Merge tag 'for-linus' of git://github.com/openrisc/linux
[linux/fpc-iii.git] / kernel / rcu / tree_plugin.h
blob982fc5be5269871c6650f82a685016f66273f522
1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
14 #include "../locking/rtmutex_common.h"
16 #ifdef CONFIG_RCU_NOCB_CPU
17 static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
18 static bool __read_mostly rcu_nocb_poll; /* Offload kthread are to poll. */
19 #endif /* #ifdef CONFIG_RCU_NOCB_CPU */
22 * Check the RCU kernel configuration parameters and print informative
23 * messages about anything out of the ordinary.
25 static void __init rcu_bootup_announce_oddness(void)
27 if (IS_ENABLED(CONFIG_RCU_TRACE))
28 pr_info("\tRCU event tracing is enabled.\n");
29 if ((IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 64) ||
30 (!IS_ENABLED(CONFIG_64BIT) && RCU_FANOUT != 32))
31 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
32 RCU_FANOUT);
33 if (rcu_fanout_exact)
34 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
35 if (IS_ENABLED(CONFIG_RCU_FAST_NO_HZ))
36 pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
37 if (IS_ENABLED(CONFIG_PROVE_RCU))
38 pr_info("\tRCU lockdep checking is enabled.\n");
39 if (RCU_NUM_LVLS >= 4)
40 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
41 if (RCU_FANOUT_LEAF != 16)
42 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
43 RCU_FANOUT_LEAF);
44 if (rcu_fanout_leaf != RCU_FANOUT_LEAF)
45 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
46 rcu_fanout_leaf);
47 if (nr_cpu_ids != NR_CPUS)
48 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS, nr_cpu_ids);
49 #ifdef CONFIG_RCU_BOOST
50 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
51 kthread_prio, CONFIG_RCU_BOOST_DELAY);
52 #endif
53 if (blimit != DEFAULT_RCU_BLIMIT)
54 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit);
55 if (qhimark != DEFAULT_RCU_QHIMARK)
56 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark);
57 if (qlowmark != DEFAULT_RCU_QLOMARK)
58 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark);
59 if (qovld != DEFAULT_RCU_QOVLD)
60 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld);
61 if (jiffies_till_first_fqs != ULONG_MAX)
62 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs);
63 if (jiffies_till_next_fqs != ULONG_MAX)
64 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs);
65 if (jiffies_till_sched_qs != ULONG_MAX)
66 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs);
67 if (rcu_kick_kthreads)
68 pr_info("\tKick kthreads if too-long grace period.\n");
69 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD))
70 pr_info("\tRCU callback double-/use-after-free debug enabled.\n");
71 if (gp_preinit_delay)
72 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay);
73 if (gp_init_delay)
74 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay);
75 if (gp_cleanup_delay)
76 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_cleanup_delay);
77 if (!use_softirq)
78 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
79 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG))
80 pr_info("\tRCU debug extended QS entry/exit.\n");
81 rcupdate_announce_bootup_oddness();
84 #ifdef CONFIG_PREEMPT_RCU
86 static void rcu_report_exp_rnp(struct rcu_node *rnp, bool wake);
87 static void rcu_read_unlock_special(struct task_struct *t);
90 * Tell them what RCU they are running.
92 static void __init rcu_bootup_announce(void)
94 pr_info("Preemptible hierarchical RCU implementation.\n");
95 rcu_bootup_announce_oddness();
98 /* Flags for rcu_preempt_ctxt_queue() decision table. */
99 #define RCU_GP_TASKS 0x8
100 #define RCU_EXP_TASKS 0x4
101 #define RCU_GP_BLKD 0x2
102 #define RCU_EXP_BLKD 0x1
105 * Queues a task preempted within an RCU-preempt read-side critical
106 * section into the appropriate location within the ->blkd_tasks list,
107 * depending on the states of any ongoing normal and expedited grace
108 * periods. The ->gp_tasks pointer indicates which element the normal
109 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
110 * indicates which element the expedited grace period is waiting on (again,
111 * NULL if none). If a grace period is waiting on a given element in the
112 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
113 * adding a task to the tail of the list blocks any grace period that is
114 * already waiting on one of the elements. In contrast, adding a task
115 * to the head of the list won't block any grace period that is already
116 * waiting on one of the elements.
118 * This queuing is imprecise, and can sometimes make an ongoing grace
119 * period wait for a task that is not strictly speaking blocking it.
120 * Given the choice, we needlessly block a normal grace period rather than
121 * blocking an expedited grace period.
123 * Note that an endless sequence of expedited grace periods still cannot
124 * indefinitely postpone a normal grace period. Eventually, all of the
125 * fixed number of preempted tasks blocking the normal grace period that are
126 * not also blocking the expedited grace period will resume and complete
127 * their RCU read-side critical sections. At that point, the ->gp_tasks
128 * pointer will equal the ->exp_tasks pointer, at which point the end of
129 * the corresponding expedited grace period will also be the end of the
130 * normal grace period.
132 static void rcu_preempt_ctxt_queue(struct rcu_node *rnp, struct rcu_data *rdp)
133 __releases(rnp->lock) /* But leaves rrupts disabled. */
135 int blkd_state = (rnp->gp_tasks ? RCU_GP_TASKS : 0) +
136 (rnp->exp_tasks ? RCU_EXP_TASKS : 0) +
137 (rnp->qsmask & rdp->grpmask ? RCU_GP_BLKD : 0) +
138 (rnp->expmask & rdp->grpmask ? RCU_EXP_BLKD : 0);
139 struct task_struct *t = current;
141 raw_lockdep_assert_held_rcu_node(rnp);
142 WARN_ON_ONCE(rdp->mynode != rnp);
143 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
144 /* RCU better not be waiting on newly onlined CPUs! */
145 WARN_ON_ONCE(rnp->qsmaskinitnext & ~rnp->qsmaskinit & rnp->qsmask &
146 rdp->grpmask);
149 * Decide where to queue the newly blocked task. In theory,
150 * this could be an if-statement. In practice, when I tried
151 * that, it was quite messy.
153 switch (blkd_state) {
154 case 0:
155 case RCU_EXP_TASKS:
156 case RCU_EXP_TASKS + RCU_GP_BLKD:
157 case RCU_GP_TASKS:
158 case RCU_GP_TASKS + RCU_EXP_TASKS:
161 * Blocking neither GP, or first task blocking the normal
162 * GP but not blocking the already-waiting expedited GP.
163 * Queue at the head of the list to avoid unnecessarily
164 * blocking the already-waiting GPs.
166 list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
167 break;
169 case RCU_EXP_BLKD:
170 case RCU_GP_BLKD:
171 case RCU_GP_BLKD + RCU_EXP_BLKD:
172 case RCU_GP_TASKS + RCU_EXP_BLKD:
173 case RCU_GP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
174 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
177 * First task arriving that blocks either GP, or first task
178 * arriving that blocks the expedited GP (with the normal
179 * GP already waiting), or a task arriving that blocks
180 * both GPs with both GPs already waiting. Queue at the
181 * tail of the list to avoid any GP waiting on any of the
182 * already queued tasks that are not blocking it.
184 list_add_tail(&t->rcu_node_entry, &rnp->blkd_tasks);
185 break;
187 case RCU_EXP_TASKS + RCU_EXP_BLKD:
188 case RCU_EXP_TASKS + RCU_GP_BLKD + RCU_EXP_BLKD:
189 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_EXP_BLKD:
192 * Second or subsequent task blocking the expedited GP.
193 * The task either does not block the normal GP, or is the
194 * first task blocking the normal GP. Queue just after
195 * the first task blocking the expedited GP.
197 list_add(&t->rcu_node_entry, rnp->exp_tasks);
198 break;
200 case RCU_GP_TASKS + RCU_GP_BLKD:
201 case RCU_GP_TASKS + RCU_EXP_TASKS + RCU_GP_BLKD:
204 * Second or subsequent task blocking the normal GP.
205 * The task does not block the expedited GP. Queue just
206 * after the first task blocking the normal GP.
208 list_add(&t->rcu_node_entry, rnp->gp_tasks);
209 break;
211 default:
213 /* Yet another exercise in excessive paranoia. */
214 WARN_ON_ONCE(1);
215 break;
219 * We have now queued the task. If it was the first one to
220 * block either grace period, update the ->gp_tasks and/or
221 * ->exp_tasks pointers, respectively, to reference the newly
222 * blocked tasks.
224 if (!rnp->gp_tasks && (blkd_state & RCU_GP_BLKD)) {
225 WRITE_ONCE(rnp->gp_tasks, &t->rcu_node_entry);
226 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq);
228 if (!rnp->exp_tasks && (blkd_state & RCU_EXP_BLKD))
229 WRITE_ONCE(rnp->exp_tasks, &t->rcu_node_entry);
230 WARN_ON_ONCE(!(blkd_state & RCU_GP_BLKD) !=
231 !(rnp->qsmask & rdp->grpmask));
232 WARN_ON_ONCE(!(blkd_state & RCU_EXP_BLKD) !=
233 !(rnp->expmask & rdp->grpmask));
234 raw_spin_unlock_rcu_node(rnp); /* interrupts remain disabled. */
237 * Report the quiescent state for the expedited GP. This expedited
238 * GP should not be able to end until we report, so there should be
239 * no need to check for a subsequent expedited GP. (Though we are
240 * still in a quiescent state in any case.)
242 if (blkd_state & RCU_EXP_BLKD && rdp->exp_deferred_qs)
243 rcu_report_exp_rdp(rdp);
244 else
245 WARN_ON_ONCE(rdp->exp_deferred_qs);
249 * Record a preemptible-RCU quiescent state for the specified CPU.
250 * Note that this does not necessarily mean that the task currently running
251 * on the CPU is in a quiescent state: Instead, it means that the current
252 * grace period need not wait on any RCU read-side critical section that
253 * starts later on this CPU. It also means that if the current task is
254 * in an RCU read-side critical section, it has already added itself to
255 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
256 * current task, there might be any number of other tasks blocked while
257 * in an RCU read-side critical section.
259 * Callers to this function must disable preemption.
261 static void rcu_qs(void)
263 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
264 if (__this_cpu_read(rcu_data.cpu_no_qs.s)) {
265 trace_rcu_grace_period(TPS("rcu_preempt"),
266 __this_cpu_read(rcu_data.gp_seq),
267 TPS("cpuqs"));
268 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
269 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
270 WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, false);
275 * We have entered the scheduler, and the current task might soon be
276 * context-switched away from. If this task is in an RCU read-side
277 * critical section, we will no longer be able to rely on the CPU to
278 * record that fact, so we enqueue the task on the blkd_tasks list.
279 * The task will dequeue itself when it exits the outermost enclosing
280 * RCU read-side critical section. Therefore, the current grace period
281 * cannot be permitted to complete until the blkd_tasks list entries
282 * predating the current grace period drain, in other words, until
283 * rnp->gp_tasks becomes NULL.
285 * Caller must disable interrupts.
