1 // SPDX-License-Identifier: GPL-2.0+
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
5 * Copyright IBM Corporation, 2008
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
9 * Paul E. McKenney <paulmck@linux.ibm.com>
11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
14 * For detailed explanation of Read-Copy Update mechanism see -
18 #define pr_fmt(fmt) "rcu: " fmt
20 #include <linux/types.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/spinlock.h>
24 #include <linux/smp.h>
25 #include <linux/rcupdate_wait.h>
26 #include <linux/interrupt.h>
27 #include <linux/sched.h>
28 #include <linux/sched/debug.h>
29 #include <linux/nmi.h>
30 #include <linux/atomic.h>
31 #include <linux/bitops.h>
32 #include <linux/export.h>
33 #include <linux/completion.h>
34 #include <linux/moduleparam.h>
35 #include <linux/percpu.h>
36 #include <linux/notifier.h>
37 #include <linux/cpu.h>
38 #include <linux/mutex.h>
39 #include <linux/time.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/wait.h>
42 #include <linux/kthread.h>
43 #include <uapi/linux/sched/types.h>
44 #include <linux/prefetch.h>
45 #include <linux/delay.h>
46 #include <linux/random.h>
47 #include <linux/trace_events.h>
48 #include <linux/suspend.h>
49 #include <linux/ftrace.h>
50 #include <linux/tick.h>
51 #include <linux/sysrq.h>
52 #include <linux/kprobes.h>
53 #include <linux/gfp.h>
54 #include <linux/oom.h>
55 #include <linux/smpboot.h>
56 #include <linux/jiffies.h>
57 #include <linux/slab.h>
58 #include <linux/sched/isolation.h>
59 #include <linux/sched/clock.h>
60 #include <linux/vmalloc.h>
62 #include <linux/kasan.h>
63 #include "../time/tick-internal.h"
68 #ifdef MODULE_PARAM_PREFIX
69 #undef MODULE_PARAM_PREFIX
71 #define MODULE_PARAM_PREFIX "rcutree."
74 #define data_race(expr) \
79 #ifndef ASSERT_EXCLUSIVE_WRITER
80 #define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0)
82 #ifndef ASSERT_EXCLUSIVE_ACCESS
83 #define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0)
86 /* Data structures. */
89 * Steal a bit from the bottom of ->dynticks for idle entry/exit
90 * control. Initially this is for TLB flushing.
92 #define RCU_DYNTICK_CTRL_MASK 0x1
93 #define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
95 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data
, rcu_data
) = {
96 .dynticks_nesting
= 1,
97 .dynticks_nmi_nesting
= DYNTICK_IRQ_NONIDLE
,
98 .dynticks
= ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR
),
100 static struct rcu_state rcu_state
= {
101 .level
= { &rcu_state
.node
[0] },
102 .gp_state
= RCU_GP_IDLE
,
103 .gp_seq
= (0UL - 300UL) << RCU_SEQ_CTR_SHIFT
,
104 .barrier_mutex
= __MUTEX_INITIALIZER(rcu_state
.barrier_mutex
),
107 .exp_mutex
= __MUTEX_INITIALIZER(rcu_state
.exp_mutex
),
108 .exp_wake_mutex
= __MUTEX_INITIALIZER(rcu_state
.exp_wake_mutex
),
109 .ofl_lock
= __RAW_SPIN_LOCK_UNLOCKED(rcu_state
.ofl_lock
),
112 /* Dump rcu_node combining tree at boot to verify correct setup. */
113 static bool dump_tree
;
114 module_param(dump_tree
, bool, 0444);
115 /* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
116 static bool use_softirq
= true;
117 module_param(use_softirq
, bool, 0444);
118 /* Control rcu_node-tree auto-balancing at boot time. */
119 static bool rcu_fanout_exact
;
120 module_param(rcu_fanout_exact
, bool, 0444);
121 /* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
122 static int rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
123 module_param(rcu_fanout_leaf
, int, 0444);
124 int rcu_num_lvls __read_mostly
= RCU_NUM_LVLS
;
125 /* Number of rcu_nodes at specified level. */
126 int num_rcu_lvl
[] = NUM_RCU_LVL_INIT
;
127 int rcu_num_nodes __read_mostly
= NUM_RCU_NODES
; /* Total # rcu_nodes in use. */
130 * The rcu_scheduler_active variable is initialized to the value
131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
132 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
133 * RCU can assume that there is but one task, allowing RCU to (for example)
134 * optimize synchronize_rcu() to a simple barrier(). When this variable
135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
136 * to detect real grace periods. This variable is also used to suppress
137 * boot-time false positives from lockdep-RCU error checking. Finally, it
138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
139 * is fully initialized, including all of its kthreads having been spawned.
141 int rcu_scheduler_active __read_mostly
;
142 EXPORT_SYMBOL_GPL(rcu_scheduler_active
);
145 * The rcu_scheduler_fully_active variable transitions from zero to one
146 * during the early_initcall() processing, which is after the scheduler
147 * is capable of creating new tasks. So RCU processing (for example,
148 * creating tasks for RCU priority boosting) must be delayed until after
149 * rcu_scheduler_fully_active transitions from zero to one. We also
150 * currently delay invocation of any RCU callbacks until after this point.
152 * It might later prove better for people registering RCU callbacks during
153 * early boot to take responsibility for these callbacks, but one step at
156 static int rcu_scheduler_fully_active __read_mostly
;
158 static void rcu_report_qs_rnp(unsigned long mask
, struct rcu_node
*rnp
,
159 unsigned long gps
, unsigned long flags
);
160 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
);
161 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
);
162 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
);
163 static void invoke_rcu_core(void);
164 static void rcu_report_exp_rdp(struct rcu_data
*rdp
);
165 static void sync_sched_exp_online_cleanup(int cpu
);
166 static void check_cb_ovld_locked(struct rcu_data
*rdp
, struct rcu_node
*rnp
);
168 /* rcuc/rcub kthread realtime priority */
169 static int kthread_prio
= IS_ENABLED(CONFIG_RCU_BOOST
) ? 1 : 0;
170 module_param(kthread_prio
, int, 0444);
172 /* Delay in jiffies for grace-period initialization delays, debug only. */
174 static int gp_preinit_delay
;
175 module_param(gp_preinit_delay
, int, 0444);
176 static int gp_init_delay
;
177 module_param(gp_init_delay
, int, 0444);
178 static int gp_cleanup_delay
;
179 module_param(gp_cleanup_delay
, int, 0444);
182 * This rcu parameter is runtime-read-only. It reflects
183 * a minimum allowed number of objects which can be cached
184 * per-CPU. Object size is equal to one page. This value
185 * can be changed at boot time.
187 static int rcu_min_cached_objs
= 2;
188 module_param(rcu_min_cached_objs
, int, 0444);
190 /* Retrieve RCU kthreads priority for rcutorture */
191 int rcu_get_gp_kthreads_prio(void)
195 EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio
);
198 * Number of grace periods between delays, normalized by the duration of
199 * the delay. The longer the delay, the more the grace periods between
200 * each delay. The reason for this normalization is that it means that,
201 * for non-zero delays, the overall slowdown of grace periods is constant
202 * regardless of the duration of the delay. This arrangement balances
203 * the need for long delays to increase some race probabilities with the
204 * need for fast grace periods to increase other race probabilities.
206 #define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
209 * Compute the mask of online CPUs for the specified rcu_node structure.
210 * This will not be stable unless the rcu_node structure's ->lock is
211 * held, but the bit corresponding to the current CPU will be stable
214 static unsigned long rcu_rnp_online_cpus(struct rcu_node
*rnp
)
216 return READ_ONCE(rnp
->qsmaskinitnext
);
220 * Return true if an RCU grace period is in progress. The READ_ONCE()s
221 * permit this function to be invoked without holding the root rcu_node
222 * structure's ->lock, but of course results can be subject to change.
224 static int rcu_gp_in_progress(void)
226 return rcu_seq_state(rcu_seq_current(&rcu_state
.gp_seq
));
230 * Return the number of callbacks queued on the specified CPU.
231 * Handles both the nocbs and normal cases.
233 static long rcu_get_n_cbs_cpu(int cpu
)
235 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
237 if (rcu_segcblist_is_enabled(&rdp
->cblist
))
238 return rcu_segcblist_n_cbs(&rdp
->cblist
);
242 void rcu_softirq_qs(void)
245 rcu_preempt_deferred_qs(current
);
249 * Record entry into an extended quiescent state. This is only to be
250 * called when not already in an extended quiescent state, that is,
251 * RCU is watching prior to the call to this function and is no longer
252 * watching upon return.
254 static noinstr
void rcu_dynticks_eqs_enter(void)
256 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
260 * CPUs seeing atomic_add_return() must see prior RCU read-side
261 * critical sections, and we also must force ordering with the
264 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
265 seq
= arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdp
->dynticks
);
266 // RCU is no longer watching. Better be in extended quiescent state!
267 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
268 (seq
& RCU_DYNTICK_CTRL_CTR
));
269 /* Better not have special action (TLB flush) pending! */
270 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
271 (seq
& RCU_DYNTICK_CTRL_MASK
));
275 * Record exit from an extended quiescent state. This is only to be
276 * called from an extended quiescent state, that is, RCU is not watching
277 * prior to the call to this function and is watching upon return.
279 static noinstr
void rcu_dynticks_eqs_exit(void)
281 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
285 * CPUs seeing atomic_add_return() must see prior idle sojourns,
286 * and we also must force ordering with the next RCU read-side
289 seq
= arch_atomic_add_return(RCU_DYNTICK_CTRL_CTR
, &rdp
->dynticks
);
290 // RCU is now watching. Better not be in an extended quiescent state!
291 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
292 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
293 !(seq
& RCU_DYNTICK_CTRL_CTR
));
294 if (seq
& RCU_DYNTICK_CTRL_MASK
) {
295 arch_atomic_andnot(RCU_DYNTICK_CTRL_MASK
, &rdp
->dynticks
);
296 smp_mb__after_atomic(); /* _exit after clearing mask. */
301 * Reset the current CPU's ->dynticks counter to indicate that the
302 * newly onlined CPU is no longer in an extended quiescent state.
303 * This will either leave the counter unchanged, or increment it
304 * to the next non-quiescent value.
306 * The non-atomic test/increment sequence works because the upper bits
307 * of the ->dynticks counter are manipulated only by the corresponding CPU,
308 * or when the corresponding CPU is offline.
310 static void rcu_dynticks_eqs_online(void)
312 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
314 if (atomic_read(&rdp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
)
316 atomic_add(RCU_DYNTICK_CTRL_CTR
, &rdp
->dynticks
);
320 * Is the current CPU in an extended quiescent state?
322 * No ordering, as we are sampling CPU-local information.
324 static __always_inline
bool rcu_dynticks_curr_cpu_in_eqs(void)
326 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
328 return !(arch_atomic_read(&rdp
->dynticks
) & RCU_DYNTICK_CTRL_CTR
);
332 * Snapshot the ->dynticks counter with full ordering so as to allow
333 * stable comparison of this counter with past and future snapshots.
335 static int rcu_dynticks_snap(struct rcu_data
*rdp
)
337 int snap
= atomic_add_return(0, &rdp
->dynticks
);
339 return snap
& ~RCU_DYNTICK_CTRL_MASK
;
343 * Return true if the snapshot returned from rcu_dynticks_snap()
344 * indicates that RCU is in an extended quiescent state.
346 static bool rcu_dynticks_in_eqs(int snap
)
348 return !(snap
& RCU_DYNTICK_CTRL_CTR
);
352 * Return true if the CPU corresponding to the specified rcu_data
353 * structure has spent some time in an extended quiescent state since
354 * rcu_dynticks_snap() returned the specified snapshot.
356 static bool rcu_dynticks_in_eqs_since(struct rcu_data
*rdp
, int snap
)
358 return snap
!= rcu_dynticks_snap(rdp
);
362 * Return true if the referenced integer is zero while the specified
363 * CPU remains within a single extended quiescent state.
365 bool rcu_dynticks_zero_in_eqs(int cpu
, int *vp
)
367 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
370 // If not quiescent, force back to earlier extended quiescent state.
371 snap
= atomic_read(&rdp
->dynticks
) & ~(RCU_DYNTICK_CTRL_MASK
|
372 RCU_DYNTICK_CTRL_CTR
);
374 smp_rmb(); // Order ->dynticks and *vp reads.
376 return false; // Non-zero, so report failure;
377 smp_rmb(); // Order *vp read and ->dynticks re-read.
379 // If still in the same extended quiescent state, we are good!
380 return snap
== (atomic_read(&rdp
->dynticks
) & ~RCU_DYNTICK_CTRL_MASK
);
384 * Set the special (bottom) bit of the specified CPU so that it
385 * will take special action (such as flushing its TLB) on the
386 * next exit from an extended quiescent state. Returns true if
387 * the bit was successfully set, or false if the CPU was not in
388 * an extended quiescent state.
390 bool rcu_eqs_special_set(int cpu
)
395 struct rcu_data
*rdp
= &per_cpu(rcu_data
, cpu
);
397 new_old
= atomic_read(&rdp
->dynticks
);
400 if (old
& RCU_DYNTICK_CTRL_CTR
)
402 new = old
| RCU_DYNTICK_CTRL_MASK
;
403 new_old
= atomic_cmpxchg(&rdp
->dynticks
, old
, new);
404 } while (new_old
!= old
);
409 * Let the RCU core know that this CPU has gone through the scheduler,
410 * which is a quiescent state. This is called when the need for a
411 * quiescent state is urgent, so we burn an atomic operation and full
412 * memory barriers to let the RCU core know about it, regardless of what
413 * this CPU might (or might not) do in the near future.
415 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
417 * The caller must have disabled interrupts and must not be idle.
419 void rcu_momentary_dyntick_idle(void)
423 raw_cpu_write(rcu_data
.rcu_need_heavy_qs
, false);
424 special
= atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR
,
425 &this_cpu_ptr(&rcu_data
)->dynticks
);
426 /* It is illegal to call this from idle state. */
427 WARN_ON_ONCE(!(special
& RCU_DYNTICK_CTRL_CTR
));
428 rcu_preempt_deferred_qs(current
);
430 EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle
);
433 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
435 * If the current CPU is idle and running at a first-level (not nested)
436 * interrupt, or directly, from idle, return true.
438 * The caller must have at least disabled IRQs.
440 static int rcu_is_cpu_rrupt_from_idle(void)
445 * Usually called from the tick; but also used from smp_function_call()
446 * for expedited grace periods. This latter can result in running from
447 * the idle task, instead of an actual IPI.
449 lockdep_assert_irqs_disabled();
451 /* Check for counter underflows */
452 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data
.dynticks_nesting
) < 0,
453 "RCU dynticks_nesting counter underflow!");
454 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data
.dynticks_nmi_nesting
) <= 0,
455 "RCU dynticks_nmi_nesting counter underflow/zero!");
457 /* Are we at first interrupt nesting level? */
458 nesting
= __this_cpu_read(rcu_data
.dynticks_nmi_nesting
);
463 * If we're not in an interrupt, we must be in the idle task!
465 WARN_ON_ONCE(!nesting
&& !is_idle_task(current
));
467 /* Does CPU appear to be idle from an RCU standpoint? */
468 return __this_cpu_read(rcu_data
.dynticks_nesting
) == 0;
471 #define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
472 #define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
473 static long blimit
= DEFAULT_RCU_BLIMIT
;
474 #define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
475 static long qhimark
= DEFAULT_RCU_QHIMARK
;
476 #define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
477 static long qlowmark
= DEFAULT_RCU_QLOMARK
;
478 #define DEFAULT_RCU_QOVLD_MULT 2
479 #define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
480 static long qovld
= DEFAULT_RCU_QOVLD
; /* If this many pending, hammer QS. */
481 static long qovld_calc
= -1; /* No pre-initialization lock acquisitions! */
483 module_param(blimit
, long, 0444);
484 module_param(qhimark
, long, 0444);
485 module_param(qlowmark
, long, 0444);
486 module_param(qovld
, long, 0444);
488 static ulong jiffies_till_first_fqs
= ULONG_MAX
;
489 static ulong jiffies_till_next_fqs
= ULONG_MAX
;
490 static bool rcu_kick_kthreads
;
491 static int rcu_divisor
= 7;
492 module_param(rcu_divisor
, int, 0644);
494 /* Force an exit from rcu_do_batch() after 3 milliseconds. */
495 static long rcu_resched_ns
= 3 * NSEC_PER_MSEC
;
496 module_param(rcu_resched_ns
, long, 0644);
499 * How long the grace period must be before we start recruiting
500 * quiescent-state help from rcu_note_context_switch().
502 static ulong jiffies_till_sched_qs
= ULONG_MAX
;
503 module_param(jiffies_till_sched_qs
, ulong
, 0444);
504 static ulong jiffies_to_sched_qs
; /* See adjust_jiffies_till_sched_qs(). */
505 module_param(jiffies_to_sched_qs
, ulong
, 0444); /* Display only! */
508 * Make sure that we give the grace-period kthread time to detect any
509 * idle CPUs before taking active measures to force quiescent states.
510 * However, don't go below 100 milliseconds, adjusted upwards for really
513 static void adjust_jiffies_till_sched_qs(void)
517 /* If jiffies_till_sched_qs was specified, respect the request. */
518 if (jiffies_till_sched_qs
!= ULONG_MAX
) {
519 WRITE_ONCE(jiffies_to_sched_qs
, jiffies_till_sched_qs
);
522 /* Otherwise, set to third fqs scan, but bound below on large system. */
523 j
= READ_ONCE(jiffies_till_first_fqs
) +
524 2 * READ_ONCE(jiffies_till_next_fqs
);
525 if (j
< HZ
/ 10 + nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
)
526 j
= HZ
/ 10 + nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
527 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j
);
528 WRITE_ONCE(jiffies_to_sched_qs
, j
);
531 static int param_set_first_fqs_jiffies(const char *val
, const struct kernel_param
*kp
)
534 int ret
= kstrtoul(val
, 0, &j
);
537 WRITE_ONCE(*(ulong
*)kp
->arg
, (j
> HZ
) ? HZ
: j
);
538 adjust_jiffies_till_sched_qs();
543 static int param_set_next_fqs_jiffies(const char *val
, const struct kernel_param
*kp
)
546 int ret
= kstrtoul(val
, 0, &j
);
549 WRITE_ONCE(*(ulong
*)kp
->arg
, (j
> HZ
) ? HZ
: (j
?: 1));
550 adjust_jiffies_till_sched_qs();
555 static struct kernel_param_ops first_fqs_jiffies_ops
= {
556 .set
= param_set_first_fqs_jiffies
,
557 .get
= param_get_ulong
,
560 static struct kernel_param_ops next_fqs_jiffies_ops
= {
561 .set
= param_set_next_fqs_jiffies
,
562 .get
= param_get_ulong
,
565 module_param_cb(jiffies_till_first_fqs
, &first_fqs_jiffies_ops
, &jiffies_till_first_fqs
, 0644);
566 module_param_cb(jiffies_till_next_fqs
, &next_fqs_jiffies_ops
, &jiffies_till_next_fqs
, 0644);
567 module_param(rcu_kick_kthreads
, bool, 0644);
569 static void force_qs_rnp(int (*f
)(struct rcu_data
*rdp
));
570 static int rcu_pending(int user
);
573 * Return the number of RCU GPs completed thus far for debug & stats.
575 unsigned long rcu_get_gp_seq(void)
577 return READ_ONCE(rcu_state
.gp_seq
);
579 EXPORT_SYMBOL_GPL(rcu_get_gp_seq
);
582 * Return the number of RCU expedited batches completed thus far for
583 * debug & stats. Odd numbers mean that a batch is in progress, even
584 * numbers mean idle. The value returned will thus be roughly double
585 * the cumulative batches since boot.
