1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
14 #include "../locking/rtmutex_common.h"
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask
; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll
; /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
22 * Check the RCU kernel configuration parameters and print informative
23 * messages about anything out of the ordinary.
25 static void __init
rcu_bootup_announce_oddness(void)
27 if (IS_ENABLED(CONFIG_RCU_TRACE
))
28 pr_info("\tRCU event tracing is enabled.\n");
29 if ((IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 64) ||
30 (!IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 32))
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ
))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 if (IS_ENABLED(CONFIG_PROVE_RCU
))
38 pr_info("\tRCU lockdep checking is enabled.\n");
39 if (RCU_NUM_LVLS
>= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 if (RCU_FANOUT_LEAF
!= 16)
42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
44 if (rcu_fanout_leaf
!= RCU_FANOUT_LEAF
)
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
47 if (nr_cpu_ids
!= NR_CPUS
)
48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS
, nr_cpu_ids
);
49 #ifdef CONFIG_RCU_BOOST
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio
, CONFIG_RCU_BOOST_DELAY
);
53 if (blimit
!= DEFAULT_RCU_BLIMIT
)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit
);
55 if (qhimark
!= DEFAULT_RCU_QHIMARK
)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark
);
57 if (qlowmark
!= DEFAULT_RCU_QLOMARK
)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark
);
59 if (qovld
!= DEFAULT_RCU_QOVLD
)
60 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld
);
61 if (jiffies_till_first_fqs
!= ULONG_MAX
)
62 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs
);
63 if (jiffies_till_next_fqs
!= ULONG_MAX
)
64 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs
);
65 if (jiffies_till_sched_qs
!= ULONG_MAX
)
66 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs
);
67 if (rcu_kick_kthreads
)
68 pr_info("\tKick kthreads if too-long grace period.\n");
69 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD
))
70 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
72 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay
);
74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay
);
76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay
);
78 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
79 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
))
80 pr_info("\tRCU debug extended QS entry/exit.\n");
81 rcupdate_announce_bootup_oddness();
84 #ifdef CONFIG_PREEMPT_RCU
86 static void rcu_report_exp_rnp(struct rcu_node
*rnp
, bool wake
);
87 static void rcu_read_unlock_special(struct task_struct
*t
);
90 * Tell them what RCU they are running.
92 static void __init
rcu_bootup_announce(void)
94 pr_info("Preemptible hierarchical RCU implementation.\n");
95 rcu_bootup_announce_oddness();
98 /* Flags for rcu_preempt_ctxt_queue() decision table. */
99 #define RCU_GP_TASKS 0x8
100 #define RCU_EXP_TASKS 0x4
101 #define RCU_GP_BLKD 0x2
102 #define RCU_EXP_BLKD 0x1
105 * Queues a task preempted within an RCU-preempt read-side critical
106 * section into the appropriate location within the ->blkd_tasks list,
107 * depending on the states of any ongoing normal and expedited grace
108 * periods. The ->gp_tasks pointer indicates which element the normal
109 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
110 * indicates which element the expedited grace period is waiting on (again,
111 * NULL if none). If a grace period is waiting on a given element in the
112 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
113 * adding a task to the tail of the list blocks any grace period that is
114 * already waiting on one of the elements. In contrast, adding a task
115 * to the head of the list won't block any grace period that is already
116 * waiting on one of the elements.
118 * This queuing is imprecise, and can sometimes make an ongoing grace
119 * period wait for a task that is not strictly speaking blocking it.
120 * Given the choice, we needlessly block a normal grace period rather than
121 * blocking an expedited grace period.
123 * Note that an endless sequence of expedited grace periods still cannot
124 * indefinitely postpone a normal grace period. Eventually, all of the
125 * fixed number of preempted tasks blocking the normal grace period that are
126 * not also blocking the expedited grace period will resume and complete
127 * their RCU read-side critical sections. At that point, the ->gp_tasks
128 * pointer will equal the ->exp_tasks pointer, at which point the end of
129 * the corresponding expedited grace period will also be the end of the
130 * normal grace period.
132 static void rcu_preempt_ctxt_queue(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
133 __releases(rnp
->lock
) /* But leaves rrupts disabled. */
135 int blkd_state
= (rnp
->gp_tasks
? RCU_GP_TASKS
: 0) +
136 (rnp
->exp_tasks
? RCU_EXP_TASKS
: 0) +
137 (rnp
->qsmask
& rdp
->grpmask
? RCU_GP_BLKD
: 0) +
138 (rnp
->expmask
& rdp
->grpmask
? RCU_EXP_BLKD
: 0);
139 struct task_struct
*t
= current
;
141 raw_lockdep_assert_held_rcu_node(rnp
);
142 WARN_ON_ONCE(rdp
->mynode
!= rnp
);
143 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
144 /* RCU better not be waiting on newly onlined CPUs! */
145 WARN_ON_ONCE(rnp
->qsmaskinitnext
& ~rnp
->qsmaskinit
& rnp
->qsmask
&
149 * Decide where to queue the newly blocked task. In theory,
150 * this could be an if-statement. In practice, when I tried
151 * that, it was quite messy.
153 switch (blkd_state
) {
156 case RCU_EXP_TASKS
+ RCU_GP_BLKD
:
158 case RCU_GP_TASKS
+ RCU_EXP_TASKS
:
161 * Blocking neither GP, or first task blocking the normal
162 * GP but not blocking the already-waiting expedited GP.
163 * Queue at the head of the list to avoid unnecessarily
164 * blocking the already-waiting GPs.
166 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
171 case RCU_GP_BLKD
+ RCU_EXP_BLKD
:
172 case RCU_GP_TASKS
+ RCU_EXP_BLKD
:
173 case RCU_GP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
174 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
177 * First task arriving that blocks either GP, or first task
178 * arriving that blocks the expedited GP (with the normal
179 * GP already waiting), or a task arriving that blocks
180 * both GPs with both GPs already waiting. Queue at the
181 * tail of the list to avoid any GP waiting on any of the
182 * already queued tasks that are not blocking it.
184 list_add_tail(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
187 case RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
188 case RCU_EXP_TASKS
+ RCU_GP_BLKD
+ RCU_EXP_BLKD
:
189 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_EXP_BLKD
:
192 * Second or subsequent task blocking the expedited GP.
193 * The task either does not block the normal GP, or is the
194 * first task blocking the normal GP. Queue just after
195 * the first task blocking the expedited GP.
197 list_add(&t
->rcu_node_entry
, rnp
->exp_tasks
);
200 case RCU_GP_TASKS
+ RCU_GP_BLKD
:
201 case RCU_GP_TASKS
+ RCU_EXP_TASKS
+ RCU_GP_BLKD
:
204 * Second or subsequent task blocking the normal GP.
205 * The task does not block the expedited GP. Queue just
206 * after the first task blocking the normal GP.
208 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
);
213 /* Yet another exercise in excessive paranoia. */
219 * We have now queued the task. If it was the first one to
220 * block either grace period, update the ->gp_tasks and/or
221 * ->exp_tasks pointers, respectively, to reference the newly
224 if (!rnp
->gp_tasks
&& (blkd_state
& RCU_GP_BLKD
)) {
225 WRITE_ONCE(rnp
->gp_tasks
, &t
->rcu_node_entry
);
226 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
);
228 if (!rnp
->exp_tasks
&& (blkd_state
& RCU_EXP_BLKD
))
229 WRITE_ONCE(rnp
->exp_tasks
, &t
->rcu_node_entry
);
230 WARN_ON_ONCE(!(blkd_state
& RCU_GP_BLKD
) !=
231 !(rnp
->qsmask
& rdp
->grpmask
));
232 WARN_ON_ONCE(!(blkd_state
& RCU_EXP_BLKD
) !=
233 !(rnp
->expmask
& rdp
->grpmask
));
234 raw_spin_unlock_rcu_node(rnp
); /* interrupts remain disabled. */
237 * Report the quiescent state for the expedited GP. This expedited
238 * GP should not be able to end until we report, so there should be
239 * no need to check for a subsequent expedited GP. (Though we are
240 * still in a quiescent state in any case.)
242 if (blkd_state
& RCU_EXP_BLKD
&& rdp
->exp_deferred_qs
)
243 rcu_report_exp_rdp(rdp
);
245 WARN_ON_ONCE(rdp
->exp_deferred_qs
);
249 * Record a preemptible-RCU quiescent state for the specified CPU.
250 * Note that this does not necessarily mean that the task currently running
251 * on the CPU is in a quiescent state: Instead, it means that the current
252 * grace period need not wait on any RCU read-side critical section that
253 * starts later on this CPU. It also means that if the current task is
254 * in an RCU read-side critical section, it has already added itself to
255 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
256 * current task, there might be any number of other tasks blocked while
257 * in an RCU read-side critical section.
259 * Callers to this function must disable preemption.
261 static void rcu_qs(void)
263 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
264 if (__this_cpu_read(rcu_data
.cpu_no_qs
.s
)) {
265 trace_rcu_grace_period(TPS("rcu_preempt"),
266 __this_cpu_read(rcu_data
.gp_seq
),
268 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.norm
, false);
269 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
270 WRITE_ONCE(current
->rcu_read_unlock_special
.b
.need_qs
, false);
275 * We have entered the scheduler, and the current task might soon be
276 * context-switched away from. If this task is in an RCU read-side
277 * critical section, we will no longer be able to rely on the CPU to
278 * record that fact, so we enqueue the task on the blkd_tasks list.
279 * The task will dequeue itself when it exits the outermost enclosing
280 * RCU read-side critical section. Therefore, the current grace period
281 * cannot be permitted to complete until the blkd_tasks list entries
282 * predating the current grace period drain, in other words, until
283 * rnp->gp_tasks becomes NULL.
285 * Caller must disable interrupts.
287 void rcu_note_context_switch(bool preempt
)
289 struct task_struct
*t
= current
;
290 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
291 struct rcu_node
*rnp
;
293 trace_rcu_utilization(TPS("Start context switch"));
294 lockdep_assert_irqs_disabled();
295 WARN_ON_ONCE(!preempt
&& rcu_preempt_depth() > 0);
296 if (rcu_preempt_depth() > 0 &&
297 !t
->rcu_read_unlock_special
.b
.blocked
) {
299 /* Possibly blocking in an RCU read-side critical section. */
301 raw_spin_lock_rcu_node(rnp
);
302 t
->rcu_read_unlock_special
.b
.blocked
= true;
303 t
->rcu_blocked_node
= rnp
;
306 * Verify the CPU's sanity, trace the preemption, and
307 * then queue the task as required based on the states
308 * of any ongoing and expedited grace periods.