287 void rcu_note_context_switch(bool preempt)
289 struct task_struct *t = current;
290 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
291 struct rcu_node *rnp;
293 trace_rcu_utilization(TPS("Start context switch"));
294 lockdep_assert_irqs_disabled();
295 WARN_ON_ONCE(!preempt && rcu_preempt_depth() > 0);
296 if (rcu_preempt_depth() > 0 &&
297 !t->rcu_read_unlock_special.b.blocked) {
299 /* Possibly blocking in an RCU read-side critical section. */
300 rnp = rdp->mynode;
301 raw_spin_lock_rcu_node(rnp);
302 t->rcu_read_unlock_special.b.blocked = true;
303 t->rcu_blocked_node = rnp;
306 * Verify the CPU's sanity, trace the preemption, and
307 * then queue the task as required based on the states
308 * of any ongoing and expedited grace periods.
310 WARN_ON_ONCE((rdp->grpmask & rcu_rnp_online_cpus(rnp)) == 0);
311 WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
312 trace_rcu_preempt_task(rcu_state.name,
313 t->pid,
314 (rnp->qsmask & rdp->grpmask)
315 ? rnp->gp_seq
316 : rcu_seq_snap(&rnp->gp_seq));
317 rcu_preempt_ctxt_queue(rnp, rdp);
318 } else {
319 rcu_preempt_deferred_qs(t);
323 * Either we were not in an RCU read-side critical section to
324 * begin with, or we have now recorded that critical section
325 * globally. Either way, we can now note a quiescent state
326 * for this CPU. Again, if we were in an RCU read-side critical
327 * section, and if that critical section was blocking the current
328 * grace period, then the fact that the task has been enqueued
329 * means that we continue to block the current grace period.
331 rcu_qs();
332 if (rdp->exp_deferred_qs)
333 rcu_report_exp_rdp(rdp);
334 rcu_tasks_qs(current, preempt);
335 trace_rcu_utilization(TPS("End context switch"));
337 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
340 * Check for preempted RCU readers blocking the current grace period
341 * for the specified rcu_node structure. If the caller needs a reliable
342 * answer, it must hold the rcu_node's ->lock.
344 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
346 return READ_ONCE(rnp->gp_tasks) != NULL;
349 /* limit value for ->rcu_read_lock_nesting. */
350 #define RCU_NEST_PMAX (INT_MAX / 2)
352 static void rcu_preempt_read_enter(void)
354 current->rcu_read_lock_nesting++;
357 static int rcu_preempt_read_exit(void)
359 return --current->rcu_read_lock_nesting;
362 static void rcu_preempt_depth_set(int val)
364 current->rcu_read_lock_nesting = val;
368 * Preemptible RCU implementation for rcu_read_lock().
369 * Just increment ->rcu_read_lock_nesting, shared state will be updated
370 * if we block.
372 void __rcu_read_lock(void)
374 rcu_preempt_read_enter();
375 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
376 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX);
377 barrier(); /* critical section after entry code. */
379 EXPORT_SYMBOL_GPL(__rcu_read_lock);
382 * Preemptible RCU implementation for rcu_read_unlock().
383 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
384 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
385 * invoke rcu_read_unlock_special() to clean up after a context switch
386 * in an RCU read-side critical section and other special cases.
388 void __rcu_read_unlock(void)
390 struct task_struct *t = current;
392 if (rcu_preempt_read_exit() == 0) {
393 barrier(); /* critical section before exit code. */
394 if (unlikely(READ_ONCE(t->rcu_read_unlock_special.s)))
395 rcu_read_unlock_special(t);
397 if (IS_ENABLED(CONFIG_PROVE_LOCKING)) {
398 int rrln = rcu_preempt_depth();
400 WARN_ON_ONCE(rrln < 0 || rrln > RCU_NEST_PMAX);
403 EXPORT_SYMBOL_GPL(__rcu_read_unlock);
406 * Advance a ->blkd_tasks-list pointer to the next entry, instead
407 * returning NULL if at the end of the list.
409 static struct list_head *rcu_next_node_entry(struct task_struct *t,
410 struct rcu_node *rnp)
412 struct list_head *np;
414 np = t->rcu_node_entry.next;
415 if (np == &rnp->blkd_tasks)
416 np = NULL;
417 return np;
421 * Return true if the specified rcu_node structure has tasks that were
422 * preempted within an RCU read-side critical section.
424 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
426 return !list_empty(&rnp->blkd_tasks);
430 * Report deferred quiescent states. The deferral time can
431 * be quite short, for example, in the case of the call from
432 * rcu_read_unlock_special().
434 static void
435 rcu_preempt_deferred_qs_irqrestore(struct task_struct *t, unsigned long flags)
437 bool empty_exp;
438 bool empty_norm;
439 bool empty_exp_now;
440 struct list_head *np;
441 bool drop_boost_mutex = false;
442 struct rcu_data *rdp;
443 struct rcu_node *rnp;
444 union rcu_special special;
447 * If RCU core is waiting for this CPU to exit its critical section,
448 * report the fact that it has exited. Because irqs are disabled,
449 * t->rcu_read_unlock_special cannot change.
451 special = t->rcu_read_unlock_special;
452 rdp = this_cpu_ptr(&rcu_data);
453 if (!special.s && !rdp->exp_deferred_qs) {
454 local_irq_restore(flags);
455 return;
457 t->rcu_read_unlock_special.s = 0;
458 if (special.b.need_qs)
459 rcu_qs();
462 * Respond to a request by an expedited grace period for a
463 * quiescent state from this CPU. Note that requests from
464 * tasks are handled when removing the task from the
465 * blocked-tasks list below.
467 if (rdp->exp_deferred_qs)
468 rcu_report_exp_rdp(rdp);
470 /* Clean up if blocked during RCU read-side critical section. */
471 if (special.b.blocked) {
474 * Remove this task from the list it blocked on. The task
475 * now remains queued on the rcu_node corresponding to the
476 * CPU it first blocked on, so there is no longer any need
477 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
479 rnp = t->rcu_blocked_node;
480 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
481 WARN_ON_ONCE(rnp != t->rcu_blocked_node);
482 WARN_ON_ONCE(!rcu_is_leaf_node(rnp));
483 empty_norm = !rcu_preempt_blocked_readers_cgp(rnp);
484 WARN_ON_ONCE(rnp->completedqs == rnp->gp_seq &&
485 (!empty_norm || rnp->qsmask));
486 empty_exp = sync_rcu_exp_done(rnp);
487 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
488 np = rcu_next_node_entry(t, rnp);
489 list_del_init(&t->rcu_node_entry);
490 t->rcu_blocked_node = NULL;
491 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
492 rnp->gp_seq, t->pid);
493 if (&t->rcu_node_entry == rnp->gp_tasks)
494 WRITE_ONCE(rnp->gp_tasks, np);
495 if (&t->rcu_node_entry == rnp->exp_tasks)
496 WRITE_ONCE(rnp->exp_tasks, np);
497 if (IS_ENABLED(CONFIG_RCU_BOOST)) {
498 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
499 drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
500 if (&t->rcu_node_entry == rnp->boost_tasks)
501 WRITE_ONCE(rnp->boost_tasks, np);
505 * If this was the last task on the current list, and if
506 * we aren't waiting on any CPUs, report the quiescent state.
507 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
508 * so we must take a snapshot of the expedited state.
510 empty_exp_now = sync_rcu_exp_done(rnp);
511 if (!empty_norm && !rcu_preempt_blocked_readers_cgp(rnp)) {
512 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
513 rnp->gp_seq,
514 0, rnp->qsmask,
515 rnp->level,
516 rnp->grplo,
517 rnp->grphi,
518 !!rnp->gp_tasks);
519 rcu_report_unblock_qs_rnp(rnp, flags);
520 } else {
521 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
524 /* Unboost if we were boosted. */
525 if (IS_ENABLED(CONFIG_RCU_BOOST) && drop_boost_mutex)
526 rt_mutex_futex_unlock(&rnp->boost_mtx);
529 * If this was the last task on the expedited lists,
530 * then we need to report up the rcu_node hierarchy.
532 if (!empty_exp && empty_exp_now)
533 rcu_report_exp_rnp(rnp, true);
534 } else {
535 local_irq_restore(flags);
540 * Is a deferred quiescent-state pending, and are we also not in
541 * an RCU read-side critical section? It is the caller's responsibility
542 * to ensure it is otherwise safe to report any deferred quiescent
543 * states. The reason for this is that it is safe to report a
544 * quiescent state during context switch even though preemption
545 * is disabled. This function cannot be expected to understand these
546 * nuances, so the caller must handle them.
548 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
550 return (__this_cpu_read(rcu_data.exp_deferred_qs) ||
551 READ_ONCE(t->rcu_read_unlock_special.s)) &&
552 rcu_preempt_depth() == 0;
556 * Report a deferred quiescent state if needed and safe to do so.
557 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
558 * not being in an RCU read-side critical section. The caller must
559 * evaluate safety in terms of interrupt, softirq, and preemption
560 * disabling.
562 static void rcu_preempt_deferred_qs(struct task_struct *t)
564 unsigned long flags;
566 if (!rcu_preempt_need_deferred_qs(t))
567 return;
568 local_irq_save(flags);
569 rcu_preempt_deferred_qs_irqrestore(t, flags);
573 * Minimal handler to give the scheduler a chance to re-evaluate.
575 static void rcu_preempt_deferred_qs_handler(struct irq_work *iwp)
577 struct rcu_data *rdp;
579 rdp = container_of(iwp, struct rcu_data, defer_qs_iw);
580 rdp->defer_qs_iw_pending = false;
584 * Handle special cases during rcu_read_unlock(), such as needing to
585 * notify RCU core processing or task having blocked during the RCU
586 * read-side critical section.
588 static void rcu_read_unlock_special(struct task_struct *t)
590 unsigned long flags;
591 bool preempt_bh_were_disabled =
592 !!(preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK));
593 bool irqs_were_disabled;
595 /* NMI handlers cannot block and cannot safely manipulate state. */
596 if (in_nmi())
597 return;
599 local_irq_save(flags);
600 irqs_were_disabled = irqs_disabled_flags(flags);
601 if (preempt_bh_were_disabled || irqs_were_disabled) {
602 bool exp;
603 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
604 struct rcu_node *rnp = rdp->mynode;
606 exp = (t->rcu_blocked_node &&
607 READ_ONCE(t->rcu_blocked_node->exp_tasks)) ||
608 (rdp->grpmask & READ_ONCE(rnp->expmask));
609 // Need to defer quiescent state until everything is enabled.
610 if (use_softirq && (in_irq() || (exp && !irqs_were_disabled))) {
611 // Using softirq, safe to awaken, and either the
612 // wakeup is free or there is an expedited GP.
613 raise_softirq_irqoff(RCU_SOFTIRQ);
614 } else {
615 // Enabling BH or preempt does reschedule, so...
616 // Also if no expediting, slow is OK.
617 // Plus nohz_full CPUs eventually get tick enabled.
618 set_tsk_need_resched(current);
619 set_preempt_need_resched();
620 if (IS_ENABLED(CONFIG_IRQ_WORK) && irqs_were_disabled &&
621 !rdp->defer_qs_iw_pending && exp) {
622 // Get scheduler to re-evaluate and call hooks.