587 unsigned long rcu_exp_batches_completed(void)
589 return rcu_state
.expedited_sequence
;
591 EXPORT_SYMBOL_GPL(rcu_exp_batches_completed
);
594 * Return the root node of the rcu_state structure.
596 static struct rcu_node
*rcu_get_root(void)
598 return &rcu_state
.node
[0];
602 * Send along grace-period-related data for rcutorture diagnostics.
604 void rcutorture_get_gp_data(enum rcutorture_type test_type
, int *flags
,
605 unsigned long *gp_seq
)
609 *flags
= READ_ONCE(rcu_state
.gp_flags
);
610 *gp_seq
= rcu_seq_current(&rcu_state
.gp_seq
);
616 EXPORT_SYMBOL_GPL(rcutorture_get_gp_data
);
619 * Enter an RCU extended quiescent state, which can be either the
620 * idle loop or adaptive-tickless usermode execution.
622 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
623 * the possibility of usermode upcalls having messed up our count
624 * of interrupt nesting level during the prior busy period.
626 static noinstr
void rcu_eqs_enter(bool user
)
628 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
630 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
!= DYNTICK_IRQ_NONIDLE
);
631 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, 0);
632 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) &&
633 rdp
->dynticks_nesting
== 0);
634 if (rdp
->dynticks_nesting
!= 1) {
635 // RCU will still be watching, so just do accounting and leave.
636 rdp
->dynticks_nesting
--;
640 lockdep_assert_irqs_disabled();
641 instrumentation_begin();
642 trace_rcu_dyntick(TPS("Start"), rdp
->dynticks_nesting
, 0, atomic_read(&rdp
->dynticks
));
643 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && !user
&& !is_idle_task(current
));
644 rdp
= this_cpu_ptr(&rcu_data
);
645 do_nocb_deferred_wakeup(rdp
);
646 rcu_prepare_for_idle();
647 rcu_preempt_deferred_qs(current
);
649 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
650 instrument_atomic_write(&rdp
->dynticks
, sizeof(rdp
->dynticks
));
652 instrumentation_end();
653 WRITE_ONCE(rdp
->dynticks_nesting
, 0); /* Avoid irq-access tearing. */
654 // RCU is watching here ...
655 rcu_dynticks_eqs_enter();
656 // ... but is no longer watching here.
657 rcu_dynticks_task_enter();
661 * rcu_idle_enter - inform RCU that current CPU is entering idle
663 * Enter idle mode, in other words, -leave- the mode in which RCU
664 * read-side critical sections can occur. (Though RCU read-side
665 * critical sections can occur in irq handlers in idle, a possibility
666 * handled by irq_enter() and irq_exit().)
668 * If you add or remove a call to rcu_idle_enter(), be sure to test with
669 * CONFIG_RCU_EQS_DEBUG=y.
671 void rcu_idle_enter(void)
673 lockdep_assert_irqs_disabled();
674 rcu_eqs_enter(false);
677 #ifdef CONFIG_NO_HZ_FULL
679 * rcu_user_enter - inform RCU that we are resuming userspace.
681 * Enter RCU idle mode right before resuming userspace. No use of RCU
682 * is permitted between this call and rcu_user_exit(). This way the
683 * CPU doesn't need to maintain the tick for RCU maintenance purposes
684 * when the CPU runs in userspace.
686 * If you add or remove a call to rcu_user_enter(), be sure to test with
687 * CONFIG_RCU_EQS_DEBUG=y.
689 noinstr
void rcu_user_enter(void)
691 lockdep_assert_irqs_disabled();
694 #endif /* CONFIG_NO_HZ_FULL */
697 * rcu_nmi_exit - inform RCU of exit from NMI context
699 * If we are returning from the outermost NMI handler that interrupted an
700 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
701 * to let the RCU grace-period handling know that the CPU is back to
704 * If you add or remove a call to rcu_nmi_exit(), be sure to test
705 * with CONFIG_RCU_EQS_DEBUG=y.
707 noinstr
void rcu_nmi_exit(void)
709 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
711 instrumentation_begin();
713 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
714 * (We are exiting an NMI handler, so RCU better be paying attention
717 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
<= 0);
718 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
721 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
722 * leave it in non-RCU-idle state.
724 if (rdp
->dynticks_nmi_nesting
!= 1) {
725 trace_rcu_dyntick(TPS("--="), rdp
->dynticks_nmi_nesting
, rdp
->dynticks_nmi_nesting
- 2,
726 atomic_read(&rdp
->dynticks
));
727 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, /* No store tearing. */
728 rdp
->dynticks_nmi_nesting
- 2);
729 instrumentation_end();
733 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
734 trace_rcu_dyntick(TPS("Startirq"), rdp
->dynticks_nmi_nesting
, 0, atomic_read(&rdp
->dynticks
));
735 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, 0); /* Avoid store tearing. */
738 rcu_prepare_for_idle();
740 // instrumentation for the noinstr rcu_dynticks_eqs_enter()
741 instrument_atomic_write(&rdp
->dynticks
, sizeof(rdp
->dynticks
));
742 instrumentation_end();
744 // RCU is watching here ...
745 rcu_dynticks_eqs_enter();
746 // ... but is no longer watching here.
749 rcu_dynticks_task_enter();
753 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
755 * Exit from an interrupt handler, which might possibly result in entering
756 * idle mode, in other words, leaving the mode in which read-side critical
757 * sections can occur. The caller must have disabled interrupts.
759 * This code assumes that the idle loop never does anything that might
760 * result in unbalanced calls to irq_enter() and irq_exit(). If your
761 * architecture's idle loop violates this assumption, RCU will give you what
762 * you deserve, good and hard. But very infrequently and irreproducibly.
764 * Use things like work queues to work around this limitation.
766 * You have been warned.
768 * If you add or remove a call to rcu_irq_exit(), be sure to test with
769 * CONFIG_RCU_EQS_DEBUG=y.
771 void noinstr
rcu_irq_exit(void)
773 lockdep_assert_irqs_disabled();
778 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
779 * towards in kernel preemption
781 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
782 * from RCU point of view. Invoked from return from interrupt before kernel
785 void rcu_irq_exit_preempt(void)
787 lockdep_assert_irqs_disabled();
790 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data
.dynticks_nesting
) <= 0,
791 "RCU dynticks_nesting counter underflow/zero!");
792 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data
.dynticks_nmi_nesting
) !=
794 "Bad RCU dynticks_nmi_nesting counter\n");
795 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
796 "RCU in extended quiescent state!");
799 #ifdef CONFIG_PROVE_RCU
801 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
803 void rcu_irq_exit_check_preempt(void)
805 lockdep_assert_irqs_disabled();
807 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data
.dynticks_nesting
) <= 0,
808 "RCU dynticks_nesting counter underflow/zero!");
809 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data
.dynticks_nmi_nesting
) !=
811 "Bad RCU dynticks_nmi_nesting counter\n");
812 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
813 "RCU in extended quiescent state!");
815 #endif /* #ifdef CONFIG_PROVE_RCU */
818 * Wrapper for rcu_irq_exit() where interrupts are enabled.
820 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
821 * with CONFIG_RCU_EQS_DEBUG=y.
823 void rcu_irq_exit_irqson(void)
827 local_irq_save(flags
);
829 local_irq_restore(flags
);
833 * Exit an RCU extended quiescent state, which can be either the
834 * idle loop or adaptive-tickless usermode execution.
836 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
837 * allow for the possibility of usermode upcalls messing up our count of
838 * interrupt nesting level during the busy period that is just now starting.
840 static void noinstr
rcu_eqs_exit(bool user
)
842 struct rcu_data
*rdp
;
845 lockdep_assert_irqs_disabled();
846 rdp
= this_cpu_ptr(&rcu_data
);
847 oldval
= rdp
->dynticks_nesting
;
848 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && oldval
< 0);
850 // RCU was already watching, so just do accounting and leave.
851 rdp
->dynticks_nesting
++;
854 rcu_dynticks_task_exit();
855 // RCU is not watching here ...
856 rcu_dynticks_eqs_exit();
857 // ... but is watching here.
858 instrumentation_begin();
860 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
861 instrument_atomic_write(&rdp
->dynticks
, sizeof(rdp
->dynticks
));
863 rcu_cleanup_after_idle();
864 trace_rcu_dyntick(TPS("End"), rdp
->dynticks_nesting
, 1, atomic_read(&rdp
->dynticks
));
865 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG
) && !user
&& !is_idle_task(current
));
866 WRITE_ONCE(rdp
->dynticks_nesting
, 1);
867 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
);
868 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, DYNTICK_IRQ_NONIDLE
);
869 instrumentation_end();
873 * rcu_idle_exit - inform RCU that current CPU is leaving idle
875 * Exit idle mode, in other words, -enter- the mode in which RCU
876 * read-side critical sections can occur.
878 * If you add or remove a call to rcu_idle_exit(), be sure to test with
879 * CONFIG_RCU_EQS_DEBUG=y.
881 void rcu_idle_exit(void)
885 local_irq_save(flags
);
887 local_irq_restore(flags
);
890 #ifdef CONFIG_NO_HZ_FULL
892 * rcu_user_exit - inform RCU that we are exiting userspace.
894 * Exit RCU idle mode while entering the kernel because it can
895 * run a RCU read side critical section anytime.
897 * If you add or remove a call to rcu_user_exit(), be sure to test with
898 * CONFIG_RCU_EQS_DEBUG=y.
900 void noinstr
rcu_user_exit(void)
906 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
908 * The scheduler tick is not normally enabled when CPUs enter the kernel
909 * from nohz_full userspace execution. After all, nohz_full userspace
910 * execution is an RCU quiescent state and the time executing in the kernel
911 * is quite short. Except of course when it isn't. And it is not hard to
912 * cause a large system to spend tens of seconds or even minutes looping
913 * in the kernel, which can cause a number of problems, include RCU CPU
916 * Therefore, if a nohz_full CPU fails to report a quiescent state
917 * in a timely manner, the RCU grace-period kthread sets that CPU's
918 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
919 * exception will invoke this function, which will turn on the scheduler
920 * tick, which will enable RCU to detect that CPU's quiescent states,
921 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
922 * The tick will be disabled once a quiescent state is reported for
925 * Of course, in carefully tuned systems, there might never be an
926 * interrupt or exception. In that case, the RCU grace-period kthread
927 * will eventually cause one to happen. However, in less carefully
928 * controlled environments, this function allows RCU to get what it
929 * needs without creating otherwise useless interruptions.
931 void __rcu_irq_enter_check_tick(void)
933 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
935 // Enabling the tick is unsafe in NMI handlers.
936 if (WARN_ON_ONCE(in_nmi()))
939 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
940 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
942 if (!tick_nohz_full_cpu(rdp
->cpu
) ||
943 !READ_ONCE(rdp
->rcu_urgent_qs
) ||
944 READ_ONCE(rdp
->rcu_forced_tick
)) {
945 // RCU doesn't need nohz_full help from this CPU, or it is
946 // already getting that help.
950 // We get here only when not in an extended quiescent state and
951 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
952 // already watching and (2) The fact that we are in an interrupt
953 // handler and that the rcu_node lock is an irq-disabled lock
954 // prevents self-deadlock. So we can safely recheck under the lock.
955 // Note that the nohz_full state currently cannot change.
956 raw_spin_lock_rcu_node(rdp
->mynode
);
957 if (rdp
->rcu_urgent_qs
&& !rdp
->rcu_forced_tick
) {
958 // A nohz_full CPU is in the kernel and RCU needs a
959 // quiescent state. Turn on the tick!
960 WRITE_ONCE(rdp
->rcu_forced_tick
, true);
961 tick_dep_set_cpu(rdp
->cpu
, TICK_DEP_BIT_RCU
);
963 raw_spin_unlock_rcu_node(rdp
->mynode
);
965 #endif /* CONFIG_NO_HZ_FULL */
968 * rcu_nmi_enter - inform RCU of entry to NMI context
970 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
971 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
972 * that the CPU is active. This implementation permits nested NMIs, as
973 * long as the nesting level does not overflow an int. (You will probably
974 * run out of stack space first.)
976 * If you add or remove a call to rcu_nmi_enter(), be sure to test
977 * with CONFIG_RCU_EQS_DEBUG=y.
979 noinstr
void rcu_nmi_enter(void)
982 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
984 /* Complain about underflow. */
985 WARN_ON_ONCE(rdp
->dynticks_nmi_nesting
< 0);
988 * If idle from RCU viewpoint, atomically increment ->dynticks
989 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
990 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
991 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
992 * to be in the outermost NMI handler that interrupted an RCU-idle
993 * period (observation due to Andy Lutomirski).
995 if (rcu_dynticks_curr_cpu_in_eqs()) {
998 rcu_dynticks_task_exit();
1000 // RCU is not watching here ...
1001 rcu_dynticks_eqs_exit();
1002 // ... but is watching here.
1005 instrumentation_begin();
1006 rcu_cleanup_after_idle();
1007 instrumentation_end();
1010 instrumentation_begin();
1011 // instrumentation for the noinstr rcu_dynticks_curr_cpu_in_eqs()
1012 instrument_atomic_read(&rdp
->dynticks
, sizeof(rdp
->dynticks
));
1013 // instrumentation for the noinstr rcu_dynticks_eqs_exit()
1014 instrument_atomic_write(&rdp
->dynticks
, sizeof(rdp
->dynticks
));
1017 } else if (!in_nmi()) {
1018 instrumentation_begin();
1019 rcu_irq_enter_check_tick();
1020 instrumentation_end();
1022 instrumentation_begin();
1025 trace_rcu_dyntick(incby
== 1 ? TPS("Endirq") : TPS("++="),
1026 rdp
->dynticks_nmi_nesting
,
1027 rdp
->dynticks_nmi_nesting
+ incby
, atomic_read(&rdp
->dynticks
));
1028 instrumentation_end();
1029 WRITE_ONCE(rdp
->dynticks_nmi_nesting
, /* Prevent store tearing. */
1030 rdp
->dynticks_nmi_nesting
+ incby
);
1035 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1037 * Enter an interrupt handler, which might possibly result in exiting
1038 * idle mode, in other words, entering the mode in which read-side critical
1039 * sections can occur. The caller must have disabled interrupts.
1041 * Note that the Linux kernel is fully capable of entering an interrupt
1042 * handler that it never exits, for example when doing upcalls to user mode!
1043 * This code assumes that the idle loop never does upcalls to user mode.
1044 * If your architecture's idle loop does do upcalls to user mode (or does
1045 * anything else that results in unbalanced calls to the irq_enter() and
1046 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1047 * But very infrequently and irreproducibly.
1049 * Use things like work queues to work around this limitation.
1051 * You have been warned.
1053 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1054 * CONFIG_RCU_EQS_DEBUG=y.
1056 noinstr
void rcu_irq_enter(void)
1058 lockdep_assert_irqs_disabled();
1063 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1065 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1066 * with CONFIG_RCU_EQS_DEBUG=y.
1068 void rcu_irq_enter_irqson(void)
1070 unsigned long flags
;
1072 local_irq_save(flags
);
1074 local_irq_restore(flags
);
1078 * If any sort of urgency was applied to the current CPU (for example,
1079 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1080 * to get to a quiescent state, disable it.
1082 static void rcu_disable_urgency_upon_qs(struct rcu_data
*rdp
)
1084 raw_lockdep_assert_held_rcu_node(rdp
->mynode
);
1085 WRITE_ONCE(rdp
->rcu_urgent_qs
, false);
1086 WRITE_ONCE(rdp
->rcu_need_heavy_qs
, false);
1087 if (tick_nohz_full_cpu(rdp
->cpu
) && rdp
->rcu_forced_tick
) {
1088 tick_dep_clear_cpu(rdp
->cpu
, TICK_DEP_BIT_RCU
);
1089 WRITE_ONCE(rdp
->rcu_forced_tick
, false);
1093 noinstr
bool __rcu_is_watching(void)
1095 return !rcu_dynticks_curr_cpu_in_eqs();
1099 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
1101 * Return true if RCU is watching the running CPU, which means that this
1102 * CPU can safely enter RCU read-side critical sections. In other words,
1103 * if the current CPU is not in its idle loop or is in an interrupt or
1104 * NMI handler, return true.
1106 bool rcu_is_watching(void)
1110 preempt_disable_notrace();
1111 ret
= !rcu_dynticks_curr_cpu_in_eqs();
1112 preempt_enable_notrace();
1115 EXPORT_SYMBOL_GPL(rcu_is_watching
);
1118 * If a holdout task is actually running, request an urgent quiescent
1119 * state from its CPU. This is unsynchronized, so migrations can cause
1120 * the request to go to the wrong CPU. Which is OK, all that will happen
1121 * is that the CPU's next context switch will be a bit slower and next
1122 * time around this task will generate another request.
1124 void rcu_request_urgent_qs_task(struct task_struct
*t
)
1131 return; /* This task is not running on that CPU. */
1132 smp_store_release(per_cpu_ptr(&rcu_data
.rcu_urgent_qs
, cpu
), true);
1135 #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1138 * Is the current CPU online as far as RCU is concerned?
1140 * Disable preemption to avoid false positives that could otherwise
1141 * happen due to the current CPU number being sampled, this task being
1142 * preempted, its old CPU being taken offline, resuming on some other CPU,
1143 * then determining that its old CPU is now offline.
1145 * Disable checking if in an NMI handler because we cannot safely
1146 * report errors from NMI handlers anyway. In addition, it is OK to use
1147 * RCU on an offline processor during initial boot, hence the check for
1148 * rcu_scheduler_fully_active.
1150 bool rcu_lockdep_current_cpu_online(void)
1152 struct rcu_data
*rdp
;
1153 struct rcu_node
*rnp
;
1156 if (in_nmi() || !rcu_scheduler_fully_active
)
1158 preempt_disable_notrace();
1159 rdp
= this_cpu_ptr(&rcu_data
);
1161 if (rdp
->grpmask
& rcu_rnp_online_cpus(rnp
))
1163 preempt_enable_notrace();
1166 EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online
);
1168 #endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1171 * We are reporting a quiescent state on behalf of some other CPU, so
1172 * it is our responsibility to check for and handle potential overflow
1173 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
1174 * After all, the CPU might be in deep idle state, and thus executing no
1177 static void rcu_gpnum_ovf(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1179 raw_lockdep_assert_held_rcu_node(rnp
);
1180 if (ULONG_CMP_LT(rcu_seq_current(&rdp
->gp_seq
) + ULONG_MAX
/ 4,
1182 WRITE_ONCE(rdp
->gpwrap
, true);
1183 if (ULONG_CMP_LT(rdp
->rcu_iw_gp_seq
+ ULONG_MAX
/ 4, rnp
->gp_seq
))
1184 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
+ ULONG_MAX
/ 4;
1188 * Snapshot the specified CPU's dynticks counter so that we can later
1189 * credit them with an implicit quiescent state. Return 1 if this CPU
1190 * is in dynticks idle mode, which is an extended quiescent state.
1192 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
1194 rdp
->dynticks_snap
= rcu_dynticks_snap(rdp
);
1195 if (rcu_dynticks_in_eqs(rdp
->dynticks_snap
)) {
1196 trace_rcu_fqs(rcu_state
.name
, rdp
->gp_seq
, rdp
->cpu
, TPS("dti"));
1197 rcu_gpnum_ovf(rdp
->mynode
, rdp
);
1204 * Return true if the specified CPU has passed through a quiescent
1205 * state by virtue of being in or having passed through an dynticks
1206 * idle state since the last call to dyntick_save_progress_counter()
1207 * for this same CPU, or by virtue of having been offline.