310 WARN_ON_ONCE((rdp
->grpmask
& rcu_rnp_online_cpus(rnp
)) == 0);
311 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
312 trace_rcu_preempt_task(rcu_state
.name
,
314 (rnp
->qsmask
& rdp
->grpmask
)
316 : rcu_seq_snap(&rnp
->gp_seq
));
317 rcu_preempt_ctxt_queue(rnp
, rdp
);
319 rcu_preempt_deferred_qs(t
);
323 * Either we were not in an RCU read-side critical section to
324 * begin with, or we have now recorded that critical section
325 * globally. Either way, we can now note a quiescent state
326 * for this CPU. Again, if we were in an RCU read-side critical
327 * section, and if that critical section was blocking the current
328 * grace period, then the fact that the task has been enqueued
329 * means that we continue to block the current grace period.
332 if (rdp
->exp_deferred_qs
)
333 rcu_report_exp_rdp(rdp
);
334 rcu_tasks_qs(current
, preempt
);
335 trace_rcu_utilization(TPS("End context switch"));
337 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
340 * Check for preempted RCU readers blocking the current grace period
341 * for the specified rcu_node structure. If the caller needs a reliable
342 * answer, it must hold the rcu_node's ->lock.
344 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
346 return READ_ONCE(rnp
->gp_tasks
) != NULL
;
349 /* limit value for ->rcu_read_lock_nesting. */
350 #define RCU_NEST_PMAX (INT_MAX / 2)
352 static void rcu_preempt_read_enter(void)
354 current
->rcu_read_lock_nesting
++;
357 static int rcu_preempt_read_exit(void)
359 return --current
->rcu_read_lock_nesting
;
362 static void rcu_preempt_depth_set(int val
)
364 current
->rcu_read_lock_nesting
= val
;
368 * Preemptible RCU implementation for rcu_read_lock().
369 * Just increment ->rcu_read_lock_nesting, shared state will be updated
372 void __rcu_read_lock(void)
374 rcu_preempt_read_enter();
375 if (IS_ENABLED(CONFIG_PROVE_LOCKING
))
376 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX
);
377 barrier(); /* critical section after entry code. */
379 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
382 * Preemptible RCU implementation for rcu_read_unlock().
383 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
384 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
385 * invoke rcu_read_unlock_special() to clean up after a context switch
386 * in an RCU read-side critical section and other special cases.
388 void __rcu_read_unlock(void)
390 struct task_struct
*t
= current
;
392 if (rcu_preempt_read_exit() == 0) {
393 barrier(); /* critical section before exit code. */
394 if (unlikely(READ_ONCE(t
->rcu_read_unlock_special
.s
)))
395 rcu_read_unlock_special(t
);
397 if (IS_ENABLED(CONFIG_PROVE_LOCKING
)) {
398 int rrln
= rcu_preempt_depth();
400 WARN_ON_ONCE(rrln
< 0 || rrln
> RCU_NEST_PMAX
);
403 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
406 * Advance a ->blkd_tasks-list pointer to the next entry, instead
407 * returning NULL if at the end of the list.
409 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
410 struct rcu_node
*rnp
)
412 struct list_head
*np
;
414 np
= t
->rcu_node_entry
.next
;
415 if (np
== &rnp
->blkd_tasks
)
421 * Return true if the specified rcu_node structure has tasks that were
422 * preempted within an RCU read-side critical section.
424 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
426 return !list_empty(&rnp
->blkd_tasks
);
430 * Report deferred quiescent states. The deferral time can
431 * be quite short, for example, in the case of the call from
432 * rcu_read_unlock_special().
435 rcu_preempt_deferred_qs_irqrestore(struct task_struct
*t
, unsigned long flags
)
440 struct list_head
*np
;
441 bool drop_boost_mutex
= false;
442 struct rcu_data
*rdp
;
443 struct rcu_node
*rnp
;
444 union rcu_special special
;
447 * If RCU core is waiting for this CPU to exit its critical section,
448 * report the fact that it has exited. Because irqs are disabled,
449 * t->rcu_read_unlock_special cannot change.
451 special
= t
->rcu_read_unlock_special
;
452 rdp
= this_cpu_ptr(&rcu_data
);
453 if (!special
.s
&& !rdp
->exp_deferred_qs
) {
454 local_irq_restore(flags
);
457 t
->rcu_read_unlock_special
.s
= 0;
458 if (special
.b
.need_qs
)
462 * Respond to a request by an expedited grace period for a
463 * quiescent state from this CPU. Note that requests from
464 * tasks are handled when removing the task from the
465 * blocked-tasks list below.
467 if (rdp
->exp_deferred_qs
)
468 rcu_report_exp_rdp(rdp
);
470 /* Clean up if blocked during RCU read-side critical section. */
471 if (special
.b
.blocked
) {
474 * Remove this task from the list it blocked on. The task
475 * now remains queued on the rcu_node corresponding to the
476 * CPU it first blocked on, so there is no longer any need
477 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
479 rnp
= t
->rcu_blocked_node
;
480 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
481 WARN_ON_ONCE(rnp
!= t
->rcu_blocked_node
);
482 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
483 empty_norm
= !rcu_preempt_blocked_readers_cgp(rnp
);
484 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
&&
485 (!empty_norm
|| rnp
->qsmask
));
486 empty_exp
= sync_rcu_exp_done(rnp
);
487 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
488 np
= rcu_next_node_entry(t
, rnp
);
489 list_del_init(&t
->rcu_node_entry
);
490 t
->rcu_blocked_node
= NULL
;
491 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
492 rnp
->gp_seq
, t
->pid
);
493 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
494 WRITE_ONCE(rnp
->gp_tasks
, np
);
495 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
496 WRITE_ONCE(rnp
->exp_tasks
, np
);
497 if (IS_ENABLED(CONFIG_RCU_BOOST
)) {
498 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
499 drop_boost_mutex
= rt_mutex_owner(&rnp
->boost_mtx
) == t
;
500 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
501 WRITE_ONCE(rnp
->boost_tasks
, np
);
505 * If this was the last task on the current list, and if
506 * we aren't waiting on any CPUs, report the quiescent state.
507 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
508 * so we must take a snapshot of the expedited state.
510 empty_exp_now
= sync_rcu_exp_done(rnp
);
511 if (!empty_norm
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
512 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
519 rcu_report_unblock_qs_rnp(rnp
, flags
);
521 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
524 /* Unboost if we were boosted. */
525 if (IS_ENABLED(CONFIG_RCU_BOOST
) && drop_boost_mutex
)
526 rt_mutex_futex_unlock(&rnp
->boost_mtx
);
529 * If this was the last task on the expedited lists,
530 * then we need to report up the rcu_node hierarchy.
532 if (!empty_exp
&& empty_exp_now
)
533 rcu_report_exp_rnp(rnp
, true);
535 local_irq_restore(flags
);
540 * Is a deferred quiescent-state pending, and are we also not in
541 * an RCU read-side critical section? It is the caller's responsibility
542 * to ensure it is otherwise safe to report any deferred quiescent
543 * states. The reason for this is that it is safe to report a
544 * quiescent state during context switch even though preemption
545 * is disabled. This function cannot be expected to understand these
546 * nuances, so the caller must handle them.
548 static bool rcu_preempt_need_deferred_qs(struct task_struct
*t
)
550 return (__this_cpu_read(rcu_data
.exp_deferred_qs
) ||
551 READ_ONCE(t
->rcu_read_unlock_special
.s
)) &&
552 rcu_preempt_depth() == 0;
556 * Report a deferred quiescent state if needed and safe to do so.
557 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
558 * not being in an RCU read-side critical section. The caller must
559 * evaluate safety in terms of interrupt, softirq, and preemption
562 static void rcu_preempt_deferred_qs(struct task_struct
*t
)
566 if (!rcu_preempt_need_deferred_qs(t
))
568 local_irq_save(flags
);
569 rcu_preempt_deferred_qs_irqrestore(t
, flags
);
573 * Minimal handler to give the scheduler a chance to re-evaluate.
575 static void rcu_preempt_deferred_qs_handler(struct irq_work
*iwp
)
577 struct rcu_data
*rdp
;
579 rdp
= container_of(iwp
, struct rcu_data
, defer_qs_iw
);
580 rdp
->defer_qs_iw_pending
= false;
584 * Handle special cases during rcu_read_unlock(), such as needing to
585 * notify RCU core processing or task having blocked during the RCU
586 * read-side critical section.
588 static void rcu_read_unlock_special(struct task_struct
*t
)
591 bool preempt_bh_were_disabled
=
592 !!(preempt_count() & (PREEMPT_MASK
| SOFTIRQ_MASK
));
593 bool irqs_were_disabled
;
595 /* NMI handlers cannot block and cannot safely manipulate state. */
599 local_irq_save(flags
);
600 irqs_were_disabled
= irqs_disabled_flags(flags
);
601 if (preempt_bh_were_disabled
|| irqs_were_disabled
) {
603 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
604 struct rcu_node
*rnp
= rdp
->mynode
;
606 exp
= (t
->rcu_blocked_node
&&
607 READ_ONCE(t
->rcu_blocked_node
->exp_tasks
)) ||
608 (rdp
->grpmask
& READ_ONCE(rnp
->expmask
));
609 // Need to defer quiescent state until everything is enabled.
610 if (use_softirq
&& (in_irq() || (exp
&& !irqs_were_disabled
))) {
611 // Using softirq, safe to awaken, and either the
612 // wakeup is free or there is an expedited GP.
613 raise_softirq_irqoff(RCU_SOFTIRQ
);
615 // Enabling BH or preempt does reschedule, so...
616 // Also if no expediting, slow is OK.
617 // Plus nohz_full CPUs eventually get tick enabled.
618 set_tsk_need_resched(current
);
619 set_preempt_need_resched();
620 if (IS_ENABLED(CONFIG_IRQ_WORK
) && irqs_were_disabled
&&
621 !rdp
->defer_qs_iw_pending
&& exp
) {
622 // Get scheduler to re-evaluate and call hooks.
623 // If !IRQ_WORK, FQS scan will eventually IPI.
624 init_irq_work(&rdp
->defer_qs_iw
,
625 rcu_preempt_deferred_qs_handler
);
626 rdp
->defer_qs_iw_pending
= true;
627 irq_work_queue_on(&rdp
->defer_qs_iw
, rdp
->cpu
);
630 local_irq_restore(flags
);
633 rcu_preempt_deferred_qs_irqrestore(t
, flags
);
637 * Check that the list of blocked tasks for the newly completed grace
638 * period is in fact empty. It is a serious bug to complete a grace
639 * period that still has RCU readers blocked! This function must be
640 * invoked -before- updating this rnp's ->gp_seq.
