_head *rhp)
121 struct pid *pid = container_of(rhp, struct pid, rcu);
122 put_pid(pid);
125 void free_pid(struct pid *pid)
127 /* We can be called with write_lock_irq(&tasklist_lock) held */
128 int i;
129 unsigned long flags;
131 spin_lock_irqsave(&pidmap_lock, flags);
132 for (i = 0; i <= pid->level; i++) {
133 struct upid *upid = pid->numbers + i;
134 struct pid_namespace *ns = upid->ns;
135 switch (--ns->pid_allocated) {
136 case 2:
137 case 1:
138 /* When all that is left in the pid namespace
139 * is the reaper wake up the reaper. The reaper
140 * may be sleeping in zap_pid_ns_processes().
142 wake_up_process(ns->child_reaper);
143 break;
144 case PIDNS_ADDING:
145 /* Handle a fork failure of the first process */
146 WARN_ON(ns->child_reaper);
147 ns->pid_allocated = 0;
148 break;
151 idr_remove(&ns->idr, upid->nr);
153 spin_unlock_irqrestore(&pidmap_lock, flags);
155 call_rcu(&pid->rcu, delayed_put_pid);
158 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
159 size_t set_tid_size)
161 struct pid *pid;
162 enum pid_type type;
163 int i, nr;
164 struct pid_namespace *tmp;
165 struct upid *upid;
166 int retval = -ENOMEM;
169 * set_tid_size contains the size of the set_tid array. Starting at
170 * the most nested currently active PID namespace it tells alloc_pid()
171 * which PID to set for a process in that most nested PID namespace
172 * up to set_tid_size PID namespaces. It does not have to set the PID
173 * for a process in all nested PID namespaces but set_tid_size must
174 * never be greater than the current ns->level + 1.
176 if (set_tid_size > ns->level + 1)
177 return ERR_PTR(-EINVAL);
179 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
180 if (!pid)
181 return ERR_PTR(retval);
183 tmp = ns;
184 pid->level = ns->level;
186 for (i = ns->level; i >= 0; i--) {
187 int tid = 0;
189 if (set_tid_size) {
190 tid = set_tid[ns->level - i];
192 retval = -EINVAL;
193 if (tid < 1 || tid >= pid_max)
194 goto out_free;
196 * Also fail if a PID != 1 is requested and
197 * no PID 1 exists.
199 if (tid != 1 && !tmp->child_reaper)
200 goto out_free;
201 retval = -EPERM;
202 if (!checkpoint_restore_ns_capable(tmp->user_ns))
203 goto out_free;
204 set_tid_size--;
207 idr_preload(GFP_KERNEL);
208 spin_lock_irq(&pidmap_lock);
210 if (tid) {
211 nr = idr_alloc(&tmp->idr, NULL, tid,
212 tid + 1, GFP_ATOMIC);
214 * If ENOSPC is returned it means that the PID is
215 * alreay in use. Return EEXIST in that case.
217 if (nr == -ENOSPC)
218 nr = -EEXIST;
219 } else {
220 int pid_min = 1;
222 * init really needs pid 1, but after reaching the
223 * maximum wrap back to RESERVED_PIDS
225 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
226 pid_min = RESERVED_PIDS;
229 * Store a null pointer so find_pid_ns does not find
230 * a partially initialized PID (see below).
232 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
233 pid_max, GFP_ATOMIC);
235 spin_unlock_irq(&pidmap_lock);
236 idr_preload_end();
238 if (nr < 0) {
239 retval = (nr == -ENOSPC) ? -EAGAIN : nr;
240 goto out_free;
243 pid->numbers[i].nr = nr;
244 pid->numbers[i].ns = tmp;
245 tmp = tmp->parent;
249 * ENOMEM is not the most obvious choice especially for the case
250 * where the child subreaper has already exited and the pid
251 * namespace denies the creation of any new processes. But ENOMEM
252 * is what we have exposed to userspace for a long time and it is
253 * documented behavior for pid namespaces. So we can't easily
254 * change it even if there were an error code better suited.