1209 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
1214 struct rcu_node
*rnp
= rdp
->mynode
;
1217 * If the CPU passed through or entered a dynticks idle phase with
1218 * no active irq/NMI handlers, then we can safely pretend that the CPU
1219 * already acknowledged the request to pass through a quiescent
1220 * state. Either way, that CPU cannot possibly be in an RCU
1221 * read-side critical section that started before the beginning
1222 * of the current RCU grace period.
1224 if (rcu_dynticks_in_eqs_since(rdp
, rdp
->dynticks_snap
)) {
1225 trace_rcu_fqs(rcu_state
.name
, rdp
->gp_seq
, rdp
->cpu
, TPS("dti"));
1226 rcu_gpnum_ovf(rnp
, rdp
);
1230 /* If waiting too long on an offline CPU, complain. */
1231 if (!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) &&
1232 time_after(jiffies
, rcu_state
.gp_start
+ HZ
)) {
1234 struct rcu_node
*rnp1
;
1236 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1237 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1238 __func__
, rnp
->grplo
, rnp
->grphi
, rnp
->level
,
1239 (long)rnp
->gp_seq
, (long)rnp
->completedqs
);
1240 for (rnp1
= rnp
; rnp1
; rnp1
= rnp1
->parent
)
1241 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1242 __func__
, rnp1
->grplo
, rnp1
->grphi
, rnp1
->qsmask
, rnp1
->qsmaskinit
, rnp1
->qsmaskinitnext
, rnp1
->rcu_gp_init_mask
);
1243 onl
= !!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
));
1244 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1245 __func__
, rdp
->cpu
, ".o"[onl
],
1246 (long)rdp
->rcu_onl_gp_seq
, rdp
->rcu_onl_gp_flags
,
1247 (long)rdp
->rcu_ofl_gp_seq
, rdp
->rcu_ofl_gp_flags
);
1248 return 1; /* Break things loose after complaining. */
1252 * A CPU running for an extended time within the kernel can
1253 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1254 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
1255 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1256 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1257 * variable are safe because the assignments are repeated if this
1258 * CPU failed to pass through a quiescent state. This code
1259 * also checks .jiffies_resched in case jiffies_to_sched_qs
1262 jtsq
= READ_ONCE(jiffies_to_sched_qs
);
1263 ruqp
= per_cpu_ptr(&rcu_data
.rcu_urgent_qs
, rdp
->cpu
);
1264 rnhqp
= &per_cpu(rcu_data
.rcu_need_heavy_qs
, rdp
->cpu
);
1265 if (!READ_ONCE(*rnhqp
) &&
1266 (time_after(jiffies
, rcu_state
.gp_start
+ jtsq
* 2) ||
1267 time_after(jiffies
, rcu_state
.jiffies_resched
) ||
1268 rcu_state
.cbovld
)) {
1269 WRITE_ONCE(*rnhqp
, true);
1270 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1271 smp_store_release(ruqp
, true);
1272 } else if (time_after(jiffies
, rcu_state
.gp_start
+ jtsq
)) {
1273 WRITE_ONCE(*ruqp
, true);
1277 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
1278 * The above code handles this, but only for straight cond_resched().
1279 * And some in-kernel loops check need_resched() before calling
1280 * cond_resched(), which defeats the above code for CPUs that are
1281 * running in-kernel with scheduling-clock interrupts disabled.
1282 * So hit them over the head with the resched_cpu() hammer!
1284 if (tick_nohz_full_cpu(rdp
->cpu
) &&
1285 (time_after(jiffies
, READ_ONCE(rdp
->last_fqs_resched
) + jtsq
* 3) ||
1286 rcu_state
.cbovld
)) {
1287 WRITE_ONCE(*ruqp
, true);
1288 resched_cpu(rdp
->cpu
);
1289 WRITE_ONCE(rdp
->last_fqs_resched
, jiffies
);
1293 * If more than halfway to RCU CPU stall-warning time, invoke
1294 * resched_cpu() more frequently to try to loosen things up a bit.
1295 * Also check to see if the CPU is getting hammered with interrupts,
1296 * but only once per grace period, just to keep the IPIs down to
1299 if (time_after(jiffies
, rcu_state
.jiffies_resched
)) {
1300 if (time_after(jiffies
,
1301 READ_ONCE(rdp
->last_fqs_resched
) + jtsq
)) {
1302 resched_cpu(rdp
->cpu
);
1303 WRITE_ONCE(rdp
->last_fqs_resched
, jiffies
);
1305 if (IS_ENABLED(CONFIG_IRQ_WORK
) &&
1306 !rdp
->rcu_iw_pending
&& rdp
->rcu_iw_gp_seq
!= rnp
->gp_seq
&&
1307 (rnp
->ffmask
& rdp
->grpmask
)) {
1308 init_irq_work(&rdp
->rcu_iw
, rcu_iw_handler
);
1309 atomic_set(&rdp
->rcu_iw
.flags
, IRQ_WORK_HARD_IRQ
);
1310 rdp
->rcu_iw_pending
= true;
1311 rdp
->rcu_iw_gp_seq
= rnp
->gp_seq
;
1312 irq_work_queue_on(&rdp
->rcu_iw
, rdp
->cpu
);
1319 /* Trace-event wrapper function for trace_rcu_future_grace_period. */
1320 static void trace_rcu_this_gp(struct rcu_node
*rnp
, struct rcu_data
*rdp
,
1321 unsigned long gp_seq_req
, const char *s
)
1323 trace_rcu_future_grace_period(rcu_state
.name
, READ_ONCE(rnp
->gp_seq
),
1324 gp_seq_req
, rnp
->level
,
1325 rnp
->grplo
, rnp
->grphi
, s
);
1329 * rcu_start_this_gp - Request the start of a particular grace period
1330 * @rnp_start: The leaf node of the CPU from which to start.
1331 * @rdp: The rcu_data corresponding to the CPU from which to start.
1332 * @gp_seq_req: The gp_seq of the grace period to start.
1334 * Start the specified grace period, as needed to handle newly arrived
1335 * callbacks. The required future grace periods are recorded in each
1336 * rcu_node structure's ->gp_seq_needed field. Returns true if there
1337 * is reason to awaken the grace-period kthread.
1339 * The caller must hold the specified rcu_node structure's ->lock, which
1340 * is why the caller is responsible for waking the grace-period kthread.
1342 * Returns true if the GP thread needs to be awakened else false.
1344 static bool rcu_start_this_gp(struct rcu_node
*rnp_start
, struct rcu_data
*rdp
,
1345 unsigned long gp_seq_req
)
1348 struct rcu_node
*rnp
;
1351 * Use funnel locking to either acquire the root rcu_node
1352 * structure's lock or bail out if the need for this grace period
1353 * has already been recorded -- or if that grace period has in
1354 * fact already started. If there is already a grace period in
1355 * progress in a non-leaf node, no recording is needed because the
1356 * end of the grace period will scan the leaf rcu_node structures.
1357 * Note that rnp_start->lock must not be released.
1359 raw_lockdep_assert_held_rcu_node(rnp_start
);
1360 trace_rcu_this_gp(rnp_start
, rdp
, gp_seq_req
, TPS("Startleaf"));
1361 for (rnp
= rnp_start
; 1; rnp
= rnp
->parent
) {
1362 if (rnp
!= rnp_start
)
1363 raw_spin_lock_rcu_node(rnp
);
1364 if (ULONG_CMP_GE(rnp
->gp_seq_needed
, gp_seq_req
) ||
1365 rcu_seq_started(&rnp
->gp_seq
, gp_seq_req
) ||
1366 (rnp
!= rnp_start
&&
1367 rcu_seq_state(rcu_seq_current(&rnp
->gp_seq
)))) {
1368 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
,
1372 WRITE_ONCE(rnp
->gp_seq_needed
, gp_seq_req
);
1373 if (rcu_seq_state(rcu_seq_current(&rnp
->gp_seq
))) {
1375 * We just marked the leaf or internal node, and a
1376 * grace period is in progress, which means that
1377 * rcu_gp_cleanup() will see the marking. Bail to
1378 * reduce contention.
1380 trace_rcu_this_gp(rnp_start
, rdp
, gp_seq_req
,
1381 TPS("Startedleaf"));
1384 if (rnp
!= rnp_start
&& rnp
->parent
!= NULL
)
1385 raw_spin_unlock_rcu_node(rnp
);
1387 break; /* At root, and perhaps also leaf. */
1390 /* If GP already in progress, just leave, otherwise start one. */
1391 if (rcu_gp_in_progress()) {
1392 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("Startedleafroot"));
1395 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("Startedroot"));
1396 WRITE_ONCE(rcu_state
.gp_flags
, rcu_state
.gp_flags
| RCU_GP_FLAG_INIT
);
1397 WRITE_ONCE(rcu_state
.gp_req_activity
, jiffies
);
1398 if (!READ_ONCE(rcu_state
.gp_kthread
)) {
1399 trace_rcu_this_gp(rnp
, rdp
, gp_seq_req
, TPS("NoGPkthread"));
1402 trace_rcu_grace_period(rcu_state
.name
, data_race(rcu_state
.gp_seq
), TPS("newreq"));
1403 ret
= true; /* Caller must wake GP kthread. */
1405 /* Push furthest requested GP to leaf node and rcu_data structure. */
1406 if (ULONG_CMP_LT(gp_seq_req
, rnp
->gp_seq_needed
)) {
1407 WRITE_ONCE(rnp_start
->gp_seq_needed
, rnp
->gp_seq_needed
);
1408 WRITE_ONCE(rdp
->gp_seq_needed
, rnp
->gp_seq_needed
);
1410 if (rnp
!= rnp_start
)
1411 raw_spin_unlock_rcu_node(rnp
);
1416 * Clean up any old requests for the just-ended grace period. Also return
1417 * whether any additional grace periods have been requested.
1419 static bool rcu_future_gp_cleanup(struct rcu_node
*rnp
)
1422 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1424 needmore
= ULONG_CMP_LT(rnp
->gp_seq
, rnp
->gp_seq_needed
);
1426 rnp
->gp_seq_needed
= rnp
->gp_seq
; /* Avoid counter wrap. */
1427 trace_rcu_this_gp(rnp
, rdp
, rnp
->gp_seq
,
1428 needmore
? TPS("CleanupMore") : TPS("Cleanup"));
1433 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1434 * interrupt or softirq handler, in which case we just might immediately
1435 * sleep upon return, resulting in a grace-period hang), and don't bother
1436 * awakening when there is nothing for the grace-period kthread to do
1437 * (as in several CPUs raced to awaken, we lost), and finally don't try
1438 * to awaken a kthread that has not yet been created. If all those checks
1439 * are passed, track some debug information and awaken.
1441 * So why do the self-wakeup when in an interrupt or softirq handler
1442 * in the grace-period kthread's context? Because the kthread might have
1443 * been interrupted just as it was going to sleep, and just after the final
1444 * pre-sleep check of the awaken condition. In this case, a wakeup really
1445 * is required, and is therefore supplied.
1447 static void rcu_gp_kthread_wake(void)
1449 struct task_struct
*t
= READ_ONCE(rcu_state
.gp_kthread
);
1451 if ((current
== t
&& !in_irq() && !in_serving_softirq()) ||
1452 !READ_ONCE(rcu_state
.gp_flags
) || !t
)
1454 WRITE_ONCE(rcu_state
.gp_wake_time
, jiffies
);
1455 WRITE_ONCE(rcu_state
.gp_wake_seq
, READ_ONCE(rcu_state
.gp_seq
));
1456 swake_up_one(&rcu_state
.gp_wq
);
1460 * If there is room, assign a ->gp_seq number to any callbacks on this
1461 * CPU that have not already been assigned. Also accelerate any callbacks
1462 * that were previously assigned a ->gp_seq number that has since proven
1463 * to be too conservative, which can happen if callbacks get assigned a
1464 * ->gp_seq number while RCU is idle, but with reference to a non-root
1465 * rcu_node structure. This function is idempotent, so it does not hurt
1466 * to call it repeatedly. Returns an flag saying that we should awaken
1467 * the RCU grace-period kthread.
1469 * The caller must hold rnp->lock with interrupts disabled.
1471 static bool rcu_accelerate_cbs(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1473 unsigned long gp_seq_req
;
1476 rcu_lockdep_assert_cblist_protected(rdp
);
1477 raw_lockdep_assert_held_rcu_node(rnp
);
1479 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1480 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1484 * Callbacks are often registered with incomplete grace-period
1485 * information. Something about the fact that getting exact
1486 * information requires acquiring a global lock... RCU therefore
1487 * makes a conservative estimate of the grace period number at which
1488 * a given callback will become ready to invoke. The following
1489 * code checks this estimate and improves it when possible, thus
1490 * accelerating callback invocation to an earlier grace-period
1493 gp_seq_req
= rcu_seq_snap(&rcu_state
.gp_seq
);
1494 if (rcu_segcblist_accelerate(&rdp
->cblist
, gp_seq_req
))
1495 ret
= rcu_start_this_gp(rnp
, rdp
, gp_seq_req
);
1497 /* Trace depending on how much we were able to accelerate. */
1498 if (rcu_segcblist_restempty(&rdp
->cblist
, RCU_WAIT_TAIL
))
1499 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("AccWaitCB"));
1501 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("AccReadyCB"));
1506 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1507 * rcu_node structure's ->lock be held. It consults the cached value
1508 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1509 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1510 * while holding the leaf rcu_node structure's ->lock.
1512 static void rcu_accelerate_cbs_unlocked(struct rcu_node
*rnp
,
1513 struct rcu_data
*rdp
)
1518 rcu_lockdep_assert_cblist_protected(rdp
);
1519 c
= rcu_seq_snap(&rcu_state
.gp_seq
);
1520 if (!READ_ONCE(rdp
->gpwrap
) && ULONG_CMP_GE(rdp
->gp_seq_needed
, c
)) {
1521 /* Old request still live, so mark recent callbacks. */
1522 (void)rcu_segcblist_accelerate(&rdp
->cblist
, c
);
1525 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1526 needwake
= rcu_accelerate_cbs(rnp
, rdp
);
1527 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1529 rcu_gp_kthread_wake();
1533 * Move any callbacks whose grace period has completed to the
1534 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1535 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1536 * sublist. This function is idempotent, so it does not hurt to
1537 * invoke it repeatedly. As long as it is not invoked -too- often...
1538 * Returns true if the RCU grace-period kthread needs to be awakened.
1540 * The caller must hold rnp->lock with interrupts disabled.
1542 static bool rcu_advance_cbs(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1544 rcu_lockdep_assert_cblist_protected(rdp
);
1545 raw_lockdep_assert_held_rcu_node(rnp
);
1547 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1548 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
))
1552 * Find all callbacks whose ->gp_seq numbers indicate that they
1553 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1555 rcu_segcblist_advance(&rdp
->cblist
, rnp
->gp_seq
);
1557 /* Classify any remaining callbacks. */
1558 return rcu_accelerate_cbs(rnp
, rdp
);
1562 * Move and classify callbacks, but only if doing so won't require
1563 * that the RCU grace-period kthread be awakened.
1565 static void __maybe_unused
rcu_advance_cbs_nowake(struct rcu_node
*rnp
,
1566 struct rcu_data
*rdp
)
1568 rcu_lockdep_assert_cblist_protected(rdp
);
1569 if (!rcu_seq_state(rcu_seq_current(&rnp
->gp_seq
)) ||
1570 !raw_spin_trylock_rcu_node(rnp
))
1572 WARN_ON_ONCE(rcu_advance_cbs(rnp
, rdp
));
1573 raw_spin_unlock_rcu_node(rnp
);
1577 * Update CPU-local rcu_data state to record the beginnings and ends of
1578 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1579 * structure corresponding to the current CPU, and must have irqs disabled.
1580 * Returns true if the grace-period kthread needs to be awakened.
1582 static bool __note_gp_changes(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
1586 const bool offloaded
= IS_ENABLED(CONFIG_RCU_NOCB_CPU
) &&
1587 rcu_segcblist_is_offloaded(&rdp
->cblist
);
1589 raw_lockdep_assert_held_rcu_node(rnp
);
1591 if (rdp
->gp_seq
== rnp
->gp_seq
)
1592 return false; /* Nothing to do. */
1594 /* Handle the ends of any preceding grace periods first. */
1595 if (rcu_seq_completed_gp(rdp
->gp_seq
, rnp
->gp_seq
) ||
1596 unlikely(READ_ONCE(rdp
->gpwrap
))) {
1598 ret
= rcu_advance_cbs(rnp
, rdp
); /* Advance CBs. */
1599 rdp
->core_needs_qs
= false;
1600 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("cpuend"));
1603 ret
= rcu_accelerate_cbs(rnp
, rdp
); /* Recent CBs. */
1604 if (rdp
->core_needs_qs
)
1605 rdp
->core_needs_qs
= !!(rnp
->qsmask
& rdp
->grpmask
);
1608 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1609 if (rcu_seq_new_gp(rdp
->gp_seq
, rnp
->gp_seq
) ||
1610 unlikely(READ_ONCE(rdp
->gpwrap
))) {
1612 * If the current grace period is waiting for this CPU,
1613 * set up to detect a quiescent state, otherwise don't
1614 * go looking for one.
1616 trace_rcu_grace_period(rcu_state
.name
, rnp
->gp_seq
, TPS("cpustart"));
1617 need_qs
= !!(rnp
->qsmask
& rdp
->grpmask
);
1618 rdp
->cpu_no_qs
.b
.norm
= need_qs
;
1619 rdp
->core_needs_qs
= need_qs
;
1620 zero_cpu_stall_ticks(rdp
);
1622 rdp
->gp_seq
= rnp
->gp_seq
; /* Remember new grace-period state. */
1623 if (ULONG_CMP_LT(rdp
->gp_seq_needed
, rnp
->gp_seq_needed
) || rdp
->gpwrap
)
1624 WRITE_ONCE(rdp
->gp_seq_needed
, rnp
->gp_seq_needed
);
1625 WRITE_ONCE(rdp
->gpwrap
, false);
1626 rcu_gpnum_ovf(rnp
, rdp
);
1630 static void note_gp_changes(struct rcu_data
*rdp
)
1632 unsigned long flags
;
1634 struct rcu_node
*rnp
;
1636 local_irq_save(flags
);
1638 if ((rdp
->gp_seq
== rcu_seq_current(&rnp
->gp_seq
) &&
1639 !unlikely(READ_ONCE(rdp
->gpwrap
))) || /* w/out lock. */
1640 !raw_spin_trylock_rcu_node(rnp
)) { /* irqs already off, so later. */
1641 local_irq_restore(flags
);
1644 needwake
= __note_gp_changes(rnp
, rdp
);
1645 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1647 rcu_gp_kthread_wake();
1650 static void rcu_gp_slow(int delay
)
1653 !(rcu_seq_ctr(rcu_state
.gp_seq
) %
1654 (rcu_num_nodes
* PER_RCU_NODE_PERIOD
* delay
)))
1655 schedule_timeout_idle(delay
);
1658 static unsigned long sleep_duration
;
1660 /* Allow rcutorture to stall the grace-period kthread. */
1661 void rcu_gp_set_torture_wait(int duration
)
1663 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST
) && duration
> 0)
1664 WRITE_ONCE(sleep_duration
, duration
);
1666 EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait
);
1668 /* Actually implement the aforementioned wait. */
1669 static void rcu_gp_torture_wait(void)
1671 unsigned long duration
;
1673 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST
))
1675 duration
= xchg(&sleep_duration
, 0UL);
1677 pr_alert("%s: Waiting %lu jiffies\n", __func__
, duration
);
1678 schedule_timeout_idle(duration
);
1679 pr_alert("%s: Wait complete\n", __func__
);
1684 * Initialize a new grace period. Return false if no grace period required.