642 * Also, if there are blocked tasks on the list, they automatically
643 * block the newly created grace period, so set up ->gp_tasks accordingly.
645 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
647 struct task_struct
*t
;
649 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
650 raw_lockdep_assert_held_rcu_node(rnp
);
651 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)))
652 dump_blkd_tasks(rnp
, 10);
653 if (rcu_preempt_has_tasks(rnp
) &&
654 (rnp
->qsmaskinit
|| rnp
->wait_blkd_tasks
)) {
655 WRITE_ONCE(rnp
->gp_tasks
, rnp
->blkd_tasks
.next
);
656 t
= container_of(rnp
->gp_tasks
, struct task_struct
,
658 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
659 rnp
->gp_seq
, t
->pid
);
661 WARN_ON_ONCE(rnp
->qsmask
);
665 * Check for a quiescent state from the current CPU, including voluntary
666 * context switches for Tasks RCU. When a task blocks, the task is
667 * recorded in the corresponding CPU's rcu_node structure, which is checked
668 * elsewhere, hence this function need only check for quiescent states
669 * related to the current CPU, not to those related to tasks.
671 static void rcu_flavor_sched_clock_irq(int user
)
673 struct task_struct
*t
= current
;
675 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
676 rcu_note_voluntary_context_switch(current
);
678 if (rcu_preempt_depth() > 0 ||
679 (preempt_count() & (PREEMPT_MASK
| SOFTIRQ_MASK
))) {
680 /* No QS, force context switch if deferred. */
681 if (rcu_preempt_need_deferred_qs(t
)) {
682 set_tsk_need_resched(t
);
683 set_preempt_need_resched();
685 } else if (rcu_preempt_need_deferred_qs(t
)) {
686 rcu_preempt_deferred_qs(t
); /* Report deferred QS. */
688 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
689 rcu_qs(); /* Report immediate QS. */
693 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
694 if (rcu_preempt_depth() > 0 &&
695 __this_cpu_read(rcu_data
.core_needs_qs
) &&
696 __this_cpu_read(rcu_data
.cpu_no_qs
.b
.norm
) &&
697 !t
->rcu_read_unlock_special
.b
.need_qs
&&
698 time_after(jiffies
, rcu_state
.gp_start
+ HZ
))
699 t
->rcu_read_unlock_special
.b
.need_qs
= true;
703 * Check for a task exiting while in a preemptible-RCU read-side
704 * critical section, clean up if so. No need to issue warnings, as
705 * debug_check_no_locks_held() already does this if lockdep is enabled.
706 * Besides, if this function does anything other than just immediately
707 * return, there was a bug of some sort. Spewing warnings from this
708 * function is like as not to simply obscure important prior warnings.
712 struct task_struct
*t
= current
;
714 if (unlikely(!list_empty(¤t
->rcu_node_entry
))) {
715 rcu_preempt_depth_set(1);
717 WRITE_ONCE(t
->rcu_read_unlock_special
.b
.blocked
, true);
718 } else if (unlikely(rcu_preempt_depth())) {
719 rcu_preempt_depth_set(1);
724 rcu_preempt_deferred_qs(current
);
728 * Dump the blocked-tasks state, but limit the list dump to the
729 * specified number of elements.
732 dump_blkd_tasks(struct rcu_node
*rnp
, int ncheck
)
736 struct list_head
*lhp
;
738 struct rcu_data
*rdp
;
739 struct rcu_node
*rnp1
;
741 raw_lockdep_assert_held_rcu_node(rnp
);
742 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
743 __func__
, rnp
->grplo
, rnp
->grphi
, rnp
->level
,
744 (long)READ_ONCE(rnp
->gp_seq
), (long)rnp
->completedqs
);
745 for (rnp1
= rnp
; rnp1
; rnp1
= rnp1
->parent
)
746 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
747 __func__
, rnp1
->grplo
, rnp1
->grphi
, rnp1
->qsmask
, rnp1
->qsmaskinit
, rnp1
->qsmaskinitnext
);
748 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
749 __func__
, READ_ONCE(rnp
->gp_tasks
), data_race(rnp
->boost_tasks
),
750 READ_ONCE(rnp
->exp_tasks
));
751 pr_info("%s: ->blkd_tasks", __func__
);
753 list_for_each(lhp
, &rnp
->blkd_tasks
) {
759 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++) {
760 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
761 onl
= !!(rdp
->grpmask
& rcu_rnp_online_cpus(rnp
));
762 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
764 (long)rdp
->rcu_onl_gp_seq
, rdp
->rcu_onl_gp_flags
,
765 (long)rdp
->rcu_ofl_gp_seq
, rdp
->rcu_ofl_gp_flags
);
769 #else /* #ifdef CONFIG_PREEMPT_RCU */
772 * Tell them what RCU they are running.
774 static void __init
rcu_bootup_announce(void)
776 pr_info("Hierarchical RCU implementation.\n");
777 rcu_bootup_announce_oddness();
781 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
782 * how many quiescent states passed, just if there was at least one since
783 * the start of the grace period, this just sets a flag. The caller must
784 * have disabled preemption.
786 static void rcu_qs(void)
788 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
789 if (!__this_cpu_read(rcu_data
.cpu_no_qs
.s
))
791 trace_rcu_grace_period(TPS("rcu_sched"),
792 __this_cpu_read(rcu_data
.gp_seq
), TPS("cpuqs"));
793 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.norm
, false);
794 if (!__this_cpu_read(rcu_data
.cpu_no_qs
.b
.exp
))
796 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.exp
, false);
797 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data
));
801 * Register an urgently needed quiescent state. If there is an
802 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
803 * dyntick-idle quiescent state visible to other CPUs, which will in
804 * some cases serve for expedited as well as normal grace periods.
805 * Either way, register a lightweight quiescent state.
807 void rcu_all_qs(void)
811 if (!raw_cpu_read(rcu_data
.rcu_urgent_qs
))
814 /* Load rcu_urgent_qs before other flags. */
815 if (!smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
))) {
819 this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
820 if (unlikely(raw_cpu_read(rcu_data
.rcu_need_heavy_qs
))) {
821 local_irq_save(flags
);
822 rcu_momentary_dyntick_idle();
823 local_irq_restore(flags
);
828 EXPORT_SYMBOL_GPL(rcu_all_qs
);
831 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
833 void rcu_note_context_switch(bool preempt
)
835 trace_rcu_utilization(TPS("Start context switch"));
837 /* Load rcu_urgent_qs before other flags. */
838 if (!smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
)))
840 this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
841 if (unlikely(raw_cpu_read(rcu_data
.rcu_need_heavy_qs
)))
842 rcu_momentary_dyntick_idle();
843 rcu_tasks_qs(current
, preempt
);
845 trace_rcu_utilization(TPS("End context switch"));
847 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
850 * Because preemptible RCU does not exist, there are never any preempted
853 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
859 * Because there is no preemptible RCU, there can be no readers blocked.
861 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
867 * Because there is no preemptible RCU, there can be no deferred quiescent
870 static bool rcu_preempt_need_deferred_qs(struct task_struct
*t
)
874 static void rcu_preempt_deferred_qs(struct task_struct
*t
) { }
877 * Because there is no preemptible RCU, there can be no readers blocked,
878 * so there is no need to check for blocked tasks. So check only for
879 * bogus qsmask values.
881 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
883 WARN_ON_ONCE(rnp
->qsmask
);
887 * Check to see if this CPU is in a non-context-switch quiescent state,
888 * namely user mode and idle loop.
890 static void rcu_flavor_sched_clock_irq(int user
)
892 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
895 * Get here if this CPU took its interrupt from user
896 * mode or from the idle loop, and if this is not a
897 * nested interrupt. In this case, the CPU is in
898 * a quiescent state, so note it.
900 * No memory barrier is required here because rcu_qs()
901 * references only CPU-local variables that other CPUs
902 * neither access nor modify, at least not while the
903 * corresponding CPU is online.
911 * Because preemptible RCU does not exist, tasks cannot possibly exit
912 * while in preemptible RCU read-side critical sections.
919 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
922 dump_blkd_tasks(struct rcu_node
*rnp
, int ncheck
)
924 WARN_ON_ONCE(!list_empty(&rnp
->blkd_tasks
));
927 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
930 * If boosting, set rcuc kthreads to realtime priority.
932 static void rcu_cpu_kthread_setup(unsigned int cpu
)
934 #ifdef CONFIG_RCU_BOOST
935 struct sched_param sp
;
937 sp
.sched_priority
= kthread_prio
;
938 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
939 #endif /* #ifdef CONFIG_RCU_BOOST */
942 #ifdef CONFIG_RCU_BOOST
945 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
946 * or ->boost_tasks, advancing the pointer to the next task in the
949 * Note that irqs must be enabled: boosting the task can block.
950 * Returns 1 if there are more tasks needing to be boosted.
952 static int rcu_boost(struct rcu_node
*rnp
)
955 struct task_struct
*t
;
956 struct list_head
*tb
;
958 if (READ_ONCE(rnp
->exp_tasks
) == NULL
&&
959 READ_ONCE(rnp
->boost_tasks
) == NULL
)
960 return 0; /* Nothing left to boost. */
962 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
965 * Recheck under the lock: all tasks in need of boosting
966 * might exit their RCU read-side critical sections on their own.
968 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
969 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
974 * Preferentially boost tasks blocking expedited grace periods.
975 * This cannot starve the normal grace periods because a second
976 * expedited grace period must boost all blocked tasks, including
977 * those blocking the pre-existing normal grace period.
979 if (rnp
->exp_tasks
!= NULL
)
982 tb
= rnp
->boost_tasks
;
985 * We boost task t by manufacturing an rt_mutex that appears to
986 * be held by task t. We leave a pointer to that rt_mutex where
987 * task t can find it, and task t will release the mutex when it
988 * exits its outermost RCU read-side critical section. Then
989 * simply acquiring this artificial rt_mutex will boost task
990 * t's priority. (Thanks to tglx for suggesting this approach!)