256 retval = -ENOMEM;
258 get_pid_ns(ns);
259 refcount_set(&pid->count, 1);
260 spin_lock_init(&pid->lock);
261 for (type = 0; type < PIDTYPE_MAX; ++type)
262 INIT_HLIST_HEAD(&pid->tasks[type]);
264 init_waitqueue_head(&pid->wait_pidfd);
265 INIT_HLIST_HEAD(&pid->inodes);
267 upid = pid->numbers + ns->level;
268 spin_lock_irq(&pidmap_lock);
269 if (!(ns->pid_allocated & PIDNS_ADDING))
270 goto out_unlock;
271 for ( ; upid >= pid->numbers; --upid) {
272 /* Make the PID visible to find_pid_ns. */
273 idr_replace(&upid->ns->idr, pid, upid->nr);
274 upid->ns->pid_allocated++;
276 spin_unlock_irq(&pidmap_lock);
278 return pid;
280 out_unlock:
281 spin_unlock_irq(&pidmap_lock);
282 put_pid_ns(ns);
284 out_free:
285 spin_lock_irq(&pidmap_lock);
286 while (++i <= ns->level) {
287 upid = pid->numbers + i;
288 idr_remove(&upid->ns->idr, upid->nr);
291 /* On failure to allocate the first pid, reset the state */
292 if (ns->pid_allocated == PIDNS_ADDING)
293 idr_set_cursor(&ns->idr, 0);
295 spin_unlock_irq(&pidmap_lock);
297 kmem_cache_free(ns->pid_cachep, pid);
298 return ERR_PTR(retval);
301 void disable_pid_allocation(struct pid_namespace *ns)
303 spin_lock_irq(&pidmap_lock);
304 ns->pid_allocated &= ~PIDNS_ADDING;
305 spin_unlock_irq(&pidmap_lock);
308 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
310 return idr_find(&ns->idr, nr);
312 EXPORT_SYMBOL_GPL(find_pid_ns);
314 struct pid *find_vpid(int nr)
316 return find_pid_ns(nr, task_active_pid_ns(current));
318 EXPORT_SYMBOL_GPL(find_vpid);
320 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
322 return (type == PIDTYPE_PID) ?
323 &task->thread_pid :
324 &task->signal->pids[type];
328 * attach_pid() must be called with the tasklist_lock write-held.
330 void attach_pid(struct task_struct *task, enum pid_type type)
332 struct pid *pid = *task_pid_ptr(task, type);
333 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
336 static void __change_pid(struct task_struct *task, enum pid_type type,
337 struct pid *new)
339 struct pid **pid_ptr = task_pid_ptr(task, type);
340 struct pid *pid;
341 int tmp;
343 pid = *pid_ptr;
345 hlist_del_rcu(&task->pid_links[type]);
346 *pid_ptr = new;
348 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
349 if (pid_has_task(pid, tmp))
350 return;
352 free_pid(pid);
355 void detach_pid(struct task_struct *task, enum pid_type type)
357 __change_pid(task, type, NULL);
360 void change_pid(struct task_struct *task, enum pid_type type,
361 struct pid *pid)
363 __change_pid(task, type, pid);
364 attach_pid(task, type);
367 void exchange_tids(struct task_struct *left, struct task_struct *right)
369 struct pid *pid1 = left->thread_pid;
370 struct pid *pid2 = right->thread_pid;
371 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
372 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
374 /* Swap the single entry tid lists */
375 hlists_swap_heads_rcu(head1, head2);
377 /* Swap the per task_struct pid */
378 rcu_assign_pointer(left->thread_pid, pid2);
379 rcu_assign_pointer(right->thread_pid, pid1);
381 /* Swap the cached value */
382 WRITE_ONCE(left->pid, pid_nr(pid2));
383 WRITE_ONCE(right->pid, pid_nr(pid1));
386 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
387 void transfer_pid(struct task_struct *old, struct task_struct *new,
388 enum pid_type type)
390 if (type == PIDTYPE_PID)
391 new->thread_pid = old->thread_pid;
392 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
395 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
397 struct task_struct *result = NULL;
398 if (pid) {
399 struct hlist_node *first;
400 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
401 lockdep_tasklist_lock_is_held());
402 if (first)
403 result = hlist_entry(first, struct task_struct, pid_links[(type)]);
405 return result;
407 EXPORT_SYMBOL(pid_task);
410 * Must be called under rcu_read_lock().
412 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
414 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
415 "find_task_by_pid_ns() needs rcu_read_lock() protection");
416 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
419 struct task_struct *find_task_by_vpid(pid_t vnr)
421 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
424 struct task_struct *find_get_task_by_vpid(pid_t nr)
426 struct task_struct *task;
428 rcu_read_lock();
429 task = find_task_by_vpid(nr);
430 if (task)
431 get_task_struct(task);
432 rcu_read_unlock();
434 return task;
437 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
439 struct pid *pid;
440 rcu_read_lock();
441 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
442 rcu_read_unlock();
443 return pid;
445 EXPORT_SYMBOL_GPL(get_task_pid);
447 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
449 struct task_struct *result;
450 rcu_read_lock();
451 result = pid_task(pid, type);
452 if (result)
453 get_task_struct(result);
454 rcu_read_unlock();
455 return result;
457 EXPORT_SYMBOL_GPL(get_pid_task);
459 struct pid *find_get_pid(pid_t nr)
461 struct pid *pid;
463 rcu_read_lock();
464 pid = get_pid(find_vpid(nr));
465 rcu_read_unlock();
467 return pid;
469 EXPORT_SYMBOL_GPL(find_get_pid);
471 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
473 struct upid *upid;
474 pid_t nr = 0;
476 if (pid && ns->level <= pid->level) {
477 upid = &pid->numbers[ns->level];
478 if (upid->ns == ns)
479 nr = upid->nr;
481 return nr;
483 EXPORT_SYMBOL_GPL(pid_nr_ns);
485 pid_t pid_vnr(struct pid *pid)
487 return pid_nr_ns(pid, task_active_pid_ns(current));
489 EXPORT_SYMBOL_GPL(pid_vnr);
491 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
492 struct pid_namespace *ns)
494 pid_t nr = 0;
496 rcu_read_lock();
497 if (!ns)
498 ns = task_active_pid_ns(current);
499 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
500 rcu_read_unlock();
502 return nr;
504 EXPORT_SYMBOL(__task_pid_nr_ns);
506 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
508 return ns_of_pid(task_pid(tsk));
510 EXPORT_SYMBOL_GPL(task_active_pid_ns);
513 * Used by proc to find the first pid that is greater than or equal to nr.