1686 static bool rcu_gp_init(void)
1688 unsigned long flags
;
1689 unsigned long oldmask
;
1691 struct rcu_data
*rdp
;
1692 struct rcu_node
*rnp
= rcu_get_root();
1694 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1695 raw_spin_lock_irq_rcu_node(rnp
);
1696 if (!READ_ONCE(rcu_state
.gp_flags
)) {
1697 /* Spurious wakeup, tell caller to go back to sleep. */
1698 raw_spin_unlock_irq_rcu_node(rnp
);
1701 WRITE_ONCE(rcu_state
.gp_flags
, 0); /* Clear all flags: New GP. */
1703 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1705 * Grace period already in progress, don't start another.
1706 * Not supposed to be able to happen.
1708 raw_spin_unlock_irq_rcu_node(rnp
);
1712 /* Advance to a new grace period and initialize state. */
1713 record_gp_stall_check_time();
1714 /* Record GP times before starting GP, hence rcu_seq_start(). */
1715 rcu_seq_start(&rcu_state
.gp_seq
);
1716 ASSERT_EXCLUSIVE_WRITER(rcu_state
.gp_seq
);
1717 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
, TPS("start"));
1718 raw_spin_unlock_irq_rcu_node(rnp
);
1721 * Apply per-leaf buffered online and offline operations to the
1722 * rcu_node tree. Note that this new grace period need not wait
1723 * for subsequent online CPUs, and that quiescent-state forcing
1724 * will handle subsequent offline CPUs.
1726 rcu_state
.gp_state
= RCU_GP_ONOFF
;
1727 rcu_for_each_leaf_node(rnp
) {
1728 raw_spin_lock(&rcu_state
.ofl_lock
);
1729 raw_spin_lock_irq_rcu_node(rnp
);
1730 if (rnp
->qsmaskinit
== rnp
->qsmaskinitnext
&&
1731 !rnp
->wait_blkd_tasks
) {
1732 /* Nothing to do on this leaf rcu_node structure. */
1733 raw_spin_unlock_irq_rcu_node(rnp
);
1734 raw_spin_unlock(&rcu_state
.ofl_lock
);
1738 /* Record old state, apply changes to ->qsmaskinit field. */
1739 oldmask
= rnp
->qsmaskinit
;
1740 rnp
->qsmaskinit
= rnp
->qsmaskinitnext
;
1742 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1743 if (!oldmask
!= !rnp
->qsmaskinit
) {
1744 if (!oldmask
) { /* First online CPU for rcu_node. */
1745 if (!rnp
->wait_blkd_tasks
) /* Ever offline? */
1746 rcu_init_new_rnp(rnp
);
1747 } else if (rcu_preempt_has_tasks(rnp
)) {
1748 rnp
->wait_blkd_tasks
= true; /* blocked tasks */
1749 } else { /* Last offline CPU and can propagate. */
1750 rcu_cleanup_dead_rnp(rnp
);
1755 * If all waited-on tasks from prior grace period are
1756 * done, and if all this rcu_node structure's CPUs are
1757 * still offline, propagate up the rcu_node tree and
1758 * clear ->wait_blkd_tasks. Otherwise, if one of this
1759 * rcu_node structure's CPUs has since come back online,
1760 * simply clear ->wait_blkd_tasks.
1762 if (rnp
->wait_blkd_tasks
&&
1763 (!rcu_preempt_has_tasks(rnp
) || rnp
->qsmaskinit
)) {
1764 rnp
->wait_blkd_tasks
= false;
1765 if (!rnp
->qsmaskinit
)
1766 rcu_cleanup_dead_rnp(rnp
);
1769 raw_spin_unlock_irq_rcu_node(rnp
);
1770 raw_spin_unlock(&rcu_state
.ofl_lock
);
1772 rcu_gp_slow(gp_preinit_delay
); /* Races with CPU hotplug. */
1775 * Set the quiescent-state-needed bits in all the rcu_node
1776 * structures for all currently online CPUs in breadth-first
1777 * order, starting from the root rcu_node structure, relying on the
1778 * layout of the tree within the rcu_state.node[] array. Note that
1779 * other CPUs will access only the leaves of the hierarchy, thus
1780 * seeing that no grace period is in progress, at least until the
1781 * corresponding leaf node has been initialized.
1783 * The grace period cannot complete until the initialization
1784 * process finishes, because this kthread handles both.
1786 rcu_state
.gp_state
= RCU_GP_INIT
;
1787 rcu_for_each_node_breadth_first(rnp
) {
1788 rcu_gp_slow(gp_init_delay
);
1789 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1790 rdp
= this_cpu_ptr(&rcu_data
);
1791 rcu_preempt_check_blocked_tasks(rnp
);
1792 rnp
->qsmask
= rnp
->qsmaskinit
;
1793 WRITE_ONCE(rnp
->gp_seq
, rcu_state
.gp_seq
);
1794 if (rnp
== rdp
->mynode
)
1795 (void)__note_gp_changes(rnp
, rdp
);
1796 rcu_preempt_boost_start_gp(rnp
);
1797 trace_rcu_grace_period_init(rcu_state
.name
, rnp
->gp_seq
,
1798 rnp
->level
, rnp
->grplo
,
1799 rnp
->grphi
, rnp
->qsmask
);
1800 /* Quiescent states for tasks on any now-offline CPUs. */
1801 mask
= rnp
->qsmask
& ~rnp
->qsmaskinitnext
;
1802 rnp
->rcu_gp_init_mask
= mask
;
1803 if ((mask
|| rnp
->wait_blkd_tasks
) && rcu_is_leaf_node(rnp
))
1804 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
1806 raw_spin_unlock_irq_rcu_node(rnp
);
1807 cond_resched_tasks_rcu_qs();
1808 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1815 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1818 static bool rcu_gp_fqs_check_wake(int *gfp
)
1820 struct rcu_node
*rnp
= rcu_get_root();
1822 // If under overload conditions, force an immediate FQS scan.
1823 if (*gfp
& RCU_GP_FLAG_OVLD
)
1826 // Someone like call_rcu() requested a force-quiescent-state scan.
1827 *gfp
= READ_ONCE(rcu_state
.gp_flags
);
1828 if (*gfp
& RCU_GP_FLAG_FQS
)
1831 // The current grace period has completed.
1832 if (!READ_ONCE(rnp
->qsmask
) && !rcu_preempt_blocked_readers_cgp(rnp
))
1839 * Do one round of quiescent-state forcing.
1841 static void rcu_gp_fqs(bool first_time
)
1843 struct rcu_node
*rnp
= rcu_get_root();
1845 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1846 rcu_state
.n_force_qs
++;
1848 /* Collect dyntick-idle snapshots. */
1849 force_qs_rnp(dyntick_save_progress_counter
);
1851 /* Handle dyntick-idle and offline CPUs. */
1852 force_qs_rnp(rcu_implicit_dynticks_qs
);
1854 /* Clear flag to prevent immediate re-entry. */
1855 if (READ_ONCE(rcu_state
.gp_flags
) & RCU_GP_FLAG_FQS
) {
1856 raw_spin_lock_irq_rcu_node(rnp
);
1857 WRITE_ONCE(rcu_state
.gp_flags
,
1858 READ_ONCE(rcu_state
.gp_flags
) & ~RCU_GP_FLAG_FQS
);
1859 raw_spin_unlock_irq_rcu_node(rnp
);
1864 * Loop doing repeated quiescent-state forcing until the grace period ends.
1866 static void rcu_gp_fqs_loop(void)
1872 struct rcu_node
*rnp
= rcu_get_root();
1874 first_gp_fqs
= true;
1875 j
= READ_ONCE(jiffies_till_first_fqs
);
1876 if (rcu_state
.cbovld
)
1877 gf
= RCU_GP_FLAG_OVLD
;
1881 rcu_state
.jiffies_force_qs
= jiffies
+ j
;
1882 WRITE_ONCE(rcu_state
.jiffies_kick_kthreads
,
1883 jiffies
+ (j
? 3 * j
: 2));
1885 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
,
1887 rcu_state
.gp_state
= RCU_GP_WAIT_FQS
;
1888 ret
= swait_event_idle_timeout_exclusive(
1889 rcu_state
.gp_wq
, rcu_gp_fqs_check_wake(&gf
), j
);
1890 rcu_gp_torture_wait();
1891 rcu_state
.gp_state
= RCU_GP_DOING_FQS
;
1892 /* Locking provides needed memory barriers. */
1893 /* If grace period done, leave loop. */
1894 if (!READ_ONCE(rnp
->qsmask
) &&
1895 !rcu_preempt_blocked_readers_cgp(rnp
))
1897 /* If time for quiescent-state forcing, do it. */
1898 if (!time_after(rcu_state
.jiffies_force_qs
, jiffies
) ||
1899 (gf
& RCU_GP_FLAG_FQS
)) {
1900 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
,
1902 rcu_gp_fqs(first_gp_fqs
);
1905 first_gp_fqs
= false;
1906 gf
= rcu_state
.cbovld
? RCU_GP_FLAG_OVLD
: 0;
1908 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
,
1910 cond_resched_tasks_rcu_qs();
1911 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1912 ret
= 0; /* Force full wait till next FQS. */
1913 j
= READ_ONCE(jiffies_till_next_fqs
);
1915 /* Deal with stray signal. */
1916 cond_resched_tasks_rcu_qs();
1917 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1918 WARN_ON(signal_pending(current
));
1919 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
,
1921 ret
= 1; /* Keep old FQS timing. */
1923 if (time_after(jiffies
, rcu_state
.jiffies_force_qs
))
1926 j
= rcu_state
.jiffies_force_qs
- j
;
1933 * Clean up after the old grace period.
1935 static void rcu_gp_cleanup(void)
1938 bool needgp
= false;
1939 unsigned long gp_duration
;
1940 unsigned long new_gp_seq
;
1942 struct rcu_data
*rdp
;
1943 struct rcu_node
*rnp
= rcu_get_root();
1944 struct swait_queue_head
*sq
;
1946 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1947 raw_spin_lock_irq_rcu_node(rnp
);
1948 rcu_state
.gp_end
= jiffies
;
1949 gp_duration
= rcu_state
.gp_end
- rcu_state
.gp_start
;
1950 if (gp_duration
> rcu_state
.gp_max
)
1951 rcu_state
.gp_max
= gp_duration
;
1954 * We know the grace period is complete, but to everyone else
1955 * it appears to still be ongoing. But it is also the case
1956 * that to everyone else it looks like there is nothing that
1957 * they can do to advance the grace period. It is therefore
1958 * safe for us to drop the lock in order to mark the grace
1959 * period as completed in all of the rcu_node structures.
1961 raw_spin_unlock_irq_rcu_node(rnp
);
1964 * Propagate new ->gp_seq value to rcu_node structures so that
1965 * other CPUs don't have to wait until the start of the next grace
1966 * period to process their callbacks. This also avoids some nasty
1967 * RCU grace-period initialization races by forcing the end of
1968 * the current grace period to be completely recorded in all of
1969 * the rcu_node structures before the beginning of the next grace
1970 * period is recorded in any of the rcu_node structures.
1972 new_gp_seq
= rcu_state
.gp_seq
;
1973 rcu_seq_end(&new_gp_seq
);
1974 rcu_for_each_node_breadth_first(rnp
) {
1975 raw_spin_lock_irq_rcu_node(rnp
);
1976 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)))
1977 dump_blkd_tasks(rnp
, 10);
1978 WARN_ON_ONCE(rnp
->qsmask
);
1979 WRITE_ONCE(rnp
->gp_seq
, new_gp_seq
);
1980 rdp
= this_cpu_ptr(&rcu_data
);
1981 if (rnp
== rdp
->mynode
)
1982 needgp
= __note_gp_changes(rnp
, rdp
) || needgp
;
1983 /* smp_mb() provided by prior unlock-lock pair. */
1984 needgp
= rcu_future_gp_cleanup(rnp
) || needgp
;
1985 // Reset overload indication for CPUs no longer overloaded
1986 if (rcu_is_leaf_node(rnp
))
1987 for_each_leaf_node_cpu_mask(rnp
, cpu
, rnp
->cbovldmask
) {
1988 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
1989 check_cb_ovld_locked(rdp
, rnp
);
1991 sq
= rcu_nocb_gp_get(rnp
);
1992 raw_spin_unlock_irq_rcu_node(rnp
);
1993 rcu_nocb_gp_cleanup(sq
);
1994 cond_resched_tasks_rcu_qs();
1995 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
1996 rcu_gp_slow(gp_cleanup_delay
);
1998 rnp
= rcu_get_root();
1999 raw_spin_lock_irq_rcu_node(rnp
); /* GP before ->gp_seq update. */
2001 /* Declare grace period done, trace first to use old GP number. */
2002 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
, TPS("end"));
2003 rcu_seq_end(&rcu_state
.gp_seq
);
2004 ASSERT_EXCLUSIVE_WRITER(rcu_state
.gp_seq
);
2005 rcu_state
.gp_state
= RCU_GP_IDLE
;
2006 /* Check for GP requests since above loop. */
2007 rdp
= this_cpu_ptr(&rcu_data
);
2008 if (!needgp
&& ULONG_CMP_LT(rnp
->gp_seq
, rnp
->gp_seq_needed
)) {
2009 trace_rcu_this_gp(rnp
, rdp
, rnp
->gp_seq_needed
,
2010 TPS("CleanupMore"));
2013 /* Advance CBs to reduce false positives below. */
2014 offloaded
= IS_ENABLED(CONFIG_RCU_NOCB_CPU
) &&
2015 rcu_segcblist_is_offloaded(&rdp
->cblist
);
2016 if ((offloaded
|| !rcu_accelerate_cbs(rnp
, rdp
)) && needgp
) {
2017 WRITE_ONCE(rcu_state
.gp_flags
, RCU_GP_FLAG_INIT
);
2018 WRITE_ONCE(rcu_state
.gp_req_activity
, jiffies
);
2019 trace_rcu_grace_period(rcu_state
.name
,
2023 WRITE_ONCE(rcu_state
.gp_flags
,
2024 rcu_state
.gp_flags
& RCU_GP_FLAG_INIT
);
2026 raw_spin_unlock_irq_rcu_node(rnp
);
2030 * Body of kthread that handles grace periods.
2032 static int __noreturn
rcu_gp_kthread(void *unused
)
2034 rcu_bind_gp_kthread();
2037 /* Handle grace-period start. */
2039 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
,
2041 rcu_state
.gp_state
= RCU_GP_WAIT_GPS
;
2042 swait_event_idle_exclusive(rcu_state
.gp_wq
,
2043 READ_ONCE(rcu_state
.gp_flags
) &
2045 rcu_gp_torture_wait();
2046 rcu_state
.gp_state
= RCU_GP_DONE_GPS
;
2047 /* Locking provides needed memory barrier. */
2050 cond_resched_tasks_rcu_qs();
2051 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
2052 WARN_ON(signal_pending(current
));
2053 trace_rcu_grace_period(rcu_state
.name
, rcu_state
.gp_seq
,
2057 /* Handle quiescent-state forcing. */
2060 /* Handle grace-period end. */
2061 rcu_state
.gp_state
= RCU_GP_CLEANUP
;
2063 rcu_state
.gp_state
= RCU_GP_CLEANED
;
2068 * Report a full set of quiescent states to the rcu_state data structure.
2069 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2070 * another grace period is required. Whether we wake the grace-period
2071 * kthread or it awakens itself for the next round of quiescent-state
2072 * forcing, that kthread will clean up after the just-completed grace
2073 * period. Note that the caller must hold rnp->lock, which is released
2076 static void rcu_report_qs_rsp(unsigned long flags
)
2077 __releases(rcu_get_root()->lock
)
2079 raw_lockdep_assert_held_rcu_node(rcu_get_root());
2080 WARN_ON_ONCE(!rcu_gp_in_progress());
2081 WRITE_ONCE(rcu_state
.gp_flags
,
2082 READ_ONCE(rcu_state
.gp_flags
) | RCU_GP_FLAG_FQS
);
2083 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags
);
2084 rcu_gp_kthread_wake();
2088 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2089 * Allows quiescent states for a group of CPUs to be reported at one go
2090 * to the specified rcu_node structure, though all the CPUs in the group
2091 * must be represented by the same rcu_node structure (which need not be a
2092 * leaf rcu_node structure, though it often will be). The gps parameter
2093 * is the grace-period snapshot, which means that the quiescent states
2094 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
2095 * must be held upon entry, and it is released before return.
2097 * As a special case, if mask is zero, the bit-already-cleared check is
2098 * disabled. This allows propagating quiescent state due to resumed tasks
2099 * during grace-period initialization.
2101 static void rcu_report_qs_rnp(unsigned long mask
, struct rcu_node
*rnp
,
2102 unsigned long gps
, unsigned long flags
)
2103 __releases(rnp
->lock
)
2105 unsigned long oldmask
= 0;
2106 struct rcu_node
*rnp_c
;
2108 raw_lockdep_assert_held_rcu_node(rnp
);
2110 /* Walk up the rcu_node hierarchy. */
2112 if ((!(rnp
->qsmask
& mask
) && mask
) || rnp
->gp_seq
!= gps
) {
2115 * Our bit has already been cleared, or the
2116 * relevant grace period is already over, so done.
2118 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2121 WARN_ON_ONCE(oldmask
); /* Any child must be all zeroed! */
2122 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
) &&
2123 rcu_preempt_blocked_readers_cgp(rnp
));
2124 WRITE_ONCE(rnp
->qsmask
, rnp
->qsmask
& ~mask
);
2125 trace_rcu_quiescent_state_report(rcu_state
.name
, rnp
->gp_seq
,
2126 mask
, rnp
->qsmask
, rnp
->level
,
2127 rnp
->grplo
, rnp
->grphi
,
2129 if (rnp
->qsmask
!= 0 || rcu_preempt_blocked_readers_cgp(rnp
)) {
2131 /* Other bits still set at this level, so done. */
2132 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2135 rnp
->completedqs
= rnp
->gp_seq
;
2136 mask
= rnp
->grpmask
;
2137 if (rnp
->parent
== NULL
) {
2139 /* No more levels. Exit loop holding root lock. */
2143 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2146 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2147 oldmask
= READ_ONCE(rnp_c
->qsmask
);
2151 * Get here if we are the last CPU to pass through a quiescent
2152 * state for this grace period. Invoke rcu_report_qs_rsp()
2153 * to clean up and start the next grace period if one is needed.
2155 rcu_report_qs_rsp(flags
); /* releases rnp->lock. */
2159 * Record a quiescent state for all tasks that were previously queued
2160 * on the specified rcu_node structure and that were blocking the current
2161 * RCU grace period. The caller must hold the corresponding rnp->lock with
2162 * irqs disabled, and this lock is released upon return, but irqs remain
2165 static void __maybe_unused
2166 rcu_report_unblock_qs_rnp(struct rcu_node
*rnp
, unsigned long flags
)
2167 __releases(rnp
->lock
)
2171 struct rcu_node
*rnp_p
;
2173 raw_lockdep_assert_held_rcu_node(rnp
);
2174 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU
)) ||
2175 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)) ||
2177 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2178 return; /* Still need more quiescent states! */
2181 rnp
->completedqs
= rnp
->gp_seq
;
2182 rnp_p
= rnp
->parent
;
2183 if (rnp_p
== NULL
) {
2185 * Only one rcu_node structure in the tree, so don't
2186 * try to report up to its nonexistent parent!
2188 rcu_report_qs_rsp(flags
);
2192 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2194 mask
= rnp
->grpmask
;
2195 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2196 raw_spin_lock_rcu_node(rnp_p
); /* irqs already disabled. */
2197 rcu_report_qs_rnp(mask
, rnp_p
, gps
, flags
);
2201 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2202 * structure. This must be called from the specified CPU.