992 * Note that task t must acquire rnp->lock to remove itself from
993 * the ->blkd_tasks list, which it will do from exit() if from
994 * nowhere else. We therefore are guaranteed that task t will
995 * stay around at least until we drop rnp->lock. Note that
996 * rnp->lock also resolves races between our priority boosting
997 * and task t's exiting its outermost RCU read-side critical
1000 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1001 rt_mutex_init_proxy_locked(&rnp
->boost_mtx
, t
);
1002 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1003 /* Lock only for side effect: boosts task t's priority. */
1004 rt_mutex_lock(&rnp
->boost_mtx
);
1005 rt_mutex_unlock(&rnp
->boost_mtx
); /* Then keep lockdep happy. */
1007 return READ_ONCE(rnp
->exp_tasks
) != NULL
||
1008 READ_ONCE(rnp
->boost_tasks
) != NULL
;
1012 * Priority-boosting kthread, one per leaf rcu_node.
1014 static int rcu_boost_kthread(void *arg
)
1016 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1020 trace_rcu_utilization(TPS("Start boost kthread@init"));
1022 WRITE_ONCE(rnp
->boost_kthread_status
, RCU_KTHREAD_WAITING
);
1023 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1024 rcu_wait(READ_ONCE(rnp
->boost_tasks
) ||
1025 READ_ONCE(rnp
->exp_tasks
));
1026 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1027 WRITE_ONCE(rnp
->boost_kthread_status
, RCU_KTHREAD_RUNNING
);
1028 more2boost
= rcu_boost(rnp
);
1034 WRITE_ONCE(rnp
->boost_kthread_status
, RCU_KTHREAD_YIELDING
);
1035 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1036 schedule_timeout_idle(2);
1037 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1042 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1047 * Check to see if it is time to start boosting RCU readers that are
1048 * blocking the current grace period, and, if so, tell the per-rcu_node
1049 * kthread to start boosting them. If there is an expedited grace
1050 * period in progress, it is always time to boost.
1052 * The caller must hold rnp->lock, which this function releases.
1053 * The ->boost_kthread_task is immortal, so we don't need to worry
1054 * about it going away.
1056 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1057 __releases(rnp
->lock
)
1059 raw_lockdep_assert_held_rcu_node(rnp
);
1060 if (!rcu_preempt_blocked_readers_cgp(rnp
) && rnp
->exp_tasks
== NULL
) {
1061 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1064 if (rnp
->exp_tasks
!= NULL
||
1065 (rnp
->gp_tasks
!= NULL
&&
1066 rnp
->boost_tasks
== NULL
&&
1068 (!time_after(rnp
->boost_time
, jiffies
) || rcu_state
.cbovld
))) {
1069 if (rnp
->exp_tasks
== NULL
)
1070 WRITE_ONCE(rnp
->boost_tasks
, rnp
->gp_tasks
);
1071 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1072 rcu_wake_cond(rnp
->boost_kthread_task
,
1073 READ_ONCE(rnp
->boost_kthread_status
));
1075 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1080 * Is the current CPU running the RCU-callbacks kthread?
1081 * Caller must have preemption disabled.
1083 static bool rcu_is_callbacks_kthread(void)
1085 return __this_cpu_read(rcu_data
.rcu_cpu_kthread_task
) == current
;
1088 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1091 * Do priority-boost accounting for the start of a new grace period.
1093 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1095 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1099 * Create an RCU-boost kthread for the specified node if one does not
1100 * already exist. We only create this kthread for preemptible RCU.
1101 * Returns zero if all is well, a negated errno otherwise.
1103 static void rcu_spawn_one_boost_kthread(struct rcu_node
*rnp
)
1105 int rnp_index
= rnp
- rcu_get_root();
1106 unsigned long flags
;
1107 struct sched_param sp
;
1108 struct task_struct
*t
;
1110 if (!IS_ENABLED(CONFIG_PREEMPT_RCU
))
1113 if (!rcu_scheduler_fully_active
|| rcu_rnp_online_cpus(rnp
) == 0)
1116 rcu_state
.boost
= 1;
1118 if (rnp
->boost_kthread_task
!= NULL
)
1121 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1122 "rcub/%d", rnp_index
);
1123 if (WARN_ON_ONCE(IS_ERR(t
)))
1126 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1127 rnp
->boost_kthread_task
= t
;
1128 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1129 sp
.sched_priority
= kthread_prio
;
1130 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1131 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1135 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1136 * served by the rcu_node in question. The CPU hotplug lock is still
1137 * held, so the value of rnp->qsmaskinit will be stable.
1139 * We don't include outgoingcpu in the affinity set, use -1 if there is
1140 * no outgoing CPU. If there are no CPUs left in the affinity set,
1141 * this function allows the kthread to execute on any CPU.
1143 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1145 struct task_struct
*t
= rnp
->boost_kthread_task
;
1146 unsigned long mask
= rcu_rnp_online_cpus(rnp
);
1152 if (!zalloc_cpumask_var(&cm
, GFP_KERNEL
))
1154 for_each_leaf_node_possible_cpu(rnp
, cpu
)
1155 if ((mask
& leaf_node_cpu_bit(rnp
, cpu
)) &&
1157 cpumask_set_cpu(cpu
, cm
);
1158 if (cpumask_weight(cm
) == 0)
1160 set_cpus_allowed_ptr(t
, cm
);
1161 free_cpumask_var(cm
);
1165 * Spawn boost kthreads -- called as soon as the scheduler is running.
1167 static void __init
rcu_spawn_boost_kthreads(void)
1169 struct rcu_node
*rnp
;
1171 rcu_for_each_leaf_node(rnp
)
1172 rcu_spawn_one_boost_kthread(rnp
);
1175 static void rcu_prepare_kthreads(int cpu
)
1177 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
1178 struct rcu_node
*rnp
= rdp
->mynode
;
1180 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1181 if (rcu_scheduler_fully_active
)
1182 rcu_spawn_one_boost_kthread(rnp
);
1185 #else /* #ifdef CONFIG_RCU_BOOST */
1187 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1188 __releases(rnp
->lock
)
1190 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1193 static bool rcu_is_callbacks_kthread(void)
1198 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1202 static void rcu_boost_kthread_setaffinity(struct rcu_node
*rnp
, int outgoingcpu
)
1206 static void __init
rcu_spawn_boost_kthreads(void)
1210 static void rcu_prepare_kthreads(int cpu
)
1214 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1216 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1219 * Check to see if any future non-offloaded RCU-related work will need
1220 * to be done by the current CPU, even if none need be done immediately,
1221 * returning 1 if so. This function is part of the RCU implementation;
1222 * it is -not- an exported member of the RCU API.
1224 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1225 * CPU has RCU callbacks queued.
1227 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1229 *nextevt
= KTIME_MAX
;
1230 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data
)->cblist
) &&
1231 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data
)->cblist
);
1235 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1238 static void rcu_cleanup_after_idle(void)
1243 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1246 static void rcu_prepare_for_idle(void)
1250 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1253 * This code is invoked when a CPU goes idle, at which point we want
1254 * to have the CPU do everything required for RCU so that it can enter
1255 * the energy-efficient dyntick-idle mode.
1257 * The following preprocessor symbol controls this:
1259 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1260 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1261 * is sized to be roughly one RCU grace period. Those energy-efficiency
1262 * benchmarkers who might otherwise be tempted to set this to a large
1263 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1264 * system. And if you are -that- concerned about energy efficiency,
1265 * just power the system down and be done with it!
1267 * The value below works well in practice. If future workloads require
1268 * adjustment, they can be converted into kernel config parameters, though
1269 * making the state machine smarter might be a better option.
1271 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1273 static int rcu_idle_gp_delay
= RCU_IDLE_GP_DELAY
;
1274 module_param(rcu_idle_gp_delay
, int, 0644);
1277 * Try to advance callbacks on the current CPU, but only if it has been
1278 * awhile since the last time we did so. Afterwards, if there are any
1279 * callbacks ready for immediate invocation, return true.
1281 static bool __maybe_unused
rcu_try_advance_all_cbs(void)
1283 bool cbs_ready
= false;
1284 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1285 struct rcu_node
*rnp
;
1287 /* Exit early if we advanced recently. */
1288 if (jiffies
== rdp
->last_advance_all
)
1290 rdp
->last_advance_all
= jiffies
;
1295 * Don't bother checking unless a grace period has
1296 * completed since we last checked and there are
1297 * callbacks not yet ready to invoke.
1299 if ((rcu_seq_completed_gp(rdp
->gp_seq
,
1300 rcu_seq_current(&rnp
->gp_seq
)) ||
1301 unlikely(READ_ONCE(rdp
->gpwrap
))) &&
1302 rcu_segcblist_pend_cbs(&rdp
->cblist
))
1303 note_gp_changes(rdp
);
1305 if (rcu_segcblist_ready_cbs(&rdp
->cblist
))
1311 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1312 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1313 * caller about what to set the timeout.
1315 * The caller must have disabled interrupts.
1317 int rcu_needs_cpu(u64 basemono
, u64
*nextevt
)
1319 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1322 lockdep_assert_irqs_disabled();
1324 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1325 if (rcu_segcblist_empty(&rdp
->cblist
) ||
1326 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data
)->cblist
)) {
1327 *nextevt
= KTIME_MAX
;
1331 /* Attempt to advance callbacks. */
1332 if (rcu_try_advance_all_cbs()) {
1333 /* Some ready to invoke, so initiate later invocation. */
1337 rdp
->last_accelerate
= jiffies
;
1339 /* Request timer and round. */
1340 dj
= round_up(rcu_idle_gp_delay
+ jiffies
, rcu_idle_gp_delay
) - jiffies
;
1342 *nextevt
= basemono
+ dj
* TICK_NSEC
;
1347 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1348 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1349 * major task is to accelerate (that is, assign grace-period numbers to) any
1350 * recently arrived callbacks.
1352 * The caller must have disabled interrupts.
1354 static void rcu_prepare_for_idle(void)
1357 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1358 struct rcu_node
*rnp
;
1361 lockdep_assert_irqs_disabled();
1362 if (rcu_segcblist_is_offloaded(&rdp
->cblist
))
1365 /* Handle nohz enablement switches conservatively. */
1366 tne
= READ_ONCE(tick_nohz_active
);
1367 if (tne
!= rdp
->tick_nohz_enabled_snap
) {
1368 if (!rcu_segcblist_empty(&rdp
->cblist
))
1369 invoke_rcu_core(); /* force nohz to see update. */
1370 rdp
->tick_nohz_enabled_snap
= tne
;
1377 * If we have not yet accelerated this jiffy, accelerate all
1378 * callbacks on this CPU.