515 * If there is a pid at nr this function is exactly the same as find_pid_ns.
517 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
519 return idr_get_next(&ns->idr, &nr);
523 * pidfd_create() - Create a new pid file descriptor.
525 * @pid: struct pid that the pidfd will reference
527 * This creates a new pid file descriptor with the O_CLOEXEC flag set.
529 * Note, that this function can only be called after the fd table has
530 * been unshared to avoid leaking the pidfd to the new process.
532 * Return: On success, a cloexec pidfd is returned.
533 * On error, a negative errno number will be returned.
535 static int pidfd_create(struct pid *pid)
537 int fd;
539 fd = anon_inode_getfd("[pidfd]", &pidfd_fops, get_pid(pid),
540 O_RDWR | O_CLOEXEC);
541 if (fd < 0)
542 put_pid(pid);
544 return fd;
548 * pidfd_open() - Open new pid file descriptor.
550 * @pid: pid for which to retrieve a pidfd
551 * @flags: flags to pass
553 * This creates a new pid file descriptor with the O_CLOEXEC flag set for
554 * the process identified by @pid. Currently, the process identified by
555 * @pid must be a thread-group leader. This restriction currently exists
556 * for all aspects of pidfds including pidfd creation (CLONE_PIDFD cannot
557 * be used with CLONE_THREAD) and pidfd polling (only supports thread group
558 * leaders).
560 * Return: On success, a cloexec pidfd is returned.
561 * On error, a negative errno number will be returned.
563 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
565 int fd;
566 struct pid *p;
568 if (flags)
569 return -EINVAL;
571 if (pid <= 0)
572 return -EINVAL;
574 p = find_get_pid(pid);
575 if (!p)
576 return -ESRCH;
578 if (pid_has_task(p, PIDTYPE_TGID))
579 fd = pidfd_create(p);
580 else
581 fd = -EINVAL;
583 put_pid(p);
584 return fd;
587 void __init pid_idr_init(void)
589 /* Verify no one has done anything silly: */
590 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
592 /* bump default and minimum pid_max based on number of cpus */
593 pid_max = min(pid_max_max, max_t(int, pid_max,
594 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
595 pid_max_min = max_t(int, pid_max_min,
596 PIDS_PER_CPU_MIN * num_possible_cpus());
597 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
599 idr_init(&init_pid_ns.idr);
601 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
602 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
605 static struct file *__pidfd_fget(struct task_struct *task, int fd)
607 struct file *file;
608 int ret;
610 ret = mutex_lock_killable(&task->signal->exec_update_mutex);
611 if (ret)
612 return ERR_PTR(ret);
614 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
615 file = fget_task(task, fd);
616 else
617 file = ERR_PTR(-EPERM);
619 mutex_unlock(&task->signal->exec_update_mutex);
621 return file ?: ERR_PTR(-EBADF);
624 static int pidfd_getfd(struct pid *pid, int fd)
626 struct task_struct *task;
627 struct file *file;
628 int ret;
630 task = get_pid_task(pid, PIDTYPE_PID);
631 if (!task)
632 return -ESRCH;
634 file = __pidfd_fget(task, fd);
635 put_task_struct(task);
636 if (IS_ERR(file))
637 return PTR_ERR(file);
639 ret = receive_fd(file, O_CLOEXEC);
640 fput(file);
642 return ret;
646 * sys_pidfd_getfd() - Get a file descriptor from another process
648 * @pidfd: the pidfd file descriptor of the process
649 * @fd: the file descriptor number to get
650 * @flags: flags on how to get the fd (reserved)
652 * This syscall gets a copy of a file descriptor from another process
653 * based on the pidfd, and file descriptor number. It requires that
654 * the calling process has the ability to ptrace the process represented
655 * by the pidfd. The process which is having its file descriptor copied
656 * is otherwise unaffected.
658 * Return: On success, a cloexec file descriptor is returned.
659 * On error, a negative errno number will be returned.
661 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
662 unsigned int, flags)
664 struct pid *pid;
665 struct fd f;
666 int ret;
668 /* flags is currently unused - make sure it's unset */
669 if (flags)
670 return -EINVAL;
672 f = fdget(pidfd);
673 if (!f.file)
674 return -EBADF;
676 pid = pidfd_pid(f.file);
677 if (IS_ERR(pid))
678 ret = PTR_ERR(pid);
679 else
680 ret = pidfd_getfd(pid, fd);
682 fdput(f);
683 return ret;