2205 rcu_report_qs_rdp(int cpu
, struct rcu_data
*rdp
)
2207 unsigned long flags
;
2209 bool needwake
= false;
2210 const bool offloaded
= IS_ENABLED(CONFIG_RCU_NOCB_CPU
) &&
2211 rcu_segcblist_is_offloaded(&rdp
->cblist
);
2212 struct rcu_node
*rnp
;
2215 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2216 if (rdp
->cpu_no_qs
.b
.norm
|| rdp
->gp_seq
!= rnp
->gp_seq
||
2220 * The grace period in which this quiescent state was
2221 * recorded has ended, so don't report it upwards.
2222 * We will instead need a new quiescent state that lies
2223 * within the current grace period.
2225 rdp
->cpu_no_qs
.b
.norm
= true; /* need qs for new gp. */
2226 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2229 mask
= rdp
->grpmask
;
2230 if (rdp
->cpu
== smp_processor_id())
2231 rdp
->core_needs_qs
= false;
2232 if ((rnp
->qsmask
& mask
) == 0) {
2233 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2236 * This GP can't end until cpu checks in, so all of our
2237 * callbacks can be processed during the next GP.
2240 needwake
= rcu_accelerate_cbs(rnp
, rdp
);
2242 rcu_disable_urgency_upon_qs(rdp
);
2243 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
2244 /* ^^^ Released rnp->lock */
2246 rcu_gp_kthread_wake();
2251 * Check to see if there is a new grace period of which this CPU
2252 * is not yet aware, and if so, set up local rcu_data state for it.
2253 * Otherwise, see if this CPU has just passed through its first
2254 * quiescent state for this grace period, and record that fact if so.
2257 rcu_check_quiescent_state(struct rcu_data
*rdp
)
2259 /* Check for grace-period ends and beginnings. */
2260 note_gp_changes(rdp
);
2263 * Does this CPU still need to do its part for current grace period?
2264 * If no, return and let the other CPUs do their part as well.
2266 if (!rdp
->core_needs_qs
)
2270 * Was there a quiescent state since the beginning of the grace
2271 * period? If no, then exit and wait for the next call.
2273 if (rdp
->cpu_no_qs
.b
.norm
)
2277 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2280 rcu_report_qs_rdp(rdp
->cpu
, rdp
);
2284 * Near the end of the offline process. Trace the fact that this CPU
2287 int rcutree_dying_cpu(unsigned int cpu
)
2290 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
2291 struct rcu_node
*rnp
= rdp
->mynode
;
2293 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2296 blkd
= !!(rnp
->qsmask
& rdp
->grpmask
);
2297 trace_rcu_grace_period(rcu_state
.name
, READ_ONCE(rnp
->gp_seq
),
2298 blkd
? TPS("cpuofl") : TPS("cpuofl-bgp"));
2303 * All CPUs for the specified rcu_node structure have gone offline,
2304 * and all tasks that were preempted within an RCU read-side critical
2305 * section while running on one of those CPUs have since exited their RCU
2306 * read-side critical section. Some other CPU is reporting this fact with
2307 * the specified rcu_node structure's ->lock held and interrupts disabled.
2308 * This function therefore goes up the tree of rcu_node structures,
2309 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2310 * the leaf rcu_node structure's ->qsmaskinit field has already been
2313 * This function does check that the specified rcu_node structure has
2314 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2315 * prematurely. That said, invoking it after the fact will cost you
2316 * a needless lock acquisition. So once it has done its work, don't
2319 static void rcu_cleanup_dead_rnp(struct rcu_node
*rnp_leaf
)
2322 struct rcu_node
*rnp
= rnp_leaf
;
2324 raw_lockdep_assert_held_rcu_node(rnp_leaf
);
2325 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
) ||
2326 WARN_ON_ONCE(rnp_leaf
->qsmaskinit
) ||
2327 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf
)))
2330 mask
= rnp
->grpmask
;
2334 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
2335 rnp
->qsmaskinit
&= ~mask
;
2336 /* Between grace periods, so better already be zero! */
2337 WARN_ON_ONCE(rnp
->qsmask
);
2338 if (rnp
->qsmaskinit
) {
2339 raw_spin_unlock_rcu_node(rnp
);
2340 /* irqs remain disabled. */
2343 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2348 * The CPU has been completely removed, and some other CPU is reporting
2349 * this fact from process context. Do the remainder of the cleanup.
2350 * There can only be one CPU hotplug operation at a time, so no need for
2353 int rcutree_dead_cpu(unsigned int cpu
)
2355 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2356 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
2358 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU
))
2361 /* Adjust any no-longer-needed kthreads. */
2362 rcu_boost_kthread_setaffinity(rnp
, -1);
2363 /* Do any needed no-CB deferred wakeups from this CPU. */
2364 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data
, cpu
));
2366 // Stop-machine done, so allow nohz_full to disable tick.
2367 tick_dep_clear(TICK_DEP_BIT_RCU
);
2372 * Invoke any RCU callbacks that have made it to the end of their grace
2373 * period. Thottle as specified by rdp->blimit.
2375 static void rcu_do_batch(struct rcu_data
*rdp
)
2377 unsigned long flags
;
2378 const bool offloaded
= IS_ENABLED(CONFIG_RCU_NOCB_CPU
) &&
2379 rcu_segcblist_is_offloaded(&rdp
->cblist
);
2380 struct rcu_head
*rhp
;
2381 struct rcu_cblist rcl
= RCU_CBLIST_INITIALIZER(rcl
);
2383 long pending
, tlimit
= 0;
2385 /* If no callbacks are ready, just return. */
2386 if (!rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
2387 trace_rcu_batch_start(rcu_state
.name
,
2388 rcu_segcblist_n_cbs(&rdp
->cblist
), 0);
2389 trace_rcu_batch_end(rcu_state
.name
, 0,
2390 !rcu_segcblist_empty(&rdp
->cblist
),
2391 need_resched(), is_idle_task(current
),
2392 rcu_is_callbacks_kthread());
2397 * Extract the list of ready callbacks, disabling to prevent
2398 * races with call_rcu() from interrupt handlers. Leave the
2399 * callback counts, as rcu_barrier() needs to be conservative.
2401 local_irq_save(flags
);
2403 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2404 pending
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2405 bl
= max(rdp
->blimit
, pending
>> rcu_divisor
);
2406 if (unlikely(bl
> 100))
2407 tlimit
= local_clock() + rcu_resched_ns
;
2408 trace_rcu_batch_start(rcu_state
.name
,
2409 rcu_segcblist_n_cbs(&rdp
->cblist
), bl
);
2410 rcu_segcblist_extract_done_cbs(&rdp
->cblist
, &rcl
);
2412 rdp
->qlen_last_fqs_check
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2413 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2415 /* Invoke callbacks. */
2416 tick_dep_set_task(current
, TICK_DEP_BIT_RCU
);
2417 rhp
= rcu_cblist_dequeue(&rcl
);
2418 for (; rhp
; rhp
= rcu_cblist_dequeue(&rcl
)) {
2421 debug_rcu_head_unqueue(rhp
);
2423 rcu_lock_acquire(&rcu_callback_map
);
2424 trace_rcu_invoke_callback(rcu_state
.name
, rhp
);
2427 WRITE_ONCE(rhp
->func
, (rcu_callback_t
)0L);
2430 rcu_lock_release(&rcu_callback_map
);
2433 * Stop only if limit reached and CPU has something to do.
2434 * Note: The rcl structure counts down from zero.
2436 if (-rcl
.len
>= bl
&& !offloaded
&&
2438 (!is_idle_task(current
) && !rcu_is_callbacks_kthread())))
2440 if (unlikely(tlimit
)) {
2441 /* only call local_clock() every 32 callbacks */
2442 if (likely((-rcl
.len
& 31) || local_clock() < tlimit
))
2444 /* Exceeded the time limit, so leave. */
2448 WARN_ON_ONCE(in_serving_softirq());
2450 lockdep_assert_irqs_enabled();
2451 cond_resched_tasks_rcu_qs();
2452 lockdep_assert_irqs_enabled();
2457 local_irq_save(flags
);
2460 rdp
->n_cbs_invoked
+= count
;
2461 trace_rcu_batch_end(rcu_state
.name
, count
, !!rcl
.head
, need_resched(),
2462 is_idle_task(current
), rcu_is_callbacks_kthread());
2464 /* Update counts and requeue any remaining callbacks. */
2465 rcu_segcblist_insert_done_cbs(&rdp
->cblist
, &rcl
);
2466 smp_mb(); /* List handling before counting for rcu_barrier(). */
2467 rcu_segcblist_insert_count(&rdp
->cblist
, &rcl
);
2469 /* Reinstate batch limit if we have worked down the excess. */
2470 count
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2471 if (rdp
->blimit
>= DEFAULT_MAX_RCU_BLIMIT
&& count
<= qlowmark
)
2472 rdp
->blimit
= blimit
;
2474 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2475 if (count
== 0 && rdp
->qlen_last_fqs_check
!= 0) {
2476 rdp
->qlen_last_fqs_check
= 0;
2477 rdp
->n_force_qs_snap
= rcu_state
.n_force_qs
;
2478 } else if (count
< rdp
->qlen_last_fqs_check
- qhimark
)
2479 rdp
->qlen_last_fqs_check
= count
;
2482 * The following usually indicates a double call_rcu(). To track
2483 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2485 WARN_ON_ONCE(count
== 0 && !rcu_segcblist_empty(&rdp
->cblist
));
2486 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU
) &&
2487 count
!= 0 && rcu_segcblist_empty(&rdp
->cblist
));
2489 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2491 /* Re-invoke RCU core processing if there are callbacks remaining. */
2492 if (!offloaded
&& rcu_segcblist_ready_cbs(&rdp
->cblist
))
2494 tick_dep_clear_task(current
, TICK_DEP_BIT_RCU
);
2498 * This function is invoked from each scheduling-clock interrupt,
2499 * and checks to see if this CPU is in a non-context-switch quiescent
2500 * state, for example, user mode or idle loop. It also schedules RCU
2501 * core processing. If the current grace period has gone on too long,
2502 * it will ask the scheduler to manufacture a context switch for the sole
2503 * purpose of providing a providing the needed quiescent state.
2505 void rcu_sched_clock_irq(int user
)
2507 trace_rcu_utilization(TPS("Start scheduler-tick"));
2508 raw_cpu_inc(rcu_data
.ticks_this_gp
);
2509 /* The load-acquire pairs with the store-release setting to true. */
2510 if (smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
))) {
2511 /* Idle and userspace execution already are quiescent states. */
2512 if (!rcu_is_cpu_rrupt_from_idle() && !user
) {
2513 set_tsk_need_resched(current
);
2514 set_preempt_need_resched();
2516 __this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
2518 rcu_flavor_sched_clock_irq(user
);
2519 if (rcu_pending(user
))
2522 trace_rcu_utilization(TPS("End scheduler-tick"));
2526 * Scan the leaf rcu_node structures. For each structure on which all
2527 * CPUs have reported a quiescent state and on which there are tasks
2528 * blocking the current grace period, initiate RCU priority boosting.
2529 * Otherwise, invoke the specified function to check dyntick state for
2530 * each CPU that has not yet reported a quiescent state.
2532 static void force_qs_rnp(int (*f
)(struct rcu_data
*rdp
))
2535 unsigned long flags
;
2537 struct rcu_data
*rdp
;
2538 struct rcu_node
*rnp
;
2540 rcu_state
.cbovld
= rcu_state
.cbovldnext
;
2541 rcu_state
.cbovldnext
= false;
2542 rcu_for_each_leaf_node(rnp
) {
2543 cond_resched_tasks_rcu_qs();
2545 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
2546 rcu_state
.cbovldnext
|= !!rnp
->cbovldmask
;
2547 if (rnp
->qsmask
== 0) {
2548 if (!IS_ENABLED(CONFIG_PREEMPT_RCU
) ||
2549 rcu_preempt_blocked_readers_cgp(rnp
)) {
2551 * No point in scanning bits because they
2552 * are all zero. But we might need to
2553 * priority-boost blocked readers.
2555 rcu_initiate_boost(rnp
, flags
);
2556 /* rcu_initiate_boost() releases rnp->lock */
2559 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2562 for_each_leaf_node_cpu_mask(rnp
, cpu
, rnp
->qsmask
) {
2563 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2565 mask
|= rdp
->grpmask
;
2566 rcu_disable_urgency_upon_qs(rdp
);
2570 /* Idle/offline CPUs, report (releases rnp->lock). */
2571 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
2573 /* Nothing to do here, so just drop the lock. */
2574 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
2580 * Force quiescent states on reluctant CPUs, and also detect which
2581 * CPUs are in dyntick-idle mode.
2583 void rcu_force_quiescent_state(void)
2585 unsigned long flags
;
2587 struct rcu_node
*rnp
;
2588 struct rcu_node
*rnp_old
= NULL
;
2590 /* Funnel through hierarchy to reduce memory contention. */
2591 rnp
= __this_cpu_read(rcu_data
.mynode
);
2592 for (; rnp
!= NULL
; rnp
= rnp
->parent
) {
2593 ret
= (READ_ONCE(rcu_state
.gp_flags
) & RCU_GP_FLAG_FQS
) ||
2594 !raw_spin_trylock(&rnp
->fqslock
);
2595 if (rnp_old
!= NULL
)
2596 raw_spin_unlock(&rnp_old
->fqslock
);
2601 /* rnp_old == rcu_get_root(), rnp == NULL. */
2603 /* Reached the root of the rcu_node tree, acquire lock. */
2604 raw_spin_lock_irqsave_rcu_node(rnp_old
, flags
);
2605 raw_spin_unlock(&rnp_old
->fqslock
);
2606 if (READ_ONCE(rcu_state
.gp_flags
) & RCU_GP_FLAG_FQS
) {
2607 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2608 return; /* Someone beat us to it. */
2610 WRITE_ONCE(rcu_state
.gp_flags
,
2611 READ_ONCE(rcu_state
.gp_flags
) | RCU_GP_FLAG_FQS
);
2612 raw_spin_unlock_irqrestore_rcu_node(rnp_old
, flags
);
2613 rcu_gp_kthread_wake();
2615 EXPORT_SYMBOL_GPL(rcu_force_quiescent_state
);
2617 /* Perform RCU core processing work for the current CPU. */
2618 static __latent_entropy
void rcu_core(void)
2620 unsigned long flags
;
2621 struct rcu_data
*rdp
= raw_cpu_ptr(&rcu_data
);
2622 struct rcu_node
*rnp
= rdp
->mynode
;
2623 const bool offloaded
= IS_ENABLED(CONFIG_RCU_NOCB_CPU
) &&
2624 rcu_segcblist_is_offloaded(&rdp
->cblist
);
2626 if (cpu_is_offline(smp_processor_id()))
2628 trace_rcu_utilization(TPS("Start RCU core"));
2629 WARN_ON_ONCE(!rdp
->beenonline
);
2631 /* Report any deferred quiescent states if preemption enabled. */
2632 if (!(preempt_count() & PREEMPT_MASK
)) {
2633 rcu_preempt_deferred_qs(current
);
2634 } else if (rcu_preempt_need_deferred_qs(current
)) {
2635 set_tsk_need_resched(current
);
2636 set_preempt_need_resched();
2639 /* Update RCU state based on any recent quiescent states. */
2640 rcu_check_quiescent_state(rdp
);
2642 /* No grace period and unregistered callbacks? */
2643 if (!rcu_gp_in_progress() &&
2644 rcu_segcblist_is_enabled(&rdp
->cblist
) && !offloaded
) {
2645 local_irq_save(flags
);
2646 if (!rcu_segcblist_restempty(&rdp
->cblist
, RCU_NEXT_READY_TAIL
))
2647 rcu_accelerate_cbs_unlocked(rnp
, rdp
);
2648 local_irq_restore(flags
);
2651 rcu_check_gp_start_stall(rnp
, rdp
, rcu_jiffies_till_stall_check());
2653 /* If there are callbacks ready, invoke them. */
2654 if (!offloaded
&& rcu_segcblist_ready_cbs(&rdp
->cblist
) &&
2655 likely(READ_ONCE(rcu_scheduler_fully_active
)))
2658 /* Do any needed deferred wakeups of rcuo kthreads. */
2659 do_nocb_deferred_wakeup(rdp
);
2660 trace_rcu_utilization(TPS("End RCU core"));
2663 static void rcu_core_si(struct softirq_action
*h
)
2668 static void rcu_wake_cond(struct task_struct
*t
, int status
)
2671 * If the thread is yielding, only wake it when this
2672 * is invoked from idle
2674 if (t
&& (status
!= RCU_KTHREAD_YIELDING
|| is_idle_task(current
)))
2678 static void invoke_rcu_core_kthread(void)
2680 struct task_struct
*t
;
2681 unsigned long flags
;
2683 local_irq_save(flags
);
2684 __this_cpu_write(rcu_data
.rcu_cpu_has_work
, 1);
2685 t
= __this_cpu_read(rcu_data
.rcu_cpu_kthread_task
);
2686 if (t
!= NULL
&& t
!= current
)
2687 rcu_wake_cond(t
, __this_cpu_read(rcu_data
.rcu_cpu_kthread_status
));
2688 local_irq_restore(flags
);
2692 * Wake up this CPU's rcuc kthread to do RCU core processing.
2694 static void invoke_rcu_core(void)
2696 if (!cpu_online(smp_processor_id()))
2699 raise_softirq(RCU_SOFTIRQ
);
2701 invoke_rcu_core_kthread();
2704 static void rcu_cpu_kthread_park(unsigned int cpu
)
2706 per_cpu(rcu_data
.rcu_cpu_kthread_status
, cpu
) = RCU_KTHREAD_OFFCPU
;
2709 static int rcu_cpu_kthread_should_run(unsigned int cpu
)
2711 return __this_cpu_read(rcu_data
.rcu_cpu_has_work
);
2715 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2716 * the RCU softirq used in configurations of RCU that do not support RCU
2717 * priority boosting.
2719 static void rcu_cpu_kthread(unsigned int cpu
)
2721 unsigned int *statusp
= this_cpu_ptr(&rcu_data
.rcu_cpu_kthread_status
);
2722 char work
, *workp
= this_cpu_ptr(&rcu_data
.rcu_cpu_has_work
);
2725 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2726 for (spincnt
= 0; spincnt
< 10; spincnt
++) {
2728 *statusp
= RCU_KTHREAD_RUNNING
;
2729 local_irq_disable();
2737 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2738 *statusp
= RCU_KTHREAD_WAITING
;
2742 *statusp
= RCU_KTHREAD_YIELDING
;
2743 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2744 schedule_timeout_idle(2);
2745 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2746 *statusp
= RCU_KTHREAD_WAITING
;
2749 static struct smp_hotplug_thread rcu_cpu_thread_spec
= {
2750 .store
= &rcu_data
.rcu_cpu_kthread_task
,
2751 .thread_should_run
= rcu_cpu_kthread_should_run
,
2752 .thread_fn
= rcu_cpu_kthread
,
2753 .thread_comm
= "rcuc/%u",
2754 .setup
= rcu_cpu_kthread_setup
,
2755 .park
= rcu_cpu_kthread_park
,
2759 * Spawn per-CPU RCU core processing kthreads.
2761 static int __init
rcu_spawn_core_kthreads(void)
2765 for_each_possible_cpu(cpu
)
2766 per_cpu(rcu_data
.rcu_cpu_has_work
, cpu
) = 0;
2767 if (!IS_ENABLED(CONFIG_RCU_BOOST
) && use_softirq
)
2769 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec
),
2770 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__
);
2773 early_initcall(rcu_spawn_core_kthreads
);
2776 * Handle any core-RCU processing required by a call_rcu() invocation.
2778 static void __call_rcu_core(struct rcu_data
*rdp
, struct rcu_head
*head
,
2779 unsigned long flags
)
2782 * If called from an extended quiescent state, invoke the RCU
2783 * core in order to force a re-evaluation of RCU's idleness.