1380 if (rdp
->last_accelerate
== jiffies
)
1382 rdp
->last_accelerate
= jiffies
;
1383 if (rcu_segcblist_pend_cbs(&rdp
->cblist
)) {
1385 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
1386 needwake
= rcu_accelerate_cbs(rnp
, rdp
);
1387 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
1389 rcu_gp_kthread_wake();
1394 * Clean up for exit from idle. Attempt to advance callbacks based on
1395 * any grace periods that elapsed while the CPU was idle, and if any
1396 * callbacks are now ready to invoke, initiate invocation.
1398 static void rcu_cleanup_after_idle(void)
1400 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
1402 lockdep_assert_irqs_disabled();
1403 if (rcu_segcblist_is_offloaded(&rdp
->cblist
))
1405 if (rcu_try_advance_all_cbs())
1409 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1411 #ifdef CONFIG_RCU_NOCB_CPU
1414 * Offload callback processing from the boot-time-specified set of CPUs
1415 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1416 * created that pull the callbacks from the corresponding CPU, wait for
1417 * a grace period to elapse, and invoke the callbacks. These kthreads
1418 * are organized into GP kthreads, which manage incoming callbacks, wait for
1419 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1420 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1421 * do a wake_up() on their GP kthread when they insert a callback into any
1422 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1423 * in which case each kthread actively polls its CPU. (Which isn't so great
1424 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1426 * This is intended to be used in conjunction with Frederic Weisbecker's
1427 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1428 * running CPU-bound user-mode computations.
1430 * Offloading of callbacks can also be used as an energy-efficiency
1431 * measure because CPUs with no RCU callbacks queued are more aggressive
1432 * about entering dyntick-idle mode.
1437 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1438 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1439 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1440 * given, a warning is emitted and all CPUs are offloaded.
1442 static int __init
rcu_nocb_setup(char *str
)
1444 alloc_bootmem_cpumask_var(&rcu_nocb_mask
);
1445 if (!strcasecmp(str
, "all"))
1446 cpumask_setall(rcu_nocb_mask
);
1448 if (cpulist_parse(str
, rcu_nocb_mask
)) {
1449 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1450 cpumask_setall(rcu_nocb_mask
);
1454 __setup("rcu_nocbs=", rcu_nocb_setup
);
1456 static int __init
parse_rcu_nocb_poll(char *arg
)
1458 rcu_nocb_poll
= true;
1461 early_param("rcu_nocb_poll", parse_rcu_nocb_poll
);
1464 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1465 * After all, the main point of bypassing is to avoid lock contention
1466 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1468 int nocb_nobypass_lim_per_jiffy
= 16 * 1000 / HZ
;
1469 module_param(nocb_nobypass_lim_per_jiffy
, int, 0);
1472 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1473 * lock isn't immediately available, increment ->nocb_lock_contended to
1474 * flag the contention.
1476 static void rcu_nocb_bypass_lock(struct rcu_data
*rdp
)
1477 __acquires(&rdp
->nocb_bypass_lock
)
1479 lockdep_assert_irqs_disabled();
1480 if (raw_spin_trylock(&rdp
->nocb_bypass_lock
))
1482 atomic_inc(&rdp
->nocb_lock_contended
);
1483 WARN_ON_ONCE(smp_processor_id() != rdp
->cpu
);
1484 smp_mb__after_atomic(); /* atomic_inc() before lock. */
1485 raw_spin_lock(&rdp
->nocb_bypass_lock
);
1486 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1487 atomic_dec(&rdp
->nocb_lock_contended
);
1491 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1492 * not contended. Please note that this is extremely special-purpose,
1493 * relying on the fact that at most two kthreads and one CPU contend for
1494 * this lock, and also that the two kthreads are guaranteed to have frequent
1495 * grace-period-duration time intervals between successive acquisitions
1496 * of the lock. This allows us to use an extremely simple throttling
1497 * mechanism, and further to apply it only to the CPU doing floods of
1498 * call_rcu() invocations. Don't try this at home!
1500 static void rcu_nocb_wait_contended(struct rcu_data
*rdp
)
1502 WARN_ON_ONCE(smp_processor_id() != rdp
->cpu
);
1503 while (WARN_ON_ONCE(atomic_read(&rdp
->nocb_lock_contended
)))
1508 * Conditionally acquire the specified rcu_data structure's
1509 * ->nocb_bypass_lock.
1511 static bool rcu_nocb_bypass_trylock(struct rcu_data
*rdp
)
1513 lockdep_assert_irqs_disabled();
1514 return raw_spin_trylock(&rdp
->nocb_bypass_lock
);
1518 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1520 static void rcu_nocb_bypass_unlock(struct rcu_data
*rdp
)
1521 __releases(&rdp
->nocb_bypass_lock
)
1523 lockdep_assert_irqs_disabled();
1524 raw_spin_unlock(&rdp
->nocb_bypass_lock
);
1528 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1529 * if it corresponds to a no-CBs CPU.
1531 static void rcu_nocb_lock(struct rcu_data
*rdp
)
1533 lockdep_assert_irqs_disabled();
1534 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
))
1536 raw_spin_lock(&rdp
->nocb_lock
);
1540 * Release the specified rcu_data structure's ->nocb_lock, but only
1541 * if it corresponds to a no-CBs CPU.
1543 static void rcu_nocb_unlock(struct rcu_data
*rdp
)
1545 if (rcu_segcblist_is_offloaded(&rdp
->cblist
)) {
1546 lockdep_assert_irqs_disabled();
1547 raw_spin_unlock(&rdp
->nocb_lock
);
1552 * Release the specified rcu_data structure's ->nocb_lock and restore
1553 * interrupts, but only if it corresponds to a no-CBs CPU.
1555 static void rcu_nocb_unlock_irqrestore(struct rcu_data
*rdp
,
1556 unsigned long flags
)
1558 if (rcu_segcblist_is_offloaded(&rdp
->cblist
)) {
1559 lockdep_assert_irqs_disabled();
1560 raw_spin_unlock_irqrestore(&rdp
->nocb_lock
, flags
);
1562 local_irq_restore(flags
);
1566 /* Lockdep check that ->cblist may be safely accessed. */
1567 static void rcu_lockdep_assert_cblist_protected(struct rcu_data
*rdp
)
1569 lockdep_assert_irqs_disabled();
1570 if (rcu_segcblist_is_offloaded(&rdp
->cblist
))
1571 lockdep_assert_held(&rdp
->nocb_lock
);
1575 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1578 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
1583 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
1585 return &rnp
->nocb_gp_wq
[rcu_seq_ctr(rnp
->gp_seq
) & 0x1];
1588 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
1590 init_swait_queue_head(&rnp
->nocb_gp_wq
[0]);
1591 init_swait_queue_head(&rnp
->nocb_gp_wq
[1]);
1594 /* Is the specified CPU a no-CBs CPU? */
1595 bool rcu_is_nocb_cpu(int cpu
)
1597 if (cpumask_available(rcu_nocb_mask
))
1598 return cpumask_test_cpu(cpu
, rcu_nocb_mask
);
1603 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
1604 * and this function releases it.
1606 static void wake_nocb_gp(struct rcu_data
*rdp
, bool force
,
1607 unsigned long flags
)
1608 __releases(rdp
->nocb_lock
)
1610 bool needwake
= false;
1611 struct rcu_data
*rdp_gp
= rdp
->nocb_gp_rdp
;
1613 lockdep_assert_held(&rdp
->nocb_lock
);
1614 if (!READ_ONCE(rdp_gp
->nocb_gp_kthread
)) {
1615 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1616 TPS("AlreadyAwake"));
1617 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1620 del_timer(&rdp
->nocb_timer
);
1621 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1622 raw_spin_lock_irqsave(&rdp_gp
->nocb_gp_lock
, flags
);
1623 if (force
|| READ_ONCE(rdp_gp
->nocb_gp_sleep
)) {
1624 WRITE_ONCE(rdp_gp
->nocb_gp_sleep
, false);
1626 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("DoWake"));
1628 raw_spin_unlock_irqrestore(&rdp_gp
->nocb_gp_lock
, flags
);
1630 wake_up_process(rdp_gp
->nocb_gp_kthread
);
1634 * Arrange to wake the GP kthread for this NOCB group at some future
1635 * time when it is safe to do so.
1637 static void wake_nocb_gp_defer(struct rcu_data
*rdp
, int waketype
,
1640 if (rdp
->nocb_defer_wakeup
== RCU_NOCB_WAKE_NOT
)
1641 mod_timer(&rdp
->nocb_timer
, jiffies
+ 1);
1642 if (rdp
->nocb_defer_wakeup
< waketype
)
1643 WRITE_ONCE(rdp
->nocb_defer_wakeup
, waketype
);
1644 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, reason
);
1648 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1649 * However, if there is a callback to be enqueued and if ->nocb_bypass
1650 * proves to be initially empty, just return false because the no-CB GP
1651 * kthread may need to be awakened in this case.
1653 * Note that this function always returns true if rhp is NULL.
1655 static bool rcu_nocb_do_flush_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1658 struct rcu_cblist rcl
;
1660 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp
->cblist
));
1661 rcu_lockdep_assert_cblist_protected(rdp
);
1662 lockdep_assert_held(&rdp
->nocb_bypass_lock
);
1663 if (rhp
&& !rcu_cblist_n_cbs(&rdp
->nocb_bypass
)) {
1664 raw_spin_unlock(&rdp
->nocb_bypass_lock
);
1667 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1669 rcu_segcblist_inc_len(&rdp
->cblist
); /* Must precede enqueue. */
1670 rcu_cblist_flush_enqueue(&rcl
, &rdp
->nocb_bypass
, rhp
);
1671 rcu_segcblist_insert_pend_cbs(&rdp
->cblist
, &rcl
);
1672 WRITE_ONCE(rdp
->nocb_bypass_first
, j
);
1673 rcu_nocb_bypass_unlock(rdp
);
1678 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1679 * However, if there is a callback to be enqueued and if ->nocb_bypass
1680 * proves to be initially empty, just return false because the no-CB GP
1681 * kthread may need to be awakened in this case.
1683 * Note that this function always returns true if rhp is NULL.
1685 static bool rcu_nocb_flush_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1688 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
))
1690 rcu_lockdep_assert_cblist_protected(rdp
);
1691 rcu_nocb_bypass_lock(rdp
);
1692 return rcu_nocb_do_flush_bypass(rdp
, rhp
, j
);
1696 * If the ->nocb_bypass_lock is immediately available, flush the
1697 * ->nocb_bypass queue into ->cblist.