623 // If !IRQ_WORK, FQS scan will eventually IPI.
624 init_irq_work(&rdp->defer_qs_iw,
625 rcu_preempt_deferred_qs_handler);
626 rdp->defer_qs_iw_pending = true;
627 irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
630 local_irq_restore(flags);
631 return;
633 rcu_preempt_deferred_qs_irqrestore(t, flags);
637 * Check that the list of blocked tasks for the newly completed grace
638 * period is in fact empty. It is a serious bug to complete a grace
639 * period that still has RCU readers blocked! This function must be
640 * invoked -before- updating this rnp's ->gp_seq.
642 * Also, if there are blocked tasks on the list, they automatically
643 * block the newly created grace period, so set up ->gp_tasks accordingly.
645 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
647 struct task_struct *t;
649 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
650 raw_lockdep_assert_held_rcu_node(rnp);
651 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
652 dump_blkd_tasks(rnp, 10);
653 if (rcu_preempt_has_tasks(rnp) &&
654 (rnp->qsmaskinit || rnp->wait_blkd_tasks)) {
655 WRITE_ONCE(rnp->gp_tasks, rnp->blkd_tasks.next);
656 t = container_of(rnp->gp_tasks, struct task_struct,
657 rcu_node_entry);
658 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
659 rnp->gp_seq, t->pid);
661 WARN_ON_ONCE(rnp->qsmask);
665 * Check for a quiescent state from the current CPU, including voluntary
666 * context switches for Tasks RCU. When a task blocks, the task is
667 * recorded in the corresponding CPU's rcu_node structure, which is checked
668 * elsewhere, hence this function need only check for quiescent states
669 * related to the current CPU, not to those related to tasks.
671 static void rcu_flavor_sched_clock_irq(int user)
673 struct task_struct *t = current;
675 if (user || rcu_is_cpu_rrupt_from_idle()) {
676 rcu_note_voluntary_context_switch(current);
678 if (rcu_preempt_depth() > 0 ||
679 (preempt_count() & (PREEMPT_MASK | SOFTIRQ_MASK))) {
680 /* No QS, force context switch if deferred. */
681 if (rcu_preempt_need_deferred_qs(t)) {
682 set_tsk_need_resched(t);
683 set_preempt_need_resched();
685 } else if (rcu_preempt_need_deferred_qs(t)) {
686 rcu_preempt_deferred_qs(t); /* Report deferred QS. */
687 return;
688 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
689 rcu_qs(); /* Report immediate QS. */
690 return;
693 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
694 if (rcu_preempt_depth() > 0 &&
695 __this_cpu_read(rcu_data.core_needs_qs) &&
696 __this_cpu_read(rcu_data.cpu_no_qs.b.norm) &&
697 !t->rcu_read_unlock_special.b.need_qs &&
698 time_after(jiffies, rcu_state.gp_start + HZ))
699 t->rcu_read_unlock_special.b.need_qs = true;
703 * Check for a task exiting while in a preemptible-RCU read-side
704 * critical section, clean up if so. No need to issue warnings, as
705 * debug_check_no_locks_held() already does this if lockdep is enabled.
706 * Besides, if this function does anything other than just immediately
707 * return, there was a bug of some sort. Spewing warnings from this
708 * function is like as not to simply obscure important prior warnings.
710 void exit_rcu(void)
712 struct task_struct *t = current;
714 if (unlikely(!list_empty(&current->rcu_node_entry))) {
715 rcu_preempt_depth_set(1);
716 barrier();
717 WRITE_ONCE(t->rcu_read_unlock_special.b.blocked, true);
718 } else if (unlikely(rcu_preempt_depth())) {
719 rcu_preempt_depth_set(1);
720 } else {
721 return;
723 __rcu_read_unlock();
724 rcu_preempt_deferred_qs(current);
728 * Dump the blocked-tasks state, but limit the list dump to the
729 * specified number of elements.
731 static void
732 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
734 int cpu;
735 int i;
736 struct list_head *lhp;
737 bool onl;
738 struct rcu_data *rdp;
739 struct rcu_node *rnp1;
741 raw_lockdep_assert_held_rcu_node(rnp);
742 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
743 __func__, rnp->grplo, rnp->grphi, rnp->level,
744 (long)READ_ONCE(rnp->gp_seq), (long)rnp->completedqs);
745 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
746 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
747 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext);
748 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
749 __func__, READ_ONCE(rnp->gp_tasks), data_race(rnp->boost_tasks),
750 READ_ONCE(rnp->exp_tasks));
751 pr_info("%s: ->blkd_tasks", __func__);
752 i = 0;
753 list_for_each(lhp, &rnp->blkd_tasks) {
754 pr_cont(" %p", lhp);
755 if (++i >= ncheck)
756 break;
758 pr_cont("\n");
759 for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++) {
760 rdp = per_cpu_ptr(&rcu_data, cpu);
761 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
762 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
763 cpu, ".o"[onl],
764 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
765 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
769 #else /* #ifdef CONFIG_PREEMPT_RCU */
772 * Tell them what RCU they are running.
774 static void __init rcu_bootup_announce(void)
776 pr_info("Hierarchical RCU implementation.\n");
777 rcu_bootup_announce_oddness();
781 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
782 * how many quiescent states passed, just if there was at least one since
783 * the start of the grace period, this just sets a flag. The caller must
784 * have disabled preemption.
786 static void rcu_qs(void)
788 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
789 if (!__this_cpu_read(rcu_data.cpu_no_qs.s))
790 return;
791 trace_rcu_grace_period(TPS("rcu_sched"),
792 __this_cpu_read(rcu_data.gp_seq), TPS("cpuqs"));
793 __this_cpu_write(rcu_data.cpu_no_qs.b.norm, false);
794 if (!__this_cpu_read(rcu_data.cpu_no_qs.b.exp))
795 return;
796 __this_cpu_write(rcu_data.cpu_no_qs.b.exp, false);
797 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
801 * Register an urgently needed quiescent state. If there is an
802 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
803 * dyntick-idle quiescent state visible to other CPUs, which will in
804 * some cases serve for expedited as well as normal grace periods.
805 * Either way, register a lightweight quiescent state.
807 void rcu_all_qs(void)
809 unsigned long flags;
811 if (!raw_cpu_read(rcu_data.rcu_urgent_qs))
812 return;
813 preempt_disable();
814 /* Load rcu_urgent_qs before other flags. */
815 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
816 preempt_enable();
817 return;
819 this_cpu_write(rcu_data.rcu_urgent_qs, false);
820 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs))) {
821 local_irq_save(flags);
822 rcu_momentary_dyntick_idle();
823 local_irq_restore(flags);
825 rcu_qs();
826 preempt_enable();
828 EXPORT_SYMBOL_GPL(rcu_all_qs);
831 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
833 void rcu_note_context_switch(bool preempt)
835 trace_rcu_utilization(TPS("Start context switch"));
836 rcu_qs();
837 /* Load rcu_urgent_qs before other flags. */
838 if (!smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs)))
839 goto out;
840 this_cpu_write(rcu_data.rcu_urgent_qs, false);
841 if (unlikely(raw_cpu_read(rcu_data.rcu_need_heavy_qs)))
842 rcu_momentary_dyntick_idle();
843 rcu_tasks_qs(current, preempt);
844 out:
845 trace_rcu_utilization(TPS("End context switch"));
847 EXPORT_SYMBOL_GPL(rcu_note_context_switch);
850 * Because preemptible RCU does not exist, there are never any preempted
851 * RCU readers.
853 static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
855 return 0;
859 * Because there is no preemptible RCU, there can be no readers blocked.
861 static bool rcu_preempt_has_tasks(struct rcu_node *rnp)
863 return false;
867 * Because there is no preemptible RCU, there can be no deferred quiescent
868 * states.
870 static bool rcu_preempt_need_deferred_qs(struct task_struct *t)
872 return false;
874 static void rcu_preempt_deferred_qs(struct task_struct *t) { }
877 * Because there is no preemptible RCU, there can be no readers blocked,
878 * so there is no need to check for blocked tasks. So check only for
879 * bogus qsmask values.
881 static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
883 WARN_ON_ONCE(rnp->qsmask);
887 * Check to see if this CPU is in a non-context-switch quiescent state,
888 * namely user mode and idle loop.
890 static void rcu_flavor_sched_clock_irq(int user)
892 if (user || rcu_is_cpu_rrupt_from_idle()) {
895 * Get here if this CPU took its interrupt from user
896 * mode or from the idle loop, and if this is not a
897 * nested interrupt. In this case, the CPU is in
898 * a quiescent state, so note it.
900 * No memory barrier is required here because rcu_qs()
901 * references only CPU-local variables that other CPUs
902 * neither access nor modify, at least not while the
903 * corresponding CPU is online.
906 rcu_qs();
911 * Because preemptible RCU does not exist, tasks cannot possibly exit
912 * while in preemptible RCU read-side critical sections.
914 void exit_rcu(void)
919 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
921 static void
922 dump_blkd_tasks(struct rcu_node *rnp, int ncheck)
924 WARN_ON_ONCE(!list_empty(&rnp->blkd_tasks));
927 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
930 * If boosting, set rcuc kthreads to realtime priority.
932 static void rcu_cpu_kthread_setup(unsigned int cpu)
934 #ifdef CONFIG_RCU_BOOST
935 struct sched_param sp;
937 sp.sched_priority = kthread_prio;
938 sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
939 #endif /* #ifdef CONFIG_RCU_BOOST */
942 #ifdef CONFIG_RCU_BOOST
945 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
946 * or ->boost_tasks, advancing the pointer to the next task in the
947 * ->blkd_tasks list.
949 * Note that irqs must be enabled: boosting the task can block.
950 * Returns 1 if there are more tasks needing to be boosted.
952 static int rcu_boost(struct rcu_node *rnp)
954 unsigned long flags;
955 struct task_struct *t;
956 struct list_head *tb;
958 if (READ_ONCE(rnp->exp_tasks) == NULL &&
959 READ_ONCE(rnp->boost_tasks) == NULL)
960 return 0; /* Nothing left to boost. */
962 raw_spin_lock_irqsave_rcu_node(rnp, flags);
965 * Recheck under the lock: all tasks in need of boosting
966 * might exit their RCU read-side critical sections on their own.
968 if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
969 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
970 return 0;
974 * Preferentially boost tasks blocking expedited grace periods.
975 * This cannot starve the normal grace periods because a second
976 * expedited grace period must boost all blocked tasks, including
977 * those blocking the pre-existing normal grace period.
979 if (rnp->exp_tasks != NULL)
980 tb = rnp->exp_tasks;
981 else
982 tb = rnp->boost_tasks;
985 * We boost task t by manufacturing an rt_mutex that appears to
986 * be held by task t. We leave a pointer to that rt_mutex where
987 * task t can find it, and task t will release the mutex when it
988 * exits its outermost RCU read-side critical section. Then
989 * simply acquiring this artificial rt_mutex will boost task
990 * t's priority. (Thanks to tglx for suggesting this approach!)