2785 if (!rcu_is_watching())
2788 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2789 if (irqs_disabled_flags(flags
) || cpu_is_offline(smp_processor_id()))
2793 * Force the grace period if too many callbacks or too long waiting.
2794 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2795 * if some other CPU has recently done so. Also, don't bother
2796 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2797 * is the only one waiting for a grace period to complete.
2799 if (unlikely(rcu_segcblist_n_cbs(&rdp
->cblist
) >
2800 rdp
->qlen_last_fqs_check
+ qhimark
)) {
2802 /* Are we ignoring a completed grace period? */
2803 note_gp_changes(rdp
);
2805 /* Start a new grace period if one not already started. */
2806 if (!rcu_gp_in_progress()) {
2807 rcu_accelerate_cbs_unlocked(rdp
->mynode
, rdp
);
2809 /* Give the grace period a kick. */
2810 rdp
->blimit
= DEFAULT_MAX_RCU_BLIMIT
;
2811 if (rcu_state
.n_force_qs
== rdp
->n_force_qs_snap
&&
2812 rcu_segcblist_first_pend_cb(&rdp
->cblist
) != head
)
2813 rcu_force_quiescent_state();
2814 rdp
->n_force_qs_snap
= rcu_state
.n_force_qs
;
2815 rdp
->qlen_last_fqs_check
= rcu_segcblist_n_cbs(&rdp
->cblist
);
2821 * RCU callback function to leak a callback.
2823 static void rcu_leak_callback(struct rcu_head
*rhp
)
2828 * Check and if necessary update the leaf rcu_node structure's
2829 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2830 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2831 * structure's ->lock.
2833 static void check_cb_ovld_locked(struct rcu_data
*rdp
, struct rcu_node
*rnp
)
2835 raw_lockdep_assert_held_rcu_node(rnp
);
2836 if (qovld_calc
<= 0)
2837 return; // Early boot and wildcard value set.
2838 if (rcu_segcblist_n_cbs(&rdp
->cblist
) >= qovld_calc
)
2839 WRITE_ONCE(rnp
->cbovldmask
, rnp
->cbovldmask
| rdp
->grpmask
);
2841 WRITE_ONCE(rnp
->cbovldmask
, rnp
->cbovldmask
& ~rdp
->grpmask
);
2845 * Check and if necessary update the leaf rcu_node structure's
2846 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2847 * number of queued RCU callbacks. No locks need be held, but the
2848 * caller must have disabled interrupts.
2850 * Note that this function ignores the possibility that there are a lot
2851 * of callbacks all of which have already seen the end of their respective
2852 * grace periods. This omission is due to the need for no-CBs CPUs to
2853 * be holding ->nocb_lock to do this check, which is too heavy for a
2854 * common-case operation.
2856 static void check_cb_ovld(struct rcu_data
*rdp
)
2858 struct rcu_node
*const rnp
= rdp
->mynode
;
2860 if (qovld_calc
<= 0 ||
2861 ((rcu_segcblist_n_cbs(&rdp
->cblist
) >= qovld_calc
) ==
2862 !!(READ_ONCE(rnp
->cbovldmask
) & rdp
->grpmask
)))
2863 return; // Early boot wildcard value or already set correctly.
2864 raw_spin_lock_rcu_node(rnp
);
2865 check_cb_ovld_locked(rdp
, rnp
);
2866 raw_spin_unlock_rcu_node(rnp
);
2869 /* Helper function for call_rcu() and friends. */
2871 __call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
2873 unsigned long flags
;
2874 struct rcu_data
*rdp
;
2877 /* Misaligned rcu_head! */
2878 WARN_ON_ONCE((unsigned long)head
& (sizeof(void *) - 1));
2880 if (debug_rcu_head_queue(head
)) {
2882 * Probable double call_rcu(), so leak the callback.
2883 * Use rcu:rcu_callback trace event to find the previous
2884 * time callback was passed to __call_rcu().
2886 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
2888 WRITE_ONCE(head
->func
, rcu_leak_callback
);
2893 local_irq_save(flags
);
2894 kasan_record_aux_stack(head
);
2895 rdp
= this_cpu_ptr(&rcu_data
);
2897 /* Add the callback to our list. */
2898 if (unlikely(!rcu_segcblist_is_enabled(&rdp
->cblist
))) {
2899 // This can trigger due to call_rcu() from offline CPU:
2900 WARN_ON_ONCE(rcu_scheduler_active
!= RCU_SCHEDULER_INACTIVE
);
2901 WARN_ON_ONCE(!rcu_is_watching());
2902 // Very early boot, before rcu_init(). Initialize if needed
2903 // and then drop through to queue the callback.
2904 if (rcu_segcblist_empty(&rdp
->cblist
))
2905 rcu_segcblist_init(&rdp
->cblist
);
2909 if (rcu_nocb_try_bypass(rdp
, head
, &was_alldone
, flags
))
2910 return; // Enqueued onto ->nocb_bypass, so just leave.
2911 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2912 rcu_segcblist_enqueue(&rdp
->cblist
, head
);
2913 if (__is_kvfree_rcu_offset((unsigned long)func
))
2914 trace_rcu_kvfree_callback(rcu_state
.name
, head
,
2915 (unsigned long)func
,
2916 rcu_segcblist_n_cbs(&rdp
->cblist
));
2918 trace_rcu_callback(rcu_state
.name
, head
,
2919 rcu_segcblist_n_cbs(&rdp
->cblist
));
2921 /* Go handle any RCU core processing required. */
2922 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU
) &&
2923 unlikely(rcu_segcblist_is_offloaded(&rdp
->cblist
))) {
2924 __call_rcu_nocb_wake(rdp
, was_alldone
, flags
); /* unlocks */
2926 __call_rcu_core(rdp
, head
, flags
);
2927 local_irq_restore(flags
);
2932 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2933 * @head: structure to be used for queueing the RCU updates.
2934 * @func: actual callback function to be invoked after the grace period
2936 * The callback function will be invoked some time after a full grace
2937 * period elapses, in other words after all pre-existing RCU read-side
2938 * critical sections have completed. However, the callback function
2939 * might well execute concurrently with RCU read-side critical sections
2940 * that started after call_rcu() was invoked. RCU read-side critical
2941 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2942 * may be nested. In addition, regions of code across which interrupts,
2943 * preemption, or softirqs have been disabled also serve as RCU read-side
2944 * critical sections. This includes hardware interrupt handlers, softirq
2945 * handlers, and NMI handlers.
2947 * Note that all CPUs must agree that the grace period extended beyond
2948 * all pre-existing RCU read-side critical section. On systems with more
2949 * than one CPU, this means that when "func()" is invoked, each CPU is
2950 * guaranteed to have executed a full memory barrier since the end of its
2951 * last RCU read-side critical section whose beginning preceded the call
2952 * to call_rcu(). It also means that each CPU executing an RCU read-side
2953 * critical section that continues beyond the start of "func()" must have
2954 * executed a memory barrier after the call_rcu() but before the beginning
2955 * of that RCU read-side critical section. Note that these guarantees
2956 * include CPUs that are offline, idle, or executing in user mode, as
2957 * well as CPUs that are executing in the kernel.
2959 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2960 * resulting RCU callback function "func()", then both CPU A and CPU B are
2961 * guaranteed to execute a full memory barrier during the time interval
2962 * between the call to call_rcu() and the invocation of "func()" -- even
2963 * if CPU A and CPU B are the same CPU (but again only if the system has
2964 * more than one CPU).
2966 void call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
2968 __call_rcu(head
, func
);
2970 EXPORT_SYMBOL_GPL(call_rcu
);
2973 /* Maximum number of jiffies to wait before draining a batch. */
2974 #define KFREE_DRAIN_JIFFIES (HZ / 50)
2975 #define KFREE_N_BATCHES 2
2976 #define FREE_N_CHANNELS 2
2979 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2980 * @nr_records: Number of active pointers in the array
2981 * @next: Next bulk object in the block chain
2982 * @records: Array of the kvfree_rcu() pointers
2984 struct kvfree_rcu_bulk_data
{
2985 unsigned long nr_records
;
2986 struct kvfree_rcu_bulk_data
*next
;
2991 * This macro defines how many entries the "records" array
2992 * will contain. It is based on the fact that the size of
2993 * kvfree_rcu_bulk_data structure becomes exactly one page.
2995 #define KVFREE_BULK_MAX_ENTR \
2996 ((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2999 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3000 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3001 * @head_free: List of kfree_rcu() objects waiting for a grace period
3002 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3003 * @krcp: Pointer to @kfree_rcu_cpu structure
3006 struct kfree_rcu_cpu_work
{
3007 struct rcu_work rcu_work
;
3008 struct rcu_head
*head_free
;
3009 struct kvfree_rcu_bulk_data
*bkvhead_free
[FREE_N_CHANNELS
];
3010 struct kfree_rcu_cpu
*krcp
;
3014 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3015 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3016 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3017 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3018 * @lock: Synchronize access to this structure
3019 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3020 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
3021 * @initialized: The @rcu_work fields have been initialized
3022 * @count: Number of objects for which GP not started
3024 * This is a per-CPU structure. The reason that it is not included in
3025 * the rcu_data structure is to permit this code to be extracted from
3026 * the RCU files. Such extraction could allow further optimization of
3027 * the interactions with the slab allocators.
3029 struct kfree_rcu_cpu
{
3030 struct rcu_head
*head
;
3031 struct kvfree_rcu_bulk_data
*bkvhead
[FREE_N_CHANNELS
];
3032 struct kfree_rcu_cpu_work krw_arr
[KFREE_N_BATCHES
];
3033 raw_spinlock_t lock
;
3034 struct delayed_work monitor_work
;
3040 * A simple cache list that contains objects for
3041 * reuse purpose. In order to save some per-cpu
3042 * space the list is singular. Even though it is
3043 * lockless an access has to be protected by the
3046 struct llist_head bkvcache
;
3050 static DEFINE_PER_CPU(struct kfree_rcu_cpu
, krc
) = {
3051 .lock
= __RAW_SPIN_LOCK_UNLOCKED(krc
.lock
),
3054 static __always_inline
void
3055 debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data
*bhead
)
3057 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3060 for (i
= 0; i
< bhead
->nr_records
; i
++)
3061 debug_rcu_head_unqueue((struct rcu_head
*)(bhead
->records
[i
]));
3065 static inline struct kfree_rcu_cpu
*
3066 krc_this_cpu_lock(unsigned long *flags
)
3068 struct kfree_rcu_cpu
*krcp
;
3070 local_irq_save(*flags
); // For safely calling this_cpu_ptr().
3071 krcp
= this_cpu_ptr(&krc
);
3072 raw_spin_lock(&krcp
->lock
);
3078 krc_this_cpu_unlock(struct kfree_rcu_cpu
*krcp
, unsigned long flags
)
3080 raw_spin_unlock(&krcp
->lock
);
3081 local_irq_restore(flags
);
3084 static inline struct kvfree_rcu_bulk_data
*
3085 get_cached_bnode(struct kfree_rcu_cpu
*krcp
)
3087 if (!krcp
->nr_bkv_objs
)
3090 krcp
->nr_bkv_objs
--;
3091 return (struct kvfree_rcu_bulk_data
*)
3092 llist_del_first(&krcp
->bkvcache
);
3096 put_cached_bnode(struct kfree_rcu_cpu
*krcp
,
3097 struct kvfree_rcu_bulk_data
*bnode
)
3100 if (krcp
->nr_bkv_objs
>= rcu_min_cached_objs
)
3103 llist_add((struct llist_node
*) bnode
, &krcp
->bkvcache
);
3104 krcp
->nr_bkv_objs
++;
3110 * This function is invoked in workqueue context after a grace period.
3111 * It frees all the objects queued on ->bhead_free or ->head_free.
3113 static void kfree_rcu_work(struct work_struct
*work
)
3115 unsigned long flags
;
3116 struct kvfree_rcu_bulk_data
*bkvhead
[FREE_N_CHANNELS
], *bnext
;
3117 struct rcu_head
*head
, *next
;
3118 struct kfree_rcu_cpu
*krcp
;
3119 struct kfree_rcu_cpu_work
*krwp
;
3122 krwp
= container_of(to_rcu_work(work
),
3123 struct kfree_rcu_cpu_work
, rcu_work
);
3126 raw_spin_lock_irqsave(&krcp
->lock
, flags
);
3127 // Channels 1 and 2.
3128 for (i
= 0; i
< FREE_N_CHANNELS
; i
++) {
3129 bkvhead
[i
] = krwp
->bkvhead_free
[i
];
3130 krwp
->bkvhead_free
[i
] = NULL
;
3134 head
= krwp
->head_free
;
3135 krwp
->head_free
= NULL
;
3136 raw_spin_unlock_irqrestore(&krcp
->lock
, flags
);
3138 // Handle two first channels.
3139 for (i
= 0; i
< FREE_N_CHANNELS
; i
++) {
3140 for (; bkvhead
[i
]; bkvhead
[i
] = bnext
) {
3141 bnext
= bkvhead
[i
]->next
;
3142 debug_rcu_bhead_unqueue(bkvhead
[i
]);
3144 rcu_lock_acquire(&rcu_callback_map
);
3145 if (i
== 0) { // kmalloc() / kfree().
3146 trace_rcu_invoke_kfree_bulk_callback(
3147 rcu_state
.name
, bkvhead
[i
]->nr_records
,
3148 bkvhead
[i
]->records
);
3150 kfree_bulk(bkvhead
[i
]->nr_records
,
3151 bkvhead
[i
]->records
);
3152 } else { // vmalloc() / vfree().
3153 for (j
= 0; j
< bkvhead
[i
]->nr_records
; j
++) {
3154 trace_rcu_invoke_kvfree_callback(
3156 bkvhead
[i
]->records
[j
], 0);
3158 vfree(bkvhead
[i
]->records
[j
]);
3161 rcu_lock_release(&rcu_callback_map
);
3163 krcp
= krc_this_cpu_lock(&flags
);
3164 if (put_cached_bnode(krcp
, bkvhead
[i
]))
3166 krc_this_cpu_unlock(krcp
, flags
);
3169 free_page((unsigned long) bkvhead
[i
]);
3171 cond_resched_tasks_rcu_qs();
3176 * Emergency case only. It can happen under low memory
3177 * condition when an allocation gets failed, so the "bulk"
3178 * path can not be temporary maintained.
3180 for (; head
; head
= next
) {
3181 unsigned long offset
= (unsigned long)head
->func
;
3182 void *ptr
= (void *)head
- offset
;
3185 debug_rcu_head_unqueue((struct rcu_head
*)ptr
);
3186 rcu_lock_acquire(&rcu_callback_map
);
3187 trace_rcu_invoke_kvfree_callback(rcu_state
.name
, head
, offset
);
3189 if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset
)))
3192 rcu_lock_release(&rcu_callback_map
);
3193 cond_resched_tasks_rcu_qs();
3198 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3200 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3201 * timeout has been reached.
3203 static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu
*krcp
)
3205 struct kfree_rcu_cpu_work
*krwp
;
3206 bool repeat
= false;
3209 lockdep_assert_held(&krcp
->lock
);
3211 for (i
= 0; i
< KFREE_N_BATCHES
; i
++) {
3212 krwp
= &(krcp
->krw_arr
[i
]);
3215 * Try to detach bkvhead or head and attach it over any
3216 * available corresponding free channel. It can be that
3217 * a previous RCU batch is in progress, it means that
3218 * immediately to queue another one is not possible so
3219 * return false to tell caller to retry.
3221 if ((krcp
->bkvhead
[0] && !krwp
->bkvhead_free
[0]) ||
3222 (krcp
->bkvhead
[1] && !krwp
->bkvhead_free
[1]) ||
3223 (krcp
->head
&& !krwp
->head_free
)) {
3224 // Channel 1 corresponds to SLAB ptrs.
3225 // Channel 2 corresponds to vmalloc ptrs.
3226 for (j
= 0; j
< FREE_N_CHANNELS
; j
++) {
3227 if (!krwp
->bkvhead_free
[j
]) {
3228 krwp
->bkvhead_free
[j
] = krcp
->bkvhead
[j
];
3229 krcp
->bkvhead
[j
] = NULL
;
3233 // Channel 3 corresponds to emergency path.
3234 if (!krwp
->head_free
) {
3235 krwp
->head_free
= krcp
->head
;
3239 WRITE_ONCE(krcp
->count
, 0);
3242 * One work is per one batch, so there are three
3243 * "free channels", the batch can handle. It can
3244 * be that the work is in the pending state when
3245 * channels have been detached following by each
3248 queue_rcu_work(system_wq
, &krwp
->rcu_work
);
3251 // Repeat if any "free" corresponding channel is still busy.
3252 if (krcp
->bkvhead
[0] || krcp
->bkvhead
[1] || krcp
->head
)
3259 static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu
*krcp
,
3260 unsigned long flags
)
3262 // Attempt to start a new batch.
3263 krcp
->monitor_todo
= false;
3264 if (queue_kfree_rcu_work(krcp
)) {
3265 // Success! Our job is done here.
3266 raw_spin_unlock_irqrestore(&krcp
->lock
, flags
);
3270 // Previous RCU batch still in progress, try again later.
3271 krcp
->monitor_todo
= true;
3272 schedule_delayed_work(&krcp
->monitor_work
, KFREE_DRAIN_JIFFIES
);
3273 raw_spin_unlock_irqrestore(&krcp
->lock
, flags
);
3277 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3278 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3280 static void kfree_rcu_monitor(struct work_struct
*work
)
3282 unsigned long flags
;
3283 struct kfree_rcu_cpu
*krcp
= container_of(work
, struct kfree_rcu_cpu
,
3286 raw_spin_lock_irqsave(&krcp
->lock
, flags
);
3287 if (krcp
->monitor_todo
)
3288 kfree_rcu_drain_unlock(krcp
, flags
);
3290 raw_spin_unlock_irqrestore(&krcp
->lock
, flags
);
3294 kvfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu
*krcp
, void *ptr
)
3296 struct kvfree_rcu_bulk_data
*bnode
;
3299 if (unlikely(!krcp
->initialized
))
3302 lockdep_assert_held(&krcp
->lock
);
3303 idx
= !!is_vmalloc_addr(ptr
);
3305 /* Check if a new block is required. */
3306 if (!krcp
->bkvhead
[idx
] ||
3307 krcp
->bkvhead
[idx
]->nr_records
== KVFREE_BULK_MAX_ENTR
) {
3308 bnode
= get_cached_bnode(krcp
);
3311 * To keep this path working on raw non-preemptible
3312 * sections, prevent the optional entry into the
3313 * allocator as it uses sleeping locks. In fact, even
3314 * if the caller of kfree_rcu() is preemptible, this
3315 * path still is not, as krcp->lock is a raw spinlock.
3316 * With additional page pre-allocation in the works,
3317 * hitting this return is going to be much less likely.
3319 if (IS_ENABLED(CONFIG_PREEMPT_RT
))
3323 * NOTE: For one argument of kvfree_rcu() we can
3324 * drop the lock and get the page in sleepable
3325 * context. That would allow to maintain an array
3326 * for the CONFIG_PREEMPT_RT as well if no cached
3327 * pages are available.
3329 bnode
= (struct kvfree_rcu_bulk_data
*)
3330 __get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
3333 /* Switch to emergency path. */
3334 if (unlikely(!bnode
))
3337 /* Initialize the new block. */
3338 bnode
->nr_records
= 0;
3339 bnode
->next
= krcp
->bkvhead
[idx
];
3341 /* Attach it to the head. */
3342 krcp
->bkvhead
[idx
] = bnode
;
3345 /* Finally insert. */
3346 krcp
->bkvhead
[idx
]->records
3347 [krcp
->bkvhead
[idx
]->nr_records
++] = ptr
;
3353 * Queue a request for lazy invocation of appropriate free routine after a
3354 * grace period. Please note there are three paths are maintained, two are the
3355 * main ones that use array of pointers interface and third one is emergency
3356 * one, that is used only when the main path can not be maintained temporary,
3357 * due to memory pressure.