1699 static void rcu_nocb_try_flush_bypass(struct rcu_data
*rdp
, unsigned long j
)
1701 rcu_lockdep_assert_cblist_protected(rdp
);
1702 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
) ||
1703 !rcu_nocb_bypass_trylock(rdp
))
1705 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp
, NULL
, j
));
1709 * See whether it is appropriate to use the ->nocb_bypass list in order
1710 * to control contention on ->nocb_lock. A limited number of direct
1711 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1712 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1713 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1714 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1715 * used if ->cblist is empty, because otherwise callbacks can be stranded
1716 * on ->nocb_bypass because we cannot count on the current CPU ever again
1717 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1718 * non-empty, the corresponding no-CBs grace-period kthread must not be
1719 * in an indefinite sleep state.
1721 * Finally, it is not permitted to use the bypass during early boot,
1722 * as doing so would confuse the auto-initialization code. Besides
1723 * which, there is no point in worrying about lock contention while
1724 * there is only one CPU in operation.
1726 static bool rcu_nocb_try_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
1727 bool *was_alldone
, unsigned long flags
)
1730 unsigned long cur_gp_seq
;
1731 unsigned long j
= jiffies
;
1732 long ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1734 if (!rcu_segcblist_is_offloaded(&rdp
->cblist
)) {
1735 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1736 return false; /* Not offloaded, no bypassing. */
1738 lockdep_assert_irqs_disabled();
1740 // Don't use ->nocb_bypass during early boot.
1741 if (rcu_scheduler_active
!= RCU_SCHEDULER_RUNNING
) {
1743 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp
->nocb_bypass
));
1744 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1748 // If we have advanced to a new jiffy, reset counts to allow
1749 // moving back from ->nocb_bypass to ->cblist.
1750 if (j
== rdp
->nocb_nobypass_last
) {
1751 c
= rdp
->nocb_nobypass_count
+ 1;
1753 WRITE_ONCE(rdp
->nocb_nobypass_last
, j
);
1754 c
= rdp
->nocb_nobypass_count
- nocb_nobypass_lim_per_jiffy
;
1755 if (ULONG_CMP_LT(rdp
->nocb_nobypass_count
,
1756 nocb_nobypass_lim_per_jiffy
))
1758 else if (c
> nocb_nobypass_lim_per_jiffy
)
1759 c
= nocb_nobypass_lim_per_jiffy
;
1761 WRITE_ONCE(rdp
->nocb_nobypass_count
, c
);
1763 // If there hasn't yet been all that many ->cblist enqueues
1764 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1765 // ->nocb_bypass first.
1766 if (rdp
->nocb_nobypass_count
< nocb_nobypass_lim_per_jiffy
) {
1768 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1770 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1772 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp
, NULL
, j
));
1773 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp
->nocb_bypass
));
1774 return false; // Caller must enqueue the callback.
1777 // If ->nocb_bypass has been used too long or is too full,
1778 // flush ->nocb_bypass to ->cblist.
1779 if ((ncbs
&& j
!= READ_ONCE(rdp
->nocb_bypass_first
)) ||
1782 if (!rcu_nocb_flush_bypass(rdp
, rhp
, j
)) {
1783 *was_alldone
= !rcu_segcblist_pend_cbs(&rdp
->cblist
);
1785 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1787 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp
->nocb_bypass
));
1788 return false; // Caller must enqueue the callback.
1790 if (j
!= rdp
->nocb_gp_adv_time
&&
1791 rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
1792 rcu_seq_done(&rdp
->mynode
->gp_seq
, cur_gp_seq
)) {
1793 rcu_advance_cbs_nowake(rdp
->mynode
, rdp
);
1794 rdp
->nocb_gp_adv_time
= j
;
1796 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1797 return true; // Callback already enqueued.
1800 // We need to use the bypass.
1801 rcu_nocb_wait_contended(rdp
);
1802 rcu_nocb_bypass_lock(rdp
);
1803 ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1804 rcu_segcblist_inc_len(&rdp
->cblist
); /* Must precede enqueue. */
1805 rcu_cblist_enqueue(&rdp
->nocb_bypass
, rhp
);
1807 WRITE_ONCE(rdp
->nocb_bypass_first
, j
);
1808 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("FirstBQ"));
1810 rcu_nocb_bypass_unlock(rdp
);
1811 smp_mb(); /* Order enqueue before wake. */
1813 local_irq_restore(flags
);
1815 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1816 rcu_nocb_lock(rdp
); // Rare during call_rcu() flood.
1817 if (!rcu_segcblist_pend_cbs(&rdp
->cblist
)) {
1818 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1819 TPS("FirstBQwake"));
1820 __call_rcu_nocb_wake(rdp
, true, flags
);
1822 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1823 TPS("FirstBQnoWake"));
1824 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1827 return true; // Callback already enqueued.
1831 * Awaken the no-CBs grace-period kthead if needed, either due to it
1832 * legitimately being asleep or due to overload conditions.
1834 * If warranted, also wake up the kthread servicing this CPUs queues.
1836 static void __call_rcu_nocb_wake(struct rcu_data
*rdp
, bool was_alldone
,
1837 unsigned long flags
)
1838 __releases(rdp
->nocb_lock
)
1840 unsigned long cur_gp_seq
;
1843 struct task_struct
*t
;
1845 // If we are being polled or there is no kthread, just leave.
1846 t
= READ_ONCE(rdp
->nocb_gp_kthread
);
1847 if (rcu_nocb_poll
|| !t
) {
1848 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1849 TPS("WakeNotPoll"));
1850 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1853 // Need to actually to a wakeup.
1854 len
= rcu_segcblist_n_cbs(&rdp
->cblist
);
1856 rdp
->qlen_last_fqs_check
= len
;
1857 if (!irqs_disabled_flags(flags
)) {
1858 /* ... if queue was empty ... */
1859 wake_nocb_gp(rdp
, false, flags
);
1860 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1863 wake_nocb_gp_defer(rdp
, RCU_NOCB_WAKE
,
1864 TPS("WakeEmptyIsDeferred"));
1865 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1867 } else if (len
> rdp
->qlen_last_fqs_check
+ qhimark
) {
1868 /* ... or if many callbacks queued. */
1869 rdp
->qlen_last_fqs_check
= len
;
1871 if (j
!= rdp
->nocb_gp_adv_time
&&
1872 rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
1873 rcu_seq_done(&rdp
->mynode
->gp_seq
, cur_gp_seq
)) {
1874 rcu_advance_cbs_nowake(rdp
->mynode
, rdp
);
1875 rdp
->nocb_gp_adv_time
= j
;
1877 smp_mb(); /* Enqueue before timer_pending(). */
1878 if ((rdp
->nocb_cb_sleep
||
1879 !rcu_segcblist_ready_cbs(&rdp
->cblist
)) &&
1880 !timer_pending(&rdp
->nocb_bypass_timer
))
1881 wake_nocb_gp_defer(rdp
, RCU_NOCB_WAKE_FORCE
,
1882 TPS("WakeOvfIsDeferred"));
1883 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1885 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("WakeNot"));
1886 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1891 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1892 static void do_nocb_bypass_wakeup_timer(struct timer_list
*t
)
1894 unsigned long flags
;
1895 struct rcu_data
*rdp
= from_timer(rdp
, t
, nocb_bypass_timer
);
1897 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("Timer"));
1898 rcu_nocb_lock_irqsave(rdp
, flags
);
1899 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1900 __call_rcu_nocb_wake(rdp
, true, flags
);
1904 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1905 * or for grace periods to end.
1907 static void nocb_gp_wait(struct rcu_data
*my_rdp
)
1909 bool bypass
= false;
1911 int __maybe_unused cpu
= my_rdp
->cpu
;
1912 unsigned long cur_gp_seq
;
1913 unsigned long flags
;
1914 bool gotcbs
= false;
1915 unsigned long j
= jiffies
;
1916 bool needwait_gp
= false; // This prevents actual uninitialized use.
1919 struct rcu_data
*rdp
;
1920 struct rcu_node
*rnp
;
1921 unsigned long wait_gp_seq
= 0; // Suppress "use uninitialized" warning.
1922 bool wasempty
= false;
1925 * Each pass through the following loop checks for CBs and for the
1926 * nearest grace period (if any) to wait for next. The CB kthreads
1927 * and the global grace-period kthread are awakened if needed.
1929 for (rdp
= my_rdp
; rdp
; rdp
= rdp
->nocb_next_cb_rdp
) {
1930 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("Check"));
1931 rcu_nocb_lock_irqsave(rdp
, flags
);
1932 bypass_ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1934 (time_after(j
, READ_ONCE(rdp
->nocb_bypass_first
) + 1) ||
1935 bypass_ncbs
> 2 * qhimark
)) {
1936 // Bypass full or old, so flush it.
1937 (void)rcu_nocb_try_flush_bypass(rdp
, j
);
1938 bypass_ncbs
= rcu_cblist_n_cbs(&rdp
->nocb_bypass
);
1939 } else if (!bypass_ncbs
&& rcu_segcblist_empty(&rdp
->cblist
)) {
1940 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1941 continue; /* No callbacks here, try next. */
1944 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1949 if (bypass
) { // Avoid race with first bypass CB.
1950 WRITE_ONCE(my_rdp
->nocb_defer_wakeup
,
1952 del_timer(&my_rdp
->nocb_timer
);
1954 // Advance callbacks if helpful and low contention.
1955 needwake_gp
= false;
1956 if (!rcu_segcblist_restempty(&rdp
->cblist
,
1957 RCU_NEXT_READY_TAIL
) ||
1958 (rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
1959 rcu_seq_done(&rnp
->gp_seq
, cur_gp_seq
))) {
1960 raw_spin_lock_rcu_node(rnp
); /* irqs disabled. */
1961 needwake_gp
= rcu_advance_cbs(rnp
, rdp
);
1962 wasempty
= rcu_segcblist_restempty(&rdp
->cblist
,
1963 RCU_NEXT_READY_TAIL
);
1964 raw_spin_unlock_rcu_node(rnp
); /* irqs disabled. */
1966 // Need to wait on some grace period?
1967 WARN_ON_ONCE(wasempty
&&
1968 !rcu_segcblist_restempty(&rdp
->cblist
,
1969 RCU_NEXT_READY_TAIL
));
1970 if (rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
)) {
1972 ULONG_CMP_LT(cur_gp_seq
, wait_gp_seq
))
1973 wait_gp_seq
= cur_gp_seq
;
1975 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
,
1978 if (rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
1979 needwake
= rdp
->nocb_cb_sleep
;
1980 WRITE_ONCE(rdp
->nocb_cb_sleep
, false);
1981 smp_mb(); /* CB invocation -after- GP end. */
1985 rcu_nocb_unlock_irqrestore(rdp
, flags
);
1987 swake_up_one(&rdp
->nocb_cb_wq
);
1991 rcu_gp_kthread_wake();
1994 my_rdp
->nocb_gp_bypass
= bypass
;
1995 my_rdp
->nocb_gp_gp
= needwait_gp
;
1996 my_rdp
->nocb_gp_seq
= needwait_gp
? wait_gp_seq
: 0;
1997 if (bypass
&& !rcu_nocb_poll
) {
1998 // At least one child with non-empty ->nocb_bypass, so set
1999 // timer in order to avoid stranding its callbacks.