992 * Note that task t must acquire rnp->lock to remove itself from
993 * the ->blkd_tasks list, which it will do from exit() if from
994 * nowhere else. We therefore are guaranteed that task t will
995 * stay around at least until we drop rnp->lock. Note that
996 * rnp->lock also resolves races between our priority boosting
997 * and task t's exiting its outermost RCU read-side critical
998 * section.
1000 t = container_of(tb, struct task_struct, rcu_node_entry);
1001 rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
1002 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1003 /* Lock only for side effect: boosts task t's priority. */
1004 rt_mutex_lock(&rnp->boost_mtx);
1005 rt_mutex_unlock(&rnp->boost_mtx); /* Then keep lockdep happy. */
1007 return READ_ONCE(rnp->exp_tasks) != NULL ||
1008 READ_ONCE(rnp->boost_tasks) != NULL;
1012 * Priority-boosting kthread, one per leaf rcu_node.
1014 static int rcu_boost_kthread(void *arg)
1016 struct rcu_node *rnp = (struct rcu_node *)arg;
1017 int spincnt = 0;
1018 int more2boost;
1020 trace_rcu_utilization(TPS("Start boost kthread@init"));
1021 for (;;) {
1022 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_WAITING);
1023 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1024 rcu_wait(READ_ONCE(rnp->boost_tasks) ||
1025 READ_ONCE(rnp->exp_tasks));
1026 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1027 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_RUNNING);
1028 more2boost = rcu_boost(rnp);
1029 if (more2boost)
1030 spincnt++;
1031 else
1032 spincnt = 0;
1033 if (spincnt > 10) {
1034 WRITE_ONCE(rnp->boost_kthread_status, RCU_KTHREAD_YIELDING);
1035 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1036 schedule_timeout_idle(2);
1037 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1038 spincnt = 0;
1041 /* NOTREACHED */
1042 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1043 return 0;
1047 * Check to see if it is time to start boosting RCU readers that are
1048 * blocking the current grace period, and, if so, tell the per-rcu_node
1049 * kthread to start boosting them. If there is an expedited grace
1050 * period in progress, it is always time to boost.
1052 * The caller must hold rnp->lock, which this function releases.
1053 * The ->boost_kthread_task is immortal, so we don't need to worry
1054 * about it going away.
1056 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1057 __releases(rnp->lock)
1059 raw_lockdep_assert_held_rcu_node(rnp);
1060 if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
1061 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1062 return;
1064 if (rnp->exp_tasks != NULL ||
1065 (rnp->gp_tasks != NULL &&
1066 rnp->boost_tasks == NULL &&
1067 rnp->qsmask == 0 &&
1068 (!time_after(rnp->boost_time, jiffies) || rcu_state.cbovld))) {
1069 if (rnp->exp_tasks == NULL)
1070 WRITE_ONCE(rnp->boost_tasks, rnp->gp_tasks);
1071 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1072 rcu_wake_cond(rnp->boost_kthread_task,
1073 READ_ONCE(rnp->boost_kthread_status));
1074 } else {
1075 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1080 * Is the current CPU running the RCU-callbacks kthread?
1081 * Caller must have preemption disabled.
1083 static bool rcu_is_callbacks_kthread(void)
1085 return __this_cpu_read(rcu_data.rcu_cpu_kthread_task) == current;
1088 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1091 * Do priority-boost accounting for the start of a new grace period.
1093 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1095 rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
1099 * Create an RCU-boost kthread for the specified node if one does not
1100 * already exist. We only create this kthread for preemptible RCU.
1101 * Returns zero if all is well, a negated errno otherwise.
1103 static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
1105 int rnp_index = rnp - rcu_get_root();
1106 unsigned long flags;
1107 struct sched_param sp;
1108 struct task_struct *t;
1110 if (!IS_ENABLED(CONFIG_PREEMPT_RCU))
1111 return;
1113 if (!rcu_scheduler_fully_active || rcu_rnp_online_cpus(rnp) == 0)
1114 return;
1116 rcu_state.boost = 1;
1118 if (rnp->boost_kthread_task != NULL)
1119 return;
1121 t = kthread_create(rcu_boost_kthread, (void *)rnp,
1122 "rcub/%d", rnp_index);
1123 if (WARN_ON_ONCE(IS_ERR(t)))
1124 return;
1126 raw_spin_lock_irqsave_rcu_node(rnp, flags);
1127 rnp->boost_kthread_task = t;
1128 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1129 sp.sched_priority = kthread_prio;
1130 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
1131 wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
1135 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
1136 * served by the rcu_node in question. The CPU hotplug lock is still
1137 * held, so the value of rnp->qsmaskinit will be stable.
1139 * We don't include outgoingcpu in the affinity set, use -1 if there is
1140 * no outgoing CPU. If there are no CPUs left in the affinity set,
1141 * this function allows the kthread to execute on any CPU.
1143 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1145 struct task_struct *t = rnp->boost_kthread_task;
1146 unsigned long mask = rcu_rnp_online_cpus(rnp);
1147 cpumask_var_t cm;
1148 int cpu;
1150 if (!t)
1151 return;
1152 if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
1153 return;
1154 for_each_leaf_node_possible_cpu(rnp, cpu)
1155 if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
1156 cpu != outgoingcpu)
1157 cpumask_set_cpu(cpu, cm);
1158 if (cpumask_weight(cm) == 0)
1159 cpumask_setall(cm);
1160 set_cpus_allowed_ptr(t, cm);
1161 free_cpumask_var(cm);
1165 * Spawn boost kthreads -- called as soon as the scheduler is running.
1167 static void __init rcu_spawn_boost_kthreads(void)
1169 struct rcu_node *rnp;
1171 rcu_for_each_leaf_node(rnp)
1172 rcu_spawn_one_boost_kthread(rnp);
1175 static void rcu_prepare_kthreads(int cpu)
1177 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
1178 struct rcu_node *rnp = rdp->mynode;
1180 /* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
1181 if (rcu_scheduler_fully_active)
1182 rcu_spawn_one_boost_kthread(rnp);
1185 #else /* #ifdef CONFIG_RCU_BOOST */
1187 static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
1188 __releases(rnp->lock)
1190 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1193 static bool rcu_is_callbacks_kthread(void)
1195 return false;
1198 static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
1202 static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
1206 static void __init rcu_spawn_boost_kthreads(void)
1210 static void rcu_prepare_kthreads(int cpu)
1214 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1216 #if !defined(CONFIG_RCU_FAST_NO_HZ)
1219 * Check to see if any future non-offloaded RCU-related work will need
1220 * to be done by the current CPU, even if none need be done immediately,
1221 * returning 1 if so. This function is part of the RCU implementation;
1222 * it is -not- an exported member of the RCU API.
1224 * Because we not have RCU_FAST_NO_HZ, just check whether or not this
1225 * CPU has RCU callbacks queued.
1227 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1229 *nextevt = KTIME_MAX;
1230 return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
1231 !rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist);
1235 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
1236 * after it.
1238 static void rcu_cleanup_after_idle(void)
1243 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
1244 * is nothing.
1246 static void rcu_prepare_for_idle(void)
1250 #else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1253 * This code is invoked when a CPU goes idle, at which point we want
1254 * to have the CPU do everything required for RCU so that it can enter
1255 * the energy-efficient dyntick-idle mode.
1257 * The following preprocessor symbol controls this:
1259 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
1260 * to sleep in dyntick-idle mode with RCU callbacks pending. This
1261 * is sized to be roughly one RCU grace period. Those energy-efficiency
1262 * benchmarkers who might otherwise be tempted to set this to a large
1263 * number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
1264 * system. And if you are -that- concerned about energy efficiency,
1265 * just power the system down and be done with it!
1267 * The value below works well in practice. If future workloads require
1268 * adjustment, they can be converted into kernel config parameters, though
1269 * making the state machine smarter might be a better option.
1271 #define RCU_IDLE_GP_DELAY 4 /* Roughly one grace period. */
1273 static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
1274 module_param(rcu_idle_gp_delay, int, 0644);
1277 * Try to advance callbacks on the current CPU, but only if it has been
1278 * awhile since the last time we did so. Afterwards, if there are any
1279 * callbacks ready for immediate invocation, return true.
1281 static bool __maybe_unused rcu_try_advance_all_cbs(void)
1283 bool cbs_ready = false;
1284 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1285 struct rcu_node *rnp;
1287 /* Exit early if we advanced recently. */
1288 if (jiffies == rdp->last_advance_all)
1289 return false;
1290 rdp->last_advance_all = jiffies;
1292 rnp = rdp->mynode;
1295 * Don't bother checking unless a grace period has
1296 * completed since we last checked and there are
1297 * callbacks not yet ready to invoke.
1299 if ((rcu_seq_completed_gp(rdp->gp_seq,
1300 rcu_seq_current(&rnp->gp_seq)) ||
1301 unlikely(READ_ONCE(rdp->gpwrap))) &&
1302 rcu_segcblist_pend_cbs(&rdp->cblist))
1303 note_gp_changes(rdp);
1305 if (rcu_segcblist_ready_cbs(&rdp->cblist))
1306 cbs_ready = true;
1307 return cbs_ready;
1311 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
1312 * to invoke. If the CPU has callbacks, try to advance them. Tell the
1313 * caller about what to set the timeout.
1315 * The caller must have disabled interrupts.
1317 int rcu_needs_cpu(u64 basemono, u64 *nextevt)
1319 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1320 unsigned long dj;
1322 lockdep_assert_irqs_disabled();
1324 /* If no non-offloaded callbacks, RCU doesn't need the CPU. */
1325 if (rcu_segcblist_empty(&rdp->cblist) ||
1326 rcu_segcblist_is_offloaded(&this_cpu_ptr(&rcu_data)->cblist)) {
1327 *nextevt = KTIME_MAX;
1328 return 0;
1331 /* Attempt to advance callbacks. */
1332 if (rcu_try_advance_all_cbs()) {
1333 /* Some ready to invoke, so initiate later invocation. */
1334 invoke_rcu_core();
1335 return 1;
1337 rdp->last_accelerate = jiffies;
1339 /* Request timer and round. */
1340 dj = round_up(rcu_idle_gp_delay + jiffies, rcu_idle_gp_delay) - jiffies;
1342 *nextevt = basemono + dj * TICK_NSEC;
1343 return 0;
1347 * Prepare a CPU for idle from an RCU perspective. The first major task is to
1348 * sense whether nohz mode has been enabled or disabled via sysfs. The second
1349 * major task is to accelerate (that is, assign grace-period numbers to) any
1350 * recently arrived callbacks.
1352 * The caller must have disabled interrupts.
1354 static void rcu_prepare_for_idle(void)
1356 bool needwake;
1357 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1358 struct rcu_node *rnp;
1359 int tne;
1361 lockdep_assert_irqs_disabled();
1362 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1363 return;
1365 /* Handle nohz enablement switches conservatively. */
1366 tne = READ_ONCE(tick_nohz_active);
1367 if (tne != rdp->tick_nohz_enabled_snap) {
1368 if (!rcu_segcblist_empty(&rdp->cblist))
1369 invoke_rcu_core(); /* force nohz to see update. */
1370 rdp->tick_nohz_enabled_snap = tne;
1371 return;
1373 if (!tne)
1374 return;
1377 * If we have not yet accelerated this jiffy, accelerate all
1378 * callbacks on this CPU.