3359 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3360 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3361 * be free'd in workqueue context. This allows us to: batch requests together to
3362 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3364 void kvfree_call_rcu(struct rcu_head
*head
, rcu_callback_t func
)
3366 unsigned long flags
;
3367 struct kfree_rcu_cpu
*krcp
;
3372 ptr
= (void *) head
- (unsigned long) func
;
3375 * Please note there is a limitation for the head-less
3376 * variant, that is why there is a clear rule for such
3377 * objects: it can be used from might_sleep() context
3378 * only. For other places please embed an rcu_head to
3382 ptr
= (unsigned long *) func
;
3385 krcp
= krc_this_cpu_lock(&flags
);
3387 // Queue the object but don't yet schedule the batch.
3388 if (debug_rcu_head_queue(ptr
)) {
3389 // Probable double kfree_rcu(), just leak.
3390 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3393 // Mark as success and leave.
3399 * Under high memory pressure GFP_NOWAIT can fail,
3400 * in that case the emergency path is maintained.
3402 success
= kvfree_call_rcu_add_ptr_to_bulk(krcp
, ptr
);
3405 // Inline if kvfree_rcu(one_arg) call.
3409 head
->next
= krcp
->head
;
3414 WRITE_ONCE(krcp
->count
, krcp
->count
+ 1);
3416 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3417 if (rcu_scheduler_active
== RCU_SCHEDULER_RUNNING
&&
3418 !krcp
->monitor_todo
) {
3419 krcp
->monitor_todo
= true;
3420 schedule_delayed_work(&krcp
->monitor_work
, KFREE_DRAIN_JIFFIES
);
3424 krc_this_cpu_unlock(krcp
, flags
);
3427 * Inline kvfree() after synchronize_rcu(). We can do
3428 * it from might_sleep() context only, so the current
3429 * CPU can pass the QS state.
3432 debug_rcu_head_unqueue((struct rcu_head
*) ptr
);
3437 EXPORT_SYMBOL_GPL(kvfree_call_rcu
);
3439 static unsigned long
3440 kfree_rcu_shrink_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
3443 unsigned long count
= 0;
3445 /* Snapshot count of all CPUs */
3446 for_each_online_cpu(cpu
) {
3447 struct kfree_rcu_cpu
*krcp
= per_cpu_ptr(&krc
, cpu
);
3449 count
+= READ_ONCE(krcp
->count
);
3455 static unsigned long
3456 kfree_rcu_shrink_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
3459 unsigned long flags
;
3461 for_each_online_cpu(cpu
) {
3463 struct kfree_rcu_cpu
*krcp
= per_cpu_ptr(&krc
, cpu
);
3465 count
= krcp
->count
;
3466 raw_spin_lock_irqsave(&krcp
->lock
, flags
);
3467 if (krcp
->monitor_todo
)
3468 kfree_rcu_drain_unlock(krcp
, flags
);
3470 raw_spin_unlock_irqrestore(&krcp
->lock
, flags
);
3472 sc
->nr_to_scan
-= count
;
3475 if (sc
->nr_to_scan
<= 0)
3479 return freed
== 0 ? SHRINK_STOP
: freed
;
3482 static struct shrinker kfree_rcu_shrinker
= {
3483 .count_objects
= kfree_rcu_shrink_count
,
3484 .scan_objects
= kfree_rcu_shrink_scan
,
3486 .seeks
= DEFAULT_SEEKS
,
3489 void __init
kfree_rcu_scheduler_running(void)
3492 unsigned long flags
;
3494 for_each_online_cpu(cpu
) {
3495 struct kfree_rcu_cpu
*krcp
= per_cpu_ptr(&krc
, cpu
);
3497 raw_spin_lock_irqsave(&krcp
->lock
, flags
);
3498 if (!krcp
->head
|| krcp
->monitor_todo
) {
3499 raw_spin_unlock_irqrestore(&krcp
->lock
, flags
);
3502 krcp
->monitor_todo
= true;
3503 schedule_delayed_work_on(cpu
, &krcp
->monitor_work
,
3504 KFREE_DRAIN_JIFFIES
);
3505 raw_spin_unlock_irqrestore(&krcp
->lock
, flags
);
3510 * During early boot, any blocking grace-period wait automatically
3511 * implies a grace period. Later on, this is never the case for PREEMPTION.
3513 * Howevr, because a context switch is a grace period for !PREEMPTION, any
3514 * blocking grace-period wait automatically implies a grace period if
3515 * there is only one CPU online at any point time during execution of
3516 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3517 * occasionally incorrectly indicate that there are multiple CPUs online
3518 * when there was in fact only one the whole time, as this just adds some
3519 * overhead: RCU still operates correctly.
3521 static int rcu_blocking_is_gp(void)
3525 if (IS_ENABLED(CONFIG_PREEMPTION
))
3526 return rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
;
3527 might_sleep(); /* Check for RCU read-side critical section. */
3529 ret
= num_online_cpus() <= 1;
3535 * synchronize_rcu - wait until a grace period has elapsed.
3537 * Control will return to the caller some time after a full grace
3538 * period has elapsed, in other words after all currently executing RCU
3539 * read-side critical sections have completed. Note, however, that
3540 * upon return from synchronize_rcu(), the caller might well be executing
3541 * concurrently with new RCU read-side critical sections that began while
3542 * synchronize_rcu() was waiting. RCU read-side critical sections are
3543 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3544 * In addition, regions of code across which interrupts, preemption, or
3545 * softirqs have been disabled also serve as RCU read-side critical
3546 * sections. This includes hardware interrupt handlers, softirq handlers,
3549 * Note that this guarantee implies further memory-ordering guarantees.
3550 * On systems with more than one CPU, when synchronize_rcu() returns,
3551 * each CPU is guaranteed to have executed a full memory barrier since
3552 * the end of its last RCU read-side critical section whose beginning
3553 * preceded the call to synchronize_rcu(). In addition, each CPU having
3554 * an RCU read-side critical section that extends beyond the return from
3555 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3556 * after the beginning of synchronize_rcu() and before the beginning of
3557 * that RCU read-side critical section. Note that these guarantees include
3558 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3559 * that are executing in the kernel.
3561 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3562 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3563 * to have executed a full memory barrier during the execution of
3564 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3565 * again only if the system has more than one CPU).
3567 void synchronize_rcu(void)
3569 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map
) ||
3570 lock_is_held(&rcu_lock_map
) ||
3571 lock_is_held(&rcu_sched_lock_map
),
3572 "Illegal synchronize_rcu() in RCU read-side critical section");
3573 if (rcu_blocking_is_gp())
3575 if (rcu_gp_is_expedited())
3576 synchronize_rcu_expedited();
3578 wait_rcu_gp(call_rcu
);
3580 EXPORT_SYMBOL_GPL(synchronize_rcu
);
3583 * get_state_synchronize_rcu - Snapshot current RCU state
3585 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3586 * to determine whether or not a full grace period has elapsed in the
3589 unsigned long get_state_synchronize_rcu(void)
3592 * Any prior manipulation of RCU-protected data must happen
3593 * before the load from ->gp_seq.
3596 return rcu_seq_snap(&rcu_state
.gp_seq
);
3598 EXPORT_SYMBOL_GPL(get_state_synchronize_rcu
);
3601 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3603 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3605 * If a full RCU grace period has elapsed since the earlier call to
3606 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3607 * synchronize_rcu() to wait for a full grace period.
3609 * Yes, this function does not take counter wrap into account. But
3610 * counter wrap is harmless. If the counter wraps, we have waited for
3611 * more than 2 billion grace periods (and way more on a 64-bit system!),
3612 * so waiting for one additional grace period should be just fine.
3614 void cond_synchronize_rcu(unsigned long oldstate
)
3616 if (!rcu_seq_done(&rcu_state
.gp_seq
, oldstate
))
3619 smp_mb(); /* Ensure GP ends before subsequent accesses. */
3621 EXPORT_SYMBOL_GPL(cond_synchronize_rcu
);
3624 * Check to see if there is any immediate RCU-related work to be done by
3625 * the current CPU, returning 1 if so and zero otherwise. The checks are
3626 * in order of increasing expense: checks that can be carried out against
3627 * CPU-local state are performed first. However, we must check for CPU
3628 * stalls first, else we might not get a chance.
3630 static int rcu_pending(int user
)
3632 bool gp_in_progress
;
3633 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
3634 struct rcu_node
*rnp
= rdp
->mynode
;
3636 /* Check for CPU stalls, if enabled. */
3637 check_cpu_stall(rdp
);
3639 /* Does this CPU need a deferred NOCB wakeup? */
3640 if (rcu_nocb_need_deferred_wakeup(rdp
))
3643 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3644 if ((user
|| rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3647 /* Is the RCU core waiting for a quiescent state from this CPU? */
3648 gp_in_progress
= rcu_gp_in_progress();
3649 if (rdp
->core_needs_qs
&& !rdp
->cpu_no_qs
.b
.norm
&& gp_in_progress
)
3652 /* Does this CPU have callbacks ready to invoke? */
3653 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
3656 /* Has RCU gone idle with this CPU needing another grace period? */
3657 if (!gp_in_progress
&& rcu_segcblist_is_enabled(&rdp
->cblist
) &&
3658 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU
) ||
3659 !rcu_segcblist_is_offloaded(&rdp
->cblist
)) &&
3660 !rcu_segcblist_restempty(&rdp
->cblist
, RCU_NEXT_READY_TAIL
))
3663 /* Have RCU grace period completed or started? */
3664 if (rcu_seq_current(&rnp
->gp_seq
) != rdp
->gp_seq
||
3665 unlikely(READ_ONCE(rdp
->gpwrap
))) /* outside lock */
3673 * Helper function for rcu_barrier() tracing. If tracing is disabled,
3674 * the compiler is expected to optimize this away.
3676 static void rcu_barrier_trace(const char *s
, int cpu
, unsigned long done
)
3678 trace_rcu_barrier(rcu_state
.name
, s
, cpu
,
3679 atomic_read(&rcu_state
.barrier_cpu_count
), done
);
3683 * RCU callback function for rcu_barrier(). If we are last, wake
3684 * up the task executing rcu_barrier().
3686 * Note that the value of rcu_state.barrier_sequence must be captured
3687 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3688 * other CPUs might count the value down to zero before this CPU gets
3689 * around to invoking rcu_barrier_trace(), which might result in bogus
3690 * data from the next instance of rcu_barrier().
3692 static void rcu_barrier_callback(struct rcu_head
*rhp
)
3694 unsigned long __maybe_unused s
= rcu_state
.barrier_sequence
;
3696 if (atomic_dec_and_test(&rcu_state
.barrier_cpu_count
)) {
3697 rcu_barrier_trace(TPS("LastCB"), -1, s
);
3698 complete(&rcu_state
.barrier_completion
);
3700 rcu_barrier_trace(TPS("CB"), -1, s
);
3705 * Called with preemption disabled, and from cross-cpu IRQ context.
3707 static void rcu_barrier_func(void *cpu_in
)
3709 uintptr_t cpu
= (uintptr_t)cpu_in
;
3710 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3712 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state
.barrier_sequence
);
3713 rdp
->barrier_head
.func
= rcu_barrier_callback
;
3714 debug_rcu_head_queue(&rdp
->barrier_head
);
3716 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp
, NULL
, jiffies
));
3717 if (rcu_segcblist_entrain(&rdp
->cblist
, &rdp
->barrier_head
)) {
3718 atomic_inc(&rcu_state
.barrier_cpu_count
);
3720 debug_rcu_head_unqueue(&rdp
->barrier_head
);
3721 rcu_barrier_trace(TPS("IRQNQ"), -1,
3722 rcu_state
.barrier_sequence
);
3724 rcu_nocb_unlock(rdp
);
3728 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3730 * Note that this primitive does not necessarily wait for an RCU grace period
3731 * to complete. For example, if there are no RCU callbacks queued anywhere
3732 * in the system, then rcu_barrier() is within its rights to return
3733 * immediately, without waiting for anything, much less an RCU grace period.
3735 void rcu_barrier(void)
3738 struct rcu_data
*rdp
;
3739 unsigned long s
= rcu_seq_snap(&rcu_state
.barrier_sequence
);
3741 rcu_barrier_trace(TPS("Begin"), -1, s
);
3743 /* Take mutex to serialize concurrent rcu_barrier() requests. */
3744 mutex_lock(&rcu_state
.barrier_mutex
);
3746 /* Did someone else do our work for us? */
3747 if (rcu_seq_done(&rcu_state
.barrier_sequence
, s
)) {
3748 rcu_barrier_trace(TPS("EarlyExit"), -1,
3749 rcu_state
.barrier_sequence
);
3750 smp_mb(); /* caller's subsequent code after above check. */
3751 mutex_unlock(&rcu_state
.barrier_mutex
);
3755 /* Mark the start of the barrier operation. */
3756 rcu_seq_start(&rcu_state
.barrier_sequence
);
3757 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state
.barrier_sequence
);
3760 * Initialize the count to two rather than to zero in order
3761 * to avoid a too-soon return to zero in case of an immediate
3762 * invocation of the just-enqueued callback (or preemption of
3763 * this task). Exclude CPU-hotplug operations to ensure that no
3764 * offline non-offloaded CPU has callbacks queued.
3766 init_completion(&rcu_state
.barrier_completion
);
3767 atomic_set(&rcu_state
.barrier_cpu_count
, 2);
3771 * Force each CPU with callbacks to register a new callback.
3772 * When that callback is invoked, we will know that all of the
3773 * corresponding CPU's preceding callbacks have been invoked.
3775 for_each_possible_cpu(cpu
) {
3776 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3777 if (cpu_is_offline(cpu
) &&
3778 !rcu_segcblist_is_offloaded(&rdp
->cblist
))
3780 if (rcu_segcblist_n_cbs(&rdp
->cblist
) && cpu_online(cpu
)) {
3781 rcu_barrier_trace(TPS("OnlineQ"), cpu
,
3782 rcu_state
.barrier_sequence
);
3783 smp_call_function_single(cpu
, rcu_barrier_func
, (void *)cpu
, 1);
3784 } else if (rcu_segcblist_n_cbs(&rdp
->cblist
) &&
3785 cpu_is_offline(cpu
)) {
3786 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu
,
3787 rcu_state
.barrier_sequence
);
3788 local_irq_disable();
3789 rcu_barrier_func((void *)cpu
);
3791 } else if (cpu_is_offline(cpu
)) {
3792 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu
,
3793 rcu_state
.barrier_sequence
);
3795 rcu_barrier_trace(TPS("OnlineNQ"), cpu
,
3796 rcu_state
.barrier_sequence
);
3802 * Now that we have an rcu_barrier_callback() callback on each
3803 * CPU, and thus each counted, remove the initial count.
3805 if (atomic_sub_and_test(2, &rcu_state
.barrier_cpu_count
))
3806 complete(&rcu_state
.barrier_completion
);
3808 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3809 wait_for_completion(&rcu_state
.barrier_completion
);
3811 /* Mark the end of the barrier operation. */
3812 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state
.barrier_sequence
);
3813 rcu_seq_end(&rcu_state
.barrier_sequence
);
3815 /* Other rcu_barrier() invocations can now safely proceed. */
3816 mutex_unlock(&rcu_state
.barrier_mutex
);
3818 EXPORT_SYMBOL_GPL(rcu_barrier
);
3821 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3822 * first CPU in a given leaf rcu_node structure coming online. The caller
3823 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3826 static void rcu_init_new_rnp(struct rcu_node
*rnp_leaf
)
3830 struct rcu_node
*rnp
= rnp_leaf
;
3832 raw_lockdep_assert_held_rcu_node(rnp_leaf
);
3833 WARN_ON_ONCE(rnp
->wait_blkd_tasks
);
3835 mask
= rnp
->grpmask
;
3839 raw_spin_lock_rcu_node(rnp
); /* Interrupts already disabled. */
3840 oldmask
= rnp
->qsmaskinit
;
3841 rnp
->qsmaskinit
|= mask
;
3842 raw_spin_unlock_rcu_node(rnp
); /* Interrupts remain disabled. */
3849 * Do boot-time initialization of a CPU's per-CPU RCU data.
3852 rcu_boot_init_percpu_data(int cpu
)
3854 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3856 /* Set up local state, ensuring consistent view of global state. */
3857 rdp
->grpmask
= leaf_node_cpu_bit(rdp
->mynode
, cpu
);
3858 WARN_ON_ONCE(rdp
->dynticks_nesting
!= 1);
3859 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp
)));
3860 rdp
->rcu_ofl_gp_seq
= rcu_state
.gp_seq
;
3861 rdp
->rcu_ofl_gp_flags
= RCU_GP_CLEANED
;
3862 rdp
->rcu_onl_gp_seq
= rcu_state
.gp_seq
;
3863 rdp
->rcu_onl_gp_flags
= RCU_GP_CLEANED
;
3865 rcu_boot_init_nocb_percpu_data(rdp
);
3869 * Invoked early in the CPU-online process, when pretty much all services
3870 * are available. The incoming CPU is not present.
3872 * Initializes a CPU's per-CPU RCU data. Note that only one online or
3873 * offline event can be happening at a given time. Note also that we can
3874 * accept some slop in the rsp->gp_seq access due to the fact that this
3875 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3876 * And any offloaded callbacks are being numbered elsewhere.
3878 int rcutree_prepare_cpu(unsigned int cpu
)
3880 unsigned long flags
;
3881 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3882 struct rcu_node
*rnp
= rcu_get_root();
3884 /* Set up local state, ensuring consistent view of global state. */
3885 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3886 rdp
->qlen_last_fqs_check
= 0;
3887 rdp
->n_force_qs_snap
= rcu_state
.n_force_qs
;
3888 rdp
->blimit
= blimit
;
3889 if (rcu_segcblist_empty(&rdp
->cblist
) && /* No early-boot CBs? */
3890 !rcu_segcblist_is_offloaded(&rdp
->cblist
))
3891 rcu_segcblist_init(&rdp
->cblist
); /* Re-enable callbacks. */
3892 rdp
->dynticks_nesting
= 1; /* CPU not up, no tearing. */
3893 rcu_dynticks_eqs_online();
3894 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
3897 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3898 * propagation up the rcu_node tree will happen at the beginning
3899 * of the next grace period.
3902 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
3903 rdp
->beenonline
= true; /* We have now been online. */
3904 rdp
->gp_seq
= READ_ONCE(rnp
->gp_seq
);
3905 rdp
->gp_seq_needed
= rdp
->gp_seq
;
3906 rdp
->cpu_no_qs
.b
.norm
= true;
3907 rdp
->core_needs_qs
= false;
3908 rdp
->rcu_iw_pending
= false;
3909 rdp
->rcu_iw_gp_seq
= rdp
->gp_seq
- 1;
3910 trace_rcu_grace_period(rcu_state
.name
, rdp
->gp_seq
, TPS("cpuonl"));
3911 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3912 rcu_prepare_kthreads(cpu
);
3913 rcu_spawn_cpu_nocb_kthread(cpu
);
3919 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3921 static void rcutree_affinity_setting(unsigned int cpu
, int outgoing
)
3923 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3925 rcu_boost_kthread_setaffinity(rdp
->mynode
, outgoing
);
3929 * Near the end of the CPU-online process. Pretty much all services
3930 * enabled, and the CPU is now very much alive.