2000 raw_spin_lock_irqsave(&my_rdp
->nocb_gp_lock
, flags
);
2001 mod_timer(&my_rdp
->nocb_bypass_timer
, j
+ 2);
2002 raw_spin_unlock_irqrestore(&my_rdp
->nocb_gp_lock
, flags
);
2004 if (rcu_nocb_poll
) {
2005 /* Polling, so trace if first poll in the series. */
2007 trace_rcu_nocb_wake(rcu_state
.name
, cpu
, TPS("Poll"));
2008 schedule_timeout_idle(1);
2009 } else if (!needwait_gp
) {
2010 /* Wait for callbacks to appear. */
2011 trace_rcu_nocb_wake(rcu_state
.name
, cpu
, TPS("Sleep"));
2012 swait_event_interruptible_exclusive(my_rdp
->nocb_gp_wq
,
2013 !READ_ONCE(my_rdp
->nocb_gp_sleep
));
2014 trace_rcu_nocb_wake(rcu_state
.name
, cpu
, TPS("EndSleep"));
2016 rnp
= my_rdp
->mynode
;
2017 trace_rcu_this_gp(rnp
, my_rdp
, wait_gp_seq
, TPS("StartWait"));
2018 swait_event_interruptible_exclusive(
2019 rnp
->nocb_gp_wq
[rcu_seq_ctr(wait_gp_seq
) & 0x1],
2020 rcu_seq_done(&rnp
->gp_seq
, wait_gp_seq
) ||
2021 !READ_ONCE(my_rdp
->nocb_gp_sleep
));
2022 trace_rcu_this_gp(rnp
, my_rdp
, wait_gp_seq
, TPS("EndWait"));
2024 if (!rcu_nocb_poll
) {
2025 raw_spin_lock_irqsave(&my_rdp
->nocb_gp_lock
, flags
);
2027 del_timer(&my_rdp
->nocb_bypass_timer
);
2028 WRITE_ONCE(my_rdp
->nocb_gp_sleep
, true);
2029 raw_spin_unlock_irqrestore(&my_rdp
->nocb_gp_lock
, flags
);
2031 my_rdp
->nocb_gp_seq
= -1;
2032 WARN_ON(signal_pending(current
));
2036 * No-CBs grace-period-wait kthread. There is one of these per group
2037 * of CPUs, but only once at least one CPU in that group has come online
2038 * at least once since boot. This kthread checks for newly posted
2039 * callbacks from any of the CPUs it is responsible for, waits for a
2040 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2041 * that then have callback-invocation work to do.
2043 static int rcu_nocb_gp_kthread(void *arg
)
2045 struct rcu_data
*rdp
= arg
;
2048 WRITE_ONCE(rdp
->nocb_gp_loops
, rdp
->nocb_gp_loops
+ 1);
2050 cond_resched_tasks_rcu_qs();
2056 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2057 * then, if there are no more, wait for more to appear.
2059 static void nocb_cb_wait(struct rcu_data
*rdp
)
2061 unsigned long cur_gp_seq
;
2062 unsigned long flags
;
2063 bool needwake_gp
= false;
2064 struct rcu_node
*rnp
= rdp
->mynode
;
2066 local_irq_save(flags
);
2067 rcu_momentary_dyntick_idle();
2068 local_irq_restore(flags
);
2072 lockdep_assert_irqs_enabled();
2073 rcu_nocb_lock_irqsave(rdp
, flags
);
2074 if (rcu_segcblist_nextgp(&rdp
->cblist
, &cur_gp_seq
) &&
2075 rcu_seq_done(&rnp
->gp_seq
, cur_gp_seq
) &&
2076 raw_spin_trylock_rcu_node(rnp
)) { /* irqs already disabled. */
2077 needwake_gp
= rcu_advance_cbs(rdp
->mynode
, rdp
);
2078 raw_spin_unlock_rcu_node(rnp
); /* irqs remain disabled. */
2080 if (rcu_segcblist_ready_cbs(&rdp
->cblist
)) {
2081 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2083 rcu_gp_kthread_wake();
2087 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("CBSleep"));
2088 WRITE_ONCE(rdp
->nocb_cb_sleep
, true);
2089 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2091 rcu_gp_kthread_wake();
2092 swait_event_interruptible_exclusive(rdp
->nocb_cb_wq
,
2093 !READ_ONCE(rdp
->nocb_cb_sleep
));
2094 if (!smp_load_acquire(&rdp
->nocb_cb_sleep
)) { /* VVV */
2095 /* ^^^ Ensure CB invocation follows _sleep test. */
2098 WARN_ON(signal_pending(current
));
2099 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("WokeEmpty"));
2103 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2104 * nocb_cb_wait() to do the dirty work.
2106 static int rcu_nocb_cb_kthread(void *arg
)
2108 struct rcu_data
*rdp
= arg
;
2110 // Each pass through this loop does one callback batch, and,
2111 // if there are no more ready callbacks, waits for them.
2114 cond_resched_tasks_rcu_qs();
2119 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2120 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2122 return READ_ONCE(rdp
->nocb_defer_wakeup
);
2125 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2126 static void do_nocb_deferred_wakeup_common(struct rcu_data
*rdp
)
2128 unsigned long flags
;
2131 rcu_nocb_lock_irqsave(rdp
, flags
);
2132 if (!rcu_nocb_need_deferred_wakeup(rdp
)) {
2133 rcu_nocb_unlock_irqrestore(rdp
, flags
);
2136 ndw
= READ_ONCE(rdp
->nocb_defer_wakeup
);
2137 WRITE_ONCE(rdp
->nocb_defer_wakeup
, RCU_NOCB_WAKE_NOT
);
2138 wake_nocb_gp(rdp
, ndw
== RCU_NOCB_WAKE_FORCE
, flags
);
2139 trace_rcu_nocb_wake(rcu_state
.name
, rdp
->cpu
, TPS("DeferredWake"));
2142 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2143 static void do_nocb_deferred_wakeup_timer(struct timer_list
*t
)
2145 struct rcu_data
*rdp
= from_timer(rdp
, t
, nocb_timer
);
2147 do_nocb_deferred_wakeup_common(rdp
);
2151 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2152 * This means we do an inexact common-case check. Note that if
2153 * we miss, ->nocb_timer will eventually clean things up.
2155 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2157 if (rcu_nocb_need_deferred_wakeup(rdp
))
2158 do_nocb_deferred_wakeup_common(rdp
);
2161 void __init
rcu_init_nohz(void)
2164 bool need_rcu_nocb_mask
= false;
2165 struct rcu_data
*rdp
;
2167 #if defined(CONFIG_NO_HZ_FULL)
2168 if (tick_nohz_full_running
&& cpumask_weight(tick_nohz_full_mask
))
2169 need_rcu_nocb_mask
= true;
2170 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2172 if (!cpumask_available(rcu_nocb_mask
) && need_rcu_nocb_mask
) {
2173 if (!zalloc_cpumask_var(&rcu_nocb_mask
, GFP_KERNEL
)) {
2174 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2178 if (!cpumask_available(rcu_nocb_mask
))
2181 #if defined(CONFIG_NO_HZ_FULL)
2182 if (tick_nohz_full_running
)
2183 cpumask_or(rcu_nocb_mask
, rcu_nocb_mask
, tick_nohz_full_mask
);
2184 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2186 if (!cpumask_subset(rcu_nocb_mask
, cpu_possible_mask
)) {
2187 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2188 cpumask_and(rcu_nocb_mask
, cpu_possible_mask
,
2191 if (cpumask_empty(rcu_nocb_mask
))
2192 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2194 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2195 cpumask_pr_args(rcu_nocb_mask
));
2197 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2199 for_each_cpu(cpu
, rcu_nocb_mask
) {
2200 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2201 if (rcu_segcblist_empty(&rdp
->cblist
))
2202 rcu_segcblist_init(&rdp
->cblist
);
2203 rcu_segcblist_offload(&rdp
->cblist
);
2205 rcu_organize_nocb_kthreads();
2208 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2209 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2211 init_swait_queue_head(&rdp
->nocb_cb_wq
);
2212 init_swait_queue_head(&rdp
->nocb_gp_wq
);
2213 raw_spin_lock_init(&rdp
->nocb_lock
);
2214 raw_spin_lock_init(&rdp
->nocb_bypass_lock
);
2215 raw_spin_lock_init(&rdp
->nocb_gp_lock
);
2216 timer_setup(&rdp
->nocb_timer
, do_nocb_deferred_wakeup_timer
, 0);
2217 timer_setup(&rdp
->nocb_bypass_timer
, do_nocb_bypass_wakeup_timer
, 0);
2218 rcu_cblist_init(&rdp
->nocb_bypass
);
2222 * If the specified CPU is a no-CBs CPU that does not already have its
2223 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2224 * for this CPU's group has not yet been created, spawn it as well.
2226 static void rcu_spawn_one_nocb_kthread(int cpu
)
2228 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2229 struct rcu_data
*rdp_gp
;
2230 struct task_struct
*t
;
2233 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2234 * then nothing to do.
2236 if (!rcu_is_nocb_cpu(cpu
) || rdp
->nocb_cb_kthread
)
2239 /* If we didn't spawn the GP kthread first, reorganize! */
2240 rdp_gp
= rdp
->nocb_gp_rdp
;
2241 if (!rdp_gp
->nocb_gp_kthread
) {
2242 t
= kthread_run(rcu_nocb_gp_kthread
, rdp_gp
,
2243 "rcuog/%d", rdp_gp
->cpu
);
2244 if (WARN_ONCE(IS_ERR(t
), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__
))
2246 WRITE_ONCE(rdp_gp
->nocb_gp_kthread
, t
);
2249 /* Spawn the kthread for this CPU. */
2250 t
= kthread_run(rcu_nocb_cb_kthread
, rdp
,
2251 "rcuo%c/%d", rcu_state
.abbr
, cpu
);
2252 if (WARN_ONCE(IS_ERR(t
), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__
))
2254 WRITE_ONCE(rdp
->nocb_cb_kthread
, t
);
2255 WRITE_ONCE(rdp
->nocb_gp_kthread
, rdp_gp
->nocb_gp_kthread
);
2259 * If the specified CPU is a no-CBs CPU that does not already have its
2260 * rcuo kthread, spawn it.