1380 if (rdp->last_accelerate == jiffies)
1381 return;
1382 rdp->last_accelerate = jiffies;
1383 if (rcu_segcblist_pend_cbs(&rdp->cblist)) {
1384 rnp = rdp->mynode;
1385 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1386 needwake = rcu_accelerate_cbs(rnp, rdp);
1387 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1388 if (needwake)
1389 rcu_gp_kthread_wake();
1394 * Clean up for exit from idle. Attempt to advance callbacks based on
1395 * any grace periods that elapsed while the CPU was idle, and if any
1396 * callbacks are now ready to invoke, initiate invocation.
1398 static void rcu_cleanup_after_idle(void)
1400 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1402 lockdep_assert_irqs_disabled();
1403 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1404 return;
1405 if (rcu_try_advance_all_cbs())
1406 invoke_rcu_core();
1409 #endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */
1411 #ifdef CONFIG_RCU_NOCB_CPU
1414 * Offload callback processing from the boot-time-specified set of CPUs
1415 * specified by rcu_nocb_mask. For the CPUs in the set, there are kthreads
1416 * created that pull the callbacks from the corresponding CPU, wait for
1417 * a grace period to elapse, and invoke the callbacks. These kthreads
1418 * are organized into GP kthreads, which manage incoming callbacks, wait for
1419 * grace periods, and awaken CB kthreads, and the CB kthreads, which only
1420 * invoke callbacks. Each GP kthread invokes its own CBs. The no-CBs CPUs
1421 * do a wake_up() on their GP kthread when they insert a callback into any
1422 * empty list, unless the rcu_nocb_poll boot parameter has been specified,
1423 * in which case each kthread actively polls its CPU. (Which isn't so great
1424 * for energy efficiency, but which does reduce RCU's overhead on that CPU.)
1426 * This is intended to be used in conjunction with Frederic Weisbecker's
1427 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
1428 * running CPU-bound user-mode computations.
1430 * Offloading of callbacks can also be used as an energy-efficiency
1431 * measure because CPUs with no RCU callbacks queued are more aggressive
1432 * about entering dyntick-idle mode.
1437 * Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters.
1438 * The string after the "rcu_nocbs=" is either "all" for all CPUs, or a
1439 * comma-separated list of CPUs and/or CPU ranges. If an invalid list is
1440 * given, a warning is emitted and all CPUs are offloaded.
1442 static int __init rcu_nocb_setup(char *str)
1444 alloc_bootmem_cpumask_var(&rcu_nocb_mask);
1445 if (!strcasecmp(str, "all"))
1446 cpumask_setall(rcu_nocb_mask);
1447 else
1448 if (cpulist_parse(str, rcu_nocb_mask)) {
1449 pr_warn("rcu_nocbs= bad CPU range, all CPUs set\n");
1450 cpumask_setall(rcu_nocb_mask);
1452 return 1;
1454 __setup("rcu_nocbs=", rcu_nocb_setup);
1456 static int __init parse_rcu_nocb_poll(char *arg)
1458 rcu_nocb_poll = true;
1459 return 0;
1461 early_param("rcu_nocb_poll", parse_rcu_nocb_poll);
1464 * Don't bother bypassing ->cblist if the call_rcu() rate is low.
1465 * After all, the main point of bypassing is to avoid lock contention
1466 * on ->nocb_lock, which only can happen at high call_rcu() rates.
1468 int nocb_nobypass_lim_per_jiffy = 16 * 1000 / HZ;
1469 module_param(nocb_nobypass_lim_per_jiffy, int, 0);
1472 * Acquire the specified rcu_data structure's ->nocb_bypass_lock. If the
1473 * lock isn't immediately available, increment ->nocb_lock_contended to
1474 * flag the contention.
1476 static void rcu_nocb_bypass_lock(struct rcu_data *rdp)
1477 __acquires(&rdp->nocb_bypass_lock)
1479 lockdep_assert_irqs_disabled();
1480 if (raw_spin_trylock(&rdp->nocb_bypass_lock))
1481 return;
1482 atomic_inc(&rdp->nocb_lock_contended);
1483 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1484 smp_mb__after_atomic(); /* atomic_inc() before lock. */
1485 raw_spin_lock(&rdp->nocb_bypass_lock);
1486 smp_mb__before_atomic(); /* atomic_dec() after lock. */
1487 atomic_dec(&rdp->nocb_lock_contended);
1491 * Spinwait until the specified rcu_data structure's ->nocb_lock is
1492 * not contended. Please note that this is extremely special-purpose,
1493 * relying on the fact that at most two kthreads and one CPU contend for
1494 * this lock, and also that the two kthreads are guaranteed to have frequent
1495 * grace-period-duration time intervals between successive acquisitions
1496 * of the lock. This allows us to use an extremely simple throttling
1497 * mechanism, and further to apply it only to the CPU doing floods of
1498 * call_rcu() invocations. Don't try this at home!
1500 static void rcu_nocb_wait_contended(struct rcu_data *rdp)
1502 WARN_ON_ONCE(smp_processor_id() != rdp->cpu);
1503 while (WARN_ON_ONCE(atomic_read(&rdp->nocb_lock_contended)))
1504 cpu_relax();
1508 * Conditionally acquire the specified rcu_data structure's
1509 * ->nocb_bypass_lock.
1511 static bool rcu_nocb_bypass_trylock(struct rcu_data *rdp)
1513 lockdep_assert_irqs_disabled();
1514 return raw_spin_trylock(&rdp->nocb_bypass_lock);
1518 * Release the specified rcu_data structure's ->nocb_bypass_lock.
1520 static void rcu_nocb_bypass_unlock(struct rcu_data *rdp)
1521 __releases(&rdp->nocb_bypass_lock)
1523 lockdep_assert_irqs_disabled();
1524 raw_spin_unlock(&rdp->nocb_bypass_lock);
1528 * Acquire the specified rcu_data structure's ->nocb_lock, but only
1529 * if it corresponds to a no-CBs CPU.
1531 static void rcu_nocb_lock(struct rcu_data *rdp)
1533 lockdep_assert_irqs_disabled();
1534 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1535 return;
1536 raw_spin_lock(&rdp->nocb_lock);
1540 * Release the specified rcu_data structure's ->nocb_lock, but only
1541 * if it corresponds to a no-CBs CPU.
1543 static void rcu_nocb_unlock(struct rcu_data *rdp)
1545 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1546 lockdep_assert_irqs_disabled();
1547 raw_spin_unlock(&rdp->nocb_lock);
1552 * Release the specified rcu_data structure's ->nocb_lock and restore
1553 * interrupts, but only if it corresponds to a no-CBs CPU.
1555 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
1556 unsigned long flags)
1558 if (rcu_segcblist_is_offloaded(&rdp->cblist)) {
1559 lockdep_assert_irqs_disabled();
1560 raw_spin_unlock_irqrestore(&rdp->nocb_lock, flags);
1561 } else {
1562 local_irq_restore(flags);
1566 /* Lockdep check that ->cblist may be safely accessed. */
1567 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
1569 lockdep_assert_irqs_disabled();
1570 if (rcu_segcblist_is_offloaded(&rdp->cblist))
1571 lockdep_assert_held(&rdp->nocb_lock);
1575 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
1576 * grace period.
1578 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
1580 swake_up_all(sq);
1583 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
1585 return &rnp->nocb_gp_wq[rcu_seq_ctr(rnp->gp_seq) & 0x1];
1588 static void rcu_init_one_nocb(struct rcu_node *rnp)
1590 init_swait_queue_head(&rnp->nocb_gp_wq[0]);
1591 init_swait_queue_head(&rnp->nocb_gp_wq[1]);
1594 /* Is the specified CPU a no-CBs CPU? */
1595 bool rcu_is_nocb_cpu(int cpu)
1597 if (cpumask_available(rcu_nocb_mask))
1598 return cpumask_test_cpu(cpu, rcu_nocb_mask);
1599 return false;
1603 * Kick the GP kthread for this NOCB group. Caller holds ->nocb_lock
1604 * and this function releases it.
1606 static void wake_nocb_gp(struct rcu_data *rdp, bool force,
1607 unsigned long flags)
1608 __releases(rdp->nocb_lock)
1610 bool needwake = false;
1611 struct rcu_data *rdp_gp = rdp->nocb_gp_rdp;
1613 lockdep_assert_held(&rdp->nocb_lock);
1614 if (!READ_ONCE(rdp_gp->nocb_gp_kthread)) {
1615 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1616 TPS("AlreadyAwake"));
1617 rcu_nocb_unlock_irqrestore(rdp, flags);
1618 return;
1620 del_timer(&rdp->nocb_timer);
1621 rcu_nocb_unlock_irqrestore(rdp, flags);
1622 raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
1623 if (force || READ_ONCE(rdp_gp->nocb_gp_sleep)) {
1624 WRITE_ONCE(rdp_gp->nocb_gp_sleep, false);
1625 needwake = true;
1626 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DoWake"));
1628 raw_spin_unlock_irqrestore(&rdp_gp->nocb_gp_lock, flags);
1629 if (needwake)
1630 wake_up_process(rdp_gp->nocb_gp_kthread);
1634 * Arrange to wake the GP kthread for this NOCB group at some future
1635 * time when it is safe to do so.
1637 static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
1638 const char *reason)
1640 if (rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT)
1641 mod_timer(&rdp->nocb_timer, jiffies + 1);
1642 if (rdp->nocb_defer_wakeup < waketype)
1643 WRITE_ONCE(rdp->nocb_defer_wakeup, waketype);
1644 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, reason);
1648 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1649 * However, if there is a callback to be enqueued and if ->nocb_bypass
1650 * proves to be initially empty, just return false because the no-CB GP
1651 * kthread may need to be awakened in this case.
1653 * Note that this function always returns true if rhp is NULL.
1655 static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1656 unsigned long j)
1658 struct rcu_cblist rcl;
1660 WARN_ON_ONCE(!rcu_segcblist_is_offloaded(&rdp->cblist));
1661 rcu_lockdep_assert_cblist_protected(rdp);
1662 lockdep_assert_held(&rdp->nocb_bypass_lock);
1663 if (rhp && !rcu_cblist_n_cbs(&rdp->nocb_bypass)) {
1664 raw_spin_unlock(&rdp->nocb_bypass_lock);
1665 return false;
1667 /* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
1668 if (rhp)
1669 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1670 rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
1671 rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
1672 WRITE_ONCE(rdp->nocb_bypass_first, j);
1673 rcu_nocb_bypass_unlock(rdp);
1674 return true;
1678 * Flush the ->nocb_bypass queue into ->cblist, enqueuing rhp if non-NULL.
1679 * However, if there is a callback to be enqueued and if ->nocb_bypass
1680 * proves to be initially empty, just return false because the no-CB GP
1681 * kthread may need to be awakened in this case.
1683 * Note that this function always returns true if rhp is NULL.
1685 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1686 unsigned long j)
1688 if (!rcu_segcblist_is_offloaded(&rdp->cblist))
1689 return true;
1690 rcu_lockdep_assert_cblist_protected(rdp);
1691 rcu_nocb_bypass_lock(rdp);
1692 return rcu_nocb_do_flush_bypass(rdp, rhp, j);
1696 * If the ->nocb_bypass_lock is immediately available, flush the
1697 * ->nocb_bypass queue into ->cblist.
1699 static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
1701 rcu_lockdep_assert_cblist_protected(rdp);
1702 if (!rcu_segcblist_is_offloaded(&rdp->cblist) ||
1703 !rcu_nocb_bypass_trylock(rdp))
1704 return;
1705 WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
1709 * See whether it is appropriate to use the ->nocb_bypass list in order
1710 * to control contention on ->nocb_lock. A limited number of direct
1711 * enqueues are permitted into ->cblist per jiffy. If ->nocb_bypass
1712 * is non-empty, further callbacks must be placed into ->nocb_bypass,
1713 * otherwise rcu_barrier() breaks. Use rcu_nocb_flush_bypass() to switch
1714 * back to direct use of ->cblist. However, ->nocb_bypass should not be
1715 * used if ->cblist is empty, because otherwise callbacks can be stranded
1716 * on ->nocb_bypass because we cannot count on the current CPU ever again
1717 * invoking call_rcu(). The general rule is that if ->nocb_bypass is
1718 * non-empty, the corresponding no-CBs grace-period kthread must not be
1719 * in an indefinite sleep state.
1721 * Finally, it is not permitted to use the bypass during early boot,
1722 * as doing so would confuse the auto-initialization code. Besides
1723 * which, there is no point in worrying about lock contention while
1724 * there is only one CPU in operation.
1726 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
1727 bool *was_alldone, unsigned long flags)
1729 unsigned long c;
1730 unsigned long cur_gp_seq;
1731 unsigned long j = jiffies;
1732 long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1734 if (!rcu_segcblist_is_offloaded(&rdp->cblist)) {
1735 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1736 return false; /* Not offloaded, no bypassing. */
1738 lockdep_assert_irqs_disabled();
1740 // Don't use ->nocb_bypass during early boot.
1741 if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING) {
1742 rcu_nocb_lock(rdp);
1743 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1744 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1745 return false;
1748 // If we have advanced to a new jiffy, reset counts to allow
1749 // moving back from ->nocb_bypass to ->cblist.
1750 if (j == rdp->nocb_nobypass_last) {
1751 c = rdp->nocb_nobypass_count + 1;
1752 } else {
1753 WRITE_ONCE(rdp->nocb_nobypass_last, j);
1754 c = rdp->nocb_nobypass_count - nocb_nobypass_lim_per_jiffy;
1755 if (ULONG_CMP_LT(rdp->nocb_nobypass_count,
1756 nocb_nobypass_lim_per_jiffy))
1757 c = 0;
1758 else if (c > nocb_nobypass_lim_per_jiffy)
1759 c = nocb_nobypass_lim_per_jiffy;
1761 WRITE_ONCE(rdp->nocb_nobypass_count, c);
1763 // If there hasn't yet been all that many ->cblist enqueues
1764 // this jiffy, tell the caller to enqueue onto ->cblist. But flush
1765 // ->nocb_bypass first.
1766 if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
1767 rcu_nocb_lock(rdp);
1768 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1769 if (*was_alldone)
1770 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1771 TPS("FirstQ"));
1772 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
1773 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1774 return false; // Caller must enqueue the callback.
1777 // If ->nocb_bypass has been used too long or is too full,
1778 // flush ->nocb_bypass to ->cblist.
1779 if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
1780 ncbs >= qhimark) {
1781 rcu_nocb_lock(rdp);
1782 if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
1783 *was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
1784 if (*was_alldone)
1785 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1786 TPS("FirstQ"));
1787 WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
1788 return false; // Caller must enqueue the callback.
1790 if (j != rdp->nocb_gp_adv_time &&
1791 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1792 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1793 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1794 rdp->nocb_gp_adv_time = j;
1796 rcu_nocb_unlock_irqrestore(rdp, flags);
1797 return true; // Callback already enqueued.
1800 // We need to use the bypass.
1801 rcu_nocb_wait_contended(rdp);
1802 rcu_nocb_bypass_lock(rdp);
1803 ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1804 rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
1805 rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
1806 if (!ncbs) {
1807 WRITE_ONCE(rdp->nocb_bypass_first, j);
1808 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
1810 rcu_nocb_bypass_unlock(rdp);
1811 smp_mb(); /* Order enqueue before wake. */
1812 if (ncbs) {
1813 local_irq_restore(flags);
1814 } else {
1815 // No-CBs GP kthread might be indefinitely asleep, if so, wake.
1816 rcu_nocb_lock(rdp); // Rare during call_rcu() flood.
1817 if (!rcu_segcblist_pend_cbs(&rdp->cblist)) {
1818 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1819 TPS("FirstBQwake"));
1820 __call_rcu_nocb_wake(rdp, true, flags);
1821 } else {
1822 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1823 TPS("FirstBQnoWake"));
1824 rcu_nocb_unlock_irqrestore(rdp, flags);
1827 return true; // Callback already enqueued.
1831 * Awaken the no-CBs grace-period kthead if needed, either due to it
1832 * legitimately being asleep or due to overload conditions.
1834 * If warranted, also wake up the kthread servicing this CPUs queues.
1836 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
1837 unsigned long flags)
1838 __releases(rdp->nocb_lock)
1840 unsigned long cur_gp_seq;
1841 unsigned long j;
1842 long len;
1843 struct task_struct *t;
1845 // If we are being polled or there is no kthread, just leave.
1846 t = READ_ONCE(rdp->nocb_gp_kthread);
1847 if (rcu_nocb_poll || !t) {
1848 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1849 TPS("WakeNotPoll"));
1850 rcu_nocb_unlock_irqrestore(rdp, flags);
1851 return;
1853 // Need to actually to a wakeup.
1854 len = rcu_segcblist_n_cbs(&rdp->cblist);
1855 if (was_alldone) {
1856 rdp->qlen_last_fqs_check = len;
1857 if (!irqs_disabled_flags(flags)) {
1858 /* ... if queue was empty ... */
1859 wake_nocb_gp(rdp, false, flags);
1860 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1861 TPS("WakeEmpty"));
1862 } else {
1863 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE,
1864 TPS("WakeEmptyIsDeferred"));
1865 rcu_nocb_unlock_irqrestore(rdp, flags);
1867 } else if (len > rdp->qlen_last_fqs_check + qhimark) {
1868 /* ... or if many callbacks queued. */
1869 rdp->qlen_last_fqs_check = len;
1870 j = jiffies;
1871 if (j != rdp->nocb_gp_adv_time &&
1872 rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1873 rcu_seq_done(&rdp->mynode->gp_seq, cur_gp_seq)) {
1874 rcu_advance_cbs_nowake(rdp->mynode, rdp);
1875 rdp->nocb_gp_adv_time = j;
1877 smp_mb(); /* Enqueue before timer_pending(). */
1878 if ((rdp->nocb_cb_sleep ||
1879 !rcu_segcblist_ready_cbs(&rdp->cblist)) &&
1880 !timer_pending(&rdp->nocb_bypass_timer))
1881 wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_FORCE,
1882 TPS("WakeOvfIsDeferred"));
1883 rcu_nocb_unlock_irqrestore(rdp, flags);
1884 } else {
1885 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WakeNot"));
1886 rcu_nocb_unlock_irqrestore(rdp, flags);
1888 return;
1891 /* Wake up the no-CBs GP kthread to flush ->nocb_bypass. */
1892 static void do_nocb_bypass_wakeup_timer(struct timer_list *t)
1894 unsigned long flags;
1895 struct rcu_data *rdp = from_timer(rdp, t, nocb_bypass_timer);
1897 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Timer"));
1898 rcu_nocb_lock_irqsave(rdp, flags);
1899 smp_mb__after_spinlock(); /* Timer expire before wakeup. */
1900 __call_rcu_nocb_wake(rdp, true, flags);
1904 * No-CBs GP kthreads come here to wait for additional callbacks to show up
1905 * or for grace periods to end.
1907 static void nocb_gp_wait(struct rcu_data *my_rdp)
1909 bool bypass = false;
1910 long bypass_ncbs;
1911 int __maybe_unused cpu = my_rdp->cpu;
1912 unsigned long cur_gp_seq;
1913 unsigned long flags;
1914 bool gotcbs = false;
1915 unsigned long j = jiffies;
1916 bool needwait_gp = false; // This prevents actual uninitialized use.
1917 bool needwake;
1918 bool needwake_gp;
1919 struct rcu_data *rdp;
1920 struct rcu_node *rnp;
1921 unsigned long wait_gp_seq = 0; // Suppress "use uninitialized" warning.
1922 bool wasempty = false;
1925 * Each pass through the following loop checks for CBs and for the
1926 * nearest grace period (if any) to wait for next. The CB kthreads
1927 * and the global grace-period kthread are awakened if needed.
1929 for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_cb_rdp) {
1930 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
1931 rcu_nocb_lock_irqsave(rdp, flags);
1932 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1933 if (bypass_ncbs &&
1934 (time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
1935 bypass_ncbs > 2 * qhimark)) {
1936 // Bypass full or old, so flush it.
1937 (void)rcu_nocb_try_flush_bypass(rdp, j);
1938 bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
1939 } else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
1940 rcu_nocb_unlock_irqrestore(rdp, flags);
1941 continue; /* No callbacks here, try next. */
1943 if (bypass_ncbs) {
1944 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1945 TPS("Bypass"));
1946 bypass = true;
1948 rnp = rdp->mynode;
1949 if (bypass) { // Avoid race with first bypass CB.
1950 WRITE_ONCE(my_rdp->nocb_defer_wakeup,
1951 RCU_NOCB_WAKE_NOT);
1952 del_timer(&my_rdp->nocb_timer);
1954 // Advance callbacks if helpful and low contention.
1955 needwake_gp = false;
1956 if (!rcu_segcblist_restempty(&rdp->cblist,
1957 RCU_NEXT_READY_TAIL) ||
1958 (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
1959 rcu_seq_done(&rnp->gp_seq, cur_gp_seq))) {
1960 raw_spin_lock_rcu_node(rnp); /* irqs disabled. */
1961 needwake_gp = rcu_advance_cbs(rnp, rdp);
1962 wasempty = rcu_segcblist_restempty(&rdp->cblist,
1963 RCU_NEXT_READY_TAIL);
1964 raw_spin_unlock_rcu_node(rnp); /* irqs disabled. */
1966 // Need to wait on some grace period?
1967 WARN_ON_ONCE(wasempty &&
1968 !rcu_segcblist_restempty(&rdp->cblist,
1969 RCU_NEXT_READY_TAIL));
1970 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq)) {
1971 if (!needwait_gp ||
1972 ULONG_CMP_LT(cur_gp_seq, wait_gp_seq))
1973 wait_gp_seq = cur_gp_seq;
1974 needwait_gp = true;
1975 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
1976 TPS("NeedWaitGP"));
1978 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
1979 needwake = rdp->nocb_cb_sleep;
1980 WRITE_ONCE(rdp->nocb_cb_sleep, false);
1981 smp_mb(); /* CB invocation -after- GP end. */
1982 } else {
1983 needwake = false;
1985 rcu_nocb_unlock_irqrestore(rdp, flags);
1986 if (needwake) {
1987 swake_up_one(&rdp->nocb_cb_wq);
1988 gotcbs = true;
1990 if (needwake_gp)
1991 rcu_gp_kthread_wake();
1994 my_rdp->nocb_gp_bypass = bypass;
1995 my_rdp->nocb_gp_gp = needwait_gp;
1996 my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
1997 if (bypass && !rcu_nocb_poll) {
1998 // At least one child with non-empty ->nocb_bypass, so set
1999 // timer in order to avoid stranding its callbacks.
2000 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2001 mod_timer(&my_rdp->nocb_bypass_timer, j + 2);
2002 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2004 if (rcu_nocb_poll) {
2005 /* Polling, so trace if first poll in the series. */
2006 if (gotcbs)
2007 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Poll"));
2008 schedule_timeout_idle(1);
2009 } else if (!needwait_gp) {
2010 /* Wait for callbacks to appear. */
2011 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("Sleep"));
2012 swait_event_interruptible_exclusive(my_rdp->nocb_gp_wq,
2013 !READ_ONCE(my_rdp->nocb_gp_sleep));
2014 trace_rcu_nocb_wake(rcu_state.name, cpu, TPS("EndSleep"));
2015 } else {
2016 rnp = my_rdp->mynode;
2017 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("StartWait"));
2018 swait_event_interruptible_exclusive(
2019 rnp->nocb_gp_wq[rcu_seq_ctr(wait_gp_seq) & 0x1],
2020 rcu_seq_done(&rnp->gp_seq, wait_gp_seq) ||
2021 !READ_ONCE(my_rdp->nocb_gp_sleep));
2022 trace_rcu_this_gp(rnp, my_rdp, wait_gp_seq, TPS("EndWait"));
2024 if (!rcu_nocb_poll) {
2025 raw_spin_lock_irqsave(&my_rdp->nocb_gp_lock, flags);
2026 if (bypass)
2027 del_timer(&my_rdp->nocb_bypass_timer);
2028 WRITE_ONCE(my_rdp->nocb_gp_sleep, true);
2029 raw_spin_unlock_irqrestore(&my_rdp->nocb_gp_lock, flags);
2031 my_rdp->nocb_gp_seq = -1;
2032 WARN_ON(signal_pending(current));
2036 * No-CBs grace-period-wait kthread. There is one of these per group
2037 * of CPUs, but only once at least one CPU in that group has come online
2038 * at least once since boot. This kthread checks for newly posted
2039 * callbacks from any of the CPUs it is responsible for, waits for a
2040 * grace period, then awakens all of the rcu_nocb_cb_kthread() instances
2041 * that then have callback-invocation work to do.
2043 static int rcu_nocb_gp_kthread(void *arg)
2045 struct rcu_data *rdp = arg;
2047 for (;;) {
2048 WRITE_ONCE(rdp->nocb_gp_loops, rdp->nocb_gp_loops + 1);
2049 nocb_gp_wait(rdp);
2050 cond_resched_tasks_rcu_qs();
2052 return 0;
2056 * Invoke any ready callbacks from the corresponding no-CBs CPU,
2057 * then, if there are no more, wait for more to appear.
2059 static void nocb_cb_wait(struct rcu_data *rdp)
2061 unsigned long cur_gp_seq;
2062 unsigned long flags;
2063 bool needwake_gp = false;
2064 struct rcu_node *rnp = rdp->mynode;
2066 local_irq_save(flags);
2067 rcu_momentary_dyntick_idle();
2068 local_irq_restore(flags);
2069 local_bh_disable();
2070 rcu_do_batch(rdp);
2071 local_bh_enable();
2072 lockdep_assert_irqs_enabled();
2073 rcu_nocb_lock_irqsave(rdp, flags);
2074 if (rcu_segcblist_nextgp(&rdp->cblist, &cur_gp_seq) &&
2075 rcu_seq_done(&rnp->gp_seq, cur_gp_seq) &&
2076 raw_spin_trylock_rcu_node(rnp)) { /* irqs already disabled. */
2077 needwake_gp = rcu_advance_cbs(rdp->mynode, rdp);
2078 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2080 if (rcu_segcblist_ready_cbs(&rdp->cblist)) {
2081 rcu_nocb_unlock_irqrestore(rdp, flags);
2082 if (needwake_gp)
2083 rcu_gp_kthread_wake();
2084 return;
2087 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("CBSleep"));
2088 WRITE_ONCE(rdp->nocb_cb_sleep, true);
2089 rcu_nocb_unlock_irqrestore(rdp, flags);
2090 if (needwake_gp)
2091 rcu_gp_kthread_wake();
2092 swait_event_interruptible_exclusive(rdp->nocb_cb_wq,
2093 !READ_ONCE(rdp->nocb_cb_sleep));
2094 if (!smp_load_acquire(&rdp->nocb_cb_sleep)) { /* VVV */
2095 /* ^^^ Ensure CB invocation follows _sleep test. */
2096 return;
2098 WARN_ON(signal_pending(current));
2099 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("WokeEmpty"));
2103 * Per-rcu_data kthread, but only for no-CBs CPUs. Repeatedly invoke
2104 * nocb_cb_wait() to do the dirty work.
2106 static int rcu_nocb_cb_kthread(void *arg)
2108 struct rcu_data *rdp = arg;
2110 // Each pass through this loop does one callback batch, and,
2111 // if there are no more ready callbacks, waits for them.
2112 for (;;) {
2113 nocb_cb_wait(rdp);
2114 cond_resched_tasks_rcu_qs();
2116 return 0;
2119 /* Is a deferred wakeup of rcu_nocb_kthread() required? */
2120 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2122 return READ_ONCE(rdp->nocb_defer_wakeup);
2125 /* Do a deferred wakeup of rcu_nocb_kthread(). */
2126 static void do_nocb_deferred_wakeup_common(struct rcu_data *rdp)
2128 unsigned long flags;
2129 int ndw;
2131 rcu_nocb_lock_irqsave(rdp, flags);
2132 if (!rcu_nocb_need_deferred_wakeup(rdp)) {
2133 rcu_nocb_unlock_irqrestore(rdp, flags);
2134 return;
2136 ndw = READ_ONCE(rdp->nocb_defer_wakeup);
2137 WRITE_ONCE(rdp->nocb_defer_wakeup, RCU_NOCB_WAKE_NOT);
2138 wake_nocb_gp(rdp, ndw == RCU_NOCB_WAKE_FORCE, flags);
2139 trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("DeferredWake"));
2142 /* Do a deferred wakeup of rcu_nocb_kthread() from a timer handler. */
2143 static void do_nocb_deferred_wakeup_timer(struct timer_list *t)
2145 struct rcu_data *rdp = from_timer(rdp, t, nocb_timer);
2147 do_nocb_deferred_wakeup_common(rdp);
2151 * Do a deferred wakeup of rcu_nocb_kthread() from fastpath.
2152 * This means we do an inexact common-case check. Note that if
2153 * we miss, ->nocb_timer will eventually clean things up.
2155 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2157 if (rcu_nocb_need_deferred_wakeup(rdp))
2158 do_nocb_deferred_wakeup_common(rdp);
2161 void __init rcu_init_nohz(void)
2163 int cpu;
2164 bool need_rcu_nocb_mask = false;
2165 struct rcu_data *rdp;
2167 #if defined(CONFIG_NO_HZ_FULL)
2168 if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
2169 need_rcu_nocb_mask = true;
2170 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2172 if (!cpumask_available(rcu_nocb_mask) && need_rcu_nocb_mask) {
2173 if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
2174 pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
2175 return;
2178 if (!cpumask_available(rcu_nocb_mask))
2179 return;
2181 #if defined(CONFIG_NO_HZ_FULL)
2182 if (tick_nohz_full_running)
2183 cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
2184 #endif /* #if defined(CONFIG_NO_HZ_FULL) */
2186 if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
2187 pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
2188 cpumask_and(rcu_nocb_mask, cpu_possible_mask,
2189 rcu_nocb_mask);
2191 if (cpumask_empty(rcu_nocb_mask))
2192 pr_info("\tOffload RCU callbacks from CPUs: (none).\n");
2193 else
2194 pr_info("\tOffload RCU callbacks from CPUs: %*pbl.\n",
2195 cpumask_pr_args(rcu_nocb_mask));
2196 if (rcu_nocb_poll)
2197 pr_info("\tPoll for callbacks from no-CBs CPUs.\n");
2199 for_each_cpu(cpu, rcu_nocb_mask) {
2200 rdp = per_cpu_ptr(&rcu_data, cpu);
2201 if (rcu_segcblist_empty(&rdp->cblist))
2202 rcu_segcblist_init(&rdp->cblist);
2203 rcu_segcblist_offload(&rdp->cblist);
2205 rcu_organize_nocb_kthreads();
2208 /* Initialize per-rcu_data variables for no-CBs CPUs. */
2209 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2211 init_swait_queue_head(&rdp->nocb_cb_wq);
2212 init_swait_queue_head(&rdp->nocb_gp_wq);
2213 raw_spin_lock_init(&rdp->nocb_lock);
2214 raw_spin_lock_init(&rdp->nocb_bypass_lock);
2215 raw_spin_lock_init(&rdp->nocb_gp_lock);
2216 timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
2217 timer_setup(&rdp->nocb_bypass_timer, do_nocb_bypass_wakeup_timer, 0);
2218 rcu_cblist_init(&rdp->nocb_bypass);
2222 * If the specified CPU is a no-CBs CPU that does not already have its
2223 * rcuo CB kthread, spawn it. Additionally, if the rcuo GP kthread
2224 * for this CPU's group has not yet been created, spawn it as well.
2226 static void rcu_spawn_one_nocb_kthread(int cpu)
2228 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2229 struct rcu_data *rdp_gp;
2230 struct task_struct *t;
2233 * If this isn't a no-CBs CPU or if it already has an rcuo kthread,
2234 * then nothing to do.
2236 if (!rcu_is_nocb_cpu(cpu) || rdp->nocb_cb_kthread)
2237 return;
2239 /* If we didn't spawn the GP kthread first, reorganize! */
2240 rdp_gp = rdp->nocb_gp_rdp;
2241 if (!rdp_gp->nocb_gp_kthread) {
2242 t = kthread_run(rcu_nocb_gp_kthread, rdp_gp,
2243 "rcuog/%d", rdp_gp->cpu);
2244 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo GP kthread, OOM is now expected behavior\n", __func__))
2245 return;
2246 WRITE_ONCE(rdp_gp->nocb_gp_kthread, t);
2249 /* Spawn the kthread for this CPU. */
2250 t = kthread_run(rcu_nocb_cb_kthread, rdp,
2251 "rcuo%c/%d", rcu_state.abbr, cpu);
2252 if (WARN_ONCE(IS_ERR(t), "%s: Could not start rcuo CB kthread, OOM is now expected behavior\n", __func__))
2253 return;
2254 WRITE_ONCE(rdp->nocb_cb_kthread, t);
2255 WRITE_ONCE(rdp->nocb_gp_kthread, rdp_gp->nocb_gp_kthread);
2259 * If the specified CPU is a no-CBs CPU that does not already have its
2260 * rcuo kthread, spawn it.
2262 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2264 if (rcu_scheduler_fully_active)
2265 rcu_spawn_one_nocb_kthread(cpu);
2269 * Once the scheduler is running, spawn rcuo kthreads for all online
2270 * no-CBs CPUs. This assumes that the early_initcall()s happen before
2271 * non-boot CPUs come online -- if this changes, we will need to add
2272 * some mutual exclusion.
2274 static void __init rcu_spawn_nocb_kthreads(void)
2276 int cpu;
2278 for_each_online_cpu(cpu)
2279 rcu_spawn_cpu_nocb_kthread(cpu);
2282 /* How many CB CPU IDs per GP kthread? Default of -1 for sqrt(nr_cpu_ids). */
2283 static int rcu_nocb_gp_stride = -1;
2284 module_param(rcu_nocb_gp_stride, int, 0444);
2287 * Initialize GP-CB relationships for all no-CBs CPU.
2289 static void __init rcu_organize_nocb_kthreads(void)
2291 int cpu;
2292 bool firsttime = true;
2293 bool gotnocbs = false;
2294 bool gotnocbscbs = true;
2295 int ls = rcu_nocb_gp_stride;
2296 int nl = 0; /* Next GP kthread. */
2297 struct rcu_data *rdp;
2298 struct rcu_data *rdp_gp = NULL; /* Suppress misguided gcc warn. */
2299 struct rcu_data *rdp_prev = NULL;
2301 if (!cpumask_available(rcu_nocb_mask))
2302 return;
2303 if (ls == -1) {
2304 ls = nr_cpu_ids / int_sqrt(nr_cpu_ids);
2305 rcu_nocb_gp_stride = ls;
2309 * Each pass through this loop sets up one rcu_data structure.
2310 * Should the corresponding CPU come online in the future, then
2311 * we will spawn the needed set of rcu_nocb_kthread() kthreads.
2313 for_each_cpu(cpu, rcu_nocb_mask) {
2314 rdp = per_cpu_ptr(&rcu_data, cpu);
2315 if (rdp->cpu >= nl) {
2316 /* New GP kthread, set up for CBs & next GP. */
2317 gotnocbs = true;
2318 nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
2319 rdp->nocb_gp_rdp = rdp;
2320 rdp_gp = rdp;
2321 if (dump_tree) {
2322 if (!firsttime)
2323 pr_cont("%s\n", gotnocbscbs
2324 ? "" : " (self only)");
2325 gotnocbscbs = false;
2326 firsttime = false;
2327 pr_alert("%s: No-CB GP kthread CPU %d:",
2328 __func__, cpu);
2330 } else {
2331 /* Another CB kthread, link to previous GP kthread. */
2332 gotnocbscbs = true;
2333 rdp->nocb_gp_rdp = rdp_gp;
2334 rdp_prev->nocb_next_cb_rdp = rdp;
2335 if (dump_tree)
2336 pr_cont(" %d", cpu);
2338 rdp_prev = rdp;
2340 if (gotnocbs && dump_tree)
2341 pr_cont("%s\n", gotnocbscbs ? "" : " (self only)");
2345 * Bind the current task to the offloaded CPUs. If there are no offloaded
2346 * CPUs, leave the task unbound. Splat if the bind attempt fails.
2348 void rcu_bind_current_to_nocb(void)
2350 if (cpumask_available(rcu_nocb_mask) && cpumask_weight(rcu_nocb_mask))
2351 WARN_ON(sched_setaffinity(current->pid, rcu_nocb_mask));
2353 EXPORT_SYMBOL_GPL(rcu_bind_current_to_nocb);
2356 * Dump out nocb grace-period kthread state for the specified rcu_data
2357 * structure.
2359 static void show_rcu_nocb_gp_state(struct rcu_data *rdp)
2361 struct rcu_node *rnp = rdp->mynode;
2363 pr_info("nocb GP %d %c%c%c%c%c%c %c[%c%c] %c%c:%ld rnp %d:%d %lu\n",
2364 rdp->cpu,
2365 "kK"[!!rdp->nocb_gp_kthread],
2366 "lL"[raw_spin_is_locked(&rdp->nocb_gp_lock)],
2367 "dD"[!!rdp->nocb_defer_wakeup],
2368 "tT"[timer_pending(&rdp->nocb_timer)],
2369 "bB"[timer_pending(&rdp->nocb_bypass_timer)],
2370 "sS"[!!rdp->nocb_gp_sleep],
2371 ".W"[swait_active(&rdp->nocb_gp_wq)],
2372 ".W"[swait_active(&rnp->nocb_gp_wq[0])],
2373 ".W"[swait_active(&rnp->nocb_gp_wq[1])],
2374 ".B"[!!rdp->nocb_gp_bypass],
2375 ".G"[!!rdp->nocb_gp_gp],
2376 (long)rdp->nocb_gp_seq,
2377 rnp->grplo, rnp->grphi, READ_ONCE(rdp->nocb_gp_loops));
2380 /* Dump out nocb kthread state for the specified rcu_data structure. */
2381 static void show_rcu_nocb_state(struct rcu_data *rdp)
2383 struct rcu_segcblist *rsclp = &rdp->cblist;
2384 bool waslocked;
2385 bool wastimer;
2386 bool wassleep;
2388 if (rdp->nocb_gp_rdp == rdp)
2389 show_rcu_nocb_gp_state(rdp);
2391 pr_info(" CB %d->%d %c%c%c%c%c%c F%ld L%ld C%d %c%c%c%c%c q%ld\n",
2392 rdp->cpu, rdp->nocb_gp_rdp->cpu,
2393 "kK"[!!rdp->nocb_cb_kthread],
2394 "bB"[raw_spin_is_locked(&rdp->nocb_bypass_lock)],
2395 "cC"[!!atomic_read(&rdp->nocb_lock_contended)],
2396 "lL"[raw_spin_is_locked(&rdp->nocb_lock)],
2397 "sS"[!!rdp->nocb_cb_sleep],
2398 ".W"[swait_active(&rdp->nocb_cb_wq)],
2399 jiffies - rdp->nocb_bypass_first,
2400 jiffies - rdp->nocb_nobypass_last,
2401 rdp->nocb_nobypass_count,
2402 ".D"[rcu_segcblist_ready_cbs(rsclp)],
2403 ".W"[!rcu_segcblist_restempty(rsclp, RCU_DONE_TAIL)],
2404 ".R"[!rcu_segcblist_restempty(rsclp, RCU_WAIT_TAIL)],
2405 ".N"[!rcu_segcblist_restempty(rsclp, RCU_NEXT_READY_TAIL)],
2406 ".B"[!!rcu_cblist_n_cbs(&rdp->nocb_bypass)],
2407 rcu_segcblist_n_cbs(&rdp->cblist));
2409 /* It is OK for GP kthreads to have GP state. */
2410 if (rdp->nocb_gp_rdp == rdp)
2411 return;
2413 waslocked = raw_spin_is_locked(&rdp->nocb_gp_lock);
2414 wastimer = timer_pending(&rdp->nocb_timer);
2415 wassleep = swait_active(&rdp->nocb_gp_wq);
2416 if (!rdp->nocb_defer_wakeup && !rdp->nocb_gp_sleep &&
2417 !waslocked && !wastimer && !wassleep)
2418 return; /* Nothing untowards. */
2420 pr_info(" !!! %c%c%c%c %c\n",
2421 "lL"[waslocked],
2422 "dD"[!!rdp->nocb_defer_wakeup],
2423 "tT"[wastimer],
2424 "sS"[!!rdp->nocb_gp_sleep],
2425 ".W"[wassleep]);
2428 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
2430 /* No ->nocb_lock to acquire. */
2431 static void rcu_nocb_lock(struct rcu_data *rdp)
2435 /* No ->nocb_lock to release. */
2436 static void rcu_nocb_unlock(struct rcu_data *rdp)
2440 /* No ->nocb_lock to release. */
2441 static void rcu_nocb_unlock_irqrestore(struct rcu_data *rdp,
2442 unsigned long flags)
2444 local_irq_restore(flags);
2447 /* Lockdep check that ->cblist may be safely accessed. */
2448 static void rcu_lockdep_assert_cblist_protected(struct rcu_data *rdp)
2450 lockdep_assert_irqs_disabled();
2453 static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq)
2457 static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp)
2459 return NULL;
2462 static void rcu_init_one_nocb(struct rcu_node *rnp)
2466 static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2467 unsigned long j)
2469 return true;
2472 static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
2473 bool *was_alldone, unsigned long flags)
2475 return false;
2478 static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
2479 unsigned long flags)
2481 WARN_ON_ONCE(1); /* Should be dead code! */
2484 static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
2488 static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
2490 return false;
2493 static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
2497 static void rcu_spawn_cpu_nocb_kthread(int cpu)
2501 static void __init rcu_spawn_nocb_kthreads(void)
2505 static void show_rcu_nocb_state(struct rcu_data *rdp)
2509 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
2512 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
2513 * grace-period kthread will do force_quiescent_state() processing?
2514 * The idea is to avoid waking up RCU core processing on such a
2515 * CPU unless the grace period has extended for too long.
2517 * This code relies on the fact that all NO_HZ_FULL CPUs are also
2518 * CONFIG_RCU_NOCB_CPU CPUs.
2520 static bool rcu_nohz_full_cpu(void)
2522 #ifdef CONFIG_NO_HZ_FULL
2523 if (tick_nohz_full_cpu(smp_processor_id()) &&
2524 (!rcu_gp_in_progress() ||
2525 time_before(jiffies, READ_ONCE(rcu_state.gp_start) + HZ)))
2526 return true;
2527 #endif /* #ifdef CONFIG_NO_HZ_FULL */
2528 return false;
2532 * Bind the RCU grace-period kthreads to the housekeeping CPU.
2534 static void rcu_bind_gp_kthread(void)
2536 if (!tick_nohz_full_enabled())
2537 return;
2538 housekeeping_affine(current, HK_FLAG_RCU);
2541 /* Record the current task on dyntick-idle entry. */
2542 static void noinstr rcu_dynticks_task_enter(void)
2544 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2545 WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
2546 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2549 /* Record no current task on dyntick-idle exit. */
2550 static void noinstr rcu_dynticks_task_exit(void)
2552 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
2553 WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
2554 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
2557 /* Turn on heavyweight RCU tasks trace readers on idle/user entry. */
2558 static void rcu_dynticks_task_trace_enter(void)
2560 #ifdef CONFIG_TASKS_RCU_TRACE
2561 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2562 current->trc_reader_special.b.need_mb = true;
2563 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */
2566 /* Turn off heavyweight RCU tasks trace readers on idle/user exit. */
2567 static void rcu_dynticks_task_trace_exit(void)
2569 #ifdef CONFIG_TASKS_RCU_TRACE
2570 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
2571 current->trc_reader_special.b.need_mb = false;
2572 #endif /* #ifdef CONFIG_TASKS_RCU_TRACE */