3932 int rcutree_online_cpu(unsigned int cpu
)
3934 unsigned long flags
;
3935 struct rcu_data
*rdp
;
3936 struct rcu_node
*rnp
;
3938 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3940 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3941 rnp
->ffmask
|= rdp
->grpmask
;
3942 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3943 if (rcu_scheduler_active
== RCU_SCHEDULER_INACTIVE
)
3944 return 0; /* Too early in boot for scheduler work. */
3945 sync_sched_exp_online_cleanup(cpu
);
3946 rcutree_affinity_setting(cpu
, -1);
3948 // Stop-machine done, so allow nohz_full to disable tick.
3949 tick_dep_clear(TICK_DEP_BIT_RCU
);
3954 * Near the beginning of the process. The CPU is still very much alive
3955 * with pretty much all services enabled.
3957 int rcutree_offline_cpu(unsigned int cpu
)
3959 unsigned long flags
;
3960 struct rcu_data
*rdp
;
3961 struct rcu_node
*rnp
;
3963 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
3965 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
3966 rnp
->ffmask
&= ~rdp
->grpmask
;
3967 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
3969 rcutree_affinity_setting(cpu
, cpu
);
3971 // nohz_full CPUs need the tick for stop-machine to work quickly
3972 tick_dep_set(TICK_DEP_BIT_RCU
);
3976 static DEFINE_PER_CPU(int, rcu_cpu_started
);
3979 * Mark the specified CPU as being online so that subsequent grace periods
3980 * (both expedited and normal) will wait on it. Note that this means that
3981 * incoming CPUs are not allowed to use RCU read-side critical sections
3982 * until this function is called. Failing to observe this restriction
3983 * will result in lockdep splats.
3985 * Note that this function is special in that it is invoked directly
3986 * from the incoming CPU rather than from the cpuhp_step mechanism.
3987 * This is because this function must be invoked at a precise location.
3989 void rcu_cpu_starting(unsigned int cpu
)
3991 unsigned long flags
;
3993 struct rcu_data
*rdp
;
3994 struct rcu_node
*rnp
;
3997 if (per_cpu(rcu_cpu_started
, cpu
))
4000 per_cpu(rcu_cpu_started
, cpu
) = 1;
4002 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
4004 mask
= rdp
->grpmask
;
4005 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
4006 WRITE_ONCE(rnp
->qsmaskinitnext
, rnp
->qsmaskinitnext
| mask
);
4007 newcpu
= !(rnp
->expmaskinitnext
& mask
);
4008 rnp
->expmaskinitnext
|= mask
;
4009 /* Allow lockless access for expedited grace periods. */
4010 smp_store_release(&rcu_state
.ncpus
, rcu_state
.ncpus
+ newcpu
); /* ^^^ */
4011 ASSERT_EXCLUSIVE_WRITER(rcu_state
.ncpus
);
4012 rcu_gpnum_ovf(rnp
, rdp
); /* Offline-induced counter wrap? */
4013 rdp
->rcu_onl_gp_seq
= READ_ONCE(rcu_state
.gp_seq
);
4014 rdp
->rcu_onl_gp_flags
= READ_ONCE(rcu_state
.gp_flags
);
4015 if (rnp
->qsmask
& mask
) { /* RCU waiting on incoming CPU? */
4016 rcu_disable_urgency_upon_qs(rdp
);
4017 /* Report QS -after- changing ->qsmaskinitnext! */
4018 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
4020 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
4022 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4025 #ifdef CONFIG_HOTPLUG_CPU
4027 * The outgoing function has no further need of RCU, so remove it from
4028 * the rcu_node tree's ->qsmaskinitnext bit masks.
4030 * Note that this function is special in that it is invoked directly
4031 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4032 * This is because this function must be invoked at a precise location.
4034 void rcu_report_dead(unsigned int cpu
)
4036 unsigned long flags
;
4038 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
4039 struct rcu_node
*rnp
= rdp
->mynode
; /* Outgoing CPU's rdp & rnp. */
4041 /* QS for any half-done expedited grace period. */
4043 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data
));
4045 rcu_preempt_deferred_qs(current
);
4047 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4048 mask
= rdp
->grpmask
;
4049 raw_spin_lock(&rcu_state
.ofl_lock
);
4050 raw_spin_lock_irqsave_rcu_node(rnp
, flags
); /* Enforce GP memory-order guarantee. */
4051 rdp
->rcu_ofl_gp_seq
= READ_ONCE(rcu_state
.gp_seq
);
4052 rdp
->rcu_ofl_gp_flags
= READ_ONCE(rcu_state
.gp_flags
);
4053 if (rnp
->qsmask
& mask
) { /* RCU waiting on outgoing CPU? */
4054 /* Report quiescent state -before- changing ->qsmaskinitnext! */
4055 rcu_report_qs_rnp(mask
, rnp
, rnp
->gp_seq
, flags
);
4056 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
4058 WRITE_ONCE(rnp
->qsmaskinitnext
, rnp
->qsmaskinitnext
& ~mask
);
4059 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
4060 raw_spin_unlock(&rcu_state
.ofl_lock
);
4062 per_cpu(rcu_cpu_started
, cpu
) = 0;
4066 * The outgoing CPU has just passed through the dying-idle state, and we
4067 * are being invoked from the CPU that was IPIed to continue the offline
4068 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
4070 void rcutree_migrate_callbacks(int cpu
)
4072 unsigned long flags
;
4073 struct rcu_data
*my_rdp
;
4074 struct rcu_node
*my_rnp
;
4075 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
4078 if (rcu_segcblist_is_offloaded(&rdp
->cblist
) ||
4079 rcu_segcblist_empty(&rdp
->cblist
))
4080 return; /* No callbacks to migrate. */
4082 local_irq_save(flags
);
4083 my_rdp
= this_cpu_ptr(&rcu_data
);
4084 my_rnp
= my_rdp
->mynode
;
4085 rcu_nocb_lock(my_rdp
); /* irqs already disabled. */
4086 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp
, NULL
, jiffies
));
4087 raw_spin_lock_rcu_node(my_rnp
); /* irqs already disabled. */
4088 /* Leverage recent GPs and set GP for new callbacks. */
4089 needwake
= rcu_advance_cbs(my_rnp
, rdp
) ||
4090 rcu_advance_cbs(my_rnp
, my_rdp
);
4091 rcu_segcblist_merge(&my_rdp
->cblist
, &rdp
->cblist
);
4092 needwake
= needwake
|| rcu_advance_cbs(my_rnp
, my_rdp
);
4093 rcu_segcblist_disable(&rdp
->cblist
);
4094 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp
->cblist
) !=
4095 !rcu_segcblist_n_cbs(&my_rdp
->cblist
));
4096 if (rcu_segcblist_is_offloaded(&my_rdp
->cblist
)) {
4097 raw_spin_unlock_rcu_node(my_rnp
); /* irqs remain disabled. */
4098 __call_rcu_nocb_wake(my_rdp
, true, flags
);
4100 rcu_nocb_unlock(my_rdp
); /* irqs remain disabled. */
4101 raw_spin_unlock_irqrestore_rcu_node(my_rnp
, flags
);
4104 rcu_gp_kthread_wake();
4105 lockdep_assert_irqs_enabled();
4106 WARN_ONCE(rcu_segcblist_n_cbs(&rdp
->cblist
) != 0 ||
4107 !rcu_segcblist_empty(&rdp
->cblist
),
4108 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4109 cpu
, rcu_segcblist_n_cbs(&rdp
->cblist
),
4110 rcu_segcblist_first_cb(&rdp
->cblist
));
4115 * On non-huge systems, use expedited RCU grace periods to make suspend
4116 * and hibernation run faster.
4118 static int rcu_pm_notify(struct notifier_block
*self
,
4119 unsigned long action
, void *hcpu
)
4122 case PM_HIBERNATION_PREPARE
:
4123 case PM_SUSPEND_PREPARE
:
4126 case PM_POST_HIBERNATION
:
4127 case PM_POST_SUSPEND
:
4128 rcu_unexpedite_gp();
4137 * Spawn the kthreads that handle RCU's grace periods.
4139 static int __init
rcu_spawn_gp_kthread(void)
4141 unsigned long flags
;
4142 int kthread_prio_in
= kthread_prio
;
4143 struct rcu_node
*rnp
;
4144 struct sched_param sp
;
4145 struct task_struct
*t
;
4147 /* Force priority into range. */
4148 if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 2
4149 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST
))
4151 else if (IS_ENABLED(CONFIG_RCU_BOOST
) && kthread_prio
< 1)
4153 else if (kthread_prio
< 0)
4155 else if (kthread_prio
> 99)
4158 if (kthread_prio
!= kthread_prio_in
)
4159 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
4160 kthread_prio
, kthread_prio_in
);
4162 rcu_scheduler_fully_active
= 1;
4163 t
= kthread_create(rcu_gp_kthread
, NULL
, "%s", rcu_state
.name
);
4164 if (WARN_ONCE(IS_ERR(t
), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__
))
4167 sp
.sched_priority
= kthread_prio
;
4168 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
4170 rnp
= rcu_get_root();
4171 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
4172 WRITE_ONCE(rcu_state
.gp_activity
, jiffies
);
4173 WRITE_ONCE(rcu_state
.gp_req_activity
, jiffies
);
4174 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4175 smp_store_release(&rcu_state
.gp_kthread
, t
); /* ^^^ */
4176 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
4178 rcu_spawn_nocb_kthreads();
4179 rcu_spawn_boost_kthreads();
4182 early_initcall(rcu_spawn_gp_kthread
);
4185 * This function is invoked towards the end of the scheduler's
4186 * initialization process. Before this is called, the idle task might
4187 * contain synchronous grace-period primitives (during which time, this idle
4188 * task is booting the system, and such primitives are no-ops). After this
4189 * function is called, any synchronous grace-period primitives are run as
4190 * expedited, with the requesting task driving the grace period forward.
4191 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4192 * runtime RCU functionality.
4194 void rcu_scheduler_starting(void)
4196 WARN_ON(num_online_cpus() != 1);
4197 WARN_ON(nr_context_switches() > 0);
4198 rcu_test_sync_prims();
4199 rcu_scheduler_active
= RCU_SCHEDULER_INIT
;
4200 rcu_test_sync_prims();
4204 * Helper function for rcu_init() that initializes the rcu_state structure.
4206 static void __init
rcu_init_one(void)
4208 static const char * const buf
[] = RCU_NODE_NAME_INIT
;
4209 static const char * const fqs
[] = RCU_FQS_NAME_INIT
;
4210 static struct lock_class_key rcu_node_class
[RCU_NUM_LVLS
];
4211 static struct lock_class_key rcu_fqs_class
[RCU_NUM_LVLS
];
4213 int levelspread
[RCU_NUM_LVLS
]; /* kids/node in each level. */
4217 struct rcu_node
*rnp
;
4219 BUILD_BUG_ON(RCU_NUM_LVLS
> ARRAY_SIZE(buf
)); /* Fix buf[] init! */
4221 /* Silence gcc 4.8 false positive about array index out of range. */
4222 if (rcu_num_lvls
<= 0 || rcu_num_lvls
> RCU_NUM_LVLS
)
4223 panic("rcu_init_one: rcu_num_lvls out of range");
4225 /* Initialize the level-tracking arrays. */
4227 for (i
= 1; i
< rcu_num_lvls
; i
++)
4228 rcu_state
.level
[i
] =
4229 rcu_state
.level
[i
- 1] + num_rcu_lvl
[i
- 1];
4230 rcu_init_levelspread(levelspread
, num_rcu_lvl
);
4232 /* Initialize the elements themselves, starting from the leaves. */
4234 for (i
= rcu_num_lvls
- 1; i
>= 0; i
--) {
4235 cpustride
*= levelspread
[i
];
4236 rnp
= rcu_state
.level
[i
];
4237 for (j
= 0; j
< num_rcu_lvl
[i
]; j
++, rnp
++) {
4238 raw_spin_lock_init(&ACCESS_PRIVATE(rnp
, lock
));
4239 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp
, lock
),
4240 &rcu_node_class
[i
], buf
[i
]);
4241 raw_spin_lock_init(&rnp
->fqslock
);
4242 lockdep_set_class_and_name(&rnp
->fqslock
,
4243 &rcu_fqs_class
[i
], fqs
[i
]);
4244 rnp
->gp_seq
= rcu_state
.gp_seq
;
4245 rnp
->gp_seq_needed
= rcu_state
.gp_seq
;
4246 rnp
->completedqs
= rcu_state
.gp_seq
;
4248 rnp
->qsmaskinit
= 0;
4249 rnp
->grplo
= j
* cpustride
;
4250 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
4251 if (rnp
->grphi
>= nr_cpu_ids
)
4252 rnp
->grphi
= nr_cpu_ids
- 1;
4258 rnp
->grpnum
= j
% levelspread
[i
- 1];
4259 rnp
->grpmask
= BIT(rnp
->grpnum
);
4260 rnp
->parent
= rcu_state
.level
[i
- 1] +
4261 j
/ levelspread
[i
- 1];
4264 INIT_LIST_HEAD(&rnp
->blkd_tasks
);
4265 rcu_init_one_nocb(rnp
);
4266 init_waitqueue_head(&rnp
->exp_wq
[0]);
4267 init_waitqueue_head(&rnp
->exp_wq
[1]);
4268 init_waitqueue_head(&rnp
->exp_wq
[2]);
4269 init_waitqueue_head(&rnp
->exp_wq
[3]);
4270 spin_lock_init(&rnp
->exp_lock
);
4274 init_swait_queue_head(&rcu_state
.gp_wq
);
4275 init_swait_queue_head(&rcu_state
.expedited_wq
);
4276 rnp
= rcu_first_leaf_node();
4277 for_each_possible_cpu(i
) {
4278 while (i
> rnp
->grphi
)
4280 per_cpu_ptr(&rcu_data
, i
)->mynode
= rnp
;
4281 rcu_boot_init_percpu_data(i
);
4286 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4287 * replace the definitions in tree.h because those are needed to size
4288 * the ->node array in the rcu_state structure.
4290 static void __init
rcu_init_geometry(void)
4294 int rcu_capacity
[RCU_NUM_LVLS
];
4297 * Initialize any unspecified boot parameters.
4298 * The default values of jiffies_till_first_fqs and
4299 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4300 * value, which is a function of HZ, then adding one for each
4301 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4303 d
= RCU_JIFFIES_TILL_FORCE_QS
+ nr_cpu_ids
/ RCU_JIFFIES_FQS_DIV
;
4304 if (jiffies_till_first_fqs
== ULONG_MAX
)
4305 jiffies_till_first_fqs
= d
;
4306 if (jiffies_till_next_fqs
== ULONG_MAX
)
4307 jiffies_till_next_fqs
= d
;
4308 adjust_jiffies_till_sched_qs();
4310 /* If the compile-time values are accurate, just leave. */
4311 if (rcu_fanout_leaf
== RCU_FANOUT_LEAF
&&
4312 nr_cpu_ids
== NR_CPUS
)
4314 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4315 rcu_fanout_leaf
, nr_cpu_ids
);
4318 * The boot-time rcu_fanout_leaf parameter must be at least two
4319 * and cannot exceed the number of bits in the rcu_node masks.
4320 * Complain and fall back to the compile-time values if this
4321 * limit is exceeded.
4323 if (rcu_fanout_leaf
< 2 ||
4324 rcu_fanout_leaf
> sizeof(unsigned long) * 8) {
4325 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4331 * Compute number of nodes that can be handled an rcu_node tree
4332 * with the given number of levels.
4334 rcu_capacity
[0] = rcu_fanout_leaf
;
4335 for (i
= 1; i
< RCU_NUM_LVLS
; i
++)
4336 rcu_capacity
[i
] = rcu_capacity
[i
- 1] * RCU_FANOUT
;
4339 * The tree must be able to accommodate the configured number of CPUs.
4340 * If this limit is exceeded, fall back to the compile-time values.
4342 if (nr_cpu_ids
> rcu_capacity
[RCU_NUM_LVLS
- 1]) {
4343 rcu_fanout_leaf
= RCU_FANOUT_LEAF
;
4348 /* Calculate the number of levels in the tree. */
4349 for (i
= 0; nr_cpu_ids
> rcu_capacity
[i
]; i
++) {
4351 rcu_num_lvls
= i
+ 1;
4353 /* Calculate the number of rcu_nodes at each level of the tree. */
4354 for (i
= 0; i
< rcu_num_lvls
; i
++) {
4355 int cap
= rcu_capacity
[(rcu_num_lvls
- 1) - i
];
4356 num_rcu_lvl
[i
] = DIV_ROUND_UP(nr_cpu_ids
, cap
);
4359 /* Calculate the total number of rcu_node structures. */
4361 for (i
= 0; i
< rcu_num_lvls
; i
++)
4362 rcu_num_nodes
+= num_rcu_lvl
[i
];
4366 * Dump out the structure of the rcu_node combining tree associated
4367 * with the rcu_state structure.
4369 static void __init
rcu_dump_rcu_node_tree(void)
4372 struct rcu_node
*rnp
;
4374 pr_info("rcu_node tree layout dump\n");
4376 rcu_for_each_node_breadth_first(rnp
) {
4377 if (rnp
->level
!= level
) {
4382 pr_cont("%d:%d ^%d ", rnp
->grplo
, rnp
->grphi
, rnp
->grpnum
);
4387 struct workqueue_struct
*rcu_gp_wq
;
4388 struct workqueue_struct
*rcu_par_gp_wq
;
4390 static void __init
kfree_rcu_batch_init(void)
4395 for_each_possible_cpu(cpu
) {
4396 struct kfree_rcu_cpu
*krcp
= per_cpu_ptr(&krc
, cpu
);
4397 struct kvfree_rcu_bulk_data
*bnode
;
4399 for (i
= 0; i
< KFREE_N_BATCHES
; i
++) {
4400 INIT_RCU_WORK(&krcp
->krw_arr
[i
].rcu_work
, kfree_rcu_work
);
4401 krcp
->krw_arr
[i
].krcp
= krcp
;
4404 for (i
= 0; i
< rcu_min_cached_objs
; i
++) {
4405 bnode
= (struct kvfree_rcu_bulk_data
*)
4406 __get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
4409 put_cached_bnode(krcp
, bnode
);
4411 pr_err("Failed to preallocate for %d CPU!\n", cpu
);
4414 INIT_DELAYED_WORK(&krcp
->monitor_work
, kfree_rcu_monitor
);
4415 krcp
->initialized
= true;
4417 if (register_shrinker(&kfree_rcu_shrinker
))
4418 pr_err("Failed to register kfree_rcu() shrinker!\n");
4421 void __init
rcu_init(void)
4425 rcu_early_boot_tests();
4427 kfree_rcu_batch_init();
4428 rcu_bootup_announce();
4429 rcu_init_geometry();
4432 rcu_dump_rcu_node_tree();
4434 open_softirq(RCU_SOFTIRQ
, rcu_core_si
);
4437 * We don't need protection against CPU-hotplug here because
4438 * this is called early in boot, before either interrupts
4439 * or the scheduler are operational.
4441 pm_notifier(rcu_pm_notify
, 0);
4442 for_each_online_cpu(cpu
) {
4443 rcutree_prepare_cpu(cpu
);
4444 rcu_cpu_starting(cpu
);
4445 rcutree_online_cpu(cpu
);
4448 /* Create workqueue for expedited GPs and for Tree SRCU. */
4449 rcu_gp_wq
= alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM
, 0);
4450 WARN_ON(!rcu_gp_wq
);
4451 rcu_par_gp_wq
= alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM
, 0);
4452 WARN_ON(!rcu_par_gp_wq
);
4455 /* Fill in default value for rcutree.qovld boot parameter. */
4456 /* -After- the rcu_node ->lock fields are initialized! */
4458 qovld_calc
= DEFAULT_RCU_QOVLD_MULT
* qhimark
;
4463 #include "tree_stall.h"
4464 #include "tree_exp.h"
4465 #include "tree_plugin.h"