2262 static void rcu_spawn_cpu_nocb_kthread(int cpu
)
2264 if (rcu_scheduler_fully_active
)
2265 rcu_spawn_one_nocb_kthread(cpu
);
2269 * Once the scheduler is running, spawn rcuo kthreads for all online
2270 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2271 * non-boot CPUs come online -- if this changes, we will need to add
2272 * some mutual exclusion.
2274 static void __init
rcu_spawn_nocb_kthreads(void)
2278 for_each_online_cpu(cpu
)
2279 rcu_spawn_cpu_nocb_kthread(cpu
);
2282 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
2283 static int rcu_nocb_gp_stride
= -1;
2284 module_param(rcu_nocb_gp_stride
, int, 0444);
2287 * Initialize GP-CB relationships for all no-CBs CPU.
2289 static void __init
rcu_organize_nocb_kthreads(void)
2292 bool firsttime
= true;
2293 bool gotnocbs
= false;
2294 bool gotnocbscbs
= true;
2295 int ls
= rcu_nocb_gp_stride
;
2296 int nl
= 0; /* Next GP kthread. */
2297 struct rcu_data
*rdp
;
2298 struct rcu_data
*rdp_gp
= NULL
; /* Suppress misguided gcc warn. */
2299 struct rcu_data
*rdp_prev
= NULL
;
2301 if (!cpumask_available(rcu_nocb_mask
))
2304 ls
= nr_cpu_ids
/ int_sqrt(nr_cpu_ids
);
2305 rcu_nocb_gp_stride
= ls
;
2309 * Each pass through this loop sets up one rcu_data structure.
2310 * Should the corresponding CPU come online in the future, then
2311 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2313 for_each_cpu(cpu
, rcu_nocb_mask
) {
2314 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
2315 if (rdp
->cpu
>= nl
) {
2316 /* New GP kthread, set up for CBs & next GP. */
2318 nl
= DIV_ROUND_UP(rdp
->cpu
+ 1, ls
) * ls
;
2319 rdp
->nocb_gp_rdp
= rdp
;
2323 pr_cont("%s\n", gotnocbscbs
2324 ? "" : " (self only)");
2325 gotnocbscbs
= false;
2327 pr_alert("%s: No-CB GP kthread CPU %d:",
2331 /* Another CB kthread, link to previous GP kthread. */
2333 rdp
->nocb_gp_rdp
= rdp_gp
;
2334 rdp_prev
->nocb_next_cb_rdp
= rdp
;
2336 pr_cont(" %d", cpu
);
2340 if (gotnocbs
&& dump_tree
)
2341 pr_cont("%s\n", gotnocbscbs
? "" : " (self only)");
2345 * Bind the current task to the offloaded CPUs. If there are no offloaded
2346 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2348 void rcu_bind_current_to_nocb(void)
2350 if (cpumask_available(rcu_nocb_mask
) && cpumask_weight(rcu_nocb_mask
))
2351 WARN_ON(sched_setaffinity(current
->pid
, rcu_nocb_mask
));
2353 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb
);
2356 * Dump out nocb grace-period kthread state for the specified rcu_data
2359 static void show_rcu_nocb_gp_state(struct rcu_data
*rdp
)
2361 struct rcu_node
*rnp
= rdp
->mynode
;
2363 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2365 "kK"[!!rdp
->nocb_gp_kthread
],
2366 "lL"[raw_spin_is_locked(&rdp
->nocb_gp_lock
)],
2367 "dD"[!!rdp
->nocb_defer_wakeup
],
2368 "tT"[timer_pending(&rdp
->nocb_timer
)],
2369 "bB"[timer_pending(&rdp
->nocb_bypass_timer
)],
2370 "sS"[!!rdp
->nocb_gp_sleep
],
2371 ".W"[swait_active(&rdp
->nocb_gp_wq
)],
2372 ".W"[swait_active(&rnp
->nocb_gp_wq
[0])],
2373 ".W"[swait_active(&rnp
->nocb_gp_wq
[1])],
2374 ".B"[!!rdp
->nocb_gp_bypass
],
2375 ".G"[!!rdp
->nocb_gp_gp
],
2376 (long)rdp
->nocb_gp_seq
,
2377 rnp
->grplo
, rnp
->grphi
, READ_ONCE(rdp
->nocb_gp_loops
));
2380 /* Dump out nocb kthread state for the specified rcu_data structure. */
2381 static void show_rcu_nocb_state(struct rcu_data
*rdp
)
2383 struct rcu_segcblist
*rsclp
= &rdp
->cblist
;
2388 if (rdp
->nocb_gp_rdp
== rdp
)
2389 show_rcu_nocb_gp_state(rdp
);
2391 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2392 rdp
->cpu
, rdp
->nocb_gp_rdp
->cpu
,
2393 "kK"[!!rdp
->nocb_cb_kthread
],
2394 "bB"[raw_spin_is_locked(&rdp
->nocb_bypass_lock
)],
2395 "cC"[!!atomic_read(&rdp
->nocb_lock_contended
)],
2396 "lL"[raw_spin_is_locked(&rdp
->nocb_lock
)],
2397 "sS"[!!rdp
->nocb_cb_sleep
],
2398 ".W"[swait_active(&rdp
->nocb_cb_wq
)],
2399 jiffies
- rdp
->nocb_bypass_first
,
2400 jiffies
- rdp
->nocb_nobypass_last
,
2401 rdp
->nocb_nobypass_count
,
2402 ".D"[rcu_segcblist_ready_cbs(rsclp
)],
2403 ".W"[!rcu_segcblist_restempty(rsclp
, RCU_DONE_TAIL
)],
2404 ".R"[!rcu_segcblist_restempty(rsclp
, RCU_WAIT_TAIL
)],
2405 ".N"[!rcu_segcblist_restempty(rsclp
, RCU_NEXT_READY_TAIL
)],
2406 ".B"[!!rcu_cblist_n_cbs(&rdp
->nocb_bypass
)],
2407 rcu_segcblist_n_cbs(&rdp
->cblist
));
2409 /* It is OK for GP kthreads to have GP state. */
2410 if (rdp
->nocb_gp_rdp
== rdp
)
2413 waslocked
= raw_spin_is_locked(&rdp
->nocb_gp_lock
);
2414 wastimer
= timer_pending(&rdp
->nocb_timer
);
2415 wassleep
= swait_active(&rdp
->nocb_gp_wq
);
2416 if (!rdp
->nocb_defer_wakeup
&& !rdp
->nocb_gp_sleep
&&
2417 !waslocked
&& !wastimer
&& !wassleep
)
2418 return; /* Nothing untowards. */
2420 pr_info(" !!! %c%c%c%c %c\n",
2422 "dD"[!!rdp
->nocb_defer_wakeup
],
2424 "sS"[!!rdp
->nocb_gp_sleep
],
2428 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2430 /* No ->nocb_lock to acquire. */
2431 static void rcu_nocb_lock(struct rcu_data
*rdp
)
2435 /* No ->nocb_lock to release. */
2436 static void rcu_nocb_unlock(struct rcu_data
*rdp
)
2440 /* No ->nocb_lock to release. */
2441 static void rcu_nocb_unlock_irqrestore(struct rcu_data
*rdp
,
2442 unsigned long flags
)
2444 local_irq_restore(flags
);
2447 /* Lockdep check that ->cblist may be safely accessed. */
2448 static void rcu_lockdep_assert_cblist_protected(struct rcu_data
*rdp
)
2450 lockdep_assert_irqs_disabled();
2453 static void rcu_nocb_gp_cleanup(struct swait_queue_head
*sq
)
2457 static struct swait_queue_head
*rcu_nocb_gp_get(struct rcu_node
*rnp
)
2462 static void rcu_init_one_nocb(struct rcu_node
*rnp
)
2466 static bool rcu_nocb_flush_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2472 static bool rcu_nocb_try_bypass(struct rcu_data
*rdp
, struct rcu_head
*rhp
,
2473 bool *was_alldone
, unsigned long flags
)
2478 static void __call_rcu_nocb_wake(struct rcu_data
*rdp
, bool was_empty
,
2479 unsigned long flags
)
2481 WARN_ON_ONCE(1); /* Should be dead code! */
2484 static void __init
rcu_boot_init_nocb_percpu_data(struct rcu_data
*rdp
)
2488 static int rcu_nocb_need_deferred_wakeup(struct rcu_data
*rdp
)
2493 static void do_nocb_deferred_wakeup(struct rcu_data
*rdp
)
2497 static void rcu_spawn_cpu_nocb_kthread(int cpu
)
2501 static void __init
rcu_spawn_nocb_kthreads(void)
2505 static void show_rcu_nocb_state(struct rcu_data
*rdp
)
2509 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2512 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2513 * grace-period kthread will do force_quiescent_state() processing?
2514 * The idea is to avoid waking up RCU core processing on such a
2515 * CPU unless the grace period has extended for too long.
2517 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2518 * CONFIG_RCU_NOCB_CPU CPUs.
2520 static bool rcu_nohz_full_cpu(void)
2522 #ifdef CONFIG_NO_HZ_FULL
2523 if (tick_nohz_full_cpu(smp_processor_id()) &&
2524 (!rcu_gp_in_progress() ||
2525 time_before(jiffies
, READ_ONCE(rcu_state
.gp_start
) + HZ
)))
2527 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2532 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2534 static void rcu_bind_gp_kthread(void)
2536 if (!tick_nohz_full_enabled())
2538 housekeeping_affine(current
, HK_FLAG_RCU
);
2541 /* Record the current task on dyntick-idle entry. */
2542 static void noinstr
rcu_dynticks_task_enter(void)
2544 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2545 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, smp_processor_id());
2546 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2549 /* Record no current task on dyntick-idle exit. */
2550 static void noinstr
rcu_dynticks_task_exit(void)
2552 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2553 WRITE_ONCE(current
->rcu_tasks_idle_cpu
, -1);
2554 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2557 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2558 static void rcu_dynticks_task_trace_enter(void)
2560 #ifdef CONFIG_TASKS_RCU_TRACE
2561 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB
))
2562 current
->trc_reader_special
.b
.need_mb
= true;
2563 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2566 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2567 static void rcu_dynticks_task_trace_exit(void)
2569 #ifdef CONFIG_TASKS_RCU_TRACE
2570 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB
))
2571 current
->trc_reader_special
.b
.need_mb
= false;
2572